比较提交

..

802 次代码提交

作者 SHA1 备注 提交日期
binary-husky
59e3d3bf73 raise error when the uploaded tar contain hard/soft link 2025-02-07 21:22:46 +08:00
binary-husky
8a0d96afd3 consider element missing cases in js 2025-02-07 01:21:21 +08:00
binary-husky
37f9b94dee add options to hide ui components 2025-02-07 00:17:36 +08:00
binary-husky
936e2f5206 update readme 2025-02-04 16:15:56 +08:00
binary-husky
7f4b87a633 update readme 2025-02-04 16:08:18 +08:00
binary-husky
2ddd1bb634 Merge branch 'memset0-master' 2025-02-04 16:03:53 +08:00
binary-husky
c68285aeac update config and version 2025-02-04 16:03:01 +08:00
Memento mori.
caaebe4296 add support for Deepseek R1 model and display CoT (#2118)
* feat: add support for R1 model and display CoT

* fix unpacking

* feat: customized font & font size

* auto hide tooltip when scoll down

* tooltip glass transparent css

* fix: Enhance API key validation in is_any_api_key function (#2113)

* support qwen2.5-max!

* update minior adjustment

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
Co-authored-by: Steven Moder <java20131114@gmail.com>
2025-02-04 16:02:02 +08:00
binary-husky
39d50c1c95 update minior adjustment 2025-02-04 15:57:35 +08:00
binary-husky
25dc7bf912 Merge branch 'master' of https://github.com/memset0/gpt_academic into memset0-master 2025-01-30 22:03:31 +08:00
binary-husky
0458590a77 support qwen2.5-max! 2025-01-29 23:29:38 +08:00
Steven Moder
44fe78fff5 fix: Enhance API key validation in is_any_api_key function (#2113) 2025-01-29 21:40:30 +08:00
binary-husky
5ddd657ebc tooltip glass transparent css 2025-01-28 23:50:21 +08:00
binary-husky
9b0b2cf260 auto hide tooltip when scoll down 2025-01-28 23:32:40 +08:00
binary-husky
9f39a6571a feat: customized font & font size 2025-01-28 02:52:56 +08:00
memset0
d07e736214 fix unpacking 2025-01-25 00:00:13 +08:00
memset0
a1f7ae5b55 feat: add support for R1 model and display CoT 2025-01-24 14:43:49 +08:00
binary-husky
1213ef19e5 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2025-01-22 01:50:08 +08:00
binary-husky
aaafe2a797 fix xelatex font problem in all-cap image 2025-01-22 01:49:53 +08:00
binary-husky
2716606f0c Update README.md 2025-01-16 23:40:24 +08:00
binary-husky
286f7303be fix image display bug 2025-01-12 21:54:43 +08:00
binary-husky
7eeab9e376 fix code block display bug 2025-01-09 22:31:59 +08:00
binary-husky
4ca331fb28 prevent html rendering for input 2025-01-05 21:20:12 +08:00
binary-husky
9487829930 change max_chat_preserve = 10 2025-01-03 00:34:36 +08:00
binary-husky
a73074b89e upgrade chat checkpoint 2025-01-03 00:31:03 +08:00
Southlandi
fd93622840 修复Gemini对话错误问题(停用词数量为0的情况) (#2092) 2024-12-28 23:22:10 +08:00
whyXVI
09a82a572d Fix RuntimeError in predict_no_ui_long_connection() (#2095)
Bug fix: Fix RuntimeError in predict_no_ui_long_connection()

In the original code, calling predict_no_ui_long_connection() would trigger a RuntimeError("OpenAI拒绝了请求:" + error_msg) even when the server responded normally. The issue occurred due to incorrect handling of SSE protocol comment lines (lines starting with ":"). 

Modified the parsing logic in both `predict` and `predict_no_ui_long_connection` to handle these lines correctly, making the logic more intuitive and robust.
2024-12-28 23:21:14 +08:00
G.RQ
c53ddf65aa 修复 bug“重置”按钮报错 (#2102)
* fix 重置按钮bug

* fix version control bug

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-12-28 23:19:25 +08:00
binary-husky
ac64a77c2d allow disable openai proxy in WHEN_TO_USE_PROXY 2024-12-28 07:14:54 +08:00
binary-husky
dae8a0affc compat bug fix 2024-12-25 01:21:58 +08:00
binary-husky
97a81e9388 fix temp issue of o1 2024-12-25 00:54:03 +08:00
binary-husky
1dd1d0ed6c fix cookie overflow bug 2024-12-25 00:33:20 +08:00
binary-husky
060af0d2e6 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2024-12-22 23:33:44 +08:00
binary-husky
a848f714b6 fix welcome card bugs 2024-12-22 23:33:22 +08:00
binary-husky
924f8e30c7 Update issue stale.yml 2024-12-22 14:16:18 +08:00
binary-husky
f40347665b github action change 2024-12-22 14:15:16 +08:00
binary-husky
734c40bbde fix non-localhost javascript error 2024-12-22 14:01:22 +08:00
binary-husky
4ec87fbb54 history ng patch 1 2024-12-21 11:27:53 +08:00
binary-husky
17b5c22e61 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2024-12-19 22:46:14 +08:00
binary-husky
c6cd04a407 promote the rank of DASHSCOPE_API_KEY 2024-12-19 22:39:14 +08:00
YIQI JIANG
f60a12f8b4 Add o1 and o1-2024-12-17 model support (#2090)
* Add o1 and o1-2024-12-17 model support

* patch api key selection

---------

Co-authored-by: 蒋翌琪 <jiangyiqi99@jiangyiqideMacBook-Pro.local>
Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-12-19 22:32:57 +08:00
binary-husky
8413fb15ba optimize welcome page 2024-12-18 23:35:25 +08:00
binary-husky
72b2ce9b62 ollama patch 2024-12-18 23:05:55 +08:00
binary-husky
f43ef909e2 roll version to 3.91 2024-12-18 22:56:41 +08:00
binary-husky
9651ad488f Merge branch 'master' into frontier 2024-12-18 22:27:12 +08:00
binary-husky
81da7bb1a5 remove welcome card when layout overflows 2024-12-18 17:48:02 +08:00
binary-husky
4127162ee7 add tts test 2024-12-18 17:47:23 +08:00
binary-husky
98e5cb7b77 update readme 2024-12-09 23:57:10 +08:00
binary-husky
c88d8047dd cookie storage to local storage 2024-12-09 23:52:02 +08:00
binary-husky
e4bebea28d update requirements 2024-12-09 23:40:23 +08:00
YE Ke 叶柯
294df6c2d5 Add ChatGLM4 local deployment support and refactor ChatGLM bridge's path configuration (#2062)
*  feat(request_llms and config.py): ChatGLM4 Deployment

Add support for local deployment of ChatGLM4 model

* 🦄 refactor(bridge_chatglm3.py): ChatGLM3 model path

Added ChatGLM3 path customization (in config.py).
Removed useless quantization model options that have been annotated

---------

Co-authored-by: MarkDeia <17290550+MarkDeia@users.noreply.github.com>
2024-12-07 23:43:51 +08:00
Zhenhong Du
239894544e Add support for grok-beta model from x.ai (#2060)
* Update config.py

add support for `grok-beta` model

* Update bridge_all.py

add support for `grok-beta` model
2024-12-07 23:41:53 +08:00
Menghuan
ed5fc84d4e 添加为windows的环境打包以及一键启动脚本 (#2068)
* 新增自动打包windows下的环境依赖

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-12-07 23:41:02 +08:00
Menghuan
e3f84069ee 改进Doc2X请求,并增加xelatex编译的支持 (#2058)
* doc2x请求函数格式清理

* 更新中间部分

* 添加doc2x超时设置并添加对xelatex编译的支持

* Bug修复以及增加对xelatex安装的检测

* 增强弱网环境下的稳定性

* 修复模型中_无法显示的问题

* add xelatex logs

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-12-07 23:23:59 +08:00
binary-husky
7bf094b6b6 remove 2024-12-07 22:43:03 +08:00
binary-husky
57d7dc33d3 sync common.js 2024-12-07 17:10:01 +08:00
binary-husky
94ccd77480 remove gen restore btn 2024-12-07 16:22:29 +08:00
binary-husky
48e53cba05 update gradio 2024-12-07 16:18:05 +08:00
binary-husky
e9a7f9439f upgrade gradio 2024-12-07 15:59:30 +08:00
binary-husky
a88b119bf0 change urls 2024-12-05 22:13:59 +08:00
binary-husky
eee8115434 add a config note 2024-12-04 23:55:22 +08:00
binary-husky
4f6a272113 remove keyword extraction 2024-12-04 01:33:31 +08:00
binary-husky
cf3dd5ddb6 add fail fallback option for media plugin 2024-12-04 01:06:12 +08:00
binary-husky
f6f10b7230 media plugin update 2024-12-04 00:36:34 +08:00
binary-husky
bd7b219e8f update web search functionality 2024-12-02 01:55:01 +08:00
binary-husky
e62decac21 change some open fn encoding to utf-8 2024-11-19 15:53:50 +00:00
binary-husky
588b22e039 comment remove 2024-11-19 15:05:48 +00:00
binary-husky
ef18aeda81 adjust rag 2024-11-19 14:59:50 +00:00
binary-husky
3520131ca2 public media gpt 2024-11-18 18:38:49 +00:00
binary-husky
ff5901d8c0 Merge branch 'master' into frontier 2024-11-17 18:16:19 +00:00
binary-husky
2305576410 unify mutex button manifest 2024-11-17 18:14:45 +00:00
binary-husky
52f23c505c media-gpt update 2024-11-17 17:45:53 +00:00
binary-husky
34cc484635 chatgpt-4o-latest 2024-11-11 15:58:57 +00:00
binary-husky
d152f62894 renamed plugins 2024-11-11 14:55:05 +00:00
binary-husky
ca35f56f9b fix: media gpt upgrade 2024-11-11 14:48:29 +00:00
binary-husky
d616fd121a update experimental media agent 2024-11-10 16:42:31 +00:00
binary-husky
f3fda0d3fc Merge branch 'master' into frontier 2024-11-10 13:41:44 +00:00
binary-husky
197287fc30 Enhance archive extraction with error handling for tar and gzip formats 2024-11-09 10:10:46 +00:00
Bingchen Jiang
c37fcc9299 Adding support to new openai apikey format (#2030) 2024-11-09 13:41:19 +08:00
binary-husky
91f5e6b8f7 resolve pickle security issue 2024-11-04 13:49:49 +00:00
hcy2206
4f0851f703 增加了对于glm-4-plus的支持 (#2014)
* 增加对于讯飞星火大模型Spark4.0的支持

* Create github action sync.yml

* 增加对于智谱glm-4-plus的支持

* feat: change arxiv io param

* catch comment source code exception

* upgrade auto comment

* add security patch

---------

Co-authored-by: GH Action - Upstream Sync <action@github.com>
Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-11-03 22:41:16 +08:00
binary-husky
2821f27756 add security patch 2024-11-03 14:34:17 +00:00
binary-husky
8f91a048a8 dfa algo imp 2024-11-03 09:39:14 +00:00
binary-husky
58eac38b4d Merge branch 'master' into frontier 2024-10-30 13:42:17 +00:00
binary-husky
180550b8f0 upgrade auto comment 2024-10-30 13:37:35 +00:00
binary-husky
7497dcb852 catch comment source code exception 2024-10-30 11:40:47 +00:00
binary-husky
23ef2ffb22 feat: change arxiv io param 2024-10-27 16:54:29 +00:00
binary-husky
848d0f65c7 share paper network beta 2024-10-27 16:08:25 +00:00
Menghuan1918
f0b0364f74 修复并改进build with latex的Docker构建 (#2020)
* 改进构建文件

* 修复问题

* 更改docker注释,同时测试拉取大小
2024-10-27 23:17:03 +08:00
binary-husky
d7f0cbe68e Merge branch 'master' into frontier 2024-10-21 14:31:25 +00:00
binary-husky
69f3755682 adjust max_token_limit for pdf translation plugin 2024-10-21 14:31:11 +00:00
binary-husky
04c9077265 Merge branch 'papershare_beta' into frontier 2024-10-21 14:06:52 +00:00
binary-husky
6afd7db1e3 Merge branch 'master' into frontier 2024-10-21 14:06:23 +00:00
binary-husky
4727113243 update doc2x functions 2024-10-21 14:05:42 +00:00
binary-husky
42d10a9481 update doc2x functions 2024-10-21 14:05:05 +00:00
binary-husky
50a1ea83ef control whether to allow sharing translation results with GPTAC academic cloud. 2024-10-18 18:05:50 +00:00
binary-husky
a9c86a7fb8 pre 2024-10-18 14:16:24 +00:00
binary-husky
2b299cf579 Merge branch 'master' into frontier 2024-10-16 15:22:27 +00:00
wsg1873
310122f5a7 solve the concatenate error. (#2011) 2024-10-16 00:56:24 +08:00
binary-husky
0121cacc84 Merge branch 'master' into frontier 2024-10-15 09:10:36 +00:00
binary-husky
c83bf214d0 change arxiv download attempt url order 2024-10-15 09:09:24 +00:00
binary-husky
e34c49dce5 compat: deal with arxiv url change 2024-10-15 09:07:39 +00:00
binary-husky
f2dcd6ad55 compat: arxiv translation src shift 2024-10-15 09:06:57 +00:00
binary-husky
42d9712f20 Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-10-15 08:24:01 +00:00
binary-husky
3890467c84 replace rm with rm -f 2024-10-15 07:32:29 +00:00
binary-husky
074b3c9828 explicitly declare default value 2024-10-15 06:41:12 +00:00
Nextstrain
b8e8457a01 关于o1系列模型无法正常请求的修复,多模型轮询KeyError: 'finish_reason'的修复 (#1992)
* Update bridge_all.py

* Update bridge_chatgpt.py

* Update bridge_chatgpt.py

* Update bridge_all.py

* Update bridge_all.py
2024-10-15 14:36:51 +08:00
binary-husky
2c93a24d7e fix dockerfile: try align python 2024-10-15 06:35:35 +00:00
binary-husky
e9af6ef3a0 fix: github action glitch 2024-10-15 06:32:47 +00:00
wsg1873
5ae8981dbb add the '/Fit' destination (#2009) 2024-10-14 22:50:56 +08:00
Boyin Liu
7f0ffa58f0 Boyin rag (#1983)
* first_version

* rag document support

* RAG interactive prompts added, issues resolved

* Resolve conflicts

* Resolve conflicts

* Resolve conflicts

* more file format support

* move import

* Resolve LlamaIndexRagWorker bug

* new resolve

* Address import  LlamaIndexRagWorker problem

* change import order

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-10-14 22:48:24 +08:00
binary-husky
adbed044e4 fix o1 compat problem 2024-10-13 17:02:07 +00:00
Menghuan1918
2fe5febaf0 为build-with-latex版本Docker构建新增arm64支持 (#1994)
* Add arm64 support

* Bug fix

* Some build bug fix

* Add arm support

* 分离arm和x86构建

* 改进构建文档

* update tags

* Update build-with-latex-arm.yml

* Revert "Update build-with-latex-arm.yml"

This reverts commit 9af92549b5.

* Update

* Add

* httpx

* Addison

* Update GithubAction+NoLocal+Latex

* Update docker-compose.yml and GithubAction+NoLocal+Latex

* Update README.md

* test math anim generation

* solve the pdf concatenate error. (#2006)

* solve the pdf concatenate error.

* add legacy fallback option

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>
Co-authored-by: binary-husky <qingxu.fu@outlook.com>
Co-authored-by: wsg1873 <wsg0326@163.com>
2024-10-14 00:25:28 +08:00
binary-husky
5888d038aa move import 2024-10-13 16:17:10 +00:00
binary-husky
ee8213e936 Merge branch 'boyin_rag' into frontier 2024-10-13 16:12:51 +00:00
binary-husky
a57dcbcaeb Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-10-13 08:26:06 +00:00
binary-husky
b812392a9d Merge branch 'master' into frontier 2024-10-13 08:25:47 +00:00
wsg1873
f54d8e559a solve the pdf concatenate error. (#2006)
* solve the pdf concatenate error.

* add legacy fallback option

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-10-13 16:16:51 +08:00
lbykkkk
fce4fa1ec7 more file format support 2024-10-12 18:25:33 +00:00
Boyin Liu
d13f1e270c Merge branch 'master' into boyin_rag 2024-10-11 22:31:07 +08:00
lbykkkk
85cf3d08eb Resolve conflicts 2024-10-11 22:29:56 +08:00
lbykkkk
584e747565 Resolve conflicts 2024-10-11 22:27:57 +08:00
lbykkkk
02ba653c19 Resolve conflicts 2024-10-11 22:21:53 +08:00
binary-husky
e68fc2bc69 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2024-10-11 13:33:05 +00:00
binary-husky
f695d7f1da test math anim generation 2024-10-11 13:32:57 +00:00
lbykkkk
2d12b5b27d RAG interactive prompts added, issues resolved 2024-10-11 01:06:17 +08:00
binary-husky
679352d896 Update README.md 2024-10-10 13:38:35 +08:00
binary-husky
12c9ab1e33 Update README.md 2024-10-10 12:02:12 +08:00
binary-husky
a4bcd262f9 Merge branch 'master' into frontier 2024-10-07 05:20:49 +00:00
binary-husky
da4a5efc49 lazy load llama-index lib 2024-10-06 16:26:26 +00:00
binary-husky
9ac450cfb6 紧急修复 fix httpx breaking bad error 2024-10-06 15:02:14 +00:00
binary-husky
172f9e220b version 3.90 2024-10-05 16:51:08 +00:00
Boyin Liu
748e31102f Merge branch 'master' into boyin_rag 2024-10-05 23:58:43 +08:00
binary-husky
a28b7d8475 Merge branch 'master' of https://github.com/binary-husky/gpt_academic 2024-10-05 19:10:42 +08:00
binary-husky
7d3ed36899 fix: llama index deps verion limit 2024-10-05 19:10:38 +08:00
binary-husky
a7bc5fa357 remove out-dated jittor models 2024-10-05 10:58:45 +00:00
binary-husky
4f5dd9ebcf add temp solution for llama-index compat 2024-10-05 09:53:21 +00:00
binary-husky
427feb99d8 llama-index==0.10.5 2024-10-05 17:34:08 +08:00
binary-husky
a01ca93362 Merge Latest Frontier (#1991)
* logging sys to loguru: stage 1 complete

* import loguru: stage 2

* logging -> loguru: stage 3

* support o1-preview and o1-mini

* logging -> loguru stage 4

* update social helper

* logging -> loguru: final stage

* fix: console output

* update translation matrix

* fix: loguru argument error with proxy enabled (#1977)

* relax llama index version

* remove comment

* Added some modules to support openrouter (#1975)

* Added some modules for supporting openrouter model

Added some modules for supporting openrouter model

* Update config.py

* Update .gitignore

* Update bridge_openrouter.py

* Not changed actually

* Refactor logging in bridge_openrouter.py

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* remove logging extra

---------

Co-authored-by: Steven Moder <java20131114@gmail.com>
Co-authored-by: Ren Lifei <2602264455@qq.com>
2024-10-05 17:09:18 +08:00
binary-husky
97eef45ab7 Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-10-01 11:59:14 +00:00
binary-husky
0c0e2acb9b remove logging extra 2024-10-01 11:57:47 +00:00
Ren Lifei
9fba8e0142 Added some modules to support openrouter (#1975)
* Added some modules for supporting openrouter model

Added some modules for supporting openrouter model

* Update config.py

* Update .gitignore

* Update bridge_openrouter.py

* Not changed actually

* Refactor logging in bridge_openrouter.py

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-09-28 18:05:34 +08:00
binary-husky
7d7867fb64 remove comment 2024-09-23 15:16:13 +00:00
lbykkkk
7ea791d83a rag document support 2024-09-22 21:37:57 +08:00
binary-husky
f9dbaa39fb Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-09-21 15:40:24 +00:00
binary-husky
bbc2288c5b relax llama index version 2024-09-21 15:40:10 +00:00
Steven Moder
64ab916838 fix: loguru argument error with proxy enabled (#1977) 2024-09-21 23:32:00 +08:00
binary-husky
8fe559da9f update translation matrix 2024-09-21 14:56:10 +00:00
binary-husky
09fd22091a fix: console output 2024-09-21 14:41:36 +00:00
lbykkkk
df717f8bba first_version 2024-09-20 00:06:59 +08:00
binary-husky
e296719b23 Merge branch 'purge_print' into frontier 2024-09-16 09:56:25 +00:00
binary-husky
2f343179a2 logging -> loguru: final stage 2024-09-15 15:51:51 +00:00
binary-husky
4d9604f2e9 update social helper 2024-09-15 15:16:36 +00:00
binary-husky
597c320808 fix: system prompt err when using o1 models 2024-09-14 17:04:01 +00:00
binary-husky
18290fd138 fix: support o1 models 2024-09-14 17:00:02 +00:00
binary-husky
bbf9e9f868 logging -> loguru stage 4 2024-09-14 16:00:09 +00:00
binary-husky
0d0575a639 support o1-preview and o1-mini 2024-09-13 03:12:18 +00:00
binary-husky
aa1f967dd7 support o1-preview and o1-mini 2024-09-13 03:11:53 +00:00
binary-husky
0d082327c8 logging -> loguru: stage 3 2024-09-11 08:49:55 +00:00
binary-husky
80acd9c875 import loguru: stage 2 2024-09-11 08:18:01 +00:00
binary-husky
17cd4f8210 logging sys to loguru: stage 1 complete 2024-09-11 03:30:30 +00:00
binary-husky
4e041e1d4e Merge branch 'frontier': windows deps bug fix 2024-09-08 16:32:38 +00:00
binary-husky
7ef39770c7 fallback to simple vs in windows system 2024-09-09 00:27:02 +08:00
binary-husky
8222f638cf Merge branch 'frontier' 2024-09-08 15:46:13 +00:00
binary-husky
ab32c314ab change git ignore 2024-09-08 15:44:02 +00:00
binary-husky
dcfed97054 revise milvus rag 2024-09-08 15:43:01 +00:00
binary-husky
dd66ca26f7 Frontier (#1958)
* update welcome svg

* fix loading chatglm3 (#1937)

* update welcome svg

* update welcome message

* fix loading chatglm3

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* begin rag project with llama index

* rag version one

* rag beta release

* add social worker (proto)

* fix llamaindex version

---------

Co-authored-by: moetayuko <loli@yuko.moe>
2024-09-08 23:20:42 +08:00
binary-husky
8b91d2ac0a add milvus vector store 2024-09-08 15:19:03 +00:00
binary-husky
e4e00b713f fix llamaindex version 2024-09-05 05:21:10 +00:00
binary-husky
710a65522c add social worker (proto) 2024-09-02 15:55:06 +00:00
binary-husky
34784c1d40 Merge branch 'rag' into frontier 2024-09-02 15:01:12 +00:00
binary-husky
80b1a6f99b rag beta release 2024-09-02 15:00:47 +00:00
binary-husky
08c3c56f53 rag version one 2024-08-28 15:14:13 +00:00
binary-husky
294716c832 begin rag project with llama index 2024-08-21 14:24:37 +00:00
binary-husky
16f4fd636e update ref 2024-08-19 16:14:52 +00:00
binary-husky
e07caf7a69 update openai api key pattern 2024-08-19 15:59:20 +00:00
moetayuko
a95b3daab9 fix loading chatglm3 (#1937)
* update welcome svg

* update welcome message

* fix loading chatglm3

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>
2024-08-19 23:32:45 +08:00
binary-husky
4873e9dfdc update translation matrix 2024-08-12 13:50:37 +00:00
moetayuko
a119ab36fe fix enabling sparkv4 (#1936) 2024-08-12 21:45:08 +08:00
FatShibaInu
f9384e4e5f Add Support for Gemini 1.5 Pro & Gemini 1.5 Flash (#1926)
* Add Support for Gemini 1.5 Pro & 1.5 Flash.

* Update bridge_all.py

fix a spelling error in comments.

* Add Support for Gemini 1.5 Pro & Gemini 1.5 Flash
2024-08-12 21:44:24 +08:00
binary-husky
6fe5f6ee6e update welcome message 2024-08-05 11:37:06 +00:00
binary-husky
068d753426 update welcome svg 2024-08-04 15:59:09 +00:00
binary-husky
5010537f3c update welcome svg 2024-08-04 15:58:32 +00:00
binary-husky
f35f6633e0 fix: welcome card flip bug 2024-08-02 11:20:41 +00:00
hongyi-zhao
573dc4d184 Add claude-3-5-sonnet-20240620 (#1907)
See https://docs.anthropic.com/en/docs/about-claude/models#model-names fore model names.
2024-08-02 18:04:42 +08:00
binary-husky
da8b2d69ce update version 3.8 2024-08-02 10:02:04 +00:00
binary-husky
58e732c26f Merge branch 'frontier' 2024-08-02 09:50:40 +00:00
Menghuan1918
ca238daa8c 改进联网搜索插件-新增搜索模式,搜索增强 (#1874)
* Change default to Mixed option

* Add option optimizer

* Add search optimizer prompts

* Enhanced Processing

* Finish search_optimizer part

* prompts bug fix

* Bug fix
2024-07-23 00:55:48 +08:00
jiangfy-ihep
60b3491513 add gpt-4o-mini (#1904)
Co-authored-by: Fayu Jiang <jiangfayu@hotmail.com>
2024-07-23 00:55:34 +08:00
binary-husky
c1175bfb7d add flip card animation 2024-07-22 04:53:59 +00:00
binary-husky
b705afd5ff welcome menu bug fix 2024-07-22 04:35:52 +00:00
binary-husky
dfcd28abce add width_to_hide_welcome 2024-07-22 03:34:35 +00:00
binary-husky
1edaa9e234 hide when too narrow 2024-07-21 15:04:38 +00:00
binary-husky
f0cd617ec2 minor css improve 2024-07-20 10:29:47 +00:00
binary-husky
0b08bb2cea update svg 2024-07-20 07:15:08 +00:00
Keldos
d1f8607ac8 Update submit button dropdown style (#1900) 2024-07-20 14:50:56 +08:00
binary-husky
7eb68a2086 tune 2024-07-17 17:16:34 +00:00
binary-husky
ee9e99036a Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-07-17 17:14:49 +00:00
binary-husky
55e255220b update 2024-07-17 17:12:32 +00:00
lbykkkk
019cd26ae8 Merge branch 'frontier' of https://github.com/binary-husky/gpt_academic into frontier 2024-07-18 00:35:51 +08:00
lbykkkk
a5b21d5cc0 修改content并统一logo颜色 2024-07-18 00:35:40 +08:00
binary-husky
ce940ff70f roll welcome msg 2024-07-17 16:34:24 +00:00
binary-husky
fc6a83c29f update 2024-07-17 15:44:08 +00:00
binary-husky
1d3212e367 reverse welcome msg 2024-07-17 15:43:41 +00:00
lbykkkk
8a835352a3 更新欢迎界面的用语和logo 2024-07-17 19:49:07 +08:00
binary-husky
5456c9fa43 improve welcome UI 2024-07-16 16:23:07 +00:00
binary-husky
ea67054c30 update chuanhu theme 2024-07-16 16:07:46 +00:00
binary-husky
1084108df6 adding welcome page 2024-07-16 10:41:25 +00:00
binary-husky
40c9700a8d add welcome page 2024-07-15 15:47:24 +00:00
binary-husky
6da5623813 多用途复用提交按钮 2024-07-15 04:23:43 +00:00
binary-husky
778c9cd9ec roll version 2024-07-15 03:29:56 +00:00
binary-husky
e290317146 proxy submit btn 2024-07-15 03:28:59 +00:00
binary-husky
85b92b7f07 move python comment agent to dropdown 2024-07-13 16:26:36 +00:00
binary-husky
ff899777ce improve source code comment plugin functionality 2024-07-13 16:20:17 +00:00
binary-husky
c1b8c773c3 stage compare source code comment 2024-07-13 15:28:53 +00:00
binary-husky
8747c48175 mt improvement 2024-07-12 08:26:40 +00:00
binary-husky
c0010c88bc implement auto comment 2024-07-12 07:36:40 +00:00
binary-husky
68838da8ad finish test 2024-07-12 04:19:07 +00:00
binary-husky
ca7de8fcdd version up 2024-07-10 02:00:36 +00:00
binary-husky
7ebc2d00e7 Merge branch 'master' into frontier 2024-07-09 03:19:35 +00:00
binary-husky
47fb81cfde Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2024-07-09 03:18:19 +00:00
binary-husky
83961c1002 optimize image generation fn 2024-07-09 03:18:14 +00:00
binary-husky
a8621333af js impl bug fix 2024-07-08 15:50:12 +00:00
binary-husky
f402ef8134 hide ask btn 2024-07-08 15:15:30 +00:00
binary-husky
65d0f486f1 change cache to lru_cache for lower python version 2024-07-07 16:02:05 +00:00
binary-husky
41f25a6a9b Merge branch 'bold_frontier' into frontier 2024-07-04 14:16:08 +00:00
binary-husky
4a6a032334 ignore 2024-07-04 14:14:49 +00:00
binary-husky
f945a7bd19 preserve theme selection 2024-07-04 14:11:51 +00:00
binary-husky
379dcb2fa7 minor gui bug fix 2024-07-04 13:31:21 +00:00
Menghuan1918
114192e025 Bug fix: can not chat with deepseek (#1879) 2024-07-04 20:28:53 +08:00
binary-husky
30c905917a unify plugin calling 2024-07-02 15:32:40 +00:00
binary-husky
0c6c357e9c revise qwen 2024-07-02 14:22:45 +00:00
binary-husky
9d11b17f25 Merge branch 'master' into frontier 2024-07-02 08:06:34 +00:00
binary-husky
1d9e9fa6a1 new page btn 2024-07-01 16:27:23 +00:00
Menghuan1918
6cd2d80dfd Bug fix: Some non-standard forms of error return are not caught (#1877) 2024-07-01 20:35:49 +08:00
binary-husky
18d3245fc9 ready next gradio version 2024-06-29 15:29:48 +00:00
hcy2206
194e665a3b 增加了对于讯飞星火大模型Spark4.0的支持 (#1875) 2024-06-29 23:20:04 +08:00
binary-husky
7e201c5028 move test file to correct position 2024-06-28 08:23:40 +00:00
binary-husky
6babcb4a9c Merge branch 'master' into frontier 2024-06-27 06:52:03 +00:00
binary-husky
00e5a31b50 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2024-06-27 06:50:06 +00:00
binary-husky
d8b9686eeb fix latex auto correct 2024-06-27 06:49:36 +00:00
binary-husky
b7b4e201cb fix latex auto correct 2024-06-27 06:49:10 +00:00
binary-husky
26e7677dc3 fix new api for taichu 2024-06-26 15:18:11 +00:00
Menghuan1918
25e06de1b6 Docker build bug fix (#1870) 2024-06-26 14:31:31 +08:00
binary-husky
5e64a50898 Merge branch 'master' into frontier 2024-06-25 11:43:40 +00:00
binary-husky
0ad571e6b5 prevent further stream when reset is clicked 2024-06-25 11:43:14 +00:00
binary-husky
60a42fb070 Merge branch 'master' into frontier 2024-06-25 11:14:32 +00:00
binary-husky
ddad5247fc upgrade searxng 2024-06-25 11:12:51 +00:00
binary-husky
c94d5054a2 move fn 2024-06-25 08:53:28 +00:00
binary-husky
ececfb9b6e test new dropdown js code 2024-06-25 08:34:50 +00:00
binary-husky
9f13c5cedf update default value of scroller_max_len 2024-06-25 05:34:55 +00:00
binary-husky
68b36042ce re-locate plugin 2024-06-25 05:32:20 +00:00
binary-husky
cac6c50d2f roll version 2024-06-19 12:56:23 +00:00
binary-husky
f884eb43cf Merge branch 'master' into frontier 2024-06-19 12:56:04 +00:00
binary-husky
d37383dd4e change arxiv cache dir path 2024-06-19 12:49:34 +00:00
binary-husky
dfae4e8081 optimize scolling visual effect 2024-06-19 12:42:11 +00:00
binary-husky
15cc08505f resolve safe pickle err 2024-06-19 11:59:47 +00:00
iluem
c5a82f6ab7 Merge pull request from GHSA-3jrq-66fm-w7xr 2024-06-19 14:29:21 +08:00
binary-husky
768ed4514a minor formatting issue 2024-06-18 14:51:53 +00:00
binary-husky
9dfbff7fd0 Merge branch 'GHSA-3jrq-66fm-w7xr' into frontier 2024-06-18 10:19:10 +00:00
binary-husky
47cedde954 fix security issue GHSA-3jrq-66fm-w7xr 2024-06-18 10:18:33 +00:00
binary-husky
1e16485087 internet gpt minor bug fix 2024-06-16 15:16:24 +00:00
binary-husky
f3660d669f internet GPT upgrade 2024-06-16 14:10:38 +00:00
binary-husky
e6d1cb09cb Merge branch 'master' into frontier 2024-06-16 13:47:15 +00:00
binary-husky
12aebf9707 searxng based information gathering 2024-06-16 12:12:57 +00:00
binary-husky
0b5385e5e5 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2024-06-12 09:34:12 +00:00
binary-husky
2ff1a1fb0b update translation matrix 2024-06-12 09:34:05 +00:00
Yuki
cdadd38cf7 ️feat: block access to openapi references while running under fastapi (#1849)
- block fastapi openapi reference(swagger and redoc) routes
2024-06-10 22:26:46 +08:00
binary-husky
48e10fb10a Update README.md 2024-06-10 22:22:04 +08:00
binary-husky
ba484c55a0 Merge branch 'master' into frontier 2024-06-10 14:19:26 +00:00
Frank Lee
ca64a592f5 Update zhipu models (#1852) 2024-06-10 22:17:51 +08:00
Guoxin Sun
cb96ca132a Update common.js (#1854)
fix typo
2024-06-10 22:17:27 +08:00
binary-husky
737101b81d remove debug msg 2024-06-07 17:00:05 +00:00
binary-husky
612caa2f5f revise 2024-06-07 16:50:27 +00:00
binary-husky
85dbe4a4bf pdf processing improvement 2024-06-07 15:53:08 +00:00
binary-husky
2262a4d80a taichu model fix 2024-06-06 09:35:05 +00:00
binary-husky
b456ff02ab add note 2024-06-06 09:14:32 +00:00
binary-husky
24a21ae320 紫东太初大模型 2024-06-06 09:05:06 +00:00
binary-husky
3d5790cc2c resolve fallback to non-multimodal problem 2024-06-06 08:00:30 +00:00
binary-husky
7de6015800 multimodal support for gpt-4o etc 2024-06-06 07:36:37 +00:00
binary-husky
46428b7c7a Merge branch 'master' into frontier 2024-06-01 16:22:32 +00:00
binary-husky
66a50c8019 live2d shutdown bug fix 2024-06-01 16:21:04 +00:00
Menghuan1918
814dc943ac 将“生成多种图表”插件高级参数更新为二级菜单 (#1839)
* Improve the prompts

* Update to new meun form

* Bug fix (wrong type of plugin_kwargs)
2024-06-01 13:34:33 +08:00
binary-husky
96cd1f0b25 secondary menu main input sync bug fix 2024-05-31 04:13:27 +00:00
binary-husky
4fc17f4add Merge branch 'master' into frontier 2024-05-30 15:00:44 +00:00
binary-husky
b3665d8fec remove check 2024-05-30 14:54:50 +00:00
binary-husky
80c4281888 TTS Default Enable 2024-05-30 14:27:18 +00:00
binary-husky
beda56abb0 update dockerfile 2024-05-30 12:44:17 +00:00
binary-husky
cb16941d01 update css 2024-05-30 12:35:47 +00:00
binary-husky
5cf9ac7849 Merge branch 'master' into frontier 2024-05-29 16:06:28 +00:00
binary-husky
51ddb88ceb correct hint err 2024-05-29 16:05:23 +00:00
binary-husky
69dfe5d514 compat to old void-terminal plugin 2024-05-29 15:50:00 +00:00
binary-husky
6819f87512 Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-05-23 16:35:20 +00:00
binary-husky
3d51b9d5bb compat baichuan 2024-05-23 16:35:15 +00:00
QiyuanChen
bff87ada92 添加对ERNIE-Speed和ERNIE-Lite模型的支持 (#1821)
* feat: add ERNIE-Speed and ERNIE-Lite

百度的ERNIE-Speed and ERNIE-Lite模型开始免费使用了,故添加了调用地址。可以使用ERNIE-Speed-128K,ERNIE-Speed-8K,ERNIE-Lite-8K来访问

* chore: Modify supported models in config.py

修改了config.py中千帆支持的模型列表,添加了三款免费模型
2024-05-24 00:16:26 +08:00
binary-husky
a938412b6f save conversation wrap 2024-05-23 15:58:59 +00:00
binary-husky
a48acf6fec Flex Btn Bug Fix 2024-05-22 08:38:40 +00:00
binary-husky
c6b9ab5214 add document 2024-05-22 06:39:56 +00:00
binary-husky
aa3332de69 add document 2024-05-22 06:27:26 +00:00
binary-husky
d43175d46d fix type hint 2024-05-21 13:18:38 +00:00
binary-husky
8ca9232db2 Merge branch 'master' into frontier 2024-05-21 12:27:01 +00:00
binary-husky
1339aa0e1a doc2x latex convertion 2024-05-21 12:24:50 +00:00
binary-husky
f41419e767 update demo 2024-05-21 11:12:08 +00:00
binary-husky
d88c585305 improve latex plugin 2024-05-21 10:47:50 +00:00
binary-husky
0a88d18c7a secondary menu for pdf trans 2024-05-21 08:51:29 +00:00
binary-husky
0d0edc2216 Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-05-19 21:54:16 +08:00
binary-husky
5e0875fcf4 from backend to front end 2024-05-19 21:54:06 +08:00
Shixian Sheng
c508b84db8 更新了README.md/Update README.md (#1810) 2024-05-19 20:41:17 +08:00
Menghuan1918
f2b67602bb 为docker构建添加FFmpeg依赖 (#1807)
* Test: change dockerfile to install ffmpeg

* Add the ffmpeg to dockerfile (required by edge-tts)
2024-05-19 14:27:55 +08:00
binary-husky
29daba5d2f success? 2024-05-18 23:03:28 +08:00
binary-husky
9477824ac1 improve css 2024-05-18 21:54:15 +08:00
binary-husky
459c5b2d24 plugin refactor: phase 1 2024-05-18 20:23:50 +08:00
binary-husky
abf9b5aee5 Merge branch 'master' into frontier 2024-05-18 15:52:08 +08:00
binary-husky
2ce4482146 fix new ModelOverride fn bug 2024-05-18 15:47:25 +08:00
binary-husky
4282b83035 change TTS default to DISABLE 2024-05-18 15:43:35 +08:00
binary-husky
537be57c9b fix tts bugs 2024-05-17 21:07:28 +08:00
binary-husky
3aa92d6c80 change main ui hint 2024-05-17 11:34:13 +08:00
awwaawwa
b7eb9aba49 [Feature]: allow model mutex override in core_functional.py (#1708)
* allow_core_func_specify_model

* change arg name

* 模型覆盖支持热更新&当模型覆盖指向不存在的模型时报错

* allow model mutex override

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-05-17 11:15:23 +08:00
hongyi-zhao
881a596a30 model support (gpt4o) in project. (#1760)
* Add the environment variable: OPEN_BROWSER

* Add configurable browser launching with custom arguments

- Update `config.py` to include options for specifying the browser and its arguments for opening URLs.
- Modify `main.py` to use the configured browser settings from `config.py` to launch the web page.
- Enhance `config_loader.py` to process path-like strings by expanding and normalizing paths, which supports the configuration improvements.

* Add support for the following models:

"gpt-4o", "gpt-4o-2024-05-13"

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-05-14 17:01:32 +08:00
binary-husky
1b3c331d01 dos2unix 2024-05-14 12:02:40 +08:00
binary-husky
70d5f2a7df arg name err patch 2024-05-13 23:40:35 +08:00
Menghuan1918
fd2f8b9090 Provide a new fast and simple way of accessing APIs (As example: Yi-models,Deepseek) (#1782)
* deal with the message part

* Finish no_ui_connect

* finish predict part

* Delete old version

* An example of add new api

* Bug fix:can not change in "model_info"

* Bug fix

* Error message handling

* Clear the format

* An example of add a openai form API:Deepseek

* For compatibility reasons

* Feture: set different API/Endpoint to diferent models

* Add support for YI new models

* 更新doc2x的api key机制 (#1766)

* Fix DOC2X API key refresh issue in PDF translation

* remove add

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* 修改部分文件名、变量名

* patch err

---------

Co-authored-by: alex_xiao <113411296+Alex4210987@users.noreply.github.com>
Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-05-13 23:38:08 +08:00
binary-husky
225a2de011 Version 3.76 (#1752)
* version roll

* add upload processbar
2024-05-13 22:54:38 +08:00
binary-husky
6aea6d8e2b Merge branch 'master' into frontier 2024-05-13 22:52:15 +08:00
alex_xiao
8d85616c27 更新doc2x的api key机制 (#1766)
* Fix DOC2X API key refresh issue in PDF translation

* remove add

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-05-13 22:49:40 +08:00
binary-husky
e4533dd24d Merge branch 'master' into frontier 2024-05-04 17:00:09 +08:00
binary-husky
43ed8cb8a8 Fix fastapi version compat 2024-05-04 16:43:42 +08:00
binary-husky
3eff964424 Update README.md 2024-05-01 17:59:25 +08:00
OREEkE
ebde98b34b Update requirements.txt (#1753)
TTS_TYPE = "EDGE_TTS"需要的依赖
2024-05-01 14:55:04 +08:00
binary-husky
6f883031c0 Update config.py 2024-05-01 14:54:36 +08:00
binary-husky
fa15059f07 add upload processbar 2024-05-01 01:11:35 +08:00
binary-husky
685c573619 version roll 2024-04-30 21:00:25 +08:00
binary-husky
5fcd02506c version 3.75 (#1702)
* Update version to 3.74

* Add support for Yi Model API (#1635)

* 更新以支持零一万物模型

* 删除newbing

* 修改config

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* Refactor function signatures in bridge files

* fix qwen api change

* rename and ref functions

* rename and move some cookie functions

* 增加haiku模型,新增endpoint配置说明 (#1626)

* haiku added

* 新增haiku,新增endpoint配置说明

* Haiku added

* 将说明同步至最新Endpoint

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* private_upload目录下进行文件鉴权 (#1596)

* private_upload目录下进行文件鉴权

* minor fastapi adjustment

* Add logging functionality to enable saving
conversation records

* waiting to fix username retrieve

* support 2rd web path

* allow accessing default user dir

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* remove yaml deps

* fix favicon

* fix abs path auth problem

* forget to write a return

* add `dashscope` to deps

* fix GHSA-v9q9-xj86-953p

* 用户名重叠越权访问patch (#1681)

* add cohere model api access

* cohere + can_multi_thread

* fix block user access(fail)

* fix fastapi bug

* change cohere api endpoint

* explain version

* # fix com_zhipuglm.py illegal temperature problem (#1687)

* Update com_zhipuglm.py

# fix 用户在使用 zhipuai 界面时遇到了关于温度参数的非法参数错误

* allow store lm model dropdown

* add a btn to reverse previous reset

* remove extra fns

* Add support for glm-4v model (#1700)

* 修改chatglm3量化加载方式 (#1688)

Co-authored-by: zym9804 <ren990603@gmail.com>

* save chat stage 1

* consider null cookie situation

* 在点击复制按钮时激活语音

* miss some parts

* move all to js

* done first stage

* add edge tts

* bug fix

* bug fix

* remove console log

* bug fix

* bug fix

* bug fix

* audio switch

* update tts readme

* remove tempfile when done

* disable auto audio follow

* avoid play queue update after shut up

* feat: minimizing common.js

* improve tts functionality

* deterine whether the cached model is in choices

* Add support for Ollama (#1740)

* print err when doc2x not successful

* add icon

* adjust url for doc2x key version

* prepare merge

---------

Co-authored-by: Menghuan1918 <menghuan2003@outlook.com>
Co-authored-by: Skyzayre <120616113+Skyzayre@users.noreply.github.com>
Co-authored-by: XIao <46100050+Kilig947@users.noreply.github.com>
Co-authored-by: Yuki <903728862@qq.com>
Co-authored-by: zyren123 <91042213+zyren123@users.noreply.github.com>
Co-authored-by: zym9804 <ren990603@gmail.com>
2024-04-30 20:37:41 +08:00
binary-husky
bd5280df1b minor pdf translation adjustment 2024-04-30 00:52:36 +08:00
binary-husky
744759704d allow personal docx api access 2024-04-29 23:53:41 +08:00
WFS
81df0aa210 fix the issue of when using google Gemini pro, don't have chat histor… (#1743)
* fix the issue of when using google Gemini pro, don't have chat history record

just add chat_log in bridge_google_gmini.py

* Update bridge_google_gemini.py

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>
2024-04-25 22:26:32 +08:00
Menghuan1918
cadaa81030 Fix the bug cause Nougat can not use (#1738)
* Bug fix for nougat require pdf

* Fixing bugs in a simpler and safer way
2024-04-24 12:13:44 +08:00
binary-husky
3b6cbbdcb0 Update README.md (#1736) 2024-04-24 11:41:56 +08:00
binary-husky
52e49c48b8 the latest zhipuai whl is broken 2024-04-23 18:20:36 +08:00
binary-husky
6ad15a6129 fix equation showing problem 2024-04-22 01:54:03 +08:00
binary-husky
09990d44d3 merge to resolve multiple pickle security issues (#1728)
* 注释调试if分支

* support pdf url for latex translation

* Merge pull request from GHSA-mvrw-h7rc-22r8

* 注释调试if分支

* Improve objload security

* Update README.md

* support pdf url for latex translation

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>
Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* fix import

---------

Co-authored-by: Longtaotao <longtaotao@bupt.edu.cn>
Co-authored-by: iluem <57590186+Qhaoduoyu@users.noreply.github.com>
2024-04-21 19:37:05 +08:00
binary-husky
eac5191815 Update README.md 2024-04-21 02:12:15 +08:00
owo
ae4407135d fix: 添加report_exception中缺失的a参数 (#1720)
在report_exception函数的定义中,参数a未包含默认值,因此应提供相应的值传入。
2024-04-18 16:27:00 +08:00
owo
f0e15bd710 fix: 修复了在else语句中调用'schema_str'之前未定义的问题 (#1719)
重新排列了方法中的条件返回语句,以确保在使用之前始终定义了'schema_str'。
2024-04-18 16:26:13 +08:00
jiangfy-ihep
5c5f442649 Fix: openai project API key pattern (#1721)
Co-authored-by: Fayu Jiang <jiangfayu@hotmail.com>
2024-04-18 16:24:29 +08:00
binary-husky
160552cc5f introduce doc2x 2024-04-15 01:57:31 +08:00
binary-husky
c131ec0b20 rename pdf plugin file name 2024-04-14 22:46:31 +08:00
iluem
2f3aeb7976 Merge pull request from GHSA-23cr-v6pm-j89p
* Update crazy_utils.py

Improve security

* add a white space

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>
2024-04-14 21:51:03 +08:00
binary-husky
eff5b89b98 scan first, then extract 2024-04-14 21:36:57 +08:00
iluem
f77ab27bc9 Merge pull request from GHSA-rh7j-jfvq-857j
Prevent path traversal for improved security
2024-04-14 21:33:37 +08:00
awwaawwa
ba0a8b7072 integrate gpt-4-turbo-2024-04-09 (#1698)
* 接入 gpt-4-turbo-2024-04-09 模型

* add gpt-4-turbo and change to vision

* add gpt-4-turbo to avail llm models

* 暂时将gpt-4-turbo接入至普通版本
2024-04-11 22:02:40 +08:00
hmp
2406022c2a access vllm 2024-04-11 22:00:07 +08:00
OREEkE
02b6f26b05 remove logging in gradios.py (#1699)
如果初始主题是HF社区主题,这里使用logging会导致程序不再写入日志(包括对话内容在内的任何记录),下载主题的日志输出和程序启动时的日志初始化有冲突。
2024-04-11 14:15:12 +08:00
OREEkE
2a003e8d49 add loadLive2D() when ADD_WAIFU = False (#1693)
ADD_WAIFU = False,浏览器会抛出错误:[Error] JQuery is not defined. 因为这时候没有jQuery库可用,却依然使用了loadLive2D()函数。现在加一个判断,如果ADD_WAIFU = False,禁用jQuery库的同时也禁用loadLive2D()函数,除非ADD_WAIFU = True
2024-04-10 00:10:53 +08:00
binary-husky
21891b0f6d update translate matrix 2024-04-08 12:43:24 +08:00
Yuki
163f12c533 # fix com_zhipuglm.py illegal temperature problem (#1687)
* Update com_zhipuglm.py

# fix 用户在使用 zhipuai 界面时遇到了关于温度参数的非法参数错误
2024-04-08 12:17:07 +08:00
binary-husky
bdd46c5dd1 Version 3.74: Merge latest updates on dev branch (frontier) (#1621)
* Update version to 3.74

* Add support for Yi Model API (#1635)

* 更新以支持零一万物模型

* 删除newbing

* 修改config

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* Refactor function signatures in bridge files

* fix qwen api change

* rename and ref functions

* rename and move some cookie functions

* 增加haiku模型,新增endpoint配置说明 (#1626)

* haiku added

* 新增haiku,新增endpoint配置说明

* Haiku added

* 将说明同步至最新Endpoint

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* private_upload目录下进行文件鉴权 (#1596)

* private_upload目录下进行文件鉴权

* minor fastapi adjustment

* Add logging functionality to enable saving
conversation records

* waiting to fix username retrieve

* support 2rd web path

* allow accessing default user dir

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* remove yaml deps

* fix favicon

* fix abs path auth problem

* forget to write a return

* add `dashscope` to deps

* fix GHSA-v9q9-xj86-953p

* 用户名重叠越权访问patch (#1681)

* add cohere model api access

* cohere + can_multi_thread

* fix block user access(fail)

* fix fastapi bug

* change cohere api endpoint

* explain version

---------

Co-authored-by: Menghuan1918 <menghuan2003@outlook.com>
Co-authored-by: Skyzayre <120616113+Skyzayre@users.noreply.github.com>
Co-authored-by: XIao <46100050+Kilig947@users.noreply.github.com>
2024-04-08 11:49:30 +08:00
binary-husky
ae51a0e686 fix GHSA-v9q9-xj86-953p 2024-04-05 20:47:11 +08:00
binary-husky
f2582ea137 fix qwen api change 2024-04-03 12:17:41 +08:00
binary-husky
ddd2fd84da fix checkbox bugs 2024-04-02 19:42:55 +08:00
binary-husky
6c90ff80ea add prompt and temperature to cookie 2024-04-02 18:02:00 +08:00
binary-husky
cb7c0703be Update requirements.txt (#1668) 2024-04-01 11:30:50 +08:00
binary-husky
5181cd441d change pip install url due to server failure (#1667) 2024-04-01 11:20:14 +08:00
binary-husky
216d4374e7 fix color list overflow 2024-04-01 00:11:32 +08:00
iluem
8af6c0cab6 Qhaoduoyu patch 1: pickle to json to increase security (#1648)
* Update theme.py

fix bugs

* Update theme.py

fix bugs

* change var names

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-03-25 09:54:30 +08:00
binary-husky
67ad041372 fix issue #1640 2024-03-20 18:09:37 +08:00
binary-husky
725c72229c update docker compose 2024-03-20 17:37:03 +08:00
Menghuan1918
e42ede512b Update Claude3 api request and fix some bugs (#1641)
* Update version to 3.74

* Add support for Yi Model API (#1635)

* 更新以支持零一万物模型

* 删除newbing

* 修改config

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* Update claude requrest to http type

* Update for endpoint

* Add support for other tpyes of pictures

* Update pip packages

* Fix console_slience issue while error handling

* revert version changes

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-03-20 17:22:23 +08:00
binary-husky
84ccc9e64c fix claude + oneapi error 2024-03-17 14:53:28 +08:00
binary-husky
c172847e19 add python annotations for toolbox functions 2024-03-16 22:54:33 +08:00
binary-husky
d166d25eb4 resolve invalid escape sequence warning
to support python3.12
2024-03-11 18:10:05 +08:00
binary-husky
516bbb1331 Update README.md 2024-03-11 17:40:16 +08:00
binary-husky
c3140ce344 merge frontier branch (#1620)
* Zhipu sdk update 适配最新的智谱SDK,支持GLM4v (#1502)

* 适配 google gemini 优化为从用户input中提取文件

* 适配最新的智谱SDK、支持glm-4v

* requirements.txt fix

* pending history check

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* Update "生成多种Mermaid图表" plugin: Separate out the file reading function (#1520)

* Update crazy_functional.py with new functionality deal with PDF

* Update crazy_functional.py and Mermaid.py for plugin_kwargs

* Update crazy_functional.py with new chart type: mind map

* Update SELECT_PROMPT and i_say_show_user messages

* Update ArgsReminder message in get_crazy_functions() function

* Update with read md file and update PROMPTS

* Return the PROMPTS as the test found that the initial version worked best

* Update Mermaid chart generation function

* version 3.71

* 解决issues #1510

* Remove unnecessary text from sys_prompt in 解析历史输入 function

* Remove sys_prompt message in 解析历史输入 function

* Update bridge_all.py: supports gpt-4-turbo-preview (#1517)

* Update bridge_all.py: supports gpt-4-turbo-preview

supports gpt-4-turbo-preview

* Update bridge_all.py

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* Update config.py: supports gpt-4-turbo-preview (#1516)

* Update config.py: supports gpt-4-turbo-preview

supports gpt-4-turbo-preview

* Update config.py

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* Refactor 解析历史输入 function to handle file input

* Update Mermaid chart generation functionality

* rename files and functions

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
Co-authored-by: hongyi-zhao <hongyi.zhao@gmail.com>
Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* 接入mathpix ocr功能 (#1468)

* Update Latex输出PDF结果.py

借助mathpix实现了PDF翻译中文并重新编译PDF

* Update config.py

add mathpix appid & appkey

* Add 'PDF翻译中文并重新编译PDF' feature to plugins.

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* fix zhipuai

* check picture

* remove glm-4 due to bug

* 修改config

* 检查MATHPIX_APPID

* Remove unnecessary code and update
function_plugins dictionary

* capture non-standard token overflow

* bug fix #1524

* change mermaid style

* 支持mermaid 滚动放大缩小重置,鼠标滚动和拖拽 (#1530)

* 支持mermaid 滚动放大缩小重置,鼠标滚动和拖拽

* 微调未果 先stage一下

* update

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* ver 3.72

* change live2d

* save the status of ``clear btn` in cookie

* 前端选择保持

* js ui bug fix

* reset btn bug fix

* update live2d tips

* fix missing get_token_num method

* fix live2d toggle switch

* fix persistent custom btn with cookie

* fix zhipuai feedback with core functionality

* Refactor button update and clean up functions

* tailing space removal

* Fix missing MATHPIX_APPID and MATHPIX_APPKEY
configuration

* Prompt fix、脑图提示词优化 (#1537)

* 适配 google gemini 优化为从用户input中提取文件

* 脑图提示词优化

* Fix missing MATHPIX_APPID and MATHPIX_APPKEY
configuration

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* 优化“PDF翻译中文并重新编译PDF”插件 (#1602)

* Add gemini_endpoint to API_URL_REDIRECT (#1560)

* Add gemini_endpoint to API_URL_REDIRECT

* Update gemini-pro and gemini-pro-vision model_info
endpoints

* Update to support new claude models (#1606)

* Add anthropic library and update claude models

* 更新bridge_claude.py文件,添加了对图片输入的支持。修复了一些bug。

* 添加Claude_3_Models变量以限制图片数量

* Refactor code to improve readability and
maintainability

* minor claude bug fix

* more flexible one-api support

* reformat config

* fix one-api new access bug

* dummy

* compat non-standard api

* version 3.73

---------

Co-authored-by: XIao <46100050+Kilig947@users.noreply.github.com>
Co-authored-by: Menghuan1918 <menghuan2003@outlook.com>
Co-authored-by: hongyi-zhao <hongyi.zhao@gmail.com>
Co-authored-by: Hao Ma <893017927@qq.com>
Co-authored-by: zeyuan huang <599012428@qq.com>
2024-03-11 17:26:09 +08:00
binary-husky
cd18663800 compat non-standard api - 2 2024-03-10 17:13:54 +08:00
binary-husky
dbf1322836 compat non-standard api 2024-03-10 17:07:59 +08:00
XIao
98dd3ae1c0 Moonshot- 在config.py中增加可用模型 (#1603)
* 支持月之暗面api

* fix文案

* 优化noui的返回值,对话历史文件继续上传到moonshat

* fix

* config 可用模型配置增加

* add `can_multi_thread` model attr (#1598)

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>
Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-03-05 16:07:05 +08:00
binary-husky
3036709496 add can_multi_thread model attr (#1598) 2024-03-05 15:58:18 +08:00
XIao
8e9c07644f 支持月之暗面api,文件对话 (#1597)
* 支持月之暗面api

* fix文案
2024-03-03 23:42:17 +08:00
binary-husky
90d96b77e6 handle qianfan chat error 2024-02-29 00:36:06 +08:00
binary-husky
66c876a9ca Update README.md 2024-02-26 22:56:09 +08:00
binary-husky
0665eb75ed Update README.md (#1581) 2024-02-26 22:52:00 +08:00
binary-husky
6b784035fa Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2024-02-25 21:13:56 +08:00
binary-husky
8bb3d84912 fix zip chinese file name error 2024-02-25 21:13:41 +08:00
binary-husky
a0193cf227 edit dep url 2024-02-23 13:28:49 +08:00
binary-husky
b72289bfb0 Fix missing MATHPIX_APPID and MATHPIX_APPKEY
configuration
2024-02-21 14:20:10 +08:00
Menghuan1918
bdfe3862eb 添加部分翻译 (#1566) 2024-02-21 14:14:06 +08:00
binary-husky
dae180b9ea update spark v3.5, fix glm parallel problem 2024-02-18 14:08:35 +08:00
binary-husky
e359fff040 Fix response message bug in bridge_qianfan.py,
bridge_qwen.py, and bridge_skylark2.py
2024-02-15 00:02:24 +08:00
binary-husky
2e9b4a5770 Merge Frontier, Update to Version 3.72 (#1553)
* Zhipu sdk update 适配最新的智谱SDK,支持GLM4v (#1502)

* 适配 google gemini 优化为从用户input中提取文件

* 适配最新的智谱SDK、支持glm-4v

* requirements.txt fix

* pending history check

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* Update "生成多种Mermaid图表" plugin: Separate out the file reading function (#1520)

* Update crazy_functional.py with new functionality deal with PDF

* Update crazy_functional.py and Mermaid.py for plugin_kwargs

* Update crazy_functional.py with new chart type: mind map

* Update SELECT_PROMPT and i_say_show_user messages

* Update ArgsReminder message in get_crazy_functions() function

* Update with read md file and update PROMPTS

* Return the PROMPTS as the test found that the initial version worked best

* Update Mermaid chart generation function

* version 3.71

* 解决issues #1510

* Remove unnecessary text from sys_prompt in 解析历史输入 function

* Remove sys_prompt message in 解析历史输入 function

* Update bridge_all.py: supports gpt-4-turbo-preview (#1517)

* Update bridge_all.py: supports gpt-4-turbo-preview

supports gpt-4-turbo-preview

* Update bridge_all.py

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* Update config.py: supports gpt-4-turbo-preview (#1516)

* Update config.py: supports gpt-4-turbo-preview

supports gpt-4-turbo-preview

* Update config.py

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* Refactor 解析历史输入 function to handle file input

* Update Mermaid chart generation functionality

* rename files and functions

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
Co-authored-by: hongyi-zhao <hongyi.zhao@gmail.com>
Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* 接入mathpix ocr功能 (#1468)

* Update Latex输出PDF结果.py

借助mathpix实现了PDF翻译中文并重新编译PDF

* Update config.py

add mathpix appid & appkey

* Add 'PDF翻译中文并重新编译PDF' feature to plugins.

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* fix zhipuai

* check picture

* remove glm-4 due to bug

* 修改config

* 检查MATHPIX_APPID

* Remove unnecessary code and update
function_plugins dictionary

* capture non-standard token overflow

* bug fix #1524

* change mermaid style

* 支持mermaid 滚动放大缩小重置,鼠标滚动和拖拽 (#1530)

* 支持mermaid 滚动放大缩小重置,鼠标滚动和拖拽

* 微调未果 先stage一下

* update

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* ver 3.72

* change live2d

* save the status of ``clear btn` in cookie

* 前端选择保持

* js ui bug fix

* reset btn bug fix

* update live2d tips

* fix missing get_token_num method

* fix live2d toggle switch

* fix persistent custom btn with cookie

* fix zhipuai feedback with core functionality

* Refactor button update and clean up functions

---------

Co-authored-by: XIao <46100050+Kilig947@users.noreply.github.com>
Co-authored-by: Menghuan1918 <menghuan2003@outlook.com>
Co-authored-by: hongyi-zhao <hongyi.zhao@gmail.com>
Co-authored-by: Hao Ma <893017927@qq.com>
Co-authored-by: zeyuan huang <599012428@qq.com>
2024-02-14 18:35:09 +08:00
binary-husky
e0c5859cf9 update Column min_width parameter 2024-02-12 23:37:31 +08:00
binary-husky
b9b1e12dc9 fix missing get_token_num method 2024-02-12 15:58:55 +08:00
binary-husky
8814026ec3 fix gradio-client version (#1548) 2024-02-09 13:25:01 +08:00
binary-husky
3025d5be45 remove jsdelivr (#1547) 2024-02-09 13:17:14 +08:00
binary-husky
6c13bb7b46 patch issue #1538 2024-02-06 17:59:09 +08:00
binary-husky
c27e559f10 match sess-* key 2024-02-06 17:51:47 +08:00
binary-husky
cdb5288f49 fix issue #1532 2024-02-02 17:47:35 +08:00
hongyi-zhao
49c6fcfe97 Update config.py: supports gpt-4-turbo-preview (#1516)
* Update config.py: supports gpt-4-turbo-preview

supports gpt-4-turbo-preview

* Update config.py

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>
2024-01-26 16:44:32 +08:00
hongyi-zhao
45fa0404eb Update bridge_all.py: supports gpt-4-turbo-preview (#1517)
* Update bridge_all.py: supports gpt-4-turbo-preview

supports gpt-4-turbo-preview

* Update bridge_all.py

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>
2024-01-26 16:36:23 +08:00
binary-husky
f889ef7625 解决issues #1510 2024-01-25 22:42:08 +08:00
binary-husky
a93bf4410d version 3.71 2024-01-25 22:18:43 +08:00
binary-husky
1c0764753a Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-01-25 22:05:13 +08:00
Menghuan1918
c847209ac9 Update "Generate multiple Mermaid charts" plugin with md file read (#1506)
* Update crazy_functional.py with new functionality deal with PDF

* Update crazy_functional.py and Mermaid.py for plugin_kwargs

* Update crazy_functional.py with new chart type: mind map

* Update SELECT_PROMPT and i_say_show_user messages

* Update ArgsReminder message in get_crazy_functions() function

* Update with read md file and update PROMPTS

* Return the PROMPTS as the test found that the initial version worked best

* Update Mermaid chart generation function
2024-01-24 17:44:54 +08:00
binary-husky
4f9d40c14f 删除冗余代码 2024-01-24 01:42:31 +08:00
binary-husky
91926d24b7 处理一个core_functional.py中出现的mermaid渲染特例 2024-01-24 01:38:06 +08:00
binary-husky
ef311c4859 localize mjs scripts 2024-01-24 01:06:58 +08:00
binary-husky
82795d3817 remove mask string feature for now (still buggy) 2024-01-24 00:44:27 +08:00
binary-husky
49e28a5a00 Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-01-23 15:48:49 +08:00
binary-husky
01def2e329 Merge branch 'master' into frontier 2024-01-23 15:48:06 +08:00
Menghuan1918
2291be2b28 Update "Generate multiple Mermaid charts" plugin (#1503)
* Update crazy_functional.py with new functionality deal with PDF

* Update crazy_functional.py and Mermaid.py for plugin_kwargs
2024-01-23 15:45:34 +08:00
binary-husky
c89ec7969f fix test import err 2024-01-23 09:52:58 +08:00
Menghuan1918
1506c19834 Update crazy_functional.py with new functionality deal with PDF (#1500) 2024-01-22 14:55:39 +08:00
binary-husky
a6fdc493b7 autogen plugin bug fix 2024-01-22 00:08:04 +08:00
binary-husky
113067c6ab Merge branch 'master' into frontier 2024-01-21 23:49:20 +08:00
Menghuan1918
7b6828ab07 从当前对话历史中生产Mermaid图表的插件 (#1497)
* Add functionality to generate multiple types of Mermaid charts

* Update conditional statement in 解析历史输入 function
2024-01-21 23:41:39 +08:00
binary-husky
d818c38dfe better theme 2024-01-21 19:41:18 +08:00
binary-husky
08b4e9796e Update README.md (#1499)
* Update README.md

* Update README.md
2024-01-21 19:08:48 +08:00
binary-husky
b55d573819 auto prompt lang 2024-01-21 13:47:11 +08:00
binary-husky
06b0e800a2 修复渲染的小BUG 2024-01-21 12:19:04 +08:00
binary-husky
7bbaf05961 Merge branch 'master' into frontier 2024-01-20 22:33:41 +08:00
binary-husky
3b83279855 anim generation bug fix #896 2024-01-20 22:17:51 +08:00
binary-husky
37164a826e GengKanghua #896 2024-01-20 22:14:13 +08:00
binary-husky
dd2a97e7a9 draw project struct with mermaid 2024-01-20 21:23:56 +08:00
binary-husky
e579006c4a add set_multi_conf 2024-01-20 18:33:35 +08:00
binary-husky
031f19b6dd 替换错误的变量名称 2024-01-20 18:28:54 +08:00
binary-husky
142b516749 gpt_academic text mask imp 2024-01-20 18:00:06 +08:00
binary-husky
f2e73aa580 智谱API突发恶疾 2024-01-19 21:09:27 +08:00
binary-husky
8565a35cf7 readme update 2024-01-18 23:21:11 +08:00
binary-husky
72d78eb150 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2024-01-18 23:07:05 +08:00
binary-husky
7aeda537ac remove debug btn 2024-01-18 23:05:47 +08:00
binary-husky
6cea17d4b7 remove debug btn 2024-01-18 22:33:49 +08:00
binary-husky
20bc51d747 Merge branch 'master' into frontier 2024-01-18 22:23:26 +08:00
XIao
b8ebefa427 Google gemini fix (#1473)
* 适配 google gemini 优化为从用户input中提取文件

* Update README.md (#1477)

* Update README.md

* Update README.md

* Update requirements.txt (#1480)

* welcome glm4 from 智谱!

