add support for Deepseek R1 model and display CoT (#2118)

* feat: add support for R1 model and display CoT

* fix unpacking

* feat: customized font & font size

* auto hide tooltip when scoll down

* tooltip glass transparent css

* fix: Enhance API key validation in is_any_api_key function (#2113)

* support qwen2.5-max!

* update minior adjustment

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
Co-authored-by: Steven Moder <java20131114@gmail.com>
这个提交包含在:
Memento mori.
2025-02-04 16:02:02 +08:00
提交者 GitHub
父节点 0458590a77
当前提交 caaebe4296
共有 4 个文件被更改,包括 133 次插入75 次删除

查看文件

@@ -13,6 +13,9 @@ API_KEY = "在此处填写APIKEY" # 可同时填写多个API-KEY,用英文
# [step 1-2]>> ( 接入通义 qwen-max ) 接入通义千问在线大模型,api-key获取地址 https://dashscope.console.aliyun.com/
DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY
# [step 1-3]>> ( 接入通义 deepseek-reasoner ) 深度求索(DeepSeek) API KEY,默认请求地址为"https://api.deepseek.com/v1/chat/completions"
DEEPSEEK_API_KEY = ""
# [step 2]>> 改为True应用代理,如果直接在海外服务器部署,此处不修改;如果使用本地或无地域限制的大模型时,此处也不需要修改
USE_PROXY = False
if USE_PROXY:
@@ -39,7 +42,8 @@ AVAIL_LLM_MODELS = ["qwen-max", "o1-mini", "o1-mini-2024-09-12", "o1", "o1-2024-
"gpt-4o", "gpt-4o-mini", "gpt-4-turbo", "gpt-4-turbo-2024-04-09",
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-4v", "glm-3-turbo",
"gemini-1.5-pro", "chatglm3", "chatglm4"
"gemini-1.5-pro", "chatglm3", "chatglm4",
"deepseek-chat", "deepseek-coder", "deepseek-reasoner"
]
EMBEDDING_MODEL = "text-embedding-3-small"
@@ -261,9 +265,6 @@ MOONSHOT_API_KEY = ""
# 零一万物(Yi Model) API KEY
YIMODEL_API_KEY = ""
# 深度求索(DeepSeek) API KEY,默认请求地址为"https://api.deepseek.com/v1/chat/completions"
DEEPSEEK_API_KEY = ""
# 紫东太初大模型 https://ai-maas.wair.ac.cn
TAICHU_API_KEY = ""

查看文件

@@ -1090,18 +1090,18 @@ if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
except:
logger.error(trimmed_format_exc())
# -=-=-=-=-=-=- 幻方-深度求索大模型在线API -=-=-=-=-=-=-
if "deepseek-chat" in AVAIL_LLM_MODELS or "deepseek-coder" in AVAIL_LLM_MODELS:
if "deepseek-chat" in AVAIL_LLM_MODELS or "deepseek-coder" in AVAIL_LLM_MODELS or "deepseek-reasoner" in AVAIL_LLM_MODELS:
try:
deepseekapi_noui, deepseekapi_ui = get_predict_function(
api_key_conf_name="DEEPSEEK_API_KEY", max_output_token=4096, disable_proxy=False
)
)
model_info.update({
"deepseek-chat":{
"fn_with_ui": deepseekapi_ui,
"fn_without_ui": deepseekapi_noui,
"endpoint": deepseekapi_endpoint,
"can_multi_thread": True,
"max_token": 32000,
"max_token": 64000,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
@@ -1114,6 +1114,16 @@ if "deepseek-chat" in AVAIL_LLM_MODELS or "deepseek-coder" in AVAIL_LLM_MODELS:
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"deepseek-reasoner":{
"fn_with_ui": deepseekapi_ui,
"fn_without_ui": deepseekapi_noui,
"endpoint": deepseekapi_endpoint,
"can_multi_thread": True,
"max_token": 64000,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
"enable_reasoning": True
},
})
except:
logger.error(trimmed_format_exc())

