比较提交

...

1746 次代码提交

作者 SHA1 备注 提交日期
青轩
8a01c56dd1 update 2024-11-24 23:24:36 +08:00
青轩
16567d3a44 del 2024-11-24 23:18:33 +08:00
binary-husky
e62decac21 change some open fn encoding to utf-8 2024-11-19 15:53:50 +00:00
binary-husky
588b22e039 comment remove 2024-11-19 15:05:48 +00:00
binary-husky
ef18aeda81 adjust rag 2024-11-19 14:59:50 +00:00
binary-husky
3520131ca2 public media gpt 2024-11-18 18:38:49 +00:00
binary-husky
ff5901d8c0 Merge branch 'master' into frontier 2024-11-17 18:16:19 +00:00
binary-husky
2305576410 unify mutex button manifest 2024-11-17 18:14:45 +00:00
binary-husky
52f23c505c media-gpt update 2024-11-17 17:45:53 +00:00
binary-husky
34cc484635 chatgpt-4o-latest 2024-11-11 15:58:57 +00:00
binary-husky
d152f62894 renamed plugins 2024-11-11 14:55:05 +00:00
binary-husky
ca35f56f9b fix: media gpt upgrade 2024-11-11 14:48:29 +00:00
binary-husky
d616fd121a update experimental media agent 2024-11-10 16:42:31 +00:00
binary-husky
f3fda0d3fc Merge branch 'master' into frontier 2024-11-10 13:41:44 +00:00
binary-husky
197287fc30 Enhance archive extraction with error handling for tar and gzip formats 2024-11-09 10:10:46 +00:00
Bingchen Jiang
c37fcc9299 Adding support to new openai apikey format (#2030) 2024-11-09 13:41:19 +08:00
binary-husky
91f5e6b8f7 resolve pickle security issue 2024-11-04 13:49:49 +00:00
hcy2206
4f0851f703 增加了对于glm-4-plus的支持 (#2014)
* 增加对于讯飞星火大模型Spark4.0的支持

* Create github action sync.yml

* 增加对于智谱glm-4-plus的支持

* feat: change arxiv io param

* catch comment source code exception

* upgrade auto comment

* add security patch

---------

Co-authored-by: GH Action - Upstream Sync <action@github.com>
Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-11-03 22:41:16 +08:00
binary-husky
2821f27756 add security patch 2024-11-03 14:34:17 +00:00
binary-husky
8f91a048a8 dfa algo imp 2024-11-03 09:39:14 +00:00
binary-husky
58eac38b4d Merge branch 'master' into frontier 2024-10-30 13:42:17 +00:00
binary-husky
180550b8f0 upgrade auto comment 2024-10-30 13:37:35 +00:00
binary-husky
7497dcb852 catch comment source code exception 2024-10-30 11:40:47 +00:00
binary-husky
23ef2ffb22 feat: change arxiv io param 2024-10-27 16:54:29 +00:00
binary-husky
848d0f65c7 share paper network beta 2024-10-27 16:08:25 +00:00
Menghuan1918
f0b0364f74 修复并改进build with latex的Docker构建 (#2020)
* 改进构建文件

* 修复问题

* 更改docker注释,同时测试拉取大小
2024-10-27 23:17:03 +08:00
binary-husky
d7f0cbe68e Merge branch 'master' into frontier 2024-10-21 14:31:25 +00:00
binary-husky
69f3755682 adjust max_token_limit for pdf translation plugin 2024-10-21 14:31:11 +00:00
binary-husky
04c9077265 Merge branch 'papershare_beta' into frontier 2024-10-21 14:06:52 +00:00
binary-husky
6afd7db1e3 Merge branch 'master' into frontier 2024-10-21 14:06:23 +00:00
binary-husky
4727113243 update doc2x functions 2024-10-21 14:05:42 +00:00
binary-husky
42d10a9481 update doc2x functions 2024-10-21 14:05:05 +00:00
binary-husky
50a1ea83ef control whether to allow sharing translation results with GPTAC academic cloud. 2024-10-18 18:05:50 +00:00
binary-husky
a9c86a7fb8 pre 2024-10-18 14:16:24 +00:00
binary-husky
2b299cf579 Merge branch 'master' into frontier 2024-10-16 15:22:27 +00:00
wsg1873
310122f5a7 solve the concatenate error. (#2011) 2024-10-16 00:56:24 +08:00
binary-husky
0121cacc84 Merge branch 'master' into frontier 2024-10-15 09:10:36 +00:00
binary-husky
c83bf214d0 change arxiv download attempt url order 2024-10-15 09:09:24 +00:00
binary-husky
e34c49dce5 compat: deal with arxiv url change 2024-10-15 09:07:39 +00:00
binary-husky
f2dcd6ad55 compat: arxiv translation src shift 2024-10-15 09:06:57 +00:00
binary-husky
42d9712f20 Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-10-15 08:24:01 +00:00
binary-husky
3890467c84 replace rm with rm -f 2024-10-15 07:32:29 +00:00
binary-husky
074b3c9828 explicitly declare default value 2024-10-15 06:41:12 +00:00
Nextstrain
b8e8457a01 关于o1系列模型无法正常请求的修复,多模型轮询KeyError: 'finish_reason'的修复 (#1992)
* Update bridge_all.py

* Update bridge_chatgpt.py

* Update bridge_chatgpt.py

* Update bridge_all.py

* Update bridge_all.py
2024-10-15 14:36:51 +08:00
binary-husky
2c93a24d7e fix dockerfile: try align python 2024-10-15 06:35:35 +00:00
binary-husky
e9af6ef3a0 fix: github action glitch 2024-10-15 06:32:47 +00:00
wsg1873
5ae8981dbb add the '/Fit' destination (#2009) 2024-10-14 22:50:56 +08:00
Boyin Liu
7f0ffa58f0 Boyin rag (#1983)
* first_version

* rag document support

* RAG interactive prompts added, issues resolved

* Resolve conflicts

* Resolve conflicts

* Resolve conflicts

* more file format support

* move import

* Resolve LlamaIndexRagWorker bug

* new resolve

* Address import  LlamaIndexRagWorker problem

* change import order

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-10-14 22:48:24 +08:00
binary-husky
adbed044e4 fix o1 compat problem 2024-10-13 17:02:07 +00:00
Menghuan1918
2fe5febaf0 为build-with-latex版本Docker构建新增arm64支持 (#1994)
* Add arm64 support

* Bug fix

* Some build bug fix

* Add arm support

* 分离arm和x86构建

* 改进构建文档

* update tags

* Update build-with-latex-arm.yml

* Revert "Update build-with-latex-arm.yml"

This reverts commit 9af92549b5.

* Update

* Add

* httpx

* Addison

* Update GithubAction+NoLocal+Latex

* Update docker-compose.yml and GithubAction+NoLocal+Latex

* Update README.md

* test math anim generation

* solve the pdf concatenate error. (#2006)

* solve the pdf concatenate error.

* add legacy fallback option

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>
Co-authored-by: binary-husky <qingxu.fu@outlook.com>
Co-authored-by: wsg1873 <wsg0326@163.com>
2024-10-14 00:25:28 +08:00
binary-husky
5888d038aa move import 2024-10-13 16:17:10 +00:00
binary-husky
ee8213e936 Merge branch 'boyin_rag' into frontier 2024-10-13 16:12:51 +00:00
binary-husky
a57dcbcaeb Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-10-13 08:26:06 +00:00
binary-husky
b812392a9d Merge branch 'master' into frontier 2024-10-13 08:25:47 +00:00
wsg1873
f54d8e559a solve the pdf concatenate error. (#2006)
* solve the pdf concatenate error.

* add legacy fallback option

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-10-13 16:16:51 +08:00
lbykkkk
fce4fa1ec7 more file format support 2024-10-12 18:25:33 +00:00
Boyin Liu
d13f1e270c Merge branch 'master' into boyin_rag 2024-10-11 22:31:07 +08:00
lbykkkk
85cf3d08eb Resolve conflicts 2024-10-11 22:29:56 +08:00
lbykkkk
584e747565 Resolve conflicts 2024-10-11 22:27:57 +08:00
lbykkkk
02ba653c19 Resolve conflicts 2024-10-11 22:21:53 +08:00
binary-husky
e68fc2bc69 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2024-10-11 13:33:05 +00:00
binary-husky
f695d7f1da test math anim generation 2024-10-11 13:32:57 +00:00
lbykkkk
2d12b5b27d RAG interactive prompts added, issues resolved 2024-10-11 01:06:17 +08:00
binary-husky
679352d896 Update README.md 2024-10-10 13:38:35 +08:00
binary-husky
12c9ab1e33 Update README.md 2024-10-10 12:02:12 +08:00
binary-husky
a4bcd262f9 Merge branch 'master' into frontier 2024-10-07 05:20:49 +00:00
binary-husky
da4a5efc49 lazy load llama-index lib 2024-10-06 16:26:26 +00:00
binary-husky
9ac450cfb6 紧急修复 fix httpx breaking bad error 2024-10-06 15:02:14 +00:00
binary-husky
172f9e220b version 3.90 2024-10-05 16:51:08 +00:00
Boyin Liu
748e31102f Merge branch 'master' into boyin_rag 2024-10-05 23:58:43 +08:00
binary-husky
a28b7d8475 Merge branch 'master' of https://github.com/binary-husky/gpt_academic 2024-10-05 19:10:42 +08:00
binary-husky
7d3ed36899 fix: llama index deps verion limit 2024-10-05 19:10:38 +08:00
binary-husky
a7bc5fa357 remove out-dated jittor models 2024-10-05 10:58:45 +00:00
binary-husky
4f5dd9ebcf add temp solution for llama-index compat 2024-10-05 09:53:21 +00:00
binary-husky
427feb99d8 llama-index==0.10.5 2024-10-05 17:34:08 +08:00
binary-husky
a01ca93362 Merge Latest Frontier (#1991)
* logging sys to loguru: stage 1 complete

* import loguru: stage 2

* logging -> loguru: stage 3

* support o1-preview and o1-mini

* logging -> loguru stage 4

* update social helper

* logging -> loguru: final stage

* fix: console output

* update translation matrix

* fix: loguru argument error with proxy enabled (#1977)

* relax llama index version

* remove comment

* Added some modules to support openrouter (#1975)

* Added some modules for supporting openrouter model

Added some modules for supporting openrouter model

* Update config.py

* Update .gitignore

* Update bridge_openrouter.py

* Not changed actually

* Refactor logging in bridge_openrouter.py

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* remove logging extra

---------

Co-authored-by: Steven Moder <java20131114@gmail.com>
Co-authored-by: Ren Lifei <2602264455@qq.com>
2024-10-05 17:09:18 +08:00
binary-husky
97eef45ab7 Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-10-01 11:59:14 +00:00
binary-husky
0c0e2acb9b remove logging extra 2024-10-01 11:57:47 +00:00
Ren Lifei
9fba8e0142 Added some modules to support openrouter (#1975)
* Added some modules for supporting openrouter model

Added some modules for supporting openrouter model

* Update config.py

* Update .gitignore

* Update bridge_openrouter.py

* Not changed actually

* Refactor logging in bridge_openrouter.py

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-09-28 18:05:34 +08:00
binary-husky
7d7867fb64 remove comment 2024-09-23 15:16:13 +00:00
lbykkkk
7ea791d83a rag document support 2024-09-22 21:37:57 +08:00
binary-husky
f9dbaa39fb Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-09-21 15:40:24 +00:00
binary-husky
bbc2288c5b relax llama index version 2024-09-21 15:40:10 +00:00
Steven Moder
64ab916838 fix: loguru argument error with proxy enabled (#1977) 2024-09-21 23:32:00 +08:00
binary-husky
8fe559da9f update translation matrix 2024-09-21 14:56:10 +00:00
binary-husky
09fd22091a fix: console output 2024-09-21 14:41:36 +00:00
lbykkkk
df717f8bba first_version 2024-09-20 00:06:59 +08:00
binary-husky
e296719b23 Merge branch 'purge_print' into frontier 2024-09-16 09:56:25 +00:00
binary-husky
2f343179a2 logging -> loguru: final stage 2024-09-15 15:51:51 +00:00
binary-husky
4d9604f2e9 update social helper 2024-09-15 15:16:36 +00:00
binary-husky
597c320808 fix: system prompt err when using o1 models 2024-09-14 17:04:01 +00:00
binary-husky
18290fd138 fix: support o1 models 2024-09-14 17:00:02 +00:00
binary-husky
bbf9e9f868 logging -> loguru stage 4 2024-09-14 16:00:09 +00:00
binary-husky
0d0575a639 support o1-preview and o1-mini 2024-09-13 03:12:18 +00:00
binary-husky
aa1f967dd7 support o1-preview and o1-mini 2024-09-13 03:11:53 +00:00
binary-husky
0d082327c8 logging -> loguru: stage 3 2024-09-11 08:49:55 +00:00
binary-husky
80acd9c875 import loguru: stage 2 2024-09-11 08:18:01 +00:00
binary-husky
17cd4f8210 logging sys to loguru: stage 1 complete 2024-09-11 03:30:30 +00:00
binary-husky
4e041e1d4e Merge branch 'frontier': windows deps bug fix 2024-09-08 16:32:38 +00:00
binary-husky
7ef39770c7 fallback to simple vs in windows system 2024-09-09 00:27:02 +08:00
binary-husky
8222f638cf Merge branch 'frontier' 2024-09-08 15:46:13 +00:00
binary-husky
ab32c314ab change git ignore 2024-09-08 15:44:02 +00:00
binary-husky
dcfed97054 revise milvus rag 2024-09-08 15:43:01 +00:00
binary-husky
dd66ca26f7 Frontier (#1958)
* update welcome svg

* fix loading chatglm3 (#1937)

* update welcome svg

* update welcome message

* fix loading chatglm3

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* begin rag project with llama index

* rag version one

* rag beta release

* add social worker (proto)

* fix llamaindex version

---------

Co-authored-by: moetayuko <loli@yuko.moe>
2024-09-08 23:20:42 +08:00
binary-husky
8b91d2ac0a add milvus vector store 2024-09-08 15:19:03 +00:00
binary-husky
e4e00b713f fix llamaindex version 2024-09-05 05:21:10 +00:00
binary-husky
710a65522c add social worker (proto) 2024-09-02 15:55:06 +00:00
binary-husky
34784c1d40 Merge branch 'rag' into frontier 2024-09-02 15:01:12 +00:00
binary-husky
80b1a6f99b rag beta release 2024-09-02 15:00:47 +00:00
binary-husky
08c3c56f53 rag version one 2024-08-28 15:14:13 +00:00
binary-husky
294716c832 begin rag project with llama index 2024-08-21 14:24:37 +00:00
binary-husky
16f4fd636e update ref 2024-08-19 16:14:52 +00:00
binary-husky
e07caf7a69 update openai api key pattern 2024-08-19 15:59:20 +00:00
moetayuko
a95b3daab9 fix loading chatglm3 (#1937)
* update welcome svg

* update welcome message

* fix loading chatglm3

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>
2024-08-19 23:32:45 +08:00
binary-husky
4873e9dfdc update translation matrix 2024-08-12 13:50:37 +00:00
moetayuko
a119ab36fe fix enabling sparkv4 (#1936) 2024-08-12 21:45:08 +08:00
FatShibaInu
f9384e4e5f Add Support for Gemini 1.5 Pro & Gemini 1.5 Flash (#1926)
* Add Support for Gemini 1.5 Pro & 1.5 Flash.

* Update bridge_all.py

fix a spelling error in comments.

* Add Support for Gemini 1.5 Pro & Gemini 1.5 Flash
2024-08-12 21:44:24 +08:00
binary-husky
6fe5f6ee6e update welcome message 2024-08-05 11:37:06 +00:00
binary-husky
068d753426 update welcome svg 2024-08-04 15:59:09 +00:00
binary-husky
5010537f3c update welcome svg 2024-08-04 15:58:32 +00:00
binary-husky
f35f6633e0 fix: welcome card flip bug 2024-08-02 11:20:41 +00:00
hongyi-zhao
573dc4d184 Add claude-3-5-sonnet-20240620 (#1907)
See https://docs.anthropic.com/en/docs/about-claude/models#model-names fore model names.
2024-08-02 18:04:42 +08:00
binary-husky
da8b2d69ce update version 3.8 2024-08-02 10:02:04 +00:00
binary-husky
58e732c26f Merge branch 'frontier' 2024-08-02 09:50:40 +00:00
Menghuan1918
ca238daa8c 改进联网搜索插件-新增搜索模式,搜索增强 (#1874)
* Change default to Mixed option

* Add option optimizer

* Add search optimizer prompts

* Enhanced Processing

* Finish search_optimizer part

* prompts bug fix

* Bug fix
2024-07-23 00:55:48 +08:00
jiangfy-ihep
60b3491513 add gpt-4o-mini (#1904)
Co-authored-by: Fayu Jiang <jiangfayu@hotmail.com>
2024-07-23 00:55:34 +08:00
binary-husky
c1175bfb7d add flip card animation 2024-07-22 04:53:59 +00:00
binary-husky
b705afd5ff welcome menu bug fix 2024-07-22 04:35:52 +00:00
binary-husky
dfcd28abce add width_to_hide_welcome 2024-07-22 03:34:35 +00:00
binary-husky
1edaa9e234 hide when too narrow 2024-07-21 15:04:38 +00:00
binary-husky
f0cd617ec2 minor css improve 2024-07-20 10:29:47 +00:00
binary-husky
0b08bb2cea update svg 2024-07-20 07:15:08 +00:00
Keldos
d1f8607ac8 Update submit button dropdown style (#1900) 2024-07-20 14:50:56 +08:00
binary-husky
7eb68a2086 tune 2024-07-17 17:16:34 +00:00
binary-husky
ee9e99036a Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-07-17 17:14:49 +00:00
binary-husky
55e255220b update 2024-07-17 17:12:32 +00:00
lbykkkk
019cd26ae8 Merge branch 'frontier' of https://github.com/binary-husky/gpt_academic into frontier 2024-07-18 00:35:51 +08:00
lbykkkk
a5b21d5cc0 修改content并统一logo颜色 2024-07-18 00:35:40 +08:00
binary-husky
ce940ff70f roll welcome msg 2024-07-17 16:34:24 +00:00
binary-husky
fc6a83c29f update 2024-07-17 15:44:08 +00:00
binary-husky
1d3212e367 reverse welcome msg 2024-07-17 15:43:41 +00:00
lbykkkk
8a835352a3 更新欢迎界面的用语和logo 2024-07-17 19:49:07 +08:00
binary-husky
5456c9fa43 improve welcome UI 2024-07-16 16:23:07 +00:00
binary-husky
ea67054c30 update chuanhu theme 2024-07-16 16:07:46 +00:00
binary-husky
1084108df6 adding welcome page 2024-07-16 10:41:25 +00:00
binary-husky
40c9700a8d add welcome page 2024-07-15 15:47:24 +00:00
binary-husky
6da5623813 多用途复用提交按钮 2024-07-15 04:23:43 +00:00
binary-husky
778c9cd9ec roll version 2024-07-15 03:29:56 +00:00
binary-husky
e290317146 proxy submit btn 2024-07-15 03:28:59 +00:00
binary-husky
85b92b7f07 move python comment agent to dropdown 2024-07-13 16:26:36 +00:00
binary-husky
ff899777ce improve source code comment plugin functionality 2024-07-13 16:20:17 +00:00
binary-husky
c1b8c773c3 stage compare source code comment 2024-07-13 15:28:53 +00:00
binary-husky
8747c48175 mt improvement 2024-07-12 08:26:40 +00:00
binary-husky
c0010c88bc implement auto comment 2024-07-12 07:36:40 +00:00
binary-husky
68838da8ad finish test 2024-07-12 04:19:07 +00:00
binary-husky
ca7de8fcdd version up 2024-07-10 02:00:36 +00:00
binary-husky
7ebc2d00e7 Merge branch 'master' into frontier 2024-07-09 03:19:35 +00:00
binary-husky
47fb81cfde Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2024-07-09 03:18:19 +00:00
binary-husky
83961c1002 optimize image generation fn 2024-07-09 03:18:14 +00:00
binary-husky
a8621333af js impl bug fix 2024-07-08 15:50:12 +00:00
binary-husky
f402ef8134 hide ask btn 2024-07-08 15:15:30 +00:00
binary-husky
65d0f486f1 change cache to lru_cache for lower python version 2024-07-07 16:02:05 +00:00
binary-husky
41f25a6a9b Merge branch 'bold_frontier' into frontier 2024-07-04 14:16:08 +00:00
binary-husky
4a6a032334 ignore 2024-07-04 14:14:49 +00:00
binary-husky
f945a7bd19 preserve theme selection 2024-07-04 14:11:51 +00:00
binary-husky
379dcb2fa7 minor gui bug fix 2024-07-04 13:31:21 +00:00
Menghuan1918
114192e025 Bug fix: can not chat with deepseek (#1879) 2024-07-04 20:28:53 +08:00
binary-husky
30c905917a unify plugin calling 2024-07-02 15:32:40 +00:00
binary-husky
0c6c357e9c revise qwen 2024-07-02 14:22:45 +00:00
binary-husky
9d11b17f25 Merge branch 'master' into frontier 2024-07-02 08:06:34 +00:00
binary-husky
1d9e9fa6a1 new page btn 2024-07-01 16:27:23 +00:00
Menghuan1918
6cd2d80dfd Bug fix: Some non-standard forms of error return are not caught (#1877) 2024-07-01 20:35:49 +08:00
binary-husky
18d3245fc9 ready next gradio version 2024-06-29 15:29:48 +00:00
hcy2206
194e665a3b 增加了对于讯飞星火大模型Spark4.0的支持 (#1875) 2024-06-29 23:20:04 +08:00
binary-husky
7e201c5028 move test file to correct position 2024-06-28 08:23:40 +00:00
binary-husky
6babcb4a9c Merge branch 'master' into frontier 2024-06-27 06:52:03 +00:00
binary-husky
00e5a31b50 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2024-06-27 06:50:06 +00:00
binary-husky
d8b9686eeb fix latex auto correct 2024-06-27 06:49:36 +00:00
binary-husky
b7b4e201cb fix latex auto correct 2024-06-27 06:49:10 +00:00
binary-husky
26e7677dc3 fix new api for taichu 2024-06-26 15:18:11 +00:00
Menghuan1918
25e06de1b6 Docker build bug fix (#1870) 2024-06-26 14:31:31 +08:00
binary-husky
5e64a50898 Merge branch 'master' into frontier 2024-06-25 11:43:40 +00:00
binary-husky
0ad571e6b5 prevent further stream when reset is clicked 2024-06-25 11:43:14 +00:00
binary-husky
60a42fb070 Merge branch 'master' into frontier 2024-06-25 11:14:32 +00:00
binary-husky
ddad5247fc upgrade searxng 2024-06-25 11:12:51 +00:00
binary-husky
c94d5054a2 move fn 2024-06-25 08:53:28 +00:00
binary-husky
ececfb9b6e test new dropdown js code 2024-06-25 08:34:50 +00:00
binary-husky
9f13c5cedf update default value of scroller_max_len 2024-06-25 05:34:55 +00:00
binary-husky
68b36042ce re-locate plugin 2024-06-25 05:32:20 +00:00
binary-husky
cac6c50d2f roll version 2024-06-19 12:56:23 +00:00
binary-husky
f884eb43cf Merge branch 'master' into frontier 2024-06-19 12:56:04 +00:00
binary-husky
d37383dd4e change arxiv cache dir path 2024-06-19 12:49:34 +00:00
binary-husky
dfae4e8081 optimize scolling visual effect 2024-06-19 12:42:11 +00:00
binary-husky
15cc08505f resolve safe pickle err 2024-06-19 11:59:47 +00:00
iluem
c5a82f6ab7 Merge pull request from GHSA-3jrq-66fm-w7xr 2024-06-19 14:29:21 +08:00
binary-husky
768ed4514a minor formatting issue 2024-06-18 14:51:53 +00:00
binary-husky
9dfbff7fd0 Merge branch 'GHSA-3jrq-66fm-w7xr' into frontier 2024-06-18 10:19:10 +00:00
binary-husky
47cedde954 fix security issue GHSA-3jrq-66fm-w7xr 2024-06-18 10:18:33 +00:00
binary-husky
1e16485087 internet gpt minor bug fix 2024-06-16 15:16:24 +00:00
binary-husky
f3660d669f internet GPT upgrade 2024-06-16 14:10:38 +00:00
binary-husky
e6d1cb09cb Merge branch 'master' into frontier 2024-06-16 13:47:15 +00:00
binary-husky
12aebf9707 searxng based information gathering 2024-06-16 12:12:57 +00:00
binary-husky
0b5385e5e5 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2024-06-12 09:34:12 +00:00
binary-husky
2ff1a1fb0b update translation matrix 2024-06-12 09:34:05 +00:00
Yuki
cdadd38cf7 ️feat: block access to openapi references while running under fastapi (#1849)
- block fastapi openapi reference(swagger and redoc) routes
2024-06-10 22:26:46 +08:00
binary-husky
48e10fb10a Update README.md 2024-06-10 22:22:04 +08:00
binary-husky
ba484c55a0 Merge branch 'master' into frontier 2024-06-10 14:19:26 +00:00
Frank Lee
ca64a592f5 Update zhipu models (#1852) 2024-06-10 22:17:51 +08:00
Guoxin Sun
cb96ca132a Update common.js (#1854)
fix typo
2024-06-10 22:17:27 +08:00
binary-husky
737101b81d remove debug msg 2024-06-07 17:00:05 +00:00
binary-husky
612caa2f5f revise 2024-06-07 16:50:27 +00:00
binary-husky
85dbe4a4bf pdf processing improvement 2024-06-07 15:53:08 +00:00
binary-husky
2262a4d80a taichu model fix 2024-06-06 09:35:05 +00:00
binary-husky
b456ff02ab add note 2024-06-06 09:14:32 +00:00
binary-husky
24a21ae320 紫东太初大模型 2024-06-06 09:05:06 +00:00
binary-husky
3d5790cc2c resolve fallback to non-multimodal problem 2024-06-06 08:00:30 +00:00
binary-husky
7de6015800 multimodal support for gpt-4o etc 2024-06-06 07:36:37 +00:00
binary-husky
46428b7c7a Merge branch 'master' into frontier 2024-06-01 16:22:32 +00:00
binary-husky
66a50c8019 live2d shutdown bug fix 2024-06-01 16:21:04 +00:00
Menghuan1918
814dc943ac 将“生成多种图表”插件高级参数更新为二级菜单 (#1839)
* Improve the prompts

* Update to new meun form

* Bug fix (wrong type of plugin_kwargs)
2024-06-01 13:34:33 +08:00
binary-husky
96cd1f0b25 secondary menu main input sync bug fix 2024-05-31 04:13:27 +00:00
binary-husky
4fc17f4add Merge branch 'master' into frontier 2024-05-30 15:00:44 +00:00
binary-husky
b3665d8fec remove check 2024-05-30 14:54:50 +00:00
binary-husky
80c4281888 TTS Default Enable 2024-05-30 14:27:18 +00:00
binary-husky
beda56abb0 update dockerfile 2024-05-30 12:44:17 +00:00
binary-husky
cb16941d01 update css 2024-05-30 12:35:47 +00:00
binary-husky
5cf9ac7849 Merge branch 'master' into frontier 2024-05-29 16:06:28 +00:00
binary-husky
51ddb88ceb correct hint err 2024-05-29 16:05:23 +00:00
binary-husky
69dfe5d514 compat to old void-terminal plugin 2024-05-29 15:50:00 +00:00
binary-husky
6819f87512 Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-05-23 16:35:20 +00:00
binary-husky
3d51b9d5bb compat baichuan 2024-05-23 16:35:15 +00:00
QiyuanChen
bff87ada92 添加对ERNIE-Speed和ERNIE-Lite模型的支持 (#1821)
* feat: add ERNIE-Speed and ERNIE-Lite

百度的ERNIE-Speed and ERNIE-Lite模型开始免费使用了,故添加了调用地址。可以使用ERNIE-Speed-128K,ERNIE-Speed-8K,ERNIE-Lite-8K来访问

* chore: Modify supported models in config.py

修改了config.py中千帆支持的模型列表,添加了三款免费模型
2024-05-24 00:16:26 +08:00
binary-husky
a938412b6f save conversation wrap 2024-05-23 15:58:59 +00:00
binary-husky
a48acf6fec Flex Btn Bug Fix 2024-05-22 08:38:40 +00:00
binary-husky
c6b9ab5214 add document 2024-05-22 06:39:56 +00:00
binary-husky
aa3332de69 add document 2024-05-22 06:27:26 +00:00
binary-husky
d43175d46d fix type hint 2024-05-21 13:18:38 +00:00
binary-husky
8ca9232db2 Merge branch 'master' into frontier 2024-05-21 12:27:01 +00:00
binary-husky
1339aa0e1a doc2x latex convertion 2024-05-21 12:24:50 +00:00
binary-husky
f41419e767 update demo 2024-05-21 11:12:08 +00:00
binary-husky
d88c585305 improve latex plugin 2024-05-21 10:47:50 +00:00
binary-husky
0a88d18c7a secondary menu for pdf trans 2024-05-21 08:51:29 +00:00
binary-husky
0d0edc2216 Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-05-19 21:54:16 +08:00
binary-husky
5e0875fcf4 from backend to front end 2024-05-19 21:54:06 +08:00
Shixian Sheng
c508b84db8 更新了README.md/Update README.md (#1810) 2024-05-19 20:41:17 +08:00
Menghuan1918
f2b67602bb 为docker构建添加FFmpeg依赖 (#1807)
* Test: change dockerfile to install ffmpeg

* Add the ffmpeg to dockerfile (required by edge-tts)
2024-05-19 14:27:55 +08:00
binary-husky
29daba5d2f success? 2024-05-18 23:03:28 +08:00
binary-husky
9477824ac1 improve css 2024-05-18 21:54:15 +08:00
binary-husky
459c5b2d24 plugin refactor: phase 1 2024-05-18 20:23:50 +08:00
binary-husky
abf9b5aee5 Merge branch 'master' into frontier 2024-05-18 15:52:08 +08:00
binary-husky
2ce4482146 fix new ModelOverride fn bug 2024-05-18 15:47:25 +08:00
binary-husky
4282b83035 change TTS default to DISABLE 2024-05-18 15:43:35 +08:00
binary-husky
537be57c9b fix tts bugs 2024-05-17 21:07:28 +08:00
binary-husky
3aa92d6c80 change main ui hint 2024-05-17 11:34:13 +08:00
awwaawwa
b7eb9aba49 [Feature]: allow model mutex override in core_functional.py (#1708)
* allow_core_func_specify_model

* change arg name

* 模型覆盖支持热更新&当模型覆盖指向不存在的模型时报错

* allow model mutex override

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-05-17 11:15:23 +08:00
hongyi-zhao
881a596a30 model support (gpt4o) in project. (#1760)
* Add the environment variable: OPEN_BROWSER

* Add configurable browser launching with custom arguments

- Update `config.py` to include options for specifying the browser and its arguments for opening URLs.
- Modify `main.py` to use the configured browser settings from `config.py` to launch the web page.
- Enhance `config_loader.py` to process path-like strings by expanding and normalizing paths, which supports the configuration improvements.

* Add support for the following models:

"gpt-4o", "gpt-4o-2024-05-13"

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-05-14 17:01:32 +08:00
binary-husky
1b3c331d01 dos2unix 2024-05-14 12:02:40 +08:00
binary-husky
70d5f2a7df arg name err patch 2024-05-13 23:40:35 +08:00
Menghuan1918
fd2f8b9090 Provide a new fast and simple way of accessing APIs (As example: Yi-models,Deepseek) (#1782)
* deal with the message part

* Finish no_ui_connect

* finish predict part

* Delete old version

* An example of add new api

* Bug fix:can not change in "model_info"

* Bug fix

* Error message handling

* Clear the format

* An example of add a openai form API:Deepseek

* For compatibility reasons

* Feture: set different API/Endpoint to diferent models

* Add support for YI new models

* 更新doc2x的api key机制 (#1766)

* Fix DOC2X API key refresh issue in PDF translation

* remove add

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* 修改部分文件名、变量名

* patch err

---------

Co-authored-by: alex_xiao <113411296+Alex4210987@users.noreply.github.com>
Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-05-13 23:38:08 +08:00
binary-husky
225a2de011 Version 3.76 (#1752)
* version roll

* add upload processbar
2024-05-13 22:54:38 +08:00
binary-husky
6aea6d8e2b Merge branch 'master' into frontier 2024-05-13 22:52:15 +08:00
alex_xiao
8d85616c27 更新doc2x的api key机制 (#1766)
* Fix DOC2X API key refresh issue in PDF translation

* remove add

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-05-13 22:49:40 +08:00
binary-husky
e4533dd24d Merge branch 'master' into frontier 2024-05-04 17:00:09 +08:00
binary-husky
43ed8cb8a8 Fix fastapi version compat 2024-05-04 16:43:42 +08:00
binary-husky
3eff964424 Update README.md 2024-05-01 17:59:25 +08:00
OREEkE
ebde98b34b Update requirements.txt (#1753)
TTS_TYPE = "EDGE_TTS"需要的依赖
2024-05-01 14:55:04 +08:00
binary-husky
6f883031c0 Update config.py 2024-05-01 14:54:36 +08:00
binary-husky
fa15059f07 add upload processbar 2024-05-01 01:11:35 +08:00
binary-husky
685c573619 version roll 2024-04-30 21:00:25 +08:00
binary-husky
5fcd02506c version 3.75 (#1702)
* Update version to 3.74

* Add support for Yi Model API (#1635)

* 更新以支持零一万物模型

* 删除newbing

* 修改config

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* Refactor function signatures in bridge files

* fix qwen api change

* rename and ref functions

* rename and move some cookie functions

* 增加haiku模型,新增endpoint配置说明 (#1626)

* haiku added

* 新增haiku,新增endpoint配置说明

* Haiku added

* 将说明同步至最新Endpoint

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* private_upload目录下进行文件鉴权 (#1596)

* private_upload目录下进行文件鉴权

* minor fastapi adjustment

* Add logging functionality to enable saving
conversation records

* waiting to fix username retrieve

* support 2rd web path

* allow accessing default user dir

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* remove yaml deps

* fix favicon

* fix abs path auth problem

* forget to write a return

* add `dashscope` to deps

* fix GHSA-v9q9-xj86-953p

* 用户名重叠越权访问patch (#1681)

* add cohere model api access

* cohere + can_multi_thread

* fix block user access(fail)

* fix fastapi bug

* change cohere api endpoint

* explain version

* # fix com_zhipuglm.py illegal temperature problem (#1687)

* Update com_zhipuglm.py

# fix 用户在使用 zhipuai 界面时遇到了关于温度参数的非法参数错误

* allow store lm model dropdown

* add a btn to reverse previous reset

* remove extra fns

* Add support for glm-4v model (#1700)

* 修改chatglm3量化加载方式 (#1688)

Co-authored-by: zym9804 <ren990603@gmail.com>

* save chat stage 1

* consider null cookie situation

* 在点击复制按钮时激活语音

* miss some parts

* move all to js

* done first stage

* add edge tts

* bug fix

* bug fix

* remove console log

* bug fix

* bug fix

* bug fix

* audio switch

* update tts readme

* remove tempfile when done

* disable auto audio follow

* avoid play queue update after shut up

* feat: minimizing common.js

* improve tts functionality

* deterine whether the cached model is in choices

* Add support for Ollama (#1740)

* print err when doc2x not successful

* add icon

* adjust url for doc2x key version

* prepare merge

---------

Co-authored-by: Menghuan1918 <menghuan2003@outlook.com>
Co-authored-by: Skyzayre <120616113+Skyzayre@users.noreply.github.com>
Co-authored-by: XIao <46100050+Kilig947@users.noreply.github.com>
Co-authored-by: Yuki <903728862@qq.com>
Co-authored-by: zyren123 <91042213+zyren123@users.noreply.github.com>
Co-authored-by: zym9804 <ren990603@gmail.com>
2024-04-30 20:37:41 +08:00
binary-husky
bd5280df1b minor pdf translation adjustment 2024-04-30 00:52:36 +08:00
binary-husky
744759704d allow personal docx api access 2024-04-29 23:53:41 +08:00
WFS
81df0aa210 fix the issue of when using google Gemini pro, don't have chat histor… (#1743)
* fix the issue of when using google Gemini pro, don't have chat history record

just add chat_log in bridge_google_gmini.py

* Update bridge_google_gemini.py

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>
2024-04-25 22:26:32 +08:00
Menghuan1918
cadaa81030 Fix the bug cause Nougat can not use (#1738)
* Bug fix for nougat require pdf

* Fixing bugs in a simpler and safer way
2024-04-24 12:13:44 +08:00
binary-husky
3b6cbbdcb0 Update README.md (#1736) 2024-04-24 11:41:56 +08:00
binary-husky
52e49c48b8 the latest zhipuai whl is broken 2024-04-23 18:20:36 +08:00
binary-husky
6ad15a6129 fix equation showing problem 2024-04-22 01:54:03 +08:00
binary-husky
09990d44d3 merge to resolve multiple pickle security issues (#1728)
* 注释调试if分支

* support pdf url for latex translation

* Merge pull request from GHSA-mvrw-h7rc-22r8

* 注释调试if分支

* Improve objload security

* Update README.md

* support pdf url for latex translation

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>
Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* fix import

---------

Co-authored-by: Longtaotao <longtaotao@bupt.edu.cn>
Co-authored-by: iluem <57590186+Qhaoduoyu@users.noreply.github.com>
2024-04-21 19:37:05 +08:00
binary-husky
eac5191815 Update README.md 2024-04-21 02:12:15 +08:00
owo
ae4407135d fix: 添加report_exception中缺失的a参数 (#1720)
在report_exception函数的定义中,参数a未包含默认值,因此应提供相应的值传入。
2024-04-18 16:27:00 +08:00
owo
f0e15bd710 fix: 修复了在else语句中调用'schema_str'之前未定义的问题 (#1719)
重新排列了方法中的条件返回语句,以确保在使用之前始终定义了'schema_str'。
2024-04-18 16:26:13 +08:00
jiangfy-ihep
5c5f442649 Fix: openai project API key pattern (#1721)
Co-authored-by: Fayu Jiang <jiangfayu@hotmail.com>
2024-04-18 16:24:29 +08:00
binary-husky
160552cc5f introduce doc2x 2024-04-15 01:57:31 +08:00
binary-husky
c131ec0b20 rename pdf plugin file name 2024-04-14 22:46:31 +08:00
iluem
2f3aeb7976 Merge pull request from GHSA-23cr-v6pm-j89p
* Update crazy_utils.py

Improve security

* add a white space

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>
2024-04-14 21:51:03 +08:00
binary-husky
eff5b89b98 scan first, then extract 2024-04-14 21:36:57 +08:00
iluem
f77ab27bc9 Merge pull request from GHSA-rh7j-jfvq-857j
Prevent path traversal for improved security
2024-04-14 21:33:37 +08:00
awwaawwa
ba0a8b7072 integrate gpt-4-turbo-2024-04-09 (#1698)
* 接入 gpt-4-turbo-2024-04-09 模型

* add gpt-4-turbo and change to vision

* add gpt-4-turbo to avail llm models

* 暂时将gpt-4-turbo接入至普通版本
2024-04-11 22:02:40 +08:00
hmp
2406022c2a access vllm 2024-04-11 22:00:07 +08:00
OREEkE
02b6f26b05 remove logging in gradios.py (#1699)
如果初始主题是HF社区主题,这里使用logging会导致程序不再写入日志(包括对话内容在内的任何记录),下载主题的日志输出和程序启动时的日志初始化有冲突。
2024-04-11 14:15:12 +08:00
OREEkE
2a003e8d49 add loadLive2D() when ADD_WAIFU = False (#1693)
ADD_WAIFU = False,浏览器会抛出错误:[Error] JQuery is not defined. 因为这时候没有jQuery库可用,却依然使用了loadLive2D()函数。现在加一个判断,如果ADD_WAIFU = False,禁用jQuery库的同时也禁用loadLive2D()函数,除非ADD_WAIFU = True
2024-04-10 00:10:53 +08:00
binary-husky
21891b0f6d update translate matrix 2024-04-08 12:43:24 +08:00
Yuki
163f12c533 # fix com_zhipuglm.py illegal temperature problem (#1687)
* Update com_zhipuglm.py

# fix 用户在使用 zhipuai 界面时遇到了关于温度参数的非法参数错误
2024-04-08 12:17:07 +08:00
binary-husky
bdd46c5dd1 Version 3.74: Merge latest updates on dev branch (frontier) (#1621)
* Update version to 3.74

* Add support for Yi Model API (#1635)

* 更新以支持零一万物模型

* 删除newbing

* 修改config

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* Refactor function signatures in bridge files

* fix qwen api change

* rename and ref functions

* rename and move some cookie functions

* 增加haiku模型,新增endpoint配置说明 (#1626)

* haiku added

* 新增haiku,新增endpoint配置说明

* Haiku added

* 将说明同步至最新Endpoint

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* private_upload目录下进行文件鉴权 (#1596)

* private_upload目录下进行文件鉴权

* minor fastapi adjustment

* Add logging functionality to enable saving
conversation records

* waiting to fix username retrieve

* support 2rd web path

* allow accessing default user dir

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* remove yaml deps

* fix favicon

* fix abs path auth problem

* forget to write a return

* add `dashscope` to deps

* fix GHSA-v9q9-xj86-953p

* 用户名重叠越权访问patch (#1681)

* add cohere model api access

* cohere + can_multi_thread

* fix block user access(fail)

* fix fastapi bug

* change cohere api endpoint

* explain version

---------

Co-authored-by: Menghuan1918 <menghuan2003@outlook.com>
Co-authored-by: Skyzayre <120616113+Skyzayre@users.noreply.github.com>
Co-authored-by: XIao <46100050+Kilig947@users.noreply.github.com>
2024-04-08 11:49:30 +08:00
binary-husky
ae51a0e686 fix GHSA-v9q9-xj86-953p 2024-04-05 20:47:11 +08:00
binary-husky
f2582ea137 fix qwen api change 2024-04-03 12:17:41 +08:00
binary-husky
ddd2fd84da fix checkbox bugs 2024-04-02 19:42:55 +08:00
binary-husky
6c90ff80ea add prompt and temperature to cookie 2024-04-02 18:02:00 +08:00
binary-husky
cb7c0703be Update requirements.txt (#1668) 2024-04-01 11:30:50 +08:00
binary-husky
5181cd441d change pip install url due to server failure (#1667) 2024-04-01 11:20:14 +08:00
binary-husky
216d4374e7 fix color list overflow 2024-04-01 00:11:32 +08:00
iluem
8af6c0cab6 Qhaoduoyu patch 1: pickle to json to increase security (#1648)
* Update theme.py

fix bugs

* Update theme.py

fix bugs

* change var names

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-03-25 09:54:30 +08:00
binary-husky
67ad041372 fix issue #1640 2024-03-20 18:09:37 +08:00
binary-husky
725c72229c update docker compose 2024-03-20 17:37:03 +08:00
Menghuan1918
e42ede512b Update Claude3 api request and fix some bugs (#1641)
* Update version to 3.74

* Add support for Yi Model API (#1635)

* 更新以支持零一万物模型

* 删除newbing

* 修改config

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* Update claude requrest to http type

* Update for endpoint

* Add support for other tpyes of pictures

* Update pip packages

* Fix console_slience issue while error handling

* revert version changes

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-03-20 17:22:23 +08:00
binary-husky
84ccc9e64c fix claude + oneapi error 2024-03-17 14:53:28 +08:00
binary-husky
c172847e19 add python annotations for toolbox functions 2024-03-16 22:54:33 +08:00
binary-husky
d166d25eb4 resolve invalid escape sequence warning
to support python3.12
2024-03-11 18:10:05 +08:00
binary-husky
516bbb1331 Update README.md 2024-03-11 17:40:16 +08:00
binary-husky
c3140ce344 merge frontier branch (#1620)
* Zhipu sdk update 适配最新的智谱SDK,支持GLM4v (#1502)

* 适配 google gemini 优化为从用户input中提取文件

* 适配最新的智谱SDK、支持glm-4v

* requirements.txt fix

* pending history check

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* Update "生成多种Mermaid图表" plugin: Separate out the file reading function (#1520)

* Update crazy_functional.py with new functionality deal with PDF

* Update crazy_functional.py and Mermaid.py for plugin_kwargs

* Update crazy_functional.py with new chart type: mind map

* Update SELECT_PROMPT and i_say_show_user messages

* Update ArgsReminder message in get_crazy_functions() function

* Update with read md file and update PROMPTS

* Return the PROMPTS as the test found that the initial version worked best

* Update Mermaid chart generation function

* version 3.71

* 解决issues #1510

* Remove unnecessary text from sys_prompt in 解析历史输入 function

* Remove sys_prompt message in 解析历史输入 function

* Update bridge_all.py: supports gpt-4-turbo-preview (#1517)

* Update bridge_all.py: supports gpt-4-turbo-preview

supports gpt-4-turbo-preview

* Update bridge_all.py

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* Update config.py: supports gpt-4-turbo-preview (#1516)

* Update config.py: supports gpt-4-turbo-preview

supports gpt-4-turbo-preview

* Update config.py

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* Refactor 解析历史输入 function to handle file input

* Update Mermaid chart generation functionality

* rename files and functions

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
Co-authored-by: hongyi-zhao <hongyi.zhao@gmail.com>
Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* 接入mathpix ocr功能 (#1468)

* Update Latex输出PDF结果.py

借助mathpix实现了PDF翻译中文并重新编译PDF

* Update config.py

add mathpix appid & appkey

* Add 'PDF翻译中文并重新编译PDF' feature to plugins.