* Update README.md (#1484)

* Update README.md (#1485)

* update zhipu

* Fix translation task name in core_functional.py

* zhipuai version problem

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>
Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-01-18 18:06:07 +08:00
binary-husky
dcc9326f0b zhipuai version problem 2024-01-18 17:51:20 +08:00
binary-husky
94fc396eb9 Fix translation task name in core_functional.py 2024-01-18 15:32:17 +08:00
binary-husky
e594e1b928 update zhipu 2024-01-18 00:32:51 +08:00
binary-husky
8fe545d97b update zhipu 2024-01-18 00:31:53 +08:00
binary-husky
6f978fa72e Merge branch 'master' into frontier 2024-01-17 12:37:07 +08:00
binary-husky
19be471aa8 Refactor core_functional.py 2024-01-17 12:34:42 +08:00
binary-husky
38956934fd Update README.md (#1485) 2024-01-17 11:45:49 +08:00
binary-husky
32439e14b5 Update README.md (#1484) 2024-01-17 11:30:09 +08:00
binary-husky
317389bf4b Merge branch 'master' into frontier 2024-01-16 21:53:53 +08:00
binary-husky
2c740fc641 welcome glm4 from 智谱! 2024-01-16 21:51:14 +08:00
binary-husky
96832a8228 Update requirements.txt (#1480) 2024-01-16 20:08:32 +08:00
binary-husky
361557da3c roll version 2024-01-16 02:15:35 +08:00
binary-husky
5f18d4a1af Update README.md (#1477)
* Update README.md

* Update README.md
2024-01-16 02:14:08 +08:00
binary-husky
0d10bc570f bug fix 2024-01-16 01:22:50 +08:00
binary-husky
3ce7d9347d dark support 2024-01-16 00:33:11 +08:00
Keldos
8a78d7b89f adapt mermaid to dark mode (#1476)
Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>
2024-01-16 00:32:12 +08:00
binary-husky
0e43b08837 同步 2024-01-16 00:29:46 +08:00
binary-husky
74bced2d35 添加脑图编辑按钮 2024-01-15 13:41:21 +08:00
binary-husky
961a24846f remove console log 2024-01-15 11:50:37 +08:00
binary-husky
b7e4744f28 apply to other themes 2024-01-15 11:49:04 +08:00
binary-husky
71adc40901 support diagram plotting via mermaid ! 2024-01-15 02:49:21 +08:00
binary-husky
a2099f1622 fix code highlight problem 2024-01-15 00:07:07 +08:00
binary-husky
c0a697f6c8 publish gradio via jsdelivr 2024-01-14 16:46:10 +08:00
binary-husky
bdde1d2fd7 format code 2024-01-14 04:18:38 +08:00
binary-husky
63373ab3b6 Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-01-14 03:41:47 +08:00
binary-husky
fb6566adde add todo 2024-01-14 03:41:23 +08:00
binary-husky
9f2ef9ec49 limit scroll 2024-01-14 02:11:07 +08:00
binary-husky
35c1aa21e4 limit scroll 2024-01-14 01:55:59 +08:00
binary-husky
627d739720 注入火山引擎大模型的接口代码 2024-01-13 22:33:08 +08:00
binary-husky
37f15185b6 Merge branch 'master' into frontier 2024-01-13 18:23:55 +08:00
binary-husky
9643e1c25f code dem fix 2024-01-13 18:23:06 +08:00
binary-husky
28eae2f80e Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-01-13 18:04:21 +08:00
binary-husky
7ab379688e format source code 2024-01-13 18:04:09 +08:00
binary-husky
3d4c6f54f1 format source code 2024-01-13 18:00:52 +08:00
binary-husky
1714116a89 break down toolbox.py to multiple files 2024-01-13 16:10:46 +08:00
hongyi-zhao
2bc65a99ca Update bridge_all.py (#1472)
删除 "chatgpt_website" 函数,从而不再支持域基于逆向工程的方法的接口,该方法对应的实现项目为:https://github.com/acheong08/ChatGPT-to-API/。目前,该项目已被开发者 archived,且该方法由于其实现的原理,而不可能是稳健和完美的,因此不是可持续维护的。
2024-01-13 14:35:04 +08:00
binary-husky
0a2805513e better gui interaction (#1459) 2024-01-07 19:13:12 +08:00
binary-husky
d698b96209 Merge branch 'master' into frontier 2024-01-07 18:49:56 +08:00
binary-husky
6b1c6f0bf7 better gui interaction 2024-01-07 18:49:08 +08:00
binary-husky
c22867b74c Merge pull request #1458 from binary-husky/frontier
introduce Gemini & Format code
2024-01-07 16:24:33 +08:00
binary-husky
2abe665521 Merge branch 'master' into frontier 2024-01-05 16:12:41 +08:00
binary-husky
b0e6c4d365 change ui prompt 2024-01-05 16:11:30 +08:00
fzcqc
d883c7f34b fix: expected_words添加反斜杆 (#1442) 2024-01-03 19:57:10 +08:00
Menghuan1918
aba871342f 修复分割函数中使用的变量错误 (#1443)
* Fix force_breakdown function parameter name

* Add handling for PDFs with lowercase starting paragraphs

* Change first lowercase word in meta_txt to uppercase
2024-01-03 19:49:17 +08:00
qingxu fu
37744a9cb1 jpeg type align for gemini 2023-12-31 20:28:39 +08:00
qingxu fu
480516380d re-format code to with pre-commit 2023-12-31 19:30:32 +08:00
qingxu fu
60ba712131 use legacy image io for gemini 2023-12-31 19:02:40 +08:00
XIao
a7c960dcb0 适配 google gemini 优化为从用户input中提取文件 (#1419)
适配 google gemini 优化为从用户input中提取文件
2023-12-31 18:05:55 +08:00
binary-husky
a96f842b3a minor ui change 2023-12-30 02:57:42 +08:00
binary-husky
417ca91e23 minor css change 2023-12-30 00:55:52 +08:00
binary-husky
ef8fadfa18 fix ui element padding 2023-12-29 15:16:33 +08:00
binary-husky
865c4ca993 Update README.md 2023-12-26 22:51:56 +08:00
binary-husky
31304f481a remove console log 2023-12-25 22:57:09 +08:00
binary-husky
1bd3637d32 modify image gen plugin user interaction 2023-12-25 22:24:12 +08:00
binary-husky
160a683667 smart input panel swap 2023-12-25 22:05:14 +08:00
binary-husky
49ca03ca06 Merge branch 'master' into frontier 2023-12-25 21:43:33 +08:00
binary-husky
c625348ce1 smarter chatbot height adjustment 2023-12-25 21:26:24 +08:00
binary-husky
6d4a74893a Merge pull request #1415 from binary-husky/frontier
Merge Frontier Branch
2023-12-25 20:18:56 +08:00
qingxu fu
5c7499cada compat with some third party api 2023-12-25 17:21:35 +08:00
binary-husky
f522691529 Merge pull request #1398 from leike0813/frontier
添加通义千问在线模型系列支持&增加插件
2023-12-24 18:21:45 +08:00
binary-husky
ca85573ec1 Update README.md 2023-12-24 18:14:57 +08:00
binary-husky
2c7bba5c63 change dash scope api key check behavior 2023-12-23 21:35:42 +08:00
binary-husky
e22f0226d5 Merge branch 'master' into leike0813-frontier 2023-12-23 21:00:38 +08:00
binary-husky
0f250305b4 add urllib3 version limit 2023-12-23 20:59:32 +08:00
binary-husky
7606f5c130 name fix 2023-12-23 20:55:58 +08:00
binary-husky
4f0dcc431c Merge branch 'frontier' of https://github.com/leike0813/gpt_academic into leike0813-frontier 2023-12-23 20:42:43 +08:00
binary-husky
6ca0dd2f9e Merge pull request #1410 from binary-husky/frontier
fix spark image understanding api
2023-12-23 17:49:35 +08:00
binary-husky
e3e9921f6b correct the misuse of spark image understanding 2023-12-23 17:46:25 +08:00
binary-husky
867ddd355e adjust green theme layout 2023-12-22 21:59:18 +08:00
binary-husky
bb431db7d3 upgrade to version 3.64 2023-12-21 14:44:35 +08:00
binary-husky
43568b83e1 improve file upload notification 2023-12-21 14:39:58 +08:00
Keldos
2b90302851 feat: drag file to chatbot to upload 拖动以上传文件 (#1396)
* feat: 拖动以上传文件

* 上传文件过程中转圈圈

* fix: 解决仅在第一次上传时才有上传动画的问题

---------

Co-authored-by: 505030475 <qingxu.fu@outlook.com>
2023-12-21 10:24:11 +08:00
binary-husky
f7588d4776 avoid adding the same file multiple times
to the chatbot's files_to_promote list
2023-12-20 11:50:54 +08:00
binary-husky
a0bfa7ba1c improve long text breakdown perfomance 2023-12-20 11:50:54 +08:00
leike0813
c60a7452bf Improve NOUGAT pdf plugin
Add an API version of NOUGAT plugin
Add advanced argument support to NOUGAT plugin

Adapt new text breakdown function

bugfix
2023-12-20 08:57:27 +08:00
leike0813
68a49d3758 Add 2 plugins
相当于将“批量总结PDF文档”插件拆成了两部分,目的在于使用廉价的模型干粗活,再将关键的最终总结交给GPT-4,降低使用成本
批量总结PDF文档_初步:初步总结PDF,每个PDF输出一个md文档
批量总结Markdown文档_进阶:将所有md文档高度凝练并汇总至一个md文档,可直接使用“批量总结PDF文档_初步”的输出结果作为输入
2023-12-20 07:44:53 +08:00
leike0813
ac3d4cf073 Add support to aliyun qwen online models.
Rename model tag "qwen" to "qwen-local"
Add model tag "qwen-turbo", "qwen-plus", "qwen-max"
Add corresponding model interfaces in request_llms/bridge_all.py
Add configuration variable “DASHSCOPE_API_KEY"
Rename request_llms/bridge_qwen.py to bridge_qwen_local.py to distinguish it from the online model interface
2023-12-20 07:37:26 +08:00
binary-husky
9479dd984c avoid adding the same file multiple times
to the chatbot's files_to_promote list
2023-12-19 19:43:03 +08:00
binary-husky
3c271302cc improve long text breakdown perfomance 2023-12-19 19:30:44 +08:00
binary-husky
6e9936531d fix theme shifting bug 2023-12-17 19:45:37 +08:00
binary-husky
439147e4b7 re-arrange main.py 2023-12-17 15:55:15 +08:00
binary-husky
8d13821099 a lm-based story writing game 2023-12-15 23:27:12 +08:00
binary-husky
49fe06ed69 add light edge for audio btn 2023-12-15 21:12:39 +08:00
binary-husky
7882ce7304 Merge branch 'master' into frontier 2023-12-15 16:34:06 +08:00
binary-husky
dc68e601a5 optimize audio plugin 2023-12-15 16:28:42 +08:00
binary-husky
d169fb4b16 fix typo 2023-12-15 13:32:39 +08:00
binary-husky
36e19d5202 compat further with one api 2023-12-15 13:16:06 +08:00
binary-husky
c5f1e4e392 version 3.63 2023-12-15 13:03:52 +08:00
binary-husky
d3f7267a63 Merge branch 'master' into frontier 2023-12-15 12:58:05 +08:00
qingxu fu
f4127a9c9c change clip history policy 2023-12-15 12:52:21 +08:00
binary-husky
c181ad38b4 Update build-with-all-capacity-beta.yml 2023-12-14 12:23:49 +08:00
binary-husky
107944f5b7 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-12-14 11:01:02 +08:00
binary-husky
8c7569b689 修复protobuf版本错误 2023-12-14 11:00:55 +08:00
binary-husky
fa374bf1fc try full dockerfile with vector store 2023-12-11 22:50:19 +08:00
binary-husky
c0a36e37be Merge branch 'master' into frontier 2023-12-09 22:36:28 +08:00
binary-husky
2f2b869efd turn off plugin hot-reload by default 2023-12-09 21:54:34 +08:00
binary-husky
2f148bada0 Merge branch 'new_langchain' 2023-12-09 21:41:33 +08:00
binary-husky
916b2e8aa7 support azure in multi-lang translation 2023-12-09 20:18:44 +08:00
binary-husky
0cb7dd5280 test vector store on docker 2023-12-08 22:22:01 +08:00
binary-husky
892ccb14c7 互动游戏 2023-12-08 00:18:04 +08:00
qingxu fu
21bccf69d2 add installation info 2023-12-07 21:29:41 +08:00
binary-husky
7bac8f4bd3 fix local vector store bug 2023-12-06 22:45:14 +08:00
binary-husky
d0c2923ab1 Merge pull request #1352 from jlw463195395/master
修复deepseekcoder爆显存,加入int8,int4通用加载量化。
2023-12-06 21:37:05 +08:00
binary-husky
8a6e96c369 知识库插件修正 2023-12-05 22:56:19 +08:00
binary-husky
49f3fcf2c0 vector store external to internal 2023-12-05 21:22:15 +08:00
binary-husky
2b96a60b76 Merge branch 'master' into frontier 2023-12-05 15:08:49 +08:00
binary-husky
ec60a85cac new vector store establishment 2023-12-05 00:15:17 +08:00
binary-husky
647d9f88db Merge pull request #1356 from alphaply/update-for-qwen
修复了qwen使用本地模型时候的报错
2023-12-04 15:45:10 +08:00
Alpha
b0c627909a 更改了一些注释 2023-12-04 12:51:41 +08:00
binary-husky
102bf2f1eb Merge pull request #1348 from Skyzayre/TestServer
修改插件分类名称,丰富dalle3风格参数选择
2023-12-04 11:14:32 +08:00
binary-husky
26291b33d1 Merge branch 'TestServer' of https://github.com/Skyzayre/gpt_academic 2023-12-04 11:01:14 +08:00
binary-husky
4f04d810b7 Merge pull request #1342 from Kilig947/copy_moitoring
监听输入框,支持粘贴上传文件
2023-12-04 10:54:50 +08:00
binary-husky
6d2f126253 recv requirements.txt 2023-12-04 10:53:07 +08:00
binary-husky
e5b296d221 Merge branch 'copy_moitoring' of https://github.com/Kilig947/gpt_academic into Kilig947-copy_moitoring 2023-12-04 10:52:31 +08:00
binary-husky
7933675c12 Merge pull request #1347 from Skyzayre/README-edit
转化README徽章为动态徽章
2023-12-04 10:50:20 +08:00
binary-husky
692ff4b59c remove line break 2023-12-04 10:47:07 +08:00
binary-husky
4d8b535c79 Merge branch 'README-edit' of https://github.com/Skyzayre/gpt_academic into Skyzayre-README-edit2 2023-12-04 10:44:46 +08:00
binary-husky
3c03f240ba move token limit conf to bridge_all.py 2023-12-04 10:39:10 +08:00
binary-husky
9bfc3400f9 Merge branch 'master' of https://github.com/jlw463195395/gpt_academic into jlw463195395-master 2023-12-04 10:34:19 +08:00
Skyzayre
95504f0bb7 Resolve conflicts 2023-12-04 10:31:12 +08:00
binary-husky
0cd3274d04 combine qwen model family 2023-12-04 10:30:02 +08:00
binary-husky
2cef81abbe Merge branch 'update-for-qwen' of https://github.com/alphaply/gpt_academic into alphaply-update-for-qwen 2023-12-04 10:09:21 +08:00
binary-husky
6f9bc5d206 Merge branch 'master' into frontier 2023-12-04 00:35:11 +08:00
Alpha
94ab41d3c0 添加了qwen1.8b模型 2023-12-02 23:12:25 +08:00
Alpha
da376068e1 修复了qwen使用本地模型时候的报错 2023-12-02 21:31:59 +08:00
jlw463195935
552219fd5a 加入了int4 int8量化,加入默认fp16加载(in4和int8需要安装额外的库,目前只测试加入deepseek-coder模型,后续测试会加入更多)
解决deepseek-coder连续对话token无限增长爆显存的问题
2023-12-01 16:17:30 +08:00
jlw463195935
4985986243 加入了int4 int8量化,加入默认fp16加载(in4和int8需要安装额外的库)
解决连续对话token无限增长爆显存的问题
2023-12-01 16:11:44 +08:00
Skyzayre
d99b443b4c 优化部分翻译 2023-12-01 10:51:04 +08:00
Skyzayre
2aab6cb708 优化部分翻译 2023-12-01 10:50:20 +08:00
Skyzayre
1134723c80 修改docs中插件分类 2023-12-01 10:40:11 +08:00
Skyzayre
6126024f2c dall-e-3添加 'style' 风格参数
dall-e-3添加 'style' 风格参数(参考 platform.openai.com/doc/api-reference),修改dall-e-3作图时的参数判断逻辑
2023-12-01 10:36:59 +08:00
Skyzayre
ef12d4f754 修改dalle3参数输入区提示语 2023-12-01 10:31:50 +08:00
Skyzayre
e8dd3c02f2 修改插件对应的分类 2023-12-01 10:30:25 +08:00
Skyzayre
e7f4c804eb 修改插件分类名称
将原有分类 “对话” 更名为 “对话&作图”
2023-12-01 10:27:25 +08:00
Skyzayre
3d6ee5c755 转化README徽章为动态徽章
将license、version、realease徽章都转化为动态徽章,减少README维护成本
2023-12-01 09:29:45 +08:00
binary-husky
d8958da8cd 修改Typo 2023-12-01 09:28:22 +08:00
binary-husky
a64d550045 修改README中的一些换行符 2023-11-30 23:23:54 +08:00
binary-husky
d876a81e78 Merge pull request #1337 from Skyzayre/README-edit
修饰README,修正图片链接格式
2023-11-30 23:09:16 +08:00
binary-husky
6723eb77b2 version3.62 2023-11-30 23:08:33 +08:00
binary-husky
86891e3535 Merge branch 'README-edit' of https://github.com/Skyzayre/gpt_academic into Skyzayre-README-edit 2023-11-30 22:58:19 +08:00
binary-husky
2f805db35d Merge branch 'master' into frontier 2023-11-30 22:37:07 +08:00
binary-husky
ecaf2bdf45 add comparison pdf file save and load 2023-11-30 22:36:16 +08:00
binary-husky
22e00eb1c5 Merge branch 'master' into frontier 2023-11-30 22:24:34 +08:00
qingxu fu
900fad69cf produce comparison pdf cache 2023-11-30 22:21:44 +08:00
qingxu fu
55d807c116 解决内存泄露问题 2023-11-30 22:19:05 +08:00
505030475
9a0ed248ca 谁是卧底小游戏 2023-11-30 00:15:09 +08:00
spike
88802b0f72 增加无法粘贴的toast 2023-11-29 20:15:40 +08:00
spike
5720ac127c 监听输入框,支持粘贴上传文件 2023-11-29 20:04:15 +08:00
Skyzayre
f44642d9d2 Update README.md 2023-11-29 13:51:44 +08:00
Skyzayre
29775dedd8 Update README.md 2023-11-29 13:49:38 +08:00
Skyzayre
6417ca9dde Update README.md 2023-11-29 13:46:43 +08:00
Skyzayre
f417c1ce6d Update README.md 2023-11-29 13:46:00 +08:00
Skyzayre
e4c057f5a3 Update README.md 2023-11-29 13:39:33 +08:00
Skyzayre
f9e9b6f4ec Update README.md 2023-11-29 13:38:08 +08:00
Skyzayre
c141e767c6 Update README.md 2023-11-29 13:37:20 +08:00
Skyzayre
17f361d63b Update README.md 2023-11-29 13:11:29 +08:00
Skyzayre
8780fe29f1 Update README.md 2023-11-29 13:07:27 +08:00
Skyzayre
d57bb8afbe Update README.md 2023-11-29 11:41:05 +08:00
Skyzayre
d39945c415 Update README.md 2023-11-29 11:38:59 +08:00
Skyzayre
688df6aa24 Update README.md 2023-11-29 11:28:37 +08:00
binary-husky
b24fef8a61 Merge branch 'master' into frontier 2023-11-29 00:32:56 +08:00
binary-husky
8c840f3d4c 看板娘效果修正 2023-11-29 00:28:13 +08:00
binary-husky
577d3d566b 修复看板娘不断分裂的BUG 2023-11-29 00:11:48 +08:00
qingxu fu
fd92766083 Merge branch 'master' into frontier 2023-11-27 11:00:58 +08:00
qingxu fu
2d2e02040d DALLE2修改图像插件 2023-11-26 01:08:34 +08:00
qingxu fu
aee57364dd edit image 2023-11-26 00:24:51 +08:00
qingxu fu
7ca37c4831 把gpt-4-vision-preview添加到支持列表中 2023-11-25 23:14:57 +08:00
binary-husky
5b06a6cae5 Merge branch 'master' into frontier 2023-11-24 03:28:07 +08:00
qingxu fu
5d5695cd9a version 3.61 2023-11-24 03:19:20 +08:00
qingxu fu
fd72894c90 修复错误的class命名 2023-11-24 02:42:58 +08:00
qingxu fu
c1abec2e4b Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-11-24 02:36:39 +08:00
qingxu fu
9916f59753 接入deepseek-coder 2023-11-24 02:35:44 +08:00
binary-husky
e6716ccf63 添加zhipuai依赖安装提醒 2023-11-24 01:47:03 +08:00
binary-husky
e533ed6d12 修正并行运行时的截断 2023-11-23 17:51:00 +08:00
binary-husky
4fefbb80ac Merge branch 'master' into frontier 2023-11-23 16:21:37 +08:00
qingxu fu
1253a2b0a6 修正错误地把重名路径当成文件的bug 2023-11-23 15:37:00 +08:00
binary-husky
71537b570f Merge pull request #1315 from Harry67Hu/master
fix MacOS-zip bug
2023-11-22 16:49:22 +08:00
Hao Ma
203d5f7296 Merge pull request #1282 from Kilig947/image_understanding_spark
Image understanding spark
2023-11-22 16:19:22 +08:00
Harry67Hu
7754215dad fix MacOS-zip bug 2023-11-22 15:23:23 +08:00
Marroh
b470af7c7b 遵循PEP 328优化太长的import 2023-11-22 13:20:56 +08:00
Marroh
f8c5f9045d Merge branch 'image_understanding_spark' of https://github.com/Kilig947/gpt_academic into Kilig947-image_understanding_spark 2023-11-22 10:45:45 +08:00
qingxu fu
c7a0a5f207 引入更稳定的自动更新URL 2023-11-22 01:40:40 +08:00
qingxu fu
b1be05009b 移除冗余代码,修复多用户存档问题 2023-11-20 01:06:19 +08:00
qingxu fu
977f992e3a 修复多用户文件冲突 2023-11-20 00:33:18 +08:00
Marroh
cdca36f5d2 移动import 2023-11-19 23:42:07 +08:00
Marroh
6ed88fe848 Merge branch 'image_understanding_spark' of https://github.com/Kilig947/gpt_academic into Kilig947-image_understanding_spark 2023-11-19 23:38:17 +08:00
qingxu fu
74f70305b7 introduce precommit 2023-11-19 22:03:36 +08:00
qingxu fu
b506c06542 Merge branch 'master' into frontier 2023-11-19 21:50:19 +08:00
qingxu fu
e5cd66a2f7 Merge branch 'frontier' of https://github.com/binary-husky/chatgpt_academic into frontier 2023-11-19 21:50:15 +08:00
binary-husky
2199cd263c Merge pull request #1293 from mbaneshi/mbaneshi
Update README.English.md
2023-11-17 14:30:26 +08:00
Mehdi Baneshi
47fe06f79d Update README.English.md
Change the reference section, add link for easy access to the resource
2023-11-17 05:45:47 +03:30
binary-husky
75a84d3cec 添加python版本说明 2023-11-16 17:18:07 +08:00
spike
ea4e03b1d8 llm_kwargs 增加most_recent_uploaded 2023-11-15 10:27:40 +08:00
spike
aa341fd268 适配星火大模型图片理解 增加上传图片view 2023-11-15 10:09:42 +08:00
binary-husky
c4aefc5fac Merge pull request #1274 from Skyzayre/master
dall-e作图模型调用错误的相关修正 && dall-e做图质量功能添加
2023-11-14 23:18:07 +08:00
binary-husky
e7c662a5d6 Update crazy_functional.py 2023-11-14 23:16:49 +08:00
binary-husky
5caeb7525d Update 图片生成.py 2023-11-14 23:15:19 +08:00
Skyzayre
f495bb154e Update 图片生成.py 2023-11-14 21:33:00 +08:00
Skyzayre
4d1657a531 Update 图片生成.py 2023-11-14 21:25:47 +08:00
Skyzayre
5391cb4198 Update crazy_functional.py 2023-11-14 21:17:48 +08:00
Skyzayre
1b28ae3baa Update crazy_functional.py 2023-11-14 21:14:41 +08:00
Skyzayre
518a1b2b75 Update crazy_functional.py 2023-11-14 20:51:49 +08:00
Skyzayre
443915b6d6 Update 图片生成.py 2023-11-14 20:49:53 +08:00
binary-husky
371158cb56 Merge pull request #1268 from DoiiarX/master
添加帮助文本
2023-11-14 12:29:15 +08:00
binary-husky
1fa296a303 添加帮助文本 2023-11-14 12:28:57 +08:00
Doiiars
b0c34a89cd Update main.py
添加临时更换API的帮助
2023-11-14 12:22:52 +08:00
binary-husky
2003afe27f API_URL_REDIRECT自动检测 2023-11-14 11:54:07 +08:00
binary-husky
682898a3ba 支持gpt-4-v处理多张图片 2023-11-13 13:21:33 +08:00
binary-husky
9a21e13d33 支持gpt-4-vision-preview 2023-11-13 13:10:59 +08:00
binary-husky
f03aa8713d limit author nums 2023-11-13 01:10:12 +08:00
binary-husky
7b526cf74b 更新scipdf_parser 2023-11-13 00:48:48 +08:00
binary-husky
27db900692 移除batchsize 2023-11-13 00:24:20 +08:00
binary-husky
b9b7bf38ab 修复插件导入时的pytorch加载问题 2023-11-13 00:15:15 +08:00
binary-husky
7e56ace2c0 更新README 2023-11-12 23:31:50 +08:00
binary-husky
67a98de841 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-11-12 22:27:29 +08:00
binary-husky
4306f8fd3e version 3.60 开放AutoGen多智能体插件测试 2023-11-12 22:26:00 +08:00
binary-husky
69f37df356 紧急修复终结点覆盖错误的问题 2023-11-12 22:15:54 +08:00
binary-husky
94ecbde198 将AutoGen放回下拉菜单中 2023-11-12 18:22:46 +08:00
binary-husky
51c70e9e47 update translation 2023-11-12 16:04:55 +08:00
binary-husky
c45336a3cd change nougat batchsize 2023-11-12 15:57:18 +08:00
binary-husky
f34f1091c3 fix nougat 2023-11-12 14:13:49 +08:00
binary-husky
899bbe9229 更新提示 2023-11-11 23:54:24 +08:00
binary-husky
eeb70e966c 修改插件按钮顺序 2023-11-11 23:35:11 +08:00
qingxu fu
1335da4f45 Merge branch 'frontier' into master_autogen 2023-11-11 23:24:21 +08:00
qingxu fu
2d91e438d6 修正internlm输入设备bug 2023-11-11 23:22:50 +08:00
qingxu fu
a55bc0c07c AutoGen自动忽略重复的输入 2023-11-11 23:22:09 +08:00
qingxu fu
f7f6db831b 处理模型兼容的一些细节 2023-11-11 22:35:06 +08:00
qingxu fu
a655ce1f00 Merge branch 'frontier' into master_autogen 2023-11-11 22:03:20 +08:00
qingxu fu
28119e343c 将autogen大模型调用底层hook掉 2023-11-11 22:01:19 +08:00
qingxu fu
f75e39dc27 修复本地模型在Windows下的加载BUG 2023-11-11 21:11:55 +08:00
qingxu fu
e4409b94d1 修正拼写 report_execption -> report_exception #1220 2023-11-11 18:30:57 +08:00
qingxu fu
2570e4b997 remove revision 2023-11-11 18:17:58 +08:00
qingxu fu
2b917edf26 修复本地模型在windows上的兼容性 2023-11-11 17:58:17 +08:00
binary-husky
fcf04554c6 Merge pull request #1255 from xiangsam/master
[Feature] 更新精准翻译PDF文档(NOUGAT)插件
2023-11-11 14:07:22 +08:00
qingxu fu
107ea868e1 API2D自动对齐 2023-11-10 23:08:56 +08:00
qingxu fu
da7c03e868 图像修改 2023-11-10 22:54:55 +08:00
qingxu fu
42339a3e6b Merge branch 'master' into frontier 2023-11-10 22:54:24 +08:00
xiangsam
362b545a45 更改import nougat时机 2023-11-10 14:32:07 +00:00
Samrito
84b45dc4fb Merge branch 'binary-husky:master' into master 2023-11-10 22:07:41 +08:00
qingxu fu
f9fc02948a 更新分辨率提示 2023-11-10 21:04:21 +08:00
qingxu fu
0299b0f95f 支持DALLE3 2023-11-10 20:59:08 +08:00
xiangsam
33bf795c66 更新精准翻译PDF文档(NOUGAT)插件 2023-11-10 12:06:39 +00:00
binary-husky
caf45ef740 Merge pull request #1244 from awwaawwa/fix_gpt_35_16k_maxtoken
修改 gpt-3.5-turbo-16k 系列模型 max_token 为 16385
2023-11-10 12:55:02 +08:00
binary-husky
b49b272587 Merge pull request #1241 from Skyzayre/master
新加入1106两个模型的适配
2023-11-10 12:53:42 +08:00
qingxu fu
a1a91c25a5 移除重复项 2023-11-10 12:53:03 +08:00
qingxu fu
2912eaf082 Merge branch 'master' of https://github.com/Skyzayre/gpt_academic into Skyzayre-master2 2023-11-10 12:51:50 +08:00
binary-husky
795de492fe Merge pull request #1238 from samxiaowastaken/master
Add new API support
2023-11-10 12:41:14 +08:00
qingxu fu
0ff750b60a 修改缩进 2023-11-10 12:40:25 +08:00
qingxu fu
8ad2a2bb86 Merge branch 'master' of https://github.com/samxiaowastaken/gpt_academic into samxiaowastaken-master 2023-11-10 12:37:30 +08:00
binary-husky
12df41563a hide audio btn border 2023-11-08 18:40:36 +08:00
awwaawwa
8d94564e67 修改 gpt-3.5-turbo-16k 系列模型 max_token 为 16385
根据 https://platform.openai.com/docs/models/gpt-3-5 ,这个16k的3.5上下文窗口其实是16385
2023-11-07 15:59:07 +08:00
Skyzayre
736f1214ee Update bridge_all.py 2023-11-07 15:55:23 +08:00
binary-husky
e9cf3d3d12 version 3.57 2023-11-07 15:52:08 +08:00
binary-husky
996057e588 support chatglm3 2023-11-07 15:41:04 +08:00
binary-husky
804599bbc3 autogen 2023-11-07 15:36:05 +08:00
Skyzayre
ffe6c1403e Update bridge_chatgpt.py 2023-11-07 14:25:36 +08:00
Skyzayre
3a2466fe4e Update README_RS.md 2023-11-07 14:23:16 +08:00
Skyzayre
6c795809f7 Update README_JP.md 2023-11-07 14:23:01 +08:00
Skyzayre
3141cd392a Update README_FR.md 2023-11-07 14:22:46 +08:00
Skyzayre
77220002e0 Update README_EN.md 2023-11-07 14:22:29 +08:00
Skyzayre
cd40bf9ae2 Update README.md.Portuguese.md 2023-11-07 14:22:12 +08:00
Skyzayre
6c3405ba55 Update README.md.Korean.md 2023-11-07 14:21:52 +08:00
Skyzayre
bba3419ace Update README.md.Italian.md 2023-11-07 14:21:32 +08:00
Skyzayre
61cf2b32eb Update README.md.German.md 2023-11-07 14:21:08 +08:00
Skyzayre
3ed0e8012d Update bridge_all.py 2023-11-07 14:17:01 +08:00
Skyzayre
4d9256296d Update 多智能体.py 2023-11-07 14:13:37 +08:00
Skyzayre
0897057be1 Update README.md 2023-11-07 14:11:52 +08:00
Skyzayre
136e6aaa21 Update config.py 2023-11-07 14:08:24 +08:00
binary-husky
8e375b0ed2 support chatglm3 2023-11-07 14:07:30 +08:00
binary-husky
5192d316f0 Merge branch 'frontier' 2023-11-07 11:40:27 +08:00
binary-husky
245585be81 Update README.md 2023-11-07 10:39:35 +08:00
Yao Xiao
4824905592 Add new API support 2023-11-07 09:48:01 +08:00
binary-husky
5566ba8257 Merge pull request #1215 from ZornWang/ERNIE_Bot_4
[Feature] 添加百度千帆文心4.0大模型支持
2023-11-01 22:29:33 +08:00
binary-husky
8c4a753b65 Merge pull request #1222 from ji-jinlong/master
Update 理解PDF文档内容.py
2023-11-01 22:26:55 +08:00
binary-husky
f016323b8a Update 理解PDF文档内容.py 2023-11-01 22:26:46 +08:00
binary-husky
cd9f2ec402 Update README.md 2023-11-01 22:25:27 +08:00
ji-jinlong
ca7ff47fcb Update 理解PDF文档内容.py 2023-11-01 16:05:57 +08:00
binary-husky
09857ea455 解除本地模型的若干并发问题 2023-10-31 20:37:07 +08:00
binary-husky
17cf47dcd6 防止多线程数据交叉 2023-10-31 18:02:14 +08:00
binary-husky
136162ec0d better local model interaction 2023-10-31 16:18:27 +08:00
binary-husky
08f036aafd 支持chatglm3 2023-10-31 03:08:50 +08:00
Zorn Wang
9fb29f249b Feature: 添加百度千帆文心4.0大模型支持 2023-10-30 19:20:05 +08:00
binary-husky
9a1aff5bb6 修复get_conf接口 2023-10-30 11:10:05 +08:00
binary-husky
f3f90f7b90 Update README.md 2023-10-30 01:10:45 +08:00
binary-husky
527f9d28ad change get_conf 2023-10-29 00:34:40 +08:00
binary-husky
12b2a229b6 移除调试打印 2023-10-28 20:15:59 +08:00
binary-husky
40a065ce04 Merge branch 'master' into frontier 2023-10-28 20:09:49 +08:00
binary-husky
b14d4de0b1 将默认系统提示词转移到Config中 2023-10-28 20:08:50 +08:00
binary-husky
e64c26e617 紧急修复报错异常 2023-10-28 19:53:05 +08:00
binary-husky
0b1e599b01 紧急修复报错异常 2023-10-28 19:43:48 +08:00
binary-husky
127385b846 接入新模型 2023-10-28 19:23:43 +08:00
binary-husky
cf085565a7 rename folder 2023-10-28 17:44:17 +08:00
binary-husky
5a530df4f2 修复autogen接口的问题 2023-10-28 17:41:22 +08:00
binary-husky
b4c7b26f63 Merge branch 'master' into frontier 2023-10-28 14:32:12 +08:00
binary-husky
8bdcc4ff28 修复对一些第三方接口的兼容性 2023-10-28 14:32:03 +08:00
binary-husky
e596bb6fff 修复AZURE_CFG_ARRAY使用时不给定apikey报错的问题 2023-10-28 00:29:49 +08:00
binary-husky
50ecb45d63 Merge pull request #1173 from Kilig947/azure_multiple_models
Azure 支持部署多个模型
2023-10-27 23:36:05 +08:00
binary-husky
349c399967 Merge branch 'frontier' into azure_multiple_models 2023-10-27 23:35:50 +08:00
binary-husky
103d05d242 增加一个Azure配置的Array 2023-10-27 23:29:18 +08:00
binary-husky
d0589209cc Merge branch 'azure_multiple_models' of https://github.com/Kilig947/gpt_academic into Kilig947-azure_multiple_models 2023-10-27 22:41:51 +08:00
binary-husky
8faf69c41e Merge branch 'master' into frontier 2023-10-27 10:25:11 +08:00
binary-husky
f7a332eee7 Merge pull request #1201 from shao0099876/master
修复了一个导致无法加载未量化的ChatGLM2 fine-tuning模型的问题
2023-10-27 10:00:48 +08:00
shao0099876
f6e34d9621 修复了一个导致无法加载未量化的ChatGLM2 fine-tuning模型的问题(quantization_bit=0) 2023-10-26 14:38:58 +00:00
qingxu fu
706a239232 Newbing组件已不再维护 2023-10-25 11:56:20 +08:00
qingxu fu
00076cc6f4 支持讯飞星火v3 (sparkv3) 2023-10-25 11:48:28 +08:00
qingxu fu
a711db0b5b stashed commit 2023-10-25 11:32:32 +08:00
binary-husky
5dd3f4ad6d rename 2023-10-23 21:50:47 +08:00
binary-husky
65e202881a add option to skip new translation 2023-10-23 21:12:36 +08:00
binary-husky
27c4e3ef4f 优化autogen的使用 2023-10-23 01:56:18 +08:00
binary-husky
e2b3c47186 Version 3.56 - Merge branch 'frontier' 2023-10-22 23:24:41 +08:00
binary-husky
a14ef78d52 容忍tex文件的缺失 2023-10-22 00:05:48 +08:00
binary-husky
b88e577eb5 update translation 2023-10-21 19:15:23 +08:00
binary-husky
991e41b313 change default path to relative 2023-10-21 00:27:55 +08:00
binary-husky
ff2bc64d57 图片交互显示 2023-10-20 23:56:24 +08:00
binary-husky
218f0c445e 微调Autogen代码结构 2023-10-20 23:18:32 +08:00
binary-husky
7ee0c94924 接入autogen 2023-10-20 21:31:50 +08:00
binary-husky
3531e7f23f 修正提示 2023-10-20 15:40:36 +08:00
binary-husky
d99f4681f0 修正提示 2023-10-20 15:39:50 +08:00
binary-husky
f2b2ccd577 Merge branch 'master' into frontier 2023-10-20 10:47:40 +08:00
binary-husky
c18a235d33 微调HTML 2023-10-20 10:43:05 +08:00
binary-husky
6c87c55a8a 微调HTML样式 2023-10-20 10:43:04 +08:00
binary-husky
f925fe7692 添加对NOUGAT的代理设置 2023-10-20 10:43:04 +08:00
qingxu fu
af83c43fb0 补充缺失摘要的措施 2023-10-20 10:43:04 +08:00
qingxu fu
4305ee0313 微调HTML汇报样式 2023-10-20 10:43:04 +08:00
binary-husky
a6e7bbbd22 修改缩进 2023-10-20 10:43:04 +08:00
binary-husky
62c02dfa86 修复warmup模块的延迟问题 2023-10-20 10:43:04 +08:00
binary-husky
a2ebbafb77 微调提示 2023-10-20 10:43:04 +08:00
binary-husky
a915a2ddd1 Grobid负载均衡 2023-10-20 10:43:04 +08:00
Menghuan1918
537c15b354 在proxies返回空时会首先尝试直接连接 2023-10-20 10:43:04 +08:00
binary-husky
73ed92af59 Update GithubAction+NoLocal+Latex 2023-10-20 10:43:04 +08:00
Skyzayre
88303b6f78 Update Dockerfile
gradio已经更新到3.32.6,但是Dockerfile中仍然是3.32.2
2023-10-20 10:42:31 +08:00
binary-husky
120d4ad556 Update README.md 2023-10-20 10:42:31 +08:00
binary-husky
3410bd9b1d Update README.md 2023-10-19 16:05:12 +08:00
binary-husky
20e3eee6e7 Update GithubAction+NoLocal+Latex 2023-10-18 16:23:28 +08:00
binary-husky
775b07dbcc 为Dockerfile添加更多注释 2023-10-18 11:15:35 +08:00
binary-husky
560d4e2cb1 修正Dockerfile中的错误 2023-10-18 11:10:38 +08:00
qingxu fu
4ad432e1da 新版HTML报告页面 2023-10-16 22:13:59 +08:00
binary-husky
32ddcd067a Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-10-16 00:05:53 +08:00
binary-husky
98ef658307 修复warmup模块的延迟问题 2023-10-16 00:05:31 +08:00
w_xiaolizu
1e2bcb8189 Azure 支持部署多个模型 2023-10-15 23:19:07 +08:00
binary-husky
a4de91d000 修改缩进 2023-10-15 22:53:57 +08:00
binary-husky
1bb437a5d0 微调提示 2023-10-15 21:17:00 +08:00
binary-husky
4421219c2b Merge branch 'frontier' 2023-10-15 20:56:49 +08:00
binary-husky
ea28db855d 完善自定义菜单 2023-10-15 20:54:16 +08:00
binary-husky
5aea7b3d09 多线程运行微调 2023-10-15 19:13:25 +08:00
binary-husky
5274117cf1 缺失摘要时,插入伪摘要 2023-10-14 23:48:37 +08:00
binary-husky
673faf8cef Grobid负载均衡 2023-10-14 19:59:35 +08:00
binary-husky
130ae31d55 Merge pull request #1168 from Menghuan1918/master
fix bug  #1167 学术小助手在proxies返回空时会首先尝试直接连接
2023-10-13 17:02:01 +08:00
Menghuan1918
c3abc46d4d 在proxies返回空时会首先尝试直接连接 2023-10-13 15:23:06 +08:00
binary-husky
4df75d49ad 兼容一些第三方代理 2023-10-12 23:42:45 +08:00
binary-husky
9ea0fe4de2 Update GithubAction+NoLocal+Latex 2023-10-12 21:23:15 +08:00
binary-husky
8698c5a80f Merge pull request #1159 from Skyzayre/patch-1
Update Dockerfile
2023-10-11 17:18:28 +08:00
binary-husky
383f7f4f77 add webrtcvad dependency 2023-10-11 15:51:34 +08:00
binary-husky
34d784df79 12 2023-10-11 15:48:25 +08:00
binary-husky
662bebfc02 SSL 2023-10-11 15:34:06 +08:00
binary-husky
0c3b00fc6b cookie space 2023-10-11 12:33:50 +08:00
binary-husky
b6e370e8c9 ymp 2023-10-11 11:30:34 +08:00
binary-husky
71ea8e584a 自定义基础功能区按钮 2023-10-11 11:21:41 +08:00
Skyzayre
a5491b9199 Update Dockerfile
gradio已经更新到3.32.6,但是Dockerfile中仍然是3.32.2
2023-10-11 00:26:16 +08:00
binary-husky
6f383c1dc8 支持自定义基础功能区 2023-10-11 00:14:56 +08:00
binary-husky
500a0cbd16 大幅优化语音助手 2023-10-09 01:18:05 +08:00
binary-husky
1ef6730369 Update README.md 2023-10-08 23:14:07 +08:00
binary-husky
491174095a 更新docker-compose说明 2023-10-07 11:59:06 +08:00
binary-husky
02c270410c 减小Latex容器体积 2023-10-06 11:44:10 +08:00
binary-husky
89eec21f27 随机选择, 绕过openai访问频率限制 2023-10-06 10:50:41 +08:00
binary-husky
49cea97822 启动主题自动转换 2023-10-06 10:36:30 +08:00
binary-husky
6310b65d70 重新编译Gradio优化使用体验 2023-10-06 10:32:03 +08:00
binary-husky
93c76e1809 更新内置gradio版本 2023-10-06 09:54:07 +08:00
binary-husky
f64cf7a3d1 update translation matrix 2023-10-02 14:24:01 +08:00
binary-husky
fdffbee1b0 Update toolbox.py 2023-09-30 09:56:30 +08:00
共有 299 个文件被更改,包括 34733 次插入9072 次删除

查看文件

@@ -69,9 +69,3 @@ body:
attributes:
label: Terminal Traceback & Material to Help Reproduce Bugs | 终端traceback如有 + 帮助我们复现的测试材料样本(如有)
description: Terminal Traceback & Material to Help Reproduce Bugs | 终端traceback如有 + 帮助我们复现的测试材料样本(如有)

查看文件

@@ -21,8 +21,3 @@ body:
attributes:
label: Feature Request | 功能请求
description: Feature Request | 功能请求

查看文件

@@ -1,14 +1,14 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: build-with-jittorllms
name: build-with-latex-arm
on:
push:
branches:
- 'master'
- "master"
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}_jittorllms
IMAGE_NAME: ${{ github.repository }}_with_latex_arm
jobs:
build-and-push-image:
@@ -18,11 +18,17 @@ jobs:
packages: write
steps:
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Checkout repository
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Log in to the Container registry
uses: docker/login-action@v2
uses: docker/login-action@v3
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
@@ -35,10 +41,11 @@ jobs:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
- name: Build and push Docker image
uses: docker/build-push-action@v4
uses: docker/build-push-action@v6
with:
context: .
push: true
file: docs/GithubAction+JittorLLMs
platforms: linux/arm64
file: docs/GithubAction+NoLocal+Latex
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}

56
.github/workflows/conda-pack-windows.yml vendored 普通文件
查看文件

@@ -0,0 +1,56 @@
name: Create Conda Environment Package
on:
workflow_dispatch:
jobs:
build:
runs-on: windows-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Setup Miniconda
uses: conda-incubator/setup-miniconda@v3
with:
auto-activate-base: true
activate-environment: ""
- name: Create new Conda environment
shell: bash -l {0}
run: |
conda create -n gpt python=3.11 -y
conda activate gpt
- name: Install requirements
shell: bash -l {0}
run: |
conda activate gpt
pip install -r requirements.txt
- name: Install conda-pack
shell: bash -l {0}
run: |
conda activate gpt
conda install conda-pack -y
- name: Pack conda environment
shell: bash -l {0}
run: |
conda activate gpt
conda pack -n gpt -o gpt.tar.gz
- name: Create workspace zip
shell: pwsh
run: |
mkdir workspace
Get-ChildItem -Exclude "workspace" | Copy-Item -Destination workspace -Recurse
Remove-Item -Path workspace/.git* -Recurse -Force -ErrorAction SilentlyContinue
Copy-Item gpt.tar.gz workspace/ -Force
- name: Upload packed files
uses: actions/upload-artifact@v4
with:
name: gpt-academic-package
path: workspace

查看文件

@@ -7,7 +7,7 @@
name: 'Close stale issues and PRs'
on:
schedule:
- cron: '*/5 * * * *'
- cron: '*/30 * * * *'
jobs:
stale:
@@ -19,7 +19,6 @@ jobs:
steps:
- uses: actions/stale@v8
with:
stale-issue-message: 'This issue is stale because it has been open 100 days with no activity. Remove stale label or comment or this will be closed in 1 days.'
stale-issue-message: 'This issue is stale because it has been open 100 days with no activity. Remove stale label or comment or this will be closed in 7 days.'
days-before-stale: 100
days-before-close: 1
debug-only: true
days-before-close: 7

17
.gitignore vendored
查看文件

@@ -131,6 +131,9 @@ dmypy.json
# Pyre type checker
.pyre/
# macOS files
.DS_Store
.vscode
.idea
@@ -146,9 +149,17 @@ debug*
private*
crazy_functions/test_project/pdf_and_word
crazy_functions/test_samples
request_llm/jittorllms
request_llms/jittorllms
multi-language
request_llm/moss
request_llms/moss
media
flagged
request_llm/ChatGLM-6b-onnx-u8s8
request_llms/ChatGLM-6b-onnx-u8s8
.pre-commit-config.yaml
test.*
temp.*
objdump*
*.min.*.js
TODO
experimental_mods
search_results

查看文件

@@ -1,34 +1,41 @@
# 此Dockerfile适用于“无本地模型”的环境构建,如果需要使用chatglm等本地模型或者latex运行依赖,请参考 docker-compose.yml
# 如何构建: 先修改 `config.py`, 然后 `docker build -t gpt-academic . `
# 如何运行(Linux下): `docker run --rm -it --net=host gpt-academic `
# 如何运行(其他操作系统,选择任意一个固定端口50923): `docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic `
# 此Dockerfile适用于“无本地模型”的迷你运行环境构建
# 如果需要使用chatglm等本地模型或者latex运行依赖,请参考 docker-compose.yml
# - 如何构建: 先修改 `config.py`, 然后 `docker build -t gpt-academic . `
# - 如何运行(Linux下): `docker run --rm -it --net=host gpt-academic `
# - 如何运行(其他操作系统,选择任意一个固定端口50923): `docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic `
FROM python:3.11
# 非必要步骤,更换pip源
# 非必要步骤,更换pip源 (以下三行,可以删除)
RUN echo '[global]' > /etc/pip.conf && \
echo 'index-url = https://mirrors.aliyun.com/pypi/simple/' >> /etc/pip.conf && \
echo 'trusted-host = mirrors.aliyun.com' >> /etc/pip.conf
# 进入工作路径
# 语音输出功能以下两行,第一行更换阿里源,第二行安装ffmpeg,都可以删除
RUN UBUNTU_VERSION=$(awk -F= '/^VERSION_CODENAME=/{print $2}' /etc/os-release); echo "deb https://mirrors.aliyun.com/debian/ $UBUNTU_VERSION main non-free contrib" > /etc/apt/sources.list; apt-get update
RUN apt-get install ffmpeg -y
RUN apt-get clean
# 进入工作路径(必要)
WORKDIR /gpt
# 安装大部分依赖,利用Docker缓存加速以后的构建
# 安装大部分依赖,利用Docker缓存加速以后的构建 (以下两行,可以删除)
COPY requirements.txt ./
COPY ./docs/gradio-3.32.2-py3-none-any.whl ./docs/gradio-3.32.2-py3-none-any.whl
RUN pip3 install -r requirements.txt
# 装载项目文件,安装剩余依赖
# 装载项目文件,安装剩余依赖(必要)
COPY . .
RUN pip3 install -r requirements.txt
# 非必要步骤,用于预热模块
# 非必要步骤,用于预热模块(可以删除)
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
RUN python3 -m pip cache purge
# 启动
# 启动(必要)
CMD ["python3", "-u", "main.py"]