查看文件

@@ -36,10 +36,11 @@ def get_full_error(chunk, stream_response):
def decode_chunk(chunk):
"""
用于解读"content""finish_reason"的内容
用于解读"content""finish_reason"的内容(如果支持思维链也会返回"reasoning_content"内容)
"""
chunk = chunk.decode()
respose = ""
reasoning_content = ""
finish_reason = "False"
try:
chunk = json.loads(chunk[6:])
@@ -57,14 +58,20 @@ def decode_chunk(chunk):
return respose, finish_reason
try:
respose = chunk["choices"][0]["delta"]["content"]
if chunk["choices"][0]["delta"]["content"] is not None:
respose = chunk["choices"][0]["delta"]["content"]
except:
pass
try:
if chunk["choices"][0]["delta"]["reasoning_content"] is not None:
reasoning_content = chunk["choices"][0]["delta"]["reasoning_content"]
except:
pass
try:
finish_reason = chunk["choices"][0]["finish_reason"]
except:
pass
return respose, finish_reason
return respose, reasoning_content, finish_reason
def generate_message(input, model, key, history, max_output_token, system_prompt, temperature):
@@ -149,6 +156,7 @@ def get_predict_function(
observe_window = None
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]观测窗。observe_window[1]:看门狗
"""
from .bridge_all import model_info
watch_dog_patience = 5 # 看门狗的耐心,设置5秒不准咬人(咬的也不是人
if len(APIKEY) == 0:
raise RuntimeError(f"APIKEY为空,请检查配置文件的{APIKEY}")
@@ -163,29 +171,21 @@ def get_predict_function(
system_prompt=sys_prompt,
temperature=llm_kwargs["temperature"],
)
reasoning = model_info[llm_kwargs['llm_model']].get('enable_reasoning', False)
retry = 0
while True:
try:
from .bridge_all import model_info
endpoint = model_info[llm_kwargs["llm_model"]]["endpoint"]
if not disable_proxy:
response = requests.post(
endpoint,
headers=headers,
proxies=proxies,
json=playload,
stream=True,
timeout=TIMEOUT_SECONDS,
)
else:
response = requests.post(
endpoint,
headers=headers,
json=playload,
stream=True,
timeout=TIMEOUT_SECONDS,
)
response = requests.post(
endpoint,
headers=headers,
proxies=None if disable_proxy else proxies,
json=playload,
stream=True,
timeout=TIMEOUT_SECONDS,
)
break
except:
retry += 1
@@ -194,10 +194,13 @@ def get_predict_function(
raise TimeoutError
if MAX_RETRY != 0:
logger.error(f"请求超时,正在重试 ({retry}/{MAX_RETRY}) ……")
stream_response = response.iter_lines()
result = ""
finish_reason = ""
if reasoning:
resoning_buffer = ""
stream_response = response.iter_lines()
while True:
try:
chunk = next(stream_response)
@@ -207,9 +210,9 @@ def get_predict_function(
break
except requests.exceptions.ConnectionError:
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
response_text, finish_reason = decode_chunk(chunk)
response_text, reasoning_content, finish_reason = decode_chunk(chunk)
# 返回的数据流第一次为空,继续等待
if response_text == "" and finish_reason != "False":
if response_text == "" and (reasoning == False or reasoning_content == "") and finish_reason != "False":
continue
if response_text == "API_ERROR" and (
finish_reason != "False" or finish_reason != "stop"
@@ -227,6 +230,8 @@ def get_predict_function(
print(f"[response] {result}")
