镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-06 06:26:47 +00:00
Resolve conflicts
这个提交包含在:
@@ -3,10 +3,12 @@ from typing import List
|
||||
|
||||
from llama_index.core import Document
|
||||
from shared_utils.fastapi_server import validate_path_safety
|
||||
from crazy_functions.crazy_utils import input_clipping, request_gpt_model_in_new_thread_with_ui_alive
|
||||
from toolbox import CatchException, update_ui, get_log_folder, update_ui_lastest_msg
|
||||
|
||||
from toolbox import report_exception
|
||||
from crazy_functions.rag_fns.rag_file_support import extract_text
|
||||
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
|
||||
from crazy_functions.crazy_utils import input_clipping
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
|
||||
RAG_WORKER_REGISTER = {}
|
||||
MAX_HISTORY_ROUND = 5
|
||||
@@ -61,21 +63,9 @@ def handle_document_upload(files: List[str], llm_kwargs, plugin_kwargs, chatbot,
|
||||
# Main Q&A function with document upload support
|
||||
@CatchException
|
||||
def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
Handles RAG-based Q&A, including special commands and document uploads.
|
||||
|
||||
Args:
|
||||
txt (str): User input text.
|
||||
llm_kwargs: Language model keyword arguments.
|
||||
plugin_kwargs: Plugin keyword arguments.
|
||||
chatbot: Chatbot instance.
|
||||
history: Chat history.
|
||||
system_prompt: System prompt.
|
||||
user_request: User request.
|
||||
"""
|
||||
# import vector store lib
|
||||
VECTOR_STORE_TYPE = "Milvus"
|
||||
|
||||
if VECTOR_STORE_TYPE == "Milvus":
|
||||
try:
|
||||
from crazy_functions.rag_fns.milvus_worker import MilvusRagWorker as LlamaIndexRagWorker
|
||||
@@ -85,7 +75,6 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
|
||||
if VECTOR_STORE_TYPE == "Simple":
|
||||
from crazy_functions.rag_fns.llama_index_worker import LlamaIndexRagWorker
|
||||
# Define commands
|
||||
CLEAR_VECTOR_DB_CMD = "清空向量数据库"
|
||||
|
||||
# 1. Retrieve RAG worker from global context
|
||||
user_name = chatbot.get_user()
|
||||
@@ -117,7 +106,7 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
|
||||
yield from handle_document_upload(file_paths, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||
return
|
||||
|
||||
elif txt == CLEAR_VECTOR_DB_CMD:
|
||||
elif txt == "清空向量数据库":
|
||||
chatbot.append([txt, f'正在清空 ({current_context}) ...'])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
rag_worker.purge_vector_store()
|
||||
|
||||
在新工单中引用
屏蔽一个用户