330
README.md
查看文件

@@ -1,71 +1,104 @@
> **Note**
> [!IMPORTANT]
> `master主分支`最新动态(2025.2.4): 增加deepseek-r1支持
> `frontier开发分支`最新动态(2024.12.9): 更新对话时间线功能,优化xelatex论文翻译
> `wiki文档`最新动态(2024.12.5): 更新ollama接入指南
>
> 2023.7.8: Gradio, Pydantic依赖调整,已修改 `requirements.txt`。请及时**更新代码**,安装依赖时,请严格选择`requirements.txt`中**指定的版本**
> 2025.2.2: 三分钟快速接入最强qwen2.5-max[视频](https://www.bilibili.com/video/BV1LeFuerEG4)
> 2025.2.1: 支持自定义字体
> 2024.10.10: 突发停电,紧急恢复了提供[whl包](https://drive.google.com/drive/folders/14kR-3V-lIbvGxri4AHc8TpiA1fqsw7SK?usp=sharing)的文件服务器
> 2024.5.1: 加入Doc2x翻译PDF论文的功能,[查看详情](https://github.com/binary-husky/gpt_academic/wiki/Doc2x)
> 2024.3.11: 全力支持Qwen、GLM、DeepseekCoder等中文大语言模型 SoVits语音克隆模块,[查看详情](https://www.bilibili.com/video/BV1Rp421S7tF/)
> 2024.1.17: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目完全开源免费,您可通过订阅[在线服务](https://github.com/binary-husky/gpt_academic/wiki/online)的方式鼓励本项目的发展。
<br>
<div align=center>
<h1 aligh="center">
<img src="docs/logo.png" width="40"> GPT 学术优化 (GPT Academic)
</h1>
[![Github][Github-image]][Github-url]
[![License][License-image]][License-url]
[![Releases][Releases-image]][Releases-url]
[![Installation][Installation-image]][Installation-url]
[![Wiki][Wiki-image]][Wiki-url]
[![PR][PRs-image]][PRs-url]
[Github-image]: https://img.shields.io/badge/github-12100E.svg?style=flat-square
[License-image]: https://img.shields.io/github/license/binary-husky/gpt_academic?label=License&style=flat-square&color=orange
[Releases-image]: https://img.shields.io/github/release/binary-husky/gpt_academic?label=Release&style=flat-square&color=blue
[Installation-image]: https://img.shields.io/badge/dynamic/json?color=blue&url=https://raw.githubusercontent.com/binary-husky/gpt_academic/master/version&query=$.version&label=Installation&style=flat-square
[Wiki-image]: https://img.shields.io/badge/wiki-项目文档-black?style=flat-square
[PRs-image]: https://img.shields.io/badge/PRs-welcome-pink?style=flat-square
[Github-url]: https://github.com/binary-husky/gpt_academic
[License-url]: https://github.com/binary-husky/gpt_academic/blob/master/LICENSE
[Releases-url]: https://github.com/binary-husky/gpt_academic/releases
[Installation-url]: https://github.com/binary-husky/gpt_academic#installation
[Wiki-url]: https://github.com/binary-husky/gpt_academic/wiki
[PRs-url]: https://github.com/binary-husky/gpt_academic/pulls
</div>
<br>
**如果喜欢这个项目,请给它一个Star;如果您发明了好用的快捷键或插件,欢迎发pull requests**
If you like this project, please give it a Star.
Read this in [English](docs/README.English.md) | [日本語](docs/README.Japanese.md) | [한국어](docs/README.Korean.md) | [Русский](docs/README.Russian.md) | [Français](docs/README.French.md). All translations have been provided by the project itself. To translate this project to arbitrary language with GPT, read and run [`multi_language.py`](multi_language.py) (experimental).
<br>
> [!NOTE]
> 1.本项目中每个文件的功能都在[自译解报告](https://github.com/binary-husky/gpt_academic/wiki/GPTAcademic项目自译解报告)`self_analysis.md`详细说明。随着版本的迭代,您也可以随时自行点击相关函数插件,调用GPT重新生成项目的自我解析报告。常见问题请查阅wiki。
> [![常规安装方法](https://img.shields.io/static/v1?label=&message=常规安装方法&color=gray)](#installation) [![一键安装脚本](https://img.shields.io/static/v1?label=&message=一键安装脚本&color=gray)](https://github.com/binary-husky/gpt_academic/releases) [![配置说明](https://img.shields.io/static/v1?label=&message=配置说明&color=gray)](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明) [![wiki](https://img.shields.io/static/v1?label=&message=wiki&color=gray)]([https://github.com/binary-husky/gpt_academic/wiki/项目配置说明](https://github.com/binary-husky/gpt_academic/wiki))
>
> `pip install -r requirements.txt`
# <div align=center><img src="docs/logo.png" width="40"> GPT 学术优化 (GPT Academic)</div>
**如果喜欢这个项目,请给它一个Star;如果您发明了好用的快捷键或函数插件,欢迎发pull requests**
If you like this project, please give it a Star. If you've come up with more useful academic shortcuts or functional plugins, feel free to open an issue or pull request. We also have a README in [English|](docs/README_EN.md)[日本語|](docs/README_JP.md)[한국어|](https://github.com/mldljyh/ko_gpt_academic)[Русский|](docs/README_RS.md)[Français](docs/README_FR.md) translated by this project itself.
To translate this project to arbitrary language with GPT, read and run [`multi_language.py`](multi_language.py) (experimental).
> **Note**
>
> 1.请注意只有 **高亮** 标识的函数插件(按钮)才支持读取文件,部分插件位于插件区的**下拉菜单**中。另外我们以**最高优先级**欢迎和处理任何新插件的PR。
>
> 2.本项目中每个文件的功能都在[自译解报告`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/GPTAcademic项目自译解报告)详细说明。随着版本的迭代,您也可以随时自行点击相关函数插件,调用GPT重新生成项目的自我解析报告。常见问题[`wiki`](https://github.com/binary-husky/gpt_academic/wiki)。[安装方法](#installation) | [配置说明](https://github.com/binary-husky/gpt_academic/wiki/%E9%A1%B9%E7%9B%AE%E9%85%8D%E7%BD%AE%E8%AF%B4%E6%98%8E)。
>
> 3.本项目兼容并鼓励尝试国产大语言模型ChatGLM和Moss等等。支持多个api-key共存,可在配置文件中填写如`API_KEY="openai-key1,openai-key2,azure-key3,api2d-key4"`。需要临时更换`API_KEY`时,在输入区输入临时的`API_KEY`然后回车键提交后即可生效。
> 2.本项目兼容并鼓励尝试国内中文大语言基座模型如通义千问,智谱GLM等。支持多个api-key共存,可在配置文件中填写如`API_KEY="openai-key1,openai-key2,azure-key3,api2d-key4"`。需要临时更换`API_KEY`时,在输入区输入临时的`API_KEY`然后回车键提交即可生效。
<br><br>
<div align="center">
功能(⭐= 近期新增功能) | 描述
--- | ---
⭐[接入新模型](https://github.com/binary-husky/gpt_academic/wiki/%E5%A6%82%E4%BD%95%E5%88%87%E6%8D%A2%E6%A8%A1%E5%9E%8B) | 百度[千帆](https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu)与文心一言, [通义千问](https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary),上海AI-Lab[书生](https://github.com/InternLM/InternLM),讯飞[星火](https://xinghuo.xfyun.cn/),[LLaMa2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
一键润色 | 支持一键润色、一键查找论文语法错误
一键中英互译 | 一键中英互译
一键代码解释 | 显示代码、解释代码、生成代码、给代码加注释
⭐[接入新模型](https://github.com/binary-husky/gpt_academic/wiki/%E5%A6%82%E4%BD%95%E5%88%87%E6%8D%A2%E6%A8%A1%E5%9E%8B) | 百度[千帆](https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu)与文心一言, 通义千问[Qwen](https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary),上海AI-Lab[书生](https://github.com/InternLM/InternLM),讯飞[星火](https://xinghuo.xfyun.cn/),[LLaMa2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf),[智谱GLM4](https://open.bigmodel.cn/),DALLE3, [DeepseekCoder](https://coder.deepseek.com/)
⭐支持mermaid图像渲染 | 支持让GPT生成[流程图](https://www.bilibili.com/video/BV18c41147H9/)、状态转移图、甘特图、饼状图、GitGraph等等3.7版本)
⭐Arxiv论文精细翻译 ([Docker](https://github.com/binary-husky/gpt_academic/pkgs/container/gpt_academic_with_latex)) | [插件] 一键[以超高质量翻译arxiv论文](https://www.bilibili.com/video/BV1dz4y1v77A/),目前最好的论文翻译工具
⭐[实时语音对话输入](https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md) | [插件] 异步[监听音频](https://www.bilibili.com/video/BV1AV4y187Uy/),自动断句,自动寻找回答时机
⭐AutoGen多智能体插件 | [插件] 借助微软AutoGen,探索多Agent的智能涌现可能
⭐虚空终端插件 | [插件] 能够使用自然语言直接调度本项目其他插件
润色、翻译、代码解释 | 一键润色、翻译、查找论文语法错误、解释代码
[自定义快捷键](https://www.bilibili.com/video/BV14s4y1E7jN) | 支持自定义快捷键
模块化设计 | 支持自定义强大的[函数插件](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions),插件支持[热更新](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[自我程序剖析](https://www.bilibili.com/video/BV1cj411A7VW) | [函数插件] [一键读懂](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A)本项目的源代码
[程序剖析](https://www.bilibili.com/video/BV1cj411A7VW) | [函数插件] 一键可以剖析其他Python/C/C++/Java/Lua/...项目树
读论文、[翻译](https://www.bilibili.com/video/BV1KT411x7Wn)论文 | [函数插件] 一键解读latex/pdf论文全文并生成摘要
Latex全文[翻译](https://www.bilibili.com/video/BV1nk4y1Y7Js/)、[润色](https://www.bilibili.com/video/BV1FT411H7c5/) | [函数插件] 一键翻译或润色latex论文
批量注释生成 | [函数插件] 一键批量生成函数注释
Markdown[中英互译](https://www.bilibili.com/video/BV1yo4y157jV/) | [函数插件] 看到上面5种语言的[README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md)了吗?
chat分析报告生成 | [函数插件] 运行后自动生成总结汇报
[PDF论文全文翻译功能](https://www.bilibili.com/video/BV1KT411x7Wn) | [函数插件] PDF论文提取题目&摘要+翻译全文(多线程)
[Arxiv小助手](https://www.bilibili.com/video/BV1LM4y1279X) | [函数插件] 输入arxiv文章url即可一键翻译摘要+下载PDF
Latex论文一键校对 | [函数插件] 仿Grammarly对Latex文章进行语法、拼写纠错+输出对照PDF
[谷歌学术统合小助手](https://www.bilibili.com/video/BV19L411U7ia) | [函数插件] 给定任意谷歌学术搜索页面URL,让gpt帮你[写relatedworks](https://www.bilibili.com/video/BV1GP411U7Az/)
互联网信息聚合+GPT | [函数插件] 一键[让GPT从互联网获取信息](https://www.bilibili.com/video/BV1om4y127ck)回答问题,让信息永不过时
⭐Arxiv论文精细翻译 ([Docker](https://github.com/binary-husky/gpt_academic/pkgs/container/gpt_academic_with_latex)) | [函数插件] 一键[以超高质量翻译arxiv论文](https://www.bilibili.com/video/BV1dz4y1v77A/),目前最好的论文翻译工具
⭐[实时语音对话输入](https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md) | [函数插件] 异步[监听音频](https://www.bilibili.com/video/BV1AV4y187Uy/),自动断句,自动寻找回答时机
模块化设计 | 支持自定义强大的[插件](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions),插件支持[热更新](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[程序剖析](https://www.bilibili.com/video/BV1cj411A7VW) | [插件] 一键剖析Python/C/C++/Java/Lua/...项目树 或 [自我剖析](https://www.bilibili.com/video/BV1cj411A7VW)
读论文、[翻译](https://www.bilibili.com/video/BV1KT411x7Wn)论文 | [插件] 一键解读latex/pdf论文全文并生成摘要
Latex全文[翻译](https://www.bilibili.com/video/BV1nk4y1Y7Js/)、[润色](https://www.bilibili.com/video/BV1FT411H7c5/) | [插件] 一键翻译或润色latex论文
批量注释生成 | [插件] 一键批量生成函数注释
Markdown[中英互译](https://www.bilibili.com/video/BV1yo4y157jV/) | [插件] 看到上面5种语言的[README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README.English.md)了吗?就是出自他的手笔
[PDF论文全文翻译功能](https://www.bilibili.com/video/BV1KT411x7Wn) | [插件] PDF论文提取题目&摘要+翻译全文(多线程)
[Arxiv小助手](https://www.bilibili.com/video/BV1LM4y1279X) | [插件] 输入arxiv文章url即可一键翻译摘要+下载PDF
Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼写纠错+输出对照PDF
[谷歌学术统合小助手](https://www.bilibili.com/video/BV19L411U7ia) | [插件] 给定任意谷歌学术搜索页面URL,让gpt帮你[写relatedworks](https://www.bilibili.com/video/BV1GP411U7Az/)
互联网信息聚合+GPT | [插件] 一键[让GPT从互联网获取信息](https://www.bilibili.com/video/BV1om4y127ck)回答问题,让信息永不过时
公式/图片/表格显示 | 可以同时显示公式的[tex形式和渲染形式](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png),支持公式、代码高亮
多线程函数插件支持 | 支持多线调用chatgpt,一键处理[海量文本](https://www.bilibili.com/video/BV1FT411H7c5/)或程序
启动暗色[主题](https://github.com/binary-husky/gpt_academic/issues/173) | 在浏览器url后面添加```/?__theme=dark```可以切换dark主题
[多LLM模型](https://www.bilibili.com/video/BV1wT411p7yf)支持 | 同时被GPT3.5、GPT4、[清华ChatGLM2](https://github.com/THUDM/ChatGLM2-6B)、[复旦MOSS](https://github.com/OpenLMLab/MOSS)同时伺候的感觉一定会很不错吧?
⭐ChatGLM2微调模型 | 支持加载ChatGLM2微调模型,提供ChatGLM2微调辅助插件
[多LLM模型](https://www.bilibili.com/video/BV1wT411p7yf)支持 | 同时被GPT3.5、GPT4、[清华ChatGLM2](https://github.com/THUDM/ChatGLM2-6B)、[复旦MOSS](https://github.com/OpenLMLab/MOSS)伺候的感觉一定会很不错吧?
更多LLM模型接入,支持[huggingface部署](https://huggingface.co/spaces/qingxu98/gpt-academic) | 加入Newbing接口(新必应),引入清华[Jittorllms](https://github.com/Jittor/JittorLLMs)支持[LLaMA](https://github.com/facebookresearch/llama)和[盘古α](https://openi.org.cn/pangu/)
⭐[void-terminal](https://github.com/binary-husky/void-terminal) pip包 | 脱离GUI,在Python中直接调用本项目的所有函数插件开发中
⭐虚空终端插件 | [函数插件] 用自然语言,直接调度本项目其他插件
更多新功能展示 (图像生成等) …… | 见本文档结尾处 ……
</div>
- 新界面(修改`config.py`中的LAYOUT选项即可实现“左右布局”和“上下布局”的切换
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230361456-61078362-a966-4eb5-b49e-3c62ef18b860.gif" width="700" >
<img src="https://user-images.githubusercontent.com/96192199/279702205-d81137c3-affd-4cd1-bb5e-b15610389762.gif" width="700" >
</div>
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/70ff1ec5-e589-4561-a29e-b831079b37fb.gif" width="700" >
</div>
- 所有按钮都通过读取functional.py动态生成,可随意加自定义功能,解放贴板
- 所有按钮都通过读取functional.py动态生成,可随意加自定义功能,解放贴板
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231975334-b4788e91-4887-412f-8b43-2b9c5f41d248.gif" width="700" >
</div>
@@ -75,42 +108,64 @@ Latex论文一键校对 | [函数插件] 仿Grammarly对Latex文章进行语法
<img src="https://user-images.githubusercontent.com/96192199/231980294-f374bdcb-3309-4560-b424-38ef39f04ebd.gif" width="700" >
</div>
- 如果输出包含公式,会同时以tex形式和渲染形式显示,方便复制和阅读
- 如果输出包含公式,会以tex形式和渲染形式同时显示,方便复制和阅读
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700" >
</div>
- 懒得看项目代码?整个工程直接给chatgpt炫嘴里
- 懒得看项目代码?直接把整个工程炫ChatGPT嘴里
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700" >
</div>
- 多种大语言模型混合调用ChatGLM + OpenAI-GPT3.5 + [API2D](https://api2d.com/)-GPT4
- 多种大语言模型混合调用ChatGLM + OpenAI-GPT3.5 + GPT4
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700" >
</div>
<br><br>
# Installation
```mermaid
flowchart TD
A{"安装方法"} --> W1("I 🔑直接运行 (Windows, Linux or MacOS)")
W1 --> W11["1 Python pip包管理依赖"]
W1 --> W12["2 Anaconda包管理依赖推荐⭐"]
A --> W2["II 🐳使用Docker (Windows, Linux or MacOS)"]
W2 --> k1["1 部署项目全部能力的大镜像(推荐⭐)"]
W2 --> k2["2 仅在线模型GPT, GLM4等镜像"]
W2 --> k3["3 在线模型 + Latex的大镜像"]
A --> W4["IV 🚀其他部署方法"]
W4 --> C1["1 Windows/MacOS 一键安装运行脚本(推荐⭐)"]
W4 --> C2["2 Huggingface, Sealos远程部署"]
W4 --> C4["3 其他 ..."]
```
### 安装方法I直接运行 (Windows, Linux or MacOS)
1. 下载项目
```sh
git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. 配置API_KEY
2. 配置API_KEY等变量
在`config.py`中,配置API KEY等设置,[点击查看特殊网络环境设置方法](https://github.com/binary-husky/gpt_academic/issues/1)[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/%E9%A1%B9%E7%9B%AE%E9%85%8D%E7%BD%AE%E8%AF%B4%E6%98%8E)。
在`config.py`中,配置API KEY等变量。[特殊网络环境设置方法](https://github.com/binary-husky/gpt_academic/issues/1)[Wiki-项目配置说明](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。
「 程序会优先检查是否存在名为`config_private.py`的私密配置文件,并用其中的配置覆盖`config.py`的同名配置。如您能理解读取逻辑,我们强烈建议您在`config.py`旁边创建一个名为`config_private.py`的新配置文件,并把`config.py`中的配置转移(复制)到`config_private.py`中(仅复制您修改过的配置条目即可)。
「 程序会优先检查是否存在名为`config_private.py`的私密配置文件,并用其中的配置覆盖`config.py`的同名配置。如您能理解以上读取逻辑,我们强烈建议您在`config.py`同路径下创建一个名为`config_private.py`的新配置文件,并使用`config_private.py`配置项目,从而确保自动更新时不会丢失配置
「 支持通过`环境变量`配置项目,环境变量的书写格式参考`docker-compose.yml`文件或者我们的[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/%E9%A1%B9%E7%9B%AE%E9%85%8D%E7%BD%AE%E8%AF%B4%E6%98%8E)。配置读取优先级: `环境变量` > `config_private.py` > `config.py`
「 支持通过`环境变量`配置项目,环境变量的书写格式参考`docker-compose.yml`文件或者我们的[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。配置读取优先级: `环境变量` > `config_private.py` > `config.py` 」
3. 安装依赖
```sh
# 选择I: 如熟悉pythonpython版本3.9以上,越新越好),备注使用官方pip源或者阿里pip源,临时换源方法python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
# 选择I: 如熟悉python, python推荐版本 3.9 ~ 3.11备注使用官方pip源或者阿里pip源, 临时换源方法python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
python -m pip install -r requirements.txt
# 选择II: 使用Anaconda步骤也是类似的 (https://www.bilibili.com/video/BV1rc411W7Dr)
@@ -120,23 +175,38 @@ python -m pip install -r requirements.txt # 这个步骤和pip安装一样的步
```
<details><summary>如果需要支持清华ChatGLM2/复旦MOSS/RWKV作为后端,请点击展开此处</summary>
<details><summary>如果需要支持清华ChatGLM系列/复旦MOSS/RWKV作为后端,请点击展开此处</summary>
<p>
【可选步骤】如果需要支持清华ChatGLM2/复旦MOSS作为后端,需要额外安装更多依赖前提条件熟悉Python + 用过Pytorch + 电脑配置够强):
【可选步骤】如果需要支持清华ChatGLM系列/复旦MOSS作为后端,需要额外安装更多依赖前提条件熟悉Python + 用过Pytorch + 电脑配置够强):
```sh
# 【可选步骤I】支持清华ChatGLM2。清华ChatGLM备注如果遇到"Call ChatGLM fail 不能正常加载ChatGLM的参数" 错误,参考如下: 1以上默认安装的为torch+cpu版,使用cuda需要卸载torch重新安装torch+cuda; 2如因本机配置不够无法加载模型,可以修改request_llm/bridge_chatglm.py中的模型精度, 将 AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) 都修改为 AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llm/requirements_chatglm.txt
# 【可选步骤I】支持清华ChatGLM3。清华ChatGLM备注如果遇到"Call ChatGLM fail 不能正常加载ChatGLM的参数" 错误,参考如下: 1以上默认安装的为torch+cpu版,使用cuda需要卸载torch重新安装torch+cuda; 2如因本机配置不够无法加载模型,可以修改request_llm/bridge_chatglm.py中的模型精度, 将 AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) 都修改为 AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llms/requirements_chatglm.txt
# 【可选步骤II】支持复旦MOSS
python -m pip install -r request_llm/requirements_moss.txt
git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llm/moss # 注意执行此行代码时,必须处于项目根路径
# 【可选步骤II】支持清华ChatGLM4 注意此模型至少需要24G显存
python -m pip install -r request_llms/requirements_chatglm4.txt
# 可使用modelscope下载ChatGLM4模型
# pip install modelscope
# modelscope download --model ZhipuAI/glm-4-9b-chat --local_dir ./THUDM/glm-4-9b-chat
# 【可选步骤III】支持RWKV Runner
# 【可选步骤III】支持复旦MOSS
python -m pip install -r request_llms/requirements_moss.txt
git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss # 注意执行此行代码时,必须处于项目根路径
# 【可选步骤IV】支持RWKV Runner
参考wikihttps://github.com/binary-husky/gpt_academic/wiki/%E9%80%82%E9%85%8DRWKV-Runner
# 【可选步骤IV】确保config.py配置文件的AVAIL_LLM_MODELS包含了期望的模型,目前支持的全部模型如下(jittorllms系列目前仅支持docker方案)
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
# 【可选步骤V】确保config.py配置文件的AVAIL_LLM_MODELS包含了期望的模型,目前支持的全部模型如下(jittorllms系列目前仅支持docker方案)
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
# 【可选步骤VI】支持本地模型INT8,INT4量化这里所指的模型本身不是量化版本,目前deepseek-coder支持,后面测试后会加入更多模型量化选择
pip install bitsandbyte
# windows用户安装bitsandbytes需要使用下面bitsandbytes-windows-webui
python -m pip install bitsandbytes --prefer-binary --extra-index-url=https://jllllll.github.io/bitsandbytes-windows-webui
pip install -U git+https://github.com/huggingface/transformers.git
pip install -U git+https://github.com/huggingface/accelerate.git
pip install peft
```
</p>
@@ -151,74 +221,57 @@ python main.py
### 安装方法II使用Docker
0. 部署项目的全部能力这个是包含cuda和latex的大型镜像。如果您网速慢、硬盘小或没有显卡,则不推荐使用这个,建议使用方案1需要熟悉[Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian)运行时
[![fullcapacity](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
0. 部署项目的全部能力这个是包含cuda和latex的大型镜像。如果您网速慢、硬盘小,则不推荐该方法部署完整项目
[![fullcapacity](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml)
``` sh
# 修改docker-compose.yml,保留方案0并删除其他方案。修改docker-compose.yml中方案0的配置,参考其中注释即可
# 修改docker-compose.yml,保留方案0并删除其他方案。然后运行:
docker-compose up
```
1. 仅ChatGPT+文心一言+spark等在线模型推荐大多数人选择
1. 仅ChatGPT + GLM4 + 文心一言+spark等在线模型推荐大多数人选择
[![basic](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml)
[![basiclatex](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml)
[![basicaudio](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
``` sh
# 修改docker-compose.yml,保留方案1并删除其他方案。修改docker-compose.yml中方案1的配置,参考其中注释即可
# 修改docker-compose.yml,保留方案1并删除其他方案。然后运行:
docker-compose up
```
P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以直接使用方案4或者方案0获取Latex功能。
2. ChatGPT + ChatGLM2 + MOSS + LLAMA2 + 通义千问(需要熟悉[Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian)运行时)
2. ChatGPT + GLM3 + MOSS + LLAMA2 + 通义千问(需要熟悉[Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian)运行时)
[![chatglm](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml)
``` sh
# 修改docker-compose.yml,保留方案2并删除其他方案。修改docker-compose.yml中方案2的配置,参考其中注释即可
docker-compose up
```
3. ChatGPT + LLAMA + 盘古 + RWKV需要熟悉[Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian)运行时)
[![jittorllms](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-jittorllms.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-jittorllms.yml)
``` sh
# 修改docker-compose.yml,保留方案3并删除其他方案。修改docker-compose.yml中方案3的配置,参考其中注释即可
# 修改docker-compose.yml,保留方案2并删除其他方案。然后运行:
docker-compose up
```
### 安装方法III其他部署姿势
1. 一键运行脚本。
完全不熟悉python环境的Windows用户可以下载[Release](https://github.com/binary-husky/gpt_academic/releases)中发布的一键运行脚本安装无本地模型的版本。
脚本的贡献来源是[oobabooga](https://github.com/oobabooga/one-click-installers)。
### 安装方法III其他部署方法
1. **Windows一键运行脚本**
完全不熟悉python环境的Windows用户可以下载[Release](https://github.com/binary-husky/gpt_academic/releases)中发布的一键运行脚本安装无本地模型的版本。脚本贡献来源:[oobabooga](https://github.com/oobabooga/one-click-installers)。
2. 使用docker-compose运行。
请阅读docker-compose.yml后,按照其中的提示操作即可
2. 使用第三方API、Azure等、文心一言、星火等,见[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)
3. 如何使用反代URL
按照`config.py`中的说明配置API_URL_REDIRECT即可。
3. 云服务器远程部署避坑指南。
请访问[云服务器远程部署wiki](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
4. 微软云AzureAPI
按照`config.py`中的说明配置即可AZURE_ENDPOINT等四个配置
5. 远程云服务器部署(需要云服务器知识与经验)。
请访问[部署wiki-1](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
6. 使用Sealos[一键部署](https://github.com/binary-husky/gpt_academic/issues/993)。
7. 使用WSL2Windows Subsystem for Linux 子系统)。
请访问[部署wiki-2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
8. 如何在二级网址(如`http://localhost/subpath`)下运行。
请访问[FastAPI运行说明](docs/WithFastapi.md)
4. 在其他平台部署&二级网址部署
- 使用Sealos[一键部署](https://github.com/binary-husky/gpt_academic/issues/993)。
- 使用WSL2Windows Subsystem for Linux 子系统)。请访问[部署wiki-2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
- 如何在二级网址(如`http://localhost/subpath`)下运行。请访问[FastAPI运行说明](docs/WithFastapi.md)
<br><br>
# Advanced Usage
### I自定义新的便捷按钮学术快捷键
任意文本编辑器打开`core_functional.py`,添加条目如下,然后重启程序即可。(如果按钮已经添加成功并可见,那么前缀、后缀都支持热修改,无需重启程序即可生效。)
例如
```
现在已可以通过UI中的`界面外观`菜单中的`自定义菜单`添加新的便捷按钮。如果需要在代码中定义,请使用任意文本编辑器打开`core_functional.py`,添加如下条目即可:
```python
"超级英译中": {
# 前缀,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等
"Prefix": "请翻译把下面一段内容成中文,然后用一个markdown表格逐一解释文中出现的专有名词\n\n",
@@ -227,19 +280,20 @@ docker-compose up
"Suffix": "",
},
```
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226899272-477c2134-ed71-4326-810c-29891fe4a508.png" width="500" >
</div>
### II自定义函数插件
编写强大的函数插件来执行任何你想得到的和想不到的任务。
本项目的插件编写、调试难度很低,只要您具备一定的python基础知识,就可以仿照我们提供的模板实现自己的插件功能。
详情请参考[函数插件指南](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)。
<br><br>
# Latest Update
### I新功能动态
# Updates
### I动态
1. 对话保存功能。在函数插件区调用 `保存当前的对话` 即可将当前对话保存为可读+可复原的html文件,
另外在函数插件区(下拉菜单)调用 `载入对话历史存档` ,即可还原之前的会话。
@@ -280,28 +334,23 @@ Tip不指定文件直接点击 `载入对话历史存档` 可以查看历史h
<img src="https://user-images.githubusercontent.com/96192199/236432361-67739153-73e8-43fe-8111-b61296edabd9.png" width="500" >
</div>
7. 新增MOSS大语言模型支持
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236639178-92836f37-13af-4fdd-984d-b4450fe30336.png" width="500" >
</div>
8. OpenAI图像生成
7. OpenAI图像生成
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/bc7ab234-ad90-48a0-8d62-f703d9e74665" width="500" >
</div>
9. OpenAI音频解析与总结
8. 基于mermaid的流图、脑图绘制
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/709ccf95-3aee-498a-934a-e1c22d3d5d5b" width="500" >
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/c518b82f-bd53-46e2-baf5-ad1b081c1da4" width="500" >
</div>
10. Latex全文校对纠错
9. Latex全文校对纠错
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/651ccd98-02c9-4464-91e1-77a6b7d1b033" height="200" > ===>
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/476f66d9-7716-4537-b5c1-735372c25adb" height="200">
</div>
11. 语言、主题切换
10. 语言、主题切换
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/b6799499-b6fb-4f0c-9c8e-1b441872f4e8" width="500" >
</div>
@@ -309,7 +358,13 @@ Tip不指定文件直接点击 `载入对话历史存档` 可以查看历史h
### II版本:
- version 3.60todo: 优化虚空终端,引入code interpreter和更多插件
- version 3.80(TODO): 优化AutoGen插件主题并设计一系列衍生插件
- version 3.70: 引入Mermaid绘图,实现GPT画脑图等功能
- version 3.60: 引入AutoGen作为新一代插件的基石
- version 3.57: 支持GLM3,星火v3,文心一言v4,修复本地模型的并发BUG
- version 3.56: 支持动态追加基础功能按钮,新汇报PDF汇总页面
- version 3.55: 重构前端界面,引入悬浮窗口与菜单栏
- version 3.54: 新增动态代码解释器Code Interpreter待完善
- version 3.53: 支持动态选择不同界面主题,提高稳定性&解决多用户冲突问题
- version 3.50: 使用自然语言调用本项目的所有函数插件虚空终端,支持插件分类,改进UI,设计新主题
- version 3.49: 支持百度千帆平台和文心一言
@@ -324,25 +379,58 @@ Tip不指定文件直接点击 `载入对话历史存档` 可以查看历史h
- version 3.0: 对chatglm和其他小型llm的支持
- version 2.6: 重构了插件结构,提高了交互性,加入更多插件
- version 2.5: 自更新,解决总结大工程源代码时文本过长、token溢出的问题
- version 2.4: (1)新增PDF全文翻译功能; (2)新增输入区切换位置的功能; (3)新增垂直布局选项; (4)多线程函数插件优化。
- version 2.4: 新增PDF全文翻译功能; 新增输入区切换位置的功能
- version 2.3: 增强多线程交互性
- version 2.2: 函数插件支持热重载
- version 2.1: 可折叠式布局
- version 2.0: 引入模块化函数插件
- version 1.0: 基础功能
gpt_academic开发者QQ群-2610599535
GPT Academic开发者QQ群`610599535`
- 已知问题
- 某些浏览器翻译插件干扰此软件前端的运行
- 官方Gradio目前有很多兼容性Bug,请务必使用`requirement.txt`安装Gradio
- 官方Gradio目前有很多兼容性问题,请**务必使用`requirement.txt`安装Gradio**
```mermaid
timeline LR
title GPT-Academic项目发展历程
section 2.x
1.0~2.2: 基础功能: 引入模块化函数插件: 可折叠式布局: 函数插件支持热重载
2.3~2.5: 增强多线程交互性: 新增PDF全文翻译功能: 新增输入区切换位置的功能: 自更新
2.6: 重构了插件结构: 提高了交互性: 加入更多插件
section 3.x
3.0~3.1: 对chatglm支持: 对其他小型llm支持: 支持同时问询多个gpt模型: 支持多个apikey负载均衡
3.2~3.3: 函数插件支持更多参数接口: 保存对话功能: 解读任意语言代码: 同时询问任意的LLM组合: 互联网信息综合功能
3.4: 加入arxiv论文翻译: 加入latex论文批改功能
3.44: 正式支持Azure: 优化界面易用性
3.46: 自定义ChatGLM2微调模型: 实时语音对话
3.49: 支持阿里达摩院通义千问: 上海AI-Lab书生: 讯飞星火: 支持百度千帆平台 & 文心一言
3.50: 虚空终端: 支持插件分类: 改进UI: 设计新主题
3.53: 动态选择不同界面主题: 提高稳定性: 解决多用户冲突问题
3.55: 动态代码解释器: 重构前端界面: 引入悬浮窗口与菜单栏
3.56: 动态追加基础功能按钮: 新汇报PDF汇总页面
3.57: GLM3, 星火v3: 支持文心一言v4: 修复本地模型的并发BUG
3.60: 引入AutoGen
3.70: 引入Mermaid绘图: 实现GPT画脑图等功能
3.80(TODO): 优化AutoGen插件主题: 设计衍生插件
```
### III主题
可以通过修改`THEME`选项config.py变更主题
1. `Chuanhu-Small-and-Beautiful` [网址](https://github.com/GaiZhenbiao/ChuanhuChatGPT/)
### IV参考与学习
### IV本项目的开发分支
1. `master` 分支: 主分支,稳定版
2. `frontier` 分支: 开发分支,测试版
3. 如何[接入其他大模型](request_llms/README.md)
4. 访问GPT-Academic的[在线服务并支持我们](https://github.com/binary-husky/gpt_academic/wiki/online)
### V参考与学习
```
代码中参考了很多其他优秀项目中的设计,顺序不分先后:

查看文件

@@ -1,38 +1,77 @@
from loguru import logger
def check_proxy(proxies):
def check_proxy(proxies, return_ip=False):
"""
检查代理配置并返回结果。
Args:
proxies (dict): 包含http和https代理配置的字典。
return_ip (bool, optional): 是否返回代理的IP地址。默认为False。
Returns:
str or None: 检查的结果信息或代理的IP地址如果`return_ip`为True
"""
import requests
proxies_https = proxies['https'] if proxies is not None else ''
ip = None
try:
response = requests.get("https://ipapi.co/json/", proxies=proxies, timeout=4)
response = requests.get("https://ipapi.co/json/", proxies=proxies, timeout=4) # ⭐ 执行GET请求以获取代理信息
data = response.json()
# print(f'查询代理的地理位置,返回的结果是{data}')
if 'country_name' in data:
country = data['country_name']
result = f"代理配置 {proxies_https}, 代理所在地:{country}"
if 'ip' in data:
ip = data['ip']
elif 'error' in data:
alternative = _check_with_backup_source(proxies)
alternative, ip = _check_with_backup_source(proxies) # ⭐ 调用备用方法检查代理配置
if alternative is None:
result = f"代理配置 {proxies_https}, 代理所在地未知,IP查询频率受限"
else:
result = f"代理配置 {proxies_https}, 代理所在地:{alternative}"
else:
result = f"代理配置 {proxies_https}, 代理数据解析失败:{data}"
print(result)
if not return_ip:
logger.warning(result)
return result
else:
return ip
except:
result = f"代理配置 {proxies_https}, 代理所在地查询超时,代理可能无效"
print(result)
if not return_ip:
logger.warning(result)
return result
else:
return ip
def _check_with_backup_source(proxies):
"""
通过备份源检查代理,并获取相应信息。
Args:
proxies (dict): 包含代理信息的字典。
Returns:
tuple: 代理信息(geo)和IP地址(ip)的元组。
"""
import random, string, requests
random_string = ''.join(random.choices(string.ascii_letters + string.digits, k=32))
try: return requests.get(f"http://{random_string}.edns.ip-api.com/json", proxies=proxies, timeout=4).json()['dns']['geo']
except: return None
try:
res_json = requests.get(f"http://{random_string}.edns.ip-api.com/json", proxies=proxies, timeout=4).json() # ⭐ 执行代理检查和备份源请求
return res_json['dns']['geo'], res_json['dns']['ip']
except:
return None, None
def backup_and_download(current_version, remote_version):
"""
一键更新协议:备份和下载
一键更新协议:备份当前版本,下载远程版本并解压缩。
Args:
current_version (str): 当前版本号。
remote_version (str): 远程版本号。
Returns:
str: 新版本目录的路径。
"""
from toolbox import get_conf
import shutil
@@ -46,10 +85,10 @@ def backup_and_download(current_version, remote_version):
return new_version_dir
os.makedirs(new_version_dir)
shutil.copytree('./', backup_dir, ignore=lambda x, y: ['history'])
proxies, = get_conf('proxies')
r = requests.get(
'https://github.com/binary-husky/chatgpt_academic/archive/refs/heads/master.zip', proxies=proxies, stream=True)
zip_file_path = backup_dir+'/master.zip'
proxies = get_conf('proxies')
try: r = requests.get('https://github.com/binary-husky/chatgpt_academic/archive/refs/heads/master.zip', proxies=proxies, stream=True)
except: r = requests.get('https://public.agent-matrix.com/publish/master.zip', proxies=proxies, stream=True)
zip_file_path = backup_dir+'/master.zip' # ⭐ 保存备份文件的路径
with open(zip_file_path, 'wb+') as f:
f.write(r.content)
dst_path = new_version_dir
@@ -65,6 +104,17 @@ def backup_and_download(current_version, remote_version):
def patch_and_restart(path):
"""
一键更新协议:覆盖和重启
Args:
path (str): 新版本代码所在的路径
注意事项:
如果您的程序没有使用config_private.py私密配置文件,则会将config.py重命名为config_private.py以避免配置丢失。
更新流程:
- 复制最新版本代码到当前目录
- 更新pip包依赖
- 如果更新失败,则提示手动安装依赖库并重启
"""
from distutils import dir_util
import shutil
@@ -72,33 +122,44 @@ def patch_and_restart(path):
import sys
import time
import glob
from colorful import print亮黄, print亮绿, print亮红
# if not using config_private, move origin config.py as config_private.py
from shared_utils.colorful import log亮黄, log亮绿, log亮红
if not os.path.exists('config_private.py'):
print亮黄('由于您没有设置config_private.py私密配置,现将您的现有配置移动至config_private.py以防止配置丢失,',
log亮黄('由于您没有设置config_private.py私密配置,现将您的现有配置移动至config_private.py以防止配置丢失,',
'另外您可以随时在history子文件夹下找回旧版的程序。')
shutil.copyfile('config.py', 'config_private.py')
path_new_version = glob.glob(path + '/*-master')[0]
dir_util.copy_tree(path_new_version, './')
print亮绿('代码已经更新,即将更新pip包依赖……')
for i in reversed(range(5)): time.sleep(1); print(i)
dir_util.copy_tree(path_new_version, './') # ⭐ 将最新版本代码复制到当前目录
log亮绿('代码已经更新,即将更新pip包依赖……')
for i in reversed(range(5)): time.sleep(1); log亮绿(i)
try:
import subprocess
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-r', 'requirements.txt'])
except:
print亮红('pip包依赖安装出现问题,需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
print亮绿('更新完成,您可以随时在history子文件夹下找回旧版的程序,5s之后重启')
print亮红('假如重启失败,您可能需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
print(' ------------------------------ -----------------------------------')
for i in reversed(range(8)): time.sleep(1); print(i)
os.execl(sys.executable, sys.executable, *sys.argv)
log亮红('pip包依赖安装出现问题,需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
log亮绿('更新完成,您可以随时在history子文件夹下找回旧版的程序,5s之后重启')
log亮红('假如重启失败,您可能需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
log亮绿(' ------------------------------ -----------------------------------')
for i in reversed(range(8)): time.sleep(1); log亮绿(i)
os.execl(sys.executable, sys.executable, *sys.argv) # 重启程序
def get_current_version():
"""
获取当前的版本号。
Returns:
str: 当前的版本号。如果无法获取版本号,则返回空字符串。
"""
import json
try:
with open('./version', 'r', encoding='utf8') as f:
current_version = json.loads(f.read())['version']
current_version = json.loads(f.read())['version'] # ⭐ 从读取的json数据中提取版本号
except:
current_version = ""
return current_version
@@ -107,15 +168,20 @@ def get_current_version():
def auto_update(raise_error=False):
"""
一键更新协议:查询版本和用户意见
Args:
raise_error (bool, optional): 是否在出错时抛出错误。默认为 False。
Returns:
None
"""
try:
from toolbox import get_conf
import requests
import time
import json
proxies, = get_conf('proxies')
response = requests.get(
"https://raw.githubusercontent.com/binary-husky/chatgpt_academic/master/version", proxies=proxies, timeout=5)
proxies = get_conf('proxies')
try: response = requests.get("https://raw.githubusercontent.com/binary-husky/chatgpt_academic/master/version", proxies=proxies, timeout=5)
except: response = requests.get("https://public.agent-matrix.com/publish/version", proxies=proxies, timeout=5)
remote_json_data = json.loads(response.text)
remote_version = remote_json_data['version']
if remote_json_data["show_feature"]:
@@ -126,23 +192,22 @@ def auto_update(raise_error=False):
current_version = f.read()
current_version = json.loads(current_version)['version']
if (remote_version - current_version) >= 0.01-1e-5:
from colorful import print亮黄
print亮黄(
f'\n新版本可用。新版本:{remote_version},当前版本:{current_version}{new_feature}')
print('1Github更新地址:\nhttps://github.com/binary-husky/chatgpt_academic\n')
from shared_utils.colorful import log亮黄
log亮黄(f'\n新版本可用。新版本:{remote_version},当前版本:{current_version}{new_feature}') # ⭐ 在控制台打印新版本信息
logger.info('1Github更新地址:\nhttps://github.com/binary-husky/chatgpt_academic\n')
user_instruction = input('2是否一键更新代码Y+回车=确认,输入其他/无输入+回车=不更新)?')
if user_instruction in ['Y', 'y']:
path = backup_and_download(current_version, remote_version)
path = backup_and_download(current_version, remote_version) # ⭐ 备份并下载文件
try:
patch_and_restart(path)
patch_and_restart(path) # ⭐ 执行覆盖并重启操作
except:
msg = '更新失败。'
if raise_error:
from toolbox import trimmed_format_exc
msg += trimmed_format_exc()
print(msg)
logger.warning(msg)
else:
print('自动更新程序:已禁用')
logger.info('自动更新程序:已禁用')
return
else:
return
@@ -151,21 +216,42 @@ def auto_update(raise_error=False):
if raise_error:
from toolbox import trimmed_format_exc
msg += trimmed_format_exc()
print(msg)
logger.info(msg)
def warm_up_modules():
print('正在执行一些模块的预热...')
"""
预热模块,加载特定模块并执行预热操作。
"""
logger.info('正在执行一些模块的预热 ...')
from toolbox import ProxyNetworkActivate
from request_llm.bridge_all import model_info
from request_llms.bridge_all import model_info
with ProxyNetworkActivate("Warmup_Modules"):
enc = model_info["gpt-3.5-turbo"]['tokenizer']
enc.encode("模块预热", disallowed_special=())
enc = model_info["gpt-4"]['tokenizer']
enc.encode("模块预热", disallowed_special=())
def warm_up_vectordb():
"""
执行一些模块的预热操作。
本函数主要用于执行一些模块的预热操作,确保在后续的流程中能够顺利运行。
⭐ 关键作用:预热模块
Returns:
None
"""
logger.info('正在执行一些模块的预热 ...')
from toolbox import ProxyNetworkActivate
with ProxyNetworkActivate("Warmup_Modules"):
import nltk
with ProxyNetworkActivate("Warmup_Modules"): nltk.download("punkt")
if __name__ == '__main__':
import os
os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
from toolbox import get_conf
proxies, = get_conf('proxies')
proxies = get_conf('proxies')
check_proxy(proxies)

272
config.py
查看文件

@@ -7,21 +7,26 @@
Configuration reading priority: environment variable > config_private.py > config.py
"""
# [step 1]>> API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下,还需要填写组织格式如org-123456789abcdefghijklmno的,请向下翻,找 API_ORG 设置项
API_KEY = "此处填API密钥" # 可同时填写多个API-KEY,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey3,azure-apikey4"
# [step 1-1]>> ( 接入GPT等模型 ) API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下,还需要填写组织格式如org-123456789abcdefghijklmno的,请向下翻,找 API_ORG 设置项
API_KEY = "此处填APIKEY" # 可同时填写多个API-KEY,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey3,azure-apikey4"
# [step 1-2]>> ( 接入通义 qwen-max ) 接入通义千问在线大模型,api-key获取地址 https://dashscope.console.aliyun.com/
DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY
# [step 2]>> 改为True应用代理,如果直接在海外服务器部署,此处不修改;如果使用本地或无地域限制的大模型时,此处也不需要修改
# [step 1-3]>> ( 接入 deepseek-reasoner, 即 deepseek-r1 ) 深度求索(DeepSeek) API KEY,默认请求地址为"https://api.deepseek.com/v1/chat/completions"
DEEPSEEK_API_KEY = ""
# [step 2]>> 改为True应用代理。如果使用本地或无地域限制的大模型时,此处不修改;如果直接在海外服务器部署,此处不修改
USE_PROXY = False
if USE_PROXY:
"""
代理网络的地址,打开你的代理软件查看代理协议(socks5h / http)、地址(localhost)和端口(11284)
填写格式是 [协议]:// [地址] :[端口],填写之前不要忘记把USE_PROXY改成True,如果直接在海外服务器部署,此处不修改
<配置教程&视频教程> https://github.com/binary-husky/gpt_academic/issues/1>
[协议] 常见协议无非socks5h/http; 例如 v2**y 和 ss* 的默认本地协议是socks5h; 而cl**h 的默认本地协议是http
[地址] 懂的都懂,不懂就填localhost或者127.0.0.1肯定错不了localhost意思是代理软件安装在本机上
[地址] 填localhost或者127.0.0.1localhost意思是代理软件安装在本机上
[端口] 在代理软件的设置里找。虽然不同的代理软件界面不一样,但端口号都应该在最显眼的位置上
"""
# 代理网络的地址,打开你的*学*网软件查看代理的协议(socks5h / http)、地址(localhost)和端口(11284)
proxies = {
# [协议]:// [地址] :[端口]
"http": "socks5h://localhost:11284", # 再例如 "http": "http://127.0.0.1:7890",
@@ -30,11 +35,47 @@ if USE_PROXY:
else:
proxies = None
# ------------------------------------ 以下配置可以优化体验, 但大部分场合下并不需要修改 ------------------------------------
# [step 3]>> 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
LLM_MODEL = "gpt-3.5-turbo-16k" # 可选 ↓↓↓
AVAIL_LLM_MODELS = ["qwen-max", "o1-mini", "o1-mini-2024-09-12", "o1", "o1-2024-12-17", "o1-preview", "o1-preview-2024-09-12",
"gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
"gpt-4o", "gpt-4o-mini", "gpt-4-turbo", "gpt-4-turbo-2024-04-09",
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-4v", "glm-3-turbo",
"gemini-1.5-pro", "chatglm3", "chatglm4",
"deepseek-chat", "deepseek-coder", "deepseek-reasoner"
]
EMBEDDING_MODEL = "text-embedding-3-small"
# --- --- --- ---
# P.S. 其他可用的模型还包括
# AVAIL_LLM_MODELS = [
# "glm-4-0520", "glm-4-air", "glm-4-airx", "glm-4-flash",
# "qianfan", "deepseekcoder",
# "spark", "sparkv2", "sparkv3", "sparkv3.5", "sparkv4",
# "qwen-turbo", "qwen-plus", "qwen-local",
# "moonshot-v1-128k", "moonshot-v1-32k", "moonshot-v1-8k",
# "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125", "gpt-4o-2024-05-13"
# "claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
# "moss", "llama2", "chatglm_onnx", "internlm", "jittorllms_pangualpha", "jittorllms_llama",
# "deepseek-chat" ,"deepseek-coder",
# "gemini-1.5-flash",
# "yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview",
# "grok-beta",
# ]
# --- --- --- ---
# 此外,您还可以在接入one-api/vllm/ollama/Openroute时,
# 使用"one-api-*","vllm-*","ollama-*","openrouter-*"前缀直接使用非标准方式接入的模型,例如
# AVAIL_LLM_MODELS = ["one-api-claude-3-sonnet-20240229(max_token=100000)", "ollama-phi3(max_token=4096)","openrouter-openai/gpt-4o-mini","openrouter-openai/chatgpt-4o-latest"]
# --- --- --- ---
# --------------- 以下配置可以优化体验 ---------------
# 重新URL重新定向,实现更换API_URL的作用高危设置! 常规情况下不要修改! 通过修改此设置,您将把您的API-KEY和对话隐私完全暴露给您设定的中间人
# 格式: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
# 举例: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "https://reverse-proxy-url/v1/chat/completions"}
# 举例: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "https://reverse-proxy-url/v1/chat/completions", "http://localhost:11434/api/chat": "在这里填写您ollama的URL"}
API_URL_REDIRECT = {}
@@ -48,6 +89,35 @@ DEFAULT_WORKER_NUM = 3
THEME = "Default"
AVAIL_THEMES = ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast", "Gstaff/Xkcd", "NoCrypt/Miku"]
FONT = "Theme-Default-Font"
AVAIL_FONTS = [
"默认值(Theme-Default-Font)",
"宋体(SimSun)",
"黑体(SimHei)",
"楷体(KaiTi)",
"仿宋(FangSong)",
"华文细黑(STHeiti Light)",
"华文楷体(STKaiti)",
"华文仿宋(STFangsong)",
"华文宋体(STSong)",
"华文中宋(STZhongsong)",
"华文新魏(STXinwei)",
"华文隶书(STLiti)",
"思源宋体(Source Han Serif CN VF@https://chinese-fonts-cdn.deno.dev/packages/syst/dist/SourceHanSerifCN/result.css)",
"月星楷(Moon Stars Kai HW@https://chinese-fonts-cdn.deno.dev/packages/moon-stars-kai/dist/MoonStarsKaiHW-Regular/result.css)",
"珠圆体(MaokenZhuyuanTi@https://chinese-fonts-cdn.deno.dev/packages/mkzyt/dist/猫啃珠圆体/result.css)",
"平方萌萌哒(PING FANG MENG MNEG DA@https://chinese-fonts-cdn.deno.dev/packages/pfmmd/dist/平方萌萌哒/result.css)",
"Helvetica",
"ui-sans-serif",
"sans-serif",
"system-ui"
]
# 默认的系统提示词system prompt
INIT_SYS_PROMPT = "Serve me as a writing and programming assistant."
# 对话窗的高度 仅在LAYOUT="TOP-DOWN"时生效)
CHATBOT_HEIGHT = 1115
@@ -58,7 +128,10 @@ CODE_HIGHLIGHT = True
# 窗口布局
LAYOUT = "LEFT-RIGHT" # "LEFT-RIGHT"(左右布局) # "TOP-DOWN"(上下布局)
DARK_MODE = True # 暗色模式 / 亮色模式
# 暗色模式 / 亮色模式
DARK_MODE = True
# 发送请求到OpenAI后,等待多久判定为超时
@@ -69,6 +142,10 @@ TIMEOUT_SECONDS = 30
WEB_PORT = -1
# 是否自动打开浏览器页面
AUTO_OPEN_BROWSER = True
# 如果OpenAI不响应网络卡顿、代理失败、KEY失效,重试的次数限制
MAX_RETRY = 2
@@ -77,20 +154,25 @@ MAX_RETRY = 2
DEFAULT_FN_GROUPS = ['对话', '编程', '学术', '智能体']
# 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
LLM_MODEL = "gpt-3.5-turbo" # 可选 ↓↓↓
AVAIL_LLM_MODELS = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5", "api2d-gpt-3.5-turbo",
"gpt-4", "gpt-4-32k", "azure-gpt-4", "api2d-gpt-4", "chatglm", "moss", "newbing", "stack-claude"]
# P.S. 其他可用的模型还包括 ["qianfan", "llama2", "qwen", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613",
# "spark", "sparkv2", "chatglm_onnx", "claude-1-100k", "claude-2", "internlm", "jittorllms_pangualpha", "jittorllms_llama"]
# 定义界面上“询问多个GPT模型”插件应该使用哪些模型,请从AVAIL_LLM_MODELS中选择,并在不同模型之间用`&`间隔,例如"gpt-3.5-turbo&chatglm3&azure-gpt-4"
MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
# 选择本地模型变体只有当AVAIL_LLM_MODELS包含了对应本地模型时,才会起作用
# 如果你选择Qwen系列的模型,那么请在下面的QWEN_MODEL_SELECTION中指定具体的模型
# 也可以是具体的模型路径
QWEN_LOCAL_MODEL_SELECTION = "Qwen/Qwen-1_8B-Chat-Int8"
# 百度千帆LLM_MODEL="qianfan"
BAIDU_CLOUD_API_KEY = ''
BAIDU_CLOUD_SECRET_KEY = ''
BAIDU_CLOUD_QIANFAN_MODEL = 'ERNIE-Bot' # 可选 "ERNIE-Bot"(文心一言), "ERNIE-Bot-turbo", "BLOOMZ-7B", "Llama-2-70B-Chat", "Llama-2-13B-Chat", "Llama-2-7B-Chat"
BAIDU_CLOUD_QIANFAN_MODEL = 'ERNIE-Bot' # 可选 "ERNIE-Bot-4"(文心大模型4.0), "ERNIE-Bot"(文心一言), "ERNIE-Bot-turbo", "BLOOMZ-7B", "Llama-2-70B-Chat", "Llama-2-13B-Chat", "Llama-2-7B-Chat", "ERNIE-Speed-128K", "ERNIE-Speed-8K", "ERNIE-Lite-8K"
# 如果使用ChatGLM3或ChatGLM4本地模型,请把 LLM_MODEL="chatglm3" 或LLM_MODEL="chatglm4",并在此处指定模型路径
CHATGLM_LOCAL_MODEL_PATH = "THUDM/glm-4-9b-chat" # 例如"/home/hmp/ChatGLM3-6B/"
# 如果使用ChatGLM2微调模型,请把 LLM_MODEL="chatglmft",并在此处指定模型路径
CHATGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b-pt-128-1e-2/checkpoint-100"
@@ -117,33 +199,37 @@ ADD_WAIFU = False
AUTHENTICATION = []
# 如果需要在二级路径下运行(常规情况下,不要修改!!需要配合修改main.py才能生效!
# 如果需要在二级路径下运行(常规情况下,不要修改!!
# (举例 CUSTOM_PATH = "/gpt_academic",可以让软件运行在 http://ip:port/gpt_academic/ 下。)
CUSTOM_PATH = "/"
# HTTPS 秘钥和证书(不需要修改)
SSL_KEYFILE = ""
SSL_CERTFILE = ""
# 极少数情况下,openai的官方KEY需要伴随组织编码格式如org-xxxxxxxxxxxxxxxxxxxxxxxx使用
API_ORG = ""
# 如果需要使用Slack Claude,使用教程详情见 request_llm/README.md
# 如果需要使用Slack Claude,使用教程详情见 request_llms/README.md
SLACK_CLAUDE_BOT_ID = ''
SLACK_CLAUDE_USER_TOKEN = ''
# 如果需要使用AZURE 详情请见额外文档 docs\use_azure.md
# 如果需要使用AZURE方法一单个azure模型部署详情请见额外文档 docs\use_azure.md
AZURE_ENDPOINT = "https://你亲手写的api名称.openai.azure.com/"
AZURE_API_KEY = "填入azure openai api的密钥" # 建议直接在API_KEY处填写,该选项即将被弃用
AZURE_ENGINE = "填入你亲手写的部署名" # 读 docs\use_azure.md
# 使用Newbing
NEWBING_STYLE = "creative" # ["creative", "balanced", "precise"]
NEWBING_COOKIES = """
put your new bing cookies here
"""
# 如果需要使用AZURE方法二多个azure模型部署+动态切换)详情请见额外文档 docs\use_azure.md
AZURE_CFG_ARRAY = {}
# 阿里云实时语音识别 配置难度较高 仅建议高手用户使用 参考 https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md
# 阿里云实时语音识别 配置难度较高
# 参考 https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md
ENABLE_AUDIO = False
ALIYUN_TOKEN="" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
ALIYUN_APPKEY="" # 例如 RoPlZrM88DnAFkZK
@@ -151,20 +237,58 @@ ALIYUN_ACCESSKEY="" # (无需填写)
ALIYUN_SECRET="" # (无需填写)
# GPT-SOVITS 文本转语音服务的运行地址(将语言模型的生成文本朗读出来)
TTS_TYPE = "EDGE_TTS" # EDGE_TTS / LOCAL_SOVITS_API / DISABLE
GPT_SOVITS_URL = ""
EDGE_TTS_VOICE = "zh-CN-XiaoxiaoNeural"
# 接入讯飞星火大模型 https://console.xfyun.cn/services/iat
XFYUN_APPID = "00000000"
XFYUN_API_SECRET = "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
XFYUN_API_KEY = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
# 接入智谱大模型
ZHIPUAI_API_KEY = ""
ZHIPUAI_MODEL = "" # 此选项已废弃,不再需要填写
# Claude API KEY
ANTHROPIC_API_KEY = ""
# 月之暗面 API KEY
MOONSHOT_API_KEY = ""
# 零一万物(Yi Model) API KEY
YIMODEL_API_KEY = ""
# 紫东太初大模型 https://ai-maas.wair.ac.cn
TAICHU_API_KEY = ""
# Grok API KEY
GROK_API_KEY = ""
# Mathpix 拥有执行PDF的OCR功能,但是需要注册账号
MATHPIX_APPID = ""
MATHPIX_APPKEY = ""
# DOC2X的PDF解析服务,注册账号并获取API KEY: https://doc2x.noedgeai.com/login
DOC2X_API_KEY = ""
# 自定义API KEY格式
CUSTOM_API_KEY_PATTERN = ""
# Google Gemini API-Key
GEMINI_API_KEY = ''
# HUGGINGFACE的TOKEN,下载LLAMA时起作用 https://huggingface.co/docs/hub/security-tokens
HUGGINGFACE_ACCESS_TOKEN = "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"
@@ -173,21 +297,56 @@ HUGGINGFACE_ACCESS_TOKEN = "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"
# 获取方法复制以下空间https://huggingface.co/spaces/qingxu98/grobid,设为public,然后GROBID_URL = "https://(你的hf用户名如qingxu98)-(你的填写的空间名如grobid).hf.space"
GROBID_URLS = [
"https://qingxu98-grobid.hf.space","https://qingxu98-grobid2.hf.space","https://qingxu98-grobid3.hf.space",
"https://shaocongma-grobid.hf.space","https://FBR123-grobid.hf.space", "https://yeku-grobid.hf.space",
"https://qingxu98-grobid4.hf.space","https://qingxu98-grobid5.hf.space", "https://qingxu98-grobid6.hf.space",
"https://qingxu98-grobid7.hf.space", "https://qingxu98-grobid8.hf.space",
]
# Searxng互联网检索服务这是一个huggingface空间,请前往huggingface复制该空间,然后把自己新的空间地址填在这里
SEARXNG_URLS = [ f"https://kaletianlre-beardvs{i}dd.hf.space/" for i in range(1,5) ]
# 是否允许通过自然语言描述修改本页的配置,该功能具有一定的危险性,默认关闭
ALLOW_RESET_CONFIG = False
# 临时的上传文件夹位置,请勿修改
# 在使用AutoGen插件时,是否使用Docker容器运行代码
AUTOGEN_USE_DOCKER = False
# 临时的上传文件夹位置,请尽量不要修改
PATH_PRIVATE_UPLOAD = "private_upload"
# 日志文件夹的位置,请勿修改
# 日志文件夹的位置,请尽量不要修改
PATH_LOGGING = "gpt_log"
# 除了连接OpenAI之外,还有哪些场合允许使用代理,请勿修改
WHEN_TO_USE_PROXY = ["Download_LLM", "Download_Gradio_Theme", "Connect_Grobid", "Warmup_Modules"]
# 存储翻译好的arxiv论文的路径,请尽量不要修改
ARXIV_CACHE_DIR = "gpt_log/arxiv_cache"
# 除了连接OpenAI之外,还有哪些场合允许使用代理,请尽量不要修改
WHEN_TO_USE_PROXY = ["Connect_OpenAI", "Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
"Warmup_Modules", "Nougat_Download", "AutoGen", "Connect_OpenAI_Embedding"]
# 启用插件热加载
PLUGIN_HOT_RELOAD = False
# 自定义按钮的最大数量限制
NUM_CUSTOM_BASIC_BTN = 4
# 媒体智能体的服务地址这是一个huggingface空间,请前往huggingface复制该空间,然后把自己新的空间地址填在这里
DAAS_SERVER_URLS = [ f"https://niuziniu-biligpt{i}.hf.space/stream" for i in range(1,5) ]
"""
--------------- 配置关联关系说明 ---------------
在线大模型配置关联关系示意图
├── "gpt-3.5-turbo" 等openai模型
@@ -196,19 +355,22 @@ WHEN_TO_USE_PROXY = ["Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
│ ├── API_ORG不常用
│ └── API_URL_REDIRECT不常用
├── "azure-gpt-3.5" 等azure模型
├── "azure-gpt-3.5" 等azure模型单个azure模型,不需要动态切换
│ ├── API_KEY
│ ├── AZURE_ENDPOINT
│ ├── AZURE_API_KEY
│ ├── AZURE_ENGINE
│ └── API_URL_REDIRECT
├── "azure-gpt-3.5" 等azure模型多个azure模型,需要动态切换,高优先级
│ └── AZURE_CFG_ARRAY
├── "spark" 星火认知大模型 spark & sparkv2
│ ├── XFYUN_APPID
│ ├── XFYUN_API_SECRET
│ └── XFYUN_API_KEY
├── "claude-1-100k" 等claude模型
├── "claude-3-opus-20240229" 等claude模型
│ └── ANTHROPIC_API_KEY
├── "stack-claude"
@@ -220,9 +382,39 @@ WHEN_TO_USE_PROXY = ["Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
│ ├── BAIDU_CLOUD_API_KEY
│ └── BAIDU_CLOUD_SECRET_KEY
├── "newbing" Newbing接口不再稳定,不推荐使用
── NEWBING_STYLE
└── NEWBING_COOKIES
├── "glm-4", "glm-3-turbo", "zhipuai" 智谱AI大模型
── ZHIPUAI_API_KEY
├── "yi-34b-chat-0205", "yi-34b-chat-200k" 等零一万物(Yi Model)大模型
│ └── YIMODEL_API_KEY
├── "qwen-turbo" 等通义千问大模型
│ └── DASHSCOPE_API_KEY
├── "Gemini"
│ └── GEMINI_API_KEY
└── "one-api-...(max_token=...)" 用一种更方便的方式接入one-api多模型管理界面
├── AVAIL_LLM_MODELS
├── API_KEY
└── API_URL_REDIRECT
本地大模型示意图
├── "chatglm4"
├── "chatglm3"
├── "chatglm"
├── "chatglm_onnx"
├── "chatglmft"
├── "internlm"
├── "moss"
├── "jittorllms_pangualpha"
├── "jittorllms_llama"
├── "deepseekcoder"
├── "qwen-local"
├── RWKV的支持见Wiki
└── "llama2"
用户图形界面布局依赖关系示意图
@@ -235,11 +427,14 @@ WHEN_TO_USE_PROXY = ["Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
├── THEME 色彩主题
├── AUTO_CLEAR_TXT 是否在提交时自动清空输入框
├── ADD_WAIFU 加一个live2d装饰
── ALLOW_RESET_CONFIG 是否允许通过自然语言描述修改本页的配置,该功能具有一定的危险性
── ALLOW_RESET_CONFIG 是否允许通过自然语言描述修改本页的配置,该功能具有一定的危险性
插件在线服务配置依赖关系示意图
├── 互联网检索
│ └── SEARXNG_URLS
├── 语音功能
│ ├── ENABLE_AUDIO
│ ├── ALIYUN_TOKEN
@@ -247,7 +442,10 @@ WHEN_TO_USE_PROXY = ["Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
│ ├── ALIYUN_ACCESSKEY
│ └── ALIYUN_SECRET
── PDF文档精准解析
── GROBID_URLS
── PDF文档精准解析
── GROBID_URLS
├── MATHPIX_APPID
└── MATHPIX_APPKEY
"""

查看文件

@@ -3,30 +3,71 @@
# 'stop' 颜色对应 theme.py 中的 color_er
import importlib
from toolbox import clear_line_break
from toolbox import apply_gpt_academic_string_mask_langbased
from toolbox import build_gpt_academic_masked_string_langbased
from textwrap import dedent
def get_core_functions():
return {
"英语学术润色": {
# 前缀,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等
"Prefix": r"Below is a paragraph from an academic paper. Polish the writing to meet the academic style, " +
r"improve the spelling, grammar, clarity, concision and overall readability. When necessary, rewrite the whole sentence. " +
r"Firstly, you should provide the polished paragraph. "
r"Secondly, you should list all your modification and explain the reasons to do so in markdown table." + "\n\n",
# 后缀,会被加在你的输入之后。例如,配合前缀可以把你的输入内容用引号圈起来
"学术语料润色": {
# [1*] 前缀字符串,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等。
# 这里填一个提示词字符串就行了,这里为了区分中英文情景搞复杂了一点
"Prefix": build_gpt_academic_masked_string_langbased(
text_show_english=
r"Below is a paragraph from an academic paper. Polish the writing to meet the academic style, "
r"improve the spelling, grammar, clarity, concision and overall readability. When necessary, rewrite the whole sentence. "
r"Firstly, you should provide the polished paragraph (in English). "
r"Secondly, you should list all your modification and explain the reasons to do so in markdown table.",
text_show_chinese=
r"作为一名中文学术论文写作改进助理,你的任务是改进所提供文本的拼写、语法、清晰、简洁和整体可读性,"
r"同时分解长句,减少重复,并提供改进建议。请先提供文本的更正版本,然后在markdown表格中列出修改的内容,并给出修改的理由:"
) + "\n\n",
# [2*] 后缀字符串,会被加在你的输入之后。例如,配合前缀可以把你的输入内容用引号圈起来
"Suffix": r"",
# 按钮颜色 (默认 secondary)
# [3] 按钮颜色 (可选参数,默认 secondary)
"Color": r"secondary",
# 按钮是否可见 (默认 True,即可见)
# [4] 按钮是否可见 (可选参数,默认 True,即可见)
"Visible": True,
# 是否在触发时清除历史 (默认 False,即不处理之前的对话历史)
"AutoClearHistory": False
# [5] 是否在触发时清除历史 (可选参数,默认 False,即不处理之前的对话历史)
"AutoClearHistory": False,
# [6] 文本预处理 (可选参数,默认 None,举例写个函数移除所有的换行符
"PreProcess": None,
# [7] 模型选择 (可选参数。如不设置,则使用当前全局模型;如设置,则用指定模型覆盖全局模型。)
# "ModelOverride": "gpt-3.5-turbo", # 主要用途:强制点击此基础功能按钮时,使用指定的模型。
},
"中文学术润色": {
"Prefix": r"作为一名中文学术论文写作改进助理,你的任务是改进所提供文本的拼写、语法、清晰、简洁和整体可读性," +
r"同时分解长句,减少重复,并提供改进建议。请只提供文本的更正版本,避免包括解释。请编辑以下文本" + "\n\n",
"Suffix": r"",
"总结绘制脑图": {
# 前缀,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等
"Prefix": '''"""\n\n''',
# 后缀,会被加在你的输入之后。例如,配合前缀可以把你的输入内容用引号圈起来
"Suffix":
# dedent() 函数用于去除多行字符串的缩进
dedent("\n\n"+r'''
"""
使用mermaid flowchart对以上文本进行总结,概括上述段落的内容以及内在逻辑关系,例如
以下是对以上文本的总结,以mermaid flowchart的形式展示
```mermaid
flowchart LR
A["节点名1"] --> B("节点名2")
B --> C{"节点名3"}
C --> D["节点名4"]
C --> |"箭头名1"| E["节点名5"]
C --> |"箭头名2"| F["节点名6"]
```
注意:
1使用中文
2节点名字使用引号包裹,如["Laptop"]
3`|` 和 `"`之间不要存在空格
4根据情况选择flowchart LR从左到右或者flowchart TD从上到下
'''),
},
"查找语法错误": {
"Prefix": r"Help me ensure that the grammar and the spelling is correct. "
r"Do not try to polish the text, if no mistake is found, tell me that this paragraph is good. "
@@ -46,41 +87,60 @@ def get_core_functions():
"Suffix": r"",
"PreProcess": clear_line_break, # 预处理:清除换行符
},
"中译英": {
"Prefix": r"Please translate following sentence to English:" + "\n\n",
"Suffix": r"",
},
"学术中英互译": {
"Prefix": r"I want you to act as a scientific English-Chinese translator, " +
r"I will provide you with some paragraphs in one language " +
r"and your task is to accurately and academically translate the paragraphs only into the other language. " +
r"Do not repeat the original provided paragraphs after translation. " +
r"You should use artificial intelligence tools, " +
r"such as natural language processing, and rhetorical knowledge " +
r"and experience about effective writing techniques to reply. " +
r"I'll give you my paragraphs as follows, tell me what language it is written in, and then translate:" + "\n\n",
"Suffix": "",
"Color": "secondary",
"学术英中互译": {
"Prefix": build_gpt_academic_masked_string_langbased(
text_show_chinese=
r"I want you to act as a scientific English-Chinese translator, "
r"I will provide you with some paragraphs in one language "
r"and your task is to accurately and academically translate the paragraphs only into the other language. "
r"Do not repeat the original provided paragraphs after translation. "
r"You should use artificial intelligence tools, "
r"such as natural language processing, and rhetorical knowledge "
r"and experience about effective writing techniques to reply. "
r"I'll give you my paragraphs as follows, tell me what language it is written in, and then translate:",
text_show_english=
r"你是经验丰富的翻译,请把以下学术文章段落翻译成中文,"
r"并同时充分考虑中文的语法、清晰、简洁和整体可读性,"
r"必要时,你可以修改整个句子的顺序以确保翻译后的段落符合中文的语言习惯。"
r"你需要翻译的文本如下:"
) + "\n\n",
"Suffix": r"",
},
"英译中": {
"Prefix": r"翻译成地道的中文:" + "\n\n",
"Suffix": r"",
"Visible": False,
},
"找图片": {
"Prefix": r"我需要你找一张网络图片。使用Unsplash API(https://source.unsplash.com/960x640/?<英语关键词>)获取图片URL," +
"Prefix": r"我需要你找一张网络图片。使用Unsplash API(https://source.unsplash.com/960x640/?<英语关键词>)获取图片URL,"
r"然后请使用Markdown格式封装,并且不要有反斜线,不要用代码块。现在,请按以下描述给我发送图片" + "\n\n",
"Suffix": r"",
"Visible": False,
},
"解释代码": {
"Prefix": r"请解释以下代码:" + "\n```\n",
"Suffix": "\n```\n",
},
"参考文献转Bib": {
"Prefix": r"Here are some bibliography items, please transform them into bibtex style." +
r"Note that, reference styles maybe more than one kind, you should transform each item correctly." +
r"Items need to be transformed:",
"Prefix": r"Here are some bibliography items, please transform them into bibtex style."
r"Note that, reference styles maybe more than one kind, you should transform each item correctly."
r"Items need to be transformed:" + "\n\n",
"Visible": False,
"Suffix": r"",
}
@@ -91,8 +151,25 @@ def handle_core_functionality(additional_fn, inputs, history, chatbot):
import core_functional
importlib.reload(core_functional) # 热更新prompt
core_functional = core_functional.get_core_functions()
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
addition = chatbot._cookies['customize_fn_overwrite']
if additional_fn in addition:
# 自定义功能
inputs = addition[additional_fn]["Prefix"] + inputs + addition[additional_fn]["Suffix"]
return inputs, history
else:
# 预制功能
if "PreProcess" in core_functional[additional_fn]:
if core_functional[additional_fn]["PreProcess"] is not None:
inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
# 为字符串加上上面定义的前缀和后缀。
inputs = apply_gpt_academic_string_mask_langbased(
string = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"],
lang_reference = inputs,
)
if core_functional[additional_fn].get("AutoClearHistory", False):
history = []
return inputs, history
if __name__ == "__main__":
t = get_core_functions()["总结绘制脑图"]
print(t["Prefix"] + t["Suffix"])

查看文件

@@ -1,145 +1,191 @@
from toolbox import HotReload # HotReload 的意思是热更新,修改函数插件后,不需要重启程序,代码直接生效
from toolbox import trimmed_format_exc
from loguru import logger
def get_crazy_functions():
from crazy_functions.读文章写摘要 import 读文章写摘要
from crazy_functions.生成函数注释 import 批量生成函数注释
from crazy_functions.解析项目源代码 import 解析项目本身
from crazy_functions.解析项目源代码 import 解析一个Python项目
from crazy_functions.解析项目源代码 import 解析一个Matlab项目
from crazy_functions.解析项目源代码 import 解析一个C项目的头文件
from crazy_functions.解析项目源代码 import 解析一个C项目
from crazy_functions.解析项目源代码 import 解析一个Golang项目
from crazy_functions.解析项目源代码 import 解析一个Rust项目
from crazy_functions.解析项目源代码 import 解析一个Java项目
from crazy_functions.解析项目源代码 import 解析一个前端项目
from crazy_functions.SourceCode_Analyse import 解析项目本身
from crazy_functions.SourceCode_Analyse import 解析一个Python项目
from crazy_functions.SourceCode_Analyse import 解析一个Matlab项目
from crazy_functions.SourceCode_Analyse import 解析一个C项目的头文件
from crazy_functions.SourceCode_Analyse import 解析一个C项目
from crazy_functions.SourceCode_Analyse import 解析一个Golang项目
from crazy_functions.SourceCode_Analyse import 解析一个Rust项目
from crazy_functions.SourceCode_Analyse import 解析一个Java项目
from crazy_functions.SourceCode_Analyse import 解析一个前端项目
from crazy_functions.高级功能函数模板 import 高阶功能模板函数
from crazy_functions.Latex全文润色 import Latex英文润色
from crazy_functions.高级功能函数模板 import Demo_Wrap
from crazy_functions.Latex_Project_Polish import Latex英文润色
from crazy_functions.询问多个大语言模型 import 同时问询
from crazy_functions.解析项目源代码 import 解析一个Lua项目
from crazy_functions.解析项目源代码 import 解析一个CSharp项目
from crazy_functions.SourceCode_Analyse import 解析一个Lua项目
from crazy_functions.SourceCode_Analyse import 解析一个CSharp项目
from crazy_functions.总结word文档 import 总结word文档
from crazy_functions.解析JupyterNotebook import 解析ipynb文件
from crazy_functions.对话历史存档 import 对话历史存档
from crazy_functions.对话历史存档 import 载入对话历史存档
from crazy_functions.对话历史存档 import 删除所有本地对话历史记录
from crazy_functions.Conversation_To_File import 载入对话历史存档
from crazy_functions.Conversation_To_File import 对话历史存档
from crazy_functions.Conversation_To_File import Conversation_To_File_Wrap
from crazy_functions.Conversation_To_File import 删除所有本地对话历史记录
from crazy_functions.辅助功能 import 清除缓存
from crazy_functions.批量Markdown翻译 import Markdown英译中
from crazy_functions.Markdown_Translate import Markdown英译中
from crazy_functions.批量总结PDF文档 import 批量总结PDF文档
from crazy_functions.批量翻译PDF文档_多线程 import 批量翻译PDF文档
from crazy_functions.PDF_Translate import 批量翻译PDF文档
from crazy_functions.谷歌检索小助手 import 谷歌检索小助手
from crazy_functions.理解PDF文档内容 import 理解PDF文档内容标准文件输入
from crazy_functions.Latex全文润色 import Latex中文润色
from crazy_functions.Latex全文润色 import Latex英文纠错
from crazy_functions.Latex全文翻译 import Latex中译英
from crazy_functions.Latex全文翻译 import Latex英译中
from crazy_functions.批量Markdown翻译 import Markdown中译英
from crazy_functions.Latex_Project_Polish import Latex中文润色
from crazy_functions.Latex_Project_Polish import Latex英文纠错
from crazy_functions.Markdown_Translate import Markdown中译英
from crazy_functions.虚空终端 import 虚空终端
from crazy_functions.生成多种Mermaid图表 import Mermaid_Gen
from crazy_functions.PDF_Translate_Wrap import PDF_Tran
from crazy_functions.Latex_Function import Latex英文纠错加PDF对比
from crazy_functions.Latex_Function import Latex翻译中文并重新编译PDF
from crazy_functions.Latex_Function import PDF翻译中文并重新编译PDF
from crazy_functions.Latex_Function_Wrap import Arxiv_Localize
from crazy_functions.Latex_Function_Wrap import PDF_Localize
from crazy_functions.Internet_GPT import 连接网络回答问题
from crazy_functions.Internet_GPT_Wrap import NetworkGPT_Wrap
from crazy_functions.Image_Generate import 图片生成_DALLE2, 图片生成_DALLE3, 图片修改_DALLE2
from crazy_functions.Image_Generate_Wrap import ImageGen_Wrap
from crazy_functions.SourceCode_Comment import 注释Python项目
from crazy_functions.SourceCode_Comment_Wrap import SourceCodeComment_Wrap
from crazy_functions.VideoResource_GPT import 多媒体任务
function_plugins = {
"多媒体智能体": {
"Group": "智能体",
"Color": "stop",
"AsButton": False,
"Info": "【仅测试】多媒体任务",
"Function": HotReload(多媒体任务),
},
"虚空终端": {
"Group": "对话|编程|学术|智能体",
"Color": "stop",
"AsButton": True,
"Function": HotReload(虚空终端)
"Info": "使用自然语言实现您的想法",
"Function": HotReload(虚空终端),
},
"解析整个Python项目": {
"Group": "编程",
"Color": "stop",
"AsButton": True,
"Info": "解析一个Python项目的所有源文件(.py) | 输入参数为路径",
"Function": HotReload(解析一个Python项目)
"Function": HotReload(解析一个Python项目),
},
"注释Python项目": {
"Group": "编程",
"Color": "stop",
"AsButton": False,
"Info": "上传一系列python源文件(或者压缩包), 为这些代码添加docstring | 输入参数为路径",
"Function": HotReload(注释Python项目),
"Class": SourceCodeComment_Wrap,
},
"载入对话历史存档(先上传存档或输入路径)": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"Info": "载入对话历史存档 | 输入参数为路径",
"Function": HotReload(载入对话历史存档)
"Function": HotReload(载入对话历史存档),
},
"删除所有本地对话历史记录(谨慎操作)": {
"Group": "对话",
"AsButton": False,
"Info": "删除所有本地对话历史记录,谨慎操作 | 不需要输入参数",
"Function": HotReload(删除所有本地对话历史记录)
"Function": HotReload(删除所有本地对话历史记录),
},
"清除所有缓存文件(谨慎操作)": {
"Group": "对话",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "清除所有缓存文件,谨慎操作 | 不需要输入参数",
"Function": HotReload(清除缓存)
"Function": HotReload(清除缓存),
},
"生成多种Mermaid图表(从当前对话或路径(.pdf/.md/.docx)中生产图表)": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"Info" : "基于当前对话或文件生成多种Mermaid图表,图表类型由模型判断",
"Function": None,
"Class": Mermaid_Gen
},
"Arxiv论文翻译": {
"Group": "学术",
"Color": "stop",
"AsButton": True,
"Info": "Arixv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
"Function": HotReload(Latex翻译中文并重新编译PDF), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
"Class": Arxiv_Localize, # 新一代插件需要注册Class
},
"批量总结Word文档": {
"Group": "学术",
"Color": "stop",
"AsButton": True,
"AsButton": False,
"Info": "批量总结word文档 | 输入参数为路径",
"Function": HotReload(总结word文档)
"Function": HotReload(总结word文档),
},
"解析整个Matlab项目": {
"Group": "编程",
"Color": "stop",
"AsButton": False,
"Info": "解析一个Matlab项目的所有源文件(.m) | 输入参数为路径",
"Function": HotReload(解析一个Matlab项目)
"Function": HotReload(解析一个Matlab项目),
},
"解析整个C++项目头文件": {
"Group": "编程",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "解析一个C++项目的所有头文件(.h/.hpp) | 输入参数为路径",
"Function": HotReload(解析一个C项目的头文件)
"Function": HotReload(解析一个C项目的头文件),
},
"解析整个C++项目(.cpp/.hpp/.c/.h": {
"Group": "编程",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "解析一个C++项目的所有源文件(.cpp/.hpp/.c/.h| 输入参数为路径",
"Function": HotReload(解析一个C项目)
"Function": HotReload(解析一个C项目),
},
"解析整个Go项目": {
"Group": "编程",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "解析一个Go项目的所有源文件 | 输入参数为路径",
"Function": HotReload(解析一个Golang项目)
"Function": HotReload(解析一个Golang项目),
},
"解析整个Rust项目": {
"Group": "编程",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "解析一个Rust项目的所有源文件 | 输入参数为路径",
"Function": HotReload(解析一个Rust项目)
"Function": HotReload(解析一个Rust项目),
},
"解析整个Java项目": {
"Group": "编程",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "解析一个Java项目的所有源文件 | 输入参数为路径",
"Function": HotReload(解析一个Java项目)
"Function": HotReload(解析一个Java项目),
},
"解析整个前端项目js,ts,css等": {
"Group": "编程",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "解析一个前端项目的所有源文件js,ts,css等 | 输入参数为路径",
"Function": HotReload(解析一个前端项目)
"Function": HotReload(解析一个前端项目),
},
"解析整个Lua项目": {
"Group": "编程",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "解析一个Lua项目的所有源文件 | 输入参数为路径",
"Function": HotReload(解析一个Lua项目)
"Function": HotReload(解析一个Lua项目),
},
"解析整个CSharp项目": {
"Group": "编程",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "解析一个CSharp项目的所有源文件 | 输入参数为路径",
"Function": HotReload(解析一个CSharp项目)
"Function": HotReload(解析一个CSharp项目),
},
"解析Jupyter Notebook文件": {
"Group": "编程",
@@ -155,104 +201,119 @@ def get_crazy_functions():
"Color": "stop",
"AsButton": False,
"Info": "读取Tex论文并写摘要 | 输入参数为路径",
"Function": HotReload(读文章写摘要)
"Function": HotReload(读文章写摘要),
},
"翻译README或MD": {
"Group": "编程",
"Color": "stop",
"AsButton": True,
"Info": "将Markdown翻译为中文 | 输入参数为路径或URL",
"Function": HotReload(Markdown英译中)
"Function": HotReload(Markdown英译中),
},
"翻译Markdown或README支持Github链接": {
"Group": "编程",
"Color": "stop",
"AsButton": False,
"Info": "将Markdown或README翻译为中文 | 输入参数为路径或URL",
"Function": HotReload(Markdown英译中)
"Function": HotReload(Markdown英译中),
},
"批量生成函数注释": {
"Group": "编程",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "批量生成函数的注释 | 输入参数为路径",
"Function": HotReload(批量生成函数注释)
"Function": HotReload(批量生成函数注释),
},
"保存当前的对话": {
"Group": "对话",
"Color": "stop",
"AsButton": True,
"Info": "保存当前的对话 | 不需要输入参数",
"Function": HotReload(对话历史存档)
"Function": HotReload(对话历史存档), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
"Class": Conversation_To_File_Wrap # 新一代插件需要注册Class
},
"[多线程Demo]解析此项目本身(源码自译解)": {
"Group": "对话|编程",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "多线程解析并翻译此项目的源码 | 不需要输入参数",
"Function": HotReload(解析项目本身)
"Function": HotReload(解析项目本身),
},
"[插件demo]历史上的今天": {
"查互联网后回答": {
"Group": "对话",
"AsButton": True,
"Info": "查看历史上的今天事件 | 不需要输入参数",
"Function": HotReload(高阶功能模板函数)
"Color": "stop",
"AsButton": True, # 加入下拉菜单中
# "Info": "连接网络回答问题(需要访问谷歌)| 输入参数是一个问题",
"Function": HotReload(连接网络回答问题),
"Class": NetworkGPT_Wrap # 新一代插件需要注册Class
},
"历史上的今天": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"Info": "查看历史上的今天事件 (这是一个面向开发者的插件Demo) | 不需要输入参数",
"Function": None,
"Class": Demo_Wrap, # 新一代插件需要注册Class
},
"精准翻译PDF论文": {
"Group": "学术",
"Color": "stop",
"AsButton": True,
"Info": "精准翻译PDF论文为中文 | 输入参数为路径",
"Function": HotReload(批量翻译PDF文档)
"Function": HotReload(批量翻译PDF文档), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
"Class": PDF_Tran, # 新一代插件需要注册Class
},
"询问多个GPT模型": {
"Group": "对话",
"Color": "stop",
"AsButton": True,
"Function": HotReload(同时问询)
"Function": HotReload(同时问询),
},
"批量总结PDF文档": {
"Group": "学术",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "批量总结PDF文档的内容 | 输入参数为路径",
"Function": HotReload(批量总结PDF文档)
"Function": HotReload(批量总结PDF文档),
},
"谷歌学术检索助手输入谷歌学术搜索页url": {
"Group": "学术",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "使用谷歌学术检索助手搜索指定URL的结果 | 输入参数为谷歌学术搜索页的URL",
"Function": HotReload(谷歌检索小助手)
"Function": HotReload(谷歌检索小助手),
},
"理解PDF文档内容 模仿ChatPDF": {
"Group": "学术",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "理解PDF文档的内容并进行回答 | 输入参数为路径",
"Function": HotReload(理解PDF文档内容标准文件输入)
"Function": HotReload(理解PDF文档内容标准文件输入),
},
"英文Latex项目全文润色输入路径或上传压缩包": {
"Group": "学术",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "对英文Latex项目全文进行润色处理 | 输入参数为路径或上传压缩包",
"Function": HotReload(Latex英文润色)
},
"英文Latex项目全文纠错输入路径或上传压缩包": {
"Group": "学术",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "对英文Latex项目全文进行纠错处理 | 输入参数为路径或上传压缩包",
"Function": HotReload(Latex英文纠错)
"Function": HotReload(Latex英文润色),
},
"中文Latex项目全文润色输入路径或上传压缩包": {
"Group": "学术",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "对中文Latex项目全文进行润色处理 | 输入参数为路径或上传压缩包",
"Function": HotReload(Latex中文润色)
"Function": HotReload(Latex中文润色),
},
# 被新插件取代
# 已经被新插件取代
# "英文Latex项目全文纠错输入路径或上传压缩包": {
# "Group": "学术",
# "Color": "stop",
# "AsButton": False, # 加入下拉菜单中
# "Info": "对英文Latex项目全文进行纠错处理 | 输入参数为路径或上传压缩包",
# "Function": HotReload(Latex英文纠错),
# },
# 已经被新插件取代
# "Latex项目全文中译英输入路径或上传压缩包": {
# "Group": "学术",
# "Color": "stop",
@@ -260,6 +321,7 @@ def get_crazy_functions():
# "Info": "对Latex项目全文进行中译英处理 | 输入参数为路径或上传压缩包",
# "Function": HotReload(Latex中译英)
# },
# 已经被新插件取代
# "Latex项目全文英译中输入路径或上传压缩包": {
# "Group": "学术",
# "Color": "stop",
@@ -267,104 +329,187 @@ def get_crazy_functions():
# "Info": "对Latex项目全文进行英译中处理 | 输入参数为路径或上传压缩包",
# "Function": HotReload(Latex英译中)
# },
"批量Markdown中译英输入路径或上传压缩包": {
"Group": "编程",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "批量将Markdown文件中文翻译为英文 | 输入参数为路径或上传压缩包",
"Function": HotReload(Markdown中译英)
"Function": HotReload(Markdown中译英),
},
"Latex英文纠错+高亮修正位置 [需Latex]": {
"Group": "学术",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": "如果有必要, 请在此处追加更细致的矫错指令(使用英文)。",
"Function": HotReload(Latex英文纠错加PDF对比),
},
"📚Arxiv论文精细翻译输入arxivID[需Latex]": {
"Group": "学术",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
"Info": "Arixv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
"Function": HotReload(Latex翻译中文并重新编译PDF), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
"Class": Arxiv_Localize, # 新一代插件需要注册Class
},
"📚本地Latex论文精细翻译上传Latex项目[需Latex]": {
"Group": "学术",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
"Info": "本地Latex论文精细翻译 | 输入参数是路径",
"Function": HotReload(Latex翻译中文并重新编译PDF),
},
"PDF翻译中文并重新编译PDF上传PDF[需Latex]": {
"Group": "学术",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
"Info": "PDF翻译中文,并重新编译PDF | 输入参数为路径",
"Function": HotReload(PDF翻译中文并重新编译PDF), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
"Class": PDF_Localize # 新一代插件需要注册Class
}
}
function_plugins.update(
{
"🎨图片生成DALLE2/DALLE3, 使用前切换到GPT系列模型": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"Info": "使用 DALLE2/DALLE3 生成图片 | 输入参数字符串,提供图像的内容",
"Function": HotReload(图片生成_DALLE2), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
"Class": ImageGen_Wrap # 新一代插件需要注册Class
},
}
)
function_plugins.update(
{
"🎨图片修改_DALLE2 使用前请切换模型到GPT系列": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": False, # 调用时,唤起高级参数输入区默认False
# "Info": "使用DALLE2修改图片 | 输入参数字符串,提供图像的内容",
"Function": HotReload(图片修改_DALLE2),
},
}
)
# -=--=- 尚未充分测试的实验性插件 & 需要额外依赖的插件 -=--=-
try:
from crazy_functions.下载arxiv论文翻译摘要 import 下载arxiv论文并翻译摘要
function_plugins.update({
function_plugins.update(
{
"一键下载arxiv论文并翻译摘要先在input输入编号,如1812.10695": {
"Group": "学术",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
# "Info": "下载arxiv论文并翻译摘要 | 输入参数为arxiv编号如1812.10695",
"Function": HotReload(下载arxiv论文并翻译摘要)
"Function": HotReload(下载arxiv论文并翻译摘要),
}
})
}
)
except:
print('Load function plugin failed')
logger.error(trimmed_format_exc())
logger.error("Load function plugin failed")
# try:
# from crazy_functions.联网的ChatGPT import 连接网络回答问题
# function_plugins.update(
# {
# "连接网络回答问题(输入问题后点击该插件,需要访问谷歌)": {
# "Group": "对话",
# "Color": "stop",
# "AsButton": False, # 加入下拉菜单中
# # "Info": "连接网络回答问题(需要访问谷歌)| 输入参数是一个问题",
# "Function": HotReload(连接网络回答问题),
# }
# }
# )
# from crazy_functions.联网的ChatGPT_bing版 import 连接bing搜索回答问题
# function_plugins.update(
# {
# "连接网络回答问题中文Bing版,输入问题后点击该插件": {
# "Group": "对话",
# "Color": "stop",
# "AsButton": False, # 加入下拉菜单中
# "Info": "连接网络回答问题需要访问中文Bing| 输入参数是一个问题",
# "Function": HotReload(连接bing搜索回答问题),
# }
# }
# )
# except:
# logger.error(trimmed_format_exc())
# logger.error("Load function plugin failed")
try:
from crazy_functions.联网的ChatGPT import 连接网络回答问题
function_plugins.update({
"连接网络回答问题(输入问题后点击该插件,需要访问谷歌)": {
"Group": "对话",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
# "Info": "连接网络回答问题(需要访问谷歌)| 输入参数是一个问题",
"Function": HotReload(连接网络回答问题)
}
})
from crazy_functions.联网的ChatGPT_bing版 import 连接bing搜索回答问题
function_plugins.update({
"连接网络回答问题中文Bing版,输入问题后点击该插件": {
"Group": "对话",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "连接网络回答问题需要访问中文Bing| 输入参数是一个问题",
"Function": HotReload(连接bing搜索回答问题)
}
})
except:
print('Load function plugin failed')
from crazy_functions.SourceCode_Analyse import 解析任意code项目
try:
from crazy_functions.解析项目源代码 import 解析任意code项目
function_plugins.update({
function_plugins.update(
{
"解析项目源代码(手动指定和筛选源代码文件类型)": {
"Group": "编程",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区默认False
"ArgsReminder": "输入时用逗号隔开, *代表通配符, 加了^代表不匹配; 不输入代表全部匹配。例如: \"*.c, ^*.cpp, config.toml, ^*.toml\"", # 高级参数输入区的显示提示
"Function": HotReload(解析任意code项目)
"ArgsReminder": '输入时用逗号隔开, *代表通配符, 加了^代表不匹配; 不输入代表全部匹配。例如: "*.c, ^*.cpp, config.toml, ^*.toml"', # 高级参数输入区的显示提示
"Function": HotReload(解析任意code项目),
},
})
}
)
except:
print('Load function plugin failed')
logger.error(trimmed_format_exc())
logger.error("Load function plugin failed")
try:
from crazy_functions.询问多个大语言模型 import 同时问询_指定模型
function_plugins.update({
function_plugins.update(
{
"询问多个GPT模型手动指定询问哪些模型": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区默认False
"ArgsReminder": "支持任意数量的llm接口,用&符号分隔。例如chatglm&gpt-3.5-turbo&api2d-gpt-4", # 高级参数输入区的显示提示
"Function": HotReload(同时问询_指定模型)
"ArgsReminder": "支持任意数量的llm接口,用&符号分隔。例如chatglm&gpt-3.5-turbo&gpt-4", # 高级参数输入区的显示提示
"Function": HotReload(同时问询_指定模型),
},
})
}
)
except:
print('Load function plugin failed')
logger.error(trimmed_format_exc())
logger.error("Load function plugin failed")
try:
from crazy_functions.图片生成 import 图片生成
function_plugins.update({
"图片生成先切换模型到openai或api2d": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区默认False
"ArgsReminder": "在这里输入分辨率, 如256x256默认", # 高级参数输入区的显示提示
"Info": "图片生成 | 输入参数字符串,提供图像的内容",
"Function": HotReload(图片生成)
},
})
except:
print('Load function plugin failed')
try:
from crazy_functions.总结音视频 import 总结音视频
function_plugins.update({
function_plugins.update(
{
"批量总结音视频(输入路径或上传压缩包)": {
"Group": "对话",
"Color": "stop",
@@ -372,199 +517,230 @@ def get_crazy_functions():
"AdvancedArgs": True,
"ArgsReminder": "调用openai api 使用whisper-1模型, 目前支持的格式:mp4, m4a, wav, mpga, mpeg, mp3。此处可以输入解析提示,例如解析为简体中文默认",
"Info": "批量总结音频或视频 | 输入参数为路径",
"Function": HotReload(总结音视频)
"Function": HotReload(总结音视频),
}
})
}
)
except:
print('Load function plugin failed')
logger.error(trimmed_format_exc())
logger.error("Load function plugin failed")
try:
from crazy_functions.数学动画生成manim import 动画生成
function_plugins.update({
function_plugins.update(
{
"数学动画生成Manim": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"Info": "按照自然语言描述生成一个动画 | 输入参数是一段话",
"Function": HotReload(动画生成)
"Function": HotReload(动画生成),
}
})
}
)
except:
print('Load function plugin failed')
logger.error(trimmed_format_exc())
logger.error("Load function plugin failed")
try:
from crazy_functions.批量Markdown翻译 import Markdown翻译指定语言
function_plugins.update({
"Markdown翻译手动指定语言": {
from crazy_functions.Markdown_Translate import Markdown翻译指定语言
function_plugins.update(
{
"Markdown翻译指定翻译成何种语言": {
"Group": "编程",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": "请输入要翻译成哪种语言,默认为Chinese。",
"Function": HotReload(Markdown翻译指定语言)
"Function": HotReload(Markdown翻译指定语言),
}
})
}
)
except:
print('Load function plugin failed')
logger.error(trimmed_format_exc())
logger.error("Load function plugin failed")
try:
from crazy_functions.Langchain知识库 import 知识库问答
function_plugins.update({
from crazy_functions.知识库问答 import 知识库文件注入
function_plugins.update(
{
"构建知识库(先上传文件素材,再运行此插件)": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": "此处待注入的知识库名称id, 默认为default。文件进入知识库后可长期保存。可以通过再次调用本插件的方式,向知识库追加更多文档。",
"Function": HotReload(知识库问答)
"Function": HotReload(知识库文件注入),
}
})
}
)
except:
print('Load function plugin failed')
logger.error(trimmed_format_exc())
logger.error("Load function plugin failed")
try:
from crazy_functions.Langchain知识库 import 读取知识库作答
function_plugins.update({
"知识库问答(构建知识库后,再运行此插件)": {
from crazy_functions.知识库问答 import 读取知识库作答
function_plugins.update(
{
"知识库文件注入(构建知识库后,再运行此插件)": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": "待提取的知识库名称id, 默认为default, 您需要构建知识库后再运行此插件。",
"Function": HotReload(读取知识库作答)
"Function": HotReload(读取知识库作答),
}
})
}
)
except:
print('Load function plugin failed')
logger.error(trimmed_format_exc())
logger.error("Load function plugin failed")
try:
from crazy_functions.交互功能函数模板 import 交互功能模板函数
function_plugins.update({
"交互功能模板函数": {
function_plugins.update(
{
"交互功能模板Demo函数查找wallhaven.cc的壁纸": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"Function": HotReload(交互功能模板函数)
"Function": HotReload(交互功能模板函数),
}
})
}
)
except:
print('Load function plugin failed')
logger.error(trimmed_format_exc())
logger.error("Load function plugin failed")
try:
from crazy_functions.Latex输出PDF结果 import Latex英文纠错加PDF对比
function_plugins.update({
"Latex英文纠错+高亮修正位置 [需Latex]": {