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* fix zhipuai

* check picture

* remove glm-4 due to bug

* 修改config

* 检查MATHPIX_APPID

* Remove unnecessary code and update
function_plugins dictionary

* capture non-standard token overflow

* bug fix #1524

* change mermaid style

* 支持mermaid 滚动放大缩小重置,鼠标滚动和拖拽 (#1530)

* 支持mermaid 滚动放大缩小重置,鼠标滚动和拖拽

* 微调未果 先stage一下

* update

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* ver 3.72

* change live2d

* save the status of ``clear btn` in cookie

* 前端选择保持

* js ui bug fix

* reset btn bug fix

* update live2d tips

* fix missing get_token_num method

* fix live2d toggle switch

* fix persistent custom btn with cookie

* fix zhipuai feedback with core functionality

* Refactor button update and clean up functions

* tailing space removal

* Fix missing MATHPIX_APPID and MATHPIX_APPKEY
configuration

* Prompt fix、脑图提示词优化 (#1537)

* 适配 google gemini 优化为从用户input中提取文件

* 脑图提示词优化

* Fix missing MATHPIX_APPID and MATHPIX_APPKEY
configuration

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* 优化“PDF翻译中文并重新编译PDF”插件 (#1602)

* Add gemini_endpoint to API_URL_REDIRECT (#1560)

* Add gemini_endpoint to API_URL_REDIRECT

* Update gemini-pro and gemini-pro-vision model_info
endpoints

* Update to support new claude models (#1606)

* Add anthropic library and update claude models

* 更新bridge_claude.py文件,添加了对图片输入的支持。修复了一些bug。

* 添加Claude_3_Models变量以限制图片数量

* Refactor code to improve readability and
maintainability

* minor claude bug fix

* more flexible one-api support

* reformat config

* fix one-api new access bug

* dummy

* compat non-standard api

* version 3.73

---------

Co-authored-by: XIao <46100050+Kilig947@users.noreply.github.com>
Co-authored-by: Menghuan1918 <menghuan2003@outlook.com>
Co-authored-by: hongyi-zhao <hongyi.zhao@gmail.com>
Co-authored-by: Hao Ma <893017927@qq.com>
Co-authored-by: zeyuan huang <599012428@qq.com>
2024-03-11 17:26:09 +08:00
binary-husky
cd18663800 compat non-standard api - 2 2024-03-10 17:13:54 +08:00
binary-husky
dbf1322836 compat non-standard api 2024-03-10 17:07:59 +08:00
XIao
98dd3ae1c0 Moonshot- 在config.py中增加可用模型 (#1603)
* 支持月之暗面api

* fix文案

* 优化noui的返回值,对话历史文件继续上传到moonshat

* fix

* config 可用模型配置增加

* add `can_multi_thread` model attr (#1598)

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>
Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-03-05 16:07:05 +08:00
binary-husky
3036709496 add can_multi_thread model attr (#1598) 2024-03-05 15:58:18 +08:00
XIao
8e9c07644f 支持月之暗面api,文件对话 (#1597)
* 支持月之暗面api

* fix文案
2024-03-03 23:42:17 +08:00
binary-husky
90d96b77e6 handle qianfan chat error 2024-02-29 00:36:06 +08:00
binary-husky
66c876a9ca Update README.md 2024-02-26 22:56:09 +08:00
binary-husky
0665eb75ed Update README.md (#1581) 2024-02-26 22:52:00 +08:00
binary-husky
6b784035fa Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2024-02-25 21:13:56 +08:00
binary-husky
8bb3d84912 fix zip chinese file name error 2024-02-25 21:13:41 +08:00
binary-husky
a0193cf227 edit dep url 2024-02-23 13:28:49 +08:00
binary-husky
b72289bfb0 Fix missing MATHPIX_APPID and MATHPIX_APPKEY
configuration
2024-02-21 14:20:10 +08:00
Menghuan1918
bdfe3862eb 添加部分翻译 (#1566) 2024-02-21 14:14:06 +08:00
binary-husky
dae180b9ea update spark v3.5, fix glm parallel problem 2024-02-18 14:08:35 +08:00
binary-husky
e359fff040 Fix response message bug in bridge_qianfan.py,
bridge_qwen.py, and bridge_skylark2.py
2024-02-15 00:02:24 +08:00
binary-husky
2e9b4a5770 Merge Frontier, Update to Version 3.72 (#1553)
* Zhipu sdk update 适配最新的智谱SDK,支持GLM4v (#1502)

* 适配 google gemini 优化为从用户input中提取文件

* 适配最新的智谱SDK、支持glm-4v

* requirements.txt fix

* pending history check

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* Update "生成多种Mermaid图表" plugin: Separate out the file reading function (#1520)

* Update crazy_functional.py with new functionality deal with PDF

* Update crazy_functional.py and Mermaid.py for plugin_kwargs

* Update crazy_functional.py with new chart type: mind map

* Update SELECT_PROMPT and i_say_show_user messages

* Update ArgsReminder message in get_crazy_functions() function

* Update with read md file and update PROMPTS

* Return the PROMPTS as the test found that the initial version worked best

* Update Mermaid chart generation function

* version 3.71

* 解决issues #1510

* Remove unnecessary text from sys_prompt in 解析历史输入 function

* Remove sys_prompt message in 解析历史输入 function

* Update bridge_all.py: supports gpt-4-turbo-preview (#1517)

* Update bridge_all.py: supports gpt-4-turbo-preview

supports gpt-4-turbo-preview

* Update bridge_all.py

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* Update config.py: supports gpt-4-turbo-preview (#1516)

* Update config.py: supports gpt-4-turbo-preview

supports gpt-4-turbo-preview

* Update config.py

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* Refactor 解析历史输入 function to handle file input

* Update Mermaid chart generation functionality

* rename files and functions

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
Co-authored-by: hongyi-zhao <hongyi.zhao@gmail.com>
Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* 接入mathpix ocr功能 (#1468)

* Update Latex输出PDF结果.py

借助mathpix实现了PDF翻译中文并重新编译PDF

* Update config.py

add mathpix appid & appkey

* Add 'PDF翻译中文并重新编译PDF' feature to plugins.

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* fix zhipuai

* check picture

* remove glm-4 due to bug

* 修改config

* 检查MATHPIX_APPID

* Remove unnecessary code and update
function_plugins dictionary

* capture non-standard token overflow

* bug fix #1524

* change mermaid style

* 支持mermaid 滚动放大缩小重置,鼠标滚动和拖拽 (#1530)

* 支持mermaid 滚动放大缩小重置,鼠标滚动和拖拽

* 微调未果 先stage一下

* update

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* ver 3.72

* change live2d

* save the status of ``clear btn` in cookie

* 前端选择保持

* js ui bug fix

* reset btn bug fix

* update live2d tips

* fix missing get_token_num method

* fix live2d toggle switch

* fix persistent custom btn with cookie

* fix zhipuai feedback with core functionality

* Refactor button update and clean up functions

---------

Co-authored-by: XIao <46100050+Kilig947@users.noreply.github.com>
Co-authored-by: Menghuan1918 <menghuan2003@outlook.com>
Co-authored-by: hongyi-zhao <hongyi.zhao@gmail.com>
Co-authored-by: Hao Ma <893017927@qq.com>
Co-authored-by: zeyuan huang <599012428@qq.com>
2024-02-14 18:35:09 +08:00
binary-husky
e0c5859cf9 update Column min_width parameter 2024-02-12 23:37:31 +08:00
binary-husky
b9b1e12dc9 fix missing get_token_num method 2024-02-12 15:58:55 +08:00
binary-husky
8814026ec3 fix gradio-client version (#1548) 2024-02-09 13:25:01 +08:00
binary-husky
3025d5be45 remove jsdelivr (#1547) 2024-02-09 13:17:14 +08:00
binary-husky
6c13bb7b46 patch issue #1538 2024-02-06 17:59:09 +08:00
binary-husky
c27e559f10 match sess-* key 2024-02-06 17:51:47 +08:00
binary-husky
cdb5288f49 fix issue #1532 2024-02-02 17:47:35 +08:00
hongyi-zhao
49c6fcfe97 Update config.py: supports gpt-4-turbo-preview (#1516)
* Update config.py: supports gpt-4-turbo-preview

supports gpt-4-turbo-preview

* Update config.py

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>
2024-01-26 16:44:32 +08:00
hongyi-zhao
45fa0404eb Update bridge_all.py: supports gpt-4-turbo-preview (#1517)
* Update bridge_all.py: supports gpt-4-turbo-preview

supports gpt-4-turbo-preview

* Update bridge_all.py

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>
2024-01-26 16:36:23 +08:00
binary-husky
f889ef7625 解决issues #1510 2024-01-25 22:42:08 +08:00
binary-husky
a93bf4410d version 3.71 2024-01-25 22:18:43 +08:00
binary-husky
1c0764753a Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-01-25 22:05:13 +08:00
Menghuan1918
c847209ac9 Update "Generate multiple Mermaid charts" plugin with md file read (#1506)
* Update crazy_functional.py with new functionality deal with PDF

* Update crazy_functional.py and Mermaid.py for plugin_kwargs

* Update crazy_functional.py with new chart type: mind map

* Update SELECT_PROMPT and i_say_show_user messages

* Update ArgsReminder message in get_crazy_functions() function

* Update with read md file and update PROMPTS

* Return the PROMPTS as the test found that the initial version worked best

* Update Mermaid chart generation function
2024-01-24 17:44:54 +08:00
binary-husky
4f9d40c14f 删除冗余代码 2024-01-24 01:42:31 +08:00
binary-husky
91926d24b7 处理一个core_functional.py中出现的mermaid渲染特例 2024-01-24 01:38:06 +08:00
binary-husky
ef311c4859 localize mjs scripts 2024-01-24 01:06:58 +08:00
binary-husky
82795d3817 remove mask string feature for now (still buggy) 2024-01-24 00:44:27 +08:00
binary-husky
49e28a5a00 Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-01-23 15:48:49 +08:00
binary-husky
01def2e329 Merge branch 'master' into frontier 2024-01-23 15:48:06 +08:00
Menghuan1918
2291be2b28 Update "Generate multiple Mermaid charts" plugin (#1503)
* Update crazy_functional.py with new functionality deal with PDF

* Update crazy_functional.py and Mermaid.py for plugin_kwargs
2024-01-23 15:45:34 +08:00
binary-husky
c89ec7969f fix test import err 2024-01-23 09:52:58 +08:00
Menghuan1918
1506c19834 Update crazy_functional.py with new functionality deal with PDF (#1500) 2024-01-22 14:55:39 +08:00
binary-husky
a6fdc493b7 autogen plugin bug fix 2024-01-22 00:08:04 +08:00
binary-husky
113067c6ab Merge branch 'master' into frontier 2024-01-21 23:49:20 +08:00
Menghuan1918
7b6828ab07 从当前对话历史中生产Mermaid图表的插件 (#1497)
* Add functionality to generate multiple types of Mermaid charts

* Update conditional statement in 解析历史输入 function
2024-01-21 23:41:39 +08:00
binary-husky
d818c38dfe better theme 2024-01-21 19:41:18 +08:00
binary-husky
08b4e9796e Update README.md (#1499)
* Update README.md

* Update README.md
2024-01-21 19:08:48 +08:00
binary-husky
b55d573819 auto prompt lang 2024-01-21 13:47:11 +08:00
binary-husky
06b0e800a2 修复渲染的小BUG 2024-01-21 12:19:04 +08:00
binary-husky
7bbaf05961 Merge branch 'master' into frontier 2024-01-20 22:33:41 +08:00
binary-husky
3b83279855 anim generation bug fix #896 2024-01-20 22:17:51 +08:00
binary-husky
37164a826e GengKanghua #896 2024-01-20 22:14:13 +08:00
binary-husky
dd2a97e7a9 draw project struct with mermaid 2024-01-20 21:23:56 +08:00
binary-husky
e579006c4a add set_multi_conf 2024-01-20 18:33:35 +08:00
binary-husky
031f19b6dd 替换错误的变量名称 2024-01-20 18:28:54 +08:00
binary-husky
142b516749 gpt_academic text mask imp 2024-01-20 18:00:06 +08:00
binary-husky
f2e73aa580 智谱API突发恶疾 2024-01-19 21:09:27 +08:00
binary-husky
8565a35cf7 readme update 2024-01-18 23:21:11 +08:00
binary-husky
72d78eb150 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2024-01-18 23:07:05 +08:00
binary-husky
7aeda537ac remove debug btn 2024-01-18 23:05:47 +08:00
binary-husky
6cea17d4b7 remove debug btn 2024-01-18 22:33:49 +08:00
binary-husky
20bc51d747 Merge branch 'master' into frontier 2024-01-18 22:23:26 +08:00
XIao
b8ebefa427 Google gemini fix (#1473)
* 适配 google gemini 优化为从用户input中提取文件

* Update README.md (#1477)

* Update README.md

* Update README.md

* Update requirements.txt (#1480)

* welcome glm4 from 智谱!

* Update README.md (#1484)

* Update README.md (#1485)

* update zhipu

* Fix translation task name in core_functional.py

* zhipuai version problem

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>
Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-01-18 18:06:07 +08:00
binary-husky
dcc9326f0b zhipuai version problem 2024-01-18 17:51:20 +08:00
binary-husky
94fc396eb9 Fix translation task name in core_functional.py 2024-01-18 15:32:17 +08:00
binary-husky
e594e1b928 update zhipu 2024-01-18 00:32:51 +08:00
binary-husky
8fe545d97b update zhipu 2024-01-18 00:31:53 +08:00
binary-husky
6f978fa72e Merge branch 'master' into frontier 2024-01-17 12:37:07 +08:00
binary-husky
19be471aa8 Refactor core_functional.py 2024-01-17 12:34:42 +08:00
binary-husky
38956934fd Update README.md (#1485) 2024-01-17 11:45:49 +08:00
binary-husky
32439e14b5 Update README.md (#1484) 2024-01-17 11:30:09 +08:00
binary-husky
317389bf4b Merge branch 'master' into frontier 2024-01-16 21:53:53 +08:00
binary-husky
2c740fc641 welcome glm4 from 智谱! 2024-01-16 21:51:14 +08:00
binary-husky
96832a8228 Update requirements.txt (#1480) 2024-01-16 20:08:32 +08:00
binary-husky
361557da3c roll version 2024-01-16 02:15:35 +08:00
binary-husky
5f18d4a1af Update README.md (#1477)
* Update README.md

* Update README.md
2024-01-16 02:14:08 +08:00
binary-husky
0d10bc570f bug fix 2024-01-16 01:22:50 +08:00
binary-husky
3ce7d9347d dark support 2024-01-16 00:33:11 +08:00
Keldos
8a78d7b89f adapt mermaid to dark mode (#1476)
Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>
2024-01-16 00:32:12 +08:00
binary-husky
0e43b08837 同步 2024-01-16 00:29:46 +08:00
binary-husky
74bced2d35 添加脑图编辑按钮 2024-01-15 13:41:21 +08:00
binary-husky
961a24846f remove console log 2024-01-15 11:50:37 +08:00
binary-husky
b7e4744f28 apply to other themes 2024-01-15 11:49:04 +08:00
binary-husky
71adc40901 support diagram plotting via mermaid ! 2024-01-15 02:49:21 +08:00
binary-husky
a2099f1622 fix code highlight problem 2024-01-15 00:07:07 +08:00
binary-husky
c0a697f6c8 publish gradio via jsdelivr 2024-01-14 16:46:10 +08:00
binary-husky
bdde1d2fd7 format code 2024-01-14 04:18:38 +08:00
binary-husky
63373ab3b6 Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-01-14 03:41:47 +08:00
binary-husky
fb6566adde add todo 2024-01-14 03:41:23 +08:00
binary-husky
9f2ef9ec49 limit scroll 2024-01-14 02:11:07 +08:00
binary-husky
35c1aa21e4 limit scroll 2024-01-14 01:55:59 +08:00
binary-husky
627d739720 注入火山引擎大模型的接口代码 2024-01-13 22:33:08 +08:00
binary-husky
37f15185b6 Merge branch 'master' into frontier 2024-01-13 18:23:55 +08:00
binary-husky
9643e1c25f code dem fix 2024-01-13 18:23:06 +08:00
binary-husky
28eae2f80e Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-01-13 18:04:21 +08:00
binary-husky
7ab379688e format source code 2024-01-13 18:04:09 +08:00
binary-husky
3d4c6f54f1 format source code 2024-01-13 18:00:52 +08:00
binary-husky
1714116a89 break down toolbox.py to multiple files 2024-01-13 16:10:46 +08:00
hongyi-zhao
2bc65a99ca Update bridge_all.py (#1472)
删除 "chatgpt_website" 函数,从而不再支持域基于逆向工程的方法的接口,该方法对应的实现项目为:https://github.com/acheong08/ChatGPT-to-API/。目前,该项目已被开发者 archived,且该方法由于其实现的原理,而不可能是稳健和完美的,因此不是可持续维护的。
2024-01-13 14:35:04 +08:00
binary-husky
0a2805513e better gui interaction (#1459) 2024-01-07 19:13:12 +08:00
binary-husky
d698b96209 Merge branch 'master' into frontier 2024-01-07 18:49:56 +08:00
binary-husky
6b1c6f0bf7 better gui interaction 2024-01-07 18:49:08 +08:00
binary-husky
c22867b74c Merge pull request #1458 from binary-husky/frontier
introduce Gemini & Format code
2024-01-07 16:24:33 +08:00
binary-husky
2abe665521 Merge branch 'master' into frontier 2024-01-05 16:12:41 +08:00
binary-husky
b0e6c4d365 change ui prompt 2024-01-05 16:11:30 +08:00
fzcqc
d883c7f34b fix: expected_words添加反斜杆 (#1442) 2024-01-03 19:57:10 +08:00
Menghuan1918
aba871342f 修复分割函数中使用的变量错误 (#1443)
* Fix force_breakdown function parameter name

* Add handling for PDFs with lowercase starting paragraphs

* Change first lowercase word in meta_txt to uppercase
2024-01-03 19:49:17 +08:00
qingxu fu
37744a9cb1 jpeg type align for gemini 2023-12-31 20:28:39 +08:00
qingxu fu
480516380d re-format code to with pre-commit 2023-12-31 19:30:32 +08:00
qingxu fu
60ba712131 use legacy image io for gemini 2023-12-31 19:02:40 +08:00
XIao
a7c960dcb0 适配 google gemini 优化为从用户input中提取文件 (#1419)
适配 google gemini 优化为从用户input中提取文件
2023-12-31 18:05:55 +08:00
binary-husky
a96f842b3a minor ui change 2023-12-30 02:57:42 +08:00
binary-husky
417ca91e23 minor css change 2023-12-30 00:55:52 +08:00
binary-husky
ef8fadfa18 fix ui element padding 2023-12-29 15:16:33 +08:00
binary-husky
865c4ca993 Update README.md 2023-12-26 22:51:56 +08:00
binary-husky
31304f481a remove console log 2023-12-25 22:57:09 +08:00
binary-husky
1bd3637d32 modify image gen plugin user interaction 2023-12-25 22:24:12 +08:00
binary-husky
160a683667 smart input panel swap 2023-12-25 22:05:14 +08:00
binary-husky
49ca03ca06 Merge branch 'master' into frontier 2023-12-25 21:43:33 +08:00
binary-husky
c625348ce1 smarter chatbot height adjustment 2023-12-25 21:26:24 +08:00
binary-husky
6d4a74893a Merge pull request #1415 from binary-husky/frontier
Merge Frontier Branch
2023-12-25 20:18:56 +08:00
qingxu fu
5c7499cada compat with some third party api 2023-12-25 17:21:35 +08:00
binary-husky
f522691529 Merge pull request #1398 from leike0813/frontier
添加通义千问在线模型系列支持&增加插件
2023-12-24 18:21:45 +08:00
binary-husky
ca85573ec1 Update README.md 2023-12-24 18:14:57 +08:00
binary-husky
2c7bba5c63 change dash scope api key check behavior 2023-12-23 21:35:42 +08:00
binary-husky
e22f0226d5 Merge branch 'master' into leike0813-frontier 2023-12-23 21:00:38 +08:00
binary-husky
0f250305b4 add urllib3 version limit 2023-12-23 20:59:32 +08:00
binary-husky
7606f5c130 name fix 2023-12-23 20:55:58 +08:00
binary-husky
4f0dcc431c Merge branch 'frontier' of https://github.com/leike0813/gpt_academic into leike0813-frontier 2023-12-23 20:42:43 +08:00
binary-husky
6ca0dd2f9e Merge pull request #1410 from binary-husky/frontier
fix spark image understanding api
2023-12-23 17:49:35 +08:00
binary-husky
e3e9921f6b correct the misuse of spark image understanding 2023-12-23 17:46:25 +08:00
binary-husky
867ddd355e adjust green theme layout 2023-12-22 21:59:18 +08:00
binary-husky
bb431db7d3 upgrade to version 3.64 2023-12-21 14:44:35 +08:00
binary-husky
43568b83e1 improve file upload notification 2023-12-21 14:39:58 +08:00
Keldos
2b90302851 feat: drag file to chatbot to upload 拖动以上传文件 (#1396)
* feat: 拖动以上传文件

* 上传文件过程中转圈圈

* fix: 解决仅在第一次上传时才有上传动画的问题

---------

Co-authored-by: 505030475 <qingxu.fu@outlook.com>
2023-12-21 10:24:11 +08:00
binary-husky
f7588d4776 avoid adding the same file multiple times
to the chatbot's files_to_promote list
2023-12-20 11:50:54 +08:00
binary-husky
a0bfa7ba1c improve long text breakdown perfomance 2023-12-20 11:50:54 +08:00
leike0813
c60a7452bf Improve NOUGAT pdf plugin
Add an API version of NOUGAT plugin
Add advanced argument support to NOUGAT plugin