break
result += response_text
if reasoning:
resoning_buffer += reasoning_content
if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1:
@@ -241,6 +246,10 @@ def get_predict_function(
error_msg = chunk_decoded
logger.error(error_msg)
raise RuntimeError("Json解析不合常规")
if reasoning:
# reasoning 的部分加上框 (>)
return '\n'.join(map(lambda x: '> ' + x, resoning_buffer.split('\n'))) + \
'\n\n' + result
return result
def predict(
@@ -262,6 +271,7 @@ def get_predict_function(
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
additional_fn代表点击的哪个按钮,按钮见functional.py
"""
from .bridge_all import model_info
if len(APIKEY) == 0:
raise RuntimeError(f"APIKEY为空,请检查配置文件的{APIKEY}")
if inputs == "":
@@ -298,32 +308,23 @@ def get_predict_function(
system_prompt=system_prompt,
temperature=llm_kwargs["temperature"],
)
reasoning = model_info[llm_kwargs['llm_model']].get('enable_reasoning', False)
history.append(inputs)
history.append("")
retry = 0
while True:
try:
from .bridge_all import model_info
endpoint = model_info[llm_kwargs["llm_model"]]["endpoint"]
if not disable_proxy:
response = requests.post(
endpoint,
headers=headers,
proxies=proxies,
json=playload,
stream=True,
timeout=TIMEOUT_SECONDS,
)
else:
response = requests.post(
endpoint,
headers=headers,
json=playload,
stream=True,
timeout=TIMEOUT_SECONDS,
)
response = requests.post(
endpoint,
headers=headers,
proxies=None if disable_proxy else proxies,
json=playload,
stream=True,
timeout=TIMEOUT_SECONDS,
)
break
except:
retry += 1
@@ -338,6 +339,8 @@ def get_predict_function(
raise TimeoutError
gpt_replying_buffer = ""
if reasoning:
gpt_reasoning_buffer = ""
stream_response = response.iter_lines()
while True:
@@ -347,9 +350,9 @@ def get_predict_function(
break
except requests.exceptions.ConnectionError:
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
response_text, finish_reason = decode_chunk(chunk)
response_text, reasoning_content, finish_reason = decode_chunk(chunk)
# 返回的数据流第一次为空,继续等待
if response_text == "" and finish_reason != "False":
if response_text == "" and (reasoning == False or reasoning_content == "") and finish_reason != "False":
status_text = f"finish_reason: {finish_reason}"
yield from update_ui(
chatbot=chatbot, history=history, msg=status_text
@@ -379,9 +382,14 @@ def get_predict_function(
logger.info(f"[response] {gpt_replying_buffer}")
break
status_text = f"finish_reason: {finish_reason}"
gpt_replying_buffer += response_text
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
history[-1] = gpt_replying_buffer
if reasoning:
gpt_replying_buffer += response_text
gpt_reasoning_buffer += reasoning_content
history[-1] = '\n'.join(map(lambda x: '> ' + x, gpt_reasoning_buffer.split('\n'))) + '\n\n' + gpt_replying_buffer
else:
gpt_replying_buffer += response_text
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
history[-1] = gpt_replying_buffer
chatbot[-1] = (history[-2], history[-1])
yield from update_ui(
chatbot=chatbot, history=history, msg=status_text