"Group": "学术",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": "如果有必要, 请在此处追加更细致的矫错指令(使用英文)。",
"Function": HotReload(Latex英文纠错加PDF对比)
}
})
from crazy_functions.Latex输出PDF结果 import Latex翻译中文并重新编译PDF
function_plugins.update({
"Arixv论文精细翻译输入arxivID[需Latex]": {
"Group": "学术",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder":
"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 " +
"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: " +
'If the term "agent" is used in this section, it should be translated to "智能体". ',
"Info": "Arixv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
"Function": HotReload(Latex翻译中文并重新编译PDF)
}
})
function_plugins.update({
"本地Latex论文精细翻译上传Latex项目[需Latex]": {
"Group": "学术",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder":
"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 " +
"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: " +
'If the term "agent" is used in this section, it should be translated to "智能体". ',
"Info": "本地Latex论文精细翻译 | 输入参数是路径",
"Function": HotReload(Latex翻译中文并重新编译PDF)
}
})
except:
print('Load function plugin failed')
try:
from toolbox import get_conf
ENABLE_AUDIO, = get_conf('ENABLE_AUDIO')
ENABLE_AUDIO = get_conf("ENABLE_AUDIO")
if ENABLE_AUDIO:
from crazy_functions.语音助手 import 语音助手
function_plugins.update({
"实时音频采集": {
function_plugins.update(
{
"实时语音对话": {
"Group": "对话",
"Color": "stop",
"AsButton": True,
"Info": "开始语言对话 | 没有输入参数",
"Function": HotReload(语音助手)
"Info": "这是一个时刻聆听着的语音对话助手 | 没有输入参数",
"Function": HotReload(语音助手),
}
})
}
)
except:
print('Load function plugin failed')
logger.error(trimmed_format_exc())
logger.error("Load function plugin failed")
try:
from crazy_functions.批量翻译PDF文档_NOUGAT import 批量翻译PDF文档
function_plugins.update({
function_plugins.update(
{
"精准翻译PDF文档NOUGAT": {
"Group": "学术",
"Color": "stop",
"AsButton": False,
"Function": HotReload(批量翻译PDF文档)
"Function": HotReload(批量翻译PDF文档),
}
})
}
)
except:
print('Load function plugin failed')
logger.error(trimmed_format_exc())
logger.error("Load function plugin failed")
try:
from crazy_functions.函数动态生成 import 函数动态生成
function_plugins.update({
function_plugins.update(
{
"动态代码解释器CodeInterpreter": {
"Group": "智能体",
"Color": "stop",
"AsButton": False,
"Function": HotReload(函数动态生成)
"Function": HotReload(函数动态生成),
}
})
}
)
except:
print('Load function plugin failed')
logger.error(trimmed_format_exc())
logger.error("Load function plugin failed")
try:
from crazy_functions.多智能体 import 多智能体终端
function_plugins.update(
{
"AutoGen多智能体终端仅供测试": {
"Group": "智能体",
"Color": "stop",
"AsButton": False,
"Function": HotReload(多智能体终端),
}
}
)
except:
logger.error(trimmed_format_exc())
logger.error("Load function plugin failed")
try:
from crazy_functions.互动小游戏 import 随机小游戏
function_plugins.update(
{
"随机互动小游戏(仅供测试)": {
"Group": "智能体",
"Color": "stop",
"AsButton": False,
"Function": HotReload(随机小游戏),
}
}
)
except:
logger.error(trimmed_format_exc())
logger.error("Load function plugin failed")
try:
from crazy_functions.Rag_Interface import Rag问答
function_plugins.update(
{
"Rag智能召回": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"Info": "将问答数据记录到向量库中,作为长期参考。",
"Function": HotReload(Rag问答),
},
}
)
except:
logger.error(trimmed_format_exc())
logger.error("Load function plugin failed")
# try:
# from crazy_functions.CodeInterpreter import 虚空终端CodeInterpreter
# from crazy_functions.高级功能函数模板 import 测试图表渲染
# function_plugins.update({
# "CodeInterpreter开发中,仅供测试": {
# "Group": "编程|对话",
# "绘制逻辑关系(测试图表渲染": {
# "Group": "智能体",
# "Color": "stop",
# "AsButton": False,
# "Function": HotReload(虚空终端CodeInterpreter)
# "AsButton": True,
# "Function": HotReload(测试图表渲染)
# }
# })
# except:
# logger.error(trimmed_format_exc())
# print('Load function plugin failed')
# try:
# from crazy_functions.chatglm微调工具 import 微调数据集生成
# function_plugins.update({
# "黑盒模型学习: 微调数据集生成 (先上传数据集)": {
# "Color": "stop",
# "AsButton": False,
# "AdvancedArgs": True,
# "ArgsReminder": "针对数据集输入(如 绿帽子*深蓝色衬衫*黑色运动裤)给出指令,例如您可以将以下命令复制到下方: --llm_to_learn=azure-gpt-3.5 --prompt_prefix='根据下面的服装类型提示,想象一个穿着者,对这个人外貌、身处的环境、内心世界、过去经历进行描写。要求100字以内,用第二人称。' --system_prompt=''",
# "Function": HotReload(微调数据集生成)
# }
# })
# except:
# print('Load function plugin failed')
"""
设置默认值:
@@ -575,12 +751,32 @@ def get_crazy_functions():
"""
for name, function_meta in function_plugins.items():
if "Group" not in function_meta:
function_plugins[name]["Group"] = '对话'
function_plugins[name]["Group"] = "对话"
if "AsButton" not in function_meta:
function_plugins[name]["AsButton"] = True
if "AdvancedArgs" not in function_meta:
function_plugins[name]["AdvancedArgs"] = False
if "Color" not in function_meta:
function_plugins[name]["Color"] = 'secondary'
function_plugins[name]["Color"] = "secondary"
return function_plugins
def get_multiplex_button_functions():
"""多路复用主提交按钮的功能映射
"""
return {
"常规对话":
"",
"多模型对话":
"询问多个GPT模型", # 映射到上面的 `询问多个GPT模型` 插件
"智能召回 RAG":
"Rag智能召回", # 映射到上面的 `Rag智能召回` 插件
"多媒体查询":
"多媒体智能体", # 映射到上面的 `多媒体智能体` 插件
}

查看文件

@@ -1,232 +0,0 @@
from collections.abc import Callable, Iterable, Mapping
from typing import Any
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc
from toolbox import promote_file_to_downloadzone, get_log_folder
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import input_clipping, try_install_deps
from multiprocessing import Process, Pipe
import os
import time
templete = """
```python
import ... # Put dependencies here, e.g. import numpy as np
class TerminalFunction(object): # Do not change the name of the class, The name of the class must be `TerminalFunction`
def run(self, path): # The name of the function must be `run`, it takes only a positional argument.
# rewrite the function you have just written here
...
return generated_file_path
```
"""
def inspect_dependency(chatbot, history):
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return True
def get_code_block(reply):
import re
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
matches = re.findall(pattern, reply) # find all code blocks in text
if len(matches) == 1:
return matches[0].strip('python') # code block
for match in matches:
if 'class TerminalFunction' in match:
return match.strip('python') # code block
raise RuntimeError("GPT is not generating proper code.")
def gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history):
# 输入
prompt_compose = [
f'Your job:\n'
f'1. write a single Python function, which takes a path of a `{file_type}` file as the only argument and returns a `string` containing the result of analysis or the path of generated files. \n',
f"2. You should write this function to perform following task: " + txt + "\n",
f"3. Wrap the output python function with markdown codeblock."
]
i_say = "".join(prompt_compose)
demo = []
# 第一步
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=i_say,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=demo,
sys_prompt= r"You are a programmer."
)
history.extend([i_say, gpt_say])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
# 第二步
prompt_compose = [
"If previous stage is successful, rewrite the function you have just written to satisfy following templete: \n",
templete
]
i_say = "".join(prompt_compose); inputs_show_user = "If previous stage is successful, rewrite the function you have just written to satisfy executable templete. "
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=inputs_show_user,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
sys_prompt= r"You are a programmer."
)
code_to_return = gpt_say
history.extend([i_say, gpt_say])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
# # 第三步
# i_say = "Please list to packages to install to run the code above. Then show me how to use `try_install_deps` function to install them."
# i_say += 'For instance. `try_install_deps(["opencv-python", "scipy", "numpy"])`'
# installation_advance = yield from request_gpt_model_in_new_thread_with_ui_alive(
# inputs=i_say, inputs_show_user=inputs_show_user,
# llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
# sys_prompt= r"You are a programmer."
# )
# # # 第三步
# i_say = "Show me how to use `pip` to install packages to run the code above. "
# i_say += 'For instance. `pip install -r opencv-python scipy numpy`'
# installation_advance = yield from request_gpt_model_in_new_thread_with_ui_alive(
# inputs=i_say, inputs_show_user=i_say,
# llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
# sys_prompt= r"You are a programmer."
# )
installation_advance = ""
return code_to_return, installation_advance, txt, file_type, llm_kwargs, chatbot, history
def make_module(code):
module_file = 'gpt_fn_' + gen_time_str().replace('-','_')
with open(f'{get_log_folder()}/{module_file}.py', 'w', encoding='utf8') as f:
f.write(code)
def get_class_name(class_string):
import re
# Use regex to extract the class name
class_name = re.search(r'class (\w+)\(', class_string).group(1)
return class_name
class_name = get_class_name(code)
return f"{get_log_folder().replace('/', '.')}.{module_file}->{class_name}"
def init_module_instance(module):
import importlib
module_, class_ = module.split('->')
init_f = getattr(importlib.import_module(module_), class_)
return init_f()
def for_immediate_show_off_when_possible(file_type, fp, chatbot):
if file_type in ['png', 'jpg']:
image_path = os.path.abspath(fp)
chatbot.append(['这是一张图片, 展示如下:',
f'本地文件地址: <br/>`{image_path}`<br/>'+
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
])
return chatbot
def subprocess_worker(instance, file_path, return_dict):
return_dict['result'] = instance.run(file_path)
def have_any_recent_upload_files(chatbot):
_5min = 5 * 60
if not chatbot: return False # chatbot is None
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
if not most_recent_uploaded: return False # most_recent_uploaded is None
if time.time() - most_recent_uploaded["time"] < _5min: return True # most_recent_uploaded is new
else: return False # most_recent_uploaded is too old
def get_recent_file_prompt_support(chatbot):
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
path = most_recent_uploaded['path']
return path
@CatchException
def 虚空终端CodeInterpreter(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数,暂时没有用武之地
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
raise NotImplementedError
# 清空历史,以免输入溢出
history = []; clear_file_downloadzone(chatbot)
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"CodeInterpreter开源版, 此插件处于开发阶段, 建议暂时不要使用, 插件初始化中 ..."
])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if have_any_recent_upload_files(chatbot):
file_path = get_recent_file_prompt_support(chatbot)
else:
chatbot.append(["文件检索", "没有发现任何近期上传的文件。"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 读取文件
if ("recently_uploaded_files" in plugin_kwargs) and (plugin_kwargs["recently_uploaded_files"] == ""): plugin_kwargs.pop("recently_uploaded_files")
recently_uploaded_files = plugin_kwargs.get("recently_uploaded_files", None)
file_path = recently_uploaded_files[-1]
file_type = file_path.split('.')[-1]
# 粗心检查
if is_the_upload_folder(txt):
chatbot.append([
"...",
f"请在输入框内填写需求,然后再次点击该插件(文件路径 {file_path} 已经被记忆)"
])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 开始干正事
for j in range(5): # 最多重试5次
try:
code, installation_advance, txt, file_type, llm_kwargs, chatbot, history = \
yield from gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history)
code = get_code_block(code)
res = make_module(code)
instance = init_module_instance(res)
break
except Exception as e:
chatbot.append([f"{j}次代码生成尝试,失败了", f"错误追踪\n```\n{trimmed_format_exc()}\n```\n"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 代码生成结束, 开始执行
try:
import multiprocessing
manager = multiprocessing.Manager()
return_dict = manager.dict()
p = multiprocessing.Process(target=subprocess_worker, args=(instance, file_path, return_dict))
# only has 10 seconds to run
p.start(); p.join(timeout=10)
if p.is_alive(): p.terminate(); p.join()
p.close()
res = return_dict['result']
# res = instance.run(file_path)
except Exception as e:
chatbot.append(["执行失败了", f"错误追踪\n```\n{trimmed_format_exc()}\n```\n"])
# chatbot.append(["如果是缺乏依赖,请参考以下建议", installation_advance])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 顺利完成,收尾
res = str(res)
if os.path.exists(res):
chatbot.append(["执行成功了,结果是一个有效文件", "结果:" + res])
new_file_path = promote_file_to_downloadzone(res, chatbot=chatbot)
chatbot = for_immediate_show_off_when_possible(file_type, new_file_path, chatbot)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
else:
chatbot.append(["执行成功了,结果是一个字符串", "结果:" + res])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
"""
测试:
裁剪图像,保留下半部分
交换图像的蓝色通道和红色通道
将图像转为灰度图像
将csv文件转excel表格
"""

查看文件

@@ -0,0 +1,220 @@
from toolbox import CatchException, update_ui, promote_file_to_downloadzone, get_log_folder, get_user
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
import re
f_prefix = 'GPT-Academic对话存档'
def write_chat_to_file(chatbot, history=None, file_name=None):
"""
将对话记录history以Markdown格式写入文件中。如果没有指定文件名,则使用当前时间生成文件名。
"""
import os
import time
from themes.theme import advanced_css
if file_name is None:
file_name = f_prefix + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.html'
fp = os.path.join(get_log_folder(get_user(chatbot), plugin_name='chat_history'), file_name)
with open(fp, 'w', encoding='utf8') as f:
from textwrap import dedent
form = dedent("""
<!DOCTYPE html><head><meta charset="utf-8"><title>对话存档</title><style>{CSS}</style></head>
<body>
<div class="test_temp1" style="width:10%; height: 500px; float:left;"></div>
<div class="test_temp2" style="width:80%;padding: 40px;float:left;padding-left: 20px;padding-right: 20px;box-shadow: rgba(0, 0, 0, 0.2) 0px 0px 8px 8px;border-radius: 10px;">
<div class="chat-body" style="display: flex;justify-content: center;flex-direction: column;align-items: center;flex-wrap: nowrap;">
{CHAT_PREVIEW}
<div></div>
<div></div>
<div style="text-align: center;width:80%;padding: 0px;float:left;padding-left:20px;padding-right:20px;box-shadow: rgba(0, 0, 0, 0.05) 0px 0px 1px 2px;border-radius: 1px;">对话(原始数据)</div>
{HISTORY_PREVIEW}
</div>
</div>
<div class="test_temp3" style="width:10%; height: 500px; float:left;"></div>
</body>
""")
qa_from = dedent("""
<div class="QaBox" style="width:80%;padding: 20px;margin-bottom: 20px;box-shadow: rgb(0 255 159 / 50%) 0px 0px 1px 2px;border-radius: 4px;">
<div class="Question" style="border-radius: 2px;">{QUESTION}</div>
<hr color="blue" style="border-top: dotted 2px #ccc;">
<div class="Answer" style="border-radius: 2px;">{ANSWER}</div>
</div>
""")
history_from = dedent("""
<div class="historyBox" style="width:80%;padding: 0px;float:left;padding-left:20px;padding-right:20px;box-shadow: rgba(0, 0, 0, 0.05) 0px 0px 1px 2px;border-radius: 1px;">
<div class="entry" style="border-radius: 2px;">{ENTRY}</div>
</div>
""")
CHAT_PREVIEW_BUF = ""
for i, contents in enumerate(chatbot):
question, answer = contents[0], contents[1]
if question is None: question = ""
try: question = str(question)
except: question = ""
if answer is None: answer = ""
try: answer = str(answer)
except: answer = ""
CHAT_PREVIEW_BUF += qa_from.format(QUESTION=question, ANSWER=answer)
HISTORY_PREVIEW_BUF = ""
for h in history:
HISTORY_PREVIEW_BUF += history_from.format(ENTRY=h)
html_content = form.format(CHAT_PREVIEW=CHAT_PREVIEW_BUF, HISTORY_PREVIEW=HISTORY_PREVIEW_BUF, CSS=advanced_css)
f.write(html_content)
promote_file_to_downloadzone(fp, rename_file=file_name, chatbot=chatbot)
return '对话历史写入:' + fp
def gen_file_preview(file_name):
try:
with open(file_name, 'r', encoding='utf8') as f:
file_content = f.read()
# pattern to match the text between <head> and </head>
pattern = re.compile(r'<head>.*?</head>', flags=re.DOTALL)
file_content = re.sub(pattern, '', file_content)
html, history = file_content.split('<hr color="blue"> \n\n 对话数据 (无渲染):\n')
history = history.strip('<code>')
history = history.strip('</code>')
history = history.split("\n>>>")
return list(filter(lambda x:x!="", history))[0][:100]
except:
return ""
def read_file_to_chat(chatbot, history, file_name):
with open(file_name, 'r', encoding='utf8') as f:
file_content = f.read()
from bs4 import BeautifulSoup
soup = BeautifulSoup(file_content, 'lxml')
# 提取QaBox信息
chatbot.clear()
qa_box_list = []
qa_boxes = soup.find_all("div", class_="QaBox")
for box in qa_boxes:
question = box.find("div", class_="Question").get_text(strip=False)
answer = box.find("div", class_="Answer").get_text(strip=False)
qa_box_list.append({"Question": question, "Answer": answer})
chatbot.append([question, answer])
# 提取historyBox信息
history_box_list = []
history_boxes = soup.find_all("div", class_="historyBox")
for box in history_boxes:
entry = box.find("div", class_="entry").get_text(strip=False)
history_box_list.append(entry)
history = history_box_list
chatbot.append([None, f"[Local Message] 载入对话{len(qa_box_list)}条,上下文{len(history)}条。"])
return chatbot, history
@CatchException
def 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数,暂时没有用武之地
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
"""
file_name = plugin_kwargs.get("file_name", None)
if (file_name is not None) and (file_name != "") and (not file_name.endswith('.html')): file_name += '.html'
else: file_name = None
chatbot.append((None, f"[Local Message] {write_chat_to_file(chatbot, history, file_name)},您可以调用下拉菜单中的“载入对话历史存档”还原当下的对话。"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
class Conversation_To_File_Wrap(GptAcademicPluginTemplate):
def __init__(self):
"""
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
"""
pass
def define_arg_selection_menu(self):
"""
定义插件的二级选项菜单
第一个参数,名称`file_name`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
"""
gui_definition = {
"file_name": ArgProperty(title="保存文件名", description="输入对话存档文件名,留空则使用时间作为文件名", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
}
return gui_definition
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
执行插件
"""
yield from 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
def hide_cwd(str):
import os
current_path = os.getcwd()
replace_path = "."
return str.replace(current_path, replace_path)
@CatchException
def 载入对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数,暂时没有用武之地
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
"""
from crazy_functions.crazy_utils import get_files_from_everything
success, file_manifest, _ = get_files_from_everything(txt, type='.html')
if not success:
if txt == "": txt = '空空如也的输入栏'
import glob
local_history = "<br/>".join([
"`"+hide_cwd(f)+f" ({gen_file_preview(f)})"+"`"
for f in glob.glob(
f'{get_log_folder(get_user(chatbot), plugin_name="chat_history")}/**/{f_prefix}*.html',
recursive=True
)])
chatbot.append([f"正在查找对话历史文件html格式: {txt}", f"找不到任何html文件: {txt}。但本地存储了以下历史文件,您可以将任意一个文件路径粘贴到输入区,然后重试:<br/>{local_history}"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
try:
chatbot, history = read_file_to_chat(chatbot, history, file_manifest[0])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
except:
chatbot.append([f"载入对话历史文件", f"对话历史文件损坏!"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
@CatchException
def 删除所有本地对话历史记录(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数,暂时没有用武之地
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
"""
import glob, os
local_history = "<br/>".join([
"`"+hide_cwd(f)+"`"
for f in glob.glob(
f'{get_log_folder(get_user(chatbot), plugin_name="chat_history")}/**/{f_prefix}*.html', recursive=True
)])
for f in glob.glob(f'{get_log_folder(get_user(chatbot), plugin_name="chat_history")}/**/{f_prefix}*.html', recursive=True):
os.remove(f)
chatbot.append([f"删除所有历史对话文件", f"已删除<br/>{local_history}"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return

查看文件

@@ -0,0 +1,276 @@
from toolbox import CatchException, update_ui, get_conf, select_api_key, get_log_folder
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicState
def gen_image(llm_kwargs, prompt, resolution="1024x1024", model="dall-e-2", quality=None, style=None):
import requests, json, time, os
from request_llms.bridge_all import model_info
proxies = get_conf('proxies')
# Set up OpenAI API key and model
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
chat_endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
# 'https://api.openai.com/v1/chat/completions'
img_endpoint = chat_endpoint.replace('chat/completions','images/generations')
# # Generate the image
url = img_endpoint
headers = {
'Authorization': f"Bearer {api_key}",
'Content-Type': 'application/json'
}
data = {
'prompt': prompt,
'n': 1,
'size': resolution,
'model': model,
'response_format': 'url'
}
if quality is not None:
data['quality'] = quality
if style is not None:
data['style'] = style
response = requests.post(url, headers=headers, json=data, proxies=proxies)
# logger.info(response.content)
try:
image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
except:
raise RuntimeError(response.content.decode())
# 文件保存到本地
r = requests.get(image_url, proxies=proxies)
file_path = f'{get_log_folder()}/image_gen/'
os.makedirs(file_path, exist_ok=True)
file_name = 'Image' + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.png'
with open(file_path+file_name, 'wb+') as f: f.write(r.content)
return image_url, file_path+file_name
def edit_image(llm_kwargs, prompt, image_path, resolution="1024x1024", model="dall-e-2"):
import requests, json, time, os
from request_llms.bridge_all import model_info
proxies = get_conf('proxies')
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
chat_endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
# 'https://api.openai.com/v1/chat/completions'
img_endpoint = chat_endpoint.replace('chat/completions','images/edits')
# # Generate the image
url = img_endpoint
n = 1
headers = {
'Authorization': f"Bearer {api_key}",
}
make_transparent(image_path, image_path+'.tsp.png')
make_square_image(image_path+'.tsp.png', image_path+'.tspsq.png')
resize_image(image_path+'.tspsq.png', image_path+'.ready.png', max_size=1024)
image_path = image_path+'.ready.png'
with open(image_path, 'rb') as f:
file_content = f.read()
files = {
'image': (os.path.basename(image_path), file_content),
# 'mask': ('mask.png', open('mask.png', 'rb'))
'prompt': (None, prompt),
"n": (None, str(n)),
'size': (None, resolution),
}
response = requests.post(url, headers=headers, files=files, proxies=proxies)
# logger.info(response.content)
try:
image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
except:
raise RuntimeError(response.content.decode())
# 文件保存到本地
r = requests.get(image_url, proxies=proxies)
file_path = f'{get_log_folder()}/image_gen/'
os.makedirs(file_path, exist_ok=True)
file_name = 'Image' + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.png'
with open(file_path+file_name, 'wb+') as f: f.write(r.content)
return image_url, file_path+file_name
@CatchException
def 图片生成_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数,暂时没有用武之地
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
"""
history = [] # 清空历史,以免输入溢出
if prompt.strip() == "":
chatbot.append((prompt, "[Local Message] 图像生成提示为空白,请在“输入区”输入图像生成提示。"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
return
chatbot.append(("您正在调用“图像生成”插件。", "[Local Message] 生成图像, 使用前请切换模型到GPT系列。如果中文Prompt效果不理想, 请尝试英文Prompt。正在处理中 ....."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 由于请求gpt需要一段时间,我们先及时地做一次界面更新
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
resolution = plugin_kwargs.get("advanced_arg", '1024x1024')
image_url, image_path = gen_image(llm_kwargs, prompt, resolution)
chatbot.append([prompt,
f'图像中转网址: <br/>`{image_url}`<br/>'+
f'中转网址预览: <br/><div align="center"><img src="{image_url}"></div>'
f'本地文件地址: <br/>`{image_path}`<br/>'+
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
@CatchException
def 图片生成_DALLE3(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
history = [] # 清空历史,以免输入溢出
if prompt.strip() == "":
chatbot.append((prompt, "[Local Message] 图像生成提示为空白,请在“输入区”输入图像生成提示。"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
return
chatbot.append(("您正在调用“图像生成”插件。", "[Local Message] 生成图像, 使用前请切换模型到GPT系列。如果中文Prompt效果不理想, 请尝试英文Prompt。正在处理中 ....."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 由于请求gpt需要一段时间,我们先及时地做一次界面更新
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
resolution_arg = plugin_kwargs.get("advanced_arg", '1024x1024-standard-vivid').lower()
parts = resolution_arg.split('-')
resolution = parts[0] # 解析分辨率
quality = 'standard' # 质量与风格默认值
style = 'vivid'
# 遍历检查是否有额外参数
for part in parts[1:]:
if part in ['hd', 'standard']:
quality = part
elif part in ['vivid', 'natural']:
style = part
image_url, image_path = gen_image(llm_kwargs, prompt, resolution, model="dall-e-3", quality=quality, style=style)
chatbot.append([prompt,
f'图像中转网址: <br/>`{image_url}`<br/>'+
f'中转网址预览: <br/><div align="center"><img src="{image_url}"></div>'
f'本地文件地址: <br/>`{image_path}`<br/>'+
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
class ImageEditState(GptAcademicState):
# 尚未完成
def get_image_file(self, x):
import os, glob
if len(x) == 0: return False, None
if not os.path.exists(x): return False, None
if x.endswith('.png'): return True, x
file_manifest = [f for f in glob.glob(f'{x}/**/*.png', recursive=True)]
confirm = (len(file_manifest) >= 1 and file_manifest[0].endswith('.png') and os.path.exists(file_manifest[0]))
file = None if not confirm else file_manifest[0]
return confirm, file
def lock_plugin(self, chatbot):
chatbot._cookies['lock_plugin'] = 'crazy_functions.Image_Generate->图片修改_DALLE2'
self.dump_state(chatbot)
def unlock_plugin(self, chatbot):
self.reset()
chatbot._cookies['lock_plugin'] = None
self.dump_state(chatbot)
def get_resolution(self, x):
return (x in ['256x256', '512x512', '1024x1024']), x
def get_prompt(self, x):
confirm = (len(x)>=5) and (not self.get_resolution(x)[0]) and (not self.get_image_file(x)[0])
return confirm, x
def reset(self):
self.req = [
{'value':None, 'description': '请先上传图像(必须是.png格式, 然后再次点击本插件', 'verify_fn': self.get_image_file},
{'value':None, 'description': '请输入分辨率,可选256x256, 512x512 或 1024x1024, 然后再次点击本插件', 'verify_fn': self.get_resolution},
{'value':None, 'description': '请输入修改需求,建议您使用英文提示词, 然后再次点击本插件', 'verify_fn': self.get_prompt},
]
self.info = ""
def feed(self, prompt, chatbot):
for r in self.req:
if r['value'] is None:
confirm, res = r['verify_fn'](prompt)
if confirm:
r['value'] = res
self.dump_state(chatbot)
break
return self
def next_req(self):
for r in self.req:
if r['value'] is None:
return r['description']
return "已经收集到所有信息"
def already_obtained_all_materials(self):
return all([x['value'] is not None for x in self.req])
@CatchException
def 图片修改_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
# 尚未完成
history = [] # 清空历史
state = ImageEditState.get_state(chatbot, ImageEditState)
state = state.feed(prompt, chatbot)
state.lock_plugin(chatbot)
if not state.already_obtained_all_materials():
chatbot.append(["图片修改\n\n1. 上传图片图片中需要修改的位置用橡皮擦擦除为纯白色,即RGB=255,255,255\n2. 输入分辨率 \n3. 输入修改需求", state.next_req()])
yield from update_ui(chatbot=chatbot, history=history)
return
image_path = state.req[0]['value']
resolution = state.req[1]['value']
prompt = state.req[2]['value']
chatbot.append(["图片修改, 执行中", f"图片:`{image_path}`<br/>分辨率:`{resolution}`<br/>修改需求:`{prompt}`"])
yield from update_ui(chatbot=chatbot, history=history)
image_url, image_path = edit_image(llm_kwargs, prompt, image_path, resolution)
chatbot.append([prompt,
f'图像中转网址: <br/>`{image_url}`<br/>'+
f'中转网址预览: <br/><div align="center"><img src="{image_url}"></div>'
f'本地文件地址: <br/>`{image_path}`<br/>'+
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
state.unlock_plugin(chatbot)
def make_transparent(input_image_path, output_image_path):
from PIL import Image
image = Image.open(input_image_path)
image = image.convert("RGBA")
data = image.getdata()
new_data = []
for item in data:
if item[0] == 255 and item[1] == 255 and item[2] == 255:
new_data.append((255, 255, 255, 0))
else:
new_data.append(item)
image.putdata(new_data)
image.save(output_image_path, "PNG")
def resize_image(input_path, output_path, max_size=1024):
from PIL import Image
with Image.open(input_path) as img:
width, height = img.size
if width > max_size or height > max_size:
if width >= height:
new_width = max_size
new_height = int((max_size / width) * height)
else:
new_height = max_size
new_width = int((max_size / height) * width)
resized_img = img.resize(size=(new_width, new_height))
resized_img.save(output_path)
else:
img.save(output_path)
def make_square_image(input_path, output_path):
from PIL import Image
with Image.open(input_path) as img:
width, height = img.size
size = max(width, height)
new_img = Image.new("RGBA", (size, size), color="black")
new_img.paste(img, ((size - width) // 2, (size - height) // 2))
new_img.save(output_path)

查看文件

@@ -0,0 +1,56 @@
from toolbox import get_conf, update_ui
from crazy_functions.Image_Generate import 图片生成_DALLE2, 图片生成_DALLE3, 图片修改_DALLE2
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
class ImageGen_Wrap(GptAcademicPluginTemplate):
def __init__(self):
"""
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
"""
pass
def define_arg_selection_menu(self):
"""
定义插件的二级选项菜单
第一个参数,名称`main_input`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
第二个参数,名称`advanced_arg`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
"""
gui_definition = {
"main_input":
ArgProperty(title="输入图片描述", description="需要生成图像的文本描述,尽量使用英文", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
"model_name":
ArgProperty(title="模型", options=["DALLE2", "DALLE3"], default_value="DALLE3", description="", type="dropdown").model_dump_json(),
"resolution":
ArgProperty(title="分辨率", options=["256x256(限DALLE2)", "512x512(限DALLE2)", "1024x1024", "1792x1024(限DALLE3)", "1024x1792(限DALLE3)"], default_value="1024x1024", description="", type="dropdown").model_dump_json(),
"quality (仅DALLE3生效)":
ArgProperty(title="质量", options=["standard", "hd"], default_value="standard", description="", type="dropdown").model_dump_json(),
"style (仅DALLE3生效)":
ArgProperty(title="风格", options=["vivid", "natural"], default_value="vivid", description="", type="dropdown").model_dump_json(),
}
return gui_definition
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
执行插件
"""
# 分辨率
resolution = plugin_kwargs["resolution"].replace("(限DALLE2)", "").replace("(限DALLE3)", "")
if plugin_kwargs["model_name"] == "DALLE2":
plugin_kwargs["advanced_arg"] = resolution
yield from 图片生成_DALLE2(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
elif plugin_kwargs["model_name"] == "DALLE3":
quality = plugin_kwargs["quality (仅DALLE3生效)"]
style = plugin_kwargs["style (仅DALLE3生效)"]
plugin_kwargs["advanced_arg"] = f"{resolution}-{quality}-{style}"
yield from 图片生成_DALLE3(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
else:
chatbot.append([None, "抱歉,找不到该模型"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

查看文件

@@ -0,0 +1,311 @@
import requests
import random
import time
import re
import json
from bs4 import BeautifulSoup
from functools import lru_cache
from itertools import zip_longest
from check_proxy import check_proxy
from toolbox import CatchException, update_ui, get_conf, update_ui_lastest_msg
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
from request_llms.bridge_all import model_info
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.prompts.internet import SearchOptimizerPrompt, SearchAcademicOptimizerPrompt
def search_optimizer(
query,
proxies,
history,
llm_kwargs,
optimizer=1,
categories="general",
searxng_url=None,
engines=None,
):
# ------------- < 第1步尝试进行搜索优化 > -------------
# * 增强优化,会尝试结合历史记录进行搜索优化
if optimizer == 2:
his = " "
if len(history) == 0:
pass
else:
for i, h in enumerate(history):
if i % 2 == 0:
his += f"Q: {h}\n"
else:
his += f"A: {h}\n"
if categories == "general":
sys_prompt = SearchOptimizerPrompt.format(query=query, history=his, num=4)
elif categories == "science":
sys_prompt = SearchAcademicOptimizerPrompt.format(query=query, history=his, num=4)
else:
his = " "
if categories == "general":
sys_prompt = SearchOptimizerPrompt.format(query=query, history=his, num=3)
elif categories == "science":
sys_prompt = SearchAcademicOptimizerPrompt.format(query=query, history=his, num=3)
mutable = ["", time.time(), ""]
llm_kwargs["temperature"] = 0.8
try:
querys_json = predict_no_ui_long_connection(
inputs=query,
llm_kwargs=llm_kwargs,
history=[],
sys_prompt=sys_prompt,
observe_window=mutable,
)
except Exception:
querys_json = "1234"
#* 尝试解码优化后的搜索结果
querys_json = re.sub(r"```json|```", "", querys_json)
try:
querys = json.loads(querys_json)
except Exception:
#* 如果解码失败,降低温度再试一次
try:
llm_kwargs["temperature"] = 0.4
querys_json = predict_no_ui_long_connection(
inputs=query,
llm_kwargs=llm_kwargs,
history=[],
sys_prompt=sys_prompt,
observe_window=mutable,
)
querys_json = re.sub(r"```json|```", "", querys_json)
querys = json.loads(querys_json)
except Exception:
#* 如果再次失败,直接返回原始问题
querys = [query]
links = []
success = 0
Exceptions = ""
for q in querys:
try:
link = searxng_request(q, proxies, categories, searxng_url, engines=engines)
if len(link) > 0:
links.append(link[:-5])
success += 1
except Exception:
Exceptions = Exception
pass
if success == 0:
raise ValueError(f"在线搜索失败!\n{Exceptions}")
# * 清洗搜索结果,依次放入每组第一,第二个搜索结果,并清洗重复的搜索结果
seen_links = set()
result = []
for tuple in zip_longest(*links, fillvalue=None):
for item in tuple:
if item is not None:
link = item["link"]
if link not in seen_links:
seen_links.add(link)
result.append(item)
return result
@lru_cache
def get_auth_ip():
ip = check_proxy(None, return_ip=True)
if ip is None:
return '114.114.114.' + str(random.randint(1, 10))
return ip
def searxng_request(query, proxies, categories='general', searxng_url=None, engines=None):
if searxng_url is None:
urls = get_conf("SEARXNG_URLS")
url = random.choice(urls)
else:
url = searxng_url
if engines == "Mixed":
engines = None
if categories == 'general':
params = {
'q': query, # 搜索查询
'format': 'json', # 输出格式为JSON
'language': 'zh', # 搜索语言
'engines': engines,
}
elif categories == 'science':
params = {
'q': query, # 搜索查询
'format': 'json', # 输出格式为JSON
'language': 'zh', # 搜索语言
'categories': 'science'
}
else:
raise ValueError('不支持的检索类型')
headers = {
'Accept-Language': 'zh-CN,zh;q=0.9',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36',
'X-Forwarded-For': get_auth_ip(),
'X-Real-IP': get_auth_ip()
}
results = []
response = requests.post(url, params=params, headers=headers, proxies=proxies, timeout=30)
if response.status_code == 200:
json_result = response.json()
for result in json_result['results']:
item = {
"title": result.get("title", ""),
"source": result.get("engines", "unknown"),
"content": result.get("content", ""),
"link": result["url"],
}
results.append(item)
return results
else:
if response.status_code == 429:
raise ValueError("Searxng在线搜索服务当前使用人数太多,请稍后。")
else:
raise ValueError("在线搜索失败,状态码: " + str(response.status_code) + '\t' + response.content.decode('utf-8'))
def scrape_text(url, proxies) -> str:
"""Scrape text from a webpage
Args:
url (str): The URL to scrape text from
Returns:
str: The scraped text
"""
headers = {
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36',
'Content-Type': 'text/plain',
}
try:
response = requests.get(url, headers=headers, proxies=proxies, timeout=8)
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding
except:
return "无法连接到该网页"
soup = BeautifulSoup(response.text, "html.parser")
for script in soup(["script", "style"]):
script.extract()
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = "\n".join(chunk for chunk in chunks if chunk)
return text
def internet_search_with_analysis_prompt(prompt, analysis_prompt, llm_kwargs, chatbot):
from toolbox import get_conf
proxies = get_conf('proxies')
categories = 'general'
searxng_url = None # 使用默认的searxng_url
engines = None # 使用默认的搜索引擎
yield from update_ui_lastest_msg(lastmsg=f"检索中: {prompt} ...", chatbot=chatbot, history=[], delay=1)
urls = searxng_request(prompt, proxies, categories, searxng_url, engines=engines)
yield from update_ui_lastest_msg(lastmsg=f"依次访问搜索到的网站 ...", chatbot=chatbot, history=[], delay=1)
if len(urls) == 0:
return None
max_search_result = 5 # 最多收纳多少个网页的结果
history = []
for index, url in enumerate(urls[:max_search_result]):
yield from update_ui_lastest_msg(lastmsg=f"依次访问搜索到的网站: {url['link']} ...", chatbot=chatbot, history=[], delay=1)
res = scrape_text(url['link'], proxies)
prefix = f"{index}份搜索结果 [源自{url['source'][0]}搜索] {url['title'][:25]}"
history.extend([prefix, res])
i_say = f"从以上搜索结果中抽取信息,然后回答问题:{prompt} {analysis_prompt}"
i_say, history = input_clipping( # 裁剪输入,从最长的条目开始裁剪,防止爆token
inputs=i_say,
history=history,
max_token_limit=8192
)
gpt_say = predict_no_ui_long_connection(
inputs=i_say,
llm_kwargs=llm_kwargs,
history=history,
sys_prompt="请从搜索结果中抽取信息,对最相关的两个搜索结果进行总结,然后回答问题。",
console_slience=False,
)
return gpt_say
@CatchException
def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
optimizer_history = history[:-8]
history = [] # 清空历史,以免输入溢出
chatbot.append((f"请结合互联网信息回答以下问题:{txt}", "检索中..."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# ------------- < 第1步爬取搜索引擎的结果 > -------------
from toolbox import get_conf
proxies = get_conf('proxies')
categories = plugin_kwargs.get('categories', 'general')
searxng_url = plugin_kwargs.get('searxng_url', None)
engines = plugin_kwargs.get('engine', None)
optimizer = plugin_kwargs.get('optimizer', "关闭")
if optimizer == "关闭":
urls = searxng_request(txt, proxies, categories, searxng_url, engines=engines)
else:
urls = search_optimizer(txt, proxies, optimizer_history, llm_kwargs, optimizer, categories, searxng_url, engines)
history = []
if len(urls) == 0:
chatbot.append((f"结论:{txt}",
"[Local Message] 受到限制,无法从searxng获取信息请尝试更换搜索引擎。"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# ------------- < 第2步依次访问网页 > -------------
max_search_result = 5 # 最多收纳多少个网页的结果
if optimizer == "开启(增强)":
max_search_result = 8
chatbot.append(["联网检索中 ...", None])
for index, url in enumerate(urls[:max_search_result]):
res = scrape_text(url['link'], proxies)
prefix = f"{index}份搜索结果 [源自{url['source'][0]}搜索] {url['title'][:25]}"
history.extend([prefix, res])
res_squeeze = res.replace('\n', '...')
chatbot[-1] = [prefix + "\n\n" + res_squeeze[:500] + "......", None]
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# ------------- < 第3步ChatGPT综合 > -------------
if (optimizer != "开启(增强)"):
i_say = f"从以上搜索结果中抽取信息,然后回答问题:{txt}"
i_say, history = input_clipping( # 裁剪输入,从最长的条目开始裁剪,防止爆token
inputs=i_say,
history=history,
max_token_limit=min(model_info[llm_kwargs['llm_model']]['max_token']*3//4, 8192)
)
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=i_say,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
sys_prompt="请从给定的若干条搜索结果中抽取信息,对最相关的两个搜索结果进行总结,然后回答问题。"
)
chatbot[-1] = (i_say, gpt_say)
history.append(i_say);history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
#* 或者使用搜索优化器,这样可以保证后续问答能读取到有效的历史记录
else:
i_say = f"从以上搜索结果中抽取与问题:{txt} 相关的信息:"
i_say, history = input_clipping( # 裁剪输入,从最长的条目开始裁剪,防止爆token
inputs=i_say,
history=history,
max_token_limit=min(model_info[llm_kwargs['llm_model']]['max_token']*3//4, 8192)
)
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=i_say,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
sys_prompt="请从给定的若干条搜索结果中抽取信息,对最相关的三个搜索结果进行总结"
)
chatbot[-1] = (i_say, gpt_say)
history = []
history.append(i_say);history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
# ------------- < 第4步根据综合回答问题 > -------------
i_say = f"请根据以上搜索结果回答问题:{txt}"
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=i_say,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
sys_prompt="请根据给定的若干条搜索结果回答问题"
)
chatbot[-1] = (i_say, gpt_say)
history.append(i_say);history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history)

查看文件

@@ -0,0 +1,48 @@
import random
from toolbox import get_conf
from crazy_functions.Internet_GPT import 连接网络回答问题
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
class NetworkGPT_Wrap(GptAcademicPluginTemplate):
def __init__(self):
"""
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
"""
pass
def define_arg_selection_menu(self):
"""
定义插件的二级选项菜单
第一个参数,名称`main_input`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
第二个参数,名称`advanced_arg`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
第三个参数,名称`allow_cache`,参数`type`声明这是一个下拉菜单,下拉菜单上方显示`title`+`description`,下拉菜单的选项为`options`,`default_value`为下拉菜单默认值;
"""
urls = get_conf("SEARXNG_URLS")
url = random.choice(urls)
gui_definition = {
"main_input":
ArgProperty(title="输入问题", description="待通过互联网检索的问题,会自动读取输入框内容", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
"categories":
ArgProperty(title="搜索分类", options=["网页", "学术论文"], default_value="网页", description="", type="dropdown").model_dump_json(),
"engine":
ArgProperty(title="选择搜索引擎", options=["Mixed", "bing", "google", "duckduckgo"], default_value="google", description="", type="dropdown").model_dump_json(),
"optimizer":
ArgProperty(title="搜索优化", options=["关闭", "开启", "开启(增强)"], default_value="关闭", description="是否使用搜索增强。注意这可能会消耗较多token", type="dropdown").model_dump_json(),
"searxng_url":
ArgProperty(title="Searxng服务地址", description="输入Searxng的地址", default_value=url, type="string").model_dump_json(), # 主输入,自动从输入框同步
}
return gui_definition
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
执行插件
"""
if plugin_kwargs["categories"] == "网页": plugin_kwargs["categories"] = "general"
if plugin_kwargs["categories"] == "学术论文": plugin_kwargs["categories"] = "science"
yield from 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)

查看文件

@@ -0,0 +1,595 @@
from toolbox import update_ui, trimmed_format_exc, get_conf, get_log_folder, promote_file_to_downloadzone, check_repeat_upload, map_file_to_sha256
from toolbox import CatchException, report_exception, update_ui_lastest_msg, zip_result, gen_time_str
from functools import partial
from loguru import logger
import glob, os, requests, time, json, tarfile, threading
pj = os.path.join
ARXIV_CACHE_DIR = get_conf("ARXIV_CACHE_DIR")
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- 工具函数 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
# 专业词汇声明 = 'If the term "agent" is used in this section, it should be translated to "智能体". '
def switch_prompt(pfg, mode, more_requirement):
"""
Generate prompts and system prompts based on the mode for proofreading or translating.
Args:
- pfg: Proofreader or Translator instance.
- mode: A string specifying the mode, either 'proofread' or 'translate_zh'.
Returns:
- inputs_array: A list of strings containing prompts for users to respond to.
- sys_prompt_array: A list of strings containing prompts for system prompts.
"""
n_split = len(pfg.sp_file_contents)
if mode == 'proofread_en':
inputs_array = [r"Below is a section from an academic paper, proofread this section." +
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " + more_requirement +
r"Answer me only with the revised text:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
elif mode == 'translate_zh':
inputs_array = [
r"Below is a section from an English academic paper, translate it into Chinese. " + more_requirement +
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " +
r"Answer me only with the translated text:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
sys_prompt_array = ["You are a professional translator." for _ in range(n_split)]
else:
assert False, "未知指令"
return inputs_array, sys_prompt_array
def desend_to_extracted_folder_if_exist(project_folder):
"""
Descend into the extracted folder if it exists, otherwise return the original folder.
Args:
- project_folder: A string specifying the folder path.
Returns:
- A string specifying the path to the extracted folder, or the original folder if there is no extracted folder.
"""
maybe_dir = [f for f in glob.glob(f'{project_folder}/*') if os.path.isdir(f)]
if len(maybe_dir) == 0: return project_folder
if maybe_dir[0].endswith('.extract'): return maybe_dir[0]
return project_folder
def move_project(project_folder, arxiv_id=None):
"""
Create a new work folder and copy the project folder to it.
Args:
- project_folder: A string specifying the folder path of the project.
Returns:
- A string specifying the path to the new work folder.
"""
import shutil, time
time.sleep(2) # avoid time string conflict
if arxiv_id is not None:
new_workfolder = pj(ARXIV_CACHE_DIR, arxiv_id, 'workfolder')
else:
new_workfolder = f'{get_log_folder()}/{gen_time_str()}'
try:
shutil.rmtree(new_workfolder)
except:
pass
# align subfolder if there is a folder wrapper
items = glob.glob(pj(project_folder, '*'))
items = [item for item in items if os.path.basename(item) != '__MACOSX']
if len(glob.glob(pj(project_folder, '*.tex'))) == 0 and len(items) == 1:
if os.path.isdir(items[0]): project_folder = items[0]
shutil.copytree(src=project_folder, dst=new_workfolder)
return new_workfolder
def arxiv_download(chatbot, history, txt, allow_cache=True):
def check_cached_translation_pdf(arxiv_id):
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'translation')
if not os.path.exists(translation_dir):
os.makedirs(translation_dir)
target_file = pj(translation_dir, 'translate_zh.pdf')
if os.path.exists(target_file):
promote_file_to_downloadzone(target_file, rename_file=None, chatbot=chatbot)
target_file_compare = pj(translation_dir, 'comparison.pdf')
if os.path.exists(target_file_compare):
promote_file_to_downloadzone(target_file_compare, rename_file=None, chatbot=chatbot)
return target_file
return False
def is_float(s):
try:
float(s)
return True
except ValueError:
return False
if txt.startswith('https://arxiv.org/pdf/'):
arxiv_id = txt.split('/')[-1] # 2402.14207v2.pdf
txt = arxiv_id.split('v')[0] # 2402.14207
if ('.' in txt) and ('/' not in txt) and is_float(txt): # is arxiv ID
txt = 'https://arxiv.org/abs/' + txt.strip()
if ('.' in txt) and ('/' not in txt) and is_float(txt[:10]): # is arxiv ID
txt = 'https://arxiv.org/abs/' + txt[:10]
if not txt.startswith('https://arxiv.org'):
return txt, None # 是本地文件,跳过下载
# <-------------- inspect format ------------->
chatbot.append([f"检测到arxiv文档连接", '尝试下载 ...'])
yield from update_ui(chatbot=chatbot, history=history)
time.sleep(1) # 刷新界面
url_ = txt # https://arxiv.org/abs/1707.06690
if not txt.startswith('https://arxiv.org/abs/'):
msg = f"解析arxiv网址失败, 期望格式例如: https://arxiv.org/abs/1707.06690。实际得到格式: {url_}"
yield from update_ui_lastest_msg(msg, chatbot=chatbot, history=history) # 刷新界面
return msg, None
# <-------------- set format ------------->
arxiv_id = url_.split('/abs/')[-1]
if 'v' in arxiv_id: arxiv_id = arxiv_id[:10]
cached_translation_pdf = check_cached_translation_pdf(arxiv_id)
if cached_translation_pdf and allow_cache: return cached_translation_pdf, arxiv_id
extract_dst = pj(ARXIV_CACHE_DIR, arxiv_id, 'extract')
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'e-print')
dst = pj(translation_dir, arxiv_id + '.tar')
os.makedirs(translation_dir, exist_ok=True)
# <-------------- download arxiv source file ------------->
def fix_url_and_download():
# for url_tar in [url_.replace('/abs/', '/e-print/'), url_.replace('/abs/', '/src/')]:
for url_tar in [url_.replace('/abs/', '/src/'), url_.replace('/abs/', '/e-print/')]:
proxies = get_conf('proxies')
r = requests.get(url_tar, proxies=proxies)
if r.status_code == 200:
with open(dst, 'wb+') as f:
f.write(r.content)
return True
return False
if os.path.exists(dst) and allow_cache:
yield from update_ui_lastest_msg(f"调用缓存 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
success = True
else:
yield from update_ui_lastest_msg(f"开始下载 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
success = fix_url_and_download()
yield from update_ui_lastest_msg(f"下载完成 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
if not success:
yield from update_ui_lastest_msg(f"下载失败 {arxiv_id}", chatbot=chatbot, history=history)
raise tarfile.ReadError(f"论文下载失败 {arxiv_id}")
# <-------------- extract file ------------->
from toolbox import extract_archive
try:
extract_archive(file_path=dst, dest_dir=extract_dst)
except tarfile.ReadError:
os.remove(dst)
raise tarfile.ReadError(f"论文下载失败")
return extract_dst, arxiv_id
def pdf2tex_project(pdf_file_path, plugin_kwargs):
if plugin_kwargs["method"] == "MATHPIX":
# Mathpix API credentials
app_id, app_key = get_conf('MATHPIX_APPID', 'MATHPIX_APPKEY')
headers = {"app_id": app_id, "app_key": app_key}
# Step 1: Send PDF file for processing
options = {
"conversion_formats": {"tex.zip": True},
"math_inline_delimiters": ["$", "$"],
"rm_spaces": True
}
response = requests.post(url="https://api.mathpix.com/v3/pdf",
headers=headers,
data={"options_json": json.dumps(options)},
files={"file": open(pdf_file_path, "rb")})
if response.ok:
pdf_id = response.json()["pdf_id"]
logger.info(f"PDF processing initiated. PDF ID: {pdf_id}")
# Step 2: Check processing status
while True:
conversion_response = requests.get(f"https://api.mathpix.com/v3/pdf/{pdf_id}", headers=headers)
conversion_data = conversion_response.json()
if conversion_data["status"] == "completed":
logger.info("PDF processing completed.")
break
elif conversion_data["status"] == "error":
logger.info("Error occurred during processing.")
else:
logger.info(f"Processing status: {conversion_data['status']}")
time.sleep(5) # wait for a few seconds before checking again
# Step 3: Save results to local files
output_dir = os.path.join(os.path.dirname(pdf_file_path), 'mathpix_output')
if not os.path.exists(output_dir):
os.makedirs(output_dir)
url = f"https://api.mathpix.com/v3/pdf/{pdf_id}.tex"
response = requests.get(url, headers=headers)
file_name_wo_dot = '_'.join(os.path.basename(pdf_file_path).split('.')[:-1])
output_name = f"{file_name_wo_dot}.tex.zip"
output_path = os.path.join(output_dir, output_name)
with open(output_path, "wb") as output_file:
output_file.write(response.content)
logger.info(f"tex.zip file saved at: {output_path}")
import zipfile
unzip_dir = os.path.join(output_dir, file_name_wo_dot)
with zipfile.ZipFile(output_path, 'r') as zip_ref:
zip_ref.extractall(unzip_dir)
return unzip_dir
else:
logger.error(f"Error sending PDF for processing. Status code: {response.status_code}")
return None
else:
from crazy_functions.pdf_fns.parse_pdf_via_doc2x import 解析PDF_DOC2X_转Latex
unzip_dir = 解析PDF_DOC2X_转Latex(pdf_file_path)
return unzip_dir
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序1 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
@CatchException
def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
# <-------------- information about this plugin ------------->
chatbot.append(["函数插件功能?",
"对整个Latex项目进行纠错, 用latex编译为PDF对修正处做高亮。函数插件贡献者: Binary-Husky。注意事项: 目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。仅在Windows系统进行了测试,其他操作系统表现未知。"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# <-------------- more requirements ------------->
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
more_req = plugin_kwargs.get("advanced_arg", "")
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
# <-------------- check deps ------------->
try:
import glob, os, time, subprocess
subprocess.Popen(['pdflatex', '-version'])
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
except Exception as e:
chatbot.append([f"解析项目: {txt}",
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# <-------------- clear history and read input ------------->
history = []
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# <-------------- if is a zip/tar file ------------->
project_folder = desend_to_extracted_folder_if_exist(project_folder)
# <-------------- move latex project away from temp folder ------------->
from shared_utils.fastapi_server import validate_path_safety
validate_path_safety(project_folder, chatbot.get_user())
project_folder = move_project(project_folder, arxiv_id=None)
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
if not os.path.exists(project_folder + '/merge_proofread_en.tex'):
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
chatbot, history, system_prompt, mode='proofread_en',
switch_prompt=_switch_prompt_)
# <-------------- compile PDF ------------->
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
main_file_modified='merge_proofread_en',
work_folder_original=project_folder, work_folder_modified=project_folder,
work_folder=project_folder)
# <-------------- zip PDF ------------->
zip_res = zip_result(project_folder)
if success:
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
yield from update_ui(chatbot=chatbot, history=history);
time.sleep(1) # 刷新界面
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
else:
chatbot.append((f"失败了",
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 也是可读的, 您可以到Github Issue区, 用该压缩包+Conversation_To_File进行反馈 ...'))
yield from update_ui(chatbot=chatbot, history=history);
time.sleep(1) # 刷新界面
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
# <-------------- we are done ------------->
return success
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序2 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
@CatchException
def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
# <-------------- information about this plugin ------------->
chatbot.append([
"函数插件功能?",
"对整个Latex项目进行翻译, 生成中文PDF。函数插件贡献者: Binary-Husky。注意事项: 此插件Windows支持最佳,Linux下必须使用Docker安装,详见项目主README.md。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# <-------------- more requirements ------------->
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
more_req = plugin_kwargs.get("advanced_arg", "")
no_cache = ("--no-cache" in more_req)
if no_cache: more_req = more_req.replace("--no-cache", "").strip()
allow_gptac_cloud_io = ("--allow-cloudio" in more_req) # 从云端下载翻译结果,以及上传翻译结果到云端
if allow_gptac_cloud_io: more_req = more_req.replace("--allow-cloudio", "").strip()
allow_cache = not no_cache
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
# <-------------- check deps ------------->
try:
import glob, os, time, subprocess
subprocess.Popen(['pdflatex', '-version'])
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
except Exception as e:
chatbot.append([f"解析项目: {txt}",
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# <-------------- clear history and read input ------------->
history = []
try:
txt, arxiv_id = yield from arxiv_download(chatbot, history, txt, allow_cache)
except tarfile.ReadError as e:
yield from update_ui_lastest_msg(
"无法自动下载该论文的Latex源码,请前往arxiv打开此论文下载页面,点other Formats,然后download source手动下载latex源码包。接下来调用本地Latex翻译插件即可。",
chatbot=chatbot, history=history)
return
if txt.endswith('.pdf'):
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"发现已经存在翻译好的PDF文档")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# #################################################################
if allow_gptac_cloud_io and arxiv_id:
# 访问 GPTAC学术云,查询云端是否存在该论文的翻译版本
from crazy_functions.latex_fns.latex_actions import check_gptac_cloud
success, downloaded = check_gptac_cloud(arxiv_id, chatbot)
if success:
chatbot.append([
f"检测到GPTAC云端存在翻译版本, 如果不满意翻译结果, 请禁用云端分享, 然后重新执行。",
None
])
yield from update_ui(chatbot=chatbot, history=history)
return
#################################################################
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无法处理: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# <-------------- if is a zip/tar file ------------->
project_folder = desend_to_extracted_folder_if_exist(project_folder)
# <-------------- move latex project away from temp folder ------------->
from shared_utils.fastapi_server import validate_path_safety
validate_path_safety(project_folder, chatbot.get_user())
project_folder = move_project(project_folder, arxiv_id)
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
if not os.path.exists(project_folder + '/merge_translate_zh.tex'):
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
chatbot, history, system_prompt, mode='translate_zh',
switch_prompt=_switch_prompt_)
# <-------------- compile PDF ------------->
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
main_file_modified='merge_translate_zh', mode='translate_zh',
work_folder_original=project_folder, work_folder_modified=project_folder,
work_folder=project_folder)
# <-------------- zip PDF ------------->
zip_res = zip_result(project_folder)
if success:
if allow_gptac_cloud_io and arxiv_id:
# 如果用户允许,我们将翻译好的arxiv论文PDF上传到GPTAC学术云
from crazy_functions.latex_fns.latex_actions import upload_to_gptac_cloud_if_user_allow
threading.Thread(target=upload_to_gptac_cloud_if_user_allow,
args=(chatbot, arxiv_id), daemon=True).start()
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
yield from update_ui(chatbot=chatbot, history=history)
time.sleep(1) # 刷新界面
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
else:
chatbot.append((f"失败了",
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体见Github wiki ...'))
yield from update_ui(chatbot=chatbot, history=history)
time.sleep(1) # 刷新界面
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
# <-------------- we are done ------------->
return success
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- 插件主程序3 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
@CatchException
def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# <-------------- information about this plugin ------------->
chatbot.append([
"函数插件功能?",
"将PDF转换为Latex项目,翻译为中文后重新编译为PDF。函数插件贡献者: Marroh。注意事项: 此插件Windows支持最佳,Linux下必须使用Docker安装,详见项目主README.md。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# <-------------- more requirements ------------->
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
more_req = plugin_kwargs.get("advanced_arg", "")
no_cache = more_req.startswith("--no-cache")
if no_cache: more_req.lstrip("--no-cache")
allow_cache = not no_cache
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
# <-------------- check deps ------------->
try:
import glob, os, time, subprocess
subprocess.Popen(['pdflatex', '-version'])
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
except Exception as e:
chatbot.append([f"解析项目: {txt}",
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# <-------------- clear history and read input ------------->
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无法处理: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)]
if len(file_manifest) == 0:
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.pdf文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
if len(file_manifest) != 1:
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"不支持同时处理多个pdf文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
if plugin_kwargs.get("method", "") == 'MATHPIX':
app_id, app_key = get_conf('MATHPIX_APPID', 'MATHPIX_APPKEY')
if len(app_id) == 0 or len(app_key) == 0:
report_exception(chatbot, history, a="缺失 MATHPIX_APPID 和 MATHPIX_APPKEY。", b=f"请配置 MATHPIX_APPID 和 MATHPIX_APPKEY")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
if plugin_kwargs.get("method", "") == 'DOC2X':
app_id, app_key = "", ""
DOC2X_API_KEY = get_conf('DOC2X_API_KEY')
if len(DOC2X_API_KEY) == 0:
report_exception(chatbot, history, a="缺失 DOC2X_API_KEY。", b=f"请配置 DOC2X_API_KEY")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
hash_tag = map_file_to_sha256(file_manifest[0])
# # <-------------- check repeated pdf ------------->
# chatbot.append([f"检查PDF是否被重复上传", "正在检查..."])
# yield from update_ui(chatbot=chatbot, history=history)
# repeat, project_folder = check_repeat_upload(file_manifest[0], hash_tag)
# if repeat:
# yield from update_ui_lastest_msg(f"发现重复上传,请查收结果(压缩包)...", chatbot=chatbot, history=history)
# try:
# translate_pdf = [f for f in glob.glob(f'{project_folder}/**/merge_translate_zh.pdf', recursive=True)][0]
# promote_file_to_downloadzone(translate_pdf, rename_file=None, chatbot=chatbot)
# comparison_pdf = [f for f in glob.glob(f'{project_folder}/**/comparison.pdf', recursive=True)][0]
# promote_file_to_downloadzone(comparison_pdf, rename_file=None, chatbot=chatbot)
# zip_res = zip_result(project_folder)
# promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
# return
# except:
# report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"发现重复上传,但是无法找到相关文件")
# yield from update_ui(chatbot=chatbot, history=history)
# else:
# yield from update_ui_lastest_msg(f"未发现重复上传", chatbot=chatbot, history=history)
# <-------------- convert pdf into tex ------------->
chatbot.append([f"解析项目: {txt}", "正在将PDF转换为tex项目,请耐心等待..."])
yield from update_ui(chatbot=chatbot, history=history)
project_folder = pdf2tex_project(file_manifest[0], plugin_kwargs)
if project_folder is None:
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"PDF转换为tex项目失败")
yield from update_ui(chatbot=chatbot, history=history)
return False
# <-------------- translate latex file into Chinese ------------->
yield from update_ui_lastest_msg("正在tex项目将翻译为中文...", chatbot=chatbot, history=history)
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# <-------------- if is a zip/tar file ------------->
project_folder = desend_to_extracted_folder_if_exist(project_folder)
# <-------------- move latex project away from temp folder ------------->
from shared_utils.fastapi_server import validate_path_safety
validate_path_safety(project_folder, chatbot.get_user())
project_folder = move_project(project_folder)
# <-------------- set a hash tag for repeat-checking ------------->
with open(pj(project_folder, hash_tag + '.tag'), 'w', encoding='utf8') as f:
f.write(hash_tag)
f.close()
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
if not os.path.exists(project_folder + '/merge_translate_zh.tex'):
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
chatbot, history, system_prompt, mode='translate_zh',
switch_prompt=_switch_prompt_)
# <-------------- compile PDF ------------->
yield from update_ui_lastest_msg("正在将翻译好的项目tex项目编译为PDF...", chatbot=chatbot, history=history)
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
main_file_modified='merge_translate_zh', mode='translate_zh',
work_folder_original=project_folder, work_folder_modified=project_folder,
work_folder=project_folder)
# <-------------- zip PDF ------------->
zip_res = zip_result(project_folder)
if success:
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
yield from update_ui(chatbot=chatbot, history=history);
time.sleep(1) # 刷新界面
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
else:
chatbot.append((f"失败了",
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体见Github wiki ...'))
yield from update_ui(chatbot=chatbot, history=history);
time.sleep(1) # 刷新界面
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
# <-------------- we are done ------------->
return success

查看文件

@@ -0,0 +1,85 @@
from crazy_functions.Latex_Function import Latex翻译中文并重新编译PDF, PDF翻译中文并重新编译PDF
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
class Arxiv_Localize(GptAcademicPluginTemplate):
def __init__(self):
"""
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
"""
pass
def define_arg_selection_menu(self):
"""
定义插件的二级选项菜单
第一个参数,名称`main_input`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
第二个参数,名称`advanced_arg`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
第三个参数,名称`allow_cache`,参数`type`声明这是一个下拉菜单,下拉菜单上方显示`title`+`description`,下拉菜单的选项为`options`,`default_value`为下拉菜单默认值;
"""
gui_definition = {
"main_input":
ArgProperty(title="ArxivID", description="输入Arxiv的ID或者网址", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
"advanced_arg":
ArgProperty(title="额外的翻译提示词",
description=r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步
"allow_cache":
ArgProperty(title="是否允许从缓存中调取结果", options=["允许缓存", "从头执行"], default_value="允许缓存", description="", type="dropdown").model_dump_json(),
"allow_cloudio":
ArgProperty(title="是否允许从GPTAC学术云下载(或者上传)翻译结果(仅针对Arxiv论文)", options=["允许", "禁止"], default_value="禁止", description="共享文献,互助互利", type="dropdown").model_dump_json(),
}
return gui_definition
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
执行插件
"""
allow_cache = plugin_kwargs["allow_cache"]
allow_cloudio = plugin_kwargs["allow_cloudio"]
advanced_arg = plugin_kwargs["advanced_arg"]
if allow_cache == "从头执行": plugin_kwargs["advanced_arg"] = "--no-cache " + plugin_kwargs["advanced_arg"]
# 从云端下载翻译结果,以及上传翻译结果到云端;人人为我,我为人人。
if allow_cloudio == "允许": plugin_kwargs["advanced_arg"] = "--allow-cloudio " + plugin_kwargs["advanced_arg"]
yield from Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
class PDF_Localize(GptAcademicPluginTemplate):
def __init__(self):
"""
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
"""
pass
def define_arg_selection_menu(self):
"""
定义插件的二级选项菜单
"""
gui_definition = {
"main_input":
ArgProperty(title="PDF文件路径", description="未指定路径,请上传文件后,再点击该插件", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
"advanced_arg":
ArgProperty(title="额外的翻译提示词",
description=r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步
"method":
ArgProperty(title="采用哪种方法执行转换", options=["MATHPIX", "DOC2X"], default_value="DOC2X", description="", type="dropdown").model_dump_json(),
}
return gui_definition
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
执行插件
"""
yield from PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)

查看文件

@@ -1,6 +1,6 @@
from toolbox import update_ui, trimmed_format_exc, promote_file_to_downloadzone, get_log_folder
from toolbox import CatchException, report_execption, write_history_to_file, zip_folder
from toolbox import CatchException, report_exception, write_history_to_file, zip_folder
from loguru import logger
class PaperFileGroup():
def __init__(self):
@@ -11,7 +11,7 @@ class PaperFileGroup():
self.sp_file_tag = []
# count_token
from request_llm.bridge_all import model_info
from request_llms.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
self.get_token_num = get_token_num
@@ -26,14 +26,14 @@ class PaperFileGroup():
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit)
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
print('Segmentation: done')
logger.info('Segmentation: done')
def merge_result(self):
self.file_result = ["" for _ in range(len(self.file_paths))]
for r, k in zip(self.sp_file_result, self.sp_file_index):
@@ -56,7 +56,7 @@ class PaperFileGroup():
def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en', mode='polish'):
import time, os, re
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
@@ -81,8 +81,8 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
# <-------- 多线程润色开始 ---------->
if language == 'en':
if mode == 'polish':
inputs_array = ["Below is a section from an academic paper, polish this section to meet the academic standard, " +
"improve the grammar, clarity and overall readability, do not modify any latex command such as \section, \cite and equations:" +
inputs_array = [r"Below is a section from an academic paper, polish this section to meet the academic standard, " +
r"improve the grammar, clarity and overall readability, do not modify any latex command such as \section, \cite and equations:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
else:
inputs_array = [r"Below is a section from an academic paper, proofread this section." +
@@ -93,10 +93,10 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
elif language == 'zh':
if mode == 'polish':
inputs_array = [f"以下是一篇学术论文中的一段内容,请将此部分润色以满足学术标准,提高语法、清晰度和整体可读性,不要修改任何LaTeX命令,例如\section,\cite和方程式" +
inputs_array = [r"以下是一篇学术论文中的一段内容,请将此部分润色以满足学术标准,提高语法、清晰度和整体可读性,不要修改任何LaTeX命令,例如\section,\cite和方程式" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
else:
inputs_array = [f"以下是一篇学术论文中的一段内容,请对这部分内容进行语法矫正。不要修改任何LaTeX命令,例如\section,\cite和方程式" +
inputs_array = [r"以下是一篇学术论文中的一段内容,请对这部分内容进行语法矫正。不要修改任何LaTeX命令,例如\section,\cite和方程式" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"润色 {f}" for f in pfg.sp_file_tag]
sys_prompt_array=["你是一位专业的中文学术论文作家。" for _ in range(n_split)]
@@ -122,7 +122,7 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
pfg.write_result()
pfg.zip_result()
except:
print(trimmed_format_exc())
logger.error(trimmed_format_exc())
# <-------- 整理结果,退出 ---------->
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
@@ -135,18 +135,18 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
@CatchException
def Latex英文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def Latex英文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"对整个Latex项目进行润色。函数插件贡献者: Binary-Husky。注意,此插件不调用Latex,如果有Latex环境,请使用Latex英文纠错+高亮插件"])
"对整个Latex项目进行润色。函数插件贡献者: Binary-Husky。注意,此插件不调用Latex,如果有Latex环境,请使用Latex英文纠错+高亮修正位置(需Latex)插件"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -157,12 +157,12 @@ def Latex英文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en')
@@ -173,7 +173,7 @@ def Latex英文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
@CatchException
def Latex中文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def Latex中文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
@@ -184,7 +184,7 @@ def Latex中文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
try:
import tiktoken
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -195,12 +195,12 @@ def Latex中文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh')
@@ -209,7 +209,7 @@ def Latex中文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
@CatchException
def Latex英文纠错(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def Latex英文纠错(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
@@ -220,7 +220,7 @@ def Latex英文纠错(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
try:
import tiktoken
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -231,12 +231,12 @@ def Latex英文纠错(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en', mode='proofread')

查看文件

@@ -1,6 +1,6 @@
from toolbox import update_ui, promote_file_to_downloadzone
from toolbox import CatchException, report_execption, write_history_to_file
fast_debug = False
from toolbox import CatchException, report_exception, write_history_to_file
from loguru import logger
class PaperFileGroup():
def __init__(self):
@@ -11,7 +11,7 @@ class PaperFileGroup():
self.sp_file_tag = []
# count_token
from request_llm.bridge_all import model_info
from request_llms.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
self.get_token_num = get_token_num
@@ -26,18 +26,18 @@ class PaperFileGroup():
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit)
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
print('Segmentation: done')
logger.info('Segmentation: done')
def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
import time, os, re
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
pfg = PaperFileGroup()
@@ -106,7 +106,7 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
@CatchException
def Latex英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def Latex英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
@@ -117,7 +117,7 @@ def Latex英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
try:
import tiktoken
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -128,12 +128,12 @@ def Latex英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en->zh')
@@ -143,7 +143,7 @@ def Latex英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
@CatchException
def Latex中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def Latex中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
@@ -154,7 +154,7 @@ def Latex中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
try:
import tiktoken
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -165,12 +165,12 @@ def Latex中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh->en')

查看文件

@@ -1,303 +0,0 @@
from toolbox import update_ui, trimmed_format_exc, get_conf, get_log_folder, promote_file_to_downloadzone
from toolbox import CatchException, report_execption, update_ui_lastest_msg, zip_result, gen_time_str
from functools import partial
import glob, os, requests, time
pj = os.path.join
ARXIV_CACHE_DIR = os.path.expanduser(f"~/arxiv_cache/")
# =================================== 工具函数 ===============================================
# 专业词汇声明 = 'If the term "agent" is used in this section, it should be translated to "智能体". '
def switch_prompt(pfg, mode, more_requirement):
"""
Generate prompts and system prompts based on the mode for proofreading or translating.
Args:
- pfg: Proofreader or Translator instance.