Adapt new text breakdown function

bugfix
2023-12-20 08:57:27 +08:00
leike0813
68a49d3758 Add 2 plugins
相当于将“批量总结PDF文档”插件拆成了两部分,目的在于使用廉价的模型干粗活,再将关键的最终总结交给GPT-4,降低使用成本
批量总结PDF文档_初步:初步总结PDF,每个PDF输出一个md文档
批量总结Markdown文档_进阶:将所有md文档高度凝练并汇总至一个md文档,可直接使用“批量总结PDF文档_初步”的输出结果作为输入
2023-12-20 07:44:53 +08:00
leike0813
ac3d4cf073 Add support to aliyun qwen online models.
Rename model tag "qwen" to "qwen-local"
Add model tag "qwen-turbo", "qwen-plus", "qwen-max"
Add corresponding model interfaces in request_llms/bridge_all.py
Add configuration variable “DASHSCOPE_API_KEY"
Rename request_llms/bridge_qwen.py to bridge_qwen_local.py to distinguish it from the online model interface
2023-12-20 07:37:26 +08:00
binary-husky
9479dd984c avoid adding the same file multiple times
to the chatbot's files_to_promote list
2023-12-19 19:43:03 +08:00
binary-husky
3c271302cc improve long text breakdown perfomance 2023-12-19 19:30:44 +08:00
binary-husky
6e9936531d fix theme shifting bug 2023-12-17 19:45:37 +08:00
binary-husky
439147e4b7 re-arrange main.py 2023-12-17 15:55:15 +08:00
binary-husky
8d13821099 a lm-based story writing game 2023-12-15 23:27:12 +08:00
binary-husky
49fe06ed69 add light edge for audio btn 2023-12-15 21:12:39 +08:00
binary-husky
7882ce7304 Merge branch 'master' into frontier 2023-12-15 16:34:06 +08:00
binary-husky
dc68e601a5 optimize audio plugin 2023-12-15 16:28:42 +08:00
binary-husky
d169fb4b16 fix typo 2023-12-15 13:32:39 +08:00
binary-husky
36e19d5202 compat further with one api 2023-12-15 13:16:06 +08:00
binary-husky
c5f1e4e392 version 3.63 2023-12-15 13:03:52 +08:00
binary-husky
d3f7267a63 Merge branch 'master' into frontier 2023-12-15 12:58:05 +08:00
qingxu fu
f4127a9c9c change clip history policy 2023-12-15 12:52:21 +08:00
binary-husky
c181ad38b4 Update build-with-all-capacity-beta.yml 2023-12-14 12:23:49 +08:00
binary-husky
107944f5b7 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-12-14 11:01:02 +08:00
binary-husky
8c7569b689 修复protobuf版本错误 2023-12-14 11:00:55 +08:00
binary-husky
fa374bf1fc try full dockerfile with vector store 2023-12-11 22:50:19 +08:00
binary-husky
c0a36e37be Merge branch 'master' into frontier 2023-12-09 22:36:28 +08:00
binary-husky
2f2b869efd turn off plugin hot-reload by default 2023-12-09 21:54:34 +08:00
binary-husky
2f148bada0 Merge branch 'new_langchain' 2023-12-09 21:41:33 +08:00
binary-husky
916b2e8aa7 support azure in multi-lang translation 2023-12-09 20:18:44 +08:00
binary-husky
0cb7dd5280 test vector store on docker 2023-12-08 22:22:01 +08:00
binary-husky
892ccb14c7 互动游戏 2023-12-08 00:18:04 +08:00
qingxu fu
21bccf69d2 add installation info 2023-12-07 21:29:41 +08:00
binary-husky
7bac8f4bd3 fix local vector store bug 2023-12-06 22:45:14 +08:00
binary-husky
d0c2923ab1 Merge pull request #1352 from jlw463195395/master
修复deepseekcoder爆显存,加入int8,int4通用加载量化。
2023-12-06 21:37:05 +08:00
binary-husky
8a6e96c369 知识库插件修正 2023-12-05 22:56:19 +08:00
binary-husky
49f3fcf2c0 vector store external to internal 2023-12-05 21:22:15 +08:00
binary-husky
2b96a60b76 Merge branch 'master' into frontier 2023-12-05 15:08:49 +08:00
binary-husky
ec60a85cac new vector store establishment 2023-12-05 00:15:17 +08:00
binary-husky
647d9f88db Merge pull request #1356 from alphaply/update-for-qwen
修复了qwen使用本地模型时候的报错
2023-12-04 15:45:10 +08:00
Alpha
b0c627909a 更改了一些注释 2023-12-04 12:51:41 +08:00
binary-husky
102bf2f1eb Merge pull request #1348 from Skyzayre/TestServer
修改插件分类名称,丰富dalle3风格参数选择
2023-12-04 11:14:32 +08:00
binary-husky
26291b33d1 Merge branch 'TestServer' of https://github.com/Skyzayre/gpt_academic 2023-12-04 11:01:14 +08:00
binary-husky
4f04d810b7 Merge pull request #1342 from Kilig947/copy_moitoring
监听输入框,支持粘贴上传文件
2023-12-04 10:54:50 +08:00
binary-husky
6d2f126253 recv requirements.txt 2023-12-04 10:53:07 +08:00
binary-husky
e5b296d221 Merge branch 'copy_moitoring' of https://github.com/Kilig947/gpt_academic into Kilig947-copy_moitoring 2023-12-04 10:52:31 +08:00
binary-husky
7933675c12 Merge pull request #1347 from Skyzayre/README-edit
转化README徽章为动态徽章
2023-12-04 10:50:20 +08:00
binary-husky
692ff4b59c remove line break 2023-12-04 10:47:07 +08:00
binary-husky
4d8b535c79 Merge branch 'README-edit' of https://github.com/Skyzayre/gpt_academic into Skyzayre-README-edit2 2023-12-04 10:44:46 +08:00
binary-husky
3c03f240ba move token limit conf to bridge_all.py 2023-12-04 10:39:10 +08:00
binary-husky
9bfc3400f9 Merge branch 'master' of https://github.com/jlw463195395/gpt_academic into jlw463195395-master 2023-12-04 10:34:19 +08:00
Skyzayre
95504f0bb7 Resolve conflicts 2023-12-04 10:31:12 +08:00
binary-husky
0cd3274d04 combine qwen model family 2023-12-04 10:30:02 +08:00
binary-husky
2cef81abbe Merge branch 'update-for-qwen' of https://github.com/alphaply/gpt_academic into alphaply-update-for-qwen 2023-12-04 10:09:21 +08:00
binary-husky
6f9bc5d206 Merge branch 'master' into frontier 2023-12-04 00:35:11 +08:00
Alpha
94ab41d3c0 添加了qwen1.8b模型 2023-12-02 23:12:25 +08:00
Alpha
da376068e1 修复了qwen使用本地模型时候的报错 2023-12-02 21:31:59 +08:00
jlw463195935
552219fd5a 加入了int4 int8量化,加入默认fp16加载(in4和int8需要安装额外的库,目前只测试加入deepseek-coder模型,后续测试会加入更多)
解决deepseek-coder连续对话token无限增长爆显存的问题
2023-12-01 16:17:30 +08:00
jlw463195935
4985986243 加入了int4 int8量化,加入默认fp16加载(in4和int8需要安装额外的库)
解决连续对话token无限增长爆显存的问题
2023-12-01 16:11:44 +08:00
Skyzayre
d99b443b4c 优化部分翻译 2023-12-01 10:51:04 +08:00
Skyzayre
2aab6cb708 优化部分翻译 2023-12-01 10:50:20 +08:00
Skyzayre
1134723c80 修改docs中插件分类 2023-12-01 10:40:11 +08:00
Skyzayre
6126024f2c dall-e-3添加 'style' 风格参数
dall-e-3添加 'style' 风格参数(参考 platform.openai.com/doc/api-reference),修改dall-e-3作图时的参数判断逻辑
2023-12-01 10:36:59 +08:00
Skyzayre
ef12d4f754 修改dalle3参数输入区提示语 2023-12-01 10:31:50 +08:00
Skyzayre
e8dd3c02f2 修改插件对应的分类 2023-12-01 10:30:25 +08:00
Skyzayre
e7f4c804eb 修改插件分类名称
将原有分类 “对话” 更名为 “对话&作图”
2023-12-01 10:27:25 +08:00
Skyzayre
3d6ee5c755 转化README徽章为动态徽章
将license、version、realease徽章都转化为动态徽章,减少README维护成本
2023-12-01 09:29:45 +08:00
binary-husky
d8958da8cd 修改Typo 2023-12-01 09:28:22 +08:00
binary-husky
a64d550045 修改README中的一些换行符 2023-11-30 23:23:54 +08:00
binary-husky
d876a81e78 Merge pull request #1337 from Skyzayre/README-edit
修饰README,修正图片链接格式
2023-11-30 23:09:16 +08:00
binary-husky
6723eb77b2 version3.62 2023-11-30 23:08:33 +08:00
binary-husky
86891e3535 Merge branch 'README-edit' of https://github.com/Skyzayre/gpt_academic into Skyzayre-README-edit 2023-11-30 22:58:19 +08:00
binary-husky
2f805db35d Merge branch 'master' into frontier 2023-11-30 22:37:07 +08:00
binary-husky
ecaf2bdf45 add comparison pdf file save and load 2023-11-30 22:36:16 +08:00
binary-husky
22e00eb1c5 Merge branch 'master' into frontier 2023-11-30 22:24:34 +08:00
qingxu fu
900fad69cf produce comparison pdf cache 2023-11-30 22:21:44 +08:00
qingxu fu
55d807c116 解决内存泄露问题 2023-11-30 22:19:05 +08:00
505030475
9a0ed248ca 谁是卧底小游戏 2023-11-30 00:15:09 +08:00
spike
88802b0f72 增加无法粘贴的toast 2023-11-29 20:15:40 +08:00
spike
5720ac127c 监听输入框,支持粘贴上传文件 2023-11-29 20:04:15 +08:00
Skyzayre
f44642d9d2 Update README.md 2023-11-29 13:51:44 +08:00
Skyzayre
29775dedd8 Update README.md 2023-11-29 13:49:38 +08:00
Skyzayre
6417ca9dde Update README.md 2023-11-29 13:46:43 +08:00
Skyzayre
f417c1ce6d Update README.md 2023-11-29 13:46:00 +08:00
Skyzayre
e4c057f5a3 Update README.md 2023-11-29 13:39:33 +08:00
Skyzayre
f9e9b6f4ec Update README.md 2023-11-29 13:38:08 +08:00
Skyzayre
c141e767c6 Update README.md 2023-11-29 13:37:20 +08:00
Skyzayre
17f361d63b Update README.md 2023-11-29 13:11:29 +08:00
Skyzayre
8780fe29f1 Update README.md 2023-11-29 13:07:27 +08:00
Skyzayre
d57bb8afbe Update README.md 2023-11-29 11:41:05 +08:00
Skyzayre
d39945c415 Update README.md 2023-11-29 11:38:59 +08:00
Skyzayre
688df6aa24 Update README.md 2023-11-29 11:28:37 +08:00
binary-husky
b24fef8a61 Merge branch 'master' into frontier 2023-11-29 00:32:56 +08:00
binary-husky
8c840f3d4c 看板娘效果修正 2023-11-29 00:28:13 +08:00
binary-husky
577d3d566b 修复看板娘不断分裂的BUG 2023-11-29 00:11:48 +08:00
qingxu fu
fd92766083 Merge branch 'master' into frontier 2023-11-27 11:00:58 +08:00
qingxu fu
2d2e02040d DALLE2修改图像插件 2023-11-26 01:08:34 +08:00
qingxu fu
aee57364dd edit image 2023-11-26 00:24:51 +08:00
qingxu fu
7ca37c4831 把gpt-4-vision-preview添加到支持列表中 2023-11-25 23:14:57 +08:00
binary-husky
5b06a6cae5 Merge branch 'master' into frontier 2023-11-24 03:28:07 +08:00
qingxu fu
5d5695cd9a version 3.61 2023-11-24 03:19:20 +08:00
qingxu fu
fd72894c90 修复错误的class命名 2023-11-24 02:42:58 +08:00
qingxu fu
c1abec2e4b Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-11-24 02:36:39 +08:00
qingxu fu
9916f59753 接入deepseek-coder 2023-11-24 02:35:44 +08:00
binary-husky
e6716ccf63 添加zhipuai依赖安装提醒 2023-11-24 01:47:03 +08:00
binary-husky
e533ed6d12 修正并行运行时的截断 2023-11-23 17:51:00 +08:00
binary-husky
4fefbb80ac Merge branch 'master' into frontier 2023-11-23 16:21:37 +08:00
qingxu fu
1253a2b0a6 修正错误地把重名路径当成文件的bug 2023-11-23 15:37:00 +08:00
binary-husky
71537b570f Merge pull request #1315 from Harry67Hu/master
fix MacOS-zip bug
2023-11-22 16:49:22 +08:00
Hao Ma
203d5f7296 Merge pull request #1282 from Kilig947/image_understanding_spark
Image understanding spark
2023-11-22 16:19:22 +08:00
Harry67Hu
7754215dad fix MacOS-zip bug 2023-11-22 15:23:23 +08:00
Marroh
b470af7c7b 遵循PEP 328优化太长的import 2023-11-22 13:20:56 +08:00
Marroh
f8c5f9045d Merge branch 'image_understanding_spark' of https://github.com/Kilig947/gpt_academic into Kilig947-image_understanding_spark 2023-11-22 10:45:45 +08:00
qingxu fu
c7a0a5f207 引入更稳定的自动更新URL 2023-11-22 01:40:40 +08:00
qingxu fu
b1be05009b 移除冗余代码,修复多用户存档问题 2023-11-20 01:06:19 +08:00
qingxu fu
977f992e3a 修复多用户文件冲突 2023-11-20 00:33:18 +08:00
Marroh
cdca36f5d2 移动import 2023-11-19 23:42:07 +08:00
Marroh
6ed88fe848 Merge branch 'image_understanding_spark' of https://github.com/Kilig947/gpt_academic into Kilig947-image_understanding_spark 2023-11-19 23:38:17 +08:00
qingxu fu
74f70305b7 introduce precommit 2023-11-19 22:03:36 +08:00
qingxu fu
b506c06542 Merge branch 'master' into frontier 2023-11-19 21:50:19 +08:00
qingxu fu
e5cd66a2f7 Merge branch 'frontier' of https://github.com/binary-husky/chatgpt_academic into frontier 2023-11-19 21:50:15 +08:00
binary-husky
2199cd263c Merge pull request #1293 from mbaneshi/mbaneshi
Update README.English.md
2023-11-17 14:30:26 +08:00
Mehdi Baneshi
47fe06f79d Update README.English.md
Change the reference section, add link for easy access to the resource
2023-11-17 05:45:47 +03:30
binary-husky
75a84d3cec 添加python版本说明 2023-11-16 17:18:07 +08:00
spike
ea4e03b1d8 llm_kwargs 增加most_recent_uploaded 2023-11-15 10:27:40 +08:00
spike
aa341fd268 适配星火大模型图片理解 增加上传图片view 2023-11-15 10:09:42 +08:00
binary-husky
c4aefc5fac Merge pull request #1274 from Skyzayre/master
dall-e作图模型调用错误的相关修正 && dall-e做图质量功能添加
2023-11-14 23:18:07 +08:00
binary-husky
e7c662a5d6 Update crazy_functional.py 2023-11-14 23:16:49 +08:00
binary-husky
5caeb7525d Update 图片生成.py 2023-11-14 23:15:19 +08:00
Skyzayre
f495bb154e Update 图片生成.py 2023-11-14 21:33:00 +08:00
Skyzayre
4d1657a531 Update 图片生成.py 2023-11-14 21:25:47 +08:00
Skyzayre
5391cb4198 Update crazy_functional.py 2023-11-14 21:17:48 +08:00
Skyzayre
1b28ae3baa Update crazy_functional.py 2023-11-14 21:14:41 +08:00
Skyzayre
518a1b2b75 Update crazy_functional.py 2023-11-14 20:51:49 +08:00
Skyzayre
443915b6d6 Update 图片生成.py 2023-11-14 20:49:53 +08:00
binary-husky
371158cb56 Merge pull request #1268 from DoiiarX/master
添加帮助文本
2023-11-14 12:29:15 +08:00
binary-husky
1fa296a303 添加帮助文本 2023-11-14 12:28:57 +08:00
Doiiars
b0c34a89cd Update main.py
添加临时更换API的帮助
2023-11-14 12:22:52 +08:00
binary-husky
2003afe27f API_URL_REDIRECT自动检测 2023-11-14 11:54:07 +08:00
binary-husky
682898a3ba 支持gpt-4-v处理多张图片 2023-11-13 13:21:33 +08:00
binary-husky
9a21e13d33 支持gpt-4-vision-preview 2023-11-13 13:10:59 +08:00
binary-husky
f03aa8713d limit author nums 2023-11-13 01:10:12 +08:00
binary-husky
7b526cf74b 更新scipdf_parser 2023-11-13 00:48:48 +08:00
binary-husky
27db900692 移除batchsize 2023-11-13 00:24:20 +08:00
binary-husky
b9b7bf38ab 修复插件导入时的pytorch加载问题 2023-11-13 00:15:15 +08:00
binary-husky
7e56ace2c0 更新README 2023-11-12 23:31:50 +08:00
binary-husky
67a98de841 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-11-12 22:27:29 +08:00
binary-husky
4306f8fd3e version 3.60 开放AutoGen多智能体插件测试 2023-11-12 22:26:00 +08:00
binary-husky
69f37df356 紧急修复终结点覆盖错误的问题 2023-11-12 22:15:54 +08:00
binary-husky
94ecbde198 将AutoGen放回下拉菜单中 2023-11-12 18:22:46 +08:00
binary-husky
51c70e9e47 update translation 2023-11-12 16:04:55 +08:00
binary-husky
c45336a3cd change nougat batchsize 2023-11-12 15:57:18 +08:00
binary-husky
f34f1091c3 fix nougat 2023-11-12 14:13:49 +08:00
binary-husky
899bbe9229 更新提示 2023-11-11 23:54:24 +08:00
binary-husky
eeb70e966c 修改插件按钮顺序 2023-11-11 23:35:11 +08:00
qingxu fu
1335da4f45 Merge branch 'frontier' into master_autogen 2023-11-11 23:24:21 +08:00
qingxu fu
2d91e438d6 修正internlm输入设备bug 2023-11-11 23:22:50 +08:00
qingxu fu
a55bc0c07c AutoGen自动忽略重复的输入 2023-11-11 23:22:09 +08:00
qingxu fu
f7f6db831b 处理模型兼容的一些细节 2023-11-11 22:35:06 +08:00
qingxu fu
a655ce1f00 Merge branch 'frontier' into master_autogen 2023-11-11 22:03:20 +08:00
qingxu fu
28119e343c 将autogen大模型调用底层hook掉 2023-11-11 22:01:19 +08:00
qingxu fu
f75e39dc27 修复本地模型在Windows下的加载BUG 2023-11-11 21:11:55 +08:00
qingxu fu
e4409b94d1 修正拼写 report_execption -> report_exception #1220 2023-11-11 18:30:57 +08:00
qingxu fu
2570e4b997 remove revision 2023-11-11 18:17:58 +08:00
qingxu fu
2b917edf26 修复本地模型在windows上的兼容性 2023-11-11 17:58:17 +08:00
binary-husky
fcf04554c6 Merge pull request #1255 from xiangsam/master
[Feature] 更新精准翻译PDF文档(NOUGAT)插件
2023-11-11 14:07:22 +08:00
qingxu fu
107ea868e1 API2D自动对齐 2023-11-10 23:08:56 +08:00
qingxu fu
da7c03e868 图像修改 2023-11-10 22:54:55 +08:00
qingxu fu
42339a3e6b Merge branch 'master' into frontier 2023-11-10 22:54:24 +08:00
xiangsam
362b545a45 更改import nougat时机 2023-11-10 14:32:07 +00:00
Samrito
84b45dc4fb Merge branch 'binary-husky:master' into master 2023-11-10 22:07:41 +08:00
qingxu fu
f9fc02948a 更新分辨率提示 2023-11-10 21:04:21 +08:00
qingxu fu
0299b0f95f 支持DALLE3 2023-11-10 20:59:08 +08:00
xiangsam
33bf795c66 更新精准翻译PDF文档(NOUGAT)插件 2023-11-10 12:06:39 +00:00
binary-husky
caf45ef740 Merge pull request #1244 from awwaawwa/fix_gpt_35_16k_maxtoken
修改 gpt-3.5-turbo-16k 系列模型 max_token 为 16385
2023-11-10 12:55:02 +08:00
binary-husky
b49b272587 Merge pull request #1241 from Skyzayre/master
新加入1106两个模型的适配
2023-11-10 12:53:42 +08:00
qingxu fu
a1a91c25a5 移除重复项 2023-11-10 12:53:03 +08:00
qingxu fu
2912eaf082 Merge branch 'master' of https://github.com/Skyzayre/gpt_academic into Skyzayre-master2 2023-11-10 12:51:50 +08:00
binary-husky
795de492fe Merge pull request #1238 from samxiaowastaken/master
Add new API support
2023-11-10 12:41:14 +08:00
qingxu fu
0ff750b60a 修改缩进 2023-11-10 12:40:25 +08:00
qingxu fu
8ad2a2bb86 Merge branch 'master' of https://github.com/samxiaowastaken/gpt_academic into samxiaowastaken-master 2023-11-10 12:37:30 +08:00
binary-husky
12df41563a hide audio btn border 2023-11-08 18:40:36 +08:00
awwaawwa
8d94564e67 修改 gpt-3.5-turbo-16k 系列模型 max_token 为 16385
根据 https://platform.openai.com/docs/models/gpt-3-5 ,这个16k的3.5上下文窗口其实是16385
2023-11-07 15:59:07 +08:00
Skyzayre
736f1214ee Update bridge_all.py 2023-11-07 15:55:23 +08:00
binary-husky
e9cf3d3d12 version 3.57 2023-11-07 15:52:08 +08:00
binary-husky
996057e588 support chatglm3 2023-11-07 15:41:04 +08:00
binary-husky
804599bbc3 autogen 2023-11-07 15:36:05 +08:00
Skyzayre
ffe6c1403e Update bridge_chatgpt.py 2023-11-07 14:25:36 +08:00
Skyzayre
3a2466fe4e Update README_RS.md 2023-11-07 14:23:16 +08:00
Skyzayre
6c795809f7 Update README_JP.md 2023-11-07 14:23:01 +08:00
Skyzayre
3141cd392a Update README_FR.md 2023-11-07 14:22:46 +08:00
Skyzayre
77220002e0 Update README_EN.md 2023-11-07 14:22:29 +08:00
Skyzayre
cd40bf9ae2 Update README.md.Portuguese.md 2023-11-07 14:22:12 +08:00
Skyzayre
6c3405ba55 Update README.md.Korean.md 2023-11-07 14:21:52 +08:00
Skyzayre
bba3419ace Update README.md.Italian.md 2023-11-07 14:21:32 +08:00
Skyzayre
61cf2b32eb Update README.md.German.md 2023-11-07 14:21:08 +08:00
Skyzayre
3ed0e8012d Update bridge_all.py 2023-11-07 14:17:01 +08:00
Skyzayre
4d9256296d Update 多智能体.py 2023-11-07 14:13:37 +08:00
Skyzayre
0897057be1 Update README.md 2023-11-07 14:11:52 +08:00
Skyzayre
136e6aaa21 Update config.py 2023-11-07 14:08:24 +08:00
binary-husky
8e375b0ed2 support chatglm3 2023-11-07 14:07:30 +08:00
binary-husky
5192d316f0 Merge branch 'frontier' 2023-11-07 11:40:27 +08:00
binary-husky
245585be81 Update README.md 2023-11-07 10:39:35 +08:00
Yao Xiao
4824905592 Add new API support 2023-11-07 09:48:01 +08:00
binary-husky
5566ba8257 Merge pull request #1215 from ZornWang/ERNIE_Bot_4
[Feature] 添加百度千帆文心4.0大模型支持
2023-11-01 22:29:33 +08:00
binary-husky
8c4a753b65 Merge pull request #1222 from ji-jinlong/master
Update 理解PDF文档内容.py
2023-11-01 22:26:55 +08:00
binary-husky
f016323b8a Update 理解PDF文档内容.py 2023-11-01 22:26:46 +08:00
binary-husky
cd9f2ec402 Update README.md 2023-11-01 22:25:27 +08:00
ji-jinlong
ca7ff47fcb Update 理解PDF文档内容.py 2023-11-01 16:05:57 +08:00
binary-husky
09857ea455 解除本地模型的若干并发问题 2023-10-31 20:37:07 +08:00
binary-husky
17cf47dcd6 防止多线程数据交叉 2023-10-31 18:02:14 +08:00
binary-husky
136162ec0d better local model interaction 2023-10-31 16:18:27 +08:00
binary-husky
08f036aafd 支持chatglm3 2023-10-31 03:08:50 +08:00
Zorn Wang
9fb29f249b Feature: 添加百度千帆文心4.0大模型支持 2023-10-30 19:20:05 +08:00
binary-husky
9a1aff5bb6 修复get_conf接口 2023-10-30 11:10:05 +08:00
binary-husky
f3f90f7b90 Update README.md 2023-10-30 01:10:45 +08:00
binary-husky
527f9d28ad change get_conf 2023-10-29 00:34:40 +08:00
binary-husky
12b2a229b6 移除调试打印 2023-10-28 20:15:59 +08:00
binary-husky
40a065ce04 Merge branch 'master' into frontier 2023-10-28 20:09:49 +08:00
binary-husky
b14d4de0b1 将默认系统提示词转移到Config中 2023-10-28 20:08:50 +08:00
binary-husky
e64c26e617 紧急修复报错异常 2023-10-28 19:53:05 +08:00
binary-husky
0b1e599b01 紧急修复报错异常 2023-10-28 19:43:48 +08:00
binary-husky
127385b846 接入新模型 2023-10-28 19:23:43 +08:00
binary-husky
cf085565a7 rename folder 2023-10-28 17:44:17 +08:00
binary-husky
5a530df4f2 修复autogen接口的问题 2023-10-28 17:41:22 +08:00
binary-husky
b4c7b26f63 Merge branch 'master' into frontier 2023-10-28 14:32:12 +08:00
binary-husky
8bdcc4ff28 修复对一些第三方接口的兼容性 2023-10-28 14:32:03 +08:00
binary-husky
e596bb6fff 修复AZURE_CFG_ARRAY使用时不给定apikey报错的问题 2023-10-28 00:29:49 +08:00
binary-husky
50ecb45d63 Merge pull request #1173 from Kilig947/azure_multiple_models
Azure 支持部署多个模型
2023-10-27 23:36:05 +08:00
binary-husky
349c399967 Merge branch 'frontier' into azure_multiple_models 2023-10-27 23:35:50 +08:00
binary-husky
103d05d242 增加一个Azure配置的Array 2023-10-27 23:29:18 +08:00
binary-husky
d0589209cc Merge branch 'azure_multiple_models' of https://github.com/Kilig947/gpt_academic into Kilig947-azure_multiple_models 2023-10-27 22:41:51 +08:00
binary-husky
8faf69c41e Merge branch 'master' into frontier 2023-10-27 10:25:11 +08:00
binary-husky
f7a332eee7 Merge pull request #1201 from shao0099876/master
修复了一个导致无法加载未量化的ChatGLM2 fine-tuning模型的问题
2023-10-27 10:00:48 +08:00
shao0099876
f6e34d9621 修复了一个导致无法加载未量化的ChatGLM2 fine-tuning模型的问题(quantization_bit=0) 2023-10-26 14:38:58 +00:00
qingxu fu
706a239232 Newbing组件已不再维护 2023-10-25 11:56:20 +08:00
qingxu fu
00076cc6f4 支持讯飞星火v3 (sparkv3) 2023-10-25 11:48:28 +08:00
qingxu fu
a711db0b5b stashed commit 2023-10-25 11:32:32 +08:00
binary-husky
5dd3f4ad6d rename 2023-10-23 21:50:47 +08:00
binary-husky
65e202881a add option to skip new translation 2023-10-23 21:12:36 +08:00
binary-husky
27c4e3ef4f 优化autogen的使用 2023-10-23 01:56:18 +08:00
binary-husky
e2b3c47186 Version 3.56 - Merge branch 'frontier' 2023-10-22 23:24:41 +08:00
binary-husky
a14ef78d52 容忍tex文件的缺失 2023-10-22 00:05:48 +08:00
binary-husky
b88e577eb5 update translation 2023-10-21 19:15:23 +08:00
binary-husky
991e41b313 change default path to relative 2023-10-21 00:27:55 +08:00
binary-husky
ff2bc64d57 图片交互显示 2023-10-20 23:56:24 +08:00
binary-husky
218f0c445e 微调Autogen代码结构 2023-10-20 23:18:32 +08:00
binary-husky
7ee0c94924 接入autogen 2023-10-20 21:31:50 +08:00
binary-husky
3531e7f23f 修正提示 2023-10-20 15:40:36 +08:00
binary-husky
d99f4681f0 修正提示 2023-10-20 15:39:50 +08:00
binary-husky
f2b2ccd577 Merge branch 'master' into frontier 2023-10-20 10:47:40 +08:00
binary-husky
c18a235d33 微调HTML 2023-10-20 10:43:05 +08:00
binary-husky
6c87c55a8a 微调HTML样式 2023-10-20 10:43:04 +08:00
binary-husky
f925fe7692 添加对NOUGAT的代理设置 2023-10-20 10:43:04 +08:00
qingxu fu
af83c43fb0 补充缺失摘要的措施 2023-10-20 10:43:04 +08:00
qingxu fu
4305ee0313 微调HTML汇报样式 2023-10-20 10:43:04 +08:00
binary-husky
a6e7bbbd22 修改缩进 2023-10-20 10:43:04 +08:00
binary-husky
62c02dfa86 修复warmup模块的延迟问题 2023-10-20 10:43:04 +08:00
binary-husky
a2ebbafb77 微调提示 2023-10-20 10:43:04 +08:00
binary-husky
a915a2ddd1 Grobid负载均衡 2023-10-20 10:43:04 +08:00
Menghuan1918
537c15b354 在proxies返回空时会首先尝试直接连接 2023-10-20 10:43:04 +08:00
binary-husky
73ed92af59 Update GithubAction+NoLocal+Latex 2023-10-20 10:43:04 +08:00
Skyzayre
88303b6f78 Update Dockerfile
gradio已经更新到3.32.6,但是Dockerfile中仍然是3.32.2
2023-10-20 10:42:31 +08:00
binary-husky
120d4ad556 Update README.md 2023-10-20 10:42:31 +08:00
binary-husky
3410bd9b1d Update README.md 2023-10-19 16:05:12 +08:00
binary-husky
20e3eee6e7 Update GithubAction+NoLocal+Latex 2023-10-18 16:23:28 +08:00
binary-husky
775b07dbcc 为Dockerfile添加更多注释 2023-10-18 11:15:35 +08:00
binary-husky
560d4e2cb1 修正Dockerfile中的错误 2023-10-18 11:10:38 +08:00
qingxu fu
4ad432e1da 新版HTML报告页面 2023-10-16 22:13:59 +08:00
binary-husky
32ddcd067a Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-10-16 00:05:53 +08:00
binary-husky
98ef658307 修复warmup模块的延迟问题 2023-10-16 00:05:31 +08:00
w_xiaolizu
1e2bcb8189 Azure 支持部署多个模型 2023-10-15 23:19:07 +08:00
binary-husky
a4de91d000 修改缩进 2023-10-15 22:53:57 +08:00
binary-husky
1bb437a5d0 微调提示 2023-10-15 21:17:00 +08:00
binary-husky
4421219c2b Merge branch 'frontier' 2023-10-15 20:56:49 +08:00
binary-husky
ea28db855d 完善自定义菜单 2023-10-15 20:54:16 +08:00
binary-husky
5aea7b3d09 多线程运行微调 2023-10-15 19:13:25 +08:00
binary-husky
5274117cf1 缺失摘要时,插入伪摘要 2023-10-14 23:48:37 +08:00
binary-husky
673faf8cef Grobid负载均衡 2023-10-14 19:59:35 +08:00
binary-husky
130ae31d55 Merge pull request #1168 from Menghuan1918/master
fix bug  #1167 学术小助手在proxies返回空时会首先尝试直接连接
2023-10-13 17:02:01 +08:00
Menghuan1918
c3abc46d4d 在proxies返回空时会首先尝试直接连接 2023-10-13 15:23:06 +08:00
binary-husky
4df75d49ad 兼容一些第三方代理 2023-10-12 23:42:45 +08:00
binary-husky
9ea0fe4de2 Update GithubAction+NoLocal+Latex 2023-10-12 21:23:15 +08:00
binary-husky
8698c5a80f Merge pull request #1159 from Skyzayre/patch-1
Update Dockerfile
2023-10-11 17:18:28 +08:00
binary-husky
383f7f4f77 add webrtcvad dependency 2023-10-11 15:51:34 +08:00
binary-husky
34d784df79 12 2023-10-11 15:48:25 +08:00
binary-husky
662bebfc02 SSL 2023-10-11 15:34:06 +08:00
binary-husky
0c3b00fc6b cookie space 2023-10-11 12:33:50 +08:00
binary-husky
b6e370e8c9 ymp 2023-10-11 11:30:34 +08:00
binary-husky
71ea8e584a 自定义基础功能区按钮 2023-10-11 11:21:41 +08:00
Skyzayre
a5491b9199 Update Dockerfile
gradio已经更新到3.32.6,但是Dockerfile中仍然是3.32.2
2023-10-11 00:26:16 +08:00
binary-husky
6f383c1dc8 支持自定义基础功能区 2023-10-11 00:14:56 +08:00
binary-husky
500a0cbd16 大幅优化语音助手 2023-10-09 01:18:05 +08:00
binary-husky
1ef6730369 Update README.md 2023-10-08 23:14:07 +08:00
binary-husky
491174095a 更新docker-compose说明 2023-10-07 11:59:06 +08:00
binary-husky
02c270410c 减小Latex容器体积 2023-10-06 11:44:10 +08:00
binary-husky
89eec21f27 随机选择, 绕过openai访问频率限制 2023-10-06 10:50:41 +08:00
binary-husky
49cea97822 启动主题自动转换 2023-10-06 10:36:30 +08:00
binary-husky
6310b65d70 重新编译Gradio优化使用体验 2023-10-06 10:32:03 +08:00
binary-husky
93c76e1809 更新内置gradio版本 2023-10-06 09:54:07 +08:00
binary-husky
f64cf7a3d1 update translation matrix 2023-10-02 14:24:01 +08:00
binary-husky
fdffbee1b0 Update toolbox.py 2023-09-30 09:56:30 +08:00
binary-husky
87ccd1a89a Update crazy_functional.py 2023-09-27 18:35:06 +08:00
binary-husky
87b9734986 修复'copiedIcon'重复定义BUG 2023-09-27 16:35:58 +08:00
binary-husky
d2d5665c37 允许模块预热时使用Proxy 2023-09-27 15:53:45 +08:00
binary-husky
0844b6e9cf GROBID服务代理访问支持 2023-09-27 15:40:55 +08:00
binary-husky
9cb05e5724 修改布局 2023-09-27 15:20:28 +08:00
binary-husky
80b209fa0c Merge branch 'frontier' 2023-09-27 15:19:07 +08:00
binary-husky
8d4cb05738 Matlab项目解析插件的Shortcut 2023-09-26 10:16:38 +08:00
binary-husky
31f4069563 改善润色和校读Prompt 2023-09-25 17:46:28 +08:00
binary-husky
8ba6fc062e Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2023-09-23 23:59:30 +08:00
binary-husky
c0c2d14e3d better scrollbar 2023-09-23 23:58:32 +08:00
binary-husky
f0a5c49a9c Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2023-09-23 23:47:42 +08:00
binary-husky
9333570ab7 减小重置等基础按钮的最小大小 2023-09-23 23:47:25 +08:00
binary-husky
d6eaaad962 禁止gradio显示误导性的share=True 2023-09-23 23:23:23 +08:00
binary-husky
e24f077b68 显式增加azure-gpt-4选项 2023-09-23 23:06:58 +08:00
binary-husky
dc5bb9741a 版本更新 2023-09-23 22:45:07 +08:00
binary-husky
b383b45191 version 3.54 beta 2023-09-23 22:44:18 +08:00
binary-husky
2d8f37baba 细分代理场景 2023-09-23 22:43:15 +08:00
binary-husky
409927ef8e 统一 transformers 版本 2023-09-23 22:26:28 +08:00
binary-husky
5b231e0170 添加整体复制按钮 2023-09-23 22:11:29 +08:00
binary-husky
87f629bb37 添加gpt-4-32k 2023-09-23 20:24:13 +08:00
binary-husky
3672c97a06 动态代码解释器 2023-09-23 01:51:05 +08:00
binary-husky
b6ee3e9807 Merge pull request #1121 from binary-husky/frontier
arxiv翻译插件添加禁用缓存选项
2023-09-21 09:33:19 +08:00
binary-husky
d56bc280e9 添加禁用缓存选项 2023-09-20 22:04:15 +08:00
qingxu fu
d5fd00c15d 微调Dockerfile 2023-09-20 10:02:10 +08:00
binary-husky
5e647ff149 Merge branch 'master' into frontier 2023-09-19 17:21:02 +08:00
binary-husky
868faf00cc 修正docker compose 2023-09-19 17:10:57 +08:00
binary-husky
a0286c39b9 更新README 2023-09-19 17:08:20 +08:00
binary-husky
9cced321f1 修改README 2023-09-19 16:55:39 +08:00
binary-husky
3073935e24 修改readme 推送version 3.53 2023-09-19 16:49:33 +08:00
binary-husky
ef6631b280 TOKEN_LIMIT_PER_FRAGMENT修改为1024 2023-09-19 16:31:36 +08:00
binary-husky
0801e4d881 Merge pull request #1111 from kaixindelele/only_chinese_pdf
提升PDF翻译插件的效果
2023-09-19 15:56:04 +08:00
qingxu fu
ae08cfbcae 修复小Bug 2023-09-19 15:55:27 +08:00
qingxu fu
1c0d5361ea 调整状态栏的最小高度 2023-09-19 15:52:42 +08:00
qingxu fu
278464bfb7 合并重复的函数 2023-09-18 23:03:23 +08:00
qingxu fu
2a6996f5d0 修复Azure的ENDPOINT格式兼容性 2023-09-18 21:19:02 +08:00
qingxu fu
84b11016c6 在nougat处理结束后,同时输出mmd文件 2023-09-18 15:21:30 +08:00
qingxu fu
7e74d3d699 调整按钮位置 2023-09-18 15:19:21 +08:00
qingxu fu
2cad8e2694 支持动态切换主题 2023-09-17 00:15:28 +08:00
qingxu fu
e765ec1223 dynamic theme 2023-09-17 00:02:49 +08:00
kaixindelele
471a369bb8 论文翻译只输出中文 2023-09-16 22:09:44 +08:00
binary-husky
760ff1840c 修复一个循环的Bug 2023-09-15 17:08:23 +08:00
binary-husky
9905122fc2 修复Tex文件匹配BUG 2023-09-15 12:55:41 +08:00
binary-husky
abea0d07ac 修复logging的Bug 2023-09-15 11:00:30 +08:00
binary-husky
16ff5ddcdc 版本3.52 2023-09-14 23:07:12 +08:00
binary-husky
1c4cb340ca 修复滞留文档的提示Bug 2023-09-14 22:45:45 +08:00
binary-husky
5ba8ea27d1 用logging取代print 2023-09-14 22:33:07 +08:00
binary-husky
567c6530d8 增加NOUGAT消息提示和错误操作提示 2023-09-14 21:38:47 +08:00
binary-husky
a3f36668a8 修复latex识别主文件错误的问题 2023-09-14 17:51:41 +08:00
binary-husky
a1cc2f733c 修复nougat线程锁释放Bug 2023-09-14 15:26:03 +08:00
binary-husky
0937f37388 Predict按钮参数修正 2023-09-14 11:02:40 +08:00
binary-husky
74f35e3401 针对虚空终端个别情况下不输出文件的问题进行提示 2023-09-14 01:51:55 +08:00
binary-husky
ab7999c71a 修正本项目源码范围 2023-09-14 01:00:38 +08:00
binary-husky
544771db9a 隐藏历史对话绝对路径 2023-09-14 00:53:15 +08:00
binary-husky
ec9d030457 把上传文件路径和日志路径修改为统一可配置的变量 2023-09-14 00:51:25 +08:00
binary-husky
14de282302 给nougat加线程锁 合并冗余代码 2023-09-13 23:21:00 +08:00
binary-husky
fb5467b85b 更新插件系统提示 2023-09-12 19:13:36 +08:00
binary-husky
c4c6465927 解决issues #1097 2023-09-12 18:57:50 +08:00
qingxu fu
99a1cd6f9f 添加pypinyin依赖 2023-09-12 12:20:05 +08:00
qingxu fu
7e73a255f4 修改知识库插件的提示信息 2023-09-12 11:47:34 +08:00
qingxu fu
4b5f13bff2 修复知识库的依赖问题 2023-09-12 11:35:31 +08:00
qingxu fu
d495b73456 支持更多UI皮肤外观,加入暗色亮色切换键 2023-09-11 22:55:32 +08:00
qingxu fu
e699b6b13f Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-09-11 14:49:37 +08:00
qingxu fu
eb150987f0 兼容一个one-api没有done数据包的第三方Bug情形 2023-09-11 14:49:30 +08:00
binary-husky
34784333dc 融合PDF左右比例调整到95% 2023-09-10 17:22:35 +08:00
binary-husky
28d777a96b 修正报错消息 2023-09-10 16:52:35 +08:00
qingxu fu
c45fa88684 update translation matrix 2023-09-09 21:57:24 +08:00
binary-husky
ad9807dd14 更新虚空终端的提示 2023-09-09 20:32:44 +08:00
binary-husky
2a51715075 修复Dockerfile 2023-09-09 20:15:46 +08:00
binary-husky
7c307d8964 修复源代码解析模块与虚空终端的兼容性 2023-09-09 19:33:05 +08:00
binary-husky
baaacc5a7b Update README.md 2023-09-09 19:11:21 +08:00
binary-husky
6faf5947c9 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-09-09 18:30:59 +08:00
binary-husky
571335cbc4 fix docker file 2023-09-09 18:30:43 +08:00
binary-husky
7d5abb6d69 Merge pull request #1077 from jsz14897502/master
更改谷歌学术搜索助手获取摘要的逻辑
2023-09-09 18:24:30 +08:00
binary-husky
a0f592308a Merge branch 'master' into jsz14897502-master 2023-09-09 18:22:29 +08:00
binary-husky
e512d99879 添加一定的延迟,防止触发反爬虫机制 2023-09-09 18:22:22 +08:00
binary-husky
e70b636513 修复数学公式判定的Bug 2023-09-09 17:50:38 +08:00
binary-husky
408b8403fe Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-09-08 12:10:22 +08:00
binary-husky
74f8cb3511 update dockerfile 2023-09-08 12:10:16 +08:00
qingxu fu
2202cf3701 remove proxy message 2023-09-08 11:11:53 +08:00
qingxu fu
cce69beee9 update error message 2023-09-08 11:08:02 +08:00
qingxu fu
347124c967 update scipdf_parser dep 2023-09-08 10:43:20 +08:00
qingxu fu
77a6105a9a 修改demo案例 2023-09-08 09:52:29 +08:00
qingxu fu
13c9606af7 修正下载PDF失败时产生的错误提示 2023-09-08 09:47:29 +08:00
binary-husky
bac6810e75 修改操作提示 2023-09-08 09:38:16 +08:00
binary-husky
c176187d24 修复因为函数返回值导致的不准确错误提示 2023-09-07 23:46:54 +08:00
binary-husky
31d5ee6ccc Update README.md 2023-09-07 23:05:54 +08:00
binary-husky
5e0dc9b9ad 修复PDF下载路径时间戳的问题 2023-09-07 18:51:09 +08:00
binary-husky
4c6f3aa427 CodeInterpreter 2023-09-07 17:45:44 +08:00
binary-husky
d7331befc1 add note 2023-09-07 17:42:47 +08:00
binary-husky
63219baa21 修正语音对话时 句子末尾显示异常的问题 2023-09-07 17:04:40 +08:00
binary-husky
97cb9a4adc full capacity docker file 2023-09-07 15:09:38 +08:00
binary-husky
24f41b0a75 new docker file 2023-09-07 00:45:03 +08:00
binary-husky
bfec29e9bc new docker file 2023-09-07 00:43:31 +08:00
binary-husky
dd9e624761 add new dockerfile 2023-09-07 00:40:11 +08:00
binary-husky
7855325ff9 update dockerfiles 2023-09-06 23:33:15 +08:00
binary-husky
2c039ff5c9 add session 2023-09-06 22:19:32 +08:00
binary-husky
9a5ee86434 Merge pull request #1084 from eltociear/patch-2
Update README.md
2023-09-06 21:56:39 +08:00
binary-husky
d6698db257 nougat翻译PDF论文 2023-09-06 15:32:11 +08:00
Ikko Eltociear Ashimine
b2d03bf2a3 Update README.md
arbitary -> arbitrary
2023-09-06 15:30:12 +09:00
binary-husky
2f83b60fb3 添加搜索失败时的提示 2023-09-06 12:36:59 +08:00
binary-husky
d183e34461 添加一个全版本搜索的开关 2023-09-06 11:42:29 +08:00
binary-husky
fb78569335 Merge branch 'master' of https://github.com/jsz14897502/gpt_academic into jsz14897502-master 2023-09-06 10:27:52 +08:00
qingxu fu
12c8cd75ee Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-09-06 10:24:14 +08:00
qingxu fu
0e21e3e2e7 修复没填写讯飞APPID无报错提示的问题 2023-09-06 10:24:11 +08:00
binary-husky
fda1e87278 Update stale.yml 2023-09-06 10:19:21 +08:00
binary-husky
1092031d77 Create stale.yml 2023-09-06 10:15:52 +08:00
binary-husky
f0482d3bae Update docker-compose.yml 2023-09-04 12:39:25 +08:00
binary-husky
b6ac3d0d6c Update README.md 2023-09-04 12:34:55 +08:00
binary-husky
3344ffcb8b Update README.md 2023-09-04 11:41:52 +08:00
binary-husky
82936f71b6 Update README.md 2023-09-04 11:37:47 +08:00
binary-husky
51e809c09e Update README.md 2023-09-04 11:34:46 +08:00
qingxu fu
713df396dc Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-09-03 16:46:30 +08:00
qingxu fu
23a42d93df update translation matrix 2023-09-03 16:46:27 +08:00
binary-husky
0ef06683dc Update README.md 2023-09-03 16:35:03 +08:00
qingxu fu
843113ba0f fix minor bugs 2023-09-03 16:20:05 +08:00
binary-husky
79080290c6 Merge pull request #1074 from Kilig947/plugin_classification
插件分区新增插件分类选择
2023-09-03 15:41:45 +08:00
qingxu fu
9bd2023a8e revise version check 2023-09-03 15:40:41 +08:00
qingxu fu
0d6e32d31a version 3.5 release 2023-09-03 15:38:10 +08:00
qingxu fu
0418257218 Merge branch 'master' into Kilig947-plugin_classification 2023-09-03 15:35:16 +08:00
qingxu fu
a3e6fc0141 修复文心一言的接口问题 2023-09-03 15:32:39 +08:00
qingxu fu
1dd165a3cd ui layout improve 2023-09-03 14:47:22 +08:00
qingxu fu
e666b5269e 改进虚空终端 2023-09-03 00:53:57 +08:00
qingxu fu
0b70e9df7b 优化虚空终端调用流程 2023-09-02 23:49:56 +08:00
qingxu fu
1639796041 support file implementation 2023-09-02 22:22:41 +08:00
jsz14
03164bcb6f fix:没有获取到所有版本时的处理 2023-09-02 19:58:24 +08:00
qingxu fu
d0af074225 change layout 2023-09-02 18:19:19 +08:00
binary-husky
6d7f3feab3 优化主题外观,新增high-contrast主题 2023-09-01 10:45:22 +08:00
binary-husky
045b7f6312 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-09-01 10:34:33 +08:00
binary-husky
116b7ce12f 支持星火认知大模型v2 2023-09-01 10:34:26 +08:00
qingxu fu
8b0905c076 提高虚空终端的成功率 2023-08-31 18:04:31 +08:00
qingxu fu
b69140307b 修复对话框对齐的问题 2023-08-31 16:24:00 +08:00
qingxu fu
b31abbcad3 每个插件可以归属多个Group 2023-08-31 15:59:19 +08:00
qingxu fu
2d5a1fbc12 修改前端代码 2023-08-31 00:21:24 +08:00
jsz14
d052d425af 更改谷歌学术搜索助手获取摘要的逻辑 2023-08-30 19:14:01 +08:00
qingxu fu
89de49f31e 修改变量命名,整理配置清单 2023-08-30 16:00:27 +08:00
w_xiaolizu
a208782049 新增插件分类 2023-08-30 14:46:34 +08:00
qingxu fu
eb802ee975 implement two stage plugin selection 2023-08-29 23:53:47 +08:00
qingxu fu
f40d48b014 fix typing problems 2023-08-29 23:46:40 +08:00
qingxu fu
ef4203f5ca Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-08-29 23:25:10 +08:00
qingxu fu
adf93195e8 尝试使用自然语言调度各个插件 2023-08-29 23:25:06 +08:00
binary-husky
3e5cdbaf68 Update README.md 2023-08-29 18:29:45 +08:00
binary-husky
27cab3b38a Update README.md 2023-08-29 18:29:16 +08:00
qingxu fu
09d38e4abf 出于安全性考虑,默认禁用动态配置修改 2023-08-29 17:50:45 +08:00
qingxu fu
7efb5cb6f5 移除早期引入的测试样本 2023-08-29 17:43:55 +08:00
qingxu fu
31ff6e1e7a 支持自然语言修改项目本身的配置 2023-08-29 17:37:41 +08:00
qingxu fu
2fa3d47887 fix json read error 2023-08-29 12:42:06 +08:00
binary-husky
2cca46375c Update crazy_functional.py 2023-08-28 17:47:37 +08:00
binary-husky
06410b593c Update config.py 2023-08-28 16:16:30 +08:00
binary-husky
545c9f47de Update README.md 2023-08-28 11:59:23 +08:00
binary-husky
973ad41bde add a space 2023-08-28 02:03:30 +08:00
binary-husky
3fa7416eb2 notify dummy action 2023-08-28 01:56:15 +08:00
binary-husky
ec76d3dcc4 支持借助GROBID实现PDF高精度翻译 2023-08-28 01:25:44 +08:00
binary-husky
3f27bec94b Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-08-28 01:22:26 +08:00
binary-husky
ed11269aef 支持借助GROBID实现PDF高精度翻译 2023-08-28 01:22:20 +08:00
qingxu fu
6c653734ec Fix 3rd part chatgpt compat 2023-08-26 17:57:59 +08:00
qingxu fu
19bd0c35ed 修复latex input命令解析问题 2023-08-25 21:20:15 +08:00
binary-husky
3f4c4ebc29 调整注释 2023-08-25 13:16:18 +08:00
binary-husky
6cc7d4ed69 修复文心一言最大文本长度限制带来的问题 2023-08-25 13:09:08 +08:00
binary-husky
67fff17917 3.49 接入百度千帆平台和文心一言 2023-08-25 12:45:08 +08:00
binary-husky
8fce49fa02 支持百度云千帆和文心一言 2023-08-25 12:31:51 +08:00
binary-husky
30f28b37c3 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-08-21 22:09:05 +08:00
binary-husky
6a5681dd0a add llama2 2023-08-21 22:08:57 +08:00
binary-husky
dacc282763 Update README.md 2023-08-21 22:00:51 +08:00
binary-husky
9720bec5e5 Interface with LLaMa2 from huggingface 2023-08-21 21:54:21 +08:00
binary-husky
8b3b883fce Update README.md 2023-08-17 10:02:55 +08:00
qingxu fu
4dc0f8e57a 修改dockercompose,添加对阿里qwen的支持 2023-08-17 10:00:42 +08:00
qingxu fu
5e48fc98ed 添加本地缓存删除功能 2023-08-16 22:49:46 +08:00
qingxu fu
2ff8dc787e interface with ChatGPT-to-API 2023-08-16 22:21:51 +08:00
qingxu fu
cd38d1697c fix missing finish_reason problem 2023-08-16 21:40:34 +08:00
qingxu fu
00f63cb0bc configure utf8 encoding 2023-08-16 21:29:16 +08:00
binary-husky
dc7fab3c19 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-08-14 17:27:33 +08:00
binary-husky
d1b5359e2b fix github action 2023-08-14 17:27:13 +08:00
binary-husky
0597ffea2e Update README.md 2023-08-14 16:37:07 +08:00
binary-husky
d16329c1af resolve sparkapi on_close error 2023-08-14 11:31:05 +08:00
binary-husky
d5b4d7ab90 better github action 2023-08-14 11:28:52 +08:00
binary-husky
8199a9a12e Update requirements.txt 2023-08-14 11:23:15 +08:00
binary-husky
cb10a8abec Update requirements.txt 2023-08-14 10:54:46 +08:00
binary-husky
0dbcda89b7 add websocket dep 2023-08-14 10:32:31 +08:00
binary-husky
78a8259b82 Update bridge_all.py 2023-08-14 10:24:59 +08:00
binary-husky
f22fdb4f94 Merge pull request #1040 from Keldos-Li/fix-Chuanhu-theme
调整与修复 [川虎小而美] 主题样式
2023-08-14 10:08:01 +08:00
binary-husky
450645a9d0 version 3.48 2023-08-14 03:09:56 +08:00
binary-husky
af23730f8f 接入讯飞星火Spark大模型 2023-08-14 03:08:15 +08:00
Keldos
0b11260d6f fix: 修复川虎主题的slider问题 2023-08-14 00:15:38 +08:00
Keldos
31ab97dd09 feat: 调整川虎主题样式 2023-08-14 00:14:44 +08:00
binary-husky
c0c4834cfc fix interact message 2023-08-13 22:25:01 +08:00
binary-husky
2dae40f4ba Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-08-13 21:34:33 +08:00
binary-husky
587c7400d1 xunfei spark api test 2023-08-13 21:34:27 +08:00
binary-husky
8dd2e2a6b7 Update bug_report.yml 2023-08-13 21:25:21 +08:00
binary-husky
aaf4f37403 Merge pull request #1014 from hongyi-zhao/master
Fix the reverse proxy based OpenAI access via https://github.com/acheong08/ChatGPT-to-API/.
2023-08-13 20:57:32 +08:00
binary-husky
3e2e81a968 add chatgpt website 2023-08-13 20:55:18 +08:00
binary-husky
cc1be5585b Merge branch 'master' of https://github.com/hongyi-zhao/gpt_academic into hongyi-zhao-master 2023-08-13 20:50:09 +08:00
binary-husky
5050016b22 theme typo fix 2023-08-12 20:28:20 +08:00
binary-husky
7662196514 update tests 2023-08-12 14:09:19 +08:00
binary-husky
8ddaca09e0 add commandline helper 2023-08-12 12:11:49 +08:00
binary-husky
71c692dcef Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-08-07 02:11:57 +08:00
binary-husky
184e417fec handle local llm dependency error properly 2023-08-07 02:11:48 +08:00
binary-husky
7a99560183 Update README.md 2023-08-07 02:01:35 +08:00
binary-husky
48f4d6aa2a Update README.md 2023-08-07 02:00:39 +08:00
binary-husky
c17fc2a9b5 我是来自达摩院的大规模语言模型,我叫通义千问。 2023-08-07 01:58:35 +08:00
binary-husky
4d70b3786f interface with qwen 2023-08-07 01:24:41 +08:00
binary-husky
9bee676cd2 Merge pull request #1009 from ValeriaWong/master
feat(chatglm_int8_onnx):纯CPU推理,最多仅需8GB内存,推理速度未测评,token数有限,暂时还不能流式输出 #…
2023-08-07 01:13:09 +08:00
binary-husky
0a37106692 reverse cmd_to_install 2023-08-07 01:11:44 +08:00
binary-husky
57d4541d4e fix minor bug in chatglm-onnx 2023-08-07 01:07:55 +08:00
binary-husky
d7dd586f09 introduce unified base class for local llm models 2023-08-07 00:57:52 +08:00
binary-husky
b6b53ce2a4 Merge branch 'master' of https://github.com/ValeriaWong/chatgpt_academic into ValeriaWong-master 2023-08-06 22:17:52 +08:00
505030475
43809c107d update multi-language module 2023-08-04 23:53:23 +08:00
505030475
1721edc990 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-08-04 23:30:00 +08:00
Hongyi Zhao
bfb7aab4a0 Fix the reverse proxy based OpenAI access via https://github.com/acheong08/ChatGPT-to-API/.
See https://github.com/binary-husky/gpt_academic/issues/900#issuecomment-1658463065 for more detailed discussions.
2023-08-02 18:03:49 +08:00
binary-husky
f4a87d6380 Update README.md 2023-08-01 12:54:50 +08:00
ValeriaWong
c0c337988f feat(chatglm_int8_onnx):纯CPU推理,最多仅需8GB内存,推理速度未测评,token数有限,暂时还不能流式输出 #1008 2023-08-01 00:48:57 +08:00
binary-husky
27f65c251a Update 图片生成.py 2023-07-31 15:57:18 +08:00
qingxu fu
87f099f740 use get_log_folder() to manage log folder - step 1 2023-07-31 12:28:32 +08:00
qingxu fu
484f16e365 修复空输入触发的BUG 2023-07-31 12:08:07 +08:00
qingxu fu
37afcc709b interface with void terminal 2023-07-31 11:20:01 +08:00
binary-husky
9cbe9f240d Update README.md 2023-07-30 14:08:21 +08:00
binary-husky
f6567c02f6 update translation matrix for japanese and t-zh 2023-07-30 13:58:11 +08:00
binary-husky
8c83061a93 more explaination 2023-07-30 13:51:21 +08:00
binary-husky
23f2adfdc3 update translation matrix 2023-07-30 13:44:11 +08:00
binary-husky
61698444b1 change comments 2023-07-30 13:36:34 +08:00
binary-husky
109afcf8f6 Merge remote-tracking branch 'origin/enable_clear_history_option' 2023-07-30 13:27:10 +08:00
binary-husky
19ef6a530a add additonal source for checking proxy ip 2023-07-30 13:23:35 +08:00
binary-husky
e08bd9669e increase audio assistant watch dog patience 2023-07-30 12:48:43 +08:00
binary-husky
155a7e1174 Merge pull request #998 from awwaawwa/enable_clear_history_option
增加自动清除历史消息时的提示
2023-07-28 21:10:31 +08:00
binary-husky
86e33ea99a Update core_functional.py 2023-07-28 21:09:51 +08:00
qingxu fu
524684f8bd fix the markdown translation functionality 2023-07-28 21:03:20 +08:00
qingxu fu
2a362cec84 markdown translation handle github index page 2023-07-28 20:20:30 +08:00
505030475
2747c23868 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-07-28 10:35:50 +08:00
binary-husky
f446dbb62d Update README.md 2023-07-28 09:54:03 +08:00
binary-husky
8d37d94e2c Update README.md 2023-07-28 09:53:17 +08:00
awwaawwa
e4ba0e6c85 add clear history tips 2023-07-27 23:07:59 +08:00
505030475
4216c5196e verify ignore history practice 2023-07-27 22:30:55 +08:00
binary-husky
2df660a718 Merge pull request #992 from yangchuansheng/master
Update README.md
2023-07-26 22:46:43 +08:00
binary-husky
bb496a9c2c Update README.md 2023-07-26 22:46:21 +08:00
binary-husky
4e0737c0c2 Update README.md 2023-07-26 22:46:02 +08:00
binary-husky
4bb3cba5c8 Update README.md 2023-07-26 18:53:42 +08:00
qingxu fu
08b9b0d140 improve audio assistant documents 2023-07-26 18:51:33 +08:00
qingxu fu
3577a72a3b add audio assistant docker compose solution 2023-07-26 18:39:32 +08:00
qingxu fu
0328d6f498 add ALIYUN ACCESSKEY SECRET 2023-07-26 18:28:15 +08:00
qingxu fu
d437305a4f add audio assistant docker 2023-07-26 18:16:59 +08:00
qingxu fu
c4899bcb20 long-term aliyun access 2023-07-26 18:09:28 +08:00
Carson Yang
4295764f8c Update README.md
添加 Sealos 部署方案
2023-07-25 16:38:37 +08:00
binary-husky
e4e2430255 version 3.47 2023-07-24 19:58:47 +08:00
binary-husky
1732127a28 Merge pull request #979 from fenglui/master
增加chatGLM int4配置支持 小显存也可以选择chatGLM
2023-07-24 19:52:27 +08:00
binary-husky
56bb8b6498 improve re efficiency 2023-07-24 18:50:29 +08:00
binary-husky
e93b6fa3a6 Add GLM INT8 2023-07-24 18:19:57 +08:00
binary-husky
dd4ba0ea22 Merge branch 'master' of https://github.com/fenglui/gpt_academic into fenglui-master 2023-07-24 18:06:15 +08:00
binary-husky
c2701c9ce5 Merge pull request #986 from one-pr/git-clone
默认仅 clone 最新的代码,减小 git clone 的大小
2023-07-24 17:48:35 +08:00
woclass
2f019ce359 优化 README.md 中的其他 git clone 2023-07-24 15:14:48 +08:00
woclass
c5b147aeb7 默认仅 clone 最新的代码,减小 git clone 的大小 2023-07-24 15:14:42 +08:00
fenglui
5813d65e52 增加chatGLM int4配置支持 小显存也可以选择chatGLM 2023-07-22 08:29:15 +08:00
binary-husky
a393edfaa4 ALLOW CUSTOM API KEY PATTERN 2023-07-21 22:49:07 +08:00
binary-husky
dd7a01cda5 Merge pull request #976 from fenglui/master
fix msg.data.split(DELIMITER) exception when msg.data is int
2023-07-21 17:02:29 +08:00
fenglui
00a3b91f95 fix msg.data.split(DELIMITER) exception when msg.data is int 2023-07-21 03:51:33 +08:00
qingxu fu
61ba544282 add latex test samples 2023-07-20 19:49:23 +08:00
qingxu fu
b5b8c123e4 latex plugin stability improvement 2023-07-20 19:39:22 +08:00
qingxu fu
d9ceba959f expand range after failure 2023-07-20 18:39:02 +08:00
qingxu fu
6b5b040701 remove pdf merge 2023-07-20 18:29:06 +08:00
qingxu fu
4f4c09a5f3 增强Latex修复能力 2023-07-20 18:08:22 +08:00
qingxu fu
067bc97cce Merge branch 'interface-interlm' of https://github.com/binary-husky/chatgpt_academic into interface-interlm 2023-07-20 12:46:52 +08:00
qingxu fu
7368580cd6 concat pdf after translation 2023-07-20 12:46:48 +08:00
binary-husky
df90db210c Merge branch 'master' into interface-interlm 2023-07-20 11:40:45 +08:00
binary-husky
0927ed20a2 edit default configuration 2023-07-20 11:39:35 +08:00
binary-husky
73b22f85be compat third party gpt error handle 2023-07-20 11:09:22 +08:00
binary-husky
b8d77557b0 Update README.md 2023-07-20 10:12:42 +08:00
binary-husky
99b8fce8f3 Merge pull request #965 from QQisQQ/patch-2
解决new bing 报错200 (fix new bing error code 200 )
2023-07-19 10:15:15 +08:00
binary-husky
16364f1b2d Merge pull request #966 from doujiang-zheng/master
Add timestamp for chat_secrets.log and disable the verbose httpx log.
2023-07-19 10:14:36 +08:00
doujiang-zheng
3b88e00cfb Add timestamp for chat_secrets.log and disable the verbose httpx log. 2023-07-19 09:43:59 +08:00
QQisQQ
0c8c539e9b 解决new bing 报错200 (fix new bing error code 200 )
modify from 16e00af9d5