查看文件

@@ -2,12 +2,19 @@ class WelcomeMessage {
constructor() {
this.static_welcome_message = [
{
title: "环境配置教程",
content: "配置模型和插件,释放大语言模型的学术应用潜力。",
svg: "file=themes/svg/conf.svg",
title: "改变主题外观",
content: "点击「界面外观」,然后「更换UI主题」或「切换界面明暗」。",
svg: "file=themes/svg/theme.svg",
url: "https://github.com/binary-husky/gpt_academic/wiki/%E9%A1%B9%E7%9B%AE%E9%85%8D%E7%BD%AE%E8%AF%B4%E6%98%8E",
},
{
title: "修改回答语言偏好",
content: "点击「更改模型」,删除「System prompt」并输入「用某语言回答」。",
svg: "file=themes/svg/prompt.svg",
url: "https://github.com/binary-husky/gpt_academic",
},
{
title: "Arxiv论文一键翻译",
title: "Arxiv论文翻译",
content: "无缝切换学术阅读语言,最优英文转中文的学术论文阅读体验。",
svg: "file=themes/svg/arxiv.svg",
@@ -19,6 +26,12 @@ class WelcomeMessage {
svg: "file=themes/svg/mm.svg",
url: "https://github.com/binary-husky/gpt_academic",
},
{
title: "获取多个模型的答案",
content: "输入问题后点击「询问多个GPT模型」,消耗算子低于单词询问gpt-4o。",
svg: "file=themes/svg/model_multiple.svg",
url: "https://github.com/binary-husky/gpt_academic",
},
{
title: "文档与源码批处理",
content: "您可以将任意文件拖入「此处」,随后调用对应插件功能。",
@@ -52,7 +65,13 @@ class WelcomeMessage {
{
title: "实时语音对话",
content: "配置实时语音对话功能,无须任何激活词,我将一直倾听。",
svg: "file=themes/svg/default.svg",
svg: "file=themes/svg/voice.svg",
url: "https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md",
},
{
title: "联网回答问题",
content: "输入问题后,点击右侧插件区的「查互联网后回答」插件。",
svg: "file=themes/svg/Internet.svg",
url: "https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md",
},
{
@@ -85,6 +104,7 @@ class WelcomeMessage {
this.card_array = [];
this.static_welcome_message_previous = [];
this.reflesh_time_interval = 15 * 1000;
this.update_time_interval = 2 * 1000;
this.major_title = "欢迎使用GPT-Academic";
const reflesh_render_status = () => {
@@ -101,12 +121,19 @@ class WelcomeMessage {
window.addEventListener('resize', this.update.bind(this));
// add a loop to reflesh cards
this.startRefleshCards();
this.startAutoUpdate();
}
begin_render() {
this.update();
}
async startAutoUpdate() {
// sleep certain time
await new Promise(r => setTimeout(r, this.update_time_interval));
this.update();
}
async startRefleshCards() {
// sleep certain time
await new Promise(r => setTimeout(r, this.reflesh_time_interval));
@@ -134,6 +161,7 @@ class WelcomeMessage {
// combine two lists
this.static_welcome_message_previous = not_shown_previously.concat(already_shown_previously);
this.static_welcome_message_previous = this.static_welcome_message_previous.slice(0, this.max_welcome_card_num);
(async () => {
// 使用 for...of 循环来处理异步操作
@@ -198,12 +226,11 @@ class WelcomeMessage {
return array;
}
async update() {
async can_display() {
// update the card visibility
const elem_chatbot = document.getElementById('gpt-chatbot');
const chatbot_top = elem_chatbot.getBoundingClientRect().top;
const welcome_card_container = document.getElementsByClassName('welcome-card-container')[0];
// detect if welcome card overflow
let welcome_card_overflow = false;
if (welcome_card_container) {
@@ -215,22 +242,22 @@ class WelcomeMessage {
var page_width = document.documentElement.clientWidth;
const width_to_hide_welcome = 1200;
if (!await this.isChatbotEmpty() || page_width < width_to_hide_welcome || welcome_card_overflow) {
// overflow !
if (this.visible) {
// console.log("remove welcome");
this.removeWelcome();
this.card_array = [];
this.static_welcome_message_previous = [];
}
// cannot display
return false;
}
return true;
}
async update() {
const can_display = await this.can_display();
if (can_display && !this.visible) {
this.showWelcome();
return;
}
if (this.visible) {
// console.log("already visible");
if (!can_display && this.visible) {
this.removeWelcome();
return;
}
// not overflow, not yet shown, then create and display welcome card
// console.log("show welcome");
this.showWelcome();
}
showCard(message) {
@@ -297,6 +324,16 @@ class WelcomeMessage {
});
elem_chatbot.appendChild(welcome_card_container);
const can_display = await this.can_display();
if (!can_display) {
// undo
this.visible = false;
this.card_array = [];
this.static_welcome_message_previous = [];
elem_chatbot.removeChild(welcome_card_container);
await new Promise(r => setTimeout(r, this.update_time_interval / 2));
return;
}
// 添加显示动画
requestAnimationFrame(() => {
@@ -313,6 +350,8 @@ class WelcomeMessage {
welcome_card_container.classList.add('hide');
welcome_card_container.addEventListener('transitionend', () => {
elem_chatbot.removeChild(welcome_card_container);
this.card_array = [];
this.static_welcome_message_previous = [];
}, { once: true });
// add a fail safe timeout
const timeout = 600; // 与 CSS 中 transition 的时间保持一致(1s)