- mode: A string specifying the mode, either 'proofread' or 'translate_zh'.
Returns:
- inputs_array: A list of strings containing prompts for users to respond to.
- sys_prompt_array: A list of strings containing prompts for system prompts.
"""
n_split = len(pfg.sp_file_contents)
if mode == 'proofread_en':
inputs_array = [r"Below is a section from an academic paper, proofread this section." +
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " + more_requirement +
r"Answer me only with the revised text:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
elif mode == 'translate_zh':
inputs_array = [r"Below is a section from an English academic paper, translate it into Chinese. " + more_requirement +
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " +
r"Answer me only with the translated text:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
sys_prompt_array = ["You are a professional translator." for _ in range(n_split)]
else:
assert False, "未知指令"
return inputs_array, sys_prompt_array
def desend_to_extracted_folder_if_exist(project_folder):
"""
Descend into the extracted folder if it exists, otherwise return the original folder.
Args:
- project_folder: A string specifying the folder path.
Returns:
- A string specifying the path to the extracted folder, or the original folder if there is no extracted folder.
"""
maybe_dir = [f for f in glob.glob(f'{project_folder}/*') if os.path.isdir(f)]
if len(maybe_dir) == 0: return project_folder
if maybe_dir[0].endswith('.extract'): return maybe_dir[0]
return project_folder
def move_project(project_folder, arxiv_id=None):
"""
Create a new work folder and copy the project folder to it.
Args:
- project_folder: A string specifying the folder path of the project.
Returns:
- A string specifying the path to the new work folder.
"""
import shutil, time
time.sleep(2) # avoid time string conflict
if arxiv_id is not None:
new_workfolder = pj(ARXIV_CACHE_DIR, arxiv_id, 'workfolder')
else:
new_workfolder = f'{get_log_folder()}/{gen_time_str()}'
try:
shutil.rmtree(new_workfolder)
except:
pass
# align subfolder if there is a folder wrapper
items = glob.glob(pj(project_folder,'*'))
if len(glob.glob(pj(project_folder,'*.tex'))) == 0 and len(items) == 1:
if os.path.isdir(items[0]): project_folder = items[0]
shutil.copytree(src=project_folder, dst=new_workfolder)
return new_workfolder
def arxiv_download(chatbot, history, txt, allow_cache=True):
def check_cached_translation_pdf(arxiv_id):
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'translation')
if not os.path.exists(translation_dir):
os.makedirs(translation_dir)
target_file = pj(translation_dir, 'translate_zh.pdf')
if os.path.exists(target_file):
promote_file_to_downloadzone(target_file, rename_file=None, chatbot=chatbot)
return target_file
return False
def is_float(s):
try:
float(s)
return True
except ValueError:
return False
if ('.' in txt) and ('/' not in txt) and is_float(txt): # is arxiv ID
txt = 'https://arxiv.org/abs/' + txt.strip()
if ('.' in txt) and ('/' not in txt) and is_float(txt[:10]): # is arxiv ID
txt = 'https://arxiv.org/abs/' + txt[:10]
if not txt.startswith('https://arxiv.org'):
return txt, None
# <-------------- inspect format ------------->
chatbot.append([f"检测到arxiv文档连接", '尝试下载 ...'])
yield from update_ui(chatbot=chatbot, history=history)
time.sleep(1) # 刷新界面
url_ = txt # https://arxiv.org/abs/1707.06690
if not txt.startswith('https://arxiv.org/abs/'):
msg = f"解析arxiv网址失败, 期望格式例如: https://arxiv.org/abs/1707.06690。实际得到格式: {url_}"
yield from update_ui_lastest_msg(msg, chatbot=chatbot, history=history) # 刷新界面
return msg, None
# <-------------- set format ------------->
arxiv_id = url_.split('/abs/')[-1]
if 'v' in arxiv_id: arxiv_id = arxiv_id[:10]
cached_translation_pdf = check_cached_translation_pdf(arxiv_id)
if cached_translation_pdf and allow_cache: return cached_translation_pdf, arxiv_id
url_tar = url_.replace('/abs/', '/e-print/')
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'e-print')
extract_dst = pj(ARXIV_CACHE_DIR, arxiv_id, 'extract')
os.makedirs(translation_dir, exist_ok=True)
# <-------------- download arxiv source file ------------->
dst = pj(translation_dir, arxiv_id+'.tar')
if os.path.exists(dst):
yield from update_ui_lastest_msg("调用缓存", chatbot=chatbot, history=history) # 刷新界面
else:
yield from update_ui_lastest_msg("开始下载", chatbot=chatbot, history=history) # 刷新界面
proxies, = get_conf('proxies')
r = requests.get(url_tar, proxies=proxies)
with open(dst, 'wb+') as f:
f.write(r.content)
# <-------------- extract file ------------->
yield from update_ui_lastest_msg("下载完成", chatbot=chatbot, history=history) # 刷新界面
from toolbox import extract_archive
extract_archive(file_path=dst, dest_dir=extract_dst)
return extract_dst, arxiv_id
# ========================================= 插件主程序1 =====================================================
@CatchException
def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# <-------------- information about this plugin ------------->
chatbot.append([ "函数插件功能?",
"对整个Latex项目进行纠错, 用latex编译为PDF对修正处做高亮。函数插件贡献者: Binary-Husky。注意事项: 目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。仅在Windows系统进行了测试,其他操作系统表现未知。"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# <-------------- more requirements ------------->
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
more_req = plugin_kwargs.get("advanced_arg", "")
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
# <-------------- check deps ------------->
try:
import glob, os, time, subprocess
subprocess.Popen(['pdflatex', '-version'])
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
except Exception as e:
chatbot.append([ f"解析项目: {txt}",
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# <-------------- clear history and read input ------------->
history = []
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# <-------------- if is a zip/tar file ------------->
project_folder = desend_to_extracted_folder_if_exist(project_folder)
# <-------------- move latex project away from temp folder ------------->
project_folder = move_project(project_folder, arxiv_id=None)
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
if not os.path.exists(project_folder + '/merge_proofread_en.tex'):
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
chatbot, history, system_prompt, mode='proofread_en', switch_prompt=_switch_prompt_)
# <-------------- compile PDF ------------->
success = yield from 编译Latex(chatbot, history, main_file_original='merge', main_file_modified='merge_proofread_en',
work_folder_original=project_folder, work_folder_modified=project_folder, work_folder=project_folder)
# <-------------- zip PDF ------------->
zip_res = zip_result(project_folder)
if success:
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
else:
chatbot.append((f"失败了", '虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 也是可读的, 您可以到Github Issue区, 用该压缩包+对话历史存档进行反馈 ...'))
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
# <-------------- we are done ------------->
return success
# ========================================= 插件主程序2 =====================================================
@CatchException
def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# <-------------- information about this plugin ------------->
chatbot.append([
"函数插件功能?",
"对整个Latex项目进行翻译, 生成中文PDF。函数插件贡献者: Binary-Husky。注意事项: 此插件Windows支持最佳,Linux下必须使用Docker安装,详见项目主README.md。目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# <-------------- more requirements ------------->
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
more_req = plugin_kwargs.get("advanced_arg", "")
no_cache = more_req.startswith("--no-cache")
if no_cache: more_req.lstrip("--no-cache")
allow_cache = not no_cache
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
# <-------------- check deps ------------->
try:
import glob, os, time, subprocess
subprocess.Popen(['pdflatex', '-version'])
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
except Exception as e:
chatbot.append([ f"解析项目: {txt}",
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# <-------------- clear history and read input ------------->
history = []
txt, arxiv_id = yield from arxiv_download(chatbot, history, txt, allow_cache)
if txt.endswith('.pdf'):
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"发现已经存在翻译好的PDF文档")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无法处理: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# <-------------- if is a zip/tar file ------------->
project_folder = desend_to_extracted_folder_if_exist(project_folder)
# <-------------- move latex project away from temp folder ------------->
project_folder = move_project(project_folder, arxiv_id)
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
if not os.path.exists(project_folder + '/merge_translate_zh.tex'):
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
chatbot, history, system_prompt, mode='translate_zh', switch_prompt=_switch_prompt_)
# <-------------- compile PDF ------------->
success = yield from 编译Latex(chatbot, history, main_file_original='merge', main_file_modified='merge_translate_zh', mode='translate_zh',
work_folder_original=project_folder, work_folder_modified=project_folder, work_folder=project_folder)
# <-------------- zip PDF ------------->
zip_res = zip_result(project_folder)
if success:
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
else:
chatbot.append((f"失败了", '虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体见Github wiki ...'))
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
# <-------------- we are done ------------->
return success

查看文件

@@ -1,6 +1,7 @@
import glob, time, os, re, logging
from toolbox import update_ui, trimmed_format_exc, gen_time_str, disable_auto_promotion
from toolbox import CatchException, report_execption, get_log_folder
import glob, shutil, os, re
from loguru import logger
from toolbox import update_ui, trimmed_format_exc, gen_time_str
from toolbox import CatchException, report_exception, get_log_folder
from toolbox import write_history_to_file, promote_file_to_downloadzone
fast_debug = False
@@ -13,12 +14,12 @@ class PaperFileGroup():
self.sp_file_tag = []
# count_token
from request_llm.bridge_all import model_info
from request_llms.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
self.get_token_num = get_token_num
def run_file_split(self, max_token_limit=1900):
def run_file_split(self, max_token_limit=2048):
"""
将长文本分离开来
"""
@@ -28,13 +29,13 @@ class PaperFileGroup():
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit)
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.md")
logging.info('Segmentation: done')
logger.info('Segmentation: done')
def merge_result(self):
self.file_result = ["" for _ in range(len(self.file_paths))]
@@ -51,7 +52,7 @@ class PaperFileGroup():
return manifest
def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
# <-------- 读取Markdown文件,删除其中的所有注释 ---------->
pfg = PaperFileGroup()
@@ -64,25 +65,25 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
pfg.file_contents.append(file_content)
# <-------- 拆分过长的Markdown文件 ---------->
pfg.run_file_split(max_token_limit=1500)
pfg.run_file_split(max_token_limit=1024)
n_split = len(pfg.sp_file_contents)
# <-------- 多线程翻译开始 ---------->
if language == 'en->zh':
inputs_array = ["This is a Markdown file, translate it into Chinese, do not modify any existing Markdown commands:" +
inputs_array = ["This is a Markdown file, translate it into Chinese, do NOT modify any existing Markdown commands, do NOT use code wrapper (```), ONLY answer me with translated results:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
sys_prompt_array = ["You are a professional academic paper translator." + plugin_kwargs.get("additional_prompt", "") for _ in range(n_split)]
elif language == 'zh->en':
inputs_array = [f"This is a Markdown file, translate it into English, do not modify any existing Markdown commands:" +
inputs_array = [f"This is a Markdown file, translate it into English, do NOT modify any existing Markdown commands, do NOT use code wrapper (```), ONLY answer me with translated results:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
sys_prompt_array = ["You are a professional academic paper translator." + plugin_kwargs.get("additional_prompt", "") for _ in range(n_split)]
else:
inputs_array = [f"This is a Markdown file, translate it into {language}, do not modify any existing Markdown commands, only answer me with translated results:" +
inputs_array = [f"This is a Markdown file, translate it into {language}, do NOT modify any existing Markdown commands, do NOT use code wrapper (```), ONLY answer me with translated results:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
sys_prompt_array = ["You are a professional academic paper translator." + plugin_kwargs.get("additional_prompt", "") for _ in range(n_split)]
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
@@ -99,9 +100,14 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
for i_say, gpt_say in zip(gpt_response_collection[0::2], gpt_response_collection[1::2]):
pfg.sp_file_result.append(gpt_say)
pfg.merge_result()
pfg.write_result(language)
output_file_arr = pfg.write_result(language)
for output_file in output_file_arr:
promote_file_to_downloadzone(output_file, chatbot=chatbot)
if 'markdown_expected_output_path' in plugin_kwargs:
expected_f_name = plugin_kwargs['markdown_expected_output_path']
shutil.copyfile(output_file, expected_f_name)
except:
logging.error(trimmed_format_exc())
logger.error(trimmed_format_exc())
# <-------- 整理结果,退出 ---------->
create_report_file_name = gen_time_str() + f"-chatgpt.md"
@@ -118,10 +124,10 @@ def get_files_from_everything(txt, preference=''):
if txt.startswith('http'):
import requests
from toolbox import get_conf
proxies, = get_conf('proxies')
proxies = get_conf('proxies')
# 网络的远程文件
if preference == 'Github':
logging.info('正在从github下载资源 ...')
logger.info('正在从github下载资源 ...')
if not txt.endswith('.md'):
# Make a request to the GitHub API to retrieve the repository information
url = txt.replace("https://github.com/", "https://api.github.com/repos/") + '/readme'
@@ -153,19 +159,18 @@ def get_files_from_everything(txt, preference=''):
@CatchException
def Markdown英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def Markdown英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
disable_auto_promotion(chatbot)
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -177,12 +182,12 @@ def Markdown英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
if not success:
# 什么都没有
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
@@ -193,19 +198,18 @@ def Markdown英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
@CatchException
def Markdown中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def Markdown中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
disable_auto_promotion(chatbot)
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -215,30 +219,29 @@ def Markdown中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
if not success:
# 什么都没有
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh->en')
@CatchException
def Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
disable_auto_promotion(chatbot)
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -248,11 +251,11 @@ def Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history,
if not success:
# 什么都没有
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return

查看文件

@@ -0,0 +1,83 @@
from toolbox import CatchException, check_packages, get_conf
from toolbox import update_ui, update_ui_lastest_msg, disable_auto_promotion
from toolbox import trimmed_format_exc_markdown
from crazy_functions.crazy_utils import get_files_from_everything
from crazy_functions.pdf_fns.parse_pdf import get_avail_grobid_url
from crazy_functions.pdf_fns.parse_pdf_via_doc2x import 解析PDF_基于DOC2X
from crazy_functions.pdf_fns.parse_pdf_legacy import 解析PDF_简单拆解
from crazy_functions.pdf_fns.parse_pdf_grobid import 解析PDF_基于GROBID
from shared_utils.colorful import *
@CatchException
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
disable_auto_promotion(chatbot)
# 基本信息:功能、贡献者
chatbot.append([None, "插件功能批量翻译PDF文档。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
check_packages(["fitz", "tiktoken", "scipdf"])
except:
chatbot.append([None, f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf tiktoken scipdf_parser```。"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 清空历史,以免输入溢出
history = []
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf')
# 检测输入参数,如没有给定输入参数,直接退出
if (not success) and txt == "": txt = '空空如也的输入栏。提示请先上传文件把PDF文件拖入对话'
# 如果没找到任何文件
if len(file_manifest) == 0:
chatbot.append([None, f"找不到任何.pdf拓展名的文件: {txt}"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 开始正式执行任务
method = plugin_kwargs.get("pdf_parse_method", None)
if method == "DOC2X":
# ------- 第一种方法,效果最好,但是需要DOC2X服务 -------
DOC2X_API_KEY = get_conf("DOC2X_API_KEY")
if len(DOC2X_API_KEY) != 0:
try:
yield from 解析PDF_基于DOC2X(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, DOC2X_API_KEY, user_request)
return
except:
chatbot.append([None, f"DOC2X服务不可用,请检查报错详细。{trimmed_format_exc_markdown()}"])
yield from update_ui(chatbot=chatbot, history=history)
if method == "GROBID":
# ------- 第二种方法,效果次优 -------
grobid_url = get_avail_grobid_url()
if grobid_url is not None:
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
return
if method == "ClASSIC":
# ------- 第三种方法,早期代码,效果不理想 -------
yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
yield from 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
return
if method is None:
# ------- 以上三种方法都试一遍 -------
DOC2X_API_KEY = get_conf("DOC2X_API_KEY")
if len(DOC2X_API_KEY) != 0:
try:
yield from 解析PDF_基于DOC2X(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, DOC2X_API_KEY, user_request)
return
except:
chatbot.append([None, f"DOC2X服务不可用,正在尝试GROBID。{trimmed_format_exc_markdown()}"])
yield from update_ui(chatbot=chatbot, history=history)
grobid_url = get_avail_grobid_url()
if grobid_url is not None:
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
return
yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
yield from 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
return

查看文件

@@ -0,0 +1,33 @@
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
from .PDF_Translate import 批量翻译PDF文档
class PDF_Tran(GptAcademicPluginTemplate):
def __init__(self):
"""
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
"""
pass
def define_arg_selection_menu(self):
"""
定义插件的二级选项菜单
"""
gui_definition = {
"main_input":
ArgProperty(title="PDF文件路径", description="未指定路径,请上传文件后,再点击该插件", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
"additional_prompt":
ArgProperty(title="额外提示词", description="例如:对专有名词、翻译语气等方面的要求", default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步
"pdf_parse_method":
ArgProperty(title="PDF解析方法", options=["DOC2X", "GROBID", "ClASSIC"], description="", default_value="GROBID", type="dropdown").model_dump_json(),
}
return gui_definition
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
执行插件
"""
main_input = plugin_kwargs["main_input"]
additional_prompt = plugin_kwargs["additional_prompt"]
pdf_parse_method = plugin_kwargs["pdf_parse_method"]
yield from 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)

查看文件

@@ -0,0 +1,153 @@
import os,glob
from typing import List
from shared_utils.fastapi_server import validate_path_safety
from toolbox import report_exception
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
from shared_utils.fastapi_server import validate_path_safety
from crazy_functions.crazy_utils import input_clipping
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
RAG_WORKER_REGISTER = {}
MAX_HISTORY_ROUND = 5
MAX_CONTEXT_TOKEN_LIMIT = 4096
REMEMBER_PREVIEW = 1000
@CatchException
def handle_document_upload(files: List[str], llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request, rag_worker):
"""
Handles document uploads by extracting text and adding it to the vector store.
"""
from llama_index.core import Document
from crazy_functions.rag_fns.rag_file_support import extract_text, supports_format
user_name = chatbot.get_user()
checkpoint_dir = get_log_folder(user_name, plugin_name='experimental_rag')
for file_path in files:
try:
validate_path_safety(file_path, user_name)
text = extract_text(file_path)
if text is None:
chatbot.append(
[f"上传文件: {os.path.basename(file_path)}", f"文件解析失败,无法提取文本内容,请更换文件。失败原因可能为1.文档格式过于复杂;2. 不支持的文件格式,支持的文件格式后缀有:" + ", ".join(supports_format)])
else:
chatbot.append(
[f"上传文件: {os.path.basename(file_path)}", f"上传文件前50个字符为:{text[:50]}"])
document = Document(text=text, metadata={"source": file_path})
rag_worker.add_documents_to_vector_store([document])
chatbot.append([f"上传文件: {os.path.basename(file_path)}", "文件已成功添加到知识库。"])
except Exception as e:
report_exception(chatbot, history, a=f"处理文件: {file_path}", b=str(e))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# Main Q&A function with document upload support
@CatchException
def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
# import vector store lib
VECTOR_STORE_TYPE = "Milvus"
if VECTOR_STORE_TYPE == "Milvus":
try:
from crazy_functions.rag_fns.milvus_worker import MilvusRagWorker as LlamaIndexRagWorker
except:
VECTOR_STORE_TYPE = "Simple"
if VECTOR_STORE_TYPE == "Simple":
from crazy_functions.rag_fns.llama_index_worker import LlamaIndexRagWorker
# 1. we retrieve rag worker from global context
user_name = chatbot.get_user()
checkpoint_dir = get_log_folder(user_name, plugin_name='experimental_rag')
if user_name in RAG_WORKER_REGISTER:
rag_worker = RAG_WORKER_REGISTER[user_name]
else:
rag_worker = RAG_WORKER_REGISTER[user_name] = LlamaIndexRagWorker(
user_name,
llm_kwargs,
checkpoint_dir=checkpoint_dir,
auto_load_checkpoint=True
)
current_context = f"{VECTOR_STORE_TYPE} @ {checkpoint_dir}"
tip = "提示输入“清空向量数据库”可以清空RAG向量数据库"
# 2. Handle special commands
if os.path.exists(txt) and os.path.isdir(txt):
project_folder = txt
validate_path_safety(project_folder, chatbot.get_user())
# Extract file paths from the user input
# Assuming the user inputs file paths separated by commas after the command
file_paths = [f for f in glob.glob(f'{project_folder}/**/*', recursive=True)]
chatbot.append([txt, f'正在处理上传的文档 ({current_context}) ...'])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
yield from handle_document_upload(file_paths, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request, rag_worker)
return
elif txt == "清空向量数据库":
chatbot.append([txt, f'正在清空 ({current_context}) ...'])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
rag_worker.purge_vector_store()
yield from update_ui_lastest_msg('已清空', chatbot, history, delay=0) # 刷新界面
return
# 3. Normal Q&A processing
chatbot.append([txt, f'正在召回知识 ({current_context}) ...'])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 4. Clip history to reduce token consumption
txt_origin = txt
if len(history) > MAX_HISTORY_ROUND * 2:
history = history[-(MAX_HISTORY_ROUND * 2):]
txt_clip, history, flags = input_clipping(txt, history, max_token_limit=MAX_CONTEXT_TOKEN_LIMIT, return_clip_flags=True)
input_is_clipped_flag = (flags["original_input_len"] != flags["clipped_input_len"])
# 5. If input is clipped, add input to vector store before retrieve
if input_is_clipped_flag:
yield from update_ui_lastest_msg('检测到长输入, 正在向量化 ...', chatbot, history, delay=0) # 刷新界面
# Save input to vector store
rag_worker.add_text_to_vector_store(txt_origin)
yield from update_ui_lastest_msg('向量化完成 ...', chatbot, history, delay=0) # 刷新界面
if len(txt_origin) > REMEMBER_PREVIEW:
HALF = REMEMBER_PREVIEW // 2
i_say_to_remember = txt[:HALF] + f" ...\n...(省略{len(txt_origin)-REMEMBER_PREVIEW}字)...\n... " + txt[-HALF:]
if (flags["original_input_len"] - flags["clipped_input_len"]) > HALF:
txt_clip = txt_clip + f" ...\n...(省略{len(txt_origin)-len(txt_clip)-HALF}字)...\n... " + txt[-HALF:]
else:
i_say_to_remember = i_say = txt_clip
else:
i_say_to_remember = i_say = txt_clip
# 6. Search vector store and build prompts
nodes = rag_worker.retrieve_from_store_with_query(i_say)
prompt = rag_worker.build_prompt(query=i_say, nodes=nodes)
# 7. Query language model
if len(chatbot) != 0:
chatbot.pop(-1) # Pop temp chat, because we are going to add them again inside `request_gpt_model_in_new_thread_with_ui_alive`
model_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=prompt,
inputs_show_user=i_say,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=history,
sys_prompt=system_prompt,
retry_times_at_unknown_error=0
)
# 8. Remember Q&A
yield from update_ui_lastest_msg(
model_say + '</br></br>' + f'对话记忆中, 请稍等 ({current_context}) ...',
chatbot, history, delay=0.5
)
rag_worker.remember_qa(i_say_to_remember, model_say)
history.extend([i_say, model_say])
# 9. Final UI Update
yield from update_ui_lastest_msg(model_say, chatbot, history, delay=0, msg=tip)

查看文件

@@ -0,0 +1,167 @@
import pickle, os, random
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
from crazy_functions.crazy_utils import input_clipping
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.json_fns.select_tool import structure_output, select_tool
from pydantic import BaseModel, Field
from loguru import logger
from typing import List
SOCIAL_NETWOK_WORKER_REGISTER = {}
class SocialNetwork():
def __init__(self):
self.people = []
class SaveAndLoad():
def __init__(self, user_name, llm_kwargs, auto_load_checkpoint=True, checkpoint_dir=None) -> None:
self.user_name = user_name
self.checkpoint_dir = checkpoint_dir
if auto_load_checkpoint:
self.social_network = self.load_from_checkpoint(checkpoint_dir)
else:
self.social_network = SocialNetwork()
def does_checkpoint_exist(self, checkpoint_dir=None):
import os, glob
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
if not os.path.exists(checkpoint_dir): return False
if len(glob.glob(os.path.join(checkpoint_dir, "social_network.pkl"))) == 0: return False
return True
def save_to_checkpoint(self, checkpoint_dir=None):
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
with open(os.path.join(checkpoint_dir, 'social_network.pkl'), "wb+") as f:
pickle.dump(self.social_network, f)
return
def load_from_checkpoint(self, checkpoint_dir=None):
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
if self.does_checkpoint_exist(checkpoint_dir=checkpoint_dir):
with open(os.path.join(checkpoint_dir, 'social_network.pkl'), "rb") as f:
social_network = pickle.load(f)
return social_network
else:
return SocialNetwork()
class Friend(BaseModel):
friend_name: str = Field(description="name of a friend")
friend_description: str = Field(description="description of a friend (everything about this friend)")
friend_relationship: str = Field(description="The relationship with a friend (e.g. friend, family, colleague)")
class FriendList(BaseModel):
friends_list: List[Friend] = Field(description="The list of friends")
class SocialNetworkWorker(SaveAndLoad):
def ai_socail_advice(self, prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type):
pass
def ai_remove_friend(self, prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type):
pass
def ai_list_friends(self, prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type):
pass
def ai_add_multi_friends(self, prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type):
friend, err_msg = structure_output(
txt=prompt,
prompt="根据提示, 解析多个联系人的身份信息\n\n",
err_msg=f"不能理解该联系人",
run_gpt_fn=run_gpt_fn,
pydantic_cls=FriendList
)
if friend.friends_list:
for f in friend.friends_list:
self.add_friend(f)
msg = f"成功添加{len(friend.friends_list)}个联系人: {str(friend.friends_list)}"
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=0)
def run(self, txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
prompt = txt
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
self.tools_to_select = {
"SocialAdvice":{
"explain_to_llm": "如果用户希望获取社交指导,调用SocialAdvice生成一些社交建议",
"callback": self.ai_socail_advice,
},
"AddFriends":{
"explain_to_llm": "如果用户给出了联系人,调用AddMultiFriends把联系人添加到数据库",
"callback": self.ai_add_multi_friends,
},
"RemoveFriend":{
"explain_to_llm": "如果用户希望移除某个联系人,调用RemoveFriend",
"callback": self.ai_remove_friend,
},
"ListFriends":{
"explain_to_llm": "如果用户列举联系人,调用ListFriends",
"callback": self.ai_list_friends,
}
}
try:
Explaination = '\n'.join([f'{k}: {v["explain_to_llm"]}' for k, v in self.tools_to_select.items()])
class UserSociaIntention(BaseModel):
intention_type: str = Field(
description=
f"The type of user intention. You must choose from {self.tools_to_select.keys()}.\n\n"
f"Explaination:\n{Explaination}",
default="SocialAdvice"
)
pydantic_cls_instance, err_msg = select_tool(
prompt=txt,
run_gpt_fn=run_gpt_fn,
pydantic_cls=UserSociaIntention
)
except Exception as e:
yield from update_ui_lastest_msg(
lastmsg=f"无法理解用户意图 {err_msg}",
chatbot=chatbot,
history=history,
delay=0
)
return
intention_type = pydantic_cls_instance.intention_type
intention_callback = self.tools_to_select[pydantic_cls_instance.intention_type]['callback']
yield from intention_callback(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type)
def add_friend(self, friend):
# check whether the friend is already in the social network
for f in self.social_network.people:
if f.friend_name == friend.friend_name:
f.friend_description = friend.friend_description
f.friend_relationship = friend.friend_relationship
logger.info(f"Repeated friend, update info: {friend}")
return
logger.info(f"Add a new friend: {friend}")
self.social_network.people.append(friend)
return
@CatchException
def I人助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
# 1. we retrieve worker from global context
user_name = chatbot.get_user()
checkpoint_dir=get_log_folder(user_name, plugin_name='experimental_rag')
if user_name in SOCIAL_NETWOK_WORKER_REGISTER:
social_network_worker = SOCIAL_NETWOK_WORKER_REGISTER[user_name]
else:
social_network_worker = SOCIAL_NETWOK_WORKER_REGISTER[user_name] = SocialNetworkWorker(
user_name,
llm_kwargs,
checkpoint_dir=checkpoint_dir,
auto_load_checkpoint=True
)
# 2. save
yield from social_network_worker.run(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
social_network_worker.save_to_checkpoint(checkpoint_dir)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

查看文件

@@ -1,12 +1,12 @@
from toolbox import update_ui, promote_file_to_downloadzone, disable_auto_promotion
from toolbox import CatchException, report_execption, write_history_to_file
from .crazy_utils import input_clipping
from toolbox import update_ui, promote_file_to_downloadzone
from toolbox import CatchException, report_exception, write_history_to_file
from shared_utils.fastapi_server import validate_path_safety
from crazy_functions.crazy_utils import input_clipping
def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
import os, copy
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
disable_auto_promotion(chatbot=chatbot)
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
summary_batch_isolation = True
inputs_array = []
@@ -23,7 +23,7 @@ def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
file_content = f.read()
prefix = "接下来请你逐文件分析下面的工程" if index==0 else ""
i_say = prefix + f'请对下面的程序文件做一个概述文件名是{os.path.relpath(fp, project_folder)},文件代码是 ```{file_content}```'
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的程序文件做一个概述: {fp}'
i_say_show_user = prefix + f'[{index+1}/{len(file_manifest)}] 请对下面的程序文件做一个概述: {fp}'
# 装载请求内容
inputs_array.append(i_say)
inputs_show_user_array.append(i_say_show_user)
@@ -83,7 +83,8 @@ def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
history=this_iteration_history_feed, # 迭代之前的分析
sys_prompt="你是一个程序架构分析师,正在分析一个项目的源代码。" + sys_prompt_additional)
summary = "请用一句话概括这些文件的整体功能"
diagram_code = make_diagram(this_iteration_files, result, this_iteration_history_feed)
summary = "请用一句话概括这些文件的整体功能。\n\n" + diagram_code
summary_result = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=summary,
inputs_show_user=summary,
@@ -104,85 +105,92 @@ def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
chatbot.append(("完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history_to_return) # 刷新界面
def make_diagram(this_iteration_files, result, this_iteration_history_feed):
from crazy_functions.diagram_fns.file_tree import build_file_tree_mermaid_diagram
return build_file_tree_mermaid_diagram(this_iteration_history_feed[0::2], this_iteration_history_feed[1::2], "项目示意图")
@CatchException
def 解析项目本身(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 解析项目本身(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
history = [] # 清空历史,以免输入溢出
import glob
file_manifest = [f for f in glob.glob('./*.py')] + \
[f for f in glob.glob('./*/*.py')]
project_folder = './'
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何python文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何python文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 解析一个Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
validate_path_safety(project_folder, chatbot.get_user())
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.py', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何python文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何python文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个Matlab项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 解析一个Matlab项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
validate_path_safety(project_folder, chatbot.get_user())
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析Matlab项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析Matlab项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.m', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析Matlab项目: {txt}", b = f"找不到任何`.m`源文件: {txt}")
report_exception(chatbot, history, a = f"解析Matlab项目: {txt}", b = f"找不到任何`.m`源文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个C项目的头文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 解析一个C项目的头文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
validate_path_safety(project_folder, chatbot.get_user())
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.h', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.hpp', recursive=True)] #+ \
# [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.h头文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.h头文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个C项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 解析一个C项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
validate_path_safety(project_folder, chatbot.get_user())
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.h', recursive=True)] + \
@@ -190,21 +198,22 @@ def 解析一个C项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system
[f for f in glob.glob(f'{project_folder}/**/*.hpp', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.h头文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.h头文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个Java项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 解析一个Java项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
validate_path_safety(project_folder, chatbot.get_user())
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.java', recursive=True)] + \
@@ -212,21 +221,22 @@ def 解析一个Java项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys
[f for f in glob.glob(f'{project_folder}/**/*.xml', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.sh', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何java文件: {txt}")
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何java文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个前端项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 解析一个前端项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
validate_path_safety(project_folder, chatbot.get_user())
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.ts', recursive=True)] + \
@@ -241,21 +251,22 @@ def 解析一个前端项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
[f for f in glob.glob(f'{project_folder}/**/*.css', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.jsx', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何前端相关文件: {txt}")
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何前端相关文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个Golang项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 解析一个Golang项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
validate_path_safety(project_folder, chatbot.get_user())
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.go', recursive=True)] + \
@@ -263,40 +274,42 @@ def 解析一个Golang项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
[f for f in glob.glob(f'{project_folder}/**/go.sum', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/go.work', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何golang文件: {txt}")
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何golang文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个Rust项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 解析一个Rust项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
validate_path_safety(project_folder, chatbot.get_user())
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.rs', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.toml', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.lock', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何golang文件: {txt}")
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何golang文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个Lua项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 解析一个Lua项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
validate_path_safety(project_folder, chatbot.get_user())
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.lua', recursive=True)] + \
@@ -304,34 +317,35 @@ def 解析一个Lua项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
[f for f in glob.glob(f'{project_folder}/**/*.json', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.toml', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何lua文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何lua文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个CSharp项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 解析一个CSharp项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
validate_path_safety(project_folder, chatbot.get_user())
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.cs', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.csproj', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何CSharp文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何CSharp文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析任意code项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 解析任意code项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
txt_pattern = plugin_kwargs.get("advanced_arg")
txt_pattern = txt_pattern.replace("", ",")
# 将要匹配的模式(例如: *.c, *.cpp, *.py, config.toml)
@@ -341,18 +355,22 @@ def 解析任意code项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys
pattern_except_suffix = [_.lstrip(" ^*.,").rstrip(" ,") for _ in txt_pattern.split(" ") if _ != "" and _.strip().startswith("^*.")]
pattern_except_suffix += ['zip', 'rar', '7z', 'tar', 'gz'] # 避免解析压缩文件
# 将要忽略匹配的文件名(例如: ^README.md)
pattern_except_name = [_.lstrip(" ^*,").rstrip(" ,").replace(".", "\.") for _ in txt_pattern.split(" ") if _ != "" and _.strip().startswith("^") and not _.strip().startswith("^*.")]
pattern_except_name = [_.lstrip(" ^*,").rstrip(" ,").replace(".", r"\.") # 移除左边通配符,移除右侧逗号,转义点号
for _ in txt_pattern.split(" ") # 以空格分割
if (_ != "" and _.strip().startswith("^") and not _.strip().startswith("^*.")) # ^开始,但不是^*.开始
]
# 生成正则表达式
pattern_except = '/[^/]+\.(' + "|".join(pattern_except_suffix) + ')$'
pattern_except = r'/[^/]+\.(' + "|".join(pattern_except_suffix) + ')$'
pattern_except += '|/(' + "|".join(pattern_except_name) + ')$' if pattern_except_name != [] else ''
history.clear()
import glob, os, re
if os.path.exists(txt):
project_folder = txt
validate_path_safety(project_folder, chatbot.get_user())
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 若上传压缩文件, 先寻找到解压的文件夹路径, 从而避免解析压缩文件
@@ -365,7 +383,7 @@ def 解析任意code项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys
file_manifest = [f for pattern in pattern_include for f in glob.glob(f'{extract_folder_path}/**/{pattern}', recursive=True) if "" != extract_folder_path and \
os.path.isfile(f) and (not re.search(pattern_except, f) or pattern.endswith('.' + re.search(pattern_except, f).group().split('.')[-1]))]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

查看文件

@@ -0,0 +1,162 @@
import os, copy, time
from toolbox import CatchException, report_exception, update_ui, zip_result, promote_file_to_downloadzone, update_ui_lastest_msg, get_conf, generate_file_link
from shared_utils.fastapi_server import validate_path_safety
from crazy_functions.crazy_utils import input_clipping
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from crazy_functions.agent_fns.python_comment_agent import PythonCodeComment
from crazy_functions.diagram_fns.file_tree import FileNode
from crazy_functions.agent_fns.watchdog import WatchDog
from shared_utils.advanced_markdown_format import markdown_convertion_for_file
from loguru import logger
def 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
summary_batch_isolation = True
inputs_array = []
inputs_show_user_array = []
history_array = []
sys_prompt_array = []
assert len(file_manifest) <= 512, "源文件太多超过512个, 请缩减输入文件的数量。或者,您也可以选择删除此行警告,并修改代码拆分file_manifest列表,从而实现分批次处理。"
# 建立文件树
file_tree_struct = FileNode("root", build_manifest=True)
for file_path in file_manifest:
file_tree_struct.add_file(file_path, file_path)
# <第一步,逐个文件分析,多线程>
lang = "" if not plugin_kwargs["use_chinese"] else " (you must use Chinese)"
for index, fp in enumerate(file_manifest):
# 读取文件
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
prefix = ""
i_say = prefix + f'Please conclude the following source code at {os.path.relpath(fp, project_folder)} with only one sentence{lang}, the code is:\n```{file_content}```'
i_say_show_user = prefix + f'[{index+1}/{len(file_manifest)}] 请用一句话对下面的程序文件做一个整体概述: {fp}'
# 装载请求内容
MAX_TOKEN_SINGLE_FILE = 2560
i_say, _ = input_clipping(inputs=i_say, history=[], max_token_limit=MAX_TOKEN_SINGLE_FILE)
inputs_array.append(i_say)
inputs_show_user_array.append(i_say_show_user)
history_array.append([])
sys_prompt_array.append(f"You are a software architecture analyst analyzing a source code project. Do not dig into details, tell me what the code is doing in general. Your answer must be short, simple and clear{lang}.")
# 文件读取完成,对每一个源代码文件,生成一个请求线程,发送到大模型进行分析
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array = inputs_array,
inputs_show_user_array = inputs_show_user_array,
history_array = history_array,
sys_prompt_array = sys_prompt_array,
llm_kwargs = llm_kwargs,
chatbot = chatbot,
show_user_at_complete = True
)
# <第二步,逐个文件分析,生成带注释文件>
tasks = ["" for _ in range(len(file_manifest))]
def bark_fn(tasks):
for i in range(len(tasks)): tasks[i] = "watchdog is dead"
wd = WatchDog(timeout=10, bark_fn=lambda: bark_fn(tasks), interval=3, msg="ThreadWatcher timeout")
wd.begin_watch()
from concurrent.futures import ThreadPoolExecutor
executor = ThreadPoolExecutor(max_workers=get_conf('DEFAULT_WORKER_NUM'))
def _task_multi_threading(i_say, gpt_say, fp, file_tree_struct, index):
language = 'Chinese' if plugin_kwargs["use_chinese"] else 'English'
def observe_window_update(x):
if tasks[index] == "watchdog is dead":
raise TimeoutError("ThreadWatcher: watchdog is dead")
tasks[index] = x
pcc = PythonCodeComment(llm_kwargs, plugin_kwargs, language=language, observe_window_update=observe_window_update)
pcc.read_file(path=fp, brief=gpt_say)
revised_path, revised_content = pcc.begin_comment_source_code(None, None)
file_tree_struct.manifest[fp].revised_path = revised_path
file_tree_struct.manifest[fp].revised_content = revised_content
# <将结果写回源文件>
with open(fp, 'w', encoding='utf-8') as f:
f.write(file_tree_struct.manifest[fp].revised_content)
# <生成对比html>
with open("crazy_functions/agent_fns/python_comment_compare.html", 'r', encoding='utf-8') as f:
html_template = f.read()
warp = lambda x: "```python\n\n" + x + "\n\n```"
from themes.theme import load_dynamic_theme
_, advanced_css, _, _ = load_dynamic_theme("Default")
html_template = html_template.replace("ADVANCED_CSS", advanced_css)
html_template = html_template.replace("REPLACE_CODE_FILE_LEFT", pcc.get_markdown_block_in_html(markdown_convertion_for_file(warp(pcc.original_content))))
html_template = html_template.replace("REPLACE_CODE_FILE_RIGHT", pcc.get_markdown_block_in_html(markdown_convertion_for_file(warp(revised_content))))
compare_html_path = fp + '.compare.html'
file_tree_struct.manifest[fp].compare_html = compare_html_path
with open(compare_html_path, 'w', encoding='utf-8') as f:
f.write(html_template)
tasks[index] = ""
chatbot.append([None, f"正在处理:"])
futures = []
index = 0
for i_say, gpt_say, fp in zip(gpt_response_collection[0::2], gpt_response_collection[1::2], file_manifest):
future = executor.submit(_task_multi_threading, i_say, gpt_say, fp, file_tree_struct, index)
index += 1
futures.append(future)
# <第三步,等待任务完成>
cnt = 0
while True:
cnt += 1
wd.feed()
time.sleep(3)
worker_done = [h.done() for h in futures]
remain = len(worker_done) - sum(worker_done)
# <展示已经完成的部分>
preview_html_list = []
for done, fp in zip(worker_done, file_manifest):
if not done: continue
if hasattr(file_tree_struct.manifest[fp], 'compare_html'):
preview_html_list.append(file_tree_struct.manifest[fp].compare_html)
else:
logger.error(f"文件: {fp} 的注释结果未能成功")
file_links = generate_file_link(preview_html_list)
yield from update_ui_lastest_msg(
f"当前任务: <br/>{'<br/>'.join(tasks)}.<br/>" +
f"剩余源文件数量: {remain}.<br/>" +
f"已完成的文件: {sum(worker_done)}.<br/>" +
file_links +
"<br/>" +
''.join(['.']*(cnt % 10 + 1)
), chatbot=chatbot, history=history, delay=0)
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
if all(worker_done):
executor.shutdown()
break
# <第四步,压缩结果>
zip_res = zip_result(project_folder)
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
# <END>
chatbot.append((None, "所有源文件均已处理完毕。"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@CatchException
def 注释Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
history = [] # 清空历史,以免输入溢出
plugin_kwargs["use_chinese"] = plugin_kwargs.get("use_chinese", False)
import glob, os
if os.path.exists(txt):
project_folder = txt
validate_path_safety(project_folder, chatbot.get_user())
else:
if txt == "": txt = '空空如也的输入栏'
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.py', recursive=True)]
if len(file_manifest) == 0:
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何python文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

查看文件

@@ -0,0 +1,36 @@
from toolbox import get_conf, update_ui
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
from crazy_functions.SourceCode_Comment import 注释Python项目
class SourceCodeComment_Wrap(GptAcademicPluginTemplate):
def __init__(self):
"""
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
"""
pass
def define_arg_selection_menu(self):
"""
定义插件的二级选项菜单
"""
gui_definition = {
"main_input":
ArgProperty(title="路径", description="程序路径(上传文件后自动填写)", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
"use_chinese":
ArgProperty(title="注释语言", options=["英文", "中文"], default_value="英文", description="", type="dropdown").model_dump_json(),
# "use_emoji":
# ArgProperty(title="在注释中使用emoji", options=["禁止", "允许"], default_value="禁止", description="无", type="dropdown").model_dump_json(),
}
return gui_definition
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
执行插件
"""
if plugin_kwargs["use_chinese"] == "中文":
plugin_kwargs["use_chinese"] = True
else:
plugin_kwargs["use_chinese"] = False
yield from 注释Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)

查看文件

@@ -0,0 +1,204 @@
import requests
import random
import time
import re
import json
from bs4 import BeautifulSoup
from functools import lru_cache
from itertools import zip_longest
from check_proxy import check_proxy
from toolbox import CatchException, update_ui, get_conf, promote_file_to_downloadzone, update_ui_lastest_msg, generate_file_link
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
from request_llms.bridge_all import model_info
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.prompts.internet import SearchOptimizerPrompt, SearchAcademicOptimizerPrompt
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
from textwrap import dedent
from loguru import logger
from pydantic import BaseModel, Field
class Query(BaseModel):
search_keyword: str = Field(description="search query for video resource")
class VideoResource(BaseModel):
thought: str = Field(description="analysis of the search results based on the user's query")
title: str = Field(description="title of the video")
author: str = Field(description="author/uploader of the video")
bvid: str = Field(description="unique ID of the video")
another_failsafe_bvid: str = Field(description="provide another bvid, the other one is not working")
def get_video_resource(search_keyword):
from crazy_functions.media_fns.get_media import search_videos
# Search for videos and return the first result
videos = search_videos(
search_keyword
)
# Return the first video if results exist, otherwise return None
return videos
def download_video(bvid, user_name, chatbot, history):
# from experimental_mods.get_bilibili_resource import download_bilibili
from crazy_functions.media_fns.get_media import download_video
# pause a while
tic_time = 8
for i in range(tic_time):
yield from update_ui_lastest_msg(
lastmsg=f"即将下载音频。等待{tic_time-i}秒后自动继续, 点击“停止”键取消此操作。",
chatbot=chatbot, history=[], delay=1)
# download audio
chatbot.append((None, "下载音频, 请稍等...")); yield from update_ui(chatbot=chatbot, history=history)
downloaded_files = yield from download_video(bvid, only_audio=True, user_name=user_name, chatbot=chatbot, history=history)
if len(downloaded_files) == 0:
# failed to download audio
return []
# preview
preview_list = [promote_file_to_downloadzone(fp) for fp in downloaded_files]
file_links = generate_file_link(preview_list)
yield from update_ui_lastest_msg(f"已完成的文件: <br/>" + file_links, chatbot=chatbot, history=history, delay=0)
chatbot.append((None, f"即将下载视频。"))
# pause a while
tic_time = 16
for i in range(tic_time):
yield from update_ui_lastest_msg(
lastmsg=f"即将下载视频。等待{tic_time-i}秒后自动继续, 点击“停止”键取消此操作。",
chatbot=chatbot, history=[], delay=1)
# download video
chatbot.append((None, "下载视频, 请稍等...")); yield from update_ui(chatbot=chatbot, history=history)
downloaded_files_part2 = yield from download_video(bvid, only_audio=False, user_name=user_name, chatbot=chatbot, history=history)
# preview
preview_list = [promote_file_to_downloadzone(fp) for fp in downloaded_files_part2]
file_links = generate_file_link(preview_list)
yield from update_ui_lastest_msg(f"已完成的文件: <br/>" + file_links, chatbot=chatbot, history=history, delay=0)
# return
return downloaded_files + downloaded_files_part2
class Strategy(BaseModel):
thought: str = Field(description="analysis of the user's wish, for example, can you recall the name of the resource?")
which_methods: str = Field(description="Which method to use to find the necessary information? choose from 'method_1' and 'method_2'.")
method_1_search_keywords: str = Field(description="Generate keywords to search the internet if you choose method 1, otherwise empty.")
method_2_generate_keywords: str = Field(description="Generate keywords for video download engine if you choose method 2, otherwise empty.")
@CatchException
def 多媒体任务(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
user_wish: str = txt
# query demos:
# - "我想找一首歌,里面有句歌词是“turn your face towards the sun”"
# - "一首歌,第一句是红豆生南国"
# - "一首音乐,中国航天任务专用的那首"
# - "戴森球计划在熔岩星球的音乐"
# - "hanser的百变什么精"
# - "打大圣残躯时的bgm"
# - "渊下宫战斗音乐"
# 搜索
chatbot.append((txt, "检索中, 请稍等..."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if "跳过联网搜索" not in user_wish:
# 结构化生成
internet_search_keyword = user_wish
yield from update_ui_lastest_msg(lastmsg=f"发起互联网检索: {internet_search_keyword} ...", chatbot=chatbot, history=[], delay=1)
from crazy_functions.Internet_GPT import internet_search_with_analysis_prompt
result = yield from internet_search_with_analysis_prompt(
prompt=internet_search_keyword,
analysis_prompt="请根据搜索结果分析,获取用户需要找的资源的名称、作者、出处等信息。",
llm_kwargs=llm_kwargs,
chatbot=chatbot
)
yield from update_ui_lastest_msg(lastmsg=f"互联网检索结论: {result} \n\n 正在生成进一步检索方案 ...", chatbot=chatbot, history=[], delay=1)
rf_req = dedent(f"""
The user wish to get the following resource:
{user_wish}
Meanwhile, you can access another expert's opinion on the user's wish:
{result}
Generate search keywords (less than 5 keywords) for video download engine accordingly.
""")
else:
user_wish = user_wish.replace("跳过联网搜索", "").strip()
rf_req = dedent(f"""
The user wish to get the following resource:
{user_wish}
Generate reseach keywords (less than 5 keywords) accordingly.
""")
gpt_json_io = GptJsonIO(Query)
inputs = rf_req + gpt_json_io.format_instructions
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
analyze_res = run_gpt_fn(inputs, "")
logger.info(analyze_res)
query: Query = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
video_engine_keywords = query.search_keyword
# 关键词展示
chatbot.append((None, f"检索关键词已确认: {video_engine_keywords}。筛选中, 请稍等..."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 获取候选资源
candadate_dictionary: dict = get_video_resource(video_engine_keywords)
candadate_dictionary_as_str = json.dumps(candadate_dictionary, ensure_ascii=False, indent=4)
# 展示候选资源
candadate_display = "\n".join([f"{i+1}. {it['title']}" for i, it in enumerate(candadate_dictionary)])
chatbot.append((None, f"候选:\n\n{candadate_display}"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 结构化生成
rf_req_2 = dedent(f"""
The user wish to get the following resource:
{user_wish}
Select the most relevant and suitable video resource from the following search results:
{candadate_dictionary_as_str}
Note:
1. The first several search video results are more likely to satisfy the user's wish.
2. The time duration of the video should be less than 10 minutes.
3. You should analyze the search results first, before giving your answer.
4. Use Chinese if possible.
5. Beside the primary video selection, give a backup video resource `bvid`.
""")
gpt_json_io = GptJsonIO(VideoResource)
inputs = rf_req_2 + gpt_json_io.format_instructions
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
analyze_res = run_gpt_fn(inputs, "")
logger.info(analyze_res)
video_resource: VideoResource = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
# Display
chatbot.append(
(None,
f"分析:{video_resource.thought}" "<br/>"
f"选择: `{video_resource.title}`。" "<br/>"
f"作者:{video_resource.author}"
)
)
chatbot.append((None, f"下载中, 请稍等..."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if video_resource and video_resource.bvid:
logger.info(video_resource)
downloaded = yield from download_video(video_resource.bvid, chatbot.get_user(), chatbot, history)
if not downloaded:
chatbot.append((None, f"下载失败, 尝试备选 ..."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
downloaded = yield from download_video(video_resource.another_failsafe_bvid, chatbot.get_user(), chatbot, history)
@CatchException
def debug(bvid, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
yield from download_video(bvid, chatbot.get_user(), chatbot, history)

查看文件

@@ -0,0 +1,23 @@
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, ProxyNetworkActivate
from toolbox import report_exception, get_log_folder, update_ui_lastest_msg, Singleton
from crazy_functions.agent_fns.pipe import PluginMultiprocessManager, PipeCom
from crazy_functions.agent_fns.general import AutoGenGeneral
class AutoGenMath(AutoGenGeneral):
def define_agents(self):
from autogen import AssistantAgent, UserProxyAgent
return [
{
"name": "assistant", # name of the agent.
"cls": AssistantAgent, # class of the agent.
},
{
"name": "user_proxy", # name of the agent.
"cls": UserProxyAgent, # class of the agent.
"human_input_mode": "ALWAYS", # always ask for human input.
"llm_config": False, # disables llm-based auto reply.
},
]

查看文件

@@ -0,0 +1,20 @@
from crazy_functions.agent_fns.pipe import PluginMultiprocessManager, PipeCom
from loguru import logger
class EchoDemo(PluginMultiprocessManager):
def subprocess_worker(self, child_conn):
# ⭐⭐ 子进程
self.child_conn = child_conn
while True:
msg = self.child_conn.recv() # PipeCom
if msg.cmd == "user_input":
# wait futher user input
self.child_conn.send(PipeCom("show", msg.content))
wait_success = self.subprocess_worker_wait_user_feedback(wait_msg="我准备好处理下一个问题了.")
if not wait_success:
# wait timeout, terminate this subprocess_worker
break
elif msg.cmd == "terminate":
self.child_conn.send(PipeCom("done", ""))
break
logger.info('[debug] subprocess_worker terminated')

查看文件

@@ -0,0 +1,138 @@
from toolbox import trimmed_format_exc, get_conf, ProxyNetworkActivate
from crazy_functions.agent_fns.pipe import PluginMultiprocessManager, PipeCom
from request_llms.bridge_all import predict_no_ui_long_connection
import time
def gpt_academic_generate_oai_reply(
self,
messages,
sender,
config,
):
llm_config = self.llm_config if config is None else config
if llm_config is False:
return False, None
if messages is None:
messages = self._oai_messages[sender]
inputs = messages[-1]['content']
history = []
for message in messages[:-1]:
history.append(message['content'])
context=messages[-1].pop("context", None)
assert context is None, "预留参数 context 未实现"
reply = predict_no_ui_long_connection(
inputs=inputs,
llm_kwargs=llm_config,
history=history,
sys_prompt=self._oai_system_message[0]['content'],
console_slience=True
)
assumed_done = reply.endswith('\nTERMINATE')
return True, reply
class AutoGenGeneral(PluginMultiprocessManager):
def gpt_academic_print_override(self, user_proxy, message, sender):
# ⭐⭐ run in subprocess
try:
print_msg = sender.name + "\n\n---\n\n" + message["content"]
except:
print_msg = sender.name + "\n\n---\n\n" + message
self.child_conn.send(PipeCom("show", print_msg))
def gpt_academic_get_human_input(self, user_proxy, message):
# ⭐⭐ run in subprocess
patience = 300
begin_waiting_time = time.time()
self.child_conn.send(PipeCom("interact", message))
while True:
time.sleep(0.5)
if self.child_conn.poll():
wait_success = True
break
if time.time() - begin_waiting_time > patience:
self.child_conn.send(PipeCom("done", ""))
wait_success = False
break
if wait_success:
return self.child_conn.recv().content
else:
raise TimeoutError("等待用户输入超时")
def define_agents(self):
raise NotImplementedError
def exe_autogen(self, input):
# ⭐⭐ run in subprocess
input = input.content
code_execution_config = {"work_dir": self.autogen_work_dir, "use_docker": self.use_docker}
agents = self.define_agents()
user_proxy = None
assistant = None
for agent_kwargs in agents:
agent_cls = agent_kwargs.pop('cls')
kwargs = {
'llm_config':self.llm_kwargs,
'code_execution_config':code_execution_config
}
kwargs.update(agent_kwargs)
agent_handle = agent_cls(**kwargs)
agent_handle._print_received_message = lambda a,b: self.gpt_academic_print_override(agent_kwargs, a, b)
for d in agent_handle._reply_func_list:
if hasattr(d['reply_func'],'__name__') and d['reply_func'].__name__ == 'generate_oai_reply':
d['reply_func'] = gpt_academic_generate_oai_reply
if agent_kwargs['name'] == 'user_proxy':
agent_handle.get_human_input = lambda a: self.gpt_academic_get_human_input(user_proxy, a)
user_proxy = agent_handle
if agent_kwargs['name'] == 'assistant': assistant = agent_handle
try:
if user_proxy is None or assistant is None: raise Exception("用户代理或助理代理未定义")
with ProxyNetworkActivate("AutoGen"):
user_proxy.initiate_chat(assistant, message=input)
except Exception as e:
tb_str = '```\n' + trimmed_format_exc() + '```'
self.child_conn.send(PipeCom("done", "AutoGen 执行失败: \n\n" + tb_str))
def subprocess_worker(self, child_conn):
# ⭐⭐ run in subprocess
self.child_conn = child_conn
while True:
msg = self.child_conn.recv() # PipeCom
self.exe_autogen(msg)
class AutoGenGroupChat(AutoGenGeneral):
def exe_autogen(self, input):
# ⭐⭐ run in subprocess
import autogen
input = input.content
with ProxyNetworkActivate("AutoGen"):
code_execution_config = {"work_dir": self.autogen_work_dir, "use_docker": self.use_docker}
agents = self.define_agents()
agents_instances = []
for agent_kwargs in agents:
agent_cls = agent_kwargs.pop("cls")
kwargs = {"code_execution_config": code_execution_config}
kwargs.update(agent_kwargs)
agent_handle = agent_cls(**kwargs)
agent_handle._print_received_message = lambda a, b: self.gpt_academic_print_override(agent_kwargs, a, b)
agents_instances.append(agent_handle)
if agent_kwargs["name"] == "user_proxy":
user_proxy = agent_handle
user_proxy.get_human_input = lambda a: self.gpt_academic_get_human_input(user_proxy, a)
try:
groupchat = autogen.GroupChat(agents=agents_instances, messages=[], max_round=50)
manager = autogen.GroupChatManager(groupchat=groupchat, **self.define_group_chat_manager_config())
manager._print_received_message = lambda a, b: self.gpt_academic_print_override(agent_kwargs, a, b)
manager.get_human_input = lambda a: self.gpt_academic_get_human_input(manager, a)
if user_proxy is None:
raise Exception("user_proxy is not defined")
user_proxy.initiate_chat(manager, message=input)
except Exception:
tb_str = "```\n" + trimmed_format_exc() + "```"
self.child_conn.send(PipeCom("done", "AutoGen exe failed: \n\n" + tb_str))
def define_group_chat_manager_config(self):
raise NotImplementedError

查看文件

@@ -0,0 +1,16 @@
from toolbox import Singleton
@Singleton
class GradioMultiuserManagerForPersistentClasses():
def __init__(self):
self.mapping = {}
def already_alive(self, key):
return (key in self.mapping) and (self.mapping[key].is_alive())
def set(self, key, x):
self.mapping[key] = x
return self.mapping[key]
def get(self, key):
return self.mapping[key]

查看文件

@@ -0,0 +1,195 @@
from toolbox import get_log_folder, update_ui, gen_time_str, get_conf, promote_file_to_downloadzone
from crazy_functions.agent_fns.watchdog import WatchDog
from loguru import logger
import time, os
class PipeCom:
def __init__(self, cmd, content) -> None:
self.cmd = cmd
self.content = content
class PluginMultiprocessManager:
def __init__(self, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
# ⭐ run in main process
self.autogen_work_dir = os.path.join(get_log_folder("autogen"), gen_time_str())
self.previous_work_dir_files = {}
self.llm_kwargs = llm_kwargs
self.plugin_kwargs = plugin_kwargs
self.chatbot = chatbot
self.history = history
self.system_prompt = system_prompt
# self.user_request = user_request
self.alive = True
self.use_docker = get_conf("AUTOGEN_USE_DOCKER")
self.last_user_input = ""
# create a thread to monitor self.heartbeat, terminate the instance if no heartbeat for a long time
timeout_seconds = 5 * 60
self.heartbeat_watchdog = WatchDog(timeout=timeout_seconds, bark_fn=self.terminate, interval=5)
self.heartbeat_watchdog.begin_watch()
def feed_heartbeat_watchdog(self):
# feed this `dog`, so the dog will not `bark` (bark_fn will terminate the instance)
self.heartbeat_watchdog.feed()
def is_alive(self):
return self.alive
def launch_subprocess_with_pipe(self):
# ⭐ run in main process
from multiprocessing import Process, Pipe
parent_conn, child_conn = Pipe()
self.p = Process(target=self.subprocess_worker, args=(child_conn,))
self.p.daemon = True
self.p.start()
return parent_conn
def terminate(self):
self.p.terminate()
self.alive = False
logger.info("[debug] instance terminated")
def subprocess_worker(self, child_conn):
# ⭐⭐ run in subprocess
raise NotImplementedError
def send_command(self, cmd):
# ⭐ run in main process
repeated = False
if cmd == self.last_user_input:
repeated = True
cmd = ""
else:
self.last_user_input = cmd
self.parent_conn.send(PipeCom("user_input", cmd))
return repeated, cmd
def immediate_showoff_when_possible(self, fp):
# ⭐ 主进程
# 获取fp的拓展名
file_type = fp.split('.')[-1]
# 如果是文本文件, 则直接显示文本内容
if file_type.lower() in ['png', 'jpg']:
image_path = os.path.abspath(fp)
self.chatbot.append([
'检测到新生图像:',
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
])
yield from update_ui(chatbot=self.chatbot, history=self.history)
def overwatch_workdir_file_change(self):
# ⭐ 主进程 Docker 外挂文件夹监控
path_to_overwatch = self.autogen_work_dir
change_list = []
# 扫描路径下的所有文件, 并与self.previous_work_dir_files中所记录的文件进行对比,
# 如果有新文件出现,或者文件的修改时间发生变化,则更新self.previous_work_dir_files中
# 把新文件和发生变化的文件的路径记录到 change_list 中
for root, dirs, files in os.walk(path_to_overwatch):
for file in files:
file_path = os.path.join(root, file)
if file_path not in self.previous_work_dir_files.keys():
last_modified_time = os.stat(file_path).st_mtime
self.previous_work_dir_files.update({file_path: last_modified_time})
change_list.append(file_path)
else:
last_modified_time = os.stat(file_path).st_mtime
if last_modified_time != self.previous_work_dir_files[file_path]:
self.previous_work_dir_files[file_path] = last_modified_time
change_list.append(file_path)
if len(change_list) > 0:
file_links = ""
for f in change_list:
res = promote_file_to_downloadzone(f)
file_links += f'<br/><a href="file={res}" target="_blank">{res}</a>'
yield from self.immediate_showoff_when_possible(f)
self.chatbot.append(['检测到新生文档.', f'文档清单如下: {file_links}'])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return change_list
def main_process_ui_control(self, txt, create_or_resume) -> str:
# ⭐ 主进程
if create_or_resume == 'create':
self.cnt = 1
self.parent_conn = self.launch_subprocess_with_pipe() # ⭐⭐⭐
repeated, cmd_to_autogen = self.send_command(txt)
if txt == 'exit':
self.chatbot.append([f"结束", "结束信号已明确,终止AutoGen程序。"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
self.terminate()
return "terminate"
# patience = 10
while True:
time.sleep(0.5)
if not self.alive:
# the heartbeat watchdog might have it killed
self.terminate()
return "terminate"
if self.parent_conn.poll():
self.feed_heartbeat_watchdog()
if "[GPT-Academic] 等待中" in self.chatbot[-1][-1]:
self.chatbot.pop(-1) # remove the last line
if "等待您的进一步指令" in self.chatbot[-1][-1]:
self.chatbot.pop(-1) # remove the last line
if '[GPT-Academic] 等待中' in self.chatbot[-1][-1]:
self.chatbot.pop(-1) # remove the last line
msg = self.parent_conn.recv() # PipeCom
if msg.cmd == "done":
self.chatbot.append([f"结束", msg.content])
self.cnt += 1
yield from update_ui(chatbot=self.chatbot, history=self.history)
self.terminate()
break
if msg.cmd == "show":
yield from self.overwatch_workdir_file_change()
notice = ""
if repeated: notice = "(自动忽略重复的输入)"
self.chatbot.append([f"运行阶段-{self.cnt}(上次用户反馈输入为: 「{cmd_to_autogen}{notice}", msg.content])
self.cnt += 1
yield from update_ui(chatbot=self.chatbot, history=self.history)
if msg.cmd == "interact":
yield from self.overwatch_workdir_file_change()
self.chatbot.append([f"程序抵达用户反馈节点.", msg.content +
"\n\n等待您的进一步指令." +
"\n\n(1) 一般情况下您不需要说什么, 清空输入区, 然后直接点击“提交”以继续. " +
"\n\n(2) 如果您需要补充些什么, 输入要反馈的内容, 直接点击“提交”以继续. " +
"\n\n(3) 如果您想终止程序, 输入exit, 直接点击“提交”以终止AutoGen并解锁. "
])
yield from update_ui(chatbot=self.chatbot, history=self.history)
# do not terminate here, leave the subprocess_worker instance alive
return "wait_feedback"
else:
self.feed_heartbeat_watchdog()
if '[GPT-Academic] 等待中' not in self.chatbot[-1][-1]:
# begin_waiting_time = time.time()
self.chatbot.append(["[GPT-Academic] 等待AutoGen执行结果 ...", "[GPT-Academic] 等待中"])
self.chatbot[-1] = [self.chatbot[-1][0], self.chatbot[-1][1].replace("[GPT-Academic] 等待中", "[GPT-Academic] 等待中.")]
yield from update_ui(chatbot=self.chatbot, history=self.history)
# if time.time() - begin_waiting_time > patience:
# self.chatbot.append([f"结束", "等待超时, 终止AutoGen程序。"])
# yield from update_ui(chatbot=self.chatbot, history=self.history)
# self.terminate()
# return "terminate"
self.terminate()
return "terminate"
def subprocess_worker_wait_user_feedback(self, wait_msg="wait user feedback"):
# ⭐⭐ run in subprocess
patience = 5 * 60
begin_waiting_time = time.time()
self.child_conn.send(PipeCom("interact", wait_msg))
while True:
time.sleep(0.5)
if self.child_conn.poll():
wait_success = True
break
if time.time() - begin_waiting_time > patience:
self.child_conn.send(PipeCom("done", ""))
wait_success = False
break
return wait_success

查看文件

@@ -0,0 +1,457 @@
import datetime
import re
import os
from loguru import logger
from textwrap import dedent
from toolbox import CatchException, update_ui
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
# TODO: 解决缩进问题
find_function_end_prompt = '''
Below is a page of code that you need to read. This page may not yet complete, you job is to split this page to sperate functions, class functions etc.
- Provide the line number where the first visible function ends.
- Provide the line number where the next visible function begins.
- If there are no other functions in this page, you should simply return the line number of the last line.
- Only focus on functions declared by `def` keyword. Ignore inline functions. Ignore function calls.
------------------ Example ------------------
INPUT:
```
L0000 |import sys
L0001 |import re
L0002 |
L0003 |def trimmed_format_exc():
L0004 | import os
L0005 | import traceback
L0006 | str = traceback.format_exc()
L0007 | current_path = os.getcwd()
L0008 | replace_path = "."
L0009 | return str.replace(current_path, replace_path)
L0010 |
L0011 |
L0012 |def trimmed_format_exc_markdown():
L0013 | ...
L0014 | ...
```
OUTPUT:
```
<first_function_end_at>L0009</first_function_end_at>
<next_function_begin_from>L0012</next_function_begin_from>
```
------------------ End of Example ------------------
------------------ the real INPUT you need to process NOW ------------------
```
{THE_TAGGED_CODE}
```
'''
revise_funtion_prompt = '''
You need to read the following code, and revise the source code ({FILE_BASENAME}) according to following instructions:
1. You should analyze the purpose of the functions (if there are any).
2. You need to add docstring for the provided functions (if there are any).
Be aware:
1. You must NOT modify the indent of code.
2. You are NOT authorized to change or translate non-comment code, and you are NOT authorized to add empty lines either, toggle qu.
3. Use {LANG} to add comments and docstrings. Do NOT translate Chinese that is already in the code.
4. Besides adding a docstring, use the ⭐ symbol to annotate the most core and important line of code within the function, explaining its role.
------------------ Example ------------------
INPUT:
```
L0000 |
L0001 |def zip_result(folder):
L0002 | t = gen_time_str()
L0003 | zip_folder(folder, get_log_folder(), f"result.zip")
L0004 | return os.path.join(get_log_folder(), f"result.zip")
L0005 |
L0006 |
```
OUTPUT:
<instruction_1_purpose>
This function compresses a given folder, and return the path of the resulting `zip` file.
</instruction_1_purpose>
<instruction_2_revised_code>
```
def zip_result(folder):
"""
Compresses the specified folder into a zip file and stores it in the log folder.
Args:
folder (str): The path to the folder that needs to be compressed.
Returns:
str: The path to the created zip file in the log folder.
"""
t = gen_time_str()
zip_folder(folder, get_log_folder(), f"result.zip") # ⭐ Execute the zipping of folder
return os.path.join(get_log_folder(), f"result.zip")
```
</instruction_2_revised_code>
------------------ End of Example ------------------
------------------ the real INPUT you need to process NOW ({FILE_BASENAME}) ------------------
```
{THE_CODE}
```
{INDENT_REMINDER}
{BRIEF_REMINDER}
{HINT_REMINDER}
'''
revise_funtion_prompt_chinese = '''
您需要阅读以下代码,并根据以下说明修订源代码({FILE_BASENAME}):
1. 如果源代码中包含函数的话, 你应该分析给定函数实现了什么功能
2. 如果源代码中包含函数的话, 你需要为函数添加docstring, docstring必须使用中文
请注意:
1. 你不得修改代码的缩进
2. 你无权更改或翻译代码中的非注释部分,也不允许添加空行
3. 使用 {LANG} 添加注释和文档字符串。不要翻译代码中已有的中文
4. 除了添加docstring之外, 使用⭐符号给该函数中最核心、最重要的一行代码添加注释,并说明其作用
------------------ 示例 ------------------
INPUT:
```
L0000 |
L0001 |def zip_result(folder):
L0002 | t = gen_time_str()
L0003 | zip_folder(folder, get_log_folder(), f"result.zip")
L0004 | return os.path.join(get_log_folder(), f"result.zip")
L0005 |
L0006 |
```
OUTPUT:
<instruction_1_purpose>
该函数用于压缩指定文件夹,并返回生成的`zip`文件的路径。
</instruction_1_purpose>
<instruction_2_revised_code>
```
def zip_result(folder):
"""
该函数将指定的文件夹压缩成ZIP文件, 并将其存储在日志文件夹中。
输入参数:
folder (str): 需要压缩的文件夹的路径。
返回值:
str: 日志文件夹中创建的ZIP文件的路径。
"""
t = gen_time_str()
zip_folder(folder, get_log_folder(), f"result.zip") # ⭐ 执行文件夹的压缩
return os.path.join(get_log_folder(), f"result.zip")
```
</instruction_2_revised_code>
------------------ End of Example ------------------
------------------ the real INPUT you need to process NOW ({FILE_BASENAME}) ------------------
```
{THE_CODE}
```
{INDENT_REMINDER}
{BRIEF_REMINDER}
{HINT_REMINDER}
'''
class PythonCodeComment():
def __init__(self, llm_kwargs, plugin_kwargs, language, observe_window_update) -> None:
self.original_content = ""
self.full_context = []
self.full_context_with_line_no = []
self.current_page_start = 0
self.page_limit = 100 # 100 lines of code each page
self.ignore_limit = 20
self.llm_kwargs = llm_kwargs
self.plugin_kwargs = plugin_kwargs
self.language = language
self.observe_window_update = observe_window_update
if self.language == "chinese":
self.core_prompt = revise_funtion_prompt_chinese
else:
self.core_prompt = revise_funtion_prompt
self.path = None
self.file_basename = None
self.file_brief = ""
def generate_tagged_code_from_full_context(self):
for i, code in enumerate(self.full_context):
number = i
padded_number = f"{number:04}"
result = f"L{padded_number}"
self.full_context_with_line_no.append(f"{result} | {code}")
return self.full_context_with_line_no
def read_file(self, path, brief):
with open(path, 'r', encoding='utf8') as f:
self.full_context = f.readlines()
self.original_content = ''.join(self.full_context)
self.file_basename = os.path.basename(path)
self.file_brief = brief
self.full_context_with_line_no = self.generate_tagged_code_from_full_context()
self.path = path
def find_next_function_begin(self, tagged_code:list, begin_and_end):
begin, end = begin_and_end
THE_TAGGED_CODE = ''.join(tagged_code)
self.llm_kwargs['temperature'] = 0
result = predict_no_ui_long_connection(
inputs=find_function_end_prompt.format(THE_TAGGED_CODE=THE_TAGGED_CODE),
llm_kwargs=self.llm_kwargs,
history=[],
sys_prompt="",
observe_window=[],
console_slience=True
)
def extract_number(text):
# 使用正则表达式匹配模式
match = re.search(r'<next_function_begin_from>L(\d+)</next_function_begin_from>', text)
if match:
# 提取匹配的数字部分并转换为整数
return int(match.group(1))
return None
line_no = extract_number(result)
if line_no is not None:
return line_no
else:
return end
def _get_next_window(self):
#
current_page_start = self.current_page_start
if self.current_page_start == len(self.full_context) + 1:
raise StopIteration
# 如果剩余的行数非常少,一鼓作气处理掉
if len(self.full_context) - self.current_page_start < self.ignore_limit:
future_page_start = len(self.full_context) + 1
self.current_page_start = future_page_start
return current_page_start, future_page_start
tagged_code = self.full_context_with_line_no[ self.current_page_start: self.current_page_start + self.page_limit]
line_no = self.find_next_function_begin(tagged_code, [self.current_page_start, self.current_page_start + self.page_limit])
if line_no > len(self.full_context) - 5:
line_no = len(self.full_context) + 1
future_page_start = line_no
self.current_page_start = future_page_start
# ! consider eof
return current_page_start, future_page_start
def dedent(self, text):
"""Remove any common leading whitespace from every line in `text`.
"""
# Look for the longest leading string of spaces and tabs common to
# all lines.
margin = None
_whitespace_only_re = re.compile('^[ \t]+$', re.MULTILINE)
_leading_whitespace_re = re.compile('(^[ \t]*)(?:[^ \t\n])', re.MULTILINE)
text = _whitespace_only_re.sub('', text)
indents = _leading_whitespace_re.findall(text)
for indent in indents:
if margin is None:
margin = indent
# Current line more deeply indented than previous winner:
# no change (previous winner is still on top).
elif indent.startswith(margin):
pass
# Current line consistent with and no deeper than previous winner:
# it's the new winner.
elif margin.startswith(indent):
margin = indent
# Find the largest common whitespace between current line and previous
# winner.
else:
for i, (x, y) in enumerate(zip(margin, indent)):
if x != y:
margin = margin[:i]
break
# sanity check (testing/debugging only)
if 0 and margin:
for line in text.split("\n"):
assert not line or line.startswith(margin), \
"line = %r, margin = %r" % (line, margin)
if margin:
text = re.sub(r'(?m)^' + margin, '', text)
return text, len(margin)
else:
return text, 0
def get_next_batch(self):
current_page_start, future_page_start = self._get_next_window()
return ''.join(self.full_context[current_page_start: future_page_start]), current_page_start, future_page_start
def tag_code(self, fn, hint):
code = fn
_, n_indent = self.dedent(code)
indent_reminder = "" if n_indent == 0 else "(Reminder: as you can see, this piece of code has indent made up with {n_indent} whitespace, please preseve them in the OUTPUT.)"
brief_reminder = "" if self.file_brief == "" else f"({self.file_basename} abstract: {self.file_brief})"
hint_reminder = "" if hint is None else f"(Reminder: do not ignore or modify code such as `{hint}`, provide complete code in the OUTPUT.)"
self.llm_kwargs['temperature'] = 0
result = predict_no_ui_long_connection(
inputs=self.core_prompt.format(
LANG=self.language,
FILE_BASENAME=self.file_basename,
THE_CODE=code,
INDENT_REMINDER=indent_reminder,
BRIEF_REMINDER=brief_reminder,
HINT_REMINDER=hint_reminder
),
llm_kwargs=self.llm_kwargs,
history=[],
sys_prompt="",
observe_window=[],
console_slience=True
)
def get_code_block(reply):
import re
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
matches = re.findall(pattern, reply) # find all code blocks in text
if len(matches) == 1:
return matches[0].strip('python') # code block
return None
code_block = get_code_block(result)
if code_block is not None:
code_block = self.sync_and_patch(original=code, revised=code_block)
return code_block
else:
return code
def get_markdown_block_in_html(self, html):
from bs4 import BeautifulSoup
soup = BeautifulSoup(html, 'lxml')
found_list = soup.find_all("div", class_="markdown-body")
if found_list:
res = found_list[0]
return res.prettify()
else:
return None
def sync_and_patch(self, original, revised):
"""Ensure the number of pre-string empty lines in revised matches those in original."""
def count_leading_empty_lines(s, reverse=False):
"""Count the number of leading empty lines in a string."""
lines = s.split('\n')
if reverse: lines = list(reversed(lines))
count = 0
for line in lines:
if line.strip() == '':
count += 1
else:
break
return count
original_empty_lines = count_leading_empty_lines(original)
revised_empty_lines = count_leading_empty_lines(revised)
if original_empty_lines > revised_empty_lines:
additional_lines = '\n' * (original_empty_lines - revised_empty_lines)
revised = additional_lines + revised
elif original_empty_lines < revised_empty_lines:
lines = revised.split('\n')
revised = '\n'.join(lines[revised_empty_lines - original_empty_lines:])
original_empty_lines = count_leading_empty_lines(original, reverse=True)
revised_empty_lines = count_leading_empty_lines(revised, reverse=True)
if original_empty_lines > revised_empty_lines:
additional_lines = '\n' * (original_empty_lines - revised_empty_lines)
revised = revised + additional_lines
elif original_empty_lines < revised_empty_lines:
lines = revised.split('\n')
revised = '\n'.join(lines[:-(revised_empty_lines - original_empty_lines)])
return revised
def begin_comment_source_code(self, chatbot=None, history=None):
# from toolbox import update_ui_lastest_msg
assert self.path is not None
assert '.py' in self.path # must be python source code
# write_target = self.path + '.revised.py'
write_content = ""
# with open(self.path + '.revised.py', 'w+', encoding='utf8') as f:
while True:
try:
# yield from update_ui_lastest_msg(f"({self.file_basename}) 正在读取下一段代码片段:\n", chatbot=chatbot, history=history, delay=0)
next_batch, line_no_start, line_no_end = self.get_next_batch()
self.observe_window_update(f"正在处理{self.file_basename} - {line_no_start}/{len(self.full_context)}\n")
# yield from update_ui_lastest_msg(f"({self.file_basename}) 处理代码片段:\n\n{next_batch}", chatbot=chatbot, history=history, delay=0)
hint = None
MAX_ATTEMPT = 2
for attempt in range(MAX_ATTEMPT):
result = self.tag_code(next_batch, hint)
try:
successful, hint = self.verify_successful(next_batch, result)
except Exception as e:
logger.error('ignored exception:\n' + str(e))
break
if successful:
break
if attempt == MAX_ATTEMPT - 1:
# cannot deal with this, give up
result = next_batch
break
# f.write(result)
write_content += result
except StopIteration:
next_batch, line_no_start, line_no_end = [], -1, -1
return None, write_content
def verify_successful(self, original, revised):
""" Determine whether the revised code contains every line that already exists
"""
from crazy_functions.ast_fns.comment_remove import remove_python_comments
original = remove_python_comments(original)
original_lines = original.split('\n')
revised_lines = revised.split('\n')
for l in original_lines:
l = l.strip()
if '\'' in l or '\"' in l: continue # ast sometimes toggle " to '
found = False
for lt in revised_lines:
if l in lt:
found = True
break
if not found:
return False, l
return True, None

查看文件

@@ -0,0 +1,45 @@
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<style>ADVANCED_CSS</style>
<meta charset="UTF-8">
<title>源文件对比</title>
<style>
body {
font-family: Arial, sans-serif;
display: flex;
justify-content: center;
align-items: center;
height: 100vh;
margin: 0;
}
.container {
display: flex;
width: 95%;
height: -webkit-fill-available;
}
.code-container {
flex: 1;
margin: 0px;
padding: 0px;
border: 1px solid #ccc;
background-color: #f9f9f9;
overflow: auto;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
}
</style>
</head>
<body>
<div class="container">
<div class="code-container">
REPLACE_CODE_FILE_LEFT
</div>
<div class="code-container">
REPLACE_CODE_FILE_RIGHT
</div>
</div>
</body>
</html>

查看文件

@@ -0,0 +1,29 @@
import threading, time
from loguru import logger
class WatchDog():
def __init__(self, timeout, bark_fn, interval=3, msg="") -> None:
self.last_feed = None
self.timeout = timeout
self.bark_fn = bark_fn
self.interval = interval
self.msg = msg
self.kill_dog = False
def watch(self):
while True:
if self.kill_dog: break
if time.time() - self.last_feed > self.timeout:
if len(self.msg) > 0: logger.info(self.msg)
self.bark_fn()
break
time.sleep(self.interval)
def begin_watch(self):
self.last_feed = time.time()
th = threading.Thread(target=self.watch)
th.daemon = True
th.start()
def feed(self):
self.last_feed = time.time()

查看文件

@@ -0,0 +1,54 @@
import token
import tokenize
import copy
import io
def remove_python_comments(input_source: str) -> str:
source_flag = copy.copy(input_source)
source = io.StringIO(input_source)
ls = input_source.split('\n')
prev_toktype = token.INDENT
readline = source.readline
def get_char_index(lineno, col):
# find the index of the char in the source code
if lineno == 1:
return len('\n'.join(ls[:(lineno-1)])) + col
else:
return len('\n'.join(ls[:(lineno-1)])) + col + 1
def replace_char_between(start_lineno, start_col, end_lineno, end_col, source, replace_char, ls):
# replace char between start_lineno, start_col and end_lineno, end_col with replace_char, but keep '\n' and ' '
b = get_char_index(start_lineno, start_col)
e = get_char_index(end_lineno, end_col)
for i in range(b, e):
if source[i] == '\n':
source = source[:i] + '\n' + source[i+1:]
elif source[i] == ' ':
source = source[:i] + ' ' + source[i+1:]
else:
source = source[:i] + replace_char + source[i+1:]
return source
tokgen = tokenize.generate_tokens(readline)
for toktype, ttext, (slineno, scol), (elineno, ecol), ltext in tokgen:
if toktype == token.STRING and (prev_toktype == token.INDENT):
source_flag = replace_char_between(slineno, scol, elineno, ecol, source_flag, ' ', ls)
elif toktype == token.STRING and (prev_toktype == token.NEWLINE):
source_flag = replace_char_between(slineno, scol, elineno, ecol, source_flag, ' ', ls)
elif toktype == tokenize.COMMENT:
source_flag = replace_char_between(slineno, scol, elineno, ecol, source_flag, ' ', ls)
prev_toktype = toktype
return source_flag
# 示例使用
if __name__ == "__main__":
with open("source.py", "r", encoding="utf-8") as f:
source_code = f.read()
cleaned_code = remove_python_comments(source_code)
with open("cleaned_source.py", "w", encoding="utf-8") as f:
f.write(cleaned_code)

查看文件

@@ -1,141 +0,0 @@
from toolbox import CatchException, update_ui, promote_file_to_downloadzone
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
import datetime, json
def fetch_items(list_of_items, batch_size):
for i in range(0, len(list_of_items), batch_size):
yield list_of_items[i:i + batch_size]
def string_to_options(arguments):
import argparse
import shlex
# Create an argparse.ArgumentParser instance
parser = argparse.ArgumentParser()
# Add command-line arguments
parser.add_argument("--llm_to_learn", type=str, help="LLM model to learn", default="gpt-3.5-turbo")
parser.add_argument("--prompt_prefix", type=str, help="Prompt prefix", default='')
parser.add_argument("--system_prompt", type=str, help="System prompt", default='')
parser.add_argument("--batch", type=int, help="System prompt", default=50)
parser.add_argument("--pre_seq_len", type=int, help="pre_seq_len", default=50)
parser.add_argument("--learning_rate", type=float, help="learning_rate", default=2e-2)
parser.add_argument("--num_gpus", type=int, help="num_gpus", default=1)
parser.add_argument("--json_dataset", type=str, help="json_dataset", default="")
parser.add_argument("--ptuning_directory", type=str, help="ptuning_directory", default="")
# Parse the arguments
args = parser.parse_args(shlex.split(arguments))
return args
@CatchException
def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成"))
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
args = plugin_kwargs.get("advanced_arg", None)
if args is None:
chatbot.append(("没给定指令", "退出"))
yield from update_ui(chatbot=chatbot, history=history); return
else:
arguments = string_to_options(arguments=args)
dat = []
with open(txt, 'r', encoding='utf8') as f:
for line in f.readlines():
json_dat = json.loads(line)
dat.append(json_dat["content"])
llm_kwargs['llm_model'] = arguments.llm_to_learn
for batch in fetch_items(dat, arguments.batch):
res = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=[f"{arguments.prompt_prefix}\n\n{b}" for b in (batch)],
inputs_show_user_array=[f"Show Nothing" for _ in (batch)],
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[[] for _ in (batch)],
sys_prompt_array=[arguments.system_prompt for _ in (batch)],
max_workers=10 # OpenAI所允许的最大并行过载
)
with open(txt+'.generated.json', 'a+', encoding='utf8') as f:
for b, r in zip(batch, res[1::2]):
f.write(json.dumps({"content":b, "summary":r}, ensure_ascii=False)+'\n')
promote_file_to_downloadzone(txt+'.generated.json', rename_file='generated.json', chatbot=chatbot)
return
@CatchException
def 启动微调(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
import subprocess
history = [] # 清空历史,以免输入溢出
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成"))
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
args = plugin_kwargs.get("advanced_arg", None)
if args is None:
chatbot.append(("没给定指令", "退出"))
yield from update_ui(chatbot=chatbot, history=history); return
else:
arguments = string_to_options(arguments=args)
pre_seq_len = arguments.pre_seq_len # 128
learning_rate = arguments.learning_rate # 2e-2
num_gpus = arguments.num_gpus # 1
json_dataset = arguments.json_dataset # 't_code.json'
ptuning_directory = arguments.ptuning_directory # '/home/hmp/ChatGLM2-6B/ptuning'
command = f"torchrun --standalone --nnodes=1 --nproc-per-node={num_gpus} main.py \
--do_train \
--train_file AdvertiseGen/{json_dataset} \
--validation_file AdvertiseGen/{json_dataset} \
--preprocessing_num_workers 20 \
--prompt_column content \
--response_column summary \
--overwrite_cache \
--model_name_or_path THUDM/chatglm2-6b \
--output_dir output/clothgen-chatglm2-6b-pt-{pre_seq_len}-{learning_rate} \
--overwrite_output_dir \
--max_source_length 256 \
--max_target_length 256 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 16 \
--predict_with_generate \
--max_steps 100 \
--logging_steps 10 \
--save_steps 20 \
--learning_rate {learning_rate} \
--pre_seq_len {pre_seq_len} \
--quantization_bit 4"
process = subprocess.Popen(command, shell=True, cwd=ptuning_directory)
try:
process.communicate(timeout=3600*24)
except subprocess.TimeoutExpired:
process.kill()
return

查看文件

@@ -1,25 +1,39 @@
from toolbox import update_ui, get_conf, trimmed_format_exc, get_log_folder
import threading
import os
import logging
import threading
from loguru import logger
from shared_utils.char_visual_effect import scolling_visual_effect
from toolbox import update_ui, get_conf, trimmed_format_exc, get_max_token, Singleton
def input_clipping(inputs, history, max_token_limit):
def input_clipping(inputs, history, max_token_limit, return_clip_flags=False):
"""
当输入文本 + 历史文本超出最大限制时,采取措施丢弃一部分文本。
输入:
- inputs 本次请求
- history 历史上下文
- max_token_limit 最大token限制
输出:
- inputs 本次请求经过clip
- history 历史上下文经过clip
"""
import numpy as np
from request_llm.bridge_all import model_info
from request_llms.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
mode = 'input-and-history'
# 当 输入部分的token占比 小于 全文的一半时,只裁剪历史
input_token_num = get_token_num(inputs)
original_input_len = len(inputs)
if input_token_num < max_token_limit//2:
mode = 'only-history'
max_token_limit = max_token_limit - input_token_num
everything = [inputs] if mode == 'input-and-history' else ['']
everything.extend(history)
n_token = get_token_num('\n'.join(everything))
full_token_num = n_token = get_token_num('\n'.join(everything))
everything_token = [get_token_num(e) for e in everything]
everything_token_num = sum(everything_token)
delta = max(everything_token) // 16 # 截断时的颗粒度
while n_token > max_token_limit:
@@ -32,10 +46,24 @@ def input_clipping(inputs, history, max_token_limit):
if mode == 'input-and-history':
inputs = everything[0]
full_token_num = everything_token_num
else:
pass
full_token_num = everything_token_num + input_token_num
history = everything[1:]
flags = {
"mode": mode,
"original_input_token_num": input_token_num,
"original_full_token_num": full_token_num,
"original_input_len": original_input_len,
"clipped_input_len": len(inputs),
}
if not return_clip_flags:
return inputs, history
else:
return inputs, history, flags
def request_gpt_model_in_new_thread_with_ui_alive(
inputs, inputs_show_user, llm_kwargs,
@@ -63,18 +91,21 @@ def request_gpt_model_in_new_thread_with_ui_alive(
"""
import time
from concurrent.futures import ThreadPoolExecutor
from request_llm.bridge_all import predict_no_ui_long_connection
from request_llms.bridge_all import predict_no_ui_long_connection
# 用户反馈
chatbot.append([inputs_show_user, ""])
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
executor = ThreadPoolExecutor(max_workers=16)
mutable = ["", time.time(), ""]
# 看门狗耐心
watch_dog_patience = 5
# 请求任务
def _req_gpt(inputs, history, sys_prompt):
retry_op = retry_times_at_unknown_error
exceeded_cnt = 0
while True:
# watchdog error
if len(mutable) >= 2 and (time.time()-mutable[1]) > 5:
if len(mutable) >= 2 and (time.time()-mutable[1]) > watch_dog_patience:
raise RuntimeError("检测到程序终止。")
try:
# 【第一种情况】:顺利完成
@@ -89,7 +120,7 @@ def request_gpt_model_in_new_thread_with_ui_alive(
# 【选择处理】 尝试计算比例,尽可能多地保留文本
from toolbox import get_reduce_token_percent
p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error))
MAX_TOKEN = 4096
MAX_TOKEN = get_max_token(llm_kwargs)
EXCEED_ALLO = 512 + 512 * exceeded_cnt
inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN-EXCEED_ALLO)
mutable[0] += f'[Local Message] 警告,文本过长将进行截断,Token溢出数{n_exceed}\n\n'
@@ -102,7 +133,7 @@ def request_gpt_model_in_new_thread_with_ui_alive(
except:
# 【第三种情况】:其他错误:重试几次
tb_str = '```\n' + trimmed_format_exc() + '```'
print(tb_str)
logger.error(tb_str)
mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
if retry_op > 0:
retry_op -= 1
@@ -132,16 +163,31 @@ def request_gpt_model_in_new_thread_with_ui_alive(
yield from update_ui(chatbot=chatbot, history=[]) # 如果最后成功了,则删除报错信息
return final_result
def can_multi_process(llm):
def can_multi_process(llm) -> bool:
from request_llms.bridge_all import model_info
def default_condition(llm) -> bool:
# legacy condition
if llm.startswith('gpt-'): return True
if llm.startswith('chatgpt-'): return True
if llm.startswith('api2d-'): return True
if llm.startswith('azure-'): return True
if llm.startswith('spark'): return True
if llm.startswith('zhipuai') or llm.startswith('glm-'): return True
return False
if llm in model_info:
if 'can_multi_thread' in model_info[llm]:
return model_info[llm]['can_multi_thread']
else:
return default_condition(llm)
else:
return default_condition(llm)
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array, inputs_show_user_array, llm_kwargs,
chatbot, history_array, sys_prompt_array,
refresh_interval=0.2, max_workers=-1, scroller_max_len=30,
refresh_interval=0.2, max_workers=-1, scroller_max_len=75,
handle_token_exceed=True, show_user_at_complete=False,
retry_times_at_unknown_error=2,
):
@@ -174,11 +220,11 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
"""
import time, random
from concurrent.futures import ThreadPoolExecutor
from request_llm.bridge_all import predict_no_ui_long_connection
from request_llms.bridge_all import predict_no_ui_long_connection
assert len(inputs_array) == len(history_array)
assert len(inputs_array) == len(sys_prompt_array)
if max_workers == -1: # 读取配置文件
try: max_workers, = get_conf('DEFAULT_WORKER_NUM')
try: max_workers = get_conf('DEFAULT_WORKER_NUM')
except: max_workers = 8
if max_workers <= 0: max_workers = 3
# 屏蔽掉 chatglm的多线程,可能会导致严重卡顿
@@ -193,19 +239,21 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
# 跨线程传递
mutable = [["", time.time(), "等待中"] for _ in range(n_frag)]
# 看门狗耐心
watch_dog_patience = 5
# 子线程任务
def _req_gpt(index, inputs, history, sys_prompt):
gpt_say = ""
retry_op = retry_times_at_unknown_error
exceeded_cnt = 0
mutable[index][2] = "执行中"
detect_timeout = lambda: len(mutable[index]) >= 2 and (time.time()-mutable[index][1]) > watch_dog_patience
while True:
# watchdog error
if len(mutable[index]) >= 2 and (time.time()-mutable[index][1]) > 5:
raise RuntimeError("检测到程序终止。")
if detect_timeout(): raise RuntimeError("检测到程序终止。")
try:
# 【第一种情况】:顺利完成
# time.sleep(10); raise RuntimeError("测试")
gpt_say = predict_no_ui_long_connection(
inputs=inputs, llm_kwargs=llm_kwargs, history=history,
sys_prompt=sys_prompt, observe_window=mutable[index], console_slience=True
@@ -213,13 +261,13 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
mutable[index][2] = "已成功"
return gpt_say
except ConnectionAbortedError as token_exceeded_error:
# 【第二种情况】Token溢出
# 【第二种情况】Token溢出
if handle_token_exceed:
exceeded_cnt += 1
# 【选择处理】 尝试计算比例,尽可能多地保留文本
from toolbox import get_reduce_token_percent
p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error))
MAX_TOKEN = 4096
MAX_TOKEN = get_max_token(llm_kwargs)
EXCEED_ALLO = 512 + 512 * exceeded_cnt
inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN-EXCEED_ALLO)
gpt_say += f'[Local Message] 警告,文本过长将进行截断,Token溢出数{n_exceed}\n\n'
@@ -234,8 +282,9 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
return gpt_say # 放弃
except:
# 【第三种情况】:其他错误
if detect_timeout(): raise RuntimeError("检测到程序终止。")
tb_str = '```\n' + trimmed_format_exc() + '```'
print(tb_str)
logger.error(tb_str)
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0]
if retry_op > 0:
@@ -250,6 +299,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
for i in range(wait):
mutable[index][2] = f"{fail_info}等待重试 {wait-i}"; time.sleep(1)
# 开始重试
if detect_timeout(): raise RuntimeError("检测到程序终止。")
mutable[index][2] = f"重试中 {retry_times_at_unknown_error-retry_op}/{retry_times_at_unknown_error}"
continue # 返回重试
else:
@@ -262,6 +312,8 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(
range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
cnt = 0
while True:
# yield一次以刷新前端页面
time.sleep(refresh_interval)
@@ -274,9 +326,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
mutable[thread_index][1] = time.time()
# 在前端打印些好玩的东西
for thread_index, _ in enumerate(worker_done):
print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
replace('\n', '').replace('```', '...').replace(
' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]"
print_something_really_funny = f"[ ...`{scolling_visual_effect(mutable[thread_index][0], scroller_max_len)}`... ]"
observe_win.append(print_something_really_funny)
# 在前端打印些好玩的东西
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n'
@@ -301,99 +351,10 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
gpt_res = f.result()
chatbot.append([inputs_show_user, gpt_res])
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
time.sleep(0.3)
time.sleep(0.5)
return gpt_response_collection
def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
def cut(txt_tocut, must_break_at_empty_line): # 递归
if get_token_fn(txt_tocut) <= limit:
return [txt_tocut]
else:
lines = txt_tocut.split('\n')
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
estimated_line_cut = int(estimated_line_cut)
for cnt in reversed(range(estimated_line_cut)):
if must_break_at_empty_line:
if lines[cnt] != "":
continue
print(cnt)
prev = "\n".join(lines[:cnt])
post = "\n".join(lines[cnt:])
if get_token_fn(prev) < limit:
break
if cnt == 0:
raise RuntimeError("存在一行极长的文本!")
# print(len(post))
# 列表递归接龙
result = [prev]
result.extend(cut(post, must_break_at_empty_line))
return result
try:
return cut(txt, must_break_at_empty_line=True)
except RuntimeError:
return cut(txt, must_break_at_empty_line=False)
def force_breakdown(txt, limit, get_token_fn):
"""
当无法用标点、空行分割时,我们用最暴力的方法切割
"""
for i in reversed(range(len(txt))):
if get_token_fn(txt[:i]) < limit:
return txt[:i], txt[i:]
return "Tiktoken未知错误", "Tiktoken未知错误"
def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
# 递归
def cut(txt_tocut, must_break_at_empty_line, break_anyway=False):
if get_token_fn(txt_tocut) <= limit:
return [txt_tocut]
else:
lines = txt_tocut.split('\n')
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
estimated_line_cut = int(estimated_line_cut)
cnt = 0
for cnt in reversed(range(estimated_line_cut)):
if must_break_at_empty_line:
if lines[cnt] != "":
continue
prev = "\n".join(lines[:cnt])
post = "\n".join(lines[cnt:])
if get_token_fn(prev) < limit:
break
if cnt == 0:
if break_anyway:
prev, post = force_breakdown(txt_tocut, limit, get_token_fn)
else:
raise RuntimeError(f"存在一行极长的文本!{txt_tocut}")
# print(len(post))
# 列表递归接龙
result = [prev]
result.extend(cut(post, must_break_at_empty_line, break_anyway=break_anyway))
return result
try:
# 第1次尝试,将双空行\n\n作为切分点
return cut(txt, must_break_at_empty_line=True)
except RuntimeError:
try:
# 第2次尝试,将单空行\n作为切分点
return cut(txt, must_break_at_empty_line=False)
except RuntimeError:
try:
# 第3次尝试,将英文句号.)作为切分点
res = cut(txt.replace('.', '\n'), must_break_at_empty_line=False) # 这个中文的句号是故意的,作为一个标识而存在
return [r.replace('\n', '.') for r in res]
except RuntimeError as e:
try:
# 第4次尝试,将中文句号作为切分点
res = cut(txt.replace('', '。。\n'), must_break_at_empty_line=False)
return [r.replace('。。\n', '') for r in res]
except RuntimeError as e:
# 第5次尝试,没办法了,随便切一下敷衍吧
return cut(txt, must_break_at_empty_line=False, break_anyway=True)
def read_and_clean_pdf_text(fp):
"""
@@ -418,7 +379,7 @@ def read_and_clean_pdf_text(fp):
import fitz, copy
import re
import numpy as np
from colorful import print亮黄, print亮绿
# from shared_utils.colorful import print亮黄, print亮绿
fc = 0 # Index 0 文本
fs = 1 # Index 1 字体
fb = 2 # Index 2 框框
@@ -546,6 +507,9 @@ def read_and_clean_pdf_text(fp):
return True
else:
return False
# 对于某些PDF会有第一个段落就以小写字母开头,为了避免索引错误将其更改为大写
if starts_with_lowercase_word(meta_txt[0]):
meta_txt[0] = meta_txt[0].capitalize()
for _ in range(100):
for index, block_txt in enumerate(meta_txt):
if starts_with_lowercase_word(block_txt):
@@ -596,7 +560,7 @@ def get_files_from_everything(txt, type): # type='.md'
import requests
from toolbox import get_conf
from toolbox import get_log_folder, gen_time_str
proxies, = get_conf('proxies')
proxies = get_conf('proxies')
try:
r = requests.get(txt, proxies=proxies)
except:
@@ -624,90 +588,6 @@ def get_files_from_everything(txt, type): # type='.md'
def Singleton(cls):
_instance = {}
def _singleton(*args, **kargs):
if cls not in _instance:
_instance[cls] = cls(*args, **kargs)
return _instance[cls]
return _singleton
@Singleton
class knowledge_archive_interface():
def __init__(self) -> None:
self.threadLock = threading.Lock()
self.current_id = ""
self.kai_path = None
self.qa_handle = None
self.text2vec_large_chinese = None
def get_chinese_text2vec(self):
if self.text2vec_large_chinese is None:
# < -------------------预热文本向量化模组--------------- >
from toolbox import ProxyNetworkActivate
print('Checking Text2vec ...')
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
self.text2vec_large_chinese = HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
return self.text2vec_large_chinese
def feed_archive(self, file_manifest, id="default"):
self.threadLock.acquire()
# import uuid
self.current_id = id
from zh_langchain import construct_vector_store
self.qa_handle, self.kai_path = construct_vector_store(
vs_id=self.current_id,
files=file_manifest,
sentence_size=100,
history=[],
one_conent="",
one_content_segmentation="",
text2vec = self.get_chinese_text2vec(),
)
self.threadLock.release()
def get_current_archive_id(self):
return self.current_id
def get_loaded_file(self):
return self.qa_handle.get_loaded_file()
def answer_with_archive_by_id(self, txt, id):
self.threadLock.acquire()
if not self.current_id == id:
self.current_id = id
from zh_langchain import construct_vector_store
self.qa_handle, self.kai_path = construct_vector_store(
vs_id=self.current_id,
files=[],
sentence_size=100,
history=[],
one_conent="",
one_content_segmentation="",
text2vec = self.get_chinese_text2vec(),
)
VECTOR_SEARCH_SCORE_THRESHOLD = 0
VECTOR_SEARCH_TOP_K = 4
CHUNK_SIZE = 512
resp, prompt = self.qa_handle.get_knowledge_based_conent_test(
query = txt,
vs_path = self.kai_path,
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
vector_search_top_k=VECTOR_SEARCH_TOP_K,
chunk_conent=True,
chunk_size=CHUNK_SIZE,
text2vec = self.get_chinese_text2vec(),
)
self.threadLock.release()
return resp, prompt
@Singleton
class nougat_interface():
def __init__(self):
@@ -715,14 +595,16 @@ class nougat_interface():
def nougat_with_timeout(self, command, cwd, timeout=3600):
import subprocess
logging.info(f'正在执行命令 {command}')
process = subprocess.Popen(command, shell=True, cwd=cwd)
from toolbox import ProxyNetworkActivate
logger.info(f'正在执行命令 {command}')
with ProxyNetworkActivate("Nougat_Download"):
process = subprocess.Popen(command, shell=False, cwd=cwd, env=os.environ)
try:
stdout, stderr = process.communicate(timeout=timeout)
except subprocess.TimeoutExpired:
process.kill()
stdout, stderr = process.communicate()
print("Process timed out!")
logger.error("Process timed out!")
return False
return True
@@ -740,7 +622,8 @@ class nougat_interface():
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度正在加载NOUGAT... 提示首次运行需要花费较长时间下载NOUGAT参数",
chatbot=chatbot, history=history, delay=0)
self.nougat_with_timeout(f'nougat --out "{os.path.abspath(dst)}" "{os.path.abspath(fp)}"', os.getcwd(), timeout=3600)
command = ['nougat', '--out', os.path.abspath(dst), os.path.abspath(fp)]
self.nougat_with_timeout(command, cwd=os.getcwd(), timeout=3600)
res = glob.glob(os.path.join(dst,'*.mmd'))
if len(res) == 0:
self.threadLock.release()
@@ -761,54 +644,6 @@ def try_install_deps(deps, reload_m=[]):
importlib.reload(__import__(m))
HTML_CSS = """
.row {
display: flex;
flex-wrap: wrap;
}
.column {
flex: 1;
padding: 10px;
}
.table-header {
font-weight: bold;
border-bottom: 1px solid black;
}
.table-row {
border-bottom: 1px solid lightgray;
}
.table-cell {
padding: 5px;
}
"""
TABLE_CSS = """
<div class="row table-row">
<div class="column table-cell">REPLACE_A</div>
<div class="column table-cell">REPLACE_B</div>
</div>
"""
class construct_html():
def __init__(self) -> None:
self.css = HTML_CSS
self.html_string = f'<!DOCTYPE html><head><meta charset="utf-8"><title>翻译结果</title><style>{self.css}</style></head>'
def add_row(self, a, b):
tmp = TABLE_CSS
from toolbox import markdown_convertion
tmp = tmp.replace('REPLACE_A', markdown_convertion(a))
tmp = tmp.replace('REPLACE_B', markdown_convertion(b))
self.html_string += tmp
def save_file(self, file_name):
with open(os.path.join(get_log_folder(), file_name), 'w', encoding='utf8') as f:
f.write(self.html_string.encode('utf-8', 'ignore').decode())
return os.path.join(get_log_folder(), file_name)
def get_plugin_arg(plugin_kwargs, key, default):
# 如果参数是空的
if (key in plugin_kwargs) and (plugin_kwargs[key] == ""): plugin_kwargs.pop(key)

查看文件

@@ -0,0 +1,127 @@
import os
from textwrap import indent
from loguru import logger
class FileNode:
def __init__(self, name, build_manifest=False):
self.name = name
self.children = []
self.is_leaf = False
self.level = 0
self.parenting_ship = []
self.comment = ""
self.comment_maxlen_show = 50
self.build_manifest = build_manifest
self.manifest = {}
@staticmethod
def add_linebreaks_at_spaces(string, interval=10):
return '\n'.join(string[i:i+interval] for i in range(0, len(string), interval))
def sanitize_comment(self, comment):
if len(comment) > self.comment_maxlen_show: suf = '...'
else: suf = ''
comment = comment[:self.comment_maxlen_show]
comment = comment.replace('\"', '').replace('`', '').replace('\n', '').replace('`', '').replace('$', '')
comment = self.add_linebreaks_at_spaces(comment, 10)
return '`' + comment + suf + '`'
def add_file(self, file_path, file_comment):
directory_names, file_name = os.path.split(file_path)
current_node = self
level = 1
if directory_names == "":
new_node = FileNode(file_name)
self.manifest[file_path] = new_node
current_node.children.append(new_node)
new_node.is_leaf = True
new_node.comment = self.sanitize_comment(file_comment)
new_node.level = level
current_node = new_node
else:
dnamesplit = directory_names.split(os.sep)
for i, directory_name in enumerate(dnamesplit):
found_child = False
level += 1
for child in current_node.children:
if child.name == directory_name:
current_node = child
found_child = True
break
if not found_child:
new_node = FileNode(directory_name)
current_node.children.append(new_node)
new_node.level = level - 1
current_node = new_node
term = FileNode(file_name)
self.manifest[file_path] = term
term.level = level
term.comment = self.sanitize_comment(file_comment)
term.is_leaf = True
current_node.children.append(term)
def print_files_recursively(self, level=0, code="R0"):
logger.info(' '*level + self.name + ' ' + str(self.is_leaf) + ' ' + str(self.level))
for j, child in enumerate(self.children):
child.print_files_recursively(level=level+1, code=code+str(j))
self.parenting_ship.extend(child.parenting_ship)
p1 = f"""{code}[\"🗎{self.name}\"]""" if self.is_leaf else f"""{code}[[\"📁{self.name}\"]]"""
p2 = """ --> """
p3 = f"""{code+str(j)}[\"🗎{child.name}\"]""" if child.is_leaf else f"""{code+str(j)}[[\"📁{child.name}\"]]"""
edge_code = p1 + p2 + p3
if edge_code in self.parenting_ship:
continue
self.parenting_ship.append(edge_code)
if self.comment != "":
pc1 = f"""{code}[\"🗎{self.name}\"]""" if self.is_leaf else f"""{code}[[\"📁{self.name}\"]]"""
pc2 = f""" -.-x """
pc3 = f"""C{code}[\"{self.comment}\"]:::Comment"""
edge_code = pc1 + pc2 + pc3
self.parenting_ship.append(edge_code)
MERMAID_TEMPLATE = r"""
```mermaid
flowchart LR
%% <gpt_academic_hide_mermaid_code> 一个特殊标记,用于在生成mermaid图表时隐藏代码块
classDef Comment stroke-dasharray: 5 5
subgraph {graph_name}
{relationship}
end
```
"""
def build_file_tree_mermaid_diagram(file_manifest, file_comments, graph_name):
# Create the root node
file_tree_struct = FileNode("root")
# Build the tree structure
for file_path, file_comment in zip(file_manifest, file_comments):
file_tree_struct.add_file(file_path, file_comment)
file_tree_struct.print_files_recursively()
cc = "\n".join(file_tree_struct.parenting_ship)
ccc = indent(cc, prefix=" "*8)
return MERMAID_TEMPLATE.format(graph_name=graph_name, relationship=ccc)
if __name__ == "__main__":
# File manifest
file_manifest = [
"cradle_void_terminal.ipynb",
"tests/test_utils.py",
"tests/test_plugins.py",
"tests/test_llms.py",
"config.py",
"build/ChatGLM-6b-onnx-u8s8/chatglm-6b-int8-onnx-merged/model_weights_0.bin",
"crazy_functions/latex_fns/latex_actions.py",
"crazy_functions/latex_fns/latex_toolbox.py"
]
file_comments = [
"根据位置和名称,可能是一个模块的初始化文件根据位置和名称,可能是一个模块的初始化文件根据位置和名称,可能是一个模块的初始化文件",
"包含一些用于文本处理和模型微调的函数和装饰器包含一些用于文本处理和模型微调的函数和装饰器包含一些用于文本处理和模型微调的函数和装饰器",
"用于构建HTML报告的类和方法用于构建HTML报告的类和方法用于构建HTML报告的类和方法",
"包含了用于文本切分的函数,以及处理PDF文件的示例代码包含了用于文本切分的函数,以及处理PDF文件的示例代码包含了用于文本切分的函数,以及处理PDF文件的示例代码",
"用于解析和翻译PDF文件的功能和相关辅助函数用于解析和翻译PDF文件的功能和相关辅助函数用于解析和翻译PDF文件的功能和相关辅助函数",
"是一个包的初始化文件,用于初始化包的属性和导入模块是一个包的初始化文件,用于初始化包的属性和导入模块是一个包的初始化文件,用于初始化包的属性和导入模块",
"用于加载和分割文件中的文本的通用文件加载器用于加载和分割文件中的文本的通用文件加载器用于加载和分割文件中的文本的通用文件加载器",
"包含了用于构建和管理向量数据库的函数和类包含了用于构建和管理向量数据库的函数和类包含了用于构建和管理向量数据库的函数和类",
]
logger.info(build_file_tree_mermaid_diagram(file_manifest, file_comments, "项目文件树"))

查看文件

@@ -0,0 +1,42 @@
from toolbox import CatchException, update_ui, update_ui_lastest_msg
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicGameBaseState
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.game_fns.game_utils import get_code_block, is_same_thing
import random
class MiniGame_ASCII_Art(GptAcademicGameBaseState):
def step(self, prompt, chatbot, history):
if self.step_cnt == 0:
chatbot.append(["我画你猜(动物)", "请稍等..."])
else:
if prompt.strip() == 'exit':
self.delete_game = True
yield from update_ui_lastest_msg(lastmsg=f"谜底是{self.obj},游戏结束。", chatbot=chatbot, history=history, delay=0.)
return
chatbot.append([prompt, ""])
yield from update_ui(chatbot=chatbot, history=history)
if self.step_cnt == 0:
self.lock_plugin(chatbot)
self.cur_task = 'draw'
if self.cur_task == 'draw':
avail_obj = ["","","","","老鼠",""]
self.obj = random.choice(avail_obj)
inputs = "I want to play a game called Guess the ASCII art. You can draw the ASCII art and I will try to guess it. " + \
f"This time you draw a {self.obj}. Note that you must not indicate what you have draw in the text, and you should only produce the ASCII art wrapped by ```. "
raw_res = predict_no_ui_long_connection(inputs=inputs, llm_kwargs=self.llm_kwargs, history=[], sys_prompt="")
self.cur_task = 'identify user guess'
res = get_code_block(raw_res)
history += ['', f'the answer is {self.obj}', inputs, res]
yield from update_ui_lastest_msg(lastmsg=res, chatbot=chatbot, history=history, delay=0.)
elif self.cur_task == 'identify user guess':
if is_same_thing(self.obj, prompt, self.llm_kwargs):
self.delete_game = True
yield from update_ui_lastest_msg(lastmsg="你猜对了!", chatbot=chatbot, history=history, delay=0.)
else:
self.cur_task = 'identify user guess'
yield from update_ui_lastest_msg(lastmsg="猜错了,再试试,输入“exit”获取答案。", chatbot=chatbot, history=history, delay=0.)

查看文件

@@ -0,0 +1,212 @@
prompts_hs = """ 请以“{headstart}”为开头,编写一个小说的第一幕。
- 尽量短,不要包含太多情节,因为你接下来将会与用户互动续写下面的情节,要留出足够的互动空间。
- 出现人物时,给出人物的名字。
- 积极地运用环境描写、人物描写等手法,让读者能够感受到你的故事世界。
- 积极地运用修辞手法,比如比喻、拟人、排比、对偶、夸张等等。
- 字数要求第一幕的字数少于300字,且少于2个段落。
"""
prompts_interact = """ 小说的前文回顾:
{previously_on_story}
你是一个作家,根据以上的情节,给出4种不同的后续剧情发展方向,每个发展方向都精明扼要地用一句话说明。稍后,我将在这4个选择中,挑选一种剧情发展。
输出格式例如:
1. 后续剧情发展1
2. 后续剧情发展2
3. 后续剧情发展3
4. 后续剧情发展4
"""
prompts_resume = """小说的前文回顾:
{previously_on_story}
你是一个作家,我们正在互相讨论,确定后续剧情的发展。
在以下的剧情发展中,
{choice}
我认为更合理的是:{user_choice}
请在前文的基础上(不要重复前文),围绕我选定的剧情情节,编写小说的下一幕。
- 禁止杜撰不符合我选择的剧情。
- 尽量短,不要包含太多情节,因为你接下来将会与用户互动续写下面的情节,要留出足够的互动空间。
- 不要重复前文。
- 出现人物时,给出人物的名字。
- 积极地运用环境描写、人物描写等手法,让读者能够感受到你的故事世界。
- 积极地运用修辞手法,比如比喻、拟人、排比、对偶、夸张等等。
- 小说的下一幕字数少于300字,且少于2个段落。
"""
prompts_terminate = """小说的前文回顾:
{previously_on_story}
你是一个作家,我们正在互相讨论,确定后续剧情的发展。
现在,故事该结束了,我认为最合理的故事结局是:{user_choice}
请在前文的基础上(不要重复前文),编写小说的最后一幕。
- 不要重复前文。
- 出现人物时,给出人物的名字。
- 积极地运用环境描写、人物描写等手法,让读者能够感受到你的故事世界。
- 积极地运用修辞手法,比如比喻、拟人、排比、对偶、夸张等等。
- 字数要求最后一幕的字数少于1000字。
"""
from toolbox import CatchException, update_ui, update_ui_lastest_msg
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicGameBaseState
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.game_fns.game_utils import get_code_block, is_same_thing
import random
class MiniGame_ResumeStory(GptAcademicGameBaseState):
story_headstart = [
'先行者知道,他现在是全宇宙中唯一的一个人了。',
'深夜,一个年轻人穿过天安门广场向纪念堂走去。在二十二世纪编年史中,计算机把他的代号定为M102。',
'他知道,这最后一课要提前讲了。又一阵剧痛从肝部袭来,几乎使他晕厥过去。',
'在距地球五万光年的远方,在银河系的中心,一场延续了两万年的星际战争已接近尾声。那里的太空中渐渐隐现出一个方形区域,仿佛灿烂的群星的背景被剪出一个方口。',
'伊依一行三人乘坐一艘游艇在南太平洋上做吟诗航行,他们的目的地是南极,如果几天后能顺利到达那里,他们将钻出地壳去看诗云。',
'很多人生来就会莫名其妙地迷上一样东西,仿佛他的出生就是要和这东西约会似的,正是这样,圆圆迷上了肥皂泡。'
]
def begin_game_step_0(self, prompt, chatbot, history):
# init game at step 0
self.headstart = random.choice(self.story_headstart)
self.story = []
chatbot.append(["互动写故事", f"这次的故事开头是:{self.headstart}"])
self.sys_prompt_ = '你是一个想象力丰富的杰出作家。正在与你的朋友互动,一起写故事,因此你每次写的故事段落应少于300字结局除外'
def generate_story_image(self, story_paragraph):
try:
from crazy_functions.Image_Generate import gen_image
prompt_ = predict_no_ui_long_connection(inputs=story_paragraph, llm_kwargs=self.llm_kwargs, history=[], sys_prompt='你需要根据用户给出的小说段落,进行简短的环境描写。要求80字以内。')
image_url, image_path = gen_image(self.llm_kwargs, prompt_, '512x512', model="dall-e-2", quality='standard', style='natural')
return f'<br/><div align="center"><img src="file={image_path}"></div>'
except:
return ''
def step(self, prompt, chatbot, history):
"""
首先,处理游戏初始化等特殊情况
"""
if self.step_cnt == 0:
self.begin_game_step_0(prompt, chatbot, history)
self.lock_plugin(chatbot)
self.cur_task = 'head_start'
else:
if prompt.strip() == 'exit' or prompt.strip() == '结束剧情':
# should we terminate game here?
self.delete_game = True
yield from update_ui_lastest_msg(lastmsg=f"游戏结束。", chatbot=chatbot, history=history, delay=0.)
return
if '剧情收尾' in prompt:
self.cur_task = 'story_terminate'
# # well, game resumes
# chatbot.append([prompt, ""])
# update ui, don't keep the user waiting
yield from update_ui(chatbot=chatbot, history=history)
"""
处理游戏的主体逻辑
"""
if self.cur_task == 'head_start':
"""
这是游戏的第一步
"""
inputs_ = prompts_hs.format(headstart=self.headstart)
history_ = []
story_paragraph = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs_, '故事开头', self.llm_kwargs,
chatbot, history_, self.sys_prompt_
)
self.story.append(story_paragraph)
# # 配图
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
# # 构建后续剧情引导
previously_on_story = ""
for s in self.story:
previously_on_story += s + '\n'
inputs_ = prompts_interact.format(previously_on_story=previously_on_story)
history_ = []
self.next_choices = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs_, '请在以下几种故事走向中,选择一种(当然,您也可以选择给出其他故事走向):', self.llm_kwargs,
chatbot,
history_,
self.sys_prompt_
)
self.cur_task = 'user_choice'
elif self.cur_task == 'user_choice':
"""
根据用户的提示,确定故事的下一步
"""
if '请在以下几种故事走向中,选择一种' in chatbot[-1][0]: chatbot.pop(-1)
previously_on_story = ""
for s in self.story:
previously_on_story += s + '\n'
inputs_ = prompts_resume.format(previously_on_story=previously_on_story, choice=self.next_choices, user_choice=prompt)
history_ = []
story_paragraph = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs_, f'下一段故事(您的选择是:{prompt})。', self.llm_kwargs,
chatbot, history_, self.sys_prompt_
)
self.story.append(story_paragraph)
# # 配图
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
# # 构建后续剧情引导
previously_on_story = ""
for s in self.story:
previously_on_story += s + '\n'
inputs_ = prompts_interact.format(previously_on_story=previously_on_story)
history_ = []
self.next_choices = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs_,
'请在以下几种故事走向中,选择一种。当然,您也可以给出您心中的其他故事走向。另外,如果您希望剧情立即收尾,请输入剧情走向,并以“剧情收尾”四个字提示程序。', self.llm_kwargs,
chatbot,
history_,
self.sys_prompt_
)
self.cur_task = 'user_choice'
elif self.cur_task == 'story_terminate':
"""
根据用户的提示,确定故事的结局
"""
previously_on_story = ""
for s in self.story:
previously_on_story += s + '\n'
inputs_ = prompts_terminate.format(previously_on_story=previously_on_story, user_choice=prompt)
history_ = []
story_paragraph = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs_, f'故事收尾(您的选择是:{prompt})。', self.llm_kwargs,
chatbot, history_, self.sys_prompt_
)
# # 配图
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
# terminate game
self.delete_game = True
return

查看文件

@@ -0,0 +1,35 @@
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
from request_llms.bridge_all import predict_no_ui_long_connection
def get_code_block(reply):
import re
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
matches = re.findall(pattern, reply) # find all code blocks in text
if len(matches) == 1:
return "```" + matches[0] + "```" # code block
raise RuntimeError("GPT is not generating proper code.")
def is_same_thing(a, b, llm_kwargs):
from pydantic import BaseModel, Field
class IsSameThing(BaseModel):
is_same_thing: bool = Field(description="determine whether two objects are same thing.", default=False)
def run_gpt_fn(inputs, sys_prompt, history=[]):
return predict_no_ui_long_connection(
inputs=inputs, llm_kwargs=llm_kwargs,
history=history, sys_prompt=sys_prompt, observe_window=[]
)
gpt_json_io = GptJsonIO(IsSameThing)
inputs_01 = "Identity whether the user input and the target is the same thing: \n target object: {a} \n user input object: {b} \n\n\n".format(a=a, b=b)
inputs_01 += "\n\n\n Note that the user may describe the target object with a different language, e.g. cat and 猫 are the same thing."
analyze_res_cot_01 = run_gpt_fn(inputs_01, "", [])
inputs_02 = inputs_01 + gpt_json_io.format_instructions
analyze_res = run_gpt_fn(inputs_02, "", [inputs_01, analyze_res_cot_01])
try:
res = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
return res.is_same_thing
except JsonStringError as e:
return False

查看文件

@@ -0,0 +1,37 @@
import platform
import pickle
import multiprocessing
def run_in_subprocess_wrapper_func(v_args):
func, args, kwargs, return_dict, exception_dict = pickle.loads(v_args)
import sys
try:
result = func(*args, **kwargs)
return_dict['result'] = result
except Exception as e:
exc_info = sys.exc_info()
exception_dict['exception'] = exc_info
def run_in_subprocess_with_timeout(func, timeout=60):
if platform.system() == 'Linux':
def wrapper(*args, **kwargs):
return_dict = multiprocessing.Manager().dict()
exception_dict = multiprocessing.Manager().dict()
v_args = pickle.dumps((func, args, kwargs, return_dict, exception_dict))
process = multiprocessing.Process(target=run_in_subprocess_wrapper_func, args=(v_args,))
process.start()
process.join(timeout)
if process.is_alive():
process.terminate()
raise TimeoutError(f'功能单元{str(func)}未能在规定时间内完成任务')
process.close()
if 'exception' in exception_dict:
# ooops, the subprocess ran into an exception
exc_info = exception_dict['exception']
raise exc_info[1].with_traceback(exc_info[2])
if 'result' in return_dict.keys():
# If the subprocess ran successfully, return the result
return return_dict['result']
return wrapper
else:
return func

查看文件

@@ -24,8 +24,8 @@ class Actor(BaseModel):
film_names: List[str] = Field(description="list of names of films they starred in")
"""
import json, re, logging
import json, re
from loguru import logger as logging
PYDANTIC_FORMAT_INSTRUCTIONS = """The output should be formatted as a JSON instance that conforms to the JSON schema below.
@@ -62,8 +62,8 @@ class GptJsonIO():
if "type" in reduced_schema:
del reduced_schema["type"]
# Ensure json in context is well-formed with double quotes.
if self.example_instruction:
schema_str = json.dumps(reduced_schema)
if self.example_instruction:
return PYDANTIC_FORMAT_INSTRUCTIONS.format(schema=schema_str)
else:
return PYDANTIC_FORMAT_INSTRUCTIONS_SIMPLE.format(schema=schema_str)

查看文件

@@ -0,0 +1,26 @@
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
def structure_output(txt, prompt, err_msg, run_gpt_fn, pydantic_cls):
gpt_json_io = GptJsonIO(pydantic_cls)
analyze_res = run_gpt_fn(
txt,
sys_prompt=prompt + gpt_json_io.format_instructions
)
try:
friend = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
except JsonStringError as e:
return None, err_msg
err_msg = ""
return friend, err_msg
def select_tool(prompt, run_gpt_fn, pydantic_cls):
pydantic_cls_instance, err_msg = structure_output(
txt=prompt,
prompt="根据提示, 分析应该调用哪个工具函数\n\n",
err_msg=f"不能理解该联系人",
run_gpt_fn=run_gpt_fn,
pydantic_cls=pydantic_cls
)
return pydantic_cls_instance, err_msg

查看文件

@@ -1,13 +1,17 @@
from toolbox import update_ui, update_ui_lastest_msg, get_log_folder
from toolbox import zip_folder, objdump, objload, promote_file_to_downloadzone
from .latex_toolbox import PRESERVE, TRANSFORM
from .latex_toolbox import set_forbidden_text, set_forbidden_text_begin_end, set_forbidden_text_careful_brace
from .latex_toolbox import reverse_forbidden_text_careful_brace, reverse_forbidden_text, convert_to_linklist, post_process
from .latex_toolbox import fix_content, find_main_tex_file, merge_tex_files, compile_latex_with_timeout
import os, shutil
import os
import re
import shutil
import numpy as np
from loguru import logger
from toolbox import update_ui, update_ui_lastest_msg, get_log_folder, gen_time_str
from toolbox import get_conf, promote_file_to_downloadzone
from crazy_functions.latex_fns.latex_toolbox import PRESERVE, TRANSFORM
from crazy_functions.latex_fns.latex_toolbox import set_forbidden_text, set_forbidden_text_begin_end, set_forbidden_text_careful_brace
from crazy_functions.latex_fns.latex_toolbox import reverse_forbidden_text_careful_brace, reverse_forbidden_text, convert_to_linklist, post_process
from crazy_functions.latex_fns.latex_toolbox import fix_content, find_main_tex_file, merge_tex_files, compile_latex_with_timeout
from crazy_functions.latex_fns.latex_toolbox import find_title_and_abs
from crazy_functions.latex_fns.latex_pickle_io import objdump, objload
pj = os.path.join
@@ -90,7 +94,18 @@ class LatexPaperSplit():
"项目Github地址 \\url{https://github.com/binary-husky/gpt_academic/}。"
# 请您不要删除或修改这行警告,除非您是论文的原作者如果您是论文原作者,欢迎加REAME中的QQ联系开发者
self.msg_declare = "为了防止大语言模型的意外谬误产生扩散影响,禁止移除或修改此警告。}}\\\\"
self.title = "unknown"
self.abstract = "unknown"
def read_title_and_abstract(self, txt):
try:
title, abstract = find_title_and_abs(txt)
if title is not None:
self.title = title.replace('\n', ' ').replace('\\\\', ' ').replace(' ', '').replace(' ', '')
if abstract is not None:
self.abstract = abstract.replace('\n', ' ').replace('\\\\', ' ').replace(' ', '').replace(' ', '')
except:
pass
def merge_result(self, arr, mode, msg, buggy_lines=[], buggy_line_surgery_n_lines=10):
"""
@@ -163,9 +178,8 @@ class LatexPaperFileGroup():
self.sp_file_contents = []
self.sp_file_index = []
self.sp_file_tag = []
# count_token
from request_llm.bridge_all import model_info
from request_llms.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
self.get_token_num = get_token_num
@@ -180,13 +194,12 @@ class LatexPaperFileGroup():
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
from ..crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit)
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
print('Segmentation: done')
def merge_result(self):
self.file_result = ["" for _ in range(len(self.file_paths))]
@@ -234,8 +247,8 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
chatbot.append((f"Latex文件融合完成", f'[Local Message] 正在精细切分latex文件,这需要一段时间计算,文档越长耗时越长,请耐心等待。'))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
lps = LatexPaperSplit()
lps.read_title_and_abstract(merged_content)
res = lps.split(merged_content, project_folder, opts) # 消耗时间的函数
# <-------- 拆分过长的latex片段 ---------->
pfg = LatexPaperFileGroup()
for index, r in enumerate(res):
@@ -256,12 +269,19 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
else:
# <-------- gpt 多线程请求 ---------->
history_array = [[""] for _ in range(n_split)]
# LATEX_EXPERIMENTAL, = get_conf('LATEX_EXPERIMENTAL')
# if LATEX_EXPERIMENTAL:
# paper_meta = f"The paper you processing is `{lps.title}`, a part of the abstraction is `{lps.abstract}`"
# paper_meta_max_len = 888
# history_array = [[ paper_meta[:paper_meta_max_len] + '...', "Understand, what should I do?"] for _ in range(n_split)]
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[[""] for _ in range(n_split)],
history_array=history_array,
sys_prompt_array=sys_prompt_array,
# max_workers=5, # 并行任务数量限制, 最多同时执行5个, 其他的排队等待
scroller_max_len = 40
@@ -280,7 +300,8 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
write_html(pfg.sp_file_contents, pfg.sp_file_result, chatbot=chatbot, project_folder=project_folder)
# <-------- 写出文件 ---------->
msg = f"当前大语言模型: {llm_kwargs['llm_model']},当前语言模型温度设定: {llm_kwargs['temperature']}"
model_name = llm_kwargs['llm_model'].replace('_', '\\_') # 替换LLM模型名称中的下划线为转义字符
msg = f"当前大语言模型: {model_name},当前语言模型温度设定: {llm_kwargs['temperature']}"
final_tex = lps.merge_result(pfg.file_result, mode, msg)
objdump((lps, pfg.file_result, mode, msg), file=pj(project_folder,'merge_result.pkl'))
@@ -305,7 +326,7 @@ def remove_buggy_lines(file_path, log_path, tex_name, tex_name_pure, n_fix, work
buggy_lines = [int(l) for l in buggy_lines]
buggy_lines = sorted(buggy_lines)
buggy_line = buggy_lines[0]-1
print("reversing tex line that has errors", buggy_line)
logger.warning("reversing tex line that has errors", buggy_line)
# 重组,逆转出错的段落
if buggy_line not in fixed_line:
@@ -319,7 +340,7 @@ def remove_buggy_lines(file_path, log_path, tex_name, tex_name_pure, n_fix, work
return True, f"{tex_name_pure}_fix_{n_fix}", buggy_lines
except:
print("Fatal error occurred, but we cannot identify error, please download zip, read latex log, and compile manually.")
logger.error("Fatal error occurred, but we cannot identify error, please download zip, read latex log, and compile manually.")
return False, -1, [-1]
@@ -331,6 +352,41 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
chatbot.append([f"正在编译PDF文档", f'编译已经开始。当前工作路径为{work_folder},如果程序停顿5分钟以上,请直接去该路径下取回翻译结果,或者重启之后再度尝试 ...']); yield from update_ui(chatbot=chatbot, history=history)
chatbot.append([f"正在编译PDF文档", '...']); yield from update_ui(chatbot=chatbot, history=history); time.sleep(1); chatbot[-1] = list(chatbot[-1]) # 刷新界面
yield from update_ui_lastest_msg('编译已经开始...', chatbot, history) # 刷新Gradio前端界面
# 检查是否需要使用xelatex
def check_if_need_xelatex(tex_path):
try:
with open(tex_path, 'r', encoding='utf-8', errors='replace') as f:
content = f.read(5000)
# 检查是否有使用xelatex的宏包
need_xelatex = any(
pkg in content
for pkg in ['fontspec', 'xeCJK', 'xetex', 'unicode-math', 'xltxtra', 'xunicode']
)
if need_xelatex:
logger.info(f"检测到宏包需要xelatex编译, 切换至xelatex编译")
else:
logger.info(f"未检测到宏包需要xelatex编译, 使用pdflatex编译")
return need_xelatex
except Exception:
return False
# 根据编译器类型返回编译命令
def get_compile_command(compiler, filename):
compile_command = f'{compiler} -interaction=batchmode -file-line-error {filename}.tex'
logger.info('Latex 编译指令: ' + compile_command)
return compile_command
# 确定使用的编译器
compiler = 'pdflatex'
if check_if_need_xelatex(pj(work_folder_modified, f'{main_file_modified}.tex')):
logger.info("检测到宏包需要xelatex编译,切换至xelatex编译")
# Check if xelatex is installed
try:
import subprocess
subprocess.run(['xelatex', '--version'], capture_output=True, check=True)
compiler = 'xelatex'
except (subprocess.CalledProcessError, FileNotFoundError):
raise RuntimeError("检测到需要使用xelatex编译,但系统中未安装xelatex。请先安装texlive或其他提供xelatex的LaTeX发行版。")
while True:
import os
@@ -341,10 +397,10 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
# https://stackoverflow.com/questions/738755/dont-make-me-manually-abort-a-latex-compile-when-theres-an-error
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译原始PDF ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_original), work_folder_original)
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译转化后的PDF ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_modified), work_folder_modified)
if ok and os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf')):
# 只有第二步成功,才能继续下面的步骤
@@ -355,21 +411,21 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
ok = compile_latex_with_timeout(f'bibtex {main_file_modified}.aux', work_folder_modified)
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译文献交叉引用 ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_original), work_folder_original)
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_modified), work_folder_modified)
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_original), work_folder_original)
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_modified), work_folder_modified)
if mode!='translate_zh':
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 使用latexdiff生成论文转化前后对比 ...', chatbot, history) # 刷新Gradio前端界面
print( f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex')
logger.info( f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex')
ok = compile_latex_with_timeout(f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex', os.getcwd())
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 正在编译对比PDF ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
ok = compile_latex_with_timeout(get_compile_command(compiler, 'merge_diff'), work_folder)
ok = compile_latex_with_timeout(f'bibtex merge_diff.aux', work_folder)
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
ok = compile_latex_with_timeout(get_compile_command(compiler, 'merge_diff'), work_folder)
ok = compile_latex_with_timeout(get_compile_command(compiler, 'merge_diff'), work_folder)
# <---------- 检查结果 ----------->
results_ = ""
@@ -385,7 +441,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
result_pdf = pj(work_folder_modified, f'merge_diff.pdf') # get pdf path
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
if modified_pdf_success:
yield from update_ui_lastest_msg(f'转化PDF编译已经成功, 即将退出 ...', chatbot, history) # 刷新Gradio前端界面
yield from update_ui_lastest_msg(f'转化PDF编译已经成功, 正在尝试生成对比PDF, 请稍候 ...', chatbot, history) # 刷新Gradio前端界面
result_pdf = pj(work_folder_modified, f'{main_file_modified}.pdf') # get pdf path
origin_pdf = pj(work_folder_original, f'{main_file_original}.pdf') # get pdf path
if os.path.exists(pj(work_folder, '..', 'translation')):
@@ -397,8 +453,11 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
from .latex_toolbox import merge_pdfs
concat_pdf = pj(work_folder_modified, f'comparison.pdf')
merge_pdfs(origin_pdf, result_pdf, concat_pdf)
if os.path.exists(pj(work_folder, '..', 'translation')):
shutil.copyfile(concat_pdf, pj(work_folder, '..', 'translation', 'comparison.pdf'))
promote_file_to_downloadzone(concat_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
except Exception as e:
logger.error(e)
pass
return True # 成功啦
else:
@@ -423,7 +482,7 @@ def write_html(sp_file_contents, sp_file_result, chatbot, project_folder):
# write html
try:
import shutil
from ..crazy_utils import construct_html
from crazy_functions.pdf_fns.report_gen_html import construct_html
from toolbox import gen_time_str
ch = construct_html()
orig = ""
@@ -444,4 +503,71 @@ def write_html(sp_file_contents, sp_file_result, chatbot, project_folder):
promote_file_to_downloadzone(file=res, chatbot=chatbot)
except:
from toolbox import trimmed_format_exc
print('writing html result failed:', trimmed_format_exc())
logger.error('writing html result failed:', trimmed_format_exc())
def upload_to_gptac_cloud_if_user_allow(chatbot, arxiv_id):
try:
# 如果用户允许,我们将arxiv论文PDF上传到GPTAC学术云
from toolbox import map_file_to_sha256
# 检查是否顺利,如果没有生成预期的文件,则跳过
is_result_good = False
for file_path in chatbot._cookies.get("files_to_promote", []):
if file_path.endswith('translate_zh.pdf'):
is_result_good = True
if not is_result_good:
return
# 上传文件
for file_path in chatbot._cookies.get("files_to_promote", []):
align_name = None
# normalized name
for name in ['translate_zh.pdf', 'comparison.pdf']:
if file_path.endswith(name): align_name = name
# if match any align name
if align_name:
logger.info(f'Uploading to GPTAC cloud as the user has set `allow_cloud_io`: {file_path}')
with open(file_path, 'rb') as f:
import requests
url = 'https://cloud-2.agent-matrix.com/arxiv_tf_paper_normal_upload'
files = {'file': (align_name, f, 'application/octet-stream')}
data = {
'arxiv_id': arxiv_id,
'file_hash': map_file_to_sha256(file_path),
'language': 'zh',
'trans_prompt': 'to_be_implemented',
'llm_model': 'to_be_implemented',
'llm_model_param': 'to_be_implemented',
}
resp = requests.post(url=url, files=files, data=data, timeout=30)
logger.info(f'Uploading terminate ({resp.status_code})`: {file_path}')
except:
# 如果上传失败,不会中断程序,因为这是次要功能
pass
def check_gptac_cloud(arxiv_id, chatbot):
import requests
success = False
downloaded = []
try:
for pdf_target in ['translate_zh.pdf', 'comparison.pdf']:
url = 'https://cloud-2.agent-matrix.com/arxiv_tf_paper_normal_exist'
data = {
'arxiv_id': arxiv_id,
'name': pdf_target,
}
resp = requests.post(url=url, data=data)
cache_hit_result = resp.text.strip('"')
if cache_hit_result.startswith("http"):
url = cache_hit_result
logger.info(f'Downloading from GPTAC cloud: {url}')
resp = requests.get(url=url, timeout=30)
target = os.path.join(get_log_folder(plugin_name='gptac_cloud'), gen_time_str(), pdf_target)
os.makedirs(os.path.dirname(target), exist_ok=True)
with open(target, 'wb') as f:
f.write(resp.content)
new_path = promote_file_to_downloadzone(target, chatbot=chatbot)
success = True
downloaded.append(new_path)
except:
pass
return success, downloaded

查看文件

@@ -0,0 +1,48 @@
import pickle
class SafeUnpickler(pickle.Unpickler):
def get_safe_classes(self):
from crazy_functions.latex_fns.latex_actions import LatexPaperFileGroup, LatexPaperSplit
from crazy_functions.latex_fns.latex_toolbox import LinkedListNode
from numpy.core.multiarray import scalar
from numpy import dtype
# 定义允许的安全类
safe_classes = {
# 在这里添加其他安全的类
'LatexPaperFileGroup': LatexPaperFileGroup,
'LatexPaperSplit': LatexPaperSplit,
'LinkedListNode': LinkedListNode,
'scalar': scalar,
'dtype': dtype,
}
return safe_classes
def find_class(self, module, name):
# 只允许特定的类进行反序列化
self.safe_classes = self.get_safe_classes()
match_class_name = None
for class_name in self.safe_classes.keys():
if (class_name in f'{module}.{name}'):
match_class_name = class_name
if match_class_name is not None:
return self.safe_classes[match_class_name]
# 如果尝试加载未授权的类,则抛出异常
raise pickle.UnpicklingError(f"Attempted to deserialize unauthorized class '{name}' from module '{module}'")
def objdump(obj, file="objdump.tmp"):
with open(file, "wb+") as f:
pickle.dump(obj, f)
return
def objload(file="objdump.tmp"):
import os
if not os.path.exists(file):
return
with open(file, "rb") as f:
unpickler = SafeUnpickler(f)
return unpickler.load()

查看文件

@@ -1,15 +1,20 @@
import os, shutil
import os
import re
import shutil
import numpy as np
from loguru import logger
PRESERVE = 0
TRANSFORM = 1
pj = os.path.join
class LinkedListNode():
class LinkedListNode:
"""
Linked List Node
"""
def __init__(self, string, preserve=True) -> None:
self.string = string
self.preserve = preserve
@@ -18,12 +23,14 @@ class LinkedListNode():
# self.begin_line = 0
# self.begin_char = 0
def convert_to_linklist(text, mask):
root = LinkedListNode("", preserve=True)
current_node = root
for c, m, i in zip(text, mask, range(len(text))):
if (m==PRESERVE and current_node.preserve) \
or (m==TRANSFORM and not current_node.preserve):
if (m == PRESERVE and current_node.preserve) or (
m == TRANSFORM and not current_node.preserve
):
# add
current_node.string += c
else:
@@ -31,6 +38,7 @@ def convert_to_linklist(text, mask):
current_node = current_node.next
return root
def post_process(root):
# 修复括号
node = root
@@ -38,21 +46,24 @@ def post_process(root):
string = node.string
if node.preserve:
node = node.next
if node is None: break
if node is None:
break
continue
def break_check(string):
str_stack = [""] # (lv, index)
for i, c in enumerate(string):
if c == '{':
str_stack.append('{')
elif c == '}':
if c == "{":
str_stack.append("{")
elif c == "}":
if len(str_stack) == 1:
print('stack fix')
logger.warning("fixing brace error")
return i
str_stack.pop(-1)
else:
str_stack[-1] += c
return -1
bp = break_check(string)
if bp == -1:
@@ -69,51 +80,66 @@ def post_process(root):
node.next = q
node = node.next
if node is None: break
if node is None:
break
# 屏蔽空行和太短的句子
node = root
while True:
if len(node.string.strip('\n').strip(''))==0: node.preserve = True
if len(node.string.strip('\n').strip(''))<42: node.preserve = True
if len(node.string.strip("\n").strip("")) == 0:
node.preserve = True
if len(node.string.strip("\n").strip("")) < 42:
node.preserve = True
node = node.next
if node is None: break
if node is None:
break
node = root
while True:
if node.next and node.preserve and node.next.preserve:
node.string += node.next.string
node.next = node.next.next
node = node.next
if node is None: break
if node is None:
break
# 将前后断行符脱离
node = root
prev_node = None
while True:
if not node.preserve:
lstriped_ = node.string.lstrip().lstrip('\n')
if (prev_node is not None) and (prev_node.preserve) and (len(lstriped_)!=len(node.string)):
lstriped_ = node.string.lstrip().lstrip("\n")
if (
(prev_node is not None)
and (prev_node.preserve)
and (len(lstriped_) != len(node.string))
):
prev_node.string += node.string[: -len(lstriped_)]
node.string = lstriped_
rstriped_ = node.string.rstrip().rstrip('\n')
if (node.next is not None) and (node.next.preserve) and (len(rstriped_)!=len(node.string)):
rstriped_ = node.string.rstrip().rstrip("\n")
if (
(node.next is not None)
and (node.next.preserve)
and (len(rstriped_) != len(node.string))
):
node.next.string = node.string[len(rstriped_) :] + node.next.string
node.string = rstriped_
# =====
# =-=-=
prev_node = node
node = node.next
if node is None: break
if node is None:
break
# 标注节点的行数范围
node = root
n_line = 0
expansion = 2
while True:
n_l = node.string.count('\n')
n_l = node.string.count("\n")
node.range = [n_line - expansion, n_line + n_l + expansion] # 失败时,扭转的范围
n_line = n_line + n_l
node = node.next
if node is None: break
if node is None:
break
return root
@@ -131,12 +157,14 @@ def set_forbidden_text(text, mask, pattern, flags=0):
you can mask out (mask = PRESERVE so that text become untouchable for GPT)
everything between "\begin{equation}" and "\end{equation}"
"""
if isinstance(pattern, list): pattern = '|'.join(pattern)
if isinstance(pattern, list):
pattern = "|".join(pattern)
pattern_compile = re.compile(pattern, flags)
for res in pattern_compile.finditer(text):
mask[res.span()[0] : res.span()[1]] = PRESERVE
return text, mask
def reverse_forbidden_text(text, mask, pattern, flags=0, forbid_wrapper=True):
"""
Move area out of preserve area (make text editable for GPT)
@@ -144,7 +172,8 @@ def reverse_forbidden_text(text, mask, pattern, flags=0, forbid_wrapper=True):
e.g.
\begin{abstract} blablablablablabla. \end{abstract}
"""
if isinstance(pattern, list): pattern = '|'.join(pattern)
if isinstance(pattern, list):
pattern = "|".join(pattern)
pattern_compile = re.compile(pattern, flags)
for res in pattern_compile.finditer(text):
if not forbid_wrapper:
@@ -155,6 +184,7 @@ def reverse_forbidden_text(text, mask, pattern, flags=0, forbid_wrapper=True):
mask[res.regs[1][1] : res.regs[0][1]] = PRESERVE # abstract
return text, mask
def set_forbidden_text_careful_brace(text, mask, pattern, flags=0):
"""
Add a preserve text area in this paper (text become untouchable for GPT).
@@ -167,15 +197,21 @@ def set_forbidden_text_careful_brace(text, mask, pattern, flags=0):
brace_level = -1
p = begin = end = res.regs[0][0]
for _ in range(1024 * 16):
if text[p] == '}' and brace_level == 0: break
elif text[p] == '}': brace_level -= 1
elif text[p] == '{': brace_level += 1
if text[p] == "}" and brace_level == 0:
break
elif text[p] == "}":
brace_level -= 1
elif text[p] == "{":
brace_level += 1
p += 1
end = p + 1
mask[begin:end] = PRESERVE
return text, mask
def reverse_forbidden_text_careful_brace(text, mask, pattern, flags=0, forbid_wrapper=True):
def reverse_forbidden_text_careful_brace(
text, mask, pattern, flags=0, forbid_wrapper=True
):
"""
Move area out of preserve area (make text editable for GPT)
count the number of the braces so as to catch compelete text area.
@@ -187,9 +223,12 @@ def reverse_forbidden_text_careful_brace(text, mask, pattern, flags=0, forbid_wr
brace_level = 0
p = begin = end = res.regs[1][0]
for _ in range(1024 * 16):
if text[p] == '}' and brace_level == 0: break
elif text[p] == '}': brace_level -= 1
elif text[p] == '{': brace_level += 1
if text[p] == "}" and brace_level == 0:
break
elif text[p] == "}":
brace_level -= 1
elif text[p] == "{":
brace_level += 1
p += 1
end = p
mask[begin:end] = TRANSFORM
@@ -198,27 +237,42 @@ def reverse_forbidden_text_careful_brace(text, mask, pattern, flags=0, forbid_wr
mask[end : res.regs[0][1]] = PRESERVE
return text, mask
def set_forbidden_text_begin_end(text, mask, pattern, flags=0, limit_n_lines=42):
"""
Find all \begin{} ... \end{} text block that with less than limit_n_lines lines.
Add it to preserve area
"""
pattern_compile = re.compile(pattern, flags)
def search_with_line_limit(text, mask):
for res in pattern_compile.finditer(text):
cmd = res.group(1) # begin{what}
this = res.group(2) # content between begin and end
this_mask = mask[res.regs[2][0] : res.regs[2][1]]
white_list = ['document', 'abstract', 'lemma', 'definition', 'sproof',
'em', 'emph', 'textit', 'textbf', 'itemize', 'enumerate']
if (cmd in white_list) or this.count('\n') >= limit_n_lines: # use a magical number 42
white_list = [
"document",
"abstract",
"lemma",
"definition",
"sproof",
"em",
"emph",
"textit",
"textbf",
"itemize",
"enumerate",
]
if (cmd in white_list) or this.count(
"\n"
) >= limit_n_lines: # use a magical number 42
this, this_mask = search_with_line_limit(this, this_mask)
mask[res.regs[2][0] : res.regs[2][1]] = this_mask
else:
mask[res.regs[0][0] : res.regs[0][1]] = PRESERVE
return text, mask
return search_with_line_limit(text, mask)
return search_with_line_limit(text, mask)
"""
@@ -227,6 +281,7 @@ Latex Merge File
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
"""
def find_main_tex_file(file_manifest, mode):
"""
在多Tex文档中,寻找主文件,必须包含documentclass,返回找到的第一个。
@@ -234,27 +289,36 @@ def find_main_tex_file(file_manifest, mode):
"""
canidates = []
for texf in file_manifest:
if os.path.basename(texf).startswith('merge'):
if os.path.basename(texf).startswith("merge"):
continue
with open(texf, 'r', encoding='utf8', errors='ignore') as f:
with open(texf, "r", encoding="utf8", errors="ignore") as f:
file_content = f.read()
if r'\documentclass' in file_content:
if r"\documentclass" in file_content:
canidates.append(texf)
else:
continue
if len(canidates) == 0:
raise RuntimeError('无法找到一个主Tex文件包含documentclass关键字')
raise RuntimeError("无法找到一个主Tex文件包含documentclass关键字")
elif len(canidates) == 1:
return canidates[0]
else: # if len(canidates) >= 2 通过一些Latex模板中常见但通常不会出现在正文的单词,对不同latex源文件扣分,取评分最高者返回
canidates_score = []
# 给出一些判定模板文档的词作为扣分项
unexpected_words = ['\LaTeX', 'manuscript', 'Guidelines', 'font', 'citations', 'rejected', 'blind review', 'reviewers']
expected_words = ['\input', '\ref', '\cite']
unexpected_words = [
"\\LaTeX",
"manuscript",
"Guidelines",
"font",
"citations",
"rejected",
"blind review",
"reviewers",
]
expected_words = ["\\input", "\\ref", "\\cite"]
for texf in canidates:
canidates_score.append(0)
with open(texf, 'r', encoding='utf8', errors='ignore') as f:
with open(texf, "r", encoding="utf8", errors="ignore") as f:
file_content = f.read()
file_content = rm_comments(file_content)
for uw in unexpected_words:
@@ -266,6 +330,7 @@ def find_main_tex_file(file_manifest, mode):
select = np.argmax(canidates_score) # 取评分最高者返回
return canidates[select]
def rm_comments(main_file):
new_file_remove_comment_lines = []
for l in main_file.splitlines():