works for my issue:
```
Traceback (most recent call last):
  File "./request_llm/bridge_newbingfree.py", line 152, in run
    asyncio.run(self.async_run())
  File "/root/miniconda3/envs/py311/lib/python3.11/asyncio/runners.py", line 190, in run
    return runner.run(main)
           ^^^^^^^^^^^^^^^^
  File "/root/miniconda3/envs/py311/lib/python3.11/asyncio/runners.py", line 118, in run
    return self._loop.run_until_complete(task)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/miniconda3/envs/py311/lib/python3.11/asyncio/base_events.py", line 653, in run_until_complete
    return future.result()
           ^^^^^^^^^^^^^^^
  File "./request_llm/bridge_newbingfree.py", line 98, in async_run
    async for final, response in self.newbing_model.ask_stream(
  File "./request_llm/edge_gpt_free.py", line 676, in ask_stream
    async for response in self.chat_hub.ask_stream(
  File "./request_llm/edge_gpt_free.py", line 456, in ask_stream
    self.wss = await self.session.ws_connect(
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/miniconda3/envs/py311/lib/python3.11/site-packages/aiohttp/client.py", line 795, in _ws_connect
    raise WSServerHandshakeError(
aiohttp.client_exceptions.WSServerHandshakeError: 200, message='Invalid response status', url=URL('wss://sydney.bing.com/sydney/ChatHub')
```
2023-07-19 04:39:15 +08:00
binary-husky
fd549fb986 merge success 2023-07-18 19:51:13 +08:00
binary-husky
babb775cfb interface with interlm 2023-07-18 16:33:34 +08:00
qingxu fu
eef9e470c9 Latex解除非UTF8编码错误 2023-07-18 11:00:20 +08:00
binary-husky
3002c6318a Update README.md 2023-07-17 22:21:39 +08:00
binary-husky
6d0bceaebd 移除插件依赖 2023-07-17 22:00:29 +08:00
binary-husky
aa51d6fde6 up 2023-07-17 21:54:28 +08:00
binary-husky
136479e218 Update README.md 2023-07-17 10:38:46 +08:00
binary-husky
19a2742354 Merge pull request #957 from 1Haschwalth/patch-1
Update README.md
2023-07-17 10:35:15 +08:00
1Haschwalth
45aac96dd3 Update README.md 2023-07-16 21:50:08 +08:00
binary-husky
6f21ae8939 support claude api 2023-07-16 15:03:05 +08:00
binary-husky
add98f4eeb 修复自动版本升级Bug 2023-07-16 13:23:28 +08:00
binary-husky
fe231f72b6 fix theme folder rename problem 2023-07-16 13:15:55 +08:00
binary-husky
b308fde480 update readme 2023-07-15 19:19:39 +08:00
binary-husky
f3e14ff806 更新繁體中文映射詞典 2023-07-15 19:11:00 +08:00
binary-husky
79ef9bdf1c update English projection dictionary 2023-07-15 19:01:49 +08:00
binary-husky
a3e938aee9 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-07-15 18:41:46 +08:00
binary-husky
b19a6155f4 restore jittor support 2023-07-15 18:41:35 +08:00
binary-husky
801f7342b1 Update config.py 2023-07-15 17:58:34 +08:00
binary-husky
4829fa0f35 Update README.md 2023-07-15 17:46:19 +08:00
binary-husky
3671f4208e Update README.md 2023-07-15 17:39:04 +08:00
binary-husky
e8c51181ee 进一步提高语音识别的实时性 2023-07-15 17:02:00 +08:00
binary-husky
3ccbb4d6fb 移除google字体 2023-07-15 17:01:37 +08:00
binary-husky
93fe457e99 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-07-15 16:41:46 +08:00
binary-husky
afac657aaa 解决语音助手看门狗线程泄露的问题 2023-07-15 16:41:11 +08:00
binary-husky
3e5c32860a Update README.md 2023-07-15 14:59:05 +08:00
binary-husky
d577bb38b6 Update use_audio.md 2023-07-15 14:58:27 +08:00
binary-husky
418bc32b39 Update use_audio.md 2023-07-15 14:53:30 +08:00
binary-husky
7148ea0596 更新README 2023-07-15 14:44:07 +08:00
binary-husky
87adb17df4 3.46 2023-07-15 14:38:18 +08:00
binary-husky
3fcee3762d 微调样式 2023-07-15 14:35:24 +08:00
binary-husky
1f014779e4 微调样式 2023-07-15 14:31:38 +08:00
binary-husky
97879e73ef 恢复横向调整css 2023-07-15 13:35:11 +08:00
binary-husky
13d4cd3237 音频功能说明书 2023-07-15 13:30:12 +08:00
binary-husky
73e835885b Merge branch 'master' into improve_ui_master 2023-07-15 13:01:13 +08:00
binary-husky
2524c908fc 修改提示 2023-07-15 12:58:38 +08:00
binary-husky
0e71d81bb3 Update README.md 2023-07-14 16:30:03 +08:00
binary-husky
a47864888f Update build-with-latex.yml 2023-07-14 16:25:25 +08:00
binary-husky
9b61ac807c Update build-with-chatglm.yml 2023-07-14 16:25:03 +08:00
binary-husky
bc200dc555 Update build-without-local-llms.yml 2023-07-14 16:24:32 +08:00
binary-husky
2c18b84517 修复依赖自动安装程序 2023-07-12 22:16:25 +08:00
qingxu fu
fe7b651c56 更新提示 2023-07-11 15:56:28 +08:00
qingxu fu
9b8f160788 up 2023-07-11 15:52:38 +08:00
binary-husky
801d5e2fc2 audio readme 2023-07-11 11:11:06 +08:00
binary-husky
cecdd28e04 Update README.md 2023-07-10 03:41:19 +08:00
binary-husky
d364df1cd6 add test instance 2023-07-10 03:33:51 +08:00
binary-husky
f51bc03686 3.45版本说明 2023-07-10 03:24:34 +08:00
binary-husky
c010d50716 允许加入ChatGLM微调模型 2023-07-10 03:17:09 +08:00
binary-husky
acddb86f3a 小而美 2023-07-10 00:20:14 +08:00
binary-husky
4fde0120ab 完善提醒 2023-07-10 00:08:59 +08:00
binary-husky
592a354eef 完善插件提示 2023-07-10 00:06:48 +08:00
binary-husky
bd66cf3d8b 修复对话历史的问题 2023-07-10 00:02:22 +08:00
binary-husky
e6e5174734 改名 2023-07-09 23:47:10 +08:00
binary-husky
13ade82677 改善语音辅助 2023-07-09 23:18:06 +08:00
binary-husky
ce9eb8d20a UP 2023-07-09 21:18:04 +08:00
binary-husky
dd47c0a284 merge changes 2023-07-09 20:55:37 +08:00
binary-husky
f725ab1b31 Merge branch 'master' into improve_ui_master 2023-07-09 20:47:53 +08:00
binary-husky
7ce4192c52 add comments 2023-07-09 17:25:50 +08:00
binary-husky
c06aafb642 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-07-09 16:01:15 +08:00
binary-husky
b298c5416c 完善PDF总结插件 2023-07-09 16:01:08 +08:00
505030475
94abf302cb 修正模板注释 2023-07-09 12:50:51 +08:00
binary-husky
fcc5534e66 ChatGLM 黑盒微调插件 2023-07-09 03:37:47 +08:00
binary-husky
56c0e4d575 3.44说明 2023-07-09 01:21:18 +08:00
binary-husky
8a10db618e Merge branch 'master-interact' 2023-07-09 01:05:04 +08:00
binary-husky
1fe66f0291 优化azure的体验 2023-07-09 00:20:58 +08:00
binary-husky
ced977c443 修复双dollar公式匹配bug 2023-07-08 22:23:29 +08:00
binary-husky
6c2ffbae52 Update README.md 2023-07-08 19:17:35 +08:00
binary-husky
be2f54fac9 Update README.md 2023-07-08 18:21:20 +08:00
binary-husky
87b5e56378 Update requirements.txt 2023-07-08 18:10:33 +08:00
binary-husky
3a5764ed34 Update requirements.txt 2023-07-08 17:59:27 +08:00
qingxu fu
91aee50ea7 Chuanhu 主题 2023-07-07 20:12:06 +08:00
qingxu fu
e5ccedf491 名称修订 2023-07-07 20:08:26 +08:00
qingxu fu
f620666a58 Merge branch 'improve_ui_master' of https://github.com/binary-husky/chatgpt_academic into improve_ui_master 2023-07-07 19:51:48 +08:00
qingxu fu
594c63e5d6 主题修正 2023-07-07 19:51:09 +08:00
qingxu fu
67d9051890 update error message 2023-07-07 17:41:43 +08:00
binary-husky
be96232127 Merge pull request #933 from binary-husky/master-latex-patch
Latex File Name Bug Patch
2023-07-07 16:57:58 +08:00
binary-husky
3b5bc7a784 Update use_azure.md 2023-07-07 10:55:22 +08:00
binary-husky
5e92f437a1 Update use_azure.md 2023-07-07 10:54:21 +08:00
qingxu fu
eabd9d312f 3.43 2023-07-07 10:47:30 +08:00
qingxu fu
0da6fe78ac 统一azure-gpt-3.5的格式 2023-07-07 10:45:11 +08:00
qingxu fu
be990380a0 Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-07-07 10:42:41 +08:00
qingxu fu
9c0bc48420 修复Azure OpenAI接口的各种bug 2023-07-07 10:42:38 +08:00
binary-husky
5c0d34793e Latex File Name Bug Patch 2023-07-07 00:09:50 +08:00
binary-husky
37fc550652 Update config.py 2023-07-06 10:47:06 +08:00
binary-husky
2c1d6ac212 修复Organization的bug 2023-07-05 21:14:13 +08:00
binary-husky
8c699c1b26 Update README.md 2023-07-05 21:04:28 +08:00
binary-husky
c620fa9011 Update README.md 2023-07-05 20:55:59 +08:00
binary-husky
f16fd60211 Update README.md 2023-07-05 20:34:22 +08:00
binary-husky
9674e59d26 更新说明 2023-07-05 20:22:57 +08:00
binary-husky
643c5e125a 更新提醒 2023-07-05 20:10:18 +08:00
binary-husky
e5099e1daa 极少数情况下,openai的官方KEY需要伴随组织编码 2023-07-05 20:05:20 +08:00
binary-husky
3e621bbec1 Update Dockerfile 2023-07-05 14:37:54 +08:00
qingxu fu
bb1d5a61c0 update translation matrix 2023-07-05 14:32:33 +08:00
binary-husky
fd3d0be2d8 Update config.py 2023-07-05 14:13:04 +08:00
binary-husky
ae623258f3 更详细的配置提示 2023-07-05 14:10:06 +08:00
binary-husky
cda281f08b 把newbing的cookie加回来 2023-07-05 13:48:50 +08:00
binary-husky
9f8e7a6efa 显示更详细的报错 2023-07-05 13:35:11 +08:00
qingxu fu
57643dd2b6 update error msg 2023-07-05 13:01:06 +08:00
qingxu fu
6bc8a78cfe No more cookie for NewBing! 2023-07-05 12:45:10 +08:00
binary-husky
d2700e97fb 更新openai失效提醒 2023-07-05 11:03:11 +08:00
binary-husky
c4dd81dc9a Update Dockerfile 2023-07-04 12:28:52 +08:00
binary-husky
e9b06d7cde Merge pull request #927 from QuantumRoseinAmethystVase/master
Update 批量总结PDF文档.py
2023-07-04 12:24:17 +08:00
qingxu fu
6e6ea69611 Unsplash恢复了 2023-07-04 12:16:01 +08:00
505030475
b082b5eb1b 将阿里云TOKEN移动到config中 2023-07-03 23:20:25 +08:00
505030475
9648d78453 重构异步代码,增强可读性 2023-07-03 22:44:10 +08:00
QuantumRoseinAmethystVase
16c17eb077 Update 批量总结PDF文档.py
Improve the output.
2023-07-03 18:55:16 +08:00
505030475
2dc8718041 语音模组第一个版本 2023-07-03 00:13:10 +08:00
505030475
a330d6636e error 2023-07-02 22:54:05 +08:00
qingxu fu
322c4be145 同步音频输入 2023-07-02 14:42:12 +08:00
qingxu fu
a3596ff60d audio 2023-07-02 01:05:20 +08:00
qingxu fu
e11d8132f8 add green theme 2023-07-01 23:02:44 +08:00
kainstan
59877dd728 Local variable 'result' might be referenced before assignment, add else result 2023-07-01 22:27:11 +08:00
w_xiaolizu
5f7ffef238 增加基础功能判空 2023-07-01 22:04:42 +08:00
qingxu fu
41c10f5688 report image generation error in UI 2023-07-01 02:28:32 +08:00
qingxu fu
d7ac99f603 更正错误提示 2023-07-01 01:46:43 +08:00
qingxu fu
1616daae6a Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-07-01 00:17:30 +08:00
qingxu fu
a1092d8f92 提供自动清空输入框的选项 2023-07-01 00:17:26 +08:00
binary-husky
34ca9f138f Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-06-30 14:56:28 +08:00
binary-husky
df3f1aa3ca 更正ChatGLM2的默认Token数量 2023-06-30 14:56:22 +08:00
qingxu fu
bf805cf477 Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-06-30 13:09:51 +08:00
qingxu fu
ecb08e69be remove find picture core functionality 2023-06-30 13:08:54 +08:00
binary-husky
28c1e3f11b Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-06-30 12:06:33 +08:00
binary-husky
403667aec1 upgrade chatglm to chatglm2 2023-06-30 12:06:28 +08:00
qingxu fu
22f377e2fb fix multi user cwd shift 2023-06-30 11:05:47 +08:00
binary-husky
37172906ef 修复文件导出的bug 2023-06-29 14:55:55 +08:00
binary-husky
3b78e0538b 修复插件demo的图像显示的问题 2023-06-29 14:52:58 +08:00
binary-husky
d8f9ac71d0 Merge pull request #907 from Xminry/master
feat:联网搜索功能,cn.bing.com版,国内可用
2023-06-29 12:44:32 +08:00
qingxu fu
aced272d3c 微调插件提示 2023-06-29 12:43:50 +08:00
qingxu fu
aff77a086d Merge branch 'master' of https://github.com/Xminry/gpt_academic into Xminry-master 2023-06-29 12:38:43 +08:00
qingxu fu
49253c4dc6 [arxiv trans] add html comparison to zip file 2023-06-29 12:29:49 +08:00
qingxu fu
1a00093015 修复提示 2023-06-29 12:15:52 +08:00
qingxu fu
64f76e7401 3.42 2023-06-29 11:32:19 +08:00
qingxu fu
eb4c07997e 修复Latex矫错和本地Latex论文翻译的问题 2023-06-29 11:30:42 +08:00
Xminry
99cf7205c3 feat:联网搜索功能,cn.bing.com版,国内可用 2023-06-28 10:30:08 +08:00
binary-husky
d684b4cdb3 Merge pull request #905 from Xminry/master
Update 理解PDF文档内容.py
2023-06-27 23:37:25 +08:00
binary-husky
601a95c948 Merge pull request #881 from OverKit/master
update latex_utils.py
2023-06-27 19:20:17 +08:00
qingxu fu
e18bef2e9c add item breaker 2023-06-27 19:16:05 +08:00
qingxu fu
f654c1af31 merge regex expressions 2023-06-27 18:59:56 +08:00
qingxu fu
e90048a671 Merge branch 'master' of https://github.com/OverKit/gpt_academic into OverKit-master 2023-06-27 16:14:12 +08:00
binary-husky
ea624b1510 Merge pull request #889 from dackdawn/master
添加0613模型的声明
2023-06-27 15:03:15 +08:00
qingxu fu
057e3dda3c Merge branch 'master' of https://github.com/dackdawn/gpt_academic into dackdawn-master 2023-06-27 15:02:22 +08:00
Xminry
4290821a50 Update 理解PDF文档内容.py 2023-06-27 01:57:31 +08:00
binary-husky
280e14d7b7 更新Latex模块的docker-compose 2023-06-26 09:59:14 +08:00
505030475
9f0cf9fb2b arxiv PDF 引用 2023-06-25 23:30:31 +08:00
505030475
b8560b7510 修正误判latex模板文件的bug 2023-06-25 22:46:16 +08:00
505030475
d841d13b04 add arxiv translation test samples 2023-06-25 22:12:44 +08:00
binary-husky
efda9e5193 Merge pull request #897 from Ranhuiryan/master
添加azure-gpt35选项
2023-06-24 17:59:51 +10:00
Ranhuiryan
33d2e75aac add azure-gpt35 to model list 2023-06-21 16:19:49 +08:00
Ranhuiryan
74941170aa update azure use instruction 2023-06-21 16:19:26 +08:00
505030475
cd38949903 当遇到错误时,回滚到原文 2023-06-21 11:53:57 +10:00
505030475
d87f1eb171 更新接入azure的说明 2023-06-21 11:38:59 +10:00
binary-husky
cd1e4e1ba7 Merge pull request #797 from XiaojianTang/master
增加azure openai api的支持
2023-06-21 11:23:41 +10:00
505030475
cf5f348d70 update test samples 2023-06-21 11:20:31 +10:00
binary-husky
0ee25f475e Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-06-20 23:07:51 +08:00
binary-husky
1fede6df7f temp 2023-06-20 23:05:17 +08:00
binary-husky
22a65cd163 Create build-with-latex.yml 2023-06-21 00:55:24 +10:00
binary-husky
538b041ea3 Merge pull request #890 from Mcskiller/master
Update README.md
2023-06-21 00:53:26 +10:00
505030475
d7b056576d add latex docker-compose 2023-06-21 00:52:58 +10:00
505030475
cb0bb6ab4a fix minor bugs 2023-06-21 00:41:33 +10:00
505030475
bf955aaf12 fix bugs 2023-06-20 23:12:30 +10:00
505030475
61eb0da861 fix encoding bug 2023-06-20 22:08:09 +10:00
Lebenito(生糸)
5da633d94d Update README.md
Fix the error URL for the git clone.
2023-06-20 19:10:11 +08:00
dackdawn
f3e4e26e2f 添加0613模型的声明
openai对gpt-3.5-turbo的RPM限制是3,而gpt-3.5-turbo-0613的RPM是60,虽然两个模型的内容是一致的,但是选定特定模型可以获得更高的RPM和TPM
2023-06-19 21:40:26 +08:00
505030475
af7734dd35 avoid file fusion 2023-06-19 16:57:11 +10:00
505030475
d5bab093f9 rename function names 2023-06-19 15:17:33 +10:00
505030475
f94b167dc2 Merge branch 'master' into overkit-master 2023-06-19 14:53:51 +10:00
505030475
951d5ec758 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-06-19 14:52:25 +10:00
505030475
016d8ee156 Merge remote-tracking branch 'origin/master' into OverKit-master 2023-06-19 14:51:59 +10:00
505030475
dca9ec4bae Merge branch 'master' of https://github.com/OverKit/gpt_academic into OverKit-master 2023-06-19 14:49:50 +10:00
binary-husky
a06e43c96b Update README.md 2023-06-18 16:15:37 +08:00
binary-husky
29c6bfb6cb Update README.md 2023-06-18 16:12:06 +08:00
binary-husky
8d7ee975a0 Update README.md 2023-06-18 16:10:45 +08:00
binary-husky
4bafbb3562 Update Latex输出PDF结果.py 2023-06-18 15:54:23 +08:00
OverKit
7fdf0a8e51 调整区分内容的代码 2023-06-18 15:51:29 +08:00
binary-husky
2bb13b4677 Update README.md 2023-06-18 15:44:42 +08:00
OverKit
9a5a509dd9 修复关于abstract的搜索 2023-06-17 19:27:21 +08:00
binary-husky
cbcb98ef6a Merge pull request #872 from Skyzayre/master
Update README.md
2023-06-16 17:54:39 +08:00
qingxu fu
bb864c6313 增加一些提示文字 2023-06-16 17:33:19 +08:00
qingxu fu
6d849eeb12 修复Langchain插件的bug 2023-06-16 17:33:03 +08:00
Skyzayre
ef752838b0 Update README.md 2023-06-15 02:07:43 +08:00
binary-husky
73d4a1ff4b Update README.md 2023-06-14 10:15:47 +08:00
qingxu fu
8c62f21aa6 3.41增加gpt-3.5-16k的支持 2023-06-14 09:57:09 +08:00
qingxu fu
c40ebfc21f 将gpt-3.5-16k作为加入支持列表 2023-06-14 09:50:15 +08:00
binary-husky
c365ea9f57 Update README.md 2023-06-13 16:13:19 +08:00
binary-husky
12d66777cc Merge pull request #864 from OverKit/master
check letter % after removing spaces or tabs in the left
2023-06-12 15:21:35 +08:00
OverKit
9ac3d0d65d check letter % after removing spaces or tabs in the left 2023-06-12 10:09:52 +08:00
binary-husky
9fd212652e 专业词汇声明 2023-06-12 09:45:59 +08:00
binary-husky
790a1cf12a 添加一些提示 2023-06-11 20:12:25 +08:00
binary-husky
3ecf2977a8 修复caption翻译 2023-06-11 18:23:54 +08:00
binary-husky
aeddf6b461 Update Latex输出PDF结果.py 2023-06-11 10:20:49 +08:00
505030475
ce0d8b9dab 虚空终端插件雏形 2023-06-11 01:36:23 +08:00
binary-husky
3c00e7a143 file link in chatbot 2023-06-10 21:45:38 +08:00
binary-husky
ef1bfdd60f update pip install notice 2023-06-08 21:29:10 +08:00
qingxu fu
e48d92e82e update translation 2023-06-08 18:34:06 +08:00
binary-husky
110510997f Update README.md 2023-06-08 12:48:52 +08:00
binary-husky
b52695845e Update README.md 2023-06-08 12:44:05 +08:00
binary-husky
f30c9c6d3b Update README.md 2023-06-08 12:43:13 +08:00
binary-husky
ff5403eac6 Update README.md 2023-06-08 12:42:24 +08:00
binary-husky
f9226d92be Update version 2023-06-08 12:24:14 +08:00
binary-husky
a0ea5d0e9e Update README.md 2023-06-08 12:22:03 +08:00
binary-husky
ce6f11d200 Update README.md 2023-06-08 12:20:49 +08:00
binary-husky
10b3001dba Update README.md 2023-06-08 12:19:11 +08:00
binary-husky
e2de1d76ea Update README.md 2023-06-08 12:18:31 +08:00
binary-husky
77cc141a82 Update README.md 2023-06-08 12:14:02 +08:00
binary-husky
526b4d8ecd Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-06-07 11:09:20 +08:00
binary-husky
149db621ec langchain check depends 2023-06-07 11:09:12 +08:00
binary-husky
2e1bb7311c Merge pull request #848 from MengDanzz/master
将Dockerfile COPY分成两段,缓存依赖库,重新构建不需要重新安装
2023-06-07 10:44:09 +08:00
binary-husky
dae65fd2c2 在copy ..后在运行一次pip install检查依赖变化 2023-06-07 10:43:45 +08:00
MengDanzz
9aafb2ee47 非pypi包加入COPY 2023-06-07 09:18:57 +08:00
MengDanzz
6bc91bd02e Merge branch 'binary-husky:master' into master 2023-06-07 09:15:44 +08:00
qingxu fu
8ef7344101 fix subprocess bug in Windows 2023-06-06 18:57:52 +08:00
binary-husky
40da1b0afe 将Latex分解程序放到子进程执行 2023-06-06 18:44:00 +08:00
MengDanzz
c65def90f3 将Dockerfile COPY分成两段,缓存依赖库,重新构建不需要重新安装 2023-06-06 14:36:30 +08:00
binary-husky
ddeaf76422 check latex in PATH 2023-06-06 00:23:00 +08:00
qingxu fu
f23b66dec2 update Dockerfile with Latex 2023-06-05 23:49:54 +08:00
qingxu fu
a26b294817 Write Some Docstring 2023-06-05 23:44:59 +08:00
qingxu fu
66018840da declare resp 2023-06-05 23:24:41 +08:00
qingxu fu
cea2144f34 fix test samples 2023-06-05 23:11:21 +08:00
qingxu fu
7f5be93c1d 修正一些正则匹配bug 2023-06-05 22:57:39 +08:00
binary-husky
85b838b302 add Linux support 2023-06-04 23:06:35 +08:00
qingxu fu
27f97ba92a remove previous results 2023-06-04 16:55:36 +08:00
qingxu fu
14269eba98 建立本地arxiv缓存区 2023-06-04 16:08:01 +08:00
qingxu fu
d5c9bc9f0a 提高iffalse搜索优先级 2023-06-04 14:15:59 +08:00
qingxu fu
b0fed3edfc consider iffalse state 2023-06-04 14:06:02 +08:00
qingxu fu
7296d054a2 patch latex segmentation 2023-06-04 13:56:15 +08:00
qingxu fu
d57c7d352d improve quality 2023-06-03 23:54:30 +08:00
qingxu fu
3fd2927ea3 改善 2023-06-03 23:33:45 +08:00
qingxu fu
b745074160 avoid most compile failure 2023-06-03 23:33:32 +08:00
qingxu fu
70ee810133 improve success rate 2023-06-03 19:39:19 +08:00
qingxu fu
68fea9e79b fix test 2023-06-03 18:09:39 +08:00
qingxu fu
f82bf91aa8 test example 2023-06-03 18:06:39 +08:00
qingxu fu
dde9edcc0c fix a fatal mistake 2023-06-03 17:49:22 +08:00
qingxu fu
66c78e459e 修正提示 2023-06-03 17:18:38 +08:00
qingxu fu
de54102303 修改提醒 2023-06-03 16:43:26 +08:00
qingxu fu
7c7d2d8a84 Latex的minipage补丁 2023-06-03 16:16:32 +08:00
qingxu fu
834f989ed4 考虑有人用input不加.tex的情况 2023-06-03 15:42:22 +08:00
qingxu fu
b658ee6e04 修复arxiv翻译的一些问题 2023-06-03 15:36:55 +08:00
qingxu fu
1a60280ea0 添加警告 2023-06-03 14:40:37 +08:00
qingxu fu
991cb7d272 warning 2023-06-03 14:39:40 +08:00
qingxu fu
463991cfb2 fix bug 2023-06-03 14:24:06 +08:00
qingxu fu
06f10b5fdc fix zh cite bug 2023-06-03 14:17:58 +08:00
qingxu fu
d275d012c6 Merge branch 'langchain' into master 2023-06-03 13:53:39 +08:00
qingxu fu
c5d1ea3e21 update langchain version 2023-06-03 13:53:34 +08:00
qingxu fu
0022b92404 update prompt 2023-06-03 13:50:39 +08:00
qingxu fu
ef61221241 latex auto translation milestone 2023-06-03 13:46:40 +08:00
qingxu fu
5a1831db98 成功! 2023-06-03 00:34:23 +08:00
qingxu fu
a643f8b0db debug translation 2023-06-02 23:06:01 +08:00
qingxu fu
601712fd0a latex toolchain 2023-06-02 21:44:11 +08:00
505030475
e769f831c7 latex 2023-06-02 14:07:04 +08:00
binary-husky
dcd952671f Update main.py 2023-06-01 15:56:52 +08:00
binary-husky
06564df038 Merge branch 'langchain' 2023-06-01 09:39:34 +08:00
binary-husky
2f037f30d5 暂时移除插件锁定 2023-06-01 09:39:00 +08:00
505030475
efedab186d Merge branch 'master' into langchain 2023-06-01 00:10:22 +08:00
binary-husky
f49cae5116 Update Langchain知识库.py 2023-06-01 00:09:07 +08:00
binary-husky
2b620ccf2e 更新提示 2023-06-01 00:07:19 +08:00
binary-husky
a1b7a4da56 更新测试案例 2023-06-01 00:03:27 +08:00
binary-husky
61b0e49fed fix some bugs in linux 2023-05-31 23:49:25 +08:00
binary-husky
f60dc371db 12 2023-05-31 10:42:44 +08:00
binary-husky
0a3433b8ac Update README.md 2023-05-31 10:37:08 +08:00
binary-husky
31bce54abb Update README.md 2023-05-31 10:34:21 +08:00
binary-husky
5db1530717 Merge branch 'langchain' of github.com:binary-husky/chatgpt_academic into langchain 2023-05-30 20:08:47 +08:00
binary-husky
c32929fd11 Merge branch 'master' into langchain 2023-05-30 20:08:15 +08:00
505030475
3e4c2b056c knowledge base 2023-05-30 19:55:38 +08:00
505030475
e79e9d7d23 Merge branch 'master' into langchain 2023-05-30 18:31:39 +08:00
binary-husky
d175b93072 Update README.md.Italian.md 2023-05-30 17:27:41 +08:00
binary-husky
ed254687d2 Update README.md.Italian.md 2023-05-30 17:26:12 +08:00
binary-husky
c0392f7074 Update README.md.Korean.md 2023-05-30 17:25:32 +08:00
binary-husky
f437712af7 Update README.md.Portuguese.md 2023-05-30 17:22:46 +08:00
505030475
6d1ea643e9 langchain 2023-05-30 12:54:42 +08:00
binary-husky
9e84cfcd46 Update README.md 2023-05-29 19:48:34 +08:00
binary-husky
897695d29f 修复二级路径的文件屏蔽 2023-05-28 20:25:35 +08:00
binary-husky
1dcc2873d2 修复Gradio配置泄露的问题 2023-05-28 20:23:47 +08:00
binary-husky
42cf738a31 修复一些情况下复制键失效的问题 2023-05-28 18:12:48 +08:00
binary-husky
e4646789af Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-05-28 16:07:29 +08:00
binary-husky
e6c3aabd45 docker-compose check 2023-05-28 16:07:24 +08:00
binary-husky
6789d1fab4 Update README.md 2023-05-28 11:21:50 +08:00
binary-husky
7a733f00a2 Update README.md 2023-05-28 00:19:23 +08:00
binary-husky
dd55888f0e Update README.md 2023-05-28 00:16:45 +08:00
binary-husky
0327df22eb Update README.md 2023-05-28 00:14:54 +08:00
binary-husky
e544f5e9d0 Update README.md 2023-05-27 23:45:15 +08:00
binary-husky
0fad4f44a4 fix dockerfile 2023-05-27 23:36:42 +08:00
binary-husky
1240dd6f26 local gradio 2023-05-27 23:29:22 +08:00
505030475
d6be947177 修复gradio的依赖安装问题 2023-05-27 23:10:44 +08:00
505030475
3cfbdce9f2 remove limitation for now 2023-05-27 22:25:50 +08:00
505030475
1ee471ff57 fix reminder 2023-05-27 22:20:46 +08:00
binary-husky
25ccecf8e3 Update README.md 2023-05-27 21:56:43 +08:00
binary-husky
9e991bfa3e Update requirements.txt 2023-05-27 21:56:16 +08:00
binary-husky
221efd0193 Update README.md 2023-05-27 21:11:25 +08:00
binary-husky
976b9bf65f Update README.md 2023-05-27 21:04:52 +08:00
binary-husky
ae5783e383 修复gradio复制按钮BUG 2023-05-27 20:20:45 +08:00
binary-husky
30224af042 Merge pull request #798 from Bit0r/master
🐛 匹配latex注释的正则表达式
2023-05-27 14:03:07 +08:00
Bit0r
8ff7c15cd8 🐛 匹配latex注释的正则表达式 2023-05-27 11:19:48 +08:00
XiaojianTang
f3205994ea 增加azure openai api的支持 2023-05-26 23:22:12 +08:00
505030475
ec8cc48a4d Add ProxyNetworkActivate 2023-05-25 23:48:18 +08:00
binary-husky
5d75c578b9 fix dependency 2023-05-25 15:28:27 +08:00
binary-husky
cd411c2eea newbing-free deps 2023-05-25 15:12:54 +08:00
binary-husky
bb2f276ba5 remove duplicate 2023-05-25 15:00:07 +08:00
qingxu fu
348e50c0c9 up 2023-05-25 14:56:54 +08:00
qingxu fu
9d7fc31706 up 2023-05-25 14:56:16 +08:00
qingxu fu
3108b4a426 fix format 2023-05-25 14:23:35 +08:00
qingxu fu
3da12b5bf7 readme translation 2023-05-25 14:20:20 +08:00
qingxu fu
12710ff1fa Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-05-25 13:49:56 +08:00
qingxu fu
e7df3a551d up 2023-05-25 13:49:51 +08:00
qingxu fu
7947c968ad 现在指定markdown的翻译语言 2023-05-25 13:46:50 +08:00
binary-husky
3dd15dee61 Update multi_language.py 2023-05-25 13:13:23 +08:00
binary-husky
b4f0be329b Update multi_language.py 2023-05-25 13:11:31 +08:00
binary-husky
e3f903d132 Update multi_language.py 2023-05-25 13:07:37 +08:00
binary-husky
e18ab0afc0 Update multi_language.py 2023-05-25 13:06:34 +08:00
binary-husky
2b61556acc Update README.md 2023-05-25 13:01:22 +08:00
qingxu fu
51c075ec3c update English translation 2023-05-25 12:50:33 +08:00
qingxu fu
e22f1917b2 update note 2023-05-25 12:48:20 +08:00
qingxu fu
ed53442942 up 2023-05-25 12:39:41 +08:00
qingxu fu
fad502a938 up 2023-05-25 12:32:39 +08:00
qingxu fu
4c0c1034db up 2023-05-25 12:32:10 +08:00
qingxu fu
1c029e1276 up 2023-05-25 12:31:31 +08:00
qingxu fu
bcfc0f0f74 up 2023-05-25 12:20:22 +08:00
qingxu fu
bc8dc7f102 up 2023-05-25 12:15:23 +08:00
qingxu fu
a099f98f0e fix bug 2023-05-25 12:14:03 +08:00
qingxu fu
2887720999 Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-05-25 11:36:38 +08:00
qingxu fu
cc0e0a90a6 down 2023-05-25 11:36:35 +08:00
binary-husky
9256bcf68e Update feature_request.yml 2023-05-25 10:17:37 +08:00
binary-husky
e6cc28b0f6 Update and rename feature_request.md to feature_request.yml 2023-05-25 10:16:16 +08:00
binary-husky
e8bed9ce85 Update config.py 2023-05-25 10:10:33 +08:00
qingxu fu
582010e6a1 Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-05-25 01:38:09 +08:00
qingxu fu
dd05f29d66 update self analysis 2023-05-25 01:38:06 +08:00
binary-husky
746a607652 Update README.md 2023-05-25 01:33:30 +08:00
binary-husky
b87592f43d Update README.md 2023-05-25 01:31:32 +08:00
binary-husky
b9ec396d08 Update README.md 2023-05-25 01:30:49 +08:00
qingxu fu
293ad9052d 改善源代码解析功能,能处理更多文件 2023-05-25 01:15:24 +08:00
qingxu fu
e6f292c14b 修复最后一个完成的线程不更新状态的问题 2023-05-25 01:04:26 +08:00
binary-husky
0bda5c54ed Update README.md 2023-05-25 00:27:19 +08:00
qingxu fu
bc613c74af Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-05-25 00:24:32 +08:00
qingxu fu
35c3c0f2c6 新增latex文章校对纠错功能 2023-05-25 00:24:29 +08:00
binary-husky
cd3f2860f8 Update README.md 2023-05-25 00:22:29 +08:00
binary-husky
2fa9aa233c Update README.md 2023-05-24 21:13:23 +08:00
binary-husky
1275f77986 Update README.md 2023-05-24 21:11:41 +08:00
binary-husky
f0f88f5f48 Update README.md 2023-05-24 21:11:10 +08:00
qingxu fu
42eef1bea7 add free newbing without cookie using edge-gpt 2023-05-24 10:42:11 +08:00
binary-husky
728eba04ec Update README.md 2023-05-23 17:13:53 +08:00
binary-husky
694f12c97d Update bug_report.yml 2023-05-23 17:06:23 +08:00
binary-husky
a075e9631d Update bug_report.yml 2023-05-23 12:36:02 +08:00
binary-husky
ee84c144dd Update version 3.36 2023-05-23 00:08:04 +08:00
505030475
fffb78e7af Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-05-23 00:05:27 +08:00
505030475
db16e85d8c 修复pdf翻译的问题 2023-05-23 00:05:00 +08:00
binary-husky
72b412267d Merge pull request #776 from ChristLZS/master
support rust program
2023-05-22 22:34:37 +08:00
li zhisheng
e2137b896e [main] support rust program 2023-05-22 19:27:38 +08:00
505030475
6d557b3c34 fix history commit problem 2023-05-20 13:54:19 +08:00
binary-husky
76e0452619 添加把项目翻译为任意语言的功能(测试) 2023-05-20 13:42:14 +08:00
binary-husky
e62c0b30ae Merge pull request #767 from binary-husky/multi_language
Add Multi Language Support
2023-05-20 13:40:55 +08:00
505030475
d29f524cec Merge remote-tracking branch 'origin/master' into multi_language 2023-05-20 13:36:23 +08:00
505030475
b7e08229fa add user explaination 2023-05-20 13:35:31 +08:00
505030475
e38e6e22f5 multi-lan 2023-05-20 13:32:06 +08:00
505030475
f05862c854 Json is good 2023-05-20 13:01:58 +08:00
505030475
fc762cbf7f stage one 2023-05-20 12:23:46 +08:00
505030475
c376e46f4d translate not fin 2023-05-19 23:52:20 +08:00
qingxu fu
8d528190a9 rt 2023-05-19 13:23:44 +08:00
binary-husky
d2fa4c80eb Update config.py 2023-05-19 13:00:38 +08:00
binary-husky
212ca0c0b9 3.35 2023-05-19 12:51:43 +08:00
binary-husky
c32c585384 音频转文字+总结 2023-05-19 12:25:58 +08:00
binary-husky
62a596ef30 Merge pull request #742 from FutureUnreal/new_branch
增加批量总结音视频的功能
2023-05-19 12:25:13 +08:00
binary-husky
7d8338ce70 允许音频转文字时的高级参数指令 2023-05-19 12:24:04 +08:00
binary-husky
c46a8d27e6 修正参数默认值bug 2023-05-19 12:23:01 +08:00
binary-husky
d8540d42a6 move dep 2023-05-19 11:22:25 +08:00
binary-husky
f30bee2409 Merge branch 'new_branch' of github.com:FutureUnreal/gpt_academic into FutureUnreal-new_branch 2023-05-19 11:20:18 +08:00