@@ -274,30 +339,39 @@ def rm_comments(main_file):
pass
else:
new_file_remove_comment_lines.append(l)
main_file = '\n'.join(new_file_remove_comment_lines)
main_file = "\n".join(new_file_remove_comment_lines)
# main_file = re.sub(r"\\include{(.*?)}", r"\\input{\1}", main_file) # 将 \include 命令转换为 \input 命令
main_file = re.sub(r'(?<!\\)%.*', '', main_file) # 使用正则表达式查找半行注释, 并替换为空字符串
main_file = re.sub(r"(?<!\\)%.*", "", main_file) # 使用正则表达式查找半行注释, 并替换为空字符串
return main_file
def find_tex_file_ignore_case(fp):
dir_name = os.path.dirname(fp)
base_name = os.path.basename(fp)
# 如果输入的文件路径是正确的
if os.path.exists(pj(dir_name, base_name)): return pj(dir_name, base_name)
if os.path.isfile(pj(dir_name, base_name)):
return pj(dir_name, base_name)
# 如果不正确,试着加上.tex后缀试试
if not base_name.endswith('.tex'): base_name+='.tex'
if os.path.exists(pj(dir_name, base_name)): return pj(dir_name, base_name)
if not base_name.endswith(".tex"):
base_name += ".tex"
if os.path.isfile(pj(dir_name, base_name)):
return pj(dir_name, base_name)
# 如果还找不到,解除大小写限制,再试一次
import glob
for f in glob.glob(dir_name+'/*.tex'):
for f in glob.glob(dir_name + "/*.tex"):
base_name_s = os.path.basename(fp)
base_name_f = os.path.basename(f)
if base_name_s.lower() == base_name_f.lower(): return f
if base_name_s.lower() == base_name_f.lower():
return f
# 试着加上.tex后缀试试
if not base_name_s.endswith('.tex'): base_name_s+='.tex'
if base_name_s.lower() == base_name_f.lower(): return f
if not base_name_s.endswith(".tex"):
base_name_s += ".tex"
if base_name_s.lower() == base_name_f.lower():
return f
return None
def merge_tex_files_(project_foler, main_file, mode):
"""
Merge Tex project recrusively
@@ -308,13 +382,51 @@ def merge_tex_files_(project_foler, main_file, mode):
fp = os.path.join(project_foler, f)
fp_ = find_tex_file_ignore_case(fp)
if fp_:
with open(fp_, 'r', encoding='utf-8', errors='replace') as fx: c = fx.read()
try:
with open(fp_, "r", encoding="utf-8", errors="replace") as fx:
c = fx.read()
except:
c = f"\n\nWarning from GPT-Academic: LaTex source file is missing!\n\n"
else:
raise RuntimeError(f'找不到{fp},Tex源文件缺失')
raise RuntimeError(f"找不到{fp},Tex源文件缺失")
c = merge_tex_files_(project_foler, c, mode)
main_file = main_file[: s.span()[0]] + c + main_file[s.span()[1] :]
return main_file
def find_title_and_abs(main_file):
def extract_abstract_1(text):
pattern = r"\\abstract\{(.*?)\}"
match = re.search(pattern, text, re.DOTALL)
if match:
return match.group(1)
else:
return None
def extract_abstract_2(text):
pattern = r"\\begin\{abstract\}(.*?)\\end\{abstract\}"
match = re.search(pattern, text, re.DOTALL)
if match:
return match.group(1)
else:
return None
def extract_title(string):
pattern = r"\\title\{(.*?)\}"
match = re.search(pattern, string, re.DOTALL)
if match:
return match.group(1)
else:
return None
abstract = extract_abstract_1(main_file)
if abstract is None:
abstract = extract_abstract_2(main_file)
title = extract_title(main_file)
return title, abstract
def merge_tex_files(project_foler, main_file, mode):
"""
Merge Tex project recrusively
@@ -324,33 +436,91 @@ def merge_tex_files(project_foler, main_file, mode):
main_file = merge_tex_files_(project_foler, main_file, mode)
main_file = rm_comments(main_file)
if mode == 'translate_zh':
if mode == "translate_zh":
# find paper documentclass
pattern = re.compile(r'\\documentclass.*\n')
pattern = re.compile(r"\\documentclass.*\n")
match = pattern.search(main_file)
assert match is not None, "Cannot find documentclass statement!"
position = match.end()
add_ctex = '\\usepackage{ctex}\n'
add_url = '\\usepackage{url}\n' if '{url}' not in main_file else ''
add_ctex = "\\usepackage{ctex}\n"
add_url = "\\usepackage{url}\n" if "{url}" not in main_file else ""
main_file = main_file[:position] + add_ctex + add_url + main_file[position:]
# fontset=windows
import platform
main_file = re.sub(r"\\documentclass\[(.*?)\]{(.*?)}", r"\\documentclass[\1,fontset=windows,UTF8]{\2}",main_file)
main_file = re.sub(r"\\documentclass{(.*?)}", r"\\documentclass[fontset=windows,UTF8]{\1}",main_file)
main_file = re.sub(
r"\\documentclass\[(.*?)\]{(.*?)}",
r"\\documentclass[\1,fontset=windows,UTF8]{\2}",
main_file,
)
main_file = re.sub(
r"\\documentclass{(.*?)}",
r"\\documentclass[fontset=windows,UTF8]{\1}",
main_file,
)
# find paper abstract
pattern_opt1 = re.compile(r'\\begin\{abstract\}.*\n')
pattern_opt1 = re.compile(r"\\begin\{abstract\}.*\n")
pattern_opt2 = re.compile(r"\\abstract\{(.*?)\}", flags=re.DOTALL)
match_opt1 = pattern_opt1.search(main_file)
match_opt2 = pattern_opt2.search(main_file)
assert (match_opt1 is not None) or (match_opt2 is not None), "Cannot find paper abstract section!"
if (match_opt1 is None) and (match_opt2 is None):
# "Cannot find paper abstract section!"
main_file = insert_abstract(main_file)
match_opt1 = pattern_opt1.search(main_file)
match_opt2 = pattern_opt2.search(main_file)
assert (match_opt1 is not None) or (
match_opt2 is not None
), "Cannot find paper abstract section!"
return main_file
insert_missing_abs_str = r"""
\begin{abstract}
The GPT-Academic program cannot find abstract section in this paper.
\end{abstract}
"""
def insert_abstract(tex_content):
if "\\maketitle" in tex_content:
# find the position of "\maketitle"
find_index = tex_content.index("\\maketitle")
# find the nearest ending line
end_line_index = tex_content.find("\n", find_index)
# insert "abs_str" on the next line
modified_tex = (
tex_content[: end_line_index + 1]
+ "\n\n"
+ insert_missing_abs_str
+ "\n\n"
+ tex_content[end_line_index + 1 :]
)
return modified_tex
elif r"\begin{document}" in tex_content:
# find the position of "\maketitle"
find_index = tex_content.index(r"\begin{document}")
# find the nearest ending line
end_line_index = tex_content.find("\n", find_index)
# insert "abs_str" on the next line
modified_tex = (
tex_content[: end_line_index + 1]
+ "\n\n"
+ insert_missing_abs_str
+ "\n\n"
+ tex_content[end_line_index + 1 :]
)
return modified_tex
else:
return tex_content
"""
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Post process
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
"""
def mod_inbraket(match):
"""
为啥chatgpt会把cite里面的逗号换成中文逗号呀
@@ -359,11 +529,12 @@ def mod_inbraket(match):
cmd = match.group(1)
str_to_modify = match.group(2)
# modify the matched string
str_to_modify = str_to_modify.replace('', ':') # 前面是中文冒号,后面是英文冒号
str_to_modify = str_to_modify.replace('', ',') # 前面是中文逗号,后面是英文逗号
str_to_modify = str_to_modify.replace("", ":") # 前面是中文冒号,后面是英文冒号
str_to_modify = str_to_modify.replace("", ",") # 前面是中文逗号,后面是英文逗号
# str_to_modify = 'BOOM'
return "\\" + cmd + "{" + str_to_modify + "}"
def fix_content(final_tex, node_string):
"""
Fix common GPT errors to increase success rate
@@ -375,9 +546,9 @@ def fix_content(final_tex, node_string):
if "Traceback" in final_tex and "[Local Message]" in final_tex:
final_tex = node_string # 出问题了,还原原文
if node_string.count('\\begin') != final_tex.count('\\begin'):
if node_string.count("\\begin") != final_tex.count("\\begin"):
final_tex = node_string # 出问题了,还原原文
if node_string.count('\_') > 0 and node_string.count('\_') > final_tex.count('\_'):
if node_string.count("\_") > 0 and node_string.count("\_") > final_tex.count("\_"):
# walk and replace any _ without \
final_tex = re.sub(r"(?<!\\)_", "\\_", final_tex)
@@ -385,24 +556,32 @@ def fix_content(final_tex, node_string):
# this function count the number of { and }
brace_level = 0
for c in string:
if c == "{": brace_level += 1
elif c == "}": brace_level -= 1
if c == "{":
brace_level += 1
elif c == "}":
brace_level -= 1
return brace_level
def join_most(tex_t, tex_o):
# this function join translated string and original string when something goes wrong
p_t = 0
p_o = 0
def find_next(string, chars, begin):
p = begin
while p < len(string):
if string[p] in chars: return p, string[p]
if string[p] in chars:
return p, string[p]
p += 1
return None, None
while True:
res1, char = find_next(tex_o, ['{','}'], p_o)
if res1 is None: break
res1, char = find_next(tex_o, ["{", "}"], p_o)
if res1 is None:
break
res2, char = find_next(tex_t, [char], p_t)
if res2 is None: break
if res2 is None:
break
p_o = res1 + 1
p_t = res2 + 1
return tex_t[:p_t] + tex_o[p_o:]
@@ -412,28 +591,78 @@ def fix_content(final_tex, node_string):
final_tex = join_most(final_tex, node_string)
return final_tex
def compile_latex_with_timeout(command, cwd, timeout=60):
import subprocess
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=cwd)
process = subprocess.Popen(
command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=cwd
)
try:
stdout, stderr = process.communicate(timeout=timeout)
except subprocess.TimeoutExpired:
process.kill()
stdout, stderr = process.communicate()
print("Process timed out!")
logger.error("Process timed out (compile_latex_with_timeout)!")
return False
return True
def run_in_subprocess_wrapper_func(func, args, kwargs, return_dict, exception_dict):
import sys
def merge_pdfs(pdf1_path, pdf2_path, output_path):
import PyPDF2
Percent = 0.95
try:
result = func(*args, **kwargs)
return_dict["result"] = result
except Exception as e:
exc_info = sys.exc_info()
exception_dict["exception"] = exc_info
def run_in_subprocess(func):
import multiprocessing
def wrapper(*args, **kwargs):
return_dict = multiprocessing.Manager().dict()
exception_dict = multiprocessing.Manager().dict()
process = multiprocessing.Process(
target=run_in_subprocess_wrapper_func,
args=(func, args, kwargs, return_dict, exception_dict),
)
process.start()
process.join()
process.close()
if "exception" in exception_dict:
# ooops, the subprocess ran into an exception
exc_info = exception_dict["exception"]
raise exc_info[1].with_traceback(exc_info[2])
if "result" in return_dict.keys():
# If the subprocess ran successfully, return the result
return return_dict["result"]
return wrapper
def _merge_pdfs(pdf1_path, pdf2_path, output_path):
try:
logger.info("Merging PDFs using _merge_pdfs_ng")
_merge_pdfs_ng(pdf1_path, pdf2_path, output_path)
except:
logger.info("Merging PDFs using _merge_pdfs_legacy")
_merge_pdfs_legacy(pdf1_path, pdf2_path, output_path)
def _merge_pdfs_ng(pdf1_path, pdf2_path, output_path):
import PyPDF2 # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放
from PyPDF2.generic import NameObject, TextStringObject, ArrayObject, FloatObject, NumberObject
Percent = 1
# raise RuntimeError('PyPDF2 has a serious memory leak problem, please use other tools to merge PDF files.')
# Open the first PDF file
with open(pdf1_path, 'rb') as pdf1_file:
with open(pdf1_path, "rb") as pdf1_file:
pdf1_reader = PyPDF2.PdfFileReader(pdf1_file)
# Open the second PDF file
with open(pdf2_path, 'rb') as pdf2_file:
with open(pdf2_path, "rb") as pdf2_file:
pdf2_reader = PyPDF2.PdfFileReader(pdf2_file)
# Create a new PDF file to store the merged pages
output_writer = PyPDF2.PdfFileWriter()
@@ -453,12 +682,225 @@ def merge_pdfs(pdf1_path, pdf2_path, output_path):
page2 = PyPDF2.PageObject.createBlankPage(pdf1_reader)
# Create a new empty page with double width
new_page = PyPDF2.PageObject.createBlankPage(
width = int(int(page1.mediaBox.getWidth()) + int(page2.mediaBox.getWidth()) * Percent),
height = max(page1.mediaBox.getHeight(), page2.mediaBox.getHeight())
width=int(
int(page1.mediaBox.getWidth())
+ int(page2.mediaBox.getWidth()) * Percent
),
height=max(page1.mediaBox.getHeight(), page2.mediaBox.getHeight()),
)
new_page.mergeTranslatedPage(page1, 0, 0)
new_page.mergeTranslatedPage(page2, int(int(page1.mediaBox.getWidth())-int(page2.mediaBox.getWidth())* (1-Percent)), 0)
new_page.mergeTranslatedPage(
page2,
int(
int(page1.mediaBox.getWidth())
- int(page2.mediaBox.getWidth()) * (1 - Percent)
),
0,
)
if "/Annots" in new_page:
annotations = new_page["/Annots"]
for i, annot in enumerate(annotations):
annot_obj = annot.get_object()
# 检查注释类型是否是链接(/Link
if annot_obj.get("/Subtype") == "/Link":
# 检查是否为内部链接跳转(/GoTo或外部URI链接/URI
action = annot_obj.get("/A")
if action:
if "/S" in action and action["/S"] == "/GoTo":
# 内部链接:跳转到文档中的某个页面
dest = action.get("/D") # 目标页或目标位置
# if dest and annot.idnum in page2_annot_id:
# if dest in pdf2_reader.named_destinations:
if dest and page2.annotations:
if annot in page2.annotations:
# 获取原始文件中跳转信息,包括跳转页面
destination = pdf2_reader.named_destinations[
dest
]
page_number = (
pdf2_reader.get_destination_page_number(
destination
)
)
# 更新跳转信息,跳转到对应的页面和,指定坐标 (100, 150),缩放比例为 100%
# “/D”:[10,'/XYZ',100,100,0]
if destination.dest_array[1] == "/XYZ":
annot_obj["/A"].update(
{
NameObject("/D"): ArrayObject(
[
NumberObject(page_number),
destination.dest_array[1],
FloatObject(
destination.dest_array[
2
]
+ int(
page1.mediaBox.getWidth()
)
),
destination.dest_array[3],
destination.dest_array[4],
]
) # 确保键和值是 PdfObject
}
)
else:
annot_obj["/A"].update(
{
NameObject("/D"): ArrayObject(
[
NumberObject(page_number),
destination.dest_array[1],
]
) # 确保键和值是 PdfObject
}
)
rect = annot_obj.get("/Rect")
# 更新点击坐标
rect = ArrayObject(
[
FloatObject(
rect[0]
+ int(page1.mediaBox.getWidth())
),
rect[1],
FloatObject(
rect[2]
+ int(page1.mediaBox.getWidth())
),
rect[3],
]
)
annot_obj.update(
{
NameObject(
"/Rect"
): rect # 确保键和值是 PdfObject
}
)
# if dest and annot.idnum in page1_annot_id:
# if dest in pdf1_reader.named_destinations:
if dest and page1.annotations:
if annot in page1.annotations:
# 获取原始文件中跳转信息,包括跳转页面
destination = pdf1_reader.named_destinations[
dest
]
page_number = (
pdf1_reader.get_destination_page_number(
destination
)
)
# 更新跳转信息,跳转到对应的页面和,指定坐标 (100, 150),缩放比例为 100%
# “/D”:[10,'/XYZ',100,100,0]
if destination.dest_array[1] == "/XYZ":
annot_obj["/A"].update(
{
NameObject("/D"): ArrayObject(
[
NumberObject(page_number),
destination.dest_array[1],
FloatObject(
destination.dest_array[
2
]
),
destination.dest_array[3],
destination.dest_array[4],
]
) # 确保键和值是 PdfObject
}
)
else:
annot_obj["/A"].update(
{
NameObject("/D"): ArrayObject(
[
NumberObject(page_number),
destination.dest_array[1],
]
) # 确保键和值是 PdfObject
}
)
rect = annot_obj.get("/Rect")
rect = ArrayObject(
[
FloatObject(rect[0]),
rect[1],
FloatObject(rect[2]),
rect[3],
]
)
annot_obj.update(
{
NameObject(
"/Rect"
): rect # 确保键和值是 PdfObject
}
)
elif "/S" in action and action["/S"] == "/URI":
# 外部链接跳转到某个URI
uri = action.get("/URI")
output_writer.addPage(new_page)
# Save the merged PDF file
with open(output_path, 'wb') as output_file:
with open(output_path, "wb") as output_file:
output_writer.write(output_file)
def _merge_pdfs_legacy(pdf1_path, pdf2_path, output_path):
import PyPDF2 # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放
Percent = 0.95
# raise RuntimeError('PyPDF2 has a serious memory leak problem, please use other tools to merge PDF files.')
# Open the first PDF file
with open(pdf1_path, "rb") as pdf1_file:
pdf1_reader = PyPDF2.PdfFileReader(pdf1_file)
# Open the second PDF file
with open(pdf2_path, "rb") as pdf2_file:
pdf2_reader = PyPDF2.PdfFileReader(pdf2_file)
# Create a new PDF file to store the merged pages
output_writer = PyPDF2.PdfFileWriter()
# Determine the number of pages in each PDF file
num_pages = max(pdf1_reader.numPages, pdf2_reader.numPages)
# Merge the pages from the two PDF files
for page_num in range(num_pages):
# Add the page from the first PDF file
if page_num < pdf1_reader.numPages:
page1 = pdf1_reader.getPage(page_num)
else:
page1 = PyPDF2.PageObject.createBlankPage(pdf1_reader)
# Add the page from the second PDF file
if page_num < pdf2_reader.numPages:
page2 = pdf2_reader.getPage(page_num)
else:
page2 = PyPDF2.PageObject.createBlankPage(pdf1_reader)
# Create a new empty page with double width
new_page = PyPDF2.PageObject.createBlankPage(
width=int(
int(page1.mediaBox.getWidth())
+ int(page2.mediaBox.getWidth()) * Percent
),
height=max(page1.mediaBox.getHeight(), page2.mediaBox.getHeight()),
)
new_page.mergeTranslatedPage(page1, 0, 0)
new_page.mergeTranslatedPage(
page2,
int(
int(page1.mediaBox.getWidth())
- int(page2.mediaBox.getWidth()) * (1 - Percent)
),
0,
)
output_writer.addPage(new_page)
# Save the merged PDF file
with open(output_path, "wb") as output_file:
output_writer.write(output_file)
merge_pdfs = run_in_subprocess(_merge_pdfs) # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放

查看文件

@@ -1,21 +1,120 @@
import time, logging, json
import time, json, sys, struct
import numpy as np
from loguru import logger as logging
from scipy.io.wavfile import WAVE_FORMAT
def write_numpy_to_wave(filename, rate, data, add_header=False):
"""
Write a NumPy array as a WAV file.
"""
def _array_tofile(fid, data):
# ravel gives a c-contiguous buffer
fid.write(data.ravel().view('b').data)
if hasattr(filename, 'write'):
fid = filename
else:
fid = open(filename, 'wb')
fs = rate
try:
dkind = data.dtype.kind
if not (dkind == 'i' or dkind == 'f' or (dkind == 'u' and
data.dtype.itemsize == 1)):
raise ValueError("Unsupported data type '%s'" % data.dtype)
header_data = b''
header_data += b'RIFF'
header_data += b'\x00\x00\x00\x00'
header_data += b'WAVE'
# fmt chunk
header_data += b'fmt '
if dkind == 'f':
format_tag = WAVE_FORMAT.IEEE_FLOAT
else:
format_tag = WAVE_FORMAT.PCM
if data.ndim == 1:
channels = 1
else:
channels = data.shape[1]
bit_depth = data.dtype.itemsize * 8
bytes_per_second = fs*(bit_depth // 8)*channels
block_align = channels * (bit_depth // 8)
fmt_chunk_data = struct.pack('<HHIIHH', format_tag, channels, fs,
bytes_per_second, block_align, bit_depth)
if not (dkind == 'i' or dkind == 'u'):
# add cbSize field for non-PCM files
fmt_chunk_data += b'\x00\x00'
header_data += struct.pack('<I', len(fmt_chunk_data))
header_data += fmt_chunk_data
# fact chunk (non-PCM files)
if not (dkind == 'i' or dkind == 'u'):
header_data += b'fact'
header_data += struct.pack('<II', 4, data.shape[0])
# check data size (needs to be immediately before the data chunk)
if ((len(header_data)-4-4) + (4+4+data.nbytes)) > 0xFFFFFFFF:
raise ValueError("Data exceeds wave file size limit")
if add_header:
fid.write(header_data)
# data chunk
fid.write(b'data')
fid.write(struct.pack('<I', data.nbytes))
if data.dtype.byteorder == '>' or (data.dtype.byteorder == '=' and
sys.byteorder == 'big'):
data = data.byteswap()
_array_tofile(fid, data)
if add_header:
# Determine file size and place it in correct
# position at start of the file.
size = fid.tell()
fid.seek(4)
fid.write(struct.pack('<I', size-8))
finally:
if not hasattr(filename, 'write'):
fid.close()
else:
fid.seek(0)
def is_speaker_speaking(vad, data, sample_rate):
# Function to detect if the speaker is speaking
# The WebRTC VAD only accepts 16-bit mono PCM audio,
# sampled at 8000, 16000, 32000 or 48000 Hz.
# A frame must be either 10, 20, or 30 ms in duration:
frame_duration = 30
n_bit_each = int(sample_rate * frame_duration / 1000)*2 # x2 because audio is 16 bit (2 bytes)
res_list = []
for t in range(len(data)):
if t!=0 and t % n_bit_each == 0:
res_list.append(vad.is_speech(data[t-n_bit_each:t], sample_rate))
info = ''.join(['^' if r else '.' for r in res_list])
info = info[:10]
if any(res_list):
return True, info
else:
return False, info
class AliyunASR():
def test_on_sentence_begin(self, message, *args):
# print("test_on_sentence_begin:{}".format(message))
pass
def test_on_sentence_end(self, message, *args):
# print("test_on_sentence_end:{}".format(message))
message = json.loads(message)
self.parsed_sentence = message['payload']['result']
self.event_on_entence_end.set()
# print(self.parsed_sentence)
def test_on_start(self, message, *args):
# print("test_on_start:{}".format(message))
pass
def test_on_error(self, message, *args):
@@ -27,13 +126,11 @@ class AliyunASR():
pass
def test_on_result_chg(self, message, *args):
# print("test_on_chg:{}".format(message))
message = json.loads(message)
self.parsed_text = message['payload']['result']
self.event_on_result_chg.set()
def test_on_completed(self, message, *args):
# print("on_completed:args=>{} message=>{}".format(args, message))
pass
def audio_convertion_thread(self, uuid):
@@ -66,12 +163,22 @@ class AliyunASR():
on_close=self.test_on_close,
callback_args=[uuid.hex]
)
timeout_limit_second = 20
r = sr.start(aformat="pcm",
timeout=timeout_limit_second,
enable_intermediate_result=True,
enable_punctuation_prediction=True,
enable_inverse_text_normalization=True)
import webrtcvad
vad = webrtcvad.Vad()
vad.set_mode(1)
is_previous_frame_transmitted = False # 上一帧是否有人说话
previous_frame_data = None
echo_cnt = 0 # 在没有声音之后,继续向服务器发送n次音频数据
echo_cnt_max = 4 # 在没有声音之后,继续向服务器发送n次音频数据
keep_alive_last_send_time = time.time()
while not self.stop:
# time.sleep(self.capture_interval)
audio = rad.read(uuid.hex)
@@ -79,12 +186,32 @@ class AliyunASR():
# convert to pcm file
temp_file = f'{temp_folder}/{uuid.hex}.pcm' #
dsdata = change_sample_rate(audio, rad.rate, NEW_SAMPLERATE) # 48000 --> 16000
io.wavfile.write(temp_file, NEW_SAMPLERATE, dsdata)
write_numpy_to_wave(temp_file, NEW_SAMPLERATE, dsdata)
# read pcm binary
with open(temp_file, "rb") as f: data = f.read()
# print('audio len:', len(audio), '\t ds len:', len(dsdata), '\t need n send:', len(data)//640)
is_speaking, info = is_speaker_speaking(vad, data, NEW_SAMPLERATE)
if is_speaking or echo_cnt > 0:
# 如果话筒激活 / 如果处于回声收尾阶段
echo_cnt -= 1
if not is_previous_frame_transmitted: # 上一帧没有人声,但是我们把上一帧同样加上
if previous_frame_data is not None: data = previous_frame_data + data
if is_speaking:
echo_cnt = echo_cnt_max
slices = zip(*(iter(data),) * 640) # 640个字节为一组
for i in slices: sr.send_audio(bytes(i))
keep_alive_last_send_time = time.time()
is_previous_frame_transmitted = True
else:
is_previous_frame_transmitted = False
echo_cnt = 0
# 保持链接激活,即使没有声音,也根据时间间隔,发送一些音频片段给服务器
if time.time() - keep_alive_last_send_time > timeout_limit_second/2:
slices = zip(*(iter(data),) * 640) # 640个字节为一组
for i in slices: sr.send_audio(bytes(i))
keep_alive_last_send_time = time.time()
is_previous_frame_transmitted = True
self.audio_shape = info
else:
time.sleep(0.1)
@@ -116,14 +243,14 @@ class AliyunASR():
try:
response = client.do_action_with_exception(request)
print(response)
logging.info(response)
jss = json.loads(response)
if 'Token' in jss and 'Id' in jss['Token']:
token = jss['Token']['Id']
expireTime = jss['Token']['ExpireTime']
print("token = " + token)
print("expireTime = " + str(expireTime))
logging.info("token = " + token)
logging.info("expireTime = " + str(expireTime))
except Exception as e:
print(e)
logging.error(e)
return token

查看文件

@@ -35,7 +35,7 @@ class RealtimeAudioDistribution():
def read(self, uuid):
if uuid in self.data:
res = self.data.pop(uuid)
print('\r read-', len(res), '-', max(res), end='', flush=True)
# print('\r read-', len(res), '-', max(res), end='', flush=True)
else:
res = None
return res

查看文件

@@ -0,0 +1,43 @@
from toolbox import update_ui, get_conf, promote_file_to_downloadzone, update_ui_lastest_msg, generate_file_link
from shared_utils.docker_as_service_api import stream_daas
from shared_utils.docker_as_service_api import DockerServiceApiComModel
import random
def download_video(video_id, only_audio, user_name, chatbot, history):
from toolbox import get_log_folder
chatbot.append([None, "Processing..."])
yield from update_ui(chatbot, history)
client_command = f'{video_id} --audio-only' if only_audio else video_id
server_urls = get_conf('DAAS_SERVER_URLS')
server_url = random.choice(server_urls)
docker_service_api_com_model = DockerServiceApiComModel(client_command=client_command)
save_file_dir = get_log_folder(user_name, plugin_name='media_downloader')
for output_manifest in stream_daas(docker_service_api_com_model, server_url, save_file_dir):
status_buf = ""
status_buf += "DaaS message: \n\n"
status_buf += output_manifest['server_message'].replace('\n', '<br/>')
status_buf += "\n\n"
status_buf += "DaaS standard error: \n\n"
status_buf += output_manifest['server_std_err'].replace('\n', '<br/>')
status_buf += "\n\n"
status_buf += "DaaS standard output: \n\n"
status_buf += output_manifest['server_std_out'].replace('\n', '<br/>')
status_buf += "\n\n"
status_buf += "DaaS file attach: \n\n"
status_buf += str(output_manifest['server_file_attach'])
yield from update_ui_lastest_msg(status_buf, chatbot, history)
return output_manifest['server_file_attach']
def search_videos(keywords):
from toolbox import get_log_folder
client_command = keywords
server_urls = get_conf('DAAS_SERVER_URLS')
server_url = random.choice(server_urls)
server_url = server_url.replace('stream', 'search')
docker_service_api_com_model = DockerServiceApiComModel(client_command=client_command)
save_file_dir = get_log_folder("default_user", plugin_name='media_downloader')
for output_manifest in stream_daas(docker_service_api_com_model, server_url, save_file_dir):
return output_manifest['server_message']

查看文件

@@ -0,0 +1,93 @@
from pydantic import BaseModel, Field
from typing import List
from toolbox import update_ui_lastest_msg, disable_auto_promotion
from toolbox import CatchException, update_ui, get_conf, select_api_key, get_log_folder
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
import time
import pickle
def have_any_recent_upload_files(chatbot):
_5min = 5 * 60
if not chatbot: return False # chatbot is None
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
if not most_recent_uploaded: return False # most_recent_uploaded is None
if time.time() - most_recent_uploaded["time"] < _5min: return True # most_recent_uploaded is new
else: return False # most_recent_uploaded is too old
class GptAcademicState():
def __init__(self):
self.reset()
def reset(self):
pass
def dump_state(self, chatbot):
chatbot._cookies['plugin_state'] = pickle.dumps(self)
def set_state(self, chatbot, key, value):
setattr(self, key, value)
chatbot._cookies['plugin_state'] = pickle.dumps(self)
def get_state(chatbot, cls=None):
state = chatbot._cookies.get('plugin_state', None)
if state is not None: state = pickle.loads(state)
elif cls is not None: state = cls()
else: state = GptAcademicState()
state.chatbot = chatbot
return state
class GptAcademicGameBaseState():
"""
1. first init: __init__ ->
"""
def init_game(self, chatbot, lock_plugin):
self.plugin_name = None
self.callback_fn = None
self.delete_game = False
self.step_cnt = 0
def lock_plugin(self, chatbot):
if self.callback_fn is None:
raise ValueError("callback_fn is None")
chatbot._cookies['lock_plugin'] = self.callback_fn
self.dump_state(chatbot)
def get_plugin_name(self):
if self.plugin_name is None:
raise ValueError("plugin_name is None")
return self.plugin_name
def dump_state(self, chatbot):
chatbot._cookies[f'plugin_state/{self.get_plugin_name()}'] = pickle.dumps(self)
def set_state(self, chatbot, key, value):
setattr(self, key, value)
chatbot._cookies[f'plugin_state/{self.get_plugin_name()}'] = pickle.dumps(self)
@staticmethod
def sync_state(chatbot, llm_kwargs, cls, plugin_name, callback_fn, lock_plugin=True):
state = chatbot._cookies.get(f'plugin_state/{plugin_name}', None)
if state is not None:
state = pickle.loads(state)
else:
state = cls()
state.init_game(chatbot, lock_plugin)
state.plugin_name = plugin_name
state.llm_kwargs = llm_kwargs
state.chatbot = chatbot
state.callback_fn = callback_fn
return state
def continue_game(self, prompt, chatbot, history):
# 游戏主体
yield from self.step(prompt, chatbot, history)
self.step_cnt += 1
# 保存状态,收尾
self.dump_state(chatbot)
# 如果游戏结束,清理
if self.delete_game:
chatbot._cookies['lock_plugin'] = None
chatbot._cookies[f'plugin_state/{self.get_plugin_name()}'] = None
yield from update_ui(chatbot=chatbot, history=history)

查看文件

@@ -0,0 +1,126 @@
from crazy_functions.ipc_fns.mp import run_in_subprocess_with_timeout
from loguru import logger
def force_breakdown(txt, limit, get_token_fn):
""" 当无法用标点、空行分割时,我们用最暴力的方法切割
"""
for i in reversed(range(len(txt))):
if get_token_fn(txt[:i]) < limit:
return txt[:i], txt[i:]
return "Tiktoken未知错误", "Tiktoken未知错误"
def maintain_storage(remain_txt_to_cut, remain_txt_to_cut_storage):
""" 为了加速计算,我们采样一个特殊的手段。当 remain_txt_to_cut > `_max` 时, 我们把 _max 后的文字转存至 remain_txt_to_cut_storage
当 remain_txt_to_cut < `_min` 时,我们再把 remain_txt_to_cut_storage 中的部分文字取出
"""
_min = int(5e4)
_max = int(1e5)
# print(len(remain_txt_to_cut), len(remain_txt_to_cut_storage))
if len(remain_txt_to_cut) < _min and len(remain_txt_to_cut_storage) > 0:
remain_txt_to_cut = remain_txt_to_cut + remain_txt_to_cut_storage
remain_txt_to_cut_storage = ""
if len(remain_txt_to_cut) > _max:
remain_txt_to_cut_storage = remain_txt_to_cut[_max:] + remain_txt_to_cut_storage
remain_txt_to_cut = remain_txt_to_cut[:_max]
return remain_txt_to_cut, remain_txt_to_cut_storage
def cut(limit, get_token_fn, txt_tocut, must_break_at_empty_line, break_anyway=False):
""" 文本切分
"""
res = []
total_len = len(txt_tocut)
fin_len = 0
remain_txt_to_cut = txt_tocut
remain_txt_to_cut_storage = ""
# 为了加速计算,我们采样一个特殊的手段。当 remain_txt_to_cut > `_max` 时, 我们把 _max 后的文字转存至 remain_txt_to_cut_storage
remain_txt_to_cut, remain_txt_to_cut_storage = maintain_storage(remain_txt_to_cut, remain_txt_to_cut_storage)
while True:
if get_token_fn(remain_txt_to_cut) <= limit:
# 如果剩余文本的token数小于限制,那么就不用切了
res.append(remain_txt_to_cut); fin_len+=len(remain_txt_to_cut)
break
else:
# 如果剩余文本的token数大于限制,那么就切
lines = remain_txt_to_cut.split('\n')
# 估计一个切分点
estimated_line_cut = limit / get_token_fn(remain_txt_to_cut) * len(lines)
estimated_line_cut = int(estimated_line_cut)
# 开始查找合适切分点的偏移cnt
cnt = 0
for cnt in reversed(range(estimated_line_cut)):
if must_break_at_empty_line:
# 首先尝试用双空行(\n\n作为切分点
if lines[cnt] != "":
continue
prev = "\n".join(lines[:cnt])
post = "\n".join(lines[cnt:])
if get_token_fn(prev) < limit:
break
if cnt == 0:
# 如果没有找到合适的切分点
if break_anyway:
# 是否允许暴力切分
prev, post = force_breakdown(remain_txt_to_cut, limit, get_token_fn)
else:
# 不允许直接报错
raise RuntimeError(f"存在一行极长的文本!{remain_txt_to_cut}")
# 追加列表
res.append(prev); fin_len+=len(prev)
# 准备下一次迭代
remain_txt_to_cut = post
remain_txt_to_cut, remain_txt_to_cut_storage = maintain_storage(remain_txt_to_cut, remain_txt_to_cut_storage)
process = fin_len/total_len
logger.info(f'正在文本切分 {int(process*100)}%')
if len(remain_txt_to_cut.strip()) == 0:
break
return res
def breakdown_text_to_satisfy_token_limit_(txt, limit, llm_model="gpt-3.5-turbo"):
""" 使用多种方式尝试切分文本,以满足 token 限制
"""
from request_llms.bridge_all import model_info
enc = model_info[llm_model]['tokenizer']
def get_token_fn(txt): return len(enc.encode(txt, disallowed_special=()))
try:
# 第1次尝试,将双空行\n\n作为切分点
return cut(limit, get_token_fn, txt, must_break_at_empty_line=True)
except RuntimeError:
try:
# 第2次尝试,将单空行\n作为切分点
return cut(limit, get_token_fn, txt, must_break_at_empty_line=False)
except RuntimeError:
try:
# 第3次尝试,将英文句号.)作为切分点
res = cut(limit, get_token_fn, txt.replace('.', '\n'), must_break_at_empty_line=False) # 这个中文的句号是故意的,作为一个标识而存在
return [r.replace('\n', '.') for r in res]
except RuntimeError as e:
try:
# 第4次尝试,将中文句号作为切分点
res = cut(limit, get_token_fn, txt.replace('', '。。\n'), must_break_at_empty_line=False)
return [r.replace('。。\n', '') for r in res]
except RuntimeError as e:
# 第5次尝试,没办法了,随便切一下吧
return cut(limit, get_token_fn, txt, must_break_at_empty_line=False, break_anyway=True)
breakdown_text_to_satisfy_token_limit = run_in_subprocess_with_timeout(breakdown_text_to_satisfy_token_limit_, timeout=60)
if __name__ == '__main__':
from crazy_functions.crazy_utils import read_and_clean_pdf_text
file_content, page_one = read_and_clean_pdf_text("build/assets/at.pdf")
from request_llms.bridge_all import model_info
for i in range(5):
file_content += file_content
logger.info(len(file_content))
TOKEN_LIMIT_PER_FRAGMENT = 2500
res = breakdown_text_to_satisfy_token_limit(file_content, TOKEN_LIMIT_PER_FRAGMENT)

查看文件

@@ -4,7 +4,7 @@ from toolbox import promote_file_to_downloadzone
from toolbox import write_history_to_file, promote_file_to_downloadzone
from toolbox import get_conf
from toolbox import ProxyNetworkActivate
from colorful import *
from shared_utils.colorful import *
import requests
import random
import copy
@@ -14,7 +14,7 @@ import math
class GROBID_OFFLINE_EXCEPTION(Exception): pass
def get_avail_grobid_url():
GROBID_URLS, = get_conf('GROBID_URLS')
GROBID_URLS = get_conf('GROBID_URLS')
if len(GROBID_URLS) == 0: return None
try:
_grobid_url = random.choice(GROBID_URLS) # 随机负载均衡
@@ -72,9 +72,9 @@ def produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chat
generated_conclusion_files.append(res_path)
return res_path
def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG):
from crazy_functions.crazy_utils import construct_html
from crazy_functions.crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG, plugin_kwargs={}):
from crazy_functions.pdf_fns.report_gen_html import construct_html
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
@@ -82,7 +82,7 @@ def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_fi
# title
title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
# authors
authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
authors = article_dict.get('authors', '无法获取 authors')[:100]; prompt += f'authors:{authors}\n\n'
# abstract
abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
# command
@@ -103,7 +103,7 @@ def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_fi
inputs_show_user_array = []
# get_token_num
from request_llm.bridge_all import model_info
from request_llms.bridge_all import model_info
enc = model_info[llm_kwargs['llm_model']]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
@@ -116,7 +116,7 @@ def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_fi
# find a smooth token limit to achieve even seperation
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
token_limit_smooth = raw_token_num // count + count
return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)
return breakdown_text_to_satisfy_token_limit(txt, limit=token_limit_smooth, llm_model=llm_kwargs['llm_model'])
for section in article_dict.get('sections'):
if len(section['text']) == 0: continue
@@ -138,7 +138,7 @@ def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_fi
chatbot=chatbot,
history_array=[meta for _ in inputs_array],
sys_prompt_array=[
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" + plugin_kwargs.get("additional_prompt", "") for _ in inputs_array],
)
# -=-=-=-=-=-=-=-= 写出Markdown文件 -=-=-=-=-=-=-=-=
produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files)

查看文件

@@ -0,0 +1,26 @@
import os
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str, check_packages
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
from toolbox import write_history_to_file, promote_file_to_downloadzone, get_conf, extract_archive
from crazy_functions.pdf_fns.parse_pdf import parse_pdf, translate_pdf
def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url):
import copy, json
TOKEN_LIMIT_PER_FRAGMENT = 1024
generated_conclusion_files = []
generated_html_files = []
DST_LANG = "中文"
from crazy_functions.pdf_fns.report_gen_html import construct_html
for index, fp in enumerate(file_manifest):
chatbot.append(["当前进度:", f"正在连接GROBID服务,请稍候: {grobid_url}\n如果等待时间过长,请修改config中的GROBID_URL,可修改成本地GROBID服务。"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
article_dict = parse_pdf(fp, grobid_url)
grobid_json_res = os.path.join(get_log_folder(), gen_time_str() + "grobid.json")
with open(grobid_json_res, 'w+', encoding='utf8') as f:
f.write(json.dumps(article_dict, indent=4, ensure_ascii=False))
promote_file_to_downloadzone(grobid_json_res, chatbot=chatbot)
if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG, plugin_kwargs=plugin_kwargs)
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

查看文件

@@ -0,0 +1,111 @@
from toolbox import get_log_folder
from toolbox import update_ui, promote_file_to_downloadzone
from toolbox import write_history_to_file, promote_file_to_downloadzone
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from crazy_functions.crazy_utils import read_and_clean_pdf_text
from shared_utils.colorful import *
from loguru import logger
import os
def 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
"""
注意此函数已经弃用新函数位于crazy_functions/pdf_fns/parse_pdf.py
"""
import copy
TOKEN_LIMIT_PER_FRAGMENT = 1024
generated_conclusion_files = []
generated_html_files = []
from crazy_functions.pdf_fns.report_gen_html import construct_html
for index, fp in enumerate(file_manifest):
# 读取PDF文件
file_content, page_one = read_and_clean_pdf_text(fp)
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
# 递归地切割PDF文件
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=page_one, limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model'])
# 为了更好的效果,我们剥离Introduction之后的部分如果有
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
# 单线,获取文章meta信息
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取{paper_meta}",
inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。",
llm_kwargs=llm_kwargs,
chatbot=chatbot, history=[],
sys_prompt="Your job is to collect information from materials。",
)
# 多线,翻译
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=[
f"你需要翻译以下内容:\n{frag}" for frag in paper_fragments],
inputs_show_user_array=[f"\n---\n 原文: \n\n {frag.replace('#', '')} \n---\n 翻译:\n " for frag in paper_fragments],
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[[paper_meta] for _ in paper_fragments],
sys_prompt_array=[
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" + plugin_kwargs.get("additional_prompt", "")
for _ in paper_fragments],
# max_workers=5 # OpenAI所允许的最大并行过载
)
gpt_response_collection_md = copy.deepcopy(gpt_response_collection)
# 整理报告的格式
for i,k in enumerate(gpt_response_collection_md):
if i%2==0:
gpt_response_collection_md[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection_md)//2}] \n\n {paper_fragments[i//2].replace('#', '')} \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection_md)//2}]\n "
else:
gpt_response_collection_md[i] = gpt_response_collection_md[i]
final = ["一、论文概况\n\n---\n\n", paper_meta_info.replace('# ', '### ') + '\n\n---\n\n', "二、论文翻译", ""]
final.extend(gpt_response_collection_md)
create_report_file_name = f"{os.path.basename(fp)}.trans.md"
res = write_history_to_file(final, create_report_file_name)
promote_file_to_downloadzone(res, chatbot=chatbot)
# 更新UI
generated_conclusion_files.append(f'{get_log_folder()}/{create_report_file_name}')
chatbot.append((f"{fp}完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# write html
try:
ch = construct_html()
orig = ""
trans = ""
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
for i,k in enumerate(gpt_response_collection_html):
if i%2==0:
gpt_response_collection_html[i] = paper_fragments[i//2].replace('#', '')
else:
gpt_response_collection_html[i] = gpt_response_collection_html[i]
final = ["论文概况", paper_meta_info.replace('# ', '### '), "二、论文翻译", ""]
final.extend(gpt_response_collection_html)
for i, k in enumerate(final):
if i%2==0:
orig = k
if i%2==1:
trans = k
ch.add_row(a=orig, b=trans)
create_report_file_name = f"{os.path.basename(fp)}.trans.html"
generated_html_files.append(ch.save_file(create_report_file_name))
except:
from toolbox import trimmed_format_exc
logger.error('writing html result failed:', trimmed_format_exc())
# 准备文件的下载
for pdf_path in generated_conclusion_files:
# 重命名文件
rename_file = f'翻译-{os.path.basename(pdf_path)}'
promote_file_to_downloadzone(pdf_path, rename_file=rename_file, chatbot=chatbot)
for html_path in generated_html_files:
# 重命名文件
rename_file = f'翻译-{os.path.basename(html_path)}'
promote_file_to_downloadzone(html_path, rename_file=rename_file, chatbot=chatbot)
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

查看文件

@@ -0,0 +1,335 @@
from toolbox import get_log_folder, gen_time_str, get_conf
from toolbox import update_ui, promote_file_to_downloadzone
from toolbox import promote_file_to_downloadzone, extract_archive
from toolbox import generate_file_link, zip_folder
from crazy_functions.crazy_utils import get_files_from_everything
from shared_utils.colorful import *
from loguru import logger
import os
import requests
import time
def retry_request(max_retries=3, delay=3):
"""
Decorator for retrying HTTP requests
Args:
max_retries: Maximum number of retry attempts
delay: Delay between retries in seconds
"""
def decorator(func):
def wrapper(*args, **kwargs):
for attempt in range(max_retries):
try:
return func(*args, **kwargs)
except Exception as e:
if attempt < max_retries - 1:
logger.error(
f"Request failed, retrying... ({attempt + 1}/{max_retries}) Error: {e}"
)
time.sleep(delay)
continue
raise e
return None
return wrapper
return decorator
@retry_request()
def make_request(method, url, **kwargs):
"""
Make HTTP request with retry mechanism
"""
return requests.request(method, url, **kwargs)
def doc2x_api_response_status(response, uid=""):
"""
Check the status of Doc2x API response
Args:
response_data: Response object from Doc2x API
"""
response_json = response.json()
response_data = response_json.get("data", {})
code = response_json.get("code", "Unknown")
meg = response_data.get("message", response_json)
trace_id = response.headers.get("trace-id", "Failed to get trace-id")
if response.status_code != 200:
raise RuntimeError(
f"Doc2x return an error:\nTrace ID: {trace_id} {uid}\n{response.status_code} - {response_json}"
)
if code in ["parse_page_limit_exceeded", "parse_concurrency_limit"]:
raise RuntimeError(
f"Reached the limit of Doc2x:\nTrace ID: {trace_id} {uid}\n{code} - {meg}"
)
if code not in ["ok", "success"]:
raise RuntimeError(
f"Doc2x return an error:\nTrace ID: {trace_id} {uid}\n{code} - {meg}"
)
return response_data
def 解析PDF_DOC2X_转Latex(pdf_file_path):
zip_file_path, unzipped_folder = 解析PDF_DOC2X(pdf_file_path, format="tex")
return unzipped_folder
def 解析PDF_DOC2X(pdf_file_path, format="tex"):
"""
format: 'tex', 'md', 'docx'
"""
DOC2X_API_KEY = get_conf("DOC2X_API_KEY")
latex_dir = get_log_folder(plugin_name="pdf_ocr_latex")
markdown_dir = get_log_folder(plugin_name="pdf_ocr")
doc2x_api_key = DOC2X_API_KEY
# < ------ 第1步预上传获取URL,然后上传文件 ------ >
logger.info("Doc2x 上传文件预上传获取URL")
res = make_request(
"POST",
"https://v2.doc2x.noedgeai.com/api/v2/parse/preupload",
headers={"Authorization": "Bearer " + doc2x_api_key},
timeout=15,
)
res_data = doc2x_api_response_status(res)
upload_url = res_data["url"]
uuid = res_data["uid"]
logger.info("Doc2x 上传文件:上传文件")
with open(pdf_file_path, "rb") as file:
res = make_request("PUT", upload_url, data=file, timeout=60)
res.raise_for_status()
# < ------ 第2步轮询等待 ------ >
logger.info("Doc2x 处理文件中:轮询等待")
params = {"uid": uuid}
max_attempts = 60
attempt = 0
while attempt < max_attempts:
res = make_request(
"GET",
"https://v2.doc2x.noedgeai.com/api/v2/parse/status",
headers={"Authorization": "Bearer " + doc2x_api_key},
params=params,
timeout=15,
)
res_data = doc2x_api_response_status(res)
if res_data["status"] == "success":
break
elif res_data["status"] == "processing":
time.sleep(5)
logger.info(f"Doc2x is processing at {res_data['progress']}%")
attempt += 1
else:
raise RuntimeError(f"Doc2x return an error: {res_data}")
if attempt >= max_attempts:
raise RuntimeError("Doc2x processing timeout after maximum attempts")
# < ------ 第3步提交转化 ------ >
logger.info("Doc2x 第3步提交转化")
data = {
"uid": uuid,
"to": format,
"formula_mode": "dollar",
"filename": "output"
}
res = make_request(
"POST",
"https://v2.doc2x.noedgeai.com/api/v2/convert/parse",
headers={"Authorization": "Bearer " + doc2x_api_key},
json=data,
timeout=15,
)
doc2x_api_response_status(res, uid=f"uid: {uuid}")
# < ------ 第4步等待结果 ------ >
logger.info("Doc2x 第4步等待结果")
params = {"uid": uuid}
max_attempts = 36
attempt = 0
while attempt < max_attempts:
res = make_request(
"GET",
"https://v2.doc2x.noedgeai.com/api/v2/convert/parse/result",
headers={"Authorization": "Bearer " + doc2x_api_key},
params=params,
timeout=15,
)
res_data = doc2x_api_response_status(res, uid=f"uid: {uuid}")
if res_data["status"] == "success":
break
elif res_data["status"] == "processing":
time.sleep(3)
logger.info("Doc2x still processing to convert file")
attempt += 1
if attempt >= max_attempts:
raise RuntimeError("Doc2x conversion timeout after maximum attempts")
# < ------ 第5步最后的处理 ------ >
logger.info("Doc2x 第5步下载转换后的文件")
if format == "tex":
target_path = latex_dir
if format == "md":
target_path = markdown_dir
os.makedirs(target_path, exist_ok=True)
max_attempt = 3
# < ------ 下载 ------ >
for attempt in range(max_attempt):
try:
result_url = res_data["url"]
res = make_request("GET", result_url, timeout=60)
zip_path = os.path.join(target_path, gen_time_str() + ".zip")
unzip_path = os.path.join(target_path, gen_time_str())
if res.status_code == 200:
with open(zip_path, "wb") as f:
f.write(res.content)
else:
raise RuntimeError(f"Doc2x return an error: {res.json()}")
except Exception as e:
if attempt < max_attempt - 1:
logger.error(f"Failed to download uid = {uuid} file, retrying... {e}")
time.sleep(3)
continue
else:
raise e
# < ------ 解压 ------ >
import zipfile
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(unzip_path)
return zip_path, unzip_path
def 解析PDF_DOC2X_单文件(
fp,
project_folder,
llm_kwargs,
plugin_kwargs,
chatbot,
history,
system_prompt,
DOC2X_API_KEY,
user_request,
):
def pdf2markdown(filepath):
chatbot.append((None, f"Doc2x 解析中"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
md_zip_path, unzipped_folder = 解析PDF_DOC2X(filepath, format="md")
promote_file_to_downloadzone(md_zip_path, chatbot=chatbot)
chatbot.append((None, f"完成解析 {md_zip_path} ..."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return md_zip_path
def deliver_to_markdown_plugin(md_zip_path, user_request):
from crazy_functions.Markdown_Translate import Markdown英译中
import shutil, re
time_tag = gen_time_str()
target_path_base = get_log_folder(chatbot.get_user())
file_origin_name = os.path.basename(md_zip_path)
this_file_path = os.path.join(target_path_base, file_origin_name)
os.makedirs(target_path_base, exist_ok=True)
shutil.copyfile(md_zip_path, this_file_path)
ex_folder = this_file_path + ".extract"
extract_archive(file_path=this_file_path, dest_dir=ex_folder)
# edit markdown files
success, file_manifest, project_folder = get_files_from_everything(
ex_folder, type=".md"
)
for generated_fp in file_manifest:
# 修正一些公式问题
with open(generated_fp, "r", encoding="utf8") as f:
content = f.read()
# 将公式中的\[ \]替换成$$
content = content.replace(r"\[", r"$$").replace(r"\]", r"$$")
# 将公式中的\( \)替换成$
content = content.replace(r"\(", r"$").replace(r"\)", r"$")
content = content.replace("```markdown", "\n").replace("```", "\n")
with open(generated_fp, "w", encoding="utf8") as f:
f.write(content)
promote_file_to_downloadzone(generated_fp, chatbot=chatbot)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 生成在线预览html
file_name = "在线预览翻译(原文)" + gen_time_str() + ".html"
preview_fp = os.path.join(ex_folder, file_name)
from shared_utils.advanced_markdown_format import (
markdown_convertion_for_file,
)
with open(generated_fp, "r", encoding="utf-8") as f:
md = f.read()
# # Markdown中使用不标准的表格,需要在表格前加上一个emoji,以便公式渲染
# md = re.sub(r'^<table>', r'.<table>', md, flags=re.MULTILINE)
html = markdown_convertion_for_file(md)
with open(preview_fp, "w", encoding="utf-8") as f:
f.write(html)
chatbot.append([None, f"生成在线预览:{generate_file_link([preview_fp])}"])
promote_file_to_downloadzone(preview_fp, chatbot=chatbot)
chatbot.append((None, f"调用Markdown插件 {ex_folder} ..."))
plugin_kwargs["markdown_expected_output_dir"] = ex_folder
translated_f_name = "translated_markdown.md"
generated_fp = plugin_kwargs["markdown_expected_output_path"] = os.path.join(
ex_folder, translated_f_name
)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
yield from Markdown英译中(
ex_folder,
llm_kwargs,
plugin_kwargs,
chatbot,
history,
system_prompt,
user_request,
)
if os.path.exists(generated_fp):
# 修正一些公式问题
with open(generated_fp, "r", encoding="utf8") as f:
content = f.read()
content = content.replace("```markdown", "\n").replace("```", "\n")
# Markdown中使用不标准的表格,需要在表格前加上一个emoji,以便公式渲染
# content = re.sub(r'^<table>', r'.<table>', content, flags=re.MULTILINE)
with open(generated_fp, "w", encoding="utf8") as f:
f.write(content)
# 生成在线预览html
file_name = "在线预览翻译" + gen_time_str() + ".html"
preview_fp = os.path.join(ex_folder, file_name)
from shared_utils.advanced_markdown_format import (
markdown_convertion_for_file,
)
with open(generated_fp, "r", encoding="utf-8") as f:
md = f.read()
html = markdown_convertion_for_file(md)
with open(preview_fp, "w", encoding="utf-8") as f:
f.write(html)
promote_file_to_downloadzone(preview_fp, chatbot=chatbot)
# 生成包含图片的压缩包
dest_folder = get_log_folder(chatbot.get_user())
zip_name = "翻译后的带图文档.zip"
zip_folder(
source_folder=ex_folder, dest_folder=dest_folder, zip_name=zip_name
)
zip_fp = os.path.join(dest_folder, zip_name)
promote_file_to_downloadzone(zip_fp, chatbot=chatbot)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
md_zip_path = yield from pdf2markdown(fp)
yield from deliver_to_markdown_plugin(md_zip_path, user_request)
def 解析PDF_基于DOC2X(file_manifest, *args):
for index, fp in enumerate(file_manifest):
yield from 解析PDF_DOC2X_单文件(fp, *args)
return

查看文件

@@ -0,0 +1,85 @@
from crazy_functions.crazy_utils import read_and_clean_pdf_text, get_files_from_everything
import os
import re
def extract_text_from_files(txt, chatbot, history):
"""
查找pdf/md/word并获取文本内容并返回状态以及文本
输入参数 Args:
chatbot: chatbot inputs and outputs (用户界面对话窗口句柄,用于数据流可视化)
history (list): List of chat history (历史,对话历史列表)
输出 Returns:
文件是否存在(bool)
final_result(list):文本内容
page_one(list):第一页内容/摘要
file_manifest(list):文件路径
excption(string):需要用户手动处理的信息,如没出错则保持为空
"""
final_result = []
page_one = []
file_manifest = []
excption = ""
if txt == "":
final_result.append(txt)
return False, final_result, page_one, file_manifest, excption #如输入区内容不是文件则直接返回输入区内容
#查找输入区内容中的文件
file_pdf,pdf_manifest,folder_pdf = get_files_from_everything(txt, '.pdf')
file_md,md_manifest,folder_md = get_files_from_everything(txt, '.md')
file_word,word_manifest,folder_word = get_files_from_everything(txt, '.docx')
file_doc,doc_manifest,folder_doc = get_files_from_everything(txt, '.doc')
if file_doc:
excption = "word"
return False, final_result, page_one, file_manifest, excption
file_num = len(pdf_manifest) + len(md_manifest) + len(word_manifest)
if file_num == 0:
final_result.append(txt)
return False, final_result, page_one, file_manifest, excption #如输入区内容不是文件则直接返回输入区内容
if file_pdf:
try: # 尝试导入依赖,如果缺少依赖,则给出安装建议
import fitz
except:
excption = "pdf"
return False, final_result, page_one, file_manifest, excption
for index, fp in enumerate(pdf_manifest):
file_content, pdf_one = read_and_clean_pdf_text(fp) # 尝试按照章节切割PDF
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
pdf_one = str(pdf_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
final_result.append(file_content)
page_one.append(pdf_one)
file_manifest.append(os.path.relpath(fp, folder_pdf))
if file_md:
for index, fp in enumerate(md_manifest):
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
file_content = file_content.encode('utf-8', 'ignore').decode()
headers = re.findall(r'^#\s(.*)$', file_content, re.MULTILINE) #接下来提取md中的一级/二级标题作为摘要
if len(headers) > 0:
page_one.append("\n".join(headers)) #合并所有的标题,以换行符分割
else:
page_one.append("")
final_result.append(file_content)
file_manifest.append(os.path.relpath(fp, folder_md))
if file_word:
try: # 尝试导入依赖,如果缺少依赖,则给出安装建议
from docx import Document
except:
excption = "word_pip"
return False, final_result, page_one, file_manifest, excption
for index, fp in enumerate(word_manifest):
doc = Document(fp)
file_content = '\n'.join([p.text for p in doc.paragraphs])
file_content = file_content.encode('utf-8', 'ignore').decode()
page_one.append(file_content[:200])
final_result.append(file_content)
file_manifest.append(os.path.relpath(fp, folder_word))
return True, final_result, page_one, file_manifest, excption

查看文件

@@ -0,0 +1,58 @@
from toolbox import update_ui, get_conf, trimmed_format_exc, get_log_folder
import os
class construct_html():
def __init__(self) -> None:
self.html_string = ""
def add_row(self, a, b):
from toolbox import markdown_convertion
template = """
{
primary_col: {
header: String.raw`__PRIMARY_HEADER__`,
msg: String.raw`__PRIMARY_MSG__`,
},
secondary_rol: {
header: String.raw`__SECONDARY_HEADER__`,
msg: String.raw`__SECONDARY_MSG__`,
}
},
"""
def std(str):
str = str.replace(r'`',r'&#96;')
if str.endswith("\\"): str += ' '
if str.endswith("}"): str += ' '
if str.endswith("$"): str += ' '
return str
template_ = template
a_lines = a.split('\n')
b_lines = b.split('\n')
if len(a_lines) == 1 or len(a_lines[0]) > 50:
template_ = template_.replace("__PRIMARY_HEADER__", std(a[:20]))
template_ = template_.replace("__PRIMARY_MSG__", std(markdown_convertion(a)))
else:
template_ = template_.replace("__PRIMARY_HEADER__", std(a_lines[0]))
template_ = template_.replace("__PRIMARY_MSG__", std(markdown_convertion('\n'.join(a_lines[1:]))))
if len(b_lines) == 1 or len(b_lines[0]) > 50:
template_ = template_.replace("__SECONDARY_HEADER__", std(b[:20]))
template_ = template_.replace("__SECONDARY_MSG__", std(markdown_convertion(b)))
else:
template_ = template_.replace("__SECONDARY_HEADER__", std(b_lines[0]))
template_ = template_.replace("__SECONDARY_MSG__", std(markdown_convertion('\n'.join(b_lines[1:]))))
self.html_string += template_
def save_file(self, file_name):
from toolbox import get_log_folder
with open('crazy_functions/pdf_fns/report_template.html', 'r', encoding='utf8') as f:
html_template = f.read()
html_template = html_template.replace("__TF_ARR__", self.html_string)
with open(os.path.join(get_log_folder(), file_name), 'w', encoding='utf8') as f:
f.write(html_template.encode('utf-8', 'ignore').decode())
return os.path.join(get_log_folder(), file_name)

文件差异因一行或多行过长而隐藏

查看文件

@@ -0,0 +1,73 @@
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>GPT-Academic 翻译报告书</title>
<style>
.centered-a {
color: red;
text-align: center;
margin-bottom: 2%;
font-size: 1.5em;
}
.centered-b {
color: red;
text-align: center;
margin-top: 10%;
margin-bottom: 20%;
font-size: 1.5em;
}
.centered-c {
color: rgba(255, 0, 0, 0);
text-align: center;
margin-top: 2%;
margin-bottom: 20%;
font-size: 7em;
}
</style>
<script>
// Configure MathJax settings
MathJax = {
tex: {
inlineMath: [
['$', '$'],
['\(', '\)']
]
}
}
addEventListener('zero-md-rendered', () => {MathJax.typeset(); console.log('MathJax typeset!');})
</script>
<!-- Load MathJax library -->
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script>
<script
type="module"
src="https://cdn.jsdelivr.net/gh/zerodevx/zero-md@2/dist/zero-md.min.js"
></script>
</head>
<body>
<div class="test_temp1" style="width:10%; height: 500px; float:left;">
</div>
<div class="test_temp2" style="width:80%; height: 500px; float:left;">
<!-- Simply set the `src` attribute to your MD file and win -->
<div class="centered-a">
请按Ctrl+S保存此页面,否则该页面可能在几分钟后失效。
</div>
<zero-md src="translated_markdown.md" no-shadow>
</zero-md>
<div class="centered-b">
本报告由GPT-Academic开源项目生成,地址https://github.com/binary-husky/gpt_academic。
</div>
<div class="centered-c">
本报告由GPT-Academic开源项目生成,地址https://github.com/binary-husky/gpt_academic。
</div>
</div>
<div class="test_temp3" style="width:10%; height: 500px; float:left;">
</div>
</body>
</html>

查看文件

@@ -0,0 +1,52 @@
import os, json, base64
from pydantic import BaseModel, Field
from textwrap import dedent
from typing import List
class ArgProperty(BaseModel): # PLUGIN_ARG_MENU
title: str = Field(description="The title", default="")
description: str = Field(description="The description", default="")
default_value: str = Field(description="The default value", default="")
type: str = Field(description="The type", default="") # currently we support ['string', 'dropdown']
options: List[str] = Field(default=[], description="List of options available for the argument") # only used when type is 'dropdown'
class GptAcademicPluginTemplate():
def __init__(self):
# please note that `execute` method may run in different threads,
# thus you should not store any state in the plugin instance,
# which may be accessed by multiple threads
pass
def define_arg_selection_menu(self):
"""
An example as below:
```
def define_arg_selection_menu(self):
gui_definition = {
"main_input":
ArgProperty(title="main input", description="description", default_value="default_value", type="string").model_dump_json(),
"advanced_arg":
ArgProperty(title="advanced arguments", description="description", default_value="default_value", type="string").model_dump_json(),
"additional_arg_01":
ArgProperty(title="additional", description="description", default_value="default_value", type="string").model_dump_json(),
}
return gui_definition
```
"""
raise NotImplementedError("You need to implement this method in your plugin class")
def get_js_code_for_generating_menu(self, btnName):
define_arg_selection = self.define_arg_selection_menu()
if len(define_arg_selection.keys()) > 8:
raise ValueError("You can only have up to 8 arguments in the define_arg_selection")
# if "main_input" not in define_arg_selection:
# raise ValueError("You must have a 'main_input' in the define_arg_selection")
DEFINE_ARG_INPUT_INTERFACE = json.dumps(define_arg_selection)
return base64.b64encode(DEFINE_ARG_INPUT_INTERFACE.encode('utf-8')).decode('utf-8')
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
raise NotImplementedError("You need to implement this method in your plugin class")

查看文件

@@ -0,0 +1,87 @@
SearchOptimizerPrompt="""作为一个网页搜索助手,你的任务是结合历史记录,从不同角度,为“原问题”生成个不同版本的“检索词”,从而提高网页检索的精度。生成的问题要求指向对象清晰明确,并与“原问题语言相同”。例如:
历史记录:
"
Q: 对话背景。
A: 当前对话是关于 Nginx 的介绍和在Ubuntu上的使用等。
"
原问题: 怎么下载
检索词: ["Nginx 下载","Ubuntu Nginx","Ubuntu安装Nginx"]
----------------
历史记录:
"
Q: 对话背景。
A: 当前对话是关于 Nginx 的介绍和使用等。
Q: 报错 "no connection"
A: 报错"no connection"可能是因为……
"
原问题: 怎么解决
检索词: ["Nginx报错"no connection" 解决","Nginx'no connection'报错 原因","Nginx提示'no connection'"]
----------------
历史记录:
"
"
原问题: 你知道 Python 么?
检索词: ["Python","Python 使用教程。","Python 特点和优势"]
----------------
历史记录:
"
Q: 列出Java的三种特点?
A: 1. Java 是一种编译型语言。
2. Java 是一种面向对象的编程语言。
3. Java 是一种跨平台的编程语言。
"
原问题: 介绍下第2点。
检索词: ["Java 面向对象特点","Java 面向对象编程优势。","Java 面向对象编程"]
----------------
现在有历史记录:
"
{history}
"
有其原问题: {query}
直接给出最多{num}个检索词,必须以json形式给出,不得有多余字符:
"""
SearchAcademicOptimizerPrompt="""作为一个学术论文搜索助手,你的任务是结合历史记录,从不同角度,为“原问题”生成个不同版本的“检索词”,从而提高学术论文检索的精度。生成的问题要求指向对象清晰明确,并与“原问题语言相同”。例如:
历史记录:
"
Q: 对话背景。
A: 当前对话是关于深度学习的介绍和在图像识别中的应用等。
"
原问题: 怎么下载相关论文
检索词: ["深度学习 图像识别 论文下载","图像识别 深度学习 研究论文","深度学习 图像识别 论文资源","Deep Learning Image Recognition Paper Download","Image Recognition Deep Learning Research Paper"]
----------------
历史记录:
"
Q: 对话背景。
A: 当前对话是关于深度学习的介绍和应用等。
Q: 报错 "模型不收敛"
A: 报错"模型不收敛"可能是因为……
"
原问题: 怎么解决
检索词: ["深度学习 模型不收敛 解决方案 论文","深度学习 模型不收敛 原因 研究","深度学习 模型不收敛 论文","Deep Learning Model Convergence Issue Solution Paper","Deep Learning Model Convergence Problem Research"]
----------------
历史记录:
"
"
原问题: 你知道 GAN 么?
检索词: ["生成对抗网络 论文","GAN 使用教程 论文","GAN 特点和优势 研究","Generative Adversarial Network Paper","GAN Usage Tutorial Paper"]
----------------
历史记录:
"
Q: 列出机器学习的三种应用?
A: 1. 机器学习在图像识别中的应用。
2. 机器学习在自然语言处理中的应用。
3. 机器学习在推荐系统中的应用。
"
原问题: 介绍下第2点。
检索词: ["机器学习 自然语言处理 应用 论文","机器学习 自然语言处理 研究","机器学习 NLP 应用 论文","Machine Learning Natural Language Processing Application Paper","Machine Learning NLP Research"]
----------------
现在有历史记录:
"
{history}
"
有其原问题: {query}
直接给出最多{num}个检索词,必须以json形式给出,不得有多余字符:
"""

查看文件

@@ -0,0 +1,138 @@
import atexit
from loguru import logger
from typing import List
from llama_index.core import Document
from llama_index.core.ingestion import run_transformations
from llama_index.core.schema import TextNode
from crazy_functions.rag_fns.vector_store_index import GptacVectorStoreIndex
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
DEFAULT_QUERY_GENERATION_PROMPT = """\
Now, you have context information as below:
---------------------
{context_str}
---------------------
Answer the user request below (use the context information if necessary, otherwise you can ignore them):
---------------------
{query_str}
"""
QUESTION_ANSWER_RECORD = """\
{{
"type": "This is a previous conversation with the user",
"question": "{question}",
"answer": "{answer}",
}}
"""
class SaveLoad():
def does_checkpoint_exist(self, checkpoint_dir=None):
import os, glob
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
if not os.path.exists(checkpoint_dir): return False
if len(glob.glob(os.path.join(checkpoint_dir, "*.json"))) == 0: return False
return True
def save_to_checkpoint(self, checkpoint_dir=None):
logger.info(f'saving vector store to: {checkpoint_dir}')
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
self.vs_index.storage_context.persist(persist_dir=checkpoint_dir)
def load_from_checkpoint(self, checkpoint_dir=None):
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
if self.does_checkpoint_exist(checkpoint_dir=checkpoint_dir):
logger.info('loading checkpoint from disk')
from llama_index.core import StorageContext, load_index_from_storage
storage_context = StorageContext.from_defaults(persist_dir=checkpoint_dir)
self.vs_index = load_index_from_storage(storage_context, embed_model=self.embed_model)
return self.vs_index
else:
return self.create_new_vs()
def create_new_vs(self):
return GptacVectorStoreIndex.default_vector_store(embed_model=self.embed_model)
def purge(self):
import shutil
shutil.rmtree(self.checkpoint_dir, ignore_errors=True)
self.vs_index = self.create_new_vs(self.checkpoint_dir)
class LlamaIndexRagWorker(SaveLoad):
def __init__(self, user_name, llm_kwargs, auto_load_checkpoint=True, checkpoint_dir=None) -> None:
self.debug_mode = True
self.embed_model = OpenAiEmbeddingModel(llm_kwargs)
self.user_name = user_name
self.checkpoint_dir = checkpoint_dir
if auto_load_checkpoint:
self.vs_index = self.load_from_checkpoint(checkpoint_dir)
else:
self.vs_index = self.create_new_vs()
atexit.register(lambda: self.save_to_checkpoint(checkpoint_dir))
def assign_embedding_model(self):
pass
def inspect_vector_store(self):
# This function is for debugging
self.vs_index.storage_context.index_store.to_dict()
docstore = self.vs_index.storage_context.docstore.docs
vector_store_preview = "\n".join([ f"{_id} | {tn.text}" for _id, tn in docstore.items() ])
logger.info('\n++ --------inspect_vector_store begin--------')
logger.info(vector_store_preview)
logger.info('oo --------inspect_vector_store end--------')
return vector_store_preview
def add_documents_to_vector_store(self, document_list: List[Document]):
"""
Adds a list of Document objects to the vector store after processing.
"""
documents = document_list
documents_nodes = run_transformations(
documents, # type: ignore
self.vs_index._transformations,
show_progress=True
)
self.vs_index.insert_nodes(documents_nodes)
if self.debug_mode:
self.inspect_vector_store()
def add_text_to_vector_store(self, text: str):
node = TextNode(text=text)
documents_nodes = run_transformations(
[node],
self.vs_index._transformations,
show_progress=True
)
self.vs_index.insert_nodes(documents_nodes)
if self.debug_mode:
self.inspect_vector_store()
def remember_qa(self, question, answer):
formatted_str = QUESTION_ANSWER_RECORD.format(question=question, answer=answer)
self.add_text_to_vector_store(formatted_str)
def retrieve_from_store_with_query(self, query):
if self.debug_mode:
self.inspect_vector_store()
retriever = self.vs_index.as_retriever()
return retriever.retrieve(query)
def build_prompt(self, query, nodes):
context_str = self.generate_node_array_preview(nodes)
return DEFAULT_QUERY_GENERATION_PROMPT.format(context_str=context_str, query_str=query)
def generate_node_array_preview(self, nodes):
buf = "\n".join(([f"(No.{i+1} | score {n.score:.3f}): {n.text}" for i, n in enumerate(nodes)]))
if self.debug_mode: logger.info(buf)
return buf
def purge_vector_store(self):
"""
Purges the current vector store and creates a new one.
"""
self.purge()

查看文件

@@ -0,0 +1,108 @@
import llama_index
import os
import atexit
from typing import List
from loguru import logger
from llama_index.core import Document
from llama_index.core.schema import TextNode
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
from shared_utils.connect_void_terminal import get_chat_default_kwargs
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from crazy_functions.rag_fns.vector_store_index import GptacVectorStoreIndex
from llama_index.core.ingestion import run_transformations
from llama_index.core import PromptTemplate
from llama_index.core.response_synthesizers import TreeSummarize
from llama_index.core import StorageContext
from llama_index.vector_stores.milvus import MilvusVectorStore
from crazy_functions.rag_fns.llama_index_worker import LlamaIndexRagWorker
DEFAULT_QUERY_GENERATION_PROMPT = """\
Now, you have context information as below:
---------------------
{context_str}
---------------------
Answer the user request below (use the context information if necessary, otherwise you can ignore them):
---------------------
{query_str}
"""
QUESTION_ANSWER_RECORD = """\
{{
"type": "This is a previous conversation with the user",
"question": "{question}",
"answer": "{answer}",
}}
"""
class MilvusSaveLoad():
def does_checkpoint_exist(self, checkpoint_dir=None):
import os, glob
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
if not os.path.exists(checkpoint_dir): return False
if len(glob.glob(os.path.join(checkpoint_dir, "*.json"))) == 0: return False
return True
def save_to_checkpoint(self, checkpoint_dir=None):
logger.info(f'saving vector store to: {checkpoint_dir}')
# if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
# self.vs_index.storage_context.persist(persist_dir=checkpoint_dir)
def load_from_checkpoint(self, checkpoint_dir=None):
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
if self.does_checkpoint_exist(checkpoint_dir=checkpoint_dir):
logger.info('loading checkpoint from disk')
from llama_index.core import StorageContext, load_index_from_storage
storage_context = StorageContext.from_defaults(persist_dir=checkpoint_dir)
try:
self.vs_index = load_index_from_storage(storage_context, embed_model=self.embed_model)
return self.vs_index
except:
return self.create_new_vs(checkpoint_dir)
else:
return self.create_new_vs(checkpoint_dir)
def create_new_vs(self, checkpoint_dir, overwrite=False):
vector_store = MilvusVectorStore(
uri=os.path.join(checkpoint_dir, "milvus_demo.db"),
dim=self.embed_model.embedding_dimension(),
overwrite=overwrite
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = GptacVectorStoreIndex.default_vector_store(storage_context=storage_context, embed_model=self.embed_model)
return index
def purge(self):
self.vs_index = self.create_new_vs(self.checkpoint_dir, overwrite=True)
class MilvusRagWorker(MilvusSaveLoad, LlamaIndexRagWorker):
def __init__(self, user_name, llm_kwargs, auto_load_checkpoint=True, checkpoint_dir=None) -> None:
self.debug_mode = True
self.embed_model = OpenAiEmbeddingModel(llm_kwargs)
self.user_name = user_name
self.checkpoint_dir = checkpoint_dir
if auto_load_checkpoint:
self.vs_index = self.load_from_checkpoint(checkpoint_dir)
else:
self.vs_index = self.create_new_vs(checkpoint_dir)
atexit.register(lambda: self.save_to_checkpoint(checkpoint_dir))
def inspect_vector_store(self):
# This function is for debugging
try:
self.vs_index.storage_context.index_store.to_dict()
docstore = self.vs_index.storage_context.docstore.docs
if not docstore.items():
raise ValueError("cannot inspect")
vector_store_preview = "\n".join([ f"{_id} | {tn.text}" for _id, tn in docstore.items() ])
except:
dummy_retrieve_res: List["NodeWithScore"] = self.vs_index.as_retriever().retrieve(' ')
vector_store_preview = "\n".join(
[f"{node.id_} | {node.text}" for node in dummy_retrieve_res]
)
logger.info('\n++ --------inspect_vector_store begin--------')
logger.info(vector_store_preview)
logger.info('oo --------inspect_vector_store end--------')
return vector_store_preview

查看文件

@@ -0,0 +1,22 @@
import os
from llama_index.core import SimpleDirectoryReader
supports_format = ['.csv', '.docx', '.epub', '.ipynb', '.mbox', '.md', '.pdf', '.txt', '.ppt',
'.pptm', '.pptx']
# 修改后的 extract_text 函数,结合 SimpleDirectoryReader 和自定义解析逻辑
def extract_text(file_path):
_, ext = os.path.splitext(file_path.lower())
# 使用 SimpleDirectoryReader 处理它支持的文件格式
if ext in supports_format:
try:
reader = SimpleDirectoryReader(input_files=[file_path])
documents = reader.load_data()
if len(documents) > 0:
return documents[0].text
except Exception as e:
pass
return None

查看文件

@@ -0,0 +1,58 @@
from llama_index.core import VectorStoreIndex
from typing import Any, List, Optional
from llama_index.core.callbacks.base import CallbackManager
from llama_index.core.schema import TransformComponent
from llama_index.core.service_context import ServiceContext
from llama_index.core.settings import (
Settings,
callback_manager_from_settings_or_context,
transformations_from_settings_or_context,
)
from llama_index.core.storage.storage_context import StorageContext
class GptacVectorStoreIndex(VectorStoreIndex):
@classmethod
def default_vector_store(
cls,
storage_context: Optional[StorageContext] = None,
show_progress: bool = False,
callback_manager: Optional[CallbackManager] = None,
transformations: Optional[List[TransformComponent]] = None,
# deprecated
service_context: Optional[ServiceContext] = None,
embed_model = None,
**kwargs: Any,
):
"""Create index from documents.
Args:
documents (Optional[Sequence[BaseDocument]]): List of documents to
build the index from.
"""
storage_context = storage_context or StorageContext.from_defaults()
docstore = storage_context.docstore
callback_manager = (
callback_manager
or callback_manager_from_settings_or_context(Settings, service_context)
)
transformations = transformations or transformations_from_settings_or_context(
Settings, service_context
)
with callback_manager.as_trace("index_construction"):
return cls(
nodes=[],
storage_context=storage_context,
callback_manager=callback_manager,
show_progress=show_progress,
transformations=transformations,
service_context=service_context,
embed_model=embed_model,
**kwargs,
)

查看文件

查看文件

@@ -0,0 +1,70 @@
# From project chatglm-langchain
from langchain.document_loaders import UnstructuredFileLoader
from langchain.text_splitter import CharacterTextSplitter
import re
from typing import List
class ChineseTextSplitter(CharacterTextSplitter):
def __init__(self, pdf: bool = False, sentence_size: int = None, **kwargs):
super().__init__(**kwargs)
self.pdf = pdf
self.sentence_size = sentence_size
def split_text1(self, text: str) -> List[str]:
if self.pdf:
text = re.sub(r"\n{3,}", "\n", text)
text = re.sub('\s', ' ', text)
text = text.replace("\n\n", "")
sent_sep_pattern = re.compile('([﹒﹔﹖﹗.。!?]["’”」』]{0,2}|(?=["‘“「『]{1,2}|$))') # del :;
sent_list = []
for ele in sent_sep_pattern.split(text):
if sent_sep_pattern.match(ele) and sent_list:
sent_list[-1] += ele
elif ele:
sent_list.append(ele)
return sent_list
def split_text(self, text: str) -> List[str]: ##此处需要进一步优化逻辑
if self.pdf:
text = re.sub(r"\n{3,}", r"\n", text)
text = re.sub('\s', " ", text)
text = re.sub("\n\n", "", text)
text = re.sub(r'([;;.!?。!?\?])([^”’])', r"\1\n\2", text) # 单字符断句符
text = re.sub(r'(\.{6})([^"’”」』])', r"\1\n\2", text) # 英文省略号
text = re.sub(r'(\{2})([^"’”」』])', r"\1\n\2", text) # 中文省略号
text = re.sub(r'([;;!?。!?\?]["’”」』]{0,2})([^;;!?,。!?\?])', r'\1\n\2', text)
# 如果双引号前有终止符,那么双引号才是句子的终点,把分句符\n放到双引号后,注意前面的几句都小心保留了双引号
text = text.rstrip() # 段尾如果有多余的\n就去掉它
# 很多规则中会考虑分号;,但是这里我把它忽略不计,破折号、英文双引号等同样忽略,需要的再做些简单调整即可。
ls = [i for i in text.split("\n") if i]
for ele in ls:
if len(ele) > self.sentence_size:
ele1 = re.sub(r'([,,.]["’”」』]{0,2})([^,,.])', r'\1\n\2', ele)
ele1_ls = ele1.split("\n")
for ele_ele1 in ele1_ls:
if len(ele_ele1) > self.sentence_size:
ele_ele2 = re.sub(r'([\n]{1,}| {2,}["’”」』]{0,2})([^\s])', r'\1\n\2', ele_ele1)
ele2_ls = ele_ele2.split("\n")
for ele_ele2 in ele2_ls:
if len(ele_ele2) > self.sentence_size:
ele_ele3 = re.sub('( ["’”」』]{0,2})([^ ])', r'\1\n\2', ele_ele2)
ele2_id = ele2_ls.index(ele_ele2)
ele2_ls = ele2_ls[:ele2_id] + [i for i in ele_ele3.split("\n") if i] + ele2_ls[
ele2_id + 1:]
ele_id = ele1_ls.index(ele_ele1)
ele1_ls = ele1_ls[:ele_id] + [i for i in ele2_ls if i] + ele1_ls[ele_id + 1:]