binary-husky
c7841fd998 Merge pull request #727 from CSUMaVeRick/master
分享一个参考文献条目转换为BibTex的自定义函数 Share a function that can transform bibliography items into BibTex style
2023-05-19 11:17:47 +08:00
binary-husky
254fac0045 move moss folder to gitignore 2023-05-19 11:16:53 +08:00
binary-husky
5159a1e7a1 core function 隐藏功能 2023-05-19 11:14:44 +08:00
binary-husky
e2d75f1b62 remove yml 2023-05-19 11:09:30 +08:00
binary-husky
4f77c27d6d Merge branch 'master' of github.com:CSUMaVeRick/gpt_academic into CSUMaVeRick-master 2023-05-19 11:07:59 +08:00
binary-husky
e7080e671d Merge pull request #746 from Rid7/claude
接入Claude in Slack服务,暂时不支持历史消息设置(单个slack实例,多人使用请谨慎隐私风险)
2023-05-19 11:02:58 +08:00
qingxu fu
b0c2e2d92b 修订提示 2023-05-19 10:58:22 +08:00
qingxu fu
77a2d62ef6 捕获缺少依赖时的异常 2023-05-19 10:55:50 +08:00
qingxu fu
c43e22bc41 change claude model name to stack-claude 2023-05-19 10:46:12 +08:00
qingxu fu
be6b42324d Merge branch 'claude' of github.com:Rid7/gpt_academic into Rid7-claude 2023-05-19 09:39:47 +08:00
505030475
3951159d55 ml 2023-05-18 14:39:57 +08:00
505030475
6c448b9a60 translate efficient 2023-05-16 01:05:25 +08:00
505030475
43e64782dc 修正非官方的OpenAI反代错误显示问题 2023-05-16 00:35:47 +08:00
binary-husky
5f79fed566 Merge pull request #748 from duhaode520/master
🐞 fix(谷歌学术搜索): 包装search.results()为空可能造成的报错
2023-05-15 17:27:41 +08:00
binary-husky
f2a55dc769 Update bug_report.yml 2023-05-15 17:22:52 +08:00
duhaode520
3f31fb9990 🐞 fix(谷歌学术搜索): 包装search.results()为空可能造成的报错
https://github.com/binary-husky/gpt_academic/issues/423
2023-05-15 08:11:13 +00:00
Rid7
d795dc1a81 取消重置时调用claude_model的reset方法 2023-05-15 15:47:05 +08:00
Rid7
f90ec93dfc Merge remote-tracking branch 'origin/claude' into claude 2023-05-15 15:18:03 +08:00
Rid7
6d267947bb 实现Claude聊天功能配置项 2023-05-15 15:12:50 +08:00
Rid7
595e5cceae 实现Claude聊天功能 2023-05-15 15:07:53 +08:00
Rid7
2291a67cf8 实现Claude聊天功能 2023-05-15 14:27:31 +08:00
binary-husky
c0e57e0e39 fix bool env read bug 2023-05-14 15:18:33 +08:00
‘dalvqw’
dcd5f7996e 增加批量总结音视频的功能 2023-05-14 12:51:33 +08:00
505030475
303e4dd617 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-05-13 14:20:46 +08:00
505030475
d52c0c4783 修改输出格式 2023-05-13 14:20:34 +08:00
binary-husky
e4de1549a3 Update README.md 2023-05-13 14:07:42 +08:00
505030475
986653b43e resolution 2023-05-13 14:00:07 +08:00
505030475
08e184ea55 添加图片生成接口插件 2023-05-13 00:28:29 +08:00
505030475
fdb9650cca word file format reminder 2023-05-12 23:05:16 +08:00
binary-husky
dadbb71147 Update bridge_chatgpt.py 2023-05-11 18:42:51 +08:00
binary-husky
18a59598ea Update README.md 2023-05-11 18:11:19 +08:00
CSUMaVeRick
57297605e2 Update core_functional.py 2023-05-11 13:42:51 +08:00
binary-husky
1134ec2df5 Update README.md 2023-05-08 20:33:47 +08:00
binary-husky
f54872007f Update README.md 2023-05-08 20:33:32 +08:00
binary-husky
24a832608c Update README.md 2023-05-08 20:32:18 +08:00
binary-husky
2fa52f71e7 Update README.md 2023-05-08 20:31:35 +08:00
binary-husky
00e7fbd7fa Update README.md 2023-05-08 20:27:18 +08:00
binary-husky
397dc2d0dc Update README.md 2023-05-08 20:22:43 +08:00
binary-husky
98269e8708 Update README.md 2023-05-08 20:21:28 +08:00
binary-husky
1bb45d4998 Update docker-compose.yml 2023-05-08 20:16:43 +08:00
binary-husky
8f9c5c5039 Update README.md 2023-05-08 20:13:32 +08:00
binary-husky
88ac4cf0a7 Update README.md 2023-05-08 20:12:38 +08:00
fuqingxu
624d203bbc update docker compose 2023-05-08 20:09:54 +08:00
fuqingxu
84fc8647f7 修正moss和chatglm的环境依赖 2023-05-08 20:06:41 +08:00
fuqingxu
a554b7f0e4 Merge branch 'master' of https://github.com/binary-husky/gpt_academic 2023-05-08 19:23:21 +08:00
fuqingxu
777850200d update the error handling of moss and chatglm 2023-05-08 19:21:17 +08:00
binary-husky
3f251e4571 Update bug_report.yml 2023-05-08 18:45:23 +08:00
binary-husky
2dd65af9f0 Update bug_report.yml 2023-05-08 18:42:52 +08:00
binary-husky
f8209e51f5 Update bug_report.yml 2023-05-08 18:40:35 +08:00
binary-husky
111a65e9e8 Update bug_report.yml 2023-05-08 18:34:55 +08:00
binary-husky
c0ed2131f0 Update and rename bug_report.md to bug_report.yml 2023-05-08 18:33:41 +08:00
binary-husky
10882b677d Update README.md 2023-05-07 22:54:29 +08:00
binary-husky
aed1b20ada Update GithubAction+ChatGLM+Moss 2023-05-07 17:13:51 +08:00
505030475
68bdec12c0 try jittor build 2023-05-07 16:47:20 +08:00
505030475
1404811845 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-05-07 16:40:49 +08:00
505030475
e92ae1eb2c Try Github Actions 2023-05-07 16:40:41 +08:00
binary-husky
0d0890cb92 Update and rename docker-image.yml to build-without-local-llms.yml 2023-05-07 16:40:13 +08:00
binary-husky
a76f275691 Create build-with-chatglm.yml 2023-05-07 16:38:49 +08:00
binary-husky
cfcd45b8b9 Update docker-image.yml 2023-05-07 16:22:10 +08:00
binary-husky
9c72a6f6e9 Update docker-image.yml 2023-05-07 16:11:36 +08:00
binary-husky
da4e483d80 Update docker-image.yml 2023-05-07 16:08:03 +08:00
binary-husky
41f801129a Update docker-image.yml 2023-05-07 15:55:42 +08:00
binary-husky
caf7bf2b9a Create docker-image.yml 2023-05-07 15:55:14 +08:00
505030475
986e6461ed reset github action 2023-05-07 15:54:22 +08:00
505030475
29d027087b Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-05-07 15:50:45 +08:00
505030475
7a687347e1 修改注释 2023-05-07 15:50:34 +08:00
binary-husky
5b9a1e9531 Update docker-image.yml 2023-05-07 15:46:49 +08:00
binary-husky
b1154b368c Update docker-image.yml 2023-05-07 15:44:44 +08:00
505030475
4f0cd42117 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-05-07 15:37:56 +08:00
505030475
f5ccc8bdc6 GithubAction Test 2023-05-07 15:37:47 +08:00
binary-husky
62d5775b79 Create docker-image.yml
experimental docker build action
2023-05-07 15:26:49 +08:00
binary-husky
00eb17b2e7 Update README.md 2023-05-07 15:08:53 +08:00
binary-husky
3c5df9c02e Update README.md 2023-05-07 14:47:46 +08:00
505030475
1626fbd9d6 version 3.34 2023-05-07 14:19:39 +08:00
binary-husky
36ff2092d7 适配新版gradio的暗色主题 2023-05-07 14:13:57 +08:00
binary-husky
3cf9c88891 暗色模式适配新版gradio 2023-05-07 14:12:37 +08:00
binary-husky
78045001f2 Update README.md 2023-05-07 14:11:54 +08:00
binary-husky
5c57816230 Update README.md 2023-05-07 01:46:07 +08:00
binary-husky
fa395aac6e Update README.md 2023-05-07 01:42:43 +08:00
binary-husky
8dded0c435 Update README.md 2023-05-07 01:32:47 +08:00
binary-husky
933a865b10 支持MOSS的说明 2023-05-07 01:27:50 +08:00
binary-husky
6b8b14b11e Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-05-07 01:05:19 +08:00
binary-husky
5102ec8263 添加对复旦大学MOSS的支持 2023-05-07 01:04:59 +08:00
binary-husky
c1e4db243d Update README.md 2023-05-07 00:03:40 +08:00
binary-husky
4b9078a9dc merge jittor branch 2023-05-06 23:39:57 +08:00
binary-husky
62d14cfa3f Merge pull request #695 from Undertone0809/master
fix: resolve keyerror 'serialized_input' for mac/windows platform
2023-05-06 22:29:39 +08:00
binary-husky
bd6ec158d4 Merge branch 'master' into master 2023-05-06 22:29:28 +08:00
binary-husky
d2f04e2dd2 Update requirements.txt 2023-05-06 22:28:37 +08:00
binary-husky
b47054c479 Update requirements.txt 2023-05-06 22:18:23 +08:00
Zeeland
15c40bdaff fix: resolve keyerror 'serialized_input' for windows platform 2023-05-06 17:05:24 +08:00
binary-husky
44a71fdbf1 Update README.md 2023-05-06 10:32:36 +08:00
binary-husky
996a0486af Update README.md 2023-05-06 10:30:27 +08:00
binary-husky
a15eb56ee8 Update README.md 2023-05-05 18:22:52 +08:00
binary-husky
daef87da41 Update README.md 2023-05-05 18:19:42 +08:00
binary-husky
0b4d68fbee Update README.md 2023-05-05 18:17:52 +08:00
binary-husky
9f3d67e7bd Update docker-compose.yml 2023-05-05 17:59:14 +08:00
binary-husky
47866ebe0e Update docker-compose.yml 2023-05-05 17:58:41 +08:00
binary-husky
48a352bfd1 Update version 2023-05-05 17:53:08 +08:00
binary-husky
01ce265d77 Update version 2023-05-05 17:52:10 +08:00
binary-husky
478f3a737c 修改rwkv的reset接口 2023-05-05 17:12:02 +08:00
binary-husky
b49ea55e24 Update README.md 2023-05-05 15:25:55 +08:00
binary-husky
7608c6c7ab Update README.md 2023-05-05 04:43:14 +08:00
binary-husky
ba6d91c5cc Update README.md 2023-05-05 04:42:42 +08:00
binary-husky
5de85153ba Update README.md 2023-05-05 04:35:15 +08:00
binary-husky
59a4bca053 加入LLAMA + 盘古 + RWKV本地模型 2023-05-05 04:31:31 +08:00
binary-husky
1034769c78 Update README.md 2023-05-05 00:34:20 +08:00
binary-husky
947f50b516 Update README.md 2023-05-05 00:32:49 +08:00
binary-husky
1434a28fa8 avoid dummy 2023-05-05 00:29:51 +08:00
binary-husky
78757411ca upload docker compose 2023-05-05 00:26:03 +08:00
binary-husky
9b8e7e933b Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-05-04 23:29:25 +08:00
binary-husky
6da3289830 改进环境变量的读取 2023-05-04 23:29:19 +08:00
binary-husky
f6da72c9eb Merge pull request #678 from gwj12345/master
补充了"不能正常加载ChatGLM的参数"的解决方法
2023-05-04 22:59:31 +08:00
gwj1139
c17882af8a 补充了"不能正常加载ChatGLM的参数"的解决方法
补充了"不能正常加载ChatGLM的参数"的解决方法
2023-05-04 14:08:40 +08:00
binary-husky
9f7cf7c4d8 Merge pull request #677 from binary-husky/add-waifu
add waifu option
2023-05-04 02:39:44 +08:00
binary-husky
97de15dfbe add waifu 2023-05-04 02:34:17 +08:00
binary-husky
93801ff772 Merge pull request #674 from LiZheGuang/master
feat:把原有的解析react替换成解析整个前端
2023-05-04 01:37:14 +08:00
binary-husky
13f99fcab0 修改提示 2023-05-04 01:36:09 +08:00
binary-husky
30d16989b7 Merge pull request #662 from sperjar/master
自动编译Docker镜像并上传到ghcr
2023-05-04 01:32:52 +08:00
binary-husky
1a796a5ade Merge branch 'master' into sperjar-master 2023-05-04 01:32:20 +08:00
binary-husky
b7d3ed7135 rm docker image yml 2023-05-04 01:30:24 +08:00
CSUMaVeRick
30de8f1358 Add or update the Azure App Service build and deployment workflow config 2023-05-04 00:52:12 +08:00
LiZheGuang
5a1bbb3874 feat: 🎸 修改解析react文件 2023-05-03 01:41:31 +08:00
ZheGuangLi
3d3e54f0d1 Merge branch 'binary-husky:master' into master 2023-05-03 01:40:08 +08:00
LiZheGuang
bf75b29314 feat: 🎸 替换react 解析所有常见的前端项目 包含VUE 2023-05-03 01:38:40 +08:00
binary-husky
79cd98fc24 Merge pull request #672 from Keldos-Li/fixHTML
fix: specify encoding when saving HTML
2023-05-02 23:46:16 +08:00
Keldos
4b4836099d fix: specify encoding when saving HTML
Solve the possible issue of displaying garbled codes in macOS
2023-05-02 21:49:57 +08:00
binary-husky
b25d3e274a Update README.md 2023-05-02 18:18:34 +08:00
binary-husky
a96bf9af2f Update README.md 2023-05-02 17:33:59 +08:00
binary-husky
a69ef7f8c5 env read failure reminder 2023-05-02 15:33:07 +08:00
Your Name
896077009a 增加通用性 2023-05-02 14:54:51 +08:00
Your Name
988c5c24da Merge branch 'master' of https://github.com/sperjar/gpt_academic into sperjar-master 2023-05-02 14:26:46 +08:00
ReeInk
8865b232ca 修复:读取环境变量重定向URL格式 2023-05-02 00:12:35 +08:00
binary-husky
815d949e12 Update README.md 2023-05-01 23:36:26 +08:00
binary-husky
33cd7068fb Update config.py 2023-05-01 23:28:28 +08:00
binary-husky
96aceedd25 Merge pull request #666 from mldljyh/ko
Add a link  to the Korean version of gpt_academic (ko_gpt_academic) on the README.
2023-05-01 20:52:57 +08:00
jy.hyun
c2d8bfd8c7 fix README ko 2023-05-01 11:35:38 +09:00
jy.hyun
d85f9ee41b Add README ko 2023-05-01 11:34:02 +09:00
ReeInk
e5e3e0aa43 读取环境变量作为配置 2023-04-30 17:30:31 +08:00
ReeInk
f187a23dc1 Revert "加载环境变量作为配置"
This reverts commit 601c36e607.
2023-04-30 14:34:35 +08:00
ReeInk
601c36e607 加载环境变量作为配置 2023-04-29 19:55:40 +08:00
ReeInk
15b7cd6193 feat: build docker image automatically 2023-04-29 18:10:27 +08:00
binary-husky
9d3b01af75 尝试加入jittor本地模型 2023-04-29 16:46:59 +08:00
binary-husky
61ad51cf15 更新提示 2023-04-29 04:05:13 +08:00
binary-husky
920dccd076 修正提示 2023-04-29 04:03:06 +08:00
binary-husky
8fd21feb75 修改说明 2023-04-29 03:45:48 +08:00
binary-husky
c960b34fac 增加了对Azure密钥的识别 2023-04-29 03:22:31 +08:00
binary-husky
9ad00c78ba 临时修复超链接显示为公式的问题 2023-04-29 03:02:19 +08:00
binary-husky
4c3eeee00d Update README.md 2023-04-29 02:21:06 +08:00
binary-husky
a6393d4d05 Update README.md 2023-04-29 02:19:24 +08:00
binary-husky
92f3c078b5 让保存的html对话文件能够显示代码高亮 2023-04-29 02:04:08 +08:00
binary-husky
c53320182a 修复newbing引用样式 2023-04-29 01:51:11 +08:00
binary-husky
1788cb4a89 3.32 2023-04-29 00:50:19 +08:00
binary-husky
6a268e17cd 修复公式重复显示的bug 2023-04-29 00:48:48 +08:00
binary-husky
dbd8a80970 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-04-29 00:00:32 +08:00
binary-husky
6c17f3e9c8 添加历史存档读取的功能 2023-04-29 00:00:26 +08:00
binary-husky
730940b60d 修正多GPU选择的说明 2023-04-28 12:18:12 +08:00
binary-husky
71ba23b24a Update README.md 2023-04-28 11:18:54 +08:00
binary-husky
c12ac066b6 Update README.md 2023-04-28 11:18:02 +08:00
binary-husky
b6119ed827 Update README.md 2023-04-28 11:04:08 +08:00
Your Name
a219512045 fix auto upgrade issue 2023-04-27 21:26:01 +08:00
Your Name
dfa31a8c16 3.31 2023-04-27 21:15:22 +08:00
Your Name
984c7e9e12 修正自动更新路径 2023-04-27 21:11:15 +08:00
binary-husky
86b654d6be Update README.md 2023-04-27 20:30:03 +08:00
binary-husky
8c16cda3e8 Update README.md 2023-04-27 20:07:33 +08:00
binary-husky
c295bb4f04 ChatGLM加线程锁提高并发稳定性 2023-04-27 20:01:36 +08:00
binary-husky
8720f79310 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-04-27 19:59:01 +08:00
binary-husky
24bb174b63 Update README.md 2023-04-27 11:35:53 +08:00
binary-husky
bb788b9259 Update README.md 2023-04-27 11:33:37 +08:00
binary-husky
69540d07c5 修改dockerfile 2023-04-27 11:22:02 +08:00
binary-husky
34b767d1fd thread lock in chatglm 2023-04-27 11:17:19 +08:00
binary-husky
abd81cc215 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-04-27 10:58:51 +08:00
binary-husky
1eb0174dff 新增DARK_MODE选项,可选择默认颜色模式 2023-04-27 10:58:45 +08:00
binary-husky
c23db4b4f9 Update README.md 2023-04-26 23:04:58 +08:00
binary-husky
6538c58b8e Update README.md 2023-04-25 18:30:11 +08:00
binary-husky
e35eb9048e Update README.md 2023-04-25 16:48:08 +08:00
binary-husky
a0fa64de47 Update README.md 2023-04-25 16:46:36 +08:00
binary-husky
e04946c816 Update README.md 2023-04-25 16:45:53 +08:00
binary-husky
231c9c2e57 Update README.md 2023-04-25 16:11:35 +08:00
binary-husky
48555f570c Update README.md 2023-04-25 16:11:00 +08:00
binary-husky
7c9195ddd2 Update README.md 2023-04-25 15:50:35 +08:00
binary-husky
5500fbe682 Update README.md 2023-04-25 15:49:57 +08:00
binary-husky
5a83b3b096 version 3.3 2023-04-24 21:10:01 +08:00
binary-husky
4783fd6f37 UP 2023-04-24 21:02:16 +08:00
binary-husky
9a4b56277c Function Refector 2023-04-24 20:59:10 +08:00
binary-husky
5eea959103 Markdown翻译支持github url 2023-04-24 20:51:34 +08:00
binary-husky
856df8fb62 验证对话上下文 2023-04-24 20:18:32 +08:00
binary-husky
8e59412c47 修正newbing交互的不合理代码 2023-04-24 20:14:23 +08:00
binary-husky
8f571ff68f Merge branch 'v3.3' 2023-04-24 19:58:07 +08:00
binary-husky
b6d2766e59 改善功能 2023-04-24 19:54:28 +08:00
binary-husky
73ce471a0e max_worker_limit 2023-04-24 19:24:19 +08:00
binary-husky
4e113139c8 Merge branch 'master' into v3.3 2023-04-24 19:09:44 +08:00
binary-husky
e4c4b28ddf Update README.md 2023-04-24 18:20:33 +08:00
binary-husky
081acc6404 修复颜色 2023-04-24 17:42:24 +08:00
binary-husky
1a999497d7 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-04-24 17:33:23 +08:00
binary-husky
6137963355 拯救一下之前的灾难性的代码配色 2023-04-24 17:33:18 +08:00
binary-husky
22bffdb737 Update README.md 2023-04-24 12:25:10 +08:00
binary-husky
75adcbffeb Update README.md 2023-04-24 12:24:46 +08:00
binary-husky
4451770061 Update README.md 2023-04-24 12:24:29 +08:00
binary-husky
09c413a272 Update README.md 2023-04-24 12:17:58 +08:00
binary-husky
ddb6c90a8f Update README.md 2023-04-24 12:17:04 +08:00
binary-husky
71590426f9 Update README.md 2023-04-24 12:16:49 +08:00
binary-husky
b3e5cdb3a5 加一些注释 2023-04-24 12:08:42 +08:00
binary-husky
6595ab813e 修正计数错误 2023-04-24 11:54:15 +08:00
binary-husky
d1efbd26da 修正prompt 2023-04-24 11:48:39 +08:00
binary-husky
f04683732e 待调查的BUG 2023-04-24 11:39:40 +08:00
binary-husky
cb0241db78 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-04-24 11:34:53 +08:00
binary-husky
a097b6cd03 减少每次处理的论文数 2023-04-24 11:34:47 +08:00
Your Name
487ffe7888 Merge remote-tracking branch 'origin/master' into v3.3 2023-04-24 02:07:07 +08:00
binary-husky
51424a7d08 Update README.md 2023-04-24 01:57:13 +08:00
binary-husky
06e8e8f9a6 Update README.md 2023-04-24 01:55:53 +08:00
binary-husky
0512b311f8 Update README.md 2023-04-24 01:55:10 +08:00
binary-husky
81d53d0726 Update README.md 2023-04-24 01:47:35 +08:00
binary-husky
a141c5ccdc Update README.md 2023-04-24 01:46:58 +08:00
binary-husky
e361d741c3 Update README.md 2023-04-24 01:44:30 +08:00
binary-husky
f5bc58dbde Update README.md 2023-04-24 01:41:47 +08:00
Your Name
e7b73f3041 update readme 2023-04-24 00:43:57 +08:00
Your Name
ed8db8c8ae README 2023-04-23 23:49:55 +08:00
Your Name
df97213d3b version 3.3 2023-04-23 23:43:07 +08:00
Your Name
97443d1f83 移除依赖 2023-04-23 23:40:18 +08:00
Your Name
59bed52faf 修改依赖的引用方式 2023-04-23 23:39:54 +08:00
Your Name
3814c3a915 修改依赖 2023-04-23 23:36:55 +08:00
Your Name
d98d0a291e 移动函数位置 2023-04-23 23:34:13 +08:00
Your Name
ee94fa6dc4 拆分成两个文件 2023-04-23 23:32:35 +08:00
Your Name
d2e46f6684 更新提示 2023-04-23 23:26:23 +08:00
Your Name
5948dcacd5 加线程锁 2023-04-23 23:25:49 +08:00
Your Name
3041858e7f 优化提示 2023-04-23 23:16:25 +08:00
Your Name
9c2a6bc413 优化错误提示 2023-04-23 23:13:00 +08:00
Your Name
1cf8b6c6c8 修复细节 2023-04-23 22:47:45 +08:00
Your Name
781ef4487c 修复一些细节 2023-04-23 22:44:18 +08:00
Your Name
4a494354b1 显示newbing回复的网址 2023-04-23 22:34:24 +08:00
Your Name
385c775aa5 支持3.10以下的python版本使用newbing 2023-04-23 20:54:57 +08:00
binary-husky
518385dea2 add newbing, testing 2023-04-23 19:17:09 +08:00
binary-husky
4d1eea7bd5 更新说明 2023-04-23 18:40:58 +08:00
binary-husky
9cb51ccc70 restore default model 2023-04-23 18:38:05 +08:00
binary-husky
94dc398163 restore default model 2023-04-23 18:37:15 +08:00
binary-husky
65317e33af Merge branch 'newbing' into v3.3 2023-04-23 18:35:21 +08:00
binary-husky
06fbdf43af 更正部分注释 2023-04-23 18:34:16 +08:00
binary-husky
ab61418410 better traceback 2023-04-23 18:13:30 +08:00
binary-husky
0785ff2aed 微调对话裁剪 2023-04-23 17:45:56 +08:00
binary-husky
676fe40d39 优化chatgpt对话的截断策略 2023-04-23 17:32:44 +08:00
binary-husky
0b89673ee9 Merge pull request #571 from codycjy/notebook_args
feat(jupyter): use args to disable Markdown parse
2023-04-23 11:24:41 +08:00
binary-husky
2f4e050612 Update README.md 2023-04-23 11:22:35 +08:00
binary-husky
87d963bda5 UP 2023-04-23 11:19:16 +08:00
binary-husky
07807e4653 插件支持保存对话 2023-04-23 11:17:56 +08:00
binary-husky
2b96217f2b 实现Newbing聊天功能 2023-04-22 21:18:35 +08:00
saltfish
13342c2988 feat(jupter): use args to disable Markdown parse 2023-04-22 21:11:24 +08:00
binary-husky
95f8b2824a Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-04-22 18:56:07 +08:00
binary-husky
4065d6e234 版本3.2 2023-04-22 18:56:02 +08:00
binary-husky
d3dcd432e8 Update README.md 2023-04-22 18:47:11 +08:00
binary-husky
7d14de79bf Merge pull request #502 from mrhblfx/new_code_fun
解析项目源代码(手动指定和筛选源代码文件类型)
2023-04-22 18:40:47 +08:00
binary-husky
15c6b52b5f 修改README 2023-04-22 18:22:33 +08:00
binary-husky
c0f1b5bc8e 修改说明 2023-04-22 18:21:43 +08:00
mrhblfx
bd62c6be68 使提示更佳全面 2023-04-22 18:20:01 +08:00
binary-husky
70bd21f09a 修改二级路径运行的说明 2023-04-22 18:19:49 +08:00
Your Name
a0f15f1512 修改注释 2023-04-22 18:10:42 +08:00
mrhblfx
4575046ce1 使提示更佳全面 2023-04-22 18:08:27 +08:00
Your Name
33ea7391b5 Merge branch 'subpath' 2023-04-22 18:07:58 +08:00
Your Name
e90eee2d8e 加入subpath支持,但暂不启用 2023-04-22 18:07:24 +08:00
Your Name
7d44210a48 fix apache2 sub-path deploy issue #544 2023-04-22 17:55:50 +08:00
binary-husky
206f4138b6 Merge pull request #544 from yuxiaoyuan0406/suburl
fix apache2 sub-path deploy issue
2023-04-22 17:42:02 +08:00
mrhblfx
6d2807f499 Merge branch 'binary-husky:master' into new_code_fun 2023-04-22 17:38:26 +08:00
Your Name
f1234937c6 add check path back 2023-04-22 17:30:21 +08:00
Your Name
7beea951c6 unifying code 2023-04-22 17:24:22 +08:00
Your Name
6f7e8076c7 Merge branch 'suburl' of https://github.com/yuxiaoyuan0406/chatgpt_academic into yuxiaoyuan0406-suburl 2023-04-22 16:44:15 +08:00
binary-husky
ae24fab441 Merge pull request #562 from codycjy/codycjy
Parse and generate ipynb (Issue #501)
2023-04-22 16:22:03 +08:00
Your Name
880be21bf7 Add test for juptyer notebook plugin 2023-04-22 16:19:36 +08:00
Your Name
559b3cd6bb Merge branch 'codycjy' of https://github.com/codycjy/chatgpt_academic into codycjy-codycjy 2023-04-22 16:02:24 +08:00
binary-husky
9d9df8aa57 Update 解析JupyterNotebook.py 2023-04-22 16:01:32 +08:00
binary-husky
64548d33a9 Update crazy_functional.py 2023-04-22 15:58:43 +08:00
Your Name
c3cafd8d6f 微调界面布局 2023-04-22 15:52:21 +08:00
Your Name
e9a6efef7f 修复非压缩文件上传的读取问题 2023-04-22 15:39:51 +08:00
Your Name
89a75e26c3 修复extract_folder_path被定位到根目录的bug 2023-04-22 15:36:49 +08:00
Your Name
1139d395f2 将高级参数输入通用化(默认隐藏),应用到所有的下拉菜单函数插件中 2023-04-22 15:06:54 +08:00
saltfish
e20070939c Parse and generate ipynb (Issue #501)
Implemented code to parse and generate the ipynb files. The solution addresses Issue #501.
2023-04-22 00:36:28 +08:00
mrhblfx
3236fcca21 update 2023-04-21 21:02:11 +08:00
Your Name
5353eba376 version 3.15 添加联网回答问题 2023-04-21 20:03:38 +08:00
Your Name
7339b06acb Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-04-21 19:28:37 +08:00
Your Name
ce1fc3a999 修改chatglm不记忆上下文的bug 2023-04-21 19:28:32 +08:00
binary-husky
a9a489231a Update bridge_all.py 2023-04-21 18:56:56 +08:00
binary-husky
e889590a91 Update README.md 2023-04-21 18:49:24 +08:00
Your Name
9481405f6f 更新提示 2023-04-21 18:37:20 +08:00
Your Name
7317d79a3c 更新提醒 2023-04-21 18:28:51 +08:00
Your Name
a46e0111cd Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-04-21 17:37:56 +08:00
Your Name
01a377d747 还原API_URL的设置 2023-04-21 17:37:48 +08:00
binary-husky
50258b781e Update README.md 2023-04-21 15:47:00 +08:00
binary-husky
dd1ba222ae Update README.md 2023-04-21 15:46:23 +08:00
binary-husky
b7d4adeccc Update README.md 2023-04-21 15:19:19 +08:00
binary-husky
3f82208062 Merge pull request #552 from kuang-da/readme-docker-macos
添加对Windows和MacOs下的docker运行说明
2023-04-21 15:16:18 +08:00
binary-husky
5f319061d7 Update README.md 2023-04-21 15:13:51 +08:00
Da Kuang
2c2a8ea549 Update the readme file section: 安装-方法2:使用Docker 2023-04-21 02:24:39 -04:00
505030475
90e1eef61f 试试联网检索 2023-04-20 23:58:26 +08:00
Your Name
325406a650 联网搜索问题 2023-04-20 22:30:10 +08:00
Your Name
bff4a87914 【单元测试】添加联网回答问题的功能 2023-04-20 22:09:55 +08:00
mrhblfx
de0ed4a6f5 style:accordion of 解析任意code项目 is closed by default 2023-04-20 22:01:27 +08:00
mrhblfx
0ff838443e fix a bug 2023-04-20 21:44:35 +08:00
mrhblfx
cfbfb68618 Merge branch 'master' of github.com:mrhblfx/chatgpt_academic 2023-04-20 21:12:22 +08:00
binary-husky
b42f2f745f Update main.py 2023-04-20 20:36:20 +08:00
yuxiaoyuan0406
9945d5048a 更好的检查子路径逻辑 2023-04-20 18:31:26 +08:00
yuxiaoyuan0406
f0ff1f2c64 添加CUSTOM_PATH来部署到子级路径 2023-04-20 18:22:58 +08:00
yuxiaoyuan0406
7dd73e1330 添加了一个检查path的工具 2023-04-20 18:20:25 +08:00
yuxiaoyuan0406
4cfbacdb26 fix sub-path deploy 2023-04-20 17:21:47 +08:00
binary-husky
3bb4b4c92a Update README.md 2023-04-20 16:33:08 +08:00
binary-husky
bda025bc50 Update README.md 2023-04-20 16:31:26 +08:00
binary-husky
c24ff30f8c Update README.md 2023-04-20 10:40:44 +08:00
binary-husky
53189aea4e Update README.md 2023-04-20 10:38:30 +08:00
binary-husky
4b7a954fc8 Update README.md 2023-04-20 10:22:33 +08:00
binary-husky
2b9261bc39 Update README.md 2023-04-20 10:20:48 +08:00
Your Name
4812513cbc 增添报错信息 2023-04-20 09:45:44 +08:00
Your Name
4bd8475d95 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-04-19 22:10:32 +08:00
Your Name
ac219f40c5 在chatbot的标签上显示当前的模型选择 2023-04-19 22:10:26 +08:00
mrhblfx
26af2b1bb4 update by pull 2023-04-19 18:26:48 +08:00
binary-husky
97385c98fc Update README.md 2023-04-19 18:14:13 +08:00
binary-husky
74e3cd4c6f Update README.md 2023-04-19 17:34:45 +08:00
Your Name
205a6952a2 多语言README 2023-04-19 17:04:04 +08:00
Your Name
dd593d9f25 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-04-19 16:50:22 +08:00
Your Name
5d23420553 多语言README 2023-04-19 16:49:47 +08:00
binary-husky
0aed1609f6 Update README.md 2023-04-19 16:00:42 +08:00
Your Name
85e433910a UP 2023-04-19 15:58:33 +08:00
Your Name
fea5f01874 Update README 2023-04-19 15:56:20 +08:00
Your Name
9d2bc1f3e0 修复错误提醒 2023-04-19 15:52:44 +08:00
Your Name
f956dcd91d 更新说明 2023-04-19 15:39:57 +08:00
Your Name
0086ad9e1b Merge branch 'v3.1' 2023-04-19 15:38:32 +08:00
Your Name
02e3e1d19b fix dockerfile 2023-04-19 15:36:28 +08:00
Your Name
a9e9e79ed3 修改提示 2023-04-19 15:28:44 +08:00
Your Name
c37c49dd51 lazy load +decode 方法 2023-04-19 14:58:39 +08:00
Your Name
a15489d6e6 添加结束的情况 2023-04-19 14:54:58 +08:00
Your Name
6bf89dfa2d 添加测试 2023-04-19 14:49:34 +08:00
Your Name
966af4d4c5 warm up module in dockerfile 2023-04-19 14:40:22 +08:00
Your Name
df1d4fadec Merge branch 'v3.1' of github.com:binary-husky/chatgpt_academic into v3.1 2023-04-19 14:30:05 +08:00
Your Name
b0409b929b tiktoken做lazyload处理 2023-04-19 14:27:34 +08:00
Your Name
73d39b5470 修正dockerfile说明 2023-04-19 13:23:49 +08:00
Your Name
28aa6d1dc0 更新dockerfile说明书 2023-04-19 13:17:56 +08:00
Your Name
2125ea437f 修改说明 2023-04-19 13:14:11 +08:00
Your Name
23c5a77f82 修正一些细节 2023-04-19 12:29:33 +08:00
Your Name
acaf8cdbf4 版本说明 2023-04-19 11:52:13 +08:00
Your Name
da1b428030 更换布局 2023-04-19 11:51:16 +08:00
Your Name
bb94ad387f 介绍 2023-04-19 11:45:34 +08:00
Your Name
57b8ae3275 测试样例 2023-04-19 11:41:37 +08:00
Your Name
a3db8d1e1a Merge branch 'v3.1' of github.com:binary-husky/chatgpt_academic into v3.1 2023-04-19 11:09:41 +08:00
Your Name
e2a62ec409 测试脚本 2023-04-19 11:09:35 +08:00
mrhblfx
20bec70160 Merge branch 'master' of github.com:mrhblfx/chatgpt_academic 2023-04-18 23:40:51 +08:00
505030475
abd11e5dff Merge branch 'master' into v3.1 2023-04-18 23:33:49 +08:00
mrhblfx
9b5f088793 Changed matching rules 2023-04-18 23:31:12 +08:00
mrhblfx
3a561a70db Reduced one parameter 2023-04-18 23:30:19 +08:00
mrhblfx
11e33ec657 Reduced one input box 2023-04-18 23:29:18 +08:00
Your Name
40d91e9e1a improve dockerfile 2023-04-18 21:45:56 +08:00
Your Name
bf44dd1d41 logo gen 2023-04-18 21:04:29 +08:00
Your Name
05c74e66e7 多线程限制更正 2023-04-17 23:28:31 +08:00
Your Name
b5c4cd2f10 多线程超频错误 2023-04-17 23:21:12 +08:00
Your Name
17ebf96d92 Merge branch 'v3.1' of github.com:binary-husky/chatgpt_academic into v3.1 2023-04-17 23:16:18 +08:00
Your Name
48cf5c0c9c 兼容性措施 2023-04-17 23:16:12 +08:00
Your Name
9e87f96f55 Merge branch 'v3.1' of github.com:binary-husky/chatgpt_academic into v3.1 2023-04-17 23:09:44 +08:00
Your Name
9b0e20c96d update 2023-04-17 23:09:38 +08:00
Your Name
c5d4e75a7a 更新注释 2023-04-17 22:54:28 +08:00
Your Name
7c050d66c8 reverse 2023-04-17 22:52:20 +08:00
Your Name
deb8e5e137 动态endpoint 2023-04-17 22:51:23 +08:00
Your Name
5316b5c373 错误情况处理 2023-04-17 22:33:46 +08:00
Your Name
d84c96cfa3 修复备选输入区+文件上传的BUG 2023-04-17 22:26:46 +08:00
Your Name
45c81cdaff gpt-4 token +8192 2023-04-17 22:00:26 +08:00
Your Name
2dd3530e82 修改注释 2023-04-17 21:58:28 +08:00
Your Name
3eef2d55a0 提示修正 2023-04-17 21:54:14 +08:00
Your Name
5549e5880a 提示错误信息 2023-04-17 21:31:51 +08:00
Your Name
9bd8511ba4 更多模型切换 2023-04-17 21:23:03 +08:00
Your Name
03ba072c16 改善word总结功能 2023-04-17 20:34:55 +08:00
Your Name
2472185de9 unify tiktoken model 2023-04-17 19:41:50 +08:00
qingxu fu
40bc865d33 Merge branch 'v3.1' of https://github.com/binary-husky/chatgpt_academic into v3.1 2023-04-17 09:21:04 +08:00
qingxu fu
c326a86ff4 注释 2023-04-17 09:21:00 +08:00
mrhblfx
d1926725d3 Add parsing arbitrary code items 2023-04-16 23:33:43 +08:00
mrhblfx
2f9a4e1618 Add parsing arbitrary code items 2023-04-16 23:00:45 +08:00
Your Name
d1c5986097 Merge branch 'master' into v3.1 2023-04-16 20:16:25 +08:00
qingxu fu
8049296bee 上传 2023-04-15 21:08:44 +08:00
qingxu fu
f6483c93e1 修复界面的小小BUG 2023-04-15 19:24:22 +08:00
qingxu fu
4120b05dd3 清除按键 2023-04-15 19:17:22 +08:00
qingxu fu
6aba339538 ChatGLM改成多进程运行 2023-04-15 19:09:03 +08:00
qingxu fu
294ac338bd move files 2023-04-15 15:27:07 +08:00
qingxu fu
91609d6d39 Rebase v3.0 2023-04-15 15:24:18 +08:00
共有 210 个文件被更改,包括 28326 次插入16665 次删除