id = ls.index(ele)
ls = ls[:id] + [i for i in ele1_ls if i] + ls[id + 1:]
return ls
def load_file(filepath, sentence_size):
loader = UnstructuredFileLoader(filepath, mode="elements")
textsplitter = ChineseTextSplitter(pdf=False, sentence_size=sentence_size)
docs = loader.load_and_split(text_splitter=textsplitter)
# write_check_file(filepath, docs)
return docs

查看文件

@@ -0,0 +1,339 @@
# From project chatglm-langchain
import os
import os
import uuid
import tqdm
import shutil
import threading
import numpy as np
from toolbox import Singleton
from loguru import logger
from langchain.vectorstores import FAISS
from langchain.docstore.document import Document
from typing import List, Tuple
from crazy_functions.vector_fns.general_file_loader import load_file
embedding_model_dict = {
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
"ernie-base": "nghuyong/ernie-3.0-base-zh",
"text2vec-base": "shibing624/text2vec-base-chinese",
"text2vec": "GanymedeNil/text2vec-large-chinese",
}
# Embedding model name
EMBEDDING_MODEL = "text2vec"
# Embedding running device
EMBEDDING_DEVICE = "cpu"
# 基于上下文的prompt模版,请务必保留"{question}"和"{context}"
PROMPT_TEMPLATE = """已知信息:
{context}
根据上述已知信息,简洁和专业的来回答用户的问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题” 或 “没有提供足够的相关信息”,不允许在答案中添加编造成分,答案请使用中文。 问题是:{question}"""
# 文本分句长度
SENTENCE_SIZE = 100
# 匹配后单段上下文长度
CHUNK_SIZE = 250
# LLM input history length
LLM_HISTORY_LEN = 3
# return top-k text chunk from vector store
VECTOR_SEARCH_TOP_K = 5
# 知识检索内容相关度 Score, 数值范围约为0-1100,如果为0,则不生效,经测试设置为小于500时,匹配结果更精准
VECTOR_SEARCH_SCORE_THRESHOLD = 0
NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data")
FLAG_USER_NAME = uuid.uuid4().hex
# 是否开启跨域,默认为False,如果需要开启,请设置为True
# is open cross domain
OPEN_CROSS_DOMAIN = False
def similarity_search_with_score_by_vector(
self, embedding: List[float], k: int = 4
) -> List[Tuple[Document, float]]:
def seperate_list(ls: List[int]) -> List[List[int]]:
lists = []
ls1 = [ls[0]]
for i in range(1, len(ls)):
if ls[i - 1] + 1 == ls[i]:
ls1.append(ls[i])
else:
lists.append(ls1)
ls1 = [ls[i]]
lists.append(ls1)
return lists
scores, indices = self.index.search(np.array([embedding], dtype=np.float32), k)
docs = []
id_set = set()
store_len = len(self.index_to_docstore_id)
for j, i in enumerate(indices[0]):
if i == -1 or 0 < self.score_threshold < scores[0][j]:
# This happens when not enough docs are returned.
continue
_id = self.index_to_docstore_id[i]
doc = self.docstore.search(_id)
if not self.chunk_conent:
if not isinstance(doc, Document):
raise ValueError(f"Could not find document for id {_id}, got {doc}")
doc.metadata["score"] = int(scores[0][j])
docs.append(doc)
continue
id_set.add(i)
docs_len = len(doc.page_content)
for k in range(1, max(i, store_len - i)):
break_flag = False
for l in [i + k, i - k]:
if 0 <= l < len(self.index_to_docstore_id):
_id0 = self.index_to_docstore_id[l]
doc0 = self.docstore.search(_id0)
if docs_len + len(doc0.page_content) > self.chunk_size:
break_flag = True
break
elif doc0.metadata["source"] == doc.metadata["source"]:
docs_len += len(doc0.page_content)
id_set.add(l)
if break_flag:
break
if not self.chunk_conent:
return docs
if len(id_set) == 0 and self.score_threshold > 0:
return []
id_list = sorted(list(id_set))
id_lists = seperate_list(id_list)
for id_seq in id_lists:
for id in id_seq:
if id == id_seq[0]:
_id = self.index_to_docstore_id[id]
doc = self.docstore.search(_id)
else:
_id0 = self.index_to_docstore_id[id]
doc0 = self.docstore.search(_id0)
doc.page_content += " " + doc0.page_content
if not isinstance(doc, Document):
raise ValueError(f"Could not find document for id {_id}, got {doc}")
doc_score = min([scores[0][id] for id in [indices[0].tolist().index(i) for i in id_seq if i in indices[0]]])
doc.metadata["score"] = int(doc_score)
docs.append(doc)
return docs
class LocalDocQA:
llm: object = None
embeddings: object = None
top_k: int = VECTOR_SEARCH_TOP_K
chunk_size: int = CHUNK_SIZE
chunk_conent: bool = True
score_threshold: int = VECTOR_SEARCH_SCORE_THRESHOLD
def init_cfg(self,
top_k=VECTOR_SEARCH_TOP_K,
):
self.llm = None
self.top_k = top_k
def init_knowledge_vector_store(self,
filepath,
vs_path: str or os.PathLike = None,
sentence_size=SENTENCE_SIZE,
text2vec=None):
loaded_files = []
failed_files = []
if isinstance(filepath, str):
if not os.path.exists(filepath):
logger.error("路径不存在")
return None
elif os.path.isfile(filepath):
file = os.path.split(filepath)[-1]
try:
docs = load_file(filepath, SENTENCE_SIZE)
logger.info(f"{file} 已成功加载")
loaded_files.append(filepath)
except Exception as e:
logger.error(e)
logger.error(f"{file} 未能成功加载")
return None
elif os.path.isdir(filepath):
docs = []
for file in tqdm(os.listdir(filepath), desc="加载文件"):
fullfilepath = os.path.join(filepath, file)
try:
docs += load_file(fullfilepath, SENTENCE_SIZE)
loaded_files.append(fullfilepath)
except Exception as e:
logger.error(e)
failed_files.append(file)
if len(failed_files) > 0:
logger.error("以下文件未能成功加载:")
for file in failed_files:
logger.error(f"{file}\n")
else:
docs = []
for file in filepath:
docs += load_file(file, SENTENCE_SIZE)
logger.info(f"{file} 已成功加载")
loaded_files.append(file)
if len(docs) > 0:
logger.info("文件加载完毕,正在生成向量库")
if vs_path and os.path.isdir(vs_path):
try:
self.vector_store = FAISS.load_local(vs_path, text2vec)
self.vector_store.add_documents(docs)
except:
self.vector_store = FAISS.from_documents(docs, text2vec)
else:
self.vector_store = FAISS.from_documents(docs, text2vec) # docs 为Document列表
self.vector_store.save_local(vs_path)
return vs_path, loaded_files
else:
raise RuntimeError("文件加载失败,请检查文件格式是否正确")
def get_loaded_file(self, vs_path):
ds = self.vector_store.docstore
return set([ds._dict[k].metadata['source'].split(vs_path)[-1] for k in ds._dict])
# query 查询内容
# vs_path 知识库路径
# chunk_conent 是否启用上下文关联
# score_threshold 搜索匹配score阈值
# vector_search_top_k 搜索知识库内容条数,默认搜索5条结果
# chunk_sizes 匹配单段内容的连接上下文长度
def get_knowledge_based_conent_test(self, query, vs_path, chunk_conent,
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
vector_search_top_k=VECTOR_SEARCH_TOP_K, chunk_size=CHUNK_SIZE,
text2vec=None):
self.vector_store = FAISS.load_local(vs_path, text2vec)
self.vector_store.chunk_conent = chunk_conent
self.vector_store.score_threshold = score_threshold
self.vector_store.chunk_size = chunk_size
embedding = self.vector_store.embedding_function.embed_query(query)
related_docs_with_score = similarity_search_with_score_by_vector(self.vector_store, embedding, k=vector_search_top_k)
if not related_docs_with_score:
response = {"query": query,
"source_documents": []}
return response, ""
# prompt = f"{query}. You should answer this question using information from following documents: \n\n"
prompt = f"{query}. 你必须利用以下文档中包含的信息回答这个问题: \n\n---\n\n"
prompt += "\n\n".join([f"({k}): " + doc.page_content for k, doc in enumerate(related_docs_with_score)])
prompt += "\n\n---\n\n"
prompt = prompt.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
# logger.info(prompt)
response = {"query": query, "source_documents": related_docs_with_score}
return response, prompt
def construct_vector_store(vs_id, vs_path, files, sentence_size, history, one_conent, one_content_segmentation, text2vec):
for file in files:
assert os.path.exists(file), "输入文件不存在:" + file
import nltk
if NLTK_DATA_PATH not in nltk.data.path: nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path
local_doc_qa = LocalDocQA()
local_doc_qa.init_cfg()
filelist = []
if not os.path.exists(os.path.join(vs_path, vs_id)):
os.makedirs(os.path.join(vs_path, vs_id))
for file in files:
file_name = file.name if not isinstance(file, str) else file
filename = os.path.split(file_name)[-1]
shutil.copyfile(file_name, os.path.join(vs_path, vs_id, filename))
filelist.append(os.path.join(vs_path, vs_id, filename))
vs_path, loaded_files = local_doc_qa.init_knowledge_vector_store(filelist, os.path.join(vs_path, vs_id), sentence_size, text2vec)
if len(loaded_files):
file_status = f"已添加 {''.join([os.path.split(i)[-1] for i in loaded_files if i])} 内容至知识库,并已加载知识库,请开始提问"
else:
pass
# file_status = "文件未成功加载,请重新上传文件"
# logger.info(file_status)
return local_doc_qa, vs_path
@Singleton
class knowledge_archive_interface():
def __init__(self) -> None:
self.threadLock = threading.Lock()
self.current_id = ""
self.kai_path = None
self.qa_handle = None
self.text2vec_large_chinese = None
def get_chinese_text2vec(self):
if self.text2vec_large_chinese is None:
# < -------------------预热文本向量化模组--------------- >
from toolbox import ProxyNetworkActivate
logger.info('Checking Text2vec ...')
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
self.text2vec_large_chinese = HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
return self.text2vec_large_chinese
def feed_archive(self, file_manifest, vs_path, id="default"):
self.threadLock.acquire()
# import uuid
self.current_id = id
self.qa_handle, self.kai_path = construct_vector_store(
vs_id=self.current_id,
vs_path=vs_path,
files=file_manifest,
sentence_size=100,
history=[],
one_conent="",
one_content_segmentation="",
text2vec = self.get_chinese_text2vec(),
)
self.threadLock.release()
def get_current_archive_id(self):
return self.current_id
def get_loaded_file(self, vs_path):
return self.qa_handle.get_loaded_file(vs_path)
def answer_with_archive_by_id(self, txt, id, vs_path):
self.threadLock.acquire()
if not self.current_id == id:
self.current_id = id
self.qa_handle, self.kai_path = construct_vector_store(
vs_id=self.current_id,
vs_path=vs_path,
files=[],
sentence_size=100,
history=[],
one_conent="",
one_content_segmentation="",
text2vec = self.get_chinese_text2vec(),
)
VECTOR_SEARCH_SCORE_THRESHOLD = 0
VECTOR_SEARCH_TOP_K = 4
CHUNK_SIZE = 512
resp, prompt = self.qa_handle.get_knowledge_based_conent_test(
query = txt,
vs_path = self.kai_path,
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
vector_search_top_k=VECTOR_SEARCH_TOP_K,
chunk_conent=True,
chunk_size=CHUNK_SIZE,
text2vec = self.get_chinese_text2vec(),
)
self.threadLock.release()
return resp, prompt

查看文件

@@ -1,7 +1,7 @@
from pydantic import BaseModel, Field
from typing import List
from toolbox import update_ui_lastest_msg, disable_auto_promotion
from request_llm.bridge_all import predict_no_ui_long_connection
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
import copy, json, pickle, os, sys, time
@@ -10,7 +10,7 @@ def read_avail_plugin_enum():
from crazy_functional import get_crazy_functions
plugin_arr = get_crazy_functions()
# remove plugins with out explaination
plugin_arr = {k:v for k, v in plugin_arr.items() if 'Info' in v}
plugin_arr = {k:v for k, v in plugin_arr.items() if ('Info' in v) and ('Function' in v)}
plugin_arr_info = {"F_{:04d}".format(i):v["Info"] for i, v in enumerate(plugin_arr.values(), start=1)}
plugin_arr_dict = {"F_{:04d}".format(i):v for i, v in enumerate(plugin_arr.values(), start=1)}
plugin_arr_dict_parse = {"F_{:04d}".format(i):v for i, v in enumerate(plugin_arr.values(), start=1)}

查看文件

@@ -1,13 +1,13 @@
from pydantic import BaseModel, Field
from typing import List
from toolbox import update_ui_lastest_msg, get_conf
from request_llm.bridge_all import predict_no_ui_long_connection
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.json_fns.pydantic_io import GptJsonIO
import copy, json, pickle, os, sys
def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention):
ALLOW_RESET_CONFIG, = get_conf('ALLOW_RESET_CONFIG')
ALLOW_RESET_CONFIG = get_conf('ALLOW_RESET_CONFIG')
if not ALLOW_RESET_CONFIG:
yield from update_ui_lastest_msg(
lastmsg=f"当前配置不允许被修改如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
@@ -66,7 +66,7 @@ def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
)
def modify_configuration_reboot(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention):
ALLOW_RESET_CONFIG, = get_conf('ALLOW_RESET_CONFIG')
ALLOW_RESET_CONFIG = get_conf('ALLOW_RESET_CONFIG')
if not ALLOW_RESET_CONFIG:
yield from update_ui_lastest_msg(
lastmsg=f"当前配置不允许被修改如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",

文件差异内容过多而无法显示 加载差异

查看文件

@@ -1,17 +1,19 @@
import re, requests, unicodedata, os
from toolbox import update_ui, get_log_folder
from toolbox import write_history_to_file, promote_file_to_downloadzone
from toolbox import CatchException, report_execption, get_conf
import re, requests, unicodedata, os
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from toolbox import CatchException, report_exception, get_conf
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from loguru import logger
def download_arxiv_(url_pdf):
if 'arxiv.org' not in url_pdf:
if ('.' in url_pdf) and ('/' not in url_pdf):
new_url = 'https://arxiv.org/abs/'+url_pdf
print('下载编号:', url_pdf, '自动定位:', new_url)
logger.info('下载编号:', url_pdf, '自动定位:', new_url)
# download_arxiv_(new_url)
return download_arxiv_(new_url)
else:
print('不能识别的URL')
logger.info('不能识别的URL')
return None
if 'abs' in url_pdf:
url_pdf = url_pdf.replace('abs', 'pdf')
@@ -42,15 +44,12 @@ def download_arxiv_(url_pdf):
requests_pdf_url = url_pdf
file_path = download_dir+title_str
print('下载中')
proxies, = get_conf('proxies')
logger.info('下载中')
proxies = get_conf('proxies')
r = requests.get(requests_pdf_url, proxies=proxies)
with open(file_path, 'wb+') as f:
f.write(r.content)
print('下载完成')
# print('输出下载命令:','aria2c -o \"%s\" %s'%(title_str,url_pdf))
# subprocess.call('aria2c --all-proxy=\"172.18.116.150:11084\" -o \"%s\" %s'%(download_dir+title_str,url_pdf), shell=True)
logger.info('下载完成')
x = "%s %s %s.bib" % (paper_id, other_info['year'], other_info['authors'])
x = x.replace('?', '')\
@@ -63,21 +62,11 @@ def download_arxiv_(url_pdf):
def get_name(_url_):
import os
from bs4 import BeautifulSoup
print('正在获取文献名!')
print(_url_)
logger.info('正在获取文献名!')
logger.info(_url_)
# arxiv_recall = {}
# if os.path.exists('./arxiv_recall.pkl'):
# with open('./arxiv_recall.pkl', 'rb') as f:
# arxiv_recall = pickle.load(f)
# if _url_ in arxiv_recall:
# print('在缓存中')
# return arxiv_recall[_url_]
proxies, = get_conf('proxies')
proxies = get_conf('proxies')
res = requests.get(_url_, proxies=proxies)
bs = BeautifulSoup(res.text, 'html.parser')
@@ -92,7 +81,7 @@ def get_name(_url_):
other_details['abstract'] = abstract
except:
other_details['year'] = ''
print('年份获取失败')
logger.info('年份获取失败')
# get author
try:
@@ -101,7 +90,7 @@ def get_name(_url_):
other_details['authors'] = authors
except:
other_details['authors'] = ''
print('authors获取失败')
logger.info('authors获取失败')
# get comment
try:
@@ -116,11 +105,11 @@ def get_name(_url_):
other_details['comment'] = ''
except:
other_details['comment'] = ''
print('年份获取失败')
logger.info('年份获取失败')
title_str = BeautifulSoup(
res.text, 'html.parser').find('title').contents[0]
print('获取成功:', title_str)
logger.info('获取成功:', title_str)
# arxiv_recall[_url_] = (title_str+'.pdf', other_details)
# with open('./arxiv_recall.pkl', 'wb') as f:
# pickle.dump(arxiv_recall, f)
@@ -130,7 +119,7 @@ def get_name(_url_):
@CatchException
def 下载arxiv论文并翻译摘要(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 下载arxiv论文并翻译摘要(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
CRAZY_FUNCTION_INFO = "下载arxiv论文并翻译摘要,函数插件作者[binary-husky]。正在提取摘要并下载PDF文档……"
import glob
@@ -144,7 +133,7 @@ def 下载arxiv论文并翻译摘要(txt, llm_kwargs, plugin_kwargs, chatbot, hi
try:
import bs4
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade beautifulsoup4```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -157,7 +146,7 @@ def 下载arxiv论文并翻译摘要(txt, llm_kwargs, plugin_kwargs, chatbot, hi
try:
pdf_path, info = download_arxiv_(txt)
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a = f"解析项目: {txt}",
b = f"下载pdf文件未成功")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

查看文件

@@ -0,0 +1,40 @@
from toolbox import CatchException, update_ui, update_ui_lastest_msg
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicGameBaseState
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.game_fns.game_utils import get_code_block, is_same_thing
@CatchException
def 随机小游戏(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
from crazy_functions.game_fns.game_interactive_story import MiniGame_ResumeStory
# 清空历史
history = []
# 选择游戏
cls = MiniGame_ResumeStory
# 如果之前已经初始化了游戏实例,则继续该实例;否则重新初始化
state = cls.sync_state(chatbot,
llm_kwargs,
cls,
plugin_name='MiniGame_ResumeStory',
callback_fn='crazy_functions.互动小游戏->随机小游戏',
lock_plugin=True
)
yield from state.continue_game(prompt, chatbot, history)
@CatchException
def 随机小游戏1(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
from crazy_functions.game_fns.game_ascii_art import MiniGame_ASCII_Art
# 清空历史
history = []
# 选择游戏
cls = MiniGame_ASCII_Art
# 如果之前已经初始化了游戏实例,则继续该实例;否则重新初始化
state = cls.sync_state(chatbot,
llm_kwargs,
cls,
plugin_name='MiniGame_ASCII_Art',
callback_fn='crazy_functions.互动小游戏->随机小游戏1',
lock_plugin=True
)
yield from state.continue_game(prompt, chatbot, history)

查看文件

@@ -1,9 +1,8 @@
from toolbox import CatchException, update_ui
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
@CatchException
def 交互功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 交互功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数, 如温度和top_p等, 一般原样传递下去就行
@@ -11,7 +10,7 @@ def 交互功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
user_request 当前用户的请求信息IP地址等
"""
history = [] # 清空历史,以免输入溢出
chatbot.append(("这是什么功能?", "交互功能函数模板。在执行完成之后, 可以将自身的状态存储到cookie中, 等待用户的再次调用。"))

查看文件

@@ -16,8 +16,8 @@ Testing:
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, is_the_upload_folder
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_lastest_msg
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_plugin_arg
from .crazy_utils import input_clipping, try_install_deps
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_plugin_arg
from crazy_functions.crazy_utils import input_clipping, try_install_deps
from crazy_functions.gen_fns.gen_fns_shared import is_function_successfully_generated
from crazy_functions.gen_fns.gen_fns_shared import get_class_name
from crazy_functions.gen_fns.gen_fns_shared import subprocess_worker
@@ -139,7 +139,7 @@ def get_recent_file_prompt_support(chatbot):
return path
@CatchException
def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
@@ -147,7 +147,7 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
user_request 当前用户的请求信息IP地址等
"""
# 清空历史

查看文件

@@ -1,10 +1,10 @@
from toolbox import CatchException, update_ui, gen_time_str
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import input_clipping
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from crazy_functions.crazy_utils import input_clipping
import copy, json
@CatchException
def 命令行助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 命令行助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
txt 输入栏用户输入的文本, 例如需要翻译的一段话, 再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数, 如温度和top_p等, 一般原样传递下去就行
@@ -12,7 +12,7 @@ def 命令行助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
chatbot 聊天显示框的句柄, 用于显示给用户
history 聊天历史, 前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
user_request 当前用户的请求信息IP地址等
"""
# 清空历史, 以免输入溢出
history = []

查看文件

@@ -1,69 +0,0 @@
from toolbox import CatchException, update_ui, get_conf, select_api_key, get_log_folder
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
import datetime
def gen_image(llm_kwargs, prompt, resolution="256x256"):
import requests, json, time, os
from request_llm.bridge_all import model_info
proxies, = get_conf('proxies')
# Set up OpenAI API key and model
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
chat_endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
# 'https://api.openai.com/v1/chat/completions'
img_endpoint = chat_endpoint.replace('chat/completions','images/generations')
# # Generate the image
url = img_endpoint
headers = {
'Authorization': f"Bearer {api_key}",
'Content-Type': 'application/json'
}
data = {
'prompt': prompt,
'n': 1,
'size': resolution,
'response_format': 'url'
}
response = requests.post(url, headers=headers, json=data, proxies=proxies)
print(response.content)
try:
image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
except:
raise RuntimeError(response.content.decode())
# 文件保存到本地
r = requests.get(image_url, proxies=proxies)
file_path = f'{get_log_folder()}/image_gen/'
os.makedirs(file_path, exist_ok=True)
file_name = 'Image' + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.png'
with open(file_path+file_name, 'wb+') as f: f.write(r.content)
return image_url, file_path+file_name
@CatchException
def 图片生成(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数,暂时没有用武之地
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
chatbot.append(("这是什么功能?", "[Local Message] 生成图像, 请先把模型切换至gpt-*或者api2d-*。如果中文效果不理想, 请尝试英文Prompt。正在处理中 ....."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
resolution = plugin_kwargs.get("advanced_arg", '256x256')
image_url, image_path = gen_image(llm_kwargs, prompt, resolution)
chatbot.append([prompt,
f'图像中转网址: <br/>`{image_url}`<br/>'+
f'中转网址预览: <br/><div align="center"><img src="{image_url}"></div>'
f'本地文件地址: <br/>`{image_path}`<br/>'+
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新

查看文件

@@ -0,0 +1,102 @@
# 本源代码中, ⭐ = 关键步骤
"""
测试:
- show me the solution of $x^2=cos(x)$, solve this problem with figure, and plot and save image to t.jpg
"""
import time
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, ProxyNetworkActivate
from toolbox import get_conf, select_api_key, update_ui_lastest_msg, Singleton
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_plugin_arg
from crazy_functions.crazy_utils import input_clipping, try_install_deps
from crazy_functions.agent_fns.persistent import GradioMultiuserManagerForPersistentClasses
from crazy_functions.agent_fns.auto_agent import AutoGenMath
from loguru import logger
def remove_model_prefix(llm):
if llm.startswith('api2d-'): llm = llm.replace('api2d-', '')
if llm.startswith('azure-'): llm = llm.replace('azure-', '')
return llm
@CatchException
def 多智能体终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
"""
# 检查当前的模型是否符合要求
supported_llms = [
"gpt-3.5-turbo-16k",
'gpt-3.5-turbo-1106',
"gpt-4",
"gpt-4-32k",
'gpt-4-1106-preview',
"azure-gpt-3.5-turbo-16k",
"azure-gpt-3.5-16k",
"azure-gpt-4",
"azure-gpt-4-32k",
]
from request_llms.bridge_all import model_info
if model_info[llm_kwargs['llm_model']]["max_token"] < 8000: # 至少是8k上下文的模型
chatbot.append([f"处理任务: {txt}", f"当前插件只支持{str(supported_llms)}, 当前模型{llm_kwargs['llm_model']}的最大上下文长度太短, 不能支撑AutoGen运行。"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
if model_info[llm_kwargs['llm_model']]["endpoint"] is not None: # 如果不是本地模型,加载API_KEY
llm_kwargs['api_key'] = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import autogen
if get_conf("AUTOGEN_USE_DOCKER"):
import docker
except:
chatbot.append([ f"处理任务: {txt}",
f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pyautogen docker```。"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import autogen
import glob, os, time, subprocess
if get_conf("AUTOGEN_USE_DOCKER"):
subprocess.Popen(["docker", "--version"])
except:
chatbot.append([f"处理任务: {txt}", f"缺少docker运行环境"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 解锁插件
chatbot.get_cookies()['lock_plugin'] = None
persistent_class_multi_user_manager = GradioMultiuserManagerForPersistentClasses()
user_uuid = chatbot.get_cookies().get('uuid')
persistent_key = f"{user_uuid}->多智能体终端"
if persistent_class_multi_user_manager.already_alive(persistent_key):
# 当已经存在一个正在运行的多智能体终端时,直接将用户输入传递给它,而不是再次启动一个新的多智能体终端
logger.info('[debug] feed new user input')
executor = persistent_class_multi_user_manager.get(persistent_key)
exit_reason = yield from executor.main_process_ui_control(txt, create_or_resume="resume")
else:
# 运行多智能体终端 (首次)
logger.info('[debug] create new executor instance')
history = []
chatbot.append(["正在启动: 多智能体终端", "插件动态生成, 执行开始, 作者 Microsoft & Binary-Husky."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
executor = AutoGenMath(llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
persistent_class_multi_user_manager.set(persistent_key, executor)
exit_reason = yield from executor.main_process_ui_control(txt, create_or_resume="create")
if exit_reason == "wait_feedback":
# 当用户点击了“等待反馈”按钮时,将executor存储到cookie中,等待用户的再次调用
executor.chatbot.get_cookies()['lock_plugin'] = 'crazy_functions.多智能体->多智能体终端'
else:
executor.chatbot.get_cookies()['lock_plugin'] = None
yield from update_ui(chatbot=executor.chatbot, history=executor.history) # 更新状态

查看文件

@@ -1,142 +0,0 @@
from toolbox import CatchException, update_ui, promote_file_to_downloadzone, get_log_folder
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
import re
def write_chat_to_file(chatbot, history=None, file_name=None):
"""
将对话记录history以Markdown格式写入文件中。如果没有指定文件名,则使用当前时间生成文件名。
"""
import os
import time
if file_name is None:
file_name = 'chatGPT对话历史' + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.html'
fp = os.path.join(get_log_folder(), file_name)
with open(fp, 'w', encoding='utf8') as f:
from themes.theme import advanced_css
f.write(f'<!DOCTYPE html><head><meta charset="utf-8"><title>对话历史</title><style>{advanced_css}</style></head>')
for i, contents in enumerate(chatbot):
for j, content in enumerate(contents):
try: # 这个bug没找到触发条件,暂时先这样顶一下
if type(content) != str: content = str(content)
except:
continue
f.write(content)
if j == 0:
f.write('<hr style="border-top: dotted 3px #ccc;">')
f.write('<hr color="red"> \n\n')
f.write('<hr color="blue"> \n\n raw chat context:\n')
f.write('<code>')
for h in history:
f.write("\n>>>" + h)
f.write('</code>')
promote_file_to_downloadzone(fp, rename_file=file_name, chatbot=chatbot)
return '对话历史写入:' + fp
def gen_file_preview(file_name):
try:
with open(file_name, 'r', encoding='utf8') as f:
file_content = f.read()
# pattern to match the text between <head> and </head>
pattern = re.compile(r'<head>.*?</head>', flags=re.DOTALL)
file_content = re.sub(pattern, '', file_content)
html, history = file_content.split('<hr color="blue"> \n\n raw chat context:\n')
history = history.strip('<code>')
history = history.strip('</code>')
history = history.split("\n>>>")
return list(filter(lambda x:x!="", history))[0][:100]
except:
return ""
def read_file_to_chat(chatbot, history, file_name):
with open(file_name, 'r', encoding='utf8') as f:
file_content = f.read()
# pattern to match the text between <head> and </head>
pattern = re.compile(r'<head>.*?</head>', flags=re.DOTALL)
file_content = re.sub(pattern, '', file_content)
html, history = file_content.split('<hr color="blue"> \n\n raw chat context:\n')
history = history.strip('<code>')
history = history.strip('</code>')
history = history.split("\n>>>")
history = list(filter(lambda x:x!="", history))
html = html.split('<hr color="red"> \n\n')
html = list(filter(lambda x:x!="", html))
chatbot.clear()
for i, h in enumerate(html):
i_say, gpt_say = h.split('<hr style="border-top: dotted 3px #ccc;">')
chatbot.append([i_say, gpt_say])
chatbot.append([f"存档文件详情?", f"[Local Message] 载入对话{len(html)}条,上下文{len(history)}条。"])
return chatbot, history
@CatchException
def 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数,暂时没有用武之地
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
chatbot.append(("保存当前对话",
f"[Local Message] {write_chat_to_file(chatbot, history)},您可以调用“载入对话历史存档”还原当下的对话。\n警告!被保存的对话历史可以被使用该系统的任何人查阅。"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
def hide_cwd(str):
import os
current_path = os.getcwd()
replace_path = "."
return str.replace(current_path, replace_path)
@CatchException
def 载入对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数,暂时没有用武之地
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
from .crazy_utils import get_files_from_everything
success, file_manifest, _ = get_files_from_everything(txt, type='.html')
if not success:
if txt == "": txt = '空空如也的输入栏'
import glob
local_history = "<br/>".join(["`"+hide_cwd(f)+f" ({gen_file_preview(f)})"+"`" for f in glob.glob(f'{get_log_folder()}/**/chatGPT对话历史*.html', recursive=True)])
chatbot.append([f"正在查找对话历史文件html格式: {txt}", f"找不到任何html文件: {txt}。但本地存储了以下历史文件,您可以将任意一个文件路径粘贴到输入区,然后重试:<br/>{local_history}"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
try:
chatbot, history = read_file_to_chat(chatbot, history, file_manifest[0])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
except:
chatbot.append([f"载入对话历史文件", f"对话历史文件损坏!"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
@CatchException
def 删除所有本地对话历史记录(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数,暂时没有用武之地
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
import glob, os
local_history = "<br/>".join(["`"+hide_cwd(f)+"`" for f in glob.glob(f'{get_log_folder()}/**/chatGPT对话历史*.html', recursive=True)])
for f in glob.glob(f'{get_log_folder()}/**/chatGPT对话历史*.html', recursive=True):
os.remove(f)
chatbot.append([f"删除所有历史对话文件", f"已删除<br/>{local_history}"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return

查看文件

@@ -1,7 +1,7 @@
from toolbox import update_ui
from toolbox import CatchException, report_execption
from toolbox import CatchException, report_exception
from toolbox import write_history_to_file, promote_file_to_downloadzone
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
fast_debug = False
@@ -29,17 +29,12 @@ def 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot
except:
raise RuntimeError('请先将.doc文档转换为.docx文档。')
print(file_content)
# private_upload里面的文件名在解压zip后容易出现乱码rar和7z格式正常,故可以只分析文章内容,不输入文件名
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
from request_llm.bridge_all import model_info
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
from request_llms.bridge_all import model_info
max_token = model_info[llm_kwargs['llm_model']]['max_token']
TOKEN_LIMIT_PER_FRAGMENT = max_token * 3 // 4
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=file_content,
get_token_fn=model_info[llm_kwargs['llm_model']]['token_cnt'],
limit=TOKEN_LIMIT_PER_FRAGMENT
)
paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
this_paper_history = []
for i, paper_frag in enumerate(paper_fragments):
i_say = f'请对下面的文章片段用中文做概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{paper_frag}```'
@@ -84,7 +79,7 @@ def 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot
@CatchException
def 总结word文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 总结word文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
import glob, os
# 基本信息:功能、贡献者
@@ -97,7 +92,7 @@ def 总结word文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pr
try:
from docx import Document
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade python-docx pywin32```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -111,7 +106,7 @@ def 总结word文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pr
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
@@ -124,7 +119,7 @@ def 总结word文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pr
# 如果没找到任何文件
if len(file_manifest) == 0:
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.docx或doc文件: {txt}")
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.docx或doc文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return

查看文件

@@ -1,5 +1,5 @@
from toolbox import CatchException, report_execption, select_api_key, update_ui, get_conf
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from toolbox import CatchException, report_exception, select_api_key, update_ui, get_conf
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from toolbox import write_history_to_file, promote_file_to_downloadzone, get_log_folder
def split_audio_file(filename, split_duration=1000):
@@ -41,7 +41,7 @@ def split_audio_file(filename, split_duration=1000):
def AnalyAudio(parse_prompt, file_manifest, llm_kwargs, chatbot, history):
import os, requests
from moviepy.editor import AudioFileClip
from request_llm.bridge_all import model_info
from request_llms.bridge_all import model_info
# 设置OpenAI密钥和模型
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
@@ -79,7 +79,7 @@ def AnalyAudio(parse_prompt, file_manifest, llm_kwargs, chatbot, history):
chatbot.append([f"{i} 发送到openai音频解析终端 (whisper),当前参数:{parse_prompt}", "正在处理 ..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
proxies, = get_conf('proxies')
proxies = get_conf('proxies')
response = requests.post(url, headers=headers, files=files, data=data, proxies=proxies).text
chatbot.append(["音频解析结果", response])
@@ -144,7 +144,7 @@ def 总结音视频(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
try:
from moviepy.editor import AudioFileClip
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade moviepy```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -158,7 +158,7 @@ def 总结音视频(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
@@ -174,7 +174,7 @@ def 总结音视频(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
# 如果没找到任何文件
if len(file_manifest) == 0:
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何音频或视频文件: {txt}")
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何音频或视频文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return

查看文件

@@ -1,16 +1,18 @@
from loguru import logger
from toolbox import update_ui, promote_file_to_downloadzone, gen_time_str
from toolbox import CatchException, report_execption
from toolbox import CatchException, report_exception
from toolbox import write_history_to_file, promote_file_to_downloadzone
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import read_and_clean_pdf_text
from .crazy_utils import input_clipping
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from crazy_functions.crazy_utils import read_and_clean_pdf_text
from crazy_functions.crazy_utils import input_clipping
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
file_write_buffer = []
for file_name in file_manifest:
print('begin analysis on:', file_name)
logger.info('begin analysis on:', file_name)
############################## <第 0 步,切割PDF> ##################################
# 递归地切割PDF文件,每一块尽量是完整的一个section,比如introduction,experiment等,必要时再进行切割
# 的长度必须小于 2500 个 Token
@@ -20,14 +22,9 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
TOKEN_LIMIT_PER_FRAGMENT = 2500
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
from request_llm.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=str(page_one), limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model'])
# 为了更好的效果,我们剥离Introduction之后的部分如果有
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
@@ -43,7 +40,7 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
last_iteration_result = paper_meta # 初始值是摘要
MAX_WORD_TOTAL = 4096 * 0.7
n_fragment = len(paper_fragments)
if n_fragment >= 20: print('文章极长,不能达到预期效果')
if n_fragment >= 20: logger.warning('文章极长,不能达到预期效果')
for i in range(n_fragment):
NUM_OF_WORD = MAX_WORD_TOTAL // n_fragment
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} Chinese characters: {paper_fragments[i]}"
@@ -106,7 +103,7 @@ do not have too much repetitive information, numerical values using the original
@CatchException
def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
import glob, os
# 基本信息:功能、贡献者
@@ -119,7 +116,7 @@ def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
try:
import fitz
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -133,7 +130,7 @@ def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
@@ -142,7 +139,7 @@ def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
# 如果没找到任何文件
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex或.pdf文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex或.pdf文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return

查看文件

@@ -1,6 +1,7 @@
from loguru import logger
from toolbox import update_ui
from toolbox import CatchException, report_execption
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from toolbox import CatchException, report_exception
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from toolbox import write_history_to_file, promote_file_to_downloadzone
fast_debug = False
@@ -57,7 +58,6 @@ def readPdf(pdfPath):
layout = device.get_result()
for obj in layout._objs:
if isinstance(obj, pdfminer.layout.LTTextBoxHorizontal):
# print(obj.get_text())
outTextList.append(obj.get_text())
return outTextList
@@ -66,7 +66,7 @@ def readPdf(pdfPath):
def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
import time, glob, os
from bs4 import BeautifulSoup
print('begin analysis on:', file_manifest)
logger.info('begin analysis on:', file_manifest)
for index, fp in enumerate(file_manifest):
if ".tex" in fp:
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
@@ -77,7 +77,7 @@ def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbo
prefix = "接下来请你逐文件分析下面的论文文件,概括其内容" if index==0 else ""
i_say = prefix + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```'
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}'
i_say_show_user = prefix + f'[{index+1}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -124,7 +124,7 @@ def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbo
@CatchException
def 批量总结PDF文档pdfminer(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 批量总结PDF文档pdfminer(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
history = [] # 清空历史,以免输入溢出
import glob, os
@@ -138,7 +138,7 @@ def 批量总结PDF文档pdfminer(txt, llm_kwargs, plugin_kwargs, chatbot, histo
try:
import pdfminer, bs4
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pdfminer beautifulsoup4```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -147,7 +147,7 @@ def 批量总结PDF文档pdfminer(txt, llm_kwargs, plugin_kwargs, chatbot, histo
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] + \
@@ -155,7 +155,7 @@ def 批量总结PDF文档pdfminer(txt, llm_kwargs, plugin_kwargs, chatbot, histo
# [f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)] + \
# [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex或pdf文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex或pdf文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

查看文件

@@ -1,11 +1,11 @@
from toolbox import CatchException, report_execption, get_log_folder, gen_time_str
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
from toolbox import write_history_to_file, promote_file_to_downloadzone
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from .crazy_utils import read_and_clean_pdf_text
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from crazy_functions.crazy_utils import read_and_clean_pdf_text
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
from colorful import *
from shared_utils.colorful import *
import copy
import os
import math
@@ -48,7 +48,7 @@ def markdown_to_dict(article_content):
@CatchException
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
disable_auto_promotion(chatbot)
# 基本信息:功能、贡献者
@@ -57,30 +57,35 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
"批量翻译PDF文档。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 清空历史,以免输入溢出
history = []
from crazy_functions.crazy_utils import get_files_from_everything
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf')
if len(file_manifest) > 0:
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import nougat
import tiktoken
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade nougat-ocr tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 清空历史,以免输入溢出
history = []
from .crazy_utils import get_files_from_everything
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf')
success_mmd, file_manifest_mmd, _ = get_files_from_everything(txt, type='.mmd')
success = success or success_mmd
file_manifest += file_manifest_mmd
chatbot.append(["文件列表:", ", ".join([e.split('/')[-1] for e in file_manifest])]);
yield from update_ui( chatbot=chatbot, history=history)
# 检测输入参数,如没有给定输入参数,直接退出
if not success:
if txt == "": txt = '空空如也的输入栏'
# 如果没找到任何文件
if len(file_manifest) == 0:
report_execption(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}")
report_exception(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到任何.pdf拓展名的文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
@@ -97,12 +102,17 @@ def 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwa
generated_conclusion_files = []
generated_html_files = []
DST_LANG = "中文"
from crazy_functions.crazy_utils import nougat_interface, construct_html
from crazy_functions.crazy_utils import nougat_interface
from crazy_functions.pdf_fns.report_gen_html import construct_html
nougat_handle = nougat_interface()
for index, fp in enumerate(file_manifest):
if fp.endswith('pdf'):
chatbot.append(["当前进度:", f"正在解析论文,请稍候。第一次运行时,需要花费较长时间下载NOUGAT参数"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
fpp = yield from nougat_handle.NOUGAT_parse_pdf(fp, chatbot, history)
promote_file_to_downloadzone(fpp, rename_file=os.path.basename(fpp)+'.nougat.mmd', chatbot=chatbot)
else:
chatbot.append(["当前论文无需解析:", fp]); yield from update_ui( chatbot=chatbot, history=history)
fpp = fp
with open(fpp, 'r', encoding='utf8') as f:
article_content = f.readlines()
article_dict = markdown_to_dict(article_content)

查看文件

@@ -1,185 +0,0 @@
from toolbox import CatchException, report_execption, get_log_folder, gen_time_str
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
from toolbox import write_history_to_file, promote_file_to_downloadzone
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from .crazy_utils import read_and_clean_pdf_text
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
from colorful import *
import copy
import os
import math
@CatchException
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
disable_auto_promotion(chatbot)
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"批量翻译PDF文档。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import fitz
import tiktoken
import scipdf
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf tiktoken scipdf_parser```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 清空历史,以免输入溢出
history = []
from .crazy_utils import get_files_from_everything
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf')
# 检测输入参数,如没有给定输入参数,直接退出
if not success:
if txt == "": txt = '空空如也的输入栏'
# 如果没找到任何文件
if len(file_manifest) == 0:
report_execption(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 开始正式执行任务
grobid_url = get_avail_grobid_url()
if grobid_url is not None:
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
else:
yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
yield from 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url):
import copy, json
TOKEN_LIMIT_PER_FRAGMENT = 1024
generated_conclusion_files = []
generated_html_files = []
DST_LANG = "中文"
from crazy_functions.crazy_utils import construct_html
for index, fp in enumerate(file_manifest):
chatbot.append(["当前进度:", f"正在连接GROBID服务,请稍候: {grobid_url}\n如果等待时间过长,请修改config中的GROBID_URL,可修改成本地GROBID服务。"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
article_dict = parse_pdf(fp, grobid_url)
grobid_json_res = os.path.join(get_log_folder(), gen_time_str() + "grobid.json")
with open(grobid_json_res, 'w+', encoding='utf8') as f:
f.write(json.dumps(article_dict, indent=4, ensure_ascii=False))
promote_file_to_downloadzone(grobid_json_res, chatbot=chatbot)
if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG)
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
"""
此函数已经弃用
"""
import copy
TOKEN_LIMIT_PER_FRAGMENT = 1024
generated_conclusion_files = []
generated_html_files = []
from crazy_functions.crazy_utils import construct_html
for index, fp in enumerate(file_manifest):
# 读取PDF文件
file_content, page_one = read_and_clean_pdf_text(fp)
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
# 递归地切割PDF文件
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
from request_llm.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=page_one, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
# 为了更好的效果,我们剥离Introduction之后的部分如果有
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
# 单线,获取文章meta信息
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取{paper_meta}",
inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。",
llm_kwargs=llm_kwargs,
chatbot=chatbot, history=[],
sys_prompt="Your job is to collect information from materials。",
)
# 多线,翻译
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=[
f"你需要翻译以下内容:\n{frag}" for frag in paper_fragments],
inputs_show_user_array=[f"\n---\n 原文: \n\n {frag.replace('#', '')} \n---\n 翻译:\n " for frag in paper_fragments],
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[[paper_meta] for _ in paper_fragments],
sys_prompt_array=[
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in paper_fragments],
# max_workers=5 # OpenAI所允许的最大并行过载
)
gpt_response_collection_md = copy.deepcopy(gpt_response_collection)
# 整理报告的格式
for i,k in enumerate(gpt_response_collection_md):
if i%2==0:
gpt_response_collection_md[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection_md)//2}] \n\n {paper_fragments[i//2].replace('#', '')} \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection_md)//2}]\n "
else:
gpt_response_collection_md[i] = gpt_response_collection_md[i]
final = ["一、论文概况\n\n---\n\n", paper_meta_info.replace('# ', '### ') + '\n\n---\n\n', "二、论文翻译", ""]
final.extend(gpt_response_collection_md)
create_report_file_name = f"{os.path.basename(fp)}.trans.md"
res = write_history_to_file(final, create_report_file_name)
promote_file_to_downloadzone(res, chatbot=chatbot)
# 更新UI
generated_conclusion_files.append(f'{get_log_folder()}/{create_report_file_name}')
chatbot.append((f"{fp}完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# write html
try:
ch = construct_html()
orig = ""
trans = ""
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
for i,k in enumerate(gpt_response_collection_html):
if i%2==0:
gpt_response_collection_html[i] = paper_fragments[i//2].replace('#', '')
else:
gpt_response_collection_html[i] = gpt_response_collection_html[i]
final = ["论文概况", paper_meta_info.replace('# ', '### '), "二、论文翻译", ""]
final.extend(gpt_response_collection_html)
for i, k in enumerate(final):
if i%2==0:
orig = k
if i%2==1:
trans = k
ch.add_row(a=orig, b=trans)
create_report_file_name = f"{os.path.basename(fp)}.trans.html"
generated_html_files.append(ch.save_file(create_report_file_name))
except:
from toolbox import trimmed_format_exc
print('writing html result failed:', trimmed_format_exc())
# 准备文件的下载
for pdf_path in generated_conclusion_files:
# 重命名文件
rename_file = f'翻译-{os.path.basename(pdf_path)}'
promote_file_to_downloadzone(pdf_path, rename_file=rename_file, chatbot=chatbot)
for html_path in generated_html_files:
# 重命名文件
rename_file = f'翻译-{os.path.basename(html_path)}'
promote_file_to_downloadzone(html_path, rename_file=rename_file, chatbot=chatbot)
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

查看文件

@@ -1,6 +1,8 @@
from toolbox import CatchException, update_ui, gen_time_str
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import input_clipping
import os
from loguru import logger
from toolbox import CatchException, update_ui, gen_time_str, promote_file_to_downloadzone
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from crazy_functions.crazy_utils import input_clipping
def inspect_dependency(chatbot, history):
# 尝试导入依赖,如果缺少依赖,则给出安装建议
@@ -27,15 +29,16 @@ def eval_manim(code):
class_name = get_class_name(code)
try:
time_str = gen_time_str()
subprocess.check_output([sys.executable, '-c', f"from gpt_log.MyAnimation import {class_name}; {class_name}().render()"])
shutil.move('media/videos/1080p60/{class_name}.mp4', f'gpt_log/{class_name}-{gen_time_str()}.mp4')
return f'gpt_log/{gen_time_str()}.mp4'
shutil.move(f'media/videos/1080p60/{class_name}.mp4', f'gpt_log/{class_name}-{time_str}.mp4')
return f'gpt_log/{time_str}.mp4'
except subprocess.CalledProcessError as e:
output = e.output.decode()
print(f"Command returned non-zero exit status {e.returncode}: {output}.")
logger.error(f"Command returned non-zero exit status {e.returncode}: {output}.")
return f"Evaluating python script failed: {e.output}."
except:
print('generating mp4 failed')
logger.error('generating mp4 failed')
return "Generating mp4 failed."
@@ -48,7 +51,7 @@ def get_code_block(reply):
return matches[0].strip('python') # code block
@CatchException
def 动画生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 动画生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
@@ -56,7 +59,7 @@ def 动画生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
user_request 当前用户的请求信息IP地址等
"""
# 清空历史,以免输入溢出
history = []
@@ -94,6 +97,8 @@ def 动画生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
res = eval_manim(code)
chatbot.append(("生成的视频文件路径", res))
if os.path.exists(res):
promote_file_to_downloadzone(res, chatbot=chatbot)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
# 在这里放一些网上搜集的demo,辅助gpt生成代码

查看文件

@@ -1,13 +1,12 @@
from loguru import logger
from toolbox import update_ui
from toolbox import CatchException, report_execption
from .crazy_utils import read_and_clean_pdf_text
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
fast_debug = False
from toolbox import CatchException, report_exception
from crazy_functions.crazy_utils import read_and_clean_pdf_text
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
import tiktoken
print('begin analysis on:', file_name)
logger.info('begin analysis on:', file_name)
############################## <第 0 步,切割PDF> ##################################
# 递归地切割PDF文件,每一块尽量是完整的一个section,比如introduction,experiment等,必要时再进行切割
@@ -18,14 +17,9 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
TOKEN_LIMIT_PER_FRAGMENT = 2500
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
from request_llm.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=str(page_one), limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model'])
# 为了更好的效果,我们剥离Introduction之后的部分如果有
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
@@ -41,15 +35,15 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
last_iteration_result = paper_meta # 初始值是摘要
MAX_WORD_TOTAL = 4096
n_fragment = len(paper_fragments)
if n_fragment >= 20: print('文章极长,不能达到预期效果')
if n_fragment >= 20: logger.warning('文章极长,不能达到预期效果')
for i in range(n_fragment):
NUM_OF_WORD = MAX_WORD_TOTAL // n_fragment
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i]}"
i_say_show_user = f"[{i+1}/{n_fragment}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i][:200]}"
i_say_show_user = f"[{i+1}/{n_fragment}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i][:200]} ...."
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
llm_kwargs, chatbot,
history=["The main idea of the previous section is?", last_iteration_result], # 迭代上一次的结果
sys_prompt="Extract the main idea of this section." # 提示
sys_prompt="Extract the main idea of this section, answer me with Chinese." # 提示
)
iteration_results.append(gpt_say)
last_iteration_result = gpt_say
@@ -62,13 +56,13 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
chatbot.append([i_say_show_user, gpt_say])
############################## <第 4 步,设置一个token上限,防止回答时Token溢出> ##################################
from .crazy_utils import input_clipping
from crazy_functions.crazy_utils import input_clipping
_, final_results = input_clipping("", final_results, max_token_limit=3200)
yield from update_ui(chatbot=chatbot, history=final_results) # 注意这里的历史记录被替代了
@CatchException
def 理解PDF文档内容标准文件输入(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 理解PDF文档内容标准文件输入(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
import glob, os
# 基本信息:功能、贡献者
@@ -81,7 +75,7 @@ def 理解PDF文档内容标准文件输入(txt, llm_kwargs, plugin_kwargs, chat
try:
import fitz
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -96,7 +90,7 @@ def 理解PDF文档内容标准文件输入(txt, llm_kwargs, plugin_kwargs, chat
else:
if txt == "":
txt = '空空如也的输入栏'
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
@@ -105,7 +99,7 @@ def 理解PDF文档内容标准文件输入(txt, llm_kwargs, plugin_kwargs, chat
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)]
# 如果没找到任何文件
if len(file_manifest) == 0:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return

查看文件

@@ -1,22 +1,21 @@
from loguru import logger
from toolbox import update_ui
from toolbox import CatchException, report_execption
from toolbox import CatchException, report_exception
from toolbox import write_history_to_file, promote_file_to_downloadzone
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
fast_debug = False
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
def 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
import time, os
print('begin analysis on:', file_manifest)
logger.info('begin analysis on:', file_manifest)
for index, fp in enumerate(file_manifest):
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
i_say = f'请对下面的程序文件做一个概述,并对文件中的所有函数生成注释,使用markdown表格输出结果,文件名是{os.path.relpath(fp, project_folder)},文件内容是 ```{file_content}```'
i_say_show_user = f'[{index}/{len(file_manifest)}] 请对下面的程序文件做一个概述,并对文件中的所有函数生成注释: {os.path.abspath(fp)}'
i_say_show_user = f'[{index+1}/{len(file_manifest)}] 请对下面的程序文件做一个概述,并对文件中的所有函数生成注释: {os.path.abspath(fp)}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
@@ -25,9 +24,8 @@ def 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
if not fast_debug: time.sleep(2)
time.sleep(2)
if not fast_debug:
res = write_history_to_file(history)
promote_file_to_downloadzone(res, chatbot=chatbot)
chatbot.append(("完成了吗?", res))
@@ -36,21 +34,21 @@ def 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
@CatchException
def 批量生成函数注释(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 批量生成函数注释(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.py', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

查看文件

@@ -0,0 +1,437 @@
from toolbox import CatchException, update_ui, report_exception
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from crazy_functions.plugin_template.plugin_class_template import (
GptAcademicPluginTemplate,
)
from crazy_functions.plugin_template.plugin_class_template import ArgProperty
# 以下是每类图表的PROMPT
SELECT_PROMPT = """
{subject}
=============
以上是从文章中提取的摘要,将会使用这些摘要绘制图表。请你选择一个合适的图表类型:
1 流程图
2 序列图
3 类图
4 饼图
5 甘特图
6 状态图
7 实体关系图
8 象限提示图
不需要解释原因,仅需要输出单个不带任何标点符号的数字。
"""
# 没有思维导图!!!测试发现模型始终会优先选择思维导图
# 流程图
PROMPT_1 = """
请你给出围绕“{subject}”的逻辑关系图,使用mermaid语法,注意需要使用双引号将内容括起来。
mermaid语法举例
```mermaid
graph TD
P("编程") --> L1("Python")
P("编程") --> L2("C")
P("编程") --> L3("C++")
P("编程") --> L4("Javascipt")
P("编程") --> L5("PHP")
```
"""
# 序列图
PROMPT_2 = """
请你给出围绕“{subject}”的序列图,使用mermaid语法。
mermaid语法举例
```mermaid
sequenceDiagram
participant A as 用户
participant B as 系统
A->>B: 登录请求
B->>A: 登录成功
A->>B: 获取数据
B->>A: 返回数据
```
"""
# 类图
PROMPT_3 = """
请你给出围绕“{subject}”的类图,使用mermaid语法。
mermaid语法举例
```mermaid
classDiagram
Class01 <|-- AveryLongClass : Cool
Class03 *-- Class04
Class05 o-- Class06
Class07 .. Class08
Class09 --> C2 : Where am i?
Class09 --* C3
Class09 --|> Class07
Class07 : equals()
Class07 : Object[] elementData
Class01 : size()
Class01 : int chimp
Class01 : int gorilla
Class08 <--> C2: Cool label
```
"""
# 饼图
PROMPT_4 = """
请你给出围绕“{subject}”的饼图,使用mermaid语法,注意需要使用双引号将内容括起来。
mermaid语法举例
```mermaid
pie title Pets adopted by volunteers
"" : 386
"" : 85
"兔子" : 15
```
"""
# 甘特图
PROMPT_5 = """
请你给出围绕“{subject}”的甘特图,使用mermaid语法,注意需要使用双引号将内容括起来。
mermaid语法举例
```mermaid
gantt
title "项目开发流程"
dateFormat YYYY-MM-DD
section "设计"
"需求分析" :done, des1, 2024-01-06,2024-01-08
"原型设计" :active, des2, 2024-01-09, 3d
"UI设计" : des3, after des2, 5d
section "开发"
"前端开发" :2024-01-20, 10d
"后端开发" :2024-01-20, 10d
```
"""
# 状态图
PROMPT_6 = """
请你给出围绕“{subject}”的状态图,使用mermaid语法,注意需要使用双引号将内容括起来。
mermaid语法举例
```mermaid
stateDiagram-v2
[*] --> "Still"
"Still" --> [*]
"Still" --> "Moving"
"Moving" --> "Still"
"Moving" --> "Crash"
"Crash" --> [*]
```
"""
# 实体关系图
PROMPT_7 = """
请你给出围绕“{subject}”的实体关系图,使用mermaid语法。
mermaid语法举例
```mermaid
erDiagram
CUSTOMER ||--o{ ORDER : places
ORDER ||--|{ LINE-ITEM : contains
CUSTOMER {
string name
string id
}
ORDER {
string orderNumber
date orderDate
string customerID
}
LINE-ITEM {
number quantity
string productID
}
```
"""
# 象限提示图
PROMPT_8 = """
请你给出围绕“{subject}”的象限图,使用mermaid语法,注意需要使用双引号将内容括起来。
mermaid语法举例
```mermaid
graph LR
A["Hard skill"] --> B("Programming")
A["Hard skill"] --> C("Design")
D["Soft skill"] --> E("Coordination")
D["Soft skill"] --> F("Communication")
```
"""
# 思维导图
PROMPT_9 = """
{subject}
==========
请给出上方内容的思维导图,充分考虑其之间的逻辑,使用mermaid语法,注意需要使用双引号将内容括起来。
mermaid语法举例
```mermaid
mindmap
root((mindmap))
("Origins")
("Long history")
::icon(fa fa-book)
("Popularisation")
("British popular psychology author Tony Buzan")
::icon(fa fa-user)
("Research")
("On effectiveness<br/>and features")
::icon(fa fa-search)
("On Automatic creation")
::icon(fa fa-robot)
("Uses")
("Creative techniques")
::icon(fa fa-lightbulb-o)
("Strategic planning")
::icon(fa fa-flag)
("Argument mapping")
::icon(fa fa-comments)
("Tools")
("Pen and paper")
::icon(fa fa-pencil)
("Mermaid")
::icon(fa fa-code)
```
"""
def 解析历史输入(history, llm_kwargs, file_manifest, chatbot, plugin_kwargs):
############################## <第 0 步,切割输入> ##################################
# 借用PDF切割中的函数对文本进行切割
TOKEN_LIMIT_PER_FRAGMENT = 2500
txt = (
str(history).encode("utf-8", "ignore").decode()
) # avoid reading non-utf8 chars
from crazy_functions.pdf_fns.breakdown_txt import (
breakdown_text_to_satisfy_token_limit,
)
txt = breakdown_text_to_satisfy_token_limit(
txt=txt, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs["llm_model"]
)
############################## <第 1 步,迭代地历遍整个文章,提取精炼信息> ##################################
results = []
MAX_WORD_TOTAL = 4096
n_txt = len(txt)
last_iteration_result = "从以下文本中提取摘要。"
for i in range(n_txt):
NUM_OF_WORD = MAX_WORD_TOTAL // n_txt
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words in Chinese: {txt[i]}"
i_say_show_user = f"[{i+1}/{n_txt}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {txt[i][:200]} ...."
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
i_say,
i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
llm_kwargs,
chatbot,
history=[
"The main content of the previous section is?",
last_iteration_result,
], # 迭代上一次的结果
sys_prompt="Extracts the main content from the text section where it is located for graphing purposes, answer me with Chinese.", # 提示
)
results.append(gpt_say)
last_iteration_result = gpt_say
############################## <第 2 步,根据整理的摘要选择图表类型> ##################################
gpt_say = str(plugin_kwargs) # 将图表类型参数赋值为插件参数
results_txt = "\n".join(results) # 合并摘要
if gpt_say not in [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
]: # 如插件参数不正确则使用对话模型判断
i_say_show_user = (
f"接下来将判断适合的图表类型,如连续3次判断失败将会使用流程图进行绘制"
)
gpt_say = "[Local Message] 收到。" # 用户提示
chatbot.append([i_say_show_user, gpt_say])
yield from update_ui(chatbot=chatbot, history=[]) # 更新UI
i_say = SELECT_PROMPT.format(subject=results_txt)
i_say_show_user = f'请判断适合使用的流程图类型,其中数字对应关系为:1-流程图,2-序列图,3-类图,4-饼图,5-甘特图,6-状态图,7-实体关系图,8-象限提示图。由于不管提供文本是什么,模型大概率认为"思维导图"最合适,因此思维导图仅能通过参数调用。'
for i in range(3):
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say_show_user,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=[],
sys_prompt="",
)
if gpt_say in [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
]: # 判断返回是否正确
break
if gpt_say not in ["1", "2", "3", "4", "5", "6", "7", "8", "9"]:
gpt_say = "1"
############################## <第 3 步,根据选择的图表类型绘制图表> ##################################
if gpt_say == "1":
i_say = PROMPT_1.format(subject=results_txt)
elif gpt_say == "2":
i_say = PROMPT_2.format(subject=results_txt)
elif gpt_say == "3":
i_say = PROMPT_3.format(subject=results_txt)
elif gpt_say == "4":
i_say = PROMPT_4.format(subject=results_txt)
elif gpt_say == "5":
i_say = PROMPT_5.format(subject=results_txt)
elif gpt_say == "6":
i_say = PROMPT_6.format(subject=results_txt)
elif gpt_say == "7":
i_say = PROMPT_7.replace("{subject}", results_txt) # 由于实体关系图用到了{}符号
elif gpt_say == "8":
i_say = PROMPT_8.format(subject=results_txt)
elif gpt_say == "9":
i_say = PROMPT_9.format(subject=results_txt)
i_say_show_user = f"请根据判断结果绘制相应的图表。如需绘制思维导图请使用参数调用,同时过大的图表可能需要复制到在线编辑器中进行渲染。"
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say_show_user,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=[],
sys_prompt="",
)
history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
@CatchException
def 生成多种Mermaid图表(
txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port
):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数,用于灵活调整复杂功能的各种参数
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
import os
# 基本信息:功能、贡献者
chatbot.append(
[
"函数插件功能?",
"根据当前聊天历史或指定的路径文件(文件内容优先)绘制多种mermaid图表,将会由对话模型首先判断适合的图表类型,随后绘制图表。\
\n您也可以使用插件参数指定绘制的图表类型,函数插件贡献者: Menghuan1918",
]
)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if os.path.exists(txt): # 如输入区无内容则直接解析历史记录
from crazy_functions.pdf_fns.parse_word import extract_text_from_files
file_exist, final_result, page_one, file_manifest, excption = (
extract_text_from_files(txt, chatbot, history)
)
else:
file_exist = False
excption = ""
file_manifest = []
if excption != "":
if excption == "word":
report_exception(
chatbot,
history,
a=f"解析项目: {txt}",
b=f"找到了.doc文件,但是该文件格式不被支持,请先转化为.docx格式。",
)
elif excption == "pdf":
report_exception(
chatbot,
history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。",
)
elif excption == "word_pip":
report_exception(
chatbot,
history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade python-docx pywin32```。",
)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
else:
if not file_exist:
history.append(txt) # 如输入区不是文件则将输入区内容加入历史记录
i_say_show_user = f"首先你从历史记录中提取摘要。"
gpt_say = "[Local Message] 收到。" # 用户提示
chatbot.append([i_say_show_user, gpt_say])
yield from update_ui(chatbot=chatbot, history=history) # 更新UI
yield from 解析历史输入(
history, llm_kwargs, file_manifest, chatbot, plugin_kwargs
)
else:
file_num = len(file_manifest)
for i in range(file_num): # 依次处理文件
i_say_show_user = f"[{i+1}/{file_num}]处理文件{file_manifest[i]}"
gpt_say = "[Local Message] 收到。" # 用户提示
chatbot.append([i_say_show_user, gpt_say])
yield from update_ui(chatbot=chatbot, history=history) # 更新UI
history = [] # 如输入区内容为文件则清空历史记录
history.append(final_result[i])
yield from 解析历史输入(
history, llm_kwargs, file_manifest, chatbot, plugin_kwargs
)
class Mermaid_Gen(GptAcademicPluginTemplate):
def __init__(self):
pass
def define_arg_selection_menu(self):
gui_definition = {
"Type_of_Mermaid": ArgProperty(
title="绘制的Mermaid图表类型",
options=[
"由LLM决定",
"流程图",
"序列图",
"类图",
"饼图",
"甘特图",
"状态图",
"实体关系图",
"象限提示图",
"思维导图",
],
default_value="由LLM决定",
description="选择'由LLM决定'时将由对话模型判断适合的图表类型(不包括思维导图),选择其他类型时将直接绘制指定的图表类型。",
type="dropdown",
).model_dump_json(),
}
return gui_definition
def execute(
txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request
):
options = [
"由LLM决定",
"流程图",
"序列图",
"类图",
"饼图",
"甘特图",
"状态图",
"实体关系图",
"象限提示图",
"思维导图",
]
plugin_kwargs = options.index(plugin_kwargs['Type_of_Mermaid'])
yield from 生成多种Mermaid图表(
txt,
llm_kwargs,
plugin_kwargs,
chatbot,
history,
system_prompt,
user_request,
)

查看文件

@@ -1,10 +1,19 @@
from toolbox import CatchException, update_ui, ProxyNetworkActivate, update_ui_lastest_msg
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_files_from_everything
from toolbox import CatchException, update_ui, ProxyNetworkActivate, update_ui_lastest_msg, get_log_folder, get_user
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_files_from_everything
from loguru import logger
install_msg ="""
1. python -m pip install torch --index-url https://download.pytorch.org/whl/cpu
2. python -m pip install transformers protobuf langchain sentence-transformers faiss-cpu nltk beautifulsoup4 bitsandbytes tabulate icetk --upgrade
3. python -m pip install unstructured[all-docs] --upgrade
4. python -c 'import nltk; nltk.download("punkt")'
"""
@CatchException
def 知识库问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 知识库文件注入(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
txt 输入栏用户输入的文本例如需要翻译的一段话再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数, 如温度和top_p等, 一般原样传递下去就行
@@ -12,7 +21,7 @@ def 知识库问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
chatbot 聊天显示框的句柄用于显示给用户
history 聊天历史前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
user_request 当前用户的请求信息IP地址等
"""
history = [] # 清空历史,以免输入溢出
@@ -25,15 +34,15 @@ def 知识库问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
# resolve deps
try:
from zh_langchain import construct_vector_store
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from .crazy_utils import knowledge_archive_interface
# from zh_langchain import construct_vector_store
# from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from crazy_functions.vector_fns.vector_database import knowledge_archive_interface
except Exception as e:
chatbot.append(["依赖不足", "导入依赖失败。正在尝试自动安装,请查看终端的输出或耐心等待..."])
chatbot.append(["依赖不足", f"{str(e)}\n\n导入依赖失败。请用以下命令安装" + install_msg])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
from .crazy_utils import try_install_deps
try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history)
# from crazy_functions.crazy_utils import try_install_deps
# try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
# yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history)
return
# < --------------------读取文件--------------- >
@@ -51,7 +60,7 @@ def 知识库问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
# < -------------------预热文本向量化模组--------------- >
chatbot.append(['<br/>'.join(file_manifest), "正在预热文本向量化模组, 如果是第一次运行, 将消耗较长时间下载中文向量化模型..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
print('Checking Text2vec ...')
logger.info('Checking Text2vec ...')
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
@@ -59,33 +68,34 @@ def 知识库问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
# < -------------------构建知识库--------------- >
chatbot.append(['<br/>'.join(file_manifest), "正在构建知识库..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
print('Establishing knowledge archive ...')
logger.info('Establishing knowledge archive ...')
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
kai = knowledge_archive_interface()
kai.feed_archive(file_manifest=file_manifest, id=kai_id)
kai_files = kai.get_loaded_file()
vs_path = get_log_folder(user=get_user(chatbot), plugin_name='vec_store')
kai.feed_archive(file_manifest=file_manifest, vs_path=vs_path, id=kai_id)
kai_files = kai.get_loaded_file(vs_path=vs_path)
kai_files = '<br/>'.join(kai_files)
# chatbot.append(['知识库构建成功', "正在将知识库存储至cookie中"])
# yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# chatbot._cookies['langchain_plugin_embedding'] = kai.get_current_archive_id()
# chatbot._cookies['lock_plugin'] = 'crazy_functions.Langchain知识库->读取知识库作答'
# chatbot._cookies['lock_plugin'] = 'crazy_functions.知识库文件注入->读取知识库作答'
# chatbot.append(['完成', "“根据知识库作答”函数插件已经接管问答系统, 提问吧! 但注意, 您接下来不能再使用其他插件了,刷新页面即可以退出知识库问答模式。"])
chatbot.append(['构建完成', f"当前知识库内的有效文件:\n\n---\n\n{kai_files}\n\n---\n\n请切换至“知识库问答”插件进行知识库访问, 或者使用此插件继续上传更多文件。"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
@CatchException
def 读取知识库作答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port=-1):
def 读取知识库作答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request=-1):
# resolve deps
try:
from zh_langchain import construct_vector_store
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from .crazy_utils import knowledge_archive_interface
# from zh_langchain import construct_vector_store
# from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from crazy_functions.vector_fns.vector_database import knowledge_archive_interface
except Exception as e:
chatbot.append(["依赖不足", "导入依赖失败。正在尝试自动安装,请查看终端的输出或耐心等待..."])
chatbot.append(["依赖不足", f"{str(e)}\n\n导入依赖失败。请用以下命令安装" + install_msg])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
from .crazy_utils import try_install_deps
try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history)
# from crazy_functions.crazy_utils import try_install_deps
# try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
# yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history)
return
# < ------------------- --------------- >
@@ -93,7 +103,8 @@ def 读取知识库作答(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
kai_id = plugin_kwargs.get("advanced_arg", 'default')
resp, prompt = kai.answer_with_archive_by_id(txt, kai_id)
vs_path = get_log_folder(user=get_user(chatbot), plugin_name='vec_store')
resp, prompt = kai.answer_with_archive_by_id(txt, kai_id, vs_path)
chatbot.append((txt, f'[知识库 {kai_id}] ' + prompt))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新

查看文件

@@ -1,8 +1,8 @@
from toolbox import CatchException, update_ui
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
import requests
from bs4 import BeautifulSoup
from request_llm.bridge_all import model_info
from request_llms.bridge_all import model_info
def google(query, proxies):
query = query # 在此处替换您要搜索的关键词
@@ -23,8 +23,8 @@ def google(query, proxies):
item = {'title': title, 'link': link}
results.append(item)
for r in results:
print(r['link'])
# for r in results:
# print(r['link'])
return results
def scrape_text(url, proxies) -> str:
@@ -55,7 +55,7 @@ def scrape_text(url, proxies) -> str:
return text
@CatchException
def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
@@ -63,7 +63,7 @@ def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
user_request 当前用户的请求信息IP地址等
"""
history = [] # 清空历史,以免输入溢出
chatbot.append((f"请结合互联网信息回答以下问题:{txt}",
@@ -72,7 +72,7 @@ def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
# ------------- < 第1步爬取搜索引擎的结果 > -------------
from toolbox import get_conf
proxies, = get_conf('proxies')
proxies = get_conf('proxies')
urls = google(txt, proxies)
history = []
if len(urls) == 0:

查看文件

@@ -1,8 +1,8 @@
from toolbox import CatchException, update_ui
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
import requests
from bs4 import BeautifulSoup
from request_llm.bridge_all import model_info
from request_llms.bridge_all import model_info
def bing_search(query, proxies=None):
@@ -22,8 +22,8 @@ def bing_search(query, proxies=None):
item = {'title': title, 'link': link}
results.append(item)
for r in results:
print(r['link'])
# for r in results:
# print(r['link'])
return results
@@ -55,7 +55,7 @@ def scrape_text(url, proxies) -> str:
return text
@CatchException
def 连接bing搜索回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 连接bing搜索回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
@@ -63,7 +63,7 @@ def 连接bing搜索回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, histor
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
user_request 当前用户的请求信息IP地址等
"""
history = [] # 清空历史,以免输入溢出
chatbot.append((f"请结合互联网信息回答以下问题:{txt}",
@@ -72,7 +72,7 @@ def 连接bing搜索回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, histor
# ------------- < 第1步爬取搜索引擎的结果 > -------------
from toolbox import get_conf
proxies, = get_conf('proxies')
proxies = get_conf('proxies')
urls = bing_search(txt, proxies)
history = []
if len(urls) == 0:

查看文件

@@ -48,7 +48,7 @@ from pydantic import BaseModel, Field
from typing import List
from toolbox import CatchException, update_ui, is_the_upload_folder
from toolbox import update_ui_lastest_msg, disable_auto_promotion
from request_llm.bridge_all import predict_no_ui_long_connection
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from crazy_functions.crazy_utils import input_clipping
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
@@ -104,7 +104,7 @@ def analyze_intention_with_simple_rules(txt):
@CatchException
def 虚空终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 虚空终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
disable_auto_promotion(chatbot=chatbot)
# 获取当前虚空终端状态
state = VoidTerminalState.get_state(chatbot)
@@ -121,7 +121,7 @@ def 虚空终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
state.set_state(chatbot=chatbot, key='has_provided_explaination', value=True)
state.unlock_plugin(chatbot=chatbot)
yield from update_ui(chatbot=chatbot, history=history)
yield from 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port)
yield from 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
return
else:
# 如果意图模糊,提示
@@ -133,7 +133,7 @@ def 虚空终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
def 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
history = []
chatbot.append(("虚空终端状态: ", f"正在执行任务: {txt}"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

某些文件未显示,因为此 diff 中更改的文件太多 显示更多