查看文件

@@ -1,25 +0,0 @@
---
name: Bug report
about: Create a report to help us improve
title: ''
labels: ''
assignees: ''
---
- **(1) Describe the bug 简述**
- **(2) Screen Shot 截图**
- **(3) Terminal Traceback 终端traceback如有**
- **(4) Material to Help Reproduce Bugs 帮助我们复现的测试材料样本(如有)**
Before submitting an issue 提交issue之前
- Please try to upgrade your code. 如果您的代码不是最新的,建议您先尝试更新代码
- Please check project wiki for common problem solutions.项目[wiki](https://github.com/binary-husky/chatgpt_academic/wiki)有一些常见问题的解决方法

71
.github/ISSUE_TEMPLATE/bug_report.yml vendored 普通文件
查看文件

@@ -0,0 +1,71 @@
name: Report Bug | 报告BUG
description: "Report bug"
title: "[Bug]: "
labels: []
body:
- type: dropdown
id: download
attributes:
label: Installation Method | 安装方法与平台
options:
- Please choose | 请选择
- Pip Install (I ignored requirements.txt)
- Pip Install (I used latest requirements.txt)
- OneKeyInstall (一键安装脚本-windows)
- OneKeyInstall (一键安装脚本-mac)
- Anaconda (I ignored requirements.txt)
- Anaconda (I used latest requirements.txt)
- DockerWindows/Mac
- DockerLinux
- Docker-ComposeWindows/Mac
- Docker-ComposeLinux
- Huggingface
- Others (Please Describe)
validations:
required: true
- type: dropdown
id: version
attributes:
label: Version | 版本
options:
- Please choose | 请选择
- Latest | 最新版
- Others | 非最新版
validations:
required: true
- type: dropdown
id: os
attributes:
label: OS | 操作系统
options:
- Please choose | 请选择
- Windows
- Mac
- Linux
- Docker
validations:
required: true
- type: textarea
id: describe
attributes:
label: Describe the bug | 简述
description: Describe the bug | 简述
validations:
required: true
- type: textarea
id: screenshot
attributes:
label: Screen Shot | 有帮助的截图
description: Screen Shot | 有帮助的截图
validations:
required: true
- type: textarea
id: traceback
attributes:
label: Terminal Traceback & Material to Help Reproduce Bugs | 终端traceback如有 + 帮助我们复现的测试材料样本(如有)
description: Terminal Traceback & Material to Help Reproduce Bugs | 终端traceback如有 + 帮助我们复现的测试材料样本(如有)

查看文件

@@ -1,10 +0,0 @@
---
name: Feature request
about: Suggest an idea for this project
title: ''
labels: ''
assignees: ''
---

查看文件

@@ -0,0 +1,23 @@
name: Feature Request | 功能请求
description: "Feature Request"
title: "[Feature]: "
labels: []
body:
- type: dropdown
id: download
attributes:
label: Class | 类型
options:
- Please choose | 请选择
- 其他
- 函数插件
- 大语言模型
- 程序主体
validations:
required: false
- type: textarea
id: traceback
attributes:
label: Feature Request | 功能请求
description: Feature Request | 功能请求

查看文件

@@ -0,0 +1,44 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: build-with-all-capacity
on:
push:
branches:
- 'master'
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}_with_all_capacity
jobs:
build-and-push-image:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- name: Checkout repository
uses: actions/checkout@v3
- name: Log in to the Container registry
uses: docker/login-action@v2
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v4
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
- name: Build and push Docker image
uses: docker/build-push-action@v4
with:
context: .
push: true
file: docs/GithubAction+AllCapacity
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}

查看文件

@@ -0,0 +1,44 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: build-with-audio-assistant
on:
push:
branches:
- 'master'
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}_audio_assistant
jobs:
build-and-push-image:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- name: Checkout repository
uses: actions/checkout@v3
- name: Log in to the Container registry
uses: docker/login-action@v2
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v4
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
- name: Build and push Docker image
uses: docker/build-push-action@v4
with:
context: .
push: true
file: docs/GithubAction+NoLocal+AudioAssistant
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}

44
.github/workflows/build-with-chatglm.yml vendored 普通文件
查看文件

@@ -0,0 +1,44 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: build-with-chatglm
on:
push:
branches:
- 'master'
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}_chatglm_moss
jobs:
build-and-push-image:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- name: Checkout repository
uses: actions/checkout@v3
- name: Log in to the Container registry
uses: docker/login-action@v2
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v4
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
- name: Build and push Docker image
uses: docker/build-push-action@v4
with:
context: .
push: true
file: docs/GithubAction+ChatGLM+Moss
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}

查看文件

@@ -0,0 +1,51 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: build-with-latex-arm
on:
push:
branches:
- "master"
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}_with_latex_arm
jobs:
build-and-push-image:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Checkout repository
uses: actions/checkout@v4
- name: Log in to the Container registry
uses: docker/login-action@v3
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v4
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
- name: Build and push Docker image
uses: docker/build-push-action@v6
with:
context: .
push: true
platforms: linux/arm64
file: docs/GithubAction+NoLocal+Latex
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}

44
.github/workflows/build-with-latex.yml vendored 普通文件
查看文件

@@ -0,0 +1,44 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: build-with-latex
on:
push:
branches:
- 'master'
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}_with_latex
jobs:
build-and-push-image:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- name: Checkout repository
uses: actions/checkout@v3
- name: Log in to the Container registry
uses: docker/login-action@v2
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v4
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
- name: Build and push Docker image
uses: docker/build-push-action@v4
with:
context: .
push: true
file: docs/GithubAction+NoLocal+Latex
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}

查看文件

@@ -0,0 +1,44 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: build-without-local-llms
on:
push:
branches:
- 'master'
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}_nolocal
jobs:
build-and-push-image:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- name: Checkout repository
uses: actions/checkout@v3
- name: Log in to the Container registry
uses: docker/login-action@v2
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v4
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
- name: Build and push Docker image
uses: docker/build-push-action@v4
with:
context: .
push: true
file: docs/GithubAction+NoLocal
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}

25
.github/workflows/stale.yml vendored 普通文件
查看文件

@@ -0,0 +1,25 @@
# This workflow warns and then closes issues and PRs that have had no activity for a specified amount of time.
#
# You can adjust the behavior by modifying this file.
# For more information, see:
# https://github.com/actions/stale
name: 'Close stale issues and PRs'
on:
schedule:
- cron: '*/5 * * * *'
jobs:
stale:
runs-on: ubuntu-latest
permissions:
issues: write
pull-requests: read
steps:
- uses: actions/stale@v8
with:
stale-issue-message: 'This issue is stale because it has been open 100 days with no activity. Remove stale label or comment or this will be closed in 1 days.'
days-before-stale: 100
days-before-close: 1
debug-only: true

21
.gitignore vendored
查看文件

@@ -55,7 +55,6 @@ coverage.xml
*.pot
github
.github
.idea/
TEMP
TRASH
@@ -132,6 +131,9 @@ dmypy.json
# Pyre type checker
.pyre/
# macOS files
.DS_Store
.vscode
.idea
@@ -144,3 +146,20 @@ private_upload
other_llms
cradle*
debug*
private*
crazy_functions/test_project/pdf_and_word
crazy_functions/test_samples
request_llms/jittorllms
multi-language
request_llms/moss
media
flagged
request_llms/ChatGLM-6b-onnx-u8s8
.pre-commit-config.yaml
test.*
temp.*
objdump*
*.min.*.js
TODO
experimental_mods
search_results

查看文件

@@ -1,14 +1,39 @@
# 此Dockerfile适用于“无本地模型”的迷你运行环境构建
# 如果需要使用chatglm等本地模型或者latex运行依赖,请参考 docker-compose.yml
# - 如何构建: 先修改 `config.py`, 然后 `docker build -t gpt-academic . `
# - 如何运行(Linux下): `docker run --rm -it --net=host gpt-academic `
# - 如何运行(其他操作系统,选择任意一个固定端口50923): `docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic `
FROM python:3.11
# 非必要步骤,更换pip源 (以下三行,可以删除)
RUN echo '[global]' > /etc/pip.conf && \
echo 'index-url = https://mirrors.aliyun.com/pypi/simple/' >> /etc/pip.conf && \
echo 'trusted-host = mirrors.aliyun.com' >> /etc/pip.conf
# 语音输出功能以下两行,第一行更换阿里源,第二行安装ffmpeg,都可以删除
RUN UBUNTU_VERSION=$(awk -F= '/^VERSION_CODENAME=/{print $2}' /etc/os-release); echo "deb https://mirrors.aliyun.com/debian/ $UBUNTU_VERSION main non-free contrib" > /etc/apt/sources.list; apt-get update
RUN apt-get install ffmpeg -y
# 进入工作路径(必要)
WORKDIR /gpt
COPY requirements.txt .
# 安装大部分依赖,利用Docker缓存加速以后的构建 (以下两行,可以删除)
COPY requirements.txt ./
RUN pip3 install -r requirements.txt
COPY . .
# 装载项目文件,安装剩余依赖(必要)
COPY . .
RUN pip3 install -r requirements.txt
# 非必要步骤,用于预热模块(可以删除)
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
# 启动(必要)
CMD ["python3", "-u", "main.py"]

282
README.md
查看文件

@@ -1,282 +0,0 @@
# ChatGPT 学术优化
**如果喜欢这个项目,请给它一个Star;如果你发明了更好用的快捷键或函数插件,欢迎发issue或者pull requests**
If you like this project, please give it a Star. If you've come up with more useful academic shortcuts or functional plugins, feel free to open an issue or pull request. We also have a [README in English](img/README_EN.md) translated by this project itself.
> **Note**
>
> 1.请注意只有**红颜色**标识的函数插件(按钮)才支持读取文件,部分插件位于插件区的**下拉菜单**中。另外我们以**最高优先级**欢迎和处理任何新插件的PR
>
> 2.本项目中每个文件的功能都在自译解[`self_analysis.md`](https://github.com/binary-husky/chatgpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A)详细说明。随着版本的迭代,您也可以随时自行点击相关函数插件,调用GPT重新生成项目的自我解析报告。常见问题汇总在[`wiki`](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98)当中。
>
<div align="center">
功能 | 描述
--- | ---
一键润色 | 支持一键润色、一键查找论文语法错误
一键中英互译 | 一键中英互译
一键代码解释 | 可以正确显示代码、解释代码
[自定义快捷键](https://www.bilibili.com/video/BV14s4y1E7jN) | 支持自定义快捷键
[配置代理服务器](https://www.bilibili.com/video/BV1rc411W7Dr) | 支持配置代理服务器
模块化设计 | 支持自定义高阶的实验性功能与[函数插件],插件支持[热更新](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[自我程序剖析](https://www.bilibili.com/video/BV1cj411A7VW) | [函数插件] [一键读懂](https://github.com/binary-husky/chatgpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A)本项目的源代码
[程序剖析](https://www.bilibili.com/video/BV1cj411A7VW) | [函数插件] 一键可以剖析其他Python/C/C++/Java/Lua/...项目树
读论文 | [函数插件] 一键解读latex论文全文并生成摘要
Latex全文翻译、润色 | [函数插件] 一键翻译或润色latex论文
批量注释生成 | [函数插件] 一键批量生成函数注释
chat分析报告生成 | [函数插件] 运行后自动生成总结汇报
[arxiv小助手](https://www.bilibili.com/video/BV1LM4y1279X) | [函数插件] 输入arxiv文章url即可一键翻译摘要+下载PDF
[PDF论文全文翻译功能](https://www.bilibili.com/video/BV1KT411x7Wn) | [函数插件] PDF论文提取题目&摘要+翻译全文(多线程)
[谷歌学术统合小助手](https://www.bilibili.com/video/BV19L411U7ia) | [函数插件] 给定任意谷歌学术搜索页面URL,让gpt帮你选择有趣的文章
公式/图片/表格显示 | 可以同时显示公式的tex形式和渲染形式,支持公式、代码高亮
多线程函数插件支持 | 支持多线调用chatgpt,一键处理海量文本或程序
启动暗色gradio[主题](https://github.com/binary-husky/chatgpt_academic/issues/173) | 在浏览器url后面添加```/?__dark-theme=true```可以切换dark主题
[多LLM模型](https://www.bilibili.com/video/BV1EM411K7VH/)支持([v3.1分支](https://github.com/binary-husky/chatgpt_academic/tree/v3.1) | 同时被ChatGPT和[清华ChatGLM](https://github.com/THUDM/ChatGLM-6B)伺候的感觉一定会很不错吧?
兼容[TGUI](https://github.com/oobabooga/text-generation-webui)接入更多样的语言模型 | 接入opt-1.3b, galactica-1.3b等模型([v3.1分支](https://github.com/binary-husky/chatgpt_academic/tree/v3.0)测试中)
huggingface免科学上网[在线体验](https://huggingface.co/spaces/qingxu98/gpt-academic) | 登陆huggingface后复制[此空间](https://huggingface.co/spaces/qingxu98/gpt-academic)
…… | ……
</div>
- 新界面修改config.py中的LAYOUT选项即可实现“左右布局”和“上下布局”的切换
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230361456-61078362-a966-4eb5-b49e-3c62ef18b860.gif" width="700" >
</div>
- 所有按钮都通过读取functional.py动态生成,可随意加自定义功能,解放粘贴板
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231975334-b4788e91-4887-412f-8b43-2b9c5f41d248.gif" width="700" >
</div>
- 润色/纠错
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231980294-f374bdcb-3309-4560-b424-38ef39f04ebd.gif" width="700" >
</div>
- 如果输出包含公式,会同时以tex形式和渲染形式显示,方便复制和阅读
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700" >
</div>
- 懒得看项目代码?整个工程直接给chatgpt炫嘴里
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700" >
</div>
- 多种大语言模型混合调用ChatGLM + OpenAI-GPT3.5 + [API2D](https://api2d.com/)-GPT4, [v3.1分支](https://github.com/binary-husky/chatgpt_academic/tree/v3.1)测试中)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700" >
</div>
v3.1的[huggingface测试版](https://huggingface.co/spaces/qingxu98/academic-chatgpt-beta)huggingface版不支持chatglm
## 直接运行 (Windows, Linux or MacOS)
### 1. 下载项目
```sh
git clone https://github.com/binary-husky/chatgpt_academic.git
cd chatgpt_academic
```
### 2. 配置API_KEY和代理设置
在`config.py`中,配置 海外Proxy 和 OpenAI API KEY,说明如下
```
1. 如果你在国内,需要设置海外代理才能够顺利使用 OpenAI API,设置方法请仔细阅读config.py1.修改其中的USE_PROXY为True; 2.按照说明修改其中的proxies
2. 配置 OpenAI API KEY。你需要在 OpenAI 官网上注册并获取 API KEY。一旦你拿到了 API KEY,在 config.py 文件里配置好即可。
3. 与代理网络有关的issue网络超时、代理不起作用汇总到 https://github.com/binary-husky/chatgpt_academic/issues/1
```
P.S. 程序运行时会优先检查是否存在名为`config_private.py`的私密配置文件,并用其中的配置覆盖`config.py`的同名配置。因此,如果您能理解我们的配置读取逻辑,我们强烈建议您在`config.py`旁边创建一个名为`config_private.py`的新配置文件,并把`config.py`中的配置转移(复制)到`config_private.py`中。`config_private.py`不受git管控,可以让您的隐私信息更加安全。
### 3. 安装依赖
```sh
# (选择一)推荐
python -m pip install -r requirements.txt
# 选择二如果您使用anaconda,步骤也是类似的
# (选择二.1conda create -n gptac_venv python=3.11
# (选择二.2conda activate gptac_venv
# (选择二.3python -m pip install -r requirements.txt
# 备注使用官方pip源或者阿里pip源,其他pip源如一些大学的pip有可能出问题,临时换源方法
# python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
```
### 4. 运行
```sh
python main.py
```
### 5. 测试实验性功能
```
- 测试C++项目头文件分析
input区域 输入 `./crazy_functions/test_project/cpp/libJPG` , 然后点击 "[实验] 解析整个C++项目input输入项目根路径"
- 测试给Latex项目写摘要
input区域 输入 `./crazy_functions/test_project/latex/attention` , 然后点击 "[实验] 读tex论文写摘要input输入项目根路径"
- 测试Python项目分析
input区域 输入 `./crazy_functions/test_project/python/dqn` , 然后点击 "[实验] 解析整个py项目input输入项目根路径"
- 测试自我代码解读
点击 "[实验] 请解析并解构此项目本身"
- 测试实验功能模板函数要求gpt回答历史上的今天发生了什么,您可以根据此函数为模板,实现更复杂的功能
点击 "[实验] 实验功能函数模板"
```
## 使用docker (Linux)
``` sh
# 下载项目
git clone https://github.com/binary-husky/chatgpt_academic.git
cd chatgpt_academic
# 配置 海外Proxy 和 OpenAI API KEY
用任意文本编辑器编辑 config.py
# 安装
docker build -t gpt-academic .
# 运行
docker run --rm -it --net=host gpt-academic
# 测试实验性功能
## 测试自我代码解读
点击 "[实验] 请解析并解构此项目本身"
## 测试实验功能模板函数要求gpt回答历史上的今天发生了什么,您可以根据此函数为模板,实现更复杂的功能
点击 "[实验] 实验功能函数模板"
##请注意在docker中运行时,需要额外注意程序的文件访问权限问题
## 测试C++项目头文件分析
input区域 输入 ./crazy_functions/test_project/cpp/libJPG , 然后点击 "[实验] 解析整个C++项目input输入项目根路径"
## 测试给Latex项目写摘要
input区域 输入 ./crazy_functions/test_project/latex/attention , 然后点击 "[实验] 读tex论文写摘要input输入项目根路径"
## 测试Python项目分析
input区域 输入 ./crazy_functions/test_project/python/dqn , 然后点击 "[实验] 解析整个py项目input输入项目根路径"
```
## 其他部署方式
- 远程云服务器部署
请访问[部署wiki-2](https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
- 使用WSL2Windows Subsystem for Linux 子系统)
请访问[部署wiki-1](https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
## 自定义新的便捷按钮(学术快捷键自定义)
任意文本编辑器打开`core_functional.py`,添加条目如下,然后重启程序即可。(如果按钮已经添加成功并可见,那么前缀、后缀都支持热修改,无需重启程序即可生效。)
例如
```
"超级英译中": {
# 前缀,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等
"Prefix": "请翻译把下面一段内容成中文,然后用一个markdown表格逐一解释文中出现的专有名词\n\n",
# 后缀,会被加在你的输入之后。例如,配合前缀可以把你的输入内容用引号圈起来。
"Suffix": "",
},
```
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226899272-477c2134-ed71-4326-810c-29891fe4a508.png" width="500" >
</div>
如果你发明了更好用的快捷键,欢迎发issue或者pull requests
## 配置代理
### 方法一:常规方法
在```config.py```中修改端口与代理软件对应
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226571294-37a47cd9-4d40-4c16-97a2-d360845406f7.png" width="500" >
<img src="https://user-images.githubusercontent.com/96192199/226838985-e5c95956-69c2-4c23-a4dd-cd7944eeb451.png" width="500" >
</div>
配置完成后,你可以用以下命令测试代理是否工作,如果一切正常,下面的代码将输出你的代理服务器所在地:
```
python check_proxy.py
```
### 方法二:纯新手教程
[纯新手教程](https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BB%A3%E7%90%86%E8%BD%AF%E4%BB%B6%E9%97%AE%E9%A2%98%E7%9A%84%E6%96%B0%E6%89%8B%E8%A7%A3%E5%86%B3%E6%96%B9%E6%B3%95%EF%BC%88%E6%96%B9%E6%B3%95%E5%8F%AA%E9%80%82%E7%94%A8%E4%BA%8E%E6%96%B0%E6%89%8B%EF%BC%89)
## 功能测试
### 图片显示:
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/228737599-bf0a9d9c-1808-4f43-ae15-dfcc7af0f295.png" width="800" >
</div>
### 如果一个程序能够读懂并剖析自己:
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226936850-c77d7183-0749-4c1c-9875-fd4891842d0c.png" width="800" >
</div>
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226936618-9b487e4b-ab5b-4b6e-84c6-16942102e917.png" width="800" >
</div>
### 其他任意Python/Cpp项目剖析
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="800" >
</div>
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226969067-968a27c1-1b9c-486b-8b81-ab2de8d3f88a.png" width="800" >
</div>
### Latex论文一键阅读理解与摘要生成
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/227504406-86ab97cd-f208-41c3-8e4a-7000e51cf980.png" width="800" >
</div>
### 自动报告生成
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/227503770-fe29ce2c-53fd-47b0-b0ff-93805f0c2ff4.png" height="300" >
<img src="https://user-images.githubusercontent.com/96192199/227504617-7a497bb3-0a2a-4b50-9a8a-95ae60ea7afd.png" height="300" >
<img src="https://user-images.githubusercontent.com/96192199/227504005-efeaefe0-b687-49d0-bf95-2d7b7e66c348.png" height="300" >
</div>
### 模块化功能设计
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/229288270-093643c1-0018-487a-81e6-1d7809b6e90f.png" height="400" >
<img src="https://user-images.githubusercontent.com/96192199/227504931-19955f78-45cd-4d1c-adac-e71e50957915.png" height="400" >
</div>
### 源代码转译英文
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/229720562-fe6c3508-6142-4635-a83d-21eb3669baee.png" height="400" >
</div>
## Todo 与 版本规划:
- version 3.0 (Todo): 优化对chatglm和其他小型llm的支持
- version 2.6: 重构了插件结构,提高了交互性,加入更多插件
- version 2.5: 自更新,解决总结大工程源代码时文本过长、token溢出的问题
- version 2.4: (1)新增PDF全文翻译功能; (2)新增输入区切换位置的功能; (3)新增垂直布局选项; (4)多线程函数插件优化。
- version 2.3: 增强多线程交互性
- version 2.2: 函数插件支持热重载
- version 2.1: 可折叠式布局
- version 2.0: 引入模块化函数插件
- version 1.0: 基础功能
## 参考与学习
```
代码中参考了很多其他优秀项目中的设计,主要包括:
# 借鉴项目1借鉴了ChuanhuChatGPT中读取OpenAI json的方法、记录历史问询记录的方法以及gradio queue的使用技巧
https://github.com/GaiZhenbiao/ChuanhuChatGPT
# 借鉴项目2
https://github.com/THUDM/ChatGLM-6B
```

查看文件

@@ -1,28 +1,77 @@
from loguru import logger
def check_proxy(proxies):
def check_proxy(proxies, return_ip=False):
"""
检查代理配置并返回结果。
Args:
proxies (dict): 包含http和https代理配置的字典。
return_ip (bool, optional): 是否返回代理的IP地址。默认为False。
Returns:
str or None: 检查的结果信息或代理的IP地址如果`return_ip`为True
"""
import requests
proxies_https = proxies['https'] if proxies is not None else ''
ip = None
try:
response = requests.get("https://ipapi.co/json/",
proxies=proxies, timeout=4)
response = requests.get("https://ipapi.co/json/", proxies=proxies, timeout=4) # ⭐ 执行GET请求以获取代理信息
data = response.json()
print(f'查询代理的地理位置,返回的结果是{data}')
if 'country_name' in data:
country = data['country_name']
result = f"代理配置 {proxies_https}, 代理所在地:{country}"
if 'ip' in data:
ip = data['ip']
elif 'error' in data:
result = f"代理配置 {proxies_https}, 代理所在地未知,IP查询频率受限"
print(result)
return result
alternative, ip = _check_with_backup_source(proxies) # ⭐ 调用备用方法检查代理配置
if alternative is None:
result = f"代理配置 {proxies_https}, 代理所在地未知,IP查询频率受限"
else:
result = f"代理配置 {proxies_https}, 代理所在地:{alternative}"
else:
result = f"代理配置 {proxies_https}, 代理数据解析失败:{data}"
if not return_ip:
logger.warning(result)
return result
else:
return ip
except:
result = f"代理配置 {proxies_https}, 代理所在地查询超时,代理可能无效"
print(result)
return result
if not return_ip:
logger.warning(result)
return result
else:
return ip
def _check_with_backup_source(proxies):
"""
通过备份源检查代理,并获取相应信息。
Args:
proxies (dict): 包含代理信息的字典。
Returns:
tuple: 代理信息(geo)和IP地址(ip)的元组。
"""
import random, string, requests
random_string = ''.join(random.choices(string.ascii_letters + string.digits, k=32))
try:
res_json = requests.get(f"http://{random_string}.edns.ip-api.com/json", proxies=proxies, timeout=4).json() # ⭐ 执行代理检查和备份源请求
return res_json['dns']['geo'], res_json['dns']['ip']
except:
return None, None
def backup_and_download(current_version, remote_version):
"""
一键更新协议:备份和下载
一键更新协议:备份当前版本,下载远程版本并解压缩。
Args:
current_version (str): 当前版本号。
remote_version (str): 远程版本号。
Returns:
str: 新版本目录的路径。
"""
from toolbox import get_conf
import shutil
@@ -36,10 +85,10 @@ def backup_and_download(current_version, remote_version):
return new_version_dir
os.makedirs(new_version_dir)
shutil.copytree('./', backup_dir, ignore=lambda x, y: ['history'])
proxies, = get_conf('proxies')
r = requests.get(
'https://github.com/binary-husky/chatgpt_academic/archive/refs/heads/master.zip', proxies=proxies, stream=True)
zip_file_path = backup_dir+'/master.zip'
proxies = get_conf('proxies')
try: r = requests.get('https://github.com/binary-husky/chatgpt_academic/archive/refs/heads/master.zip', proxies=proxies, stream=True)
except: r = requests.get('https://public.agent-matrix.com/publish/master.zip', proxies=proxies, stream=True)
zip_file_path = backup_dir+'/master.zip' # ⭐ 保存备份文件的路径
with open(zip_file_path, 'wb+') as f:
f.write(r.content)
dst_path = new_version_dir
@@ -55,55 +104,84 @@ def backup_and_download(current_version, remote_version):
def patch_and_restart(path):
"""
一键更新协议:覆盖和重启
Args:
path (str): 新版本代码所在的路径
注意事项:
如果您的程序没有使用config_private.py私密配置文件,则会将config.py重命名为config_private.py以避免配置丢失。
更新流程:
- 复制最新版本代码到当前目录
- 更新pip包依赖
- 如果更新失败,则提示手动安装依赖库并重启
"""
import distutils
from distutils import dir_util
import shutil
import os
import sys
import time
from colorful import print亮黄, print亮绿, print亮红
# if not using config_private, move origin config.py as config_private.py
import glob
from shared_utils.colorful import log亮黄, log亮绿, log亮红
if not os.path.exists('config_private.py'):
print亮黄('由于您没有设置config_private.py私密配置,现将您的现有配置移动至config_private.py以防止配置丢失,',
log亮黄('由于您没有设置config_private.py私密配置,现将您的现有配置移动至config_private.py以防止配置丢失,',
'另外您可以随时在history子文件夹下找回旧版的程序。')
shutil.copyfile('config.py', 'config_private.py')
distutils.dir_util.copy_tree(path+'/chatgpt_academic-master', './')
import subprocess
print亮绿('代码已经更新,即将更新pip包依赖……')
for i in reversed(range(5)): time.sleep(1); print(i)
try:
path_new_version = glob.glob(path + '/*-master')[0]
dir_util.copy_tree(path_new_version, './') # ⭐ 将最新版本代码复制到当前目录
log亮绿('代码已经更新,即将更新pip包依赖……')
for i in reversed(range(5)): time.sleep(1); log亮绿(i)
try:
import subprocess
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-r', 'requirements.txt'])
except:
print亮红('pip包依赖安装出现问题,需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
print亮绿('更新完成,您可以随时在history子文件夹下找回旧版的程序,5s之后重启')
print亮红('假如重启失败,您可能需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
print(' ------------------------------ -----------------------------------')
for i in reversed(range(8)): time.sleep(1); print(i)
os.execl(sys.executable, sys.executable, *sys.argv)
log亮红('pip包依赖安装出现问题,需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
log亮绿('更新完成,您可以随时在history子文件夹下找回旧版的程序,5s之后重启')
log亮红('假如重启失败,您可能需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
log亮绿(' ------------------------------ -----------------------------------')
for i in reversed(range(8)): time.sleep(1); log亮绿(i)
os.execl(sys.executable, sys.executable, *sys.argv) # 重启程序
def get_current_version():
"""
获取当前的版本号。
Returns:
str: 当前的版本号。如果无法获取版本号,则返回空字符串。
"""
import json
try:
with open('./version', 'r', encoding='utf8') as f:
current_version = json.loads(f.read())['version']
current_version = json.loads(f.read())['version'] # ⭐ 从读取的json数据中提取版本号
except:
current_version = ""
return current_version
def auto_update():
def auto_update(raise_error=False):
"""
一键更新协议:查询版本和用户意见
Args:
raise_error (bool, optional): 是否在出错时抛出错误。默认为 False。
Returns:
None
"""
try:
from toolbox import get_conf
import requests
import time
import json
proxies, = get_conf('proxies')
response = requests.get(
"https://raw.githubusercontent.com/binary-husky/chatgpt_academic/master/version", proxies=proxies, timeout=1)
proxies = get_conf('proxies')
try: response = requests.get("https://raw.githubusercontent.com/binary-husky/chatgpt_academic/master/version", proxies=proxies, timeout=5)
except: response = requests.get("https://public.agent-matrix.com/publish/version", proxies=proxies, timeout=5)
remote_json_data = json.loads(response.text)
remote_version = remote_json_data['version']
if remote_json_data["show_feature"]:
@@ -113,30 +191,67 @@ def auto_update():
with open('./version', 'r', encoding='utf8') as f:
current_version = f.read()
current_version = json.loads(current_version)['version']
if (remote_version - current_version) >= 0.01:
from colorful import print亮黄
print亮黄(
f'\n新版本可用。新版本:{remote_version},当前版本:{current_version}{new_feature}')
print('1Github更新地址:\nhttps://github.com/binary-husky/chatgpt_academic\n')
if (remote_version - current_version) >= 0.01-1e-5:
from shared_utils.colorful import log亮黄
log亮黄(f'\n新版本可用。新版本:{remote_version},当前版本:{current_version}{new_feature}') # ⭐ 在控制台打印新版本信息
logger.info('1Github更新地址:\nhttps://github.com/binary-husky/chatgpt_academic\n')
user_instruction = input('2是否一键更新代码Y+回车=确认,输入其他/无输入+回车=不更新)?')
if user_instruction in ['Y', 'y']:
path = backup_and_download(current_version, remote_version)
path = backup_and_download(current_version, remote_version) # ⭐ 备份并下载文件
try:
patch_and_restart(path)
patch_and_restart(path) # ⭐ 执行覆盖并重启操作
except:
print('更新失败。')
msg = '更新失败。'
if raise_error:
from toolbox import trimmed_format_exc
msg += trimmed_format_exc()
logger.warning(msg)
else:
print('自动更新程序:已禁用')
logger.info('自动更新程序:已禁用')
return
else:
return
except:
print('自动更新程序:已禁用')
msg = '自动更新程序:已禁用。建议排查:代理网络配置。'
if raise_error:
from toolbox import trimmed_format_exc
msg += trimmed_format_exc()
logger.info(msg)
def warm_up_modules():
"""
预热模块,加载特定模块并执行预热操作。
"""
logger.info('正在执行一些模块的预热 ...')
from toolbox import ProxyNetworkActivate
from request_llms.bridge_all import model_info
with ProxyNetworkActivate("Warmup_Modules"):
enc = model_info["gpt-3.5-turbo"]['tokenizer']
enc.encode("模块预热", disallowed_special=())
enc = model_info["gpt-4"]['tokenizer']
enc.encode("模块预热", disallowed_special=())
def warm_up_vectordb():
"""
执行一些模块的预热操作。
本函数主要用于执行一些模块的预热操作,确保在后续的流程中能够顺利运行。
⭐ 关键作用:预热模块
Returns:
None
"""
logger.info('正在执行一些模块的预热 ...')
from toolbox import ProxyNetworkActivate
with ProxyNetworkActivate("Warmup_Modules"):
import nltk
with ProxyNetworkActivate("Warmup_Modules"): nltk.download("punkt")
if __name__ == '__main__':
import os
os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
from toolbox import get_conf
proxies, = get_conf('proxies')
check_proxy(proxies)
proxies = get_conf('proxies')
check_proxy(proxies)

查看文件

@@ -1,91 +0,0 @@
import platform
from sys import stdout
if platform.system()=="Linux":
pass
else:
from colorama import init
init()
# Do you like the elegance of Chinese characters?
def print红(*kw,**kargs):
print("\033[0;31m",*kw,"\033[0m",**kargs)
def print绿(*kw,**kargs):
print("\033[0;32m",*kw,"\033[0m",**kargs)
def print黄(*kw,**kargs):
print("\033[0;33m",*kw,"\033[0m",**kargs)
def print蓝(*kw,**kargs):
print("\033[0;34m",*kw,"\033[0m",**kargs)
def print紫(*kw,**kargs):
print("\033[0;35m",*kw,"\033[0m",**kargs)
def print靛(*kw,**kargs):
print("\033[0;36m",*kw,"\033[0m",**kargs)
def print亮红(*kw,**kargs):
print("\033[1;31m",*kw,"\033[0m",**kargs)
def print亮绿(*kw,**kargs):
print("\033[1;32m",*kw,"\033[0m",**kargs)
def print亮黄(*kw,**kargs):
print("\033[1;33m",*kw,"\033[0m",**kargs)
def print亮蓝(*kw,**kargs):
print("\033[1;34m",*kw,"\033[0m",**kargs)
def print亮紫(*kw,**kargs):
print("\033[1;35m",*kw,"\033[0m",**kargs)
def print亮靛(*kw,**kargs):
print("\033[1;36m",*kw,"\033[0m",**kargs)
def print亮红(*kw,**kargs):
print("\033[1;31m",*kw,"\033[0m",**kargs)
def print亮绿(*kw,**kargs):
print("\033[1;32m",*kw,"\033[0m",**kargs)
def print亮黄(*kw,**kargs):
print("\033[1;33m",*kw,"\033[0m",**kargs)
def print亮蓝(*kw,**kargs):
print("\033[1;34m",*kw,"\033[0m",**kargs)
def print亮紫(*kw,**kargs):
print("\033[1;35m",*kw,"\033[0m",**kargs)
def print亮靛(*kw,**kargs):
print("\033[1;36m",*kw,"\033[0m",**kargs)
print_red = print红
print_green = print绿
print_yellow = print黄
print_blue = print蓝
print_purple = print紫
print_indigo = print靛
print_bold_red = print亮红
print_bold_green = print亮绿
print_bold_yellow = print亮黄
print_bold_blue = print亮蓝
print_bold_purple = print亮紫
print_bold_indigo = print亮靛
if not stdout.isatty():
# redirection, avoid a fucked up log file
print红 = print
print绿 = print
print黄 = print
print蓝 = print
print紫 = print
print靛 = print
print亮红 = print
print亮绿 = print
print亮黄 = print
print亮蓝 = print
print亮紫 = print
print亮靛 = print
print_red = print
print_green = print
print_yellow = print
print_blue = print
print_purple = print
print_indigo = print
print_bold_red = print
print_bold_green = print
print_bold_yellow = print
print_bold_blue = print
print_bold_purple = print
print_bold_indigo = print

411
config.py
查看文件

@@ -1,58 +1,421 @@
# [step 1]>> 例如: API_KEY = "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" 此key无效
API_KEY = "sk-此处填API密钥"
"""
以下所有配置也都支持利用环境变量覆写,环境变量配置格式见docker-compose.yml。
读取优先级:环境变量 > config_private.py > config.py
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
All the following configurations also support using environment variables to override,
and the environment variable configuration format can be seen in docker-compose.yml.
Configuration reading priority: environment variable > config_private.py > config.py
"""
# [step 2]>> 改为True应用代理,如果直接在海外服务器部署,此处不修改
# [step 1]>> API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下,还需要填写组织格式如org-123456789abcdefghijklmno的,请向下翻,找 API_ORG 设置项
API_KEY = "此处填API密钥" # 可同时填写多个API-KEY,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey3,azure-apikey4"
# [step 2]>> 改为True应用代理,如果直接在海外服务器部署,此处不修改;如果使用本地或无地域限制的大模型时,此处也不需要修改
USE_PROXY = False
if USE_PROXY:
# 填写格式是 [协议]:// [地址] :[端口],填写之前不要忘记把USE_PROXY改成True,如果直接在海外服务器部署,此处不修改
# 例如 "socks5h://localhost:11284"
# [协议] 常见协议无非socks5h/http; 例如 v2**y 和 ss* 的默认本地协议是socks5h; 而cl**h 的默认本地协议是http
# [地址] 懂的都懂,不懂就填localhost或者127.0.0.1肯定错不了localhost意思是代理软件安装在本机上
# [端口] 在代理软件的设置里找。虽然不同的代理软件界面不一样,但端口号都应该在最显眼的位置上
# 代理网络的地址,打开你的科学上网软件查看代理的协议(socks5/http)、地址(localhost)和端口(11284)
"""
代理网络的地址,打开你的代理软件查看代理协议(socks5h / http)、地址(localhost)和端口(11284)
填写格式是 [协议]:// [地址] :[端口],填写之前不要忘记把USE_PROXY改成True,如果直接在海外服务器部署,此处不修改
<配置教程&视频教程> https://github.com/binary-husky/gpt_academic/issues/1>
[协议] 常见协议无非socks5h/http; 例如 v2**y 和 ss* 的默认本地协议是socks5h; 而cl**h 的默认本地协议是http
[地址] 填localhost或者127.0.0.1localhost意思是代理软件安装在本机上
[端口] 在代理软件的设置里找。虽然不同的代理软件界面不一样,但端口号都应该在最显眼的位置上
"""
proxies = {
# [协议]:// [地址] :[端口]
"http": "socks5h://localhost:11284",
"https": "socks5h://localhost:11284",
"http": "socks5h://localhost:11284", # 再例如 "http": "http://127.0.0.1:7890",
"https": "socks5h://localhost:11284", # 再例如 "https": "http://127.0.0.1:7890",
}
else:
proxies = None
# 多线程函数插件中,默认允许多少路线程同时访问OpenAI。
# Free trial users的限制是每分钟3次,Pay-as-you-go users的限制是每分钟3500次。提高限制请查询
# https://platform.openai.com/docs/guides/rate-limits/overview
# [step 3]>> 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
LLM_MODEL = "gpt-3.5-turbo-16k" # 可选 ↓↓↓
AVAIL_LLM_MODELS = ["gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
"gpt-4o", "gpt-4o-mini", "gpt-4-turbo", "gpt-4-turbo-2024-04-09",
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-4v", "glm-3-turbo",
"gemini-1.5-pro", "chatglm3"
]
EMBEDDING_MODEL = "text-embedding-3-small"
# --- --- --- ---
# P.S. 其他可用的模型还包括
# AVAIL_LLM_MODELS = [
# "glm-4-0520", "glm-4-air", "glm-4-airx", "glm-4-flash",
# "qianfan", "deepseekcoder",
# "spark", "sparkv2", "sparkv3", "sparkv3.5", "sparkv4",
# "qwen-turbo", "qwen-plus", "qwen-max", "qwen-local",
# "moonshot-v1-128k", "moonshot-v1-32k", "moonshot-v1-8k",
# "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125", "gpt-4o-2024-05-13"
# "claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
# "moss", "llama2", "chatglm_onnx", "internlm", "jittorllms_pangualpha", "jittorllms_llama",
# "deepseek-chat" ,"deepseek-coder",
# "gemini-1.5-flash",
# "yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview",
# ]
# --- --- --- ---
# 此外,您还可以在接入one-api/vllm/ollama/Openroute时,
# 使用"one-api-*","vllm-*","ollama-*","openrouter-*"前缀直接使用非标准方式接入的模型,例如
# AVAIL_LLM_MODELS = ["one-api-claude-3-sonnet-20240229(max_token=100000)", "ollama-phi3(max_token=4096)","openrouter-openai/gpt-4o-mini","openrouter-openai/chatgpt-4o-latest"]
# --- --- --- ---
# --------------- 以下配置可以优化体验 ---------------
# 重新URL重新定向,实现更换API_URL的作用高危设置! 常规情况下不要修改! 通过修改此设置,您将把您的API-KEY和对话隐私完全暴露给您设定的中间人
# 格式: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
# 举例: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "https://reverse-proxy-url/v1/chat/completions", "http://localhost:11434/api/chat": "在这里填写您ollama的URL"}
API_URL_REDIRECT = {}
# 多线程函数插件中,默认允许多少路线程同时访问OpenAI。Free trial users的限制是每分钟3次,Pay-as-you-go users的限制是每分钟3500次
# 一言以蔽之免费5刀用户填3,OpenAI绑了信用卡的用户可以填 16 或者更高。提高限制请查询https://platform.openai.com/docs/guides/rate-limits/overview
DEFAULT_WORKER_NUM = 3
# [step 3]>> 以下配置可以优化体验,但大部分场合下并不需要修改
# 对话窗的高度
# 色彩主题, 可选 ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast"]
# 更多主题, 请查阅Gradio主题商店: https://huggingface.co/spaces/gradio/theme-gallery 可选 ["Gstaff/Xkcd", "NoCrypt/Miku", ...]
THEME = "Default"
AVAIL_THEMES = ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast", "Gstaff/Xkcd", "NoCrypt/Miku"]
# 默认的系统提示词system prompt
INIT_SYS_PROMPT = "Serve me as a writing and programming assistant."
# 对话窗的高度 仅在LAYOUT="TOP-DOWN"时生效)
CHATBOT_HEIGHT = 1115
# 代码高亮
CODE_HIGHLIGHT = True
# 窗口布局
LAYOUT = "LEFT-RIGHT" # "LEFT-RIGHT"(左右布局) # "TOP-DOWN"(上下布局)
LAYOUT = "LEFT-RIGHT" # "LEFT-RIGHT"(左右布局) # "TOP-DOWN"(上下布局)
# 暗色模式 / 亮色模式
DARK_MODE = True
# 发送请求到OpenAI后,等待多久判定为超时
TIMEOUT_SECONDS = 30
# 网页的端口, -1代表随机端口
WEB_PORT = -1
# 是否自动打开浏览器页面
AUTO_OPEN_BROWSER = True
# 如果OpenAI不响应网络卡顿、代理失败、KEY失效,重试的次数限制
MAX_RETRY = 2
# OpenAI模型选择是gpt4现在只对申请成功的人开放
LLM_MODEL = "gpt-3.5-turbo"
# OpenAI的API_URL
API_URL = "https://api.openai.com/v1/chat/completions"
# 插件分类默认选项
DEFAULT_FN_GROUPS = ['对话', '编程', '学术', '智能体']
# 设置并行使用的线程数
# 定义界面上“询问多个GPT模型”插件应该使用哪些模型,请从AVAIL_LLM_MODELS中选择,并在不同模型之间用`&`间隔,例如"gpt-3.5-turbo&chatglm3&azure-gpt-4"
MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
# 选择本地模型变体只有当AVAIL_LLM_MODELS包含了对应本地模型时,才会起作用
# 如果你选择Qwen系列的模型,那么请在下面的QWEN_MODEL_SELECTION中指定具体的模型
# 也可以是具体的模型路径
QWEN_LOCAL_MODEL_SELECTION = "Qwen/Qwen-1_8B-Chat-Int8"
# 接入通义千问在线大模型 https://dashscope.console.aliyun.com/
DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY
# 百度千帆LLM_MODEL="qianfan"
BAIDU_CLOUD_API_KEY = ''
BAIDU_CLOUD_SECRET_KEY = ''
BAIDU_CLOUD_QIANFAN_MODEL = 'ERNIE-Bot' # 可选 "ERNIE-Bot-4"(文心大模型4.0), "ERNIE-Bot"(文心一言), "ERNIE-Bot-turbo", "BLOOMZ-7B", "Llama-2-70B-Chat", "Llama-2-13B-Chat", "Llama-2-7B-Chat", "ERNIE-Speed-128K", "ERNIE-Speed-8K", "ERNIE-Lite-8K"
# 如果使用ChatGLM2微调模型,请把 LLM_MODEL="chatglmft",并在此处指定模型路径
CHATGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b-pt-128-1e-2/checkpoint-100"
# 本地LLM模型如ChatGLM的执行方式 CPU/GPU
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
LOCAL_MODEL_QUANT = "FP16" # 默认 "FP16" "INT4" 启用量化INT4版本 "INT8" 启用量化INT8版本
# 设置gradio的并行线程数不需要修改
CONCURRENT_COUNT = 100
# 设置用户名和密码相关功能不稳定,与gradio版本和网络都相关,如果本地使用不建议加这个
# 是否在提交时自动清空输入框
AUTO_CLEAR_TXT = False
# 加一个live2d装饰
ADD_WAIFU = False
# 设置用户名和密码不需要修改相关功能不稳定,与gradio版本和网络都相关,如果本地使用不建议加这个
# [("username", "password"), ("username2", "password2"), ...]
AUTHENTICATION = []
# 如果需要在二级路径下运行(常规情况下,不要修改!!
# (举例 CUSTOM_PATH = "/gpt_academic",可以让软件运行在 http://ip:port/gpt_academic/ 下。)
CUSTOM_PATH = "/"
# HTTPS 秘钥和证书(不需要修改)
SSL_KEYFILE = ""
SSL_CERTFILE = ""
# 极少数情况下,openai的官方KEY需要伴随组织编码格式如org-xxxxxxxxxxxxxxxxxxxxxxxx使用
API_ORG = ""
# 如果需要使用Slack Claude,使用教程详情见 request_llms/README.md
SLACK_CLAUDE_BOT_ID = ''
SLACK_CLAUDE_USER_TOKEN = ''
# 如果需要使用AZURE方法一单个azure模型部署详情请见额外文档 docs\use_azure.md
AZURE_ENDPOINT = "https://你亲手写的api名称.openai.azure.com/"
AZURE_API_KEY = "填入azure openai api的密钥" # 建议直接在API_KEY处填写,该选项即将被弃用
AZURE_ENGINE = "填入你亲手写的部署名" # 读 docs\use_azure.md
# 如果需要使用AZURE方法二多个azure模型部署+动态切换)详情请见额外文档 docs\use_azure.md
AZURE_CFG_ARRAY = {}
# 阿里云实时语音识别 配置难度较高
# 参考 https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md
ENABLE_AUDIO = False
ALIYUN_TOKEN="" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
ALIYUN_APPKEY="" # 例如 RoPlZrM88DnAFkZK
ALIYUN_ACCESSKEY="" # (无需填写)
ALIYUN_SECRET="" # (无需填写)
# GPT-SOVITS 文本转语音服务的运行地址(将语言模型的生成文本朗读出来)
TTS_TYPE = "EDGE_TTS" # EDGE_TTS / LOCAL_SOVITS_API / DISABLE
GPT_SOVITS_URL = ""
EDGE_TTS_VOICE = "zh-CN-XiaoxiaoNeural"
# 接入讯飞星火大模型 https://console.xfyun.cn/services/iat
XFYUN_APPID = "00000000"
XFYUN_API_SECRET = "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
XFYUN_API_KEY = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
# 接入智谱大模型
ZHIPUAI_API_KEY = ""
ZHIPUAI_MODEL = "" # 此选项已废弃,不再需要填写
# Claude API KEY
ANTHROPIC_API_KEY = ""
# 月之暗面 API KEY
MOONSHOT_API_KEY = ""
# 零一万物(Yi Model) API KEY
YIMODEL_API_KEY = ""
# 深度求索(DeepSeek) API KEY,默认请求地址为"https://api.deepseek.com/v1/chat/completions"
DEEPSEEK_API_KEY = ""
# 紫东太初大模型 https://ai-maas.wair.ac.cn
TAICHU_API_KEY = ""
# Mathpix 拥有执行PDF的OCR功能,但是需要注册账号
MATHPIX_APPID = ""
MATHPIX_APPKEY = ""
# DOC2X的PDF解析服务,注册账号并获取API KEY: https://doc2x.noedgeai.com/login
DOC2X_API_KEY = ""
# 自定义API KEY格式
CUSTOM_API_KEY_PATTERN = ""
# Google Gemini API-Key
GEMINI_API_KEY = ''
# HUGGINGFACE的TOKEN,下载LLAMA时起作用 https://huggingface.co/docs/hub/security-tokens
HUGGINGFACE_ACCESS_TOKEN = "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"
# GROBID服务器地址填写多个可以均衡负载,用于高质量地读取PDF文档
# 获取方法复制以下空间https://huggingface.co/spaces/qingxu98/grobid,设为public,然后GROBID_URL = "https://(你的hf用户名如qingxu98)-(你的填写的空间名如grobid).hf.space"
GROBID_URLS = [
"https://qingxu98-grobid.hf.space","https://qingxu98-grobid2.hf.space","https://qingxu98-grobid3.hf.space",
"https://qingxu98-grobid4.hf.space","https://qingxu98-grobid5.hf.space", "https://qingxu98-grobid6.hf.space",
"https://qingxu98-grobid7.hf.space", "https://qingxu98-grobid8.hf.space",
]
# Searxng互联网检索服务
SEARXNG_URL = "https://cloud-1.agent-matrix.com/"
# 是否允许通过自然语言描述修改本页的配置,该功能具有一定的危险性,默认关闭
ALLOW_RESET_CONFIG = False
# 在使用AutoGen插件时,是否使用Docker容器运行代码
AUTOGEN_USE_DOCKER = False
# 临时的上传文件夹位置,请尽量不要修改
PATH_PRIVATE_UPLOAD = "private_upload"
# 日志文件夹的位置,请尽量不要修改
PATH_LOGGING = "gpt_log"
# 存储翻译好的arxiv论文的路径,请尽量不要修改
ARXIV_CACHE_DIR = "gpt_log/arxiv_cache"
# 除了连接OpenAI之外,还有哪些场合允许使用代理,请尽量不要修改
WHEN_TO_USE_PROXY = ["Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
"Warmup_Modules", "Nougat_Download", "AutoGen", "Connect_OpenAI_Embedding"]
# 启用插件热加载
PLUGIN_HOT_RELOAD = False
# 自定义按钮的最大数量限制
NUM_CUSTOM_BASIC_BTN = 4
# 媒体智能体的服务地址这是一个huggingface空间,请前往huggingface复制该空间,然后把自己新的空间地址填在这里
DAAS_SERVER_URL = "https://hamercity-bbdown.hf.space/stream"
"""
--------------- 配置关联关系说明 ---------------
在线大模型配置关联关系示意图
├── "gpt-3.5-turbo" 等openai模型
│ ├── API_KEY
│ ├── CUSTOM_API_KEY_PATTERN不常用
│ ├── API_ORG不常用
│ └── API_URL_REDIRECT不常用
├── "azure-gpt-3.5" 等azure模型单个azure模型,不需要动态切换
│ ├── API_KEY
│ ├── AZURE_ENDPOINT
│ ├── AZURE_API_KEY
│ ├── AZURE_ENGINE
│ └── API_URL_REDIRECT
├── "azure-gpt-3.5" 等azure模型多个azure模型,需要动态切换,高优先级
│ └── AZURE_CFG_ARRAY
├── "spark" 星火认知大模型 spark & sparkv2
│ ├── XFYUN_APPID
│ ├── XFYUN_API_SECRET
│ └── XFYUN_API_KEY
├── "claude-3-opus-20240229" 等claude模型
│ └── ANTHROPIC_API_KEY
├── "stack-claude"
│ ├── SLACK_CLAUDE_BOT_ID
│ └── SLACK_CLAUDE_USER_TOKEN
├── "qianfan" 百度千帆大模型库
│ ├── BAIDU_CLOUD_QIANFAN_MODEL
│ ├── BAIDU_CLOUD_API_KEY
│ └── BAIDU_CLOUD_SECRET_KEY
├── "glm-4", "glm-3-turbo", "zhipuai" 智谱AI大模型
│ └── ZHIPUAI_API_KEY
├── "yi-34b-chat-0205", "yi-34b-chat-200k" 等零一万物(Yi Model)大模型
│ └── YIMODEL_API_KEY
├── "qwen-turbo" 等通义千问大模型
│ └── DASHSCOPE_API_KEY
├── "Gemini"
│ └── GEMINI_API_KEY
└── "one-api-...(max_token=...)" 用一种更方便的方式接入one-api多模型管理界面
├── AVAIL_LLM_MODELS
├── API_KEY
└── API_URL_REDIRECT
本地大模型示意图
├── "chatglm3"
├── "chatglm"
├── "chatglm_onnx"
├── "chatglmft"
├── "internlm"
├── "moss"
├── "jittorllms_pangualpha"
├── "jittorllms_llama"
├── "deepseekcoder"
├── "qwen-local"
├── RWKV的支持见Wiki
└── "llama2"
用户图形界面布局依赖关系示意图
├── CHATBOT_HEIGHT 对话窗的高度
├── CODE_HIGHLIGHT 代码高亮
├── LAYOUT 窗口布局
├── DARK_MODE 暗色模式 / 亮色模式
├── DEFAULT_FN_GROUPS 插件分类默认选项
├── THEME 色彩主题
├── AUTO_CLEAR_TXT 是否在提交时自动清空输入框
├── ADD_WAIFU 加一个live2d装饰
└── ALLOW_RESET_CONFIG 是否允许通过自然语言描述修改本页的配置,该功能具有一定的危险性
插件在线服务配置依赖关系示意图
├── 互联网检索
│ └── SEARXNG_URL
├── 语音功能
│ ├── ENABLE_AUDIO
│ ├── ALIYUN_TOKEN
│ ├── ALIYUN_APPKEY
│ ├── ALIYUN_ACCESSKEY
│ └── ALIYUN_SECRET
└── PDF文档精准解析
├── GROBID_URLS
├── MATHPIX_APPID
└── MATHPIX_APPKEY
"""

查看文件

@@ -1,71 +1,175 @@
# 'primary' 颜色对应 theme.py 中的 primary_hue
# 'secondary' 颜色对应 theme.py 中的 neutral_hue
# 'stop' 颜色对应 theme.py 中的 color_er
# 默认按钮颜色是 secondary
import importlib
from toolbox import clear_line_break
from toolbox import apply_gpt_academic_string_mask_langbased
from toolbox import build_gpt_academic_masked_string_langbased
from textwrap import dedent
def get_core_functions():
return {
"英语学术润色": {
# 前言
"Prefix": r"Below is a paragraph from an academic paper. Polish the writing to meet the academic style, " +
r"improve the spelling, grammar, clarity, concision and overall readability. When necessary, rewrite the whole sentence. " +
r"Furthermore, list all modification and explain the reasons to do so in markdown table." + "\n\n",
# 后语
"学术语料润色": {
# [1*] 前缀字符串,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等。
# 这里填一个提示词字符串就行了,这里为了区分中英文情景搞复杂了一点
"Prefix": build_gpt_academic_masked_string_langbased(
text_show_english=
r"Below is a paragraph from an academic paper. Polish the writing to meet the academic style, "
r"improve the spelling, grammar, clarity, concision and overall readability. When necessary, rewrite the whole sentence. "
r"Firstly, you should provide the polished paragraph (in English). "
r"Secondly, you should list all your modification and explain the reasons to do so in markdown table.",
text_show_chinese=
r"作为一名中文学术论文写作改进助理,你的任务是改进所提供文本的拼写、语法、清晰、简洁和整体可读性,"
r"同时分解长句,减少重复,并提供改进建议。请先提供文本的更正版本,然后在markdown表格中列出修改的内容,并给出修改的理由:"
) + "\n\n",
# [2*] 后缀字符串,会被加在你的输入之后。例如,配合前缀可以把你的输入内容用引号圈起来
"Suffix": r"",
"Color": r"secondary", # 按钮颜色
# [3] 按钮颜色 (可选参数,默认 secondary)
"Color": r"secondary",
# [4] 按钮是否可见 (可选参数,默认 True,即可见)
"Visible": True,
# [5] 是否在触发时清除历史 (可选参数,默认 False,即不处理之前的对话历史)
"AutoClearHistory": False,
# [6] 文本预处理 (可选参数,默认 None,举例写个函数移除所有的换行符
"PreProcess": None,
# [7] 模型选择 (可选参数。如不设置,则使用当前全局模型;如设置,则用指定模型覆盖全局模型。)
# "ModelOverride": "gpt-3.5-turbo", # 主要用途:强制点击此基础功能按钮时,使用指定的模型。
},
"中文学术润色": {
"Prefix": r"作为一名中文学术论文写作改进助理,你的任务是改进所提供文本的拼写、语法、清晰、简洁和整体可读性," +
r"同时分解长句,减少重复,并提供改进建议。请只提供文本的更正版本,避免包括解释。请编辑以下文本" + "\n\n",
"Suffix": r"",
"总结绘制脑图": {
# 前缀,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等
"Prefix": '''"""\n\n''',
# 后缀,会被加在你的输入之后。例如,配合前缀可以把你的输入内容用引号圈起来
"Suffix":
# dedent() 函数用于去除多行字符串的缩进
dedent("\n\n"+r'''
"""
使用mermaid flowchart对以上文本进行总结,概括上述段落的内容以及内在逻辑关系,例如
以下是对以上文本的总结,以mermaid flowchart的形式展示
```mermaid
flowchart LR
A["节点名1"] --> B("节点名2")
B --> C{"节点名3"}
C --> D["节点名4"]
C --> |"箭头名1"| E["节点名5"]
C --> |"箭头名2"| F["节点名6"]
```
注意:
1使用中文
2节点名字使用引号包裹,如["Laptop"]
3`|` 和 `"`之间不要存在空格
4根据情况选择flowchart LR从左到右或者flowchart TD从上到下
'''),
},
"查找语法错误": {
"Prefix": r"Can you help me ensure that the grammar and the spelling is correct? " +
r"Do not try to polish the text, if no mistake is found, tell me that this paragraph is good." +
r"If you find grammar or spelling mistakes, please list mistakes you find in a two-column markdown table, " +
r"put the original text the first column, " +
r"put the corrected text in the second column and highlight the key words you fixed.""\n"
"Prefix": r"Help me ensure that the grammar and the spelling is correct. "
r"Do not try to polish the text, if no mistake is found, tell me that this paragraph is good. "
r"If you find grammar or spelling mistakes, please list mistakes you find in a two-column markdown table, "
r"put the original text the first column, "
r"put the corrected text in the second column and highlight the key words you fixed. "
r"Finally, please provide the proofreaded text.""\n\n"
r"Example:""\n"
r"Paragraph: How is you? Do you knows what is it?""\n"
r"| Original sentence | Corrected sentence |""\n"
r"| :--- | :--- |""\n"
r"| How **is** you? | How **are** you? |""\n"
r"| Do you **knows** what **is** **it**? | Do you **know** what **it** **is** ? |""\n"
r"| Do you **knows** what **is** **it**? | Do you **know** what **it** **is** ? |""\n\n"
r"Below is a paragraph from an academic paper. "
r"You need to report all grammar and spelling mistakes as the example before."
+ "\n\n",
"Suffix": r"",
"PreProcess": clear_line_break, # 预处理:清除换行符
},
"中译英": {
"Prefix": r"Please translate following sentence to English:" + "\n\n",
"Suffix": r"",
},
"学术中英互译": {
"Prefix": r"I want you to act as a scientific English-Chinese translator, " +
r"I will provide you with some paragraphs in one language " +
r"and your task is to accurately and academically translate the paragraphs only into the other language. " +
r"Do not repeat the original provided paragraphs after translation. " +
r"You should use artificial intelligence tools, " +
r"such as natural language processing, and rhetorical knowledge " +
r"and experience about effective writing techniques to reply. " +
r"I'll give you my paragraphs as follows, tell me what language it is written in, and then translate:" + "\n\n",
"Suffix": "",
"Color": "secondary",
"学术英中互译": {
"Prefix": build_gpt_academic_masked_string_langbased(
text_show_chinese=
r"I want you to act as a scientific English-Chinese translator, "
r"I will provide you with some paragraphs in one language "
r"and your task is to accurately and academically translate the paragraphs only into the other language. "
r"Do not repeat the original provided paragraphs after translation. "
r"You should use artificial intelligence tools, "
r"such as natural language processing, and rhetorical knowledge "
r"and experience about effective writing techniques to reply. "
r"I'll give you my paragraphs as follows, tell me what language it is written in, and then translate:",
text_show_english=
r"你是经验丰富的翻译,请把以下学术文章段落翻译成中文,"
r"并同时充分考虑中文的语法、清晰、简洁和整体可读性,"
r"必要时,你可以修改整个句子的顺序以确保翻译后的段落符合中文的语言习惯。"
r"你需要翻译的文本如下:"
) + "\n\n",
"Suffix": r"",
},
"英译中": {
"Prefix": r"翻译成地道的中文:" + "\n\n",
"Suffix": r"",
"Visible": False,
},
"找图片": {
"Prefix": r"我需要你找一张网络图片。使用Unsplash API(https://source.unsplash.com/960x640/?<英语关键词>)获取图片URL," +
"Prefix": r"我需要你找一张网络图片。使用Unsplash API(https://source.unsplash.com/960x640/?<英语关键词>)获取图片URL,"
r"然后请使用Markdown格式封装,并且不要有反斜线,不要用代码块。现在,请按以下描述给我发送图片" + "\n\n",
"Suffix": r"",
"Visible": False,
},
"解释代码": {
"Prefix": r"请解释以下代码:" + "\n```\n",
"Suffix": "\n```\n",
},
"参考文献转Bib": {
"Prefix": r"Here are some bibliography items, please transform them into bibtex style."
r"Note that, reference styles maybe more than one kind, you should transform each item correctly."
r"Items need to be transformed:" + "\n\n",
"Visible": False,
"Suffix": r"",
}
}
def handle_core_functionality(additional_fn, inputs, history, chatbot):
import core_functional
importlib.reload(core_functional) # 热更新prompt
core_functional = core_functional.get_core_functions()
addition = chatbot._cookies['customize_fn_overwrite']
if additional_fn in addition:
# 自定义功能
inputs = addition[additional_fn]["Prefix"] + inputs + addition[additional_fn]["Suffix"]
return inputs, history
else:
# 预制功能
if "PreProcess" in core_functional[additional_fn]:
if core_functional[additional_fn]["PreProcess"] is not None:
inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
# 为字符串加上上面定义的前缀和后缀。
inputs = apply_gpt_academic_string_mask_langbased(
string = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"],
lang_reference = inputs,
)
if core_functional[additional_fn].get("AutoClearHistory", False):
history = []
return inputs, history
if __name__ == "__main__":
t = get_core_functions()["总结绘制脑图"]
print(t["Prefix"] + t["Suffix"])

查看文件

@@ -1,186 +1,48 @@
from toolbox import HotReload # HotReload 的意思是热更新,修改函数插件后,不需要重启程序,代码直接生效
from toolbox import trimmed_format_exc
from loguru import logger
def get_crazy_functions():
###################### 第一组插件 ###########################
# [第一组插件]: 最早期编写的项目插件和一些demo
from crazy_functions.读文章写摘要 import 读文章写摘要
from crazy_functions.生成函数注释 import 批量生成函数注释
from crazy_functions.解析项目源代码 import 解析项目本身
from crazy_functions.解析项目源代码 import 解析一个Python项目
from crazy_functions.解析项目源代码 import 解析一个C项目的头文件
from crazy_functions.解析项目源代码 import 解析一个C项目
from crazy_functions.解析项目源代码 import 解析一个Golang项目
from crazy_functions.解析项目源代码 import 解析一个Java项目
from crazy_functions.解析项目源代码 import 解析一个Rect项目
from crazy_functions.高级功能函数模板 import 高阶功能模板函数
from crazy_functions.代码重写为全英文_多线程 import 全项目切换英文
from crazy_functions.Latex全文润色 import Latex英文润色
from crazy_functions.解析项目源代码 import 解析一个Lua项目
from crazy_functions.解析项目源代码 import 解析一个CSharp项目
from crazy_functions.AntFin import AntFinTest
function_plugins = {
"解析整个Python项目": {
"Color": "stop", # 按钮颜色
"Function": HotReload(解析一个Python项目)
"蚂小财测试": {
"Group": "智能体",
"Color": "stop",
"AsButton": False,
"Info": "蚂小财测试",
"Function": HotReload(AntFinTest),
},
"解析整个C++项目头文件": {
"Color": "stop", # 按钮颜色
"Function": HotReload(解析一个C项目的头文件)
},
"解析整个C++项目(.cpp/.hpp/.c/.h": {
"Color": "stop", # 按钮颜色
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(解析一个C项目)
},
"解析整个Go项目": {
"Color": "stop", # 按钮颜色
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(解析一个Golang项目)
},
"解析整个Java项目": {
"Color": "stop", # 按钮颜色
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(解析一个Java项目)
},
"解析整个React项目": {
"Color": "stop", # 按钮颜色
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(解析一个Rect项目)
},
"解析整个Lua项目": {
"Color": "stop", # 按钮颜色
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(解析一个Lua项目)
},
"解析整个CSharp项目": {
"Color": "stop", # 按钮颜色
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(解析一个CSharp项目)
},
"读Tex论文写摘要": {
"Color": "stop", # 按钮颜色
"Function": HotReload(读文章写摘要)
},
"批量生成函数注释": {
"Color": "stop", # 按钮颜色
"Function": HotReload(批量生成函数注释)
},
"[多线程Demo] 解析此项目本身(源码自译解)": {
"Function": HotReload(解析项目本身)
},
"[多线程demo] 把本项目源代码切换成全英文": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(全项目切换英文)
},
"[函数插件模板Demo] 历史上的今天": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Function": HotReload(高阶功能模板函数)
},
}
###################### 第二组插件 ###########################
# [第二组插件]: 经过充分测试,但功能上距离达到完美状态还差一点点
from crazy_functions.批量总结PDF文档 import 批量总结PDF文档
from crazy_functions.批量总结PDF文档pdfminer import 批量总结PDF文档pdfminer
from crazy_functions.总结word文档 import 总结word文档
from crazy_functions.批量翻译PDF文档_多线程 import 批量翻译PDF文档
from crazy_functions.谷歌检索小助手 import 谷歌检索小助手
from crazy_functions.理解PDF文档内容 import 理解PDF文档内容标准文件输入
from crazy_functions.Latex全文润色 import Latex中文润色
from crazy_functions.Latex全文翻译 import Latex中译英
from crazy_functions.Latex全文翻译 import Latex英译中
from crazy_functions.批量Markdown翻译 import Markdown中译英
from crazy_functions.批量Markdown翻译 import Markdown英译中
function_plugins.update({
"批量翻译PDF文档多线程": {
"Color": "stop",
"AsButton": True, # 加入下拉菜单中
"Function": HotReload(批量翻译PDF文档)
},
"[测试功能] 批量总结PDF文档": {
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Function": HotReload(批量总结PDF文档)
},
"[测试功能] 批量总结PDF文档pdfminer": {
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(批量总结PDF文档pdfminer)
},
"谷歌学术检索助手输入谷歌学术搜索页url": {
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(谷歌检索小助手)
},
"批量总结Word文档": {
"Color": "stop",
"Function": HotReload(总结word文档)
},
"理解PDF文档内容 模仿ChatPDF": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(理解PDF文档内容标准文件输入)
},
"[测试功能] 英文Latex项目全文润色输入路径或上传压缩包": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(Latex英文润色)
},
"[测试功能] 中文Latex项目全文润色输入路径或上传压缩包": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(Latex中文润色)
},
"[测试功能] Latex项目全文中译英输入路径或上传压缩包": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(Latex中译英)
},
"[测试功能] Latex项目全文英译中输入路径或上传压缩包": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(Latex英译中)
},
"[测试功能] 批量Markdown中译英输入路径或上传压缩包": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(Markdown中译英)
},
"[测试功能] 批量Markdown英译中输入路径或上传压缩包": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(Markdown英译中)
},
})
###################### 第三组插件 ###########################
# [第三组插件]: 尚未充分测试的函数插件,放在这里
try:
from crazy_functions.下载arxiv论文翻译摘要 import 下载arxiv论文并翻译摘要
function_plugins.update({
"一键下载arxiv论文并翻译摘要先在input输入编号,如1812.10695": {
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(下载arxiv论文并翻译摘要)
}
})
except Exception as err:
print(f'[下载arxiv论文并翻译摘要] 插件导入失败 {str(err)}')
###################### 第n组插件 ###########################
"""
设置默认值:
- 默认 Group = 对话
- 默认 AsButton = True
- 默认 AdvancedArgs = False
- 默认 Color = secondary
"""
for name, function_meta in function_plugins.items():
if "Group" not in function_meta:
function_plugins[name]["Group"] = "对话"
if "AsButton" not in function_meta:
function_plugins[name]["AsButton"] = True
if "AdvancedArgs" not in function_meta:
function_plugins[name]["AdvancedArgs"] = False
if "Color" not in function_meta:
function_plugins[name]["Color"] = "secondary"
return function_plugins
def get_multiplex_button_functions():
"""多路复用主提交按钮的功能映射
"""
return {
"常规对话":
"",
"蚂小财测试":
"蚂小财测试", # 映射到上面的 `询问多个GPT模型` 插件
}

9
crazy_functions/AntFin.py 普通文件
查看文件

@@ -0,0 +1,9 @@
from toolbox import CatchException, update_ui, get_conf, select_api_key, get_log_folder
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicState
@CatchException
def AntFinTest(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
chatbot.append(("AntFin Test", "AntFin Test"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新

查看文件

@@ -0,0 +1,43 @@
from toolbox import get_conf, update_ui
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
from crazy_functions.AntFin import AntFinTest
class ImageGen_Wrap(GptAcademicPluginTemplate):
def __init__(self):
"""
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
"""
pass
def define_arg_selection_menu(self):
"""
定义插件的二级选项菜单
第一个参数,名称`main_input`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
第二个参数,名称`advanced_arg`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
"""
gui_definition = {
"main_input":
ArgProperty(title="输入图片描述", description="需要生成图像的文本描述,尽量使用英文", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
"model_name":
ArgProperty(title="模型", options=["DALLE2", "DALLE3"], default_value="DALLE3", description="", type="dropdown").model_dump_json(),
"resolution":
ArgProperty(title="分辨率", options=["256x256(限DALLE2)", "512x512(限DALLE2)", "1024x1024", "1792x1024(限DALLE3)", "1024x1792(限DALLE3)"], default_value="1024x1024", description="", type="dropdown").model_dump_json(),
"quality (仅DALLE3生效)":
ArgProperty(title="质量", options=["standard", "hd"], default_value="standard", description="", type="dropdown").model_dump_json(),
"style (仅DALLE3生效)":
ArgProperty(title="风格", options=["vivid", "natural"], default_value="vivid", description="", type="dropdown").model_dump_json(),
}
return gui_definition
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
执行插件
"""
yield from AntFinTest(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)

查看文件

@@ -1,176 +0,0 @@
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
fast_debug = False
class PaperFileGroup():
def __init__(self):
self.file_paths = []
self.file_contents = []
self.sp_file_contents = []
self.sp_file_index = []
self.sp_file_tag = []
# count_token
import tiktoken
from toolbox import get_conf
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
self.get_token_num = get_token_num
def run_file_split(self, max_token_limit=1900):
"""
将长文本分离开来
"""
for index, file_content in enumerate(self.file_contents):
if self.get_token_num(file_content) < max_token_limit:
self.sp_file_contents.append(file_content)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
print('Segmentation: done')
def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
import time, os, re
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
pfg = PaperFileGroup()
for index, fp in enumerate(file_manifest):
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
# 定义注释的正则表达式
comment_pattern = r'%.*'
# 使用正则表达式查找注释,并替换为空字符串
clean_tex_content = re.sub(comment_pattern, '', file_content)
# 记录删除注释后的文本
pfg.file_paths.append(fp)
pfg.file_contents.append(clean_tex_content)
# <-------- 拆分过长的latex文件 ---------->
pfg.run_file_split(max_token_limit=1024)
n_split = len(pfg.sp_file_contents)
# <-------- 抽取摘要 ---------->
# if language == 'en':
# abs_extract_inputs = f"Please write an abstract for this paper"
# # 单线,获取文章meta信息
# paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
# inputs=abs_extract_inputs,
# inputs_show_user=f"正在抽取摘要信息。",
# llm_kwargs=llm_kwargs,
# chatbot=chatbot, history=[],
# sys_prompt="Your job is to collect information from materials。",
# )
# <-------- 多线程润色开始 ---------->
if language == 'en':
inputs_array = ["Below is a section from an academic paper, polish this section to meet the academic standard, improve the grammar, clarity and overall readability, do not modify any latex command such as \section, \cite and equations:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"Polish {f}" for f in pfg.sp_file_tag]
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
elif language == 'zh':
inputs_array = [f"以下是一篇学术论文中的一段内容,请将此部分润色以满足学术标准,提高语法、清晰度和整体可读性,不要修改任何LaTeX命令,例如\section,\cite和方程式" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"润色 {f}" for f in pfg.sp_file_tag]
sys_prompt_array=["你是一位专业的中文学术论文作家。" for _ in range(n_split)]
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[[""] for _ in range(n_split)],
sys_prompt_array=sys_prompt_array,
# max_workers=5, # 并行任务数量限制,最多同时执行5个,其他的排队等待
scroller_max_len = 80
)
# <-------- 整理结果,退出 ---------->
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
res = write_results_to_file(gpt_response_collection, file_name=create_report_file_name)
history = gpt_response_collection
chatbot.append((f"{fp}完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@CatchException
def Latex英文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"对整个Latex项目进行润色。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en')
@CatchException
def Latex中文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"对整个Latex项目进行润色。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh')

查看文件

@@ -1,176 +0,0 @@
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
fast_debug = False
class PaperFileGroup():
def __init__(self):
self.file_paths = []
self.file_contents = []
self.sp_file_contents = []
self.sp_file_index = []
self.sp_file_tag = []
# count_token
import tiktoken
from toolbox import get_conf
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
self.get_token_num = get_token_num
def run_file_split(self, max_token_limit=1900):
"""
将长文本分离开来
"""
for index, file_content in enumerate(self.file_contents):
if self.get_token_num(file_content) < max_token_limit:
self.sp_file_contents.append(file_content)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
print('Segmentation: done')
def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
import time, os, re
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
pfg = PaperFileGroup()
for index, fp in enumerate(file_manifest):
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
# 定义注释的正则表达式
comment_pattern = r'%.*'
# 使用正则表达式查找注释,并替换为空字符串
clean_tex_content = re.sub(comment_pattern, '', file_content)
# 记录删除注释后的文本
pfg.file_paths.append(fp)
pfg.file_contents.append(clean_tex_content)
# <-------- 拆分过长的latex文件 ---------->
pfg.run_file_split(max_token_limit=1024)
n_split = len(pfg.sp_file_contents)
# <-------- 抽取摘要 ---------->
# if language == 'en':
# abs_extract_inputs = f"Please write an abstract for this paper"
# # 单线,获取文章meta信息
# paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
# inputs=abs_extract_inputs,
# inputs_show_user=f"正在抽取摘要信息。",
# llm_kwargs=llm_kwargs,
# chatbot=chatbot, history=[],
# sys_prompt="Your job is to collect information from materials。",
# )
# <-------- 多线程润色开始 ---------->
if language == 'en->zh':
inputs_array = ["Below is a section from an English academic paper, translate it into Chinese, do not modify any latex command such as \section, \cite and equations:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
elif language == 'zh->en':
inputs_array = [f"Below is a section from a Chinese academic paper, translate it into English, do not modify any latex command such as \section, \cite and equations:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[[""] for _ in range(n_split)],
sys_prompt_array=sys_prompt_array,
# max_workers=5, # OpenAI所允许的最大并行过载
scroller_max_len = 80
)
# <-------- 整理结果,退出 ---------->
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
res = write_results_to_file(gpt_response_collection, file_name=create_report_file_name)
history = gpt_response_collection
chatbot.append((f"{fp}完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@CatchException
def Latex英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"对整个Latex项目进行翻译。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en->zh')
@CatchException
def Latex中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"对整个Latex项目进行翻译。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh->en')

查看文件

@@ -0,0 +1,23 @@
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, ProxyNetworkActivate
from toolbox import report_exception, get_log_folder, update_ui_lastest_msg, Singleton
from crazy_functions.agent_fns.pipe import PluginMultiprocessManager, PipeCom
from crazy_functions.agent_fns.general import AutoGenGeneral
class AutoGenMath(AutoGenGeneral):
def define_agents(self):
from autogen import AssistantAgent, UserProxyAgent
return [
{
"name": "assistant", # name of the agent.
"cls": AssistantAgent, # class of the agent.
},
{
"name": "user_proxy", # name of the agent.
"cls": UserProxyAgent, # class of the agent.
"human_input_mode": "ALWAYS", # always ask for human input.
"llm_config": False, # disables llm-based auto reply.
},
]

查看文件

@@ -0,0 +1,20 @@
from crazy_functions.agent_fns.pipe import PluginMultiprocessManager, PipeCom
from loguru import logger
class EchoDemo(PluginMultiprocessManager):
def subprocess_worker(self, child_conn):
# ⭐⭐ 子进程
self.child_conn = child_conn
while True:
msg = self.child_conn.recv() # PipeCom
if msg.cmd == "user_input":
# wait futher user input
self.child_conn.send(PipeCom("show", msg.content))
wait_success = self.subprocess_worker_wait_user_feedback(wait_msg="我准备好处理下一个问题了.")
if not wait_success:
# wait timeout, terminate this subprocess_worker
break
elif msg.cmd == "terminate":
self.child_conn.send(PipeCom("done", ""))
break
logger.info('[debug] subprocess_worker terminated')

查看文件

@@ -0,0 +1,138 @@
from toolbox import trimmed_format_exc, get_conf, ProxyNetworkActivate
from crazy_functions.agent_fns.pipe import PluginMultiprocessManager, PipeCom
from request_llms.bridge_all import predict_no_ui_long_connection
import time
def gpt_academic_generate_oai_reply(
self,
messages,
sender,
config,
):
llm_config = self.llm_config if config is None else config
if llm_config is False:
return False, None
if messages is None:
messages = self._oai_messages[sender]
inputs = messages[-1]['content']
history = []
for message in messages[:-1]:
history.append(message['content'])
context=messages[-1].pop("context", None)
assert context is None, "预留参数 context 未实现"
reply = predict_no_ui_long_connection(
inputs=inputs,
llm_kwargs=llm_config,
history=history,
sys_prompt=self._oai_system_message[0]['content'],
console_slience=True
)
assumed_done = reply.endswith('\nTERMINATE')
return True, reply
class AutoGenGeneral(PluginMultiprocessManager):
def gpt_academic_print_override(self, user_proxy, message, sender):
# ⭐⭐ run in subprocess
try:
print_msg = sender.name + "\n\n---\n\n" + message["content"]
except:
print_msg = sender.name + "\n\n---\n\n" + message
self.child_conn.send(PipeCom("show", print_msg))
def gpt_academic_get_human_input(self, user_proxy, message):
# ⭐⭐ run in subprocess
patience = 300
begin_waiting_time = time.time()
self.child_conn.send(PipeCom("interact", message))
while True:
time.sleep(0.5)
if self.child_conn.poll():
wait_success = True
break
if time.time() - begin_waiting_time > patience:
self.child_conn.send(PipeCom("done", ""))
wait_success = False
break
if wait_success:
return self.child_conn.recv().content
else:
raise TimeoutError("等待用户输入超时")
def define_agents(self):
raise NotImplementedError
def exe_autogen(self, input):
# ⭐⭐ run in subprocess
input = input.content
code_execution_config = {"work_dir": self.autogen_work_dir, "use_docker": self.use_docker}
agents = self.define_agents()
user_proxy = None
assistant = None
for agent_kwargs in agents:
agent_cls = agent_kwargs.pop('cls')
kwargs = {
'llm_config':self.llm_kwargs,
'code_execution_config':code_execution_config
}
kwargs.update(agent_kwargs)
agent_handle = agent_cls(**kwargs)
agent_handle._print_received_message = lambda a,b: self.gpt_academic_print_override(agent_kwargs, a, b)
for d in agent_handle._reply_func_list:
if hasattr(d['reply_func'],'__name__') and d['reply_func'].__name__ == 'generate_oai_reply':
d['reply_func'] = gpt_academic_generate_oai_reply
if agent_kwargs['name'] == 'user_proxy':
agent_handle.get_human_input = lambda a: self.gpt_academic_get_human_input(user_proxy, a)
user_proxy = agent_handle
if agent_kwargs['name'] == 'assistant': assistant = agent_handle
try:
if user_proxy is None or assistant is None: raise Exception("用户代理或助理代理未定义")
with ProxyNetworkActivate("AutoGen"):
user_proxy.initiate_chat(assistant, message=input)
except Exception as e:
tb_str = '```\n' + trimmed_format_exc() + '```'
self.child_conn.send(PipeCom("done", "AutoGen 执行失败: \n\n" + tb_str))
def subprocess_worker(self, child_conn):
# ⭐⭐ run in subprocess
self.child_conn = child_conn
while True:
msg = self.child_conn.recv() # PipeCom
self.exe_autogen(msg)
class AutoGenGroupChat(AutoGenGeneral):
def exe_autogen(self, input):
# ⭐⭐ run in subprocess
import autogen
input = input.content
with ProxyNetworkActivate("AutoGen"):
code_execution_config = {"work_dir": self.autogen_work_dir, "use_docker": self.use_docker}
agents = self.define_agents()
agents_instances = []
for agent_kwargs in agents:
agent_cls = agent_kwargs.pop("cls")
kwargs = {"code_execution_config": code_execution_config}
kwargs.update(agent_kwargs)
agent_handle = agent_cls(**kwargs)
agent_handle._print_received_message = lambda a, b: self.gpt_academic_print_override(agent_kwargs, a, b)
agents_instances.append(agent_handle)
if agent_kwargs["name"] == "user_proxy":
user_proxy = agent_handle
user_proxy.get_human_input = lambda a: self.gpt_academic_get_human_input(user_proxy, a)
try:
groupchat = autogen.GroupChat(agents=agents_instances, messages=[], max_round=50)
manager = autogen.GroupChatManager(groupchat=groupchat, **self.define_group_chat_manager_config())
manager._print_received_message = lambda a, b: self.gpt_academic_print_override(agent_kwargs, a, b)
manager.get_human_input = lambda a: self.gpt_academic_get_human_input(manager, a)
if user_proxy is None:
raise Exception("user_proxy is not defined")
user_proxy.initiate_chat(manager, message=input)
except Exception:
tb_str = "```\n" + trimmed_format_exc() + "```"
self.child_conn.send(PipeCom("done", "AutoGen exe failed: \n\n" + tb_str))
def define_group_chat_manager_config(self):
raise NotImplementedError

查看文件

@@ -0,0 +1,16 @@
from toolbox import Singleton
@Singleton
class GradioMultiuserManagerForPersistentClasses():
def __init__(self):
self.mapping = {}
def already_alive(self, key):
return (key in self.mapping) and (self.mapping[key].is_alive())
def set(self, key, x):
self.mapping[key] = x
return self.mapping[key]
def get(self, key):
return self.mapping[key]

查看文件

@@ -0,0 +1,195 @@
from toolbox import get_log_folder, update_ui, gen_time_str, get_conf, promote_file_to_downloadzone
from crazy_functions.agent_fns.watchdog import WatchDog
from loguru import logger
import time, os
class PipeCom:
def __init__(self, cmd, content) -> None:
self.cmd = cmd
self.content = content
class PluginMultiprocessManager:
def __init__(self, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
# ⭐ run in main process
self.autogen_work_dir = os.path.join(get_log_folder("autogen"), gen_time_str())
self.previous_work_dir_files = {}
self.llm_kwargs = llm_kwargs
self.plugin_kwargs = plugin_kwargs
self.chatbot = chatbot
self.history = history
self.system_prompt = system_prompt
# self.user_request = user_request
self.alive = True
self.use_docker = get_conf("AUTOGEN_USE_DOCKER")
self.last_user_input = ""
# create a thread to monitor self.heartbeat, terminate the instance if no heartbeat for a long time
timeout_seconds = 5 * 60
self.heartbeat_watchdog = WatchDog(timeout=timeout_seconds, bark_fn=self.terminate, interval=5)
self.heartbeat_watchdog.begin_watch()
def feed_heartbeat_watchdog(self):
# feed this `dog`, so the dog will not `bark` (bark_fn will terminate the instance)
self.heartbeat_watchdog.feed()
def is_alive(self):
return self.alive
def launch_subprocess_with_pipe(self):
# ⭐ run in main process
from multiprocessing import Process, Pipe
parent_conn, child_conn = Pipe()
self.p = Process(target=self.subprocess_worker, args=(child_conn,))
self.p.daemon = True
self.p.start()
return parent_conn
def terminate(self):
self.p.terminate()
self.alive = False
logger.info("[debug] instance terminated")
def subprocess_worker(self, child_conn):
# ⭐⭐ run in subprocess
raise NotImplementedError
def send_command(self, cmd):
# ⭐ run in main process
repeated = False
if cmd == self.last_user_input:
repeated = True
cmd = ""
else:
self.last_user_input = cmd
self.parent_conn.send(PipeCom("user_input", cmd))
return repeated, cmd
def immediate_showoff_when_possible(self, fp):
# ⭐ 主进程
# 获取fp的拓展名
file_type = fp.split('.')[-1]
# 如果是文本文件, 则直接显示文本内容
if file_type.lower() in ['png', 'jpg']:
image_path = os.path.abspath(fp)
self.chatbot.append([
'检测到新生图像:',
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
])
yield from update_ui(chatbot=self.chatbot, history=self.history)
def overwatch_workdir_file_change(self):
# ⭐ 主进程 Docker 外挂文件夹监控
path_to_overwatch = self.autogen_work_dir
change_list = []
# 扫描路径下的所有文件, 并与self.previous_work_dir_files中所记录的文件进行对比,
# 如果有新文件出现,或者文件的修改时间发生变化,则更新self.previous_work_dir_files中
# 把新文件和发生变化的文件的路径记录到 change_list 中
for root, dirs, files in os.walk(path_to_overwatch):
for file in files:
file_path = os.path.join(root, file)
if file_path not in self.previous_work_dir_files.keys():
last_modified_time = os.stat(file_path).st_mtime
self.previous_work_dir_files.update({file_path: last_modified_time})
change_list.append(file_path)
else:
last_modified_time = os.stat(file_path).st_mtime
if last_modified_time != self.previous_work_dir_files[file_path]:
self.previous_work_dir_files[file_path] = last_modified_time
change_list.append(file_path)
if len(change_list) > 0:
file_links = ""
for f in change_list:
res = promote_file_to_downloadzone(f)
file_links += f'<br/><a href="file={res}" target="_blank">{res}</a>'
yield from self.immediate_showoff_when_possible(f)
self.chatbot.append(['检测到新生文档.', f'文档清单如下: {file_links}'])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return change_list
def main_process_ui_control(self, txt, create_or_resume) -> str:
# ⭐ 主进程
if create_or_resume == 'create':
self.cnt = 1
self.parent_conn = self.launch_subprocess_with_pipe() # ⭐⭐⭐
repeated, cmd_to_autogen = self.send_command(txt)
if txt == 'exit':
self.chatbot.append([f"结束", "结束信号已明确,终止AutoGen程序。"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
self.terminate()
return "terminate"
# patience = 10
while True:
time.sleep(0.5)
if not self.alive:
# the heartbeat watchdog might have it killed
self.terminate()
return "terminate"
if self.parent_conn.poll():
self.feed_heartbeat_watchdog()
if "[GPT-Academic] 等待中" in self.chatbot[-1][-1]:
self.chatbot.pop(-1) # remove the last line
if "等待您的进一步指令" in self.chatbot[-1][-1]:
self.chatbot.pop(-1) # remove the last line
if '[GPT-Academic] 等待中' in self.chatbot[-1][-1]:
self.chatbot.pop(-1) # remove the last line
msg = self.parent_conn.recv() # PipeCom
if msg.cmd == "done":
self.chatbot.append([f"结束", msg.content])
self.cnt += 1
yield from update_ui(chatbot=self.chatbot, history=self.history)
self.terminate()
break
if msg.cmd == "show":
yield from self.overwatch_workdir_file_change()
notice = ""
if repeated: notice = "(自动忽略重复的输入)"
self.chatbot.append([f"运行阶段-{self.cnt}(上次用户反馈输入为: 「{cmd_to_autogen}{notice}", msg.content])
self.cnt += 1
yield from update_ui(chatbot=self.chatbot, history=self.history)
if msg.cmd == "interact":
yield from self.overwatch_workdir_file_change()
self.chatbot.append([f"程序抵达用户反馈节点.", msg.content +
"\n\n等待您的进一步指令." +
"\n\n(1) 一般情况下您不需要说什么, 清空输入区, 然后直接点击“提交”以继续. " +
"\n\n(2) 如果您需要补充些什么, 输入要反馈的内容, 直接点击“提交”以继续. " +
"\n\n(3) 如果您想终止程序, 输入exit, 直接点击“提交”以终止AutoGen并解锁. "
])
yield from update_ui(chatbot=self.chatbot, history=self.history)
# do not terminate here, leave the subprocess_worker instance alive
return "wait_feedback"
else:
self.feed_heartbeat_watchdog()
if '[GPT-Academic] 等待中' not in self.chatbot[-1][-1]:
# begin_waiting_time = time.time()
self.chatbot.append(["[GPT-Academic] 等待AutoGen执行结果 ...", "[GPT-Academic] 等待中"])
self.chatbot[-1] = [self.chatbot[-1][0], self.chatbot[-1][1].replace("[GPT-Academic] 等待中", "[GPT-Academic] 等待中.")]
yield from update_ui(chatbot=self.chatbot, history=self.history)
# if time.time() - begin_waiting_time > patience:
# self.chatbot.append([f"结束", "等待超时, 终止AutoGen程序。"])
# yield from update_ui(chatbot=self.chatbot, history=self.history)
# self.terminate()
# return "terminate"
self.terminate()
return "terminate"
def subprocess_worker_wait_user_feedback(self, wait_msg="wait user feedback"):
# ⭐⭐ run in subprocess
patience = 5 * 60
begin_waiting_time = time.time()
self.child_conn.send(PipeCom("interact", wait_msg))
while True:
time.sleep(0.5)
if self.child_conn.poll():
wait_success = True
break
if time.time() - begin_waiting_time > patience:
self.child_conn.send(PipeCom("done", ""))
wait_success = False
break
return wait_success

查看文件

@@ -0,0 +1,457 @@
import datetime
import re
import os
from loguru import logger
from textwrap import dedent
from toolbox import CatchException, update_ui
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
# TODO: 解决缩进问题
find_function_end_prompt = '''
Below is a page of code that you need to read. This page may not yet complete, you job is to split this page to sperate functions, class functions etc.
- Provide the line number where the first visible function ends.
- Provide the line number where the next visible function begins.
- If there are no other functions in this page, you should simply return the line number of the last line.
- Only focus on functions declared by `def` keyword. Ignore inline functions. Ignore function calls.
------------------ Example ------------------
INPUT:
```
L0000 |import sys
L0001 |import re
L0002 |
L0003 |def trimmed_format_exc():
L0004 | import os
L0005 | import traceback
L0006 | str = traceback.format_exc()
L0007 | current_path = os.getcwd()
L0008 | replace_path = "."
L0009 | return str.replace(current_path, replace_path)
L0010 |
L0011 |
L0012 |def trimmed_format_exc_markdown():
L0013 | ...
L0014 | ...
```
OUTPUT:
```
<first_function_end_at>L0009</first_function_end_at>
<next_function_begin_from>L0012</next_function_begin_from>
```
------------------ End of Example ------------------
------------------ the real INPUT you need to process NOW ------------------
```
{THE_TAGGED_CODE}
```
'''
revise_funtion_prompt = '''
You need to read the following code, and revise the source code ({FILE_BASENAME}) according to following instructions:
1. You should analyze the purpose of the functions (if there are any).
2. You need to add docstring for the provided functions (if there are any).
Be aware:
1. You must NOT modify the indent of code.
2. You are NOT authorized to change or translate non-comment code, and you are NOT authorized to add empty lines either, toggle qu.
3. Use {LANG} to add comments and docstrings. Do NOT translate Chinese that is already in the code.
4. Besides adding a docstring, use the ⭐ symbol to annotate the most core and important line of code within the function, explaining its role.
------------------ Example ------------------
INPUT:
```
L0000 |
L0001 |def zip_result(folder):
L0002 | t = gen_time_str()
L0003 | zip_folder(folder, get_log_folder(), f"result.zip")
L0004 | return os.path.join(get_log_folder(), f"result.zip")
L0005 |
L0006 |
```
OUTPUT:
<instruction_1_purpose>
This function compresses a given folder, and return the path of the resulting `zip` file.
</instruction_1_purpose>
<instruction_2_revised_code>
```
def zip_result(folder):
"""
Compresses the specified folder into a zip file and stores it in the log folder.
Args:
folder (str): The path to the folder that needs to be compressed.
Returns:
str: The path to the created zip file in the log folder.
"""
t = gen_time_str()
zip_folder(folder, get_log_folder(), f"result.zip") # ⭐ Execute the zipping of folder
return os.path.join(get_log_folder(), f"result.zip")
```
</instruction_2_revised_code>
------------------ End of Example ------------------
------------------ the real INPUT you need to process NOW ({FILE_BASENAME}) ------------------
```
{THE_CODE}
```
{INDENT_REMINDER}
{BRIEF_REMINDER}
{HINT_REMINDER}
'''
revise_funtion_prompt_chinese = '''
您需要阅读以下代码,并根据以下说明修订源代码({FILE_BASENAME}):
1. 如果源代码中包含函数的话, 你应该分析给定函数实现了什么功能
2. 如果源代码中包含函数的话, 你需要为函数添加docstring, docstring必须使用中文
请注意:
1. 你不得修改代码的缩进
2. 你无权更改或翻译代码中的非注释部分,也不允许添加空行
3. 使用 {LANG} 添加注释和文档字符串。不要翻译代码中已有的中文
4. 除了添加docstring之外, 使用⭐符号给该函数中最核心、最重要的一行代码添加注释,并说明其作用
------------------ 示例 ------------------
INPUT:
```
L0000 |
L0001 |def zip_result(folder):
L0002 | t = gen_time_str()
L0003 | zip_folder(folder, get_log_folder(), f"result.zip")
L0004 | return os.path.join(get_log_folder(), f"result.zip")
L0005 |
L0006 |
```
OUTPUT:
<instruction_1_purpose>
该函数用于压缩指定文件夹,并返回生成的`zip`文件的路径。
</instruction_1_purpose>
<instruction_2_revised_code>
```
def zip_result(folder):
"""
该函数将指定的文件夹压缩成ZIP文件, 并将其存储在日志文件夹中。
输入参数:
folder (str): 需要压缩的文件夹的路径。
返回值:
str: 日志文件夹中创建的ZIP文件的路径。
"""
t = gen_time_str()
zip_folder(folder, get_log_folder(), f"result.zip") # ⭐ 执行文件夹的压缩
return os.path.join(get_log_folder(), f"result.zip")
```
</instruction_2_revised_code>
------------------ End of Example ------------------
------------------ the real INPUT you need to process NOW ({FILE_BASENAME}) ------------------
```
{THE_CODE}
```
{INDENT_REMINDER}
{BRIEF_REMINDER}
{HINT_REMINDER}
'''
class PythonCodeComment():
def __init__(self, llm_kwargs, plugin_kwargs, language, observe_window_update) -> None:
self.original_content = ""
self.full_context = []
self.full_context_with_line_no = []
self.current_page_start = 0
self.page_limit = 100 # 100 lines of code each page
self.ignore_limit = 20
self.llm_kwargs = llm_kwargs
self.plugin_kwargs = plugin_kwargs
self.language = language
self.observe_window_update = observe_window_update
if self.language == "chinese":
self.core_prompt = revise_funtion_prompt_chinese
else:
self.core_prompt = revise_funtion_prompt
self.path = None
self.file_basename = None
self.file_brief = ""
def generate_tagged_code_from_full_context(self):
for i, code in enumerate(self.full_context):
number = i
padded_number = f"{number:04}"
result = f"L{padded_number}"
self.full_context_with_line_no.append(f"{result} | {code}")
return self.full_context_with_line_no
def read_file(self, path, brief):
with open(path, 'r', encoding='utf8') as f:
self.full_context = f.readlines()
self.original_content = ''.join(self.full_context)
self.file_basename = os.path.basename(path)
self.file_brief = brief
self.full_context_with_line_no = self.generate_tagged_code_from_full_context()
self.path = path
def find_next_function_begin(self, tagged_code:list, begin_and_end):
begin, end = begin_and_end
THE_TAGGED_CODE = ''.join(tagged_code)
self.llm_kwargs['temperature'] = 0
result = predict_no_ui_long_connection(
inputs=find_function_end_prompt.format(THE_TAGGED_CODE=THE_TAGGED_CODE),
llm_kwargs=self.llm_kwargs,
history=[],
sys_prompt="",
observe_window=[],
console_slience=True
)
def extract_number(text):
# 使用正则表达式匹配模式
match = re.search(r'<next_function_begin_from>L(\d+)</next_function_begin_from>', text)
if match:
# 提取匹配的数字部分并转换为整数
return int(match.group(1))
return None
line_no = extract_number(result)
if line_no is not None:
return line_no
else:
return end
def _get_next_window(self):
#
current_page_start = self.current_page_start
if self.current_page_start == len(self.full_context) + 1:
raise StopIteration
# 如果剩余的行数非常少,一鼓作气处理掉
if len(self.full_context) - self.current_page_start < self.ignore_limit:
future_page_start = len(self.full_context) + 1
self.current_page_start = future_page_start
return current_page_start, future_page_start
tagged_code = self.full_context_with_line_no[ self.current_page_start: self.current_page_start + self.page_limit]
line_no = self.find_next_function_begin(tagged_code, [self.current_page_start, self.current_page_start + self.page_limit])
if line_no > len(self.full_context) - 5:
line_no = len(self.full_context) + 1
future_page_start = line_no
self.current_page_start = future_page_start
# ! consider eof
return current_page_start, future_page_start
def dedent(self, text):
"""Remove any common leading whitespace from every line in `text`.
"""
# Look for the longest leading string of spaces and tabs common to
# all lines.
margin = None
_whitespace_only_re = re.compile('^[ \t]+$', re.MULTILINE)
_leading_whitespace_re = re.compile('(^[ \t]*)(?:[^ \t\n])', re.MULTILINE)
text = _whitespace_only_re.sub('', text)
indents = _leading_whitespace_re.findall(text)
for indent in indents:
if margin is None:
margin = indent
# Current line more deeply indented than previous winner:
# no change (previous winner is still on top).
elif indent.startswith(margin):
pass
# Current line consistent with and no deeper than previous winner:
# it's the new winner.
elif margin.startswith(indent):
margin = indent
# Find the largest common whitespace between current line and previous
# winner.
else:
for i, (x, y) in enumerate(zip(margin, indent)):
if x != y:
margin = margin[:i]
break
# sanity check (testing/debugging only)
if 0 and margin:
for line in text.split("\n"):
assert not line or line.startswith(margin), \
"line = %r, margin = %r" % (line, margin)
if margin:
text = re.sub(r'(?m)^' + margin, '', text)
return text, len(margin)
else:
return text, 0
def get_next_batch(self):
current_page_start, future_page_start = self._get_next_window()
return ''.join(self.full_context[current_page_start: future_page_start]), current_page_start, future_page_start
def tag_code(self, fn, hint):
code = fn
_, n_indent = self.dedent(code)
indent_reminder = "" if n_indent == 0 else "(Reminder: as you can see, this piece of code has indent made up with {n_indent} whitespace, please preseve them in the OUTPUT.)"
brief_reminder = "" if self.file_brief == "" else f"({self.file_basename} abstract: {self.file_brief})"
hint_reminder = "" if hint is None else f"(Reminder: do not ignore or modify code such as `{hint}`, provide complete code in the OUTPUT.)"
self.llm_kwargs['temperature'] = 0
result = predict_no_ui_long_connection(
inputs=self.core_prompt.format(
LANG=self.language,
FILE_BASENAME=self.file_basename,
THE_CODE=code,
INDENT_REMINDER=indent_reminder,
BRIEF_REMINDER=brief_reminder,
HINT_REMINDER=hint_reminder
),
llm_kwargs=self.llm_kwargs,
history=[],
sys_prompt="",
observe_window=[],
console_slience=True
)
def get_code_block(reply):
import re
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
matches = re.findall(pattern, reply) # find all code blocks in text
if len(matches) == 1:
return matches[0].strip('python') # code block
return None
code_block = get_code_block(result)
if code_block is not None:
code_block = self.sync_and_patch(original=code, revised=code_block)
return code_block
else:
return code
def get_markdown_block_in_html(self, html):
from bs4 import BeautifulSoup
soup = BeautifulSoup(html, 'lxml')
found_list = soup.find_all("div", class_="markdown-body")
if found_list:
res = found_list[0]
return res.prettify()
else:
return None
def sync_and_patch(self, original, revised):
"""Ensure the number of pre-string empty lines in revised matches those in original."""
def count_leading_empty_lines(s, reverse=False):
"""Count the number of leading empty lines in a string."""
lines = s.split('\n')
if reverse: lines = list(reversed(lines))
count = 0
for line in lines:
if line.strip() == '':
count += 1
else:
break
return count
original_empty_lines = count_leading_empty_lines(original)
revised_empty_lines = count_leading_empty_lines(revised)
if original_empty_lines > revised_empty_lines:
additional_lines = '\n' * (original_empty_lines - revised_empty_lines)
revised = additional_lines + revised
elif original_empty_lines < revised_empty_lines:
lines = revised.split('\n')
revised = '\n'.join(lines[revised_empty_lines - original_empty_lines:])
original_empty_lines = count_leading_empty_lines(original, reverse=True)
revised_empty_lines = count_leading_empty_lines(revised, reverse=True)
if original_empty_lines > revised_empty_lines:
additional_lines = '\n' * (original_empty_lines - revised_empty_lines)
revised = revised + additional_lines
elif original_empty_lines < revised_empty_lines:
lines = revised.split('\n')
revised = '\n'.join(lines[:-(revised_empty_lines - original_empty_lines)])
return revised
def begin_comment_source_code(self, chatbot=None, history=None):
# from toolbox import update_ui_lastest_msg
assert self.path is not None
assert '.py' in self.path # must be python source code
# write_target = self.path + '.revised.py'
write_content = ""
# with open(self.path + '.revised.py', 'w+', encoding='utf8') as f:
while True:
try:
# yield from update_ui_lastest_msg(f"({self.file_basename}) 正在读取下一段代码片段:\n", chatbot=chatbot, history=history, delay=0)
next_batch, line_no_start, line_no_end = self.get_next_batch()
self.observe_window_update(f"正在处理{self.file_basename} - {line_no_start}/{len(self.full_context)}\n")
# yield from update_ui_lastest_msg(f"({self.file_basename}) 处理代码片段:\n\n{next_batch}", chatbot=chatbot, history=history, delay=0)
hint = None
MAX_ATTEMPT = 2
for attempt in range(MAX_ATTEMPT):
result = self.tag_code(next_batch, hint)
try:
successful, hint = self.verify_successful(next_batch, result)
except Exception as e:
logger.error('ignored exception:\n' + str(e))
break
if successful:
break
if attempt == MAX_ATTEMPT - 1:
# cannot deal with this, give up
result = next_batch
break
# f.write(result)
write_content += result
except StopIteration:
next_batch, line_no_start, line_no_end = [], -1, -1
return None, write_content
def verify_successful(self, original, revised):
""" Determine whether the revised code contains every line that already exists
"""
from crazy_functions.ast_fns.comment_remove import remove_python_comments
original = remove_python_comments(original)
original_lines = original.split('\n')
revised_lines = revised.split('\n')
for l in original_lines:
l = l.strip()
if '\'' in l or '\"' in l: continue # ast sometimes toggle " to '
found = False
for lt in revised_lines:
if l in lt:
found = True
break
if not found:
return False, l
return True, None

查看文件

@@ -0,0 +1,45 @@
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<style>ADVANCED_CSS</style>
<meta charset="UTF-8">
<title>源文件对比</title>
<style>
body {
font-family: Arial, sans-serif;
display: flex;
justify-content: center;
align-items: center;
height: 100vh;
margin: 0;
}
.container {
display: flex;
width: 95%;
height: -webkit-fill-available;
}
.code-container {
flex: 1;
margin: 0px;
padding: 0px;
border: 1px solid #ccc;
background-color: #f9f9f9;
overflow: auto;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
}
</style>
</head>
<body>
<div class="container">
<div class="code-container">
REPLACE_CODE_FILE_LEFT
</div>
<div class="code-container">
REPLACE_CODE_FILE_RIGHT
</div>
</div>
</body>
</html>

查看文件

@@ -0,0 +1,29 @@
import threading, time
from loguru import logger
class WatchDog():
def __init__(self, timeout, bark_fn, interval=3, msg="") -> None:
self.last_feed = None
self.timeout = timeout
self.bark_fn = bark_fn
self.interval = interval
self.msg = msg
self.kill_dog = False
def watch(self):
while True:
if self.kill_dog: break
if time.time() - self.last_feed > self.timeout:
if len(self.msg) > 0: logger.info(self.msg)
self.bark_fn()
break
time.sleep(self.interval)
def begin_watch(self):
self.last_feed = time.time()
th = threading.Thread(target=self.watch)
th.daemon = True
th.start()
def feed(self):
self.last_feed = time.time()

查看文件

@@ -0,0 +1,54 @@
import token
import tokenize
import copy
import io
def remove_python_comments(input_source: str) -> str:
source_flag = copy.copy(input_source)
source = io.StringIO(input_source)
ls = input_source.split('\n')
prev_toktype = token.INDENT
readline = source.readline
def get_char_index(lineno, col):
# find the index of the char in the source code
if lineno == 1:
return len('\n'.join(ls[:(lineno-1)])) + col
else:
return len('\n'.join(ls[:(lineno-1)])) + col + 1
def replace_char_between(start_lineno, start_col, end_lineno, end_col, source, replace_char, ls):
# replace char between start_lineno, start_col and end_lineno, end_col with replace_char, but keep '\n' and ' '
b = get_char_index(start_lineno, start_col)
e = get_char_index(end_lineno, end_col)
for i in range(b, e):
if source[i] == '\n':
source = source[:i] + '\n' + source[i+1:]
elif source[i] == ' ':
source = source[:i] + ' ' + source[i+1:]
else:
source = source[:i] + replace_char + source[i+1:]
return source
tokgen = tokenize.generate_tokens(readline)
for toktype, ttext, (slineno, scol), (elineno, ecol), ltext in tokgen:
if toktype == token.STRING and (prev_toktype == token.INDENT):
source_flag = replace_char_between(slineno, scol, elineno, ecol, source_flag, ' ', ls)
elif toktype == token.STRING and (prev_toktype == token.NEWLINE):
source_flag = replace_char_between(slineno, scol, elineno, ecol, source_flag, ' ', ls)
elif toktype == tokenize.COMMENT:
source_flag = replace_char_between(slineno, scol, elineno, ecol, source_flag, ' ', ls)
prev_toktype = toktype
return source_flag
# 示例使用
if __name__ == "__main__":
with open("source.py", "r", encoding="utf-8") as f:
source_code = f.read()
cleaned_code = remove_python_comments(source_code)
with open("cleaned_source.py", "w", encoding="utf-8") as f:
f.write(cleaned_code)

查看文件

@@ -1,25 +1,41 @@
import traceback
from toolbox import update_ui, get_conf
import os
import threading
from loguru import logger
from shared_utils.char_visual_effect import scolling_visual_effect
from toolbox import update_ui, get_conf, trimmed_format_exc, get_max_token, Singleton
def input_clipping(inputs, history, max_token_limit):
import tiktoken
def input_clipping(inputs, history, max_token_limit, return_clip_flags=False):
"""
当输入文本 + 历史文本超出最大限制时,采取措施丢弃一部分文本。
输入:
- inputs 本次请求
- history 历史上下文
- max_token_limit 最大token限制
输出:
- inputs 本次请求经过clip
- history 历史上下文经过clip
"""
import numpy as np
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
from request_llms.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
mode = 'input-and-history'
# 当 输入部分的token占比 小于 全文的一半时,只裁剪历史
input_token_num = get_token_num(inputs)
if input_token_num < max_token_limit//2:
original_input_len = len(inputs)
if input_token_num < max_token_limit//2:
mode = 'only-history'
max_token_limit = max_token_limit - input_token_num
everything = [inputs] if mode == 'input-and-history' else ['']
everything.extend(history)
n_token = get_token_num('\n'.join(everything))
full_token_num = n_token = get_token_num('\n'.join(everything))
everything_token = [get_token_num(e) for e in everything]
everything_token_num = sum(everything_token)
delta = max(everything_token) // 16 # 截断时的颗粒度
while n_token > max_token_limit:
where = np.argmax(everything_token)
encoded = enc.encode(everything[where], disallowed_special=())
@@ -30,15 +46,29 @@ def input_clipping(inputs, history, max_token_limit):
if mode == 'input-and-history':
inputs = everything[0]
full_token_num = everything_token_num
else:
pass
full_token_num = everything_token_num + input_token_num
history = everything[1:]
return inputs, history
flags = {
"mode": mode,
"original_input_token_num": input_token_num,
"original_full_token_num": full_token_num,
"original_input_len": original_input_len,
"clipped_input_len": len(inputs),
}
if not return_clip_flags:
return inputs, history
else:
return inputs, history, flags
def request_gpt_model_in_new_thread_with_ui_alive(
inputs, inputs_show_user, llm_kwargs,
inputs, inputs_show_user, llm_kwargs,
chatbot, history, sys_prompt, refresh_interval=0.2,
handle_token_exceed=True,
handle_token_exceed=True,
retry_times_at_unknown_error=2,
):
"""
@@ -61,18 +91,21 @@ def request_gpt_model_in_new_thread_with_ui_alive(
"""
import time
from concurrent.futures import ThreadPoolExecutor
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
from request_llms.bridge_all import predict_no_ui_long_connection
# 用户反馈
chatbot.append([inputs_show_user, ""])
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
executor = ThreadPoolExecutor(max_workers=16)
mutable = ["", time.time()]
mutable = ["", time.time(), ""]
# 看门狗耐心
watch_dog_patience = 5
# 请求任务
def _req_gpt(inputs, history, sys_prompt):
retry_op = retry_times_at_unknown_error
exceeded_cnt = 0
while True:
# watchdog error
if len(mutable) >= 2 and (time.time()-mutable[1]) > 5:
if len(mutable) >= 2 and (time.time()-mutable[1]) > watch_dog_patience:
raise RuntimeError("检测到程序终止。")
try:
# 【第一种情况】:顺利完成
@@ -87,25 +120,25 @@ def request_gpt_model_in_new_thread_with_ui_alive(
# 【选择处理】 尝试计算比例,尽可能多地保留文本
from toolbox import get_reduce_token_percent
p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error))
MAX_TOKEN = 4096
MAX_TOKEN = get_max_token(llm_kwargs)
EXCEED_ALLO = 512 + 512 * exceeded_cnt
inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN-EXCEED_ALLO)
mutable[0] += f'[Local Message] 警告,文本过长将进行截断,Token溢出数{n_exceed}\n\n'
continue # 返回重试
else:
# 【选择放弃】
tb_str = '```\n' + traceback.format_exc() + '```'
tb_str = '```\n' + trimmed_format_exc() + '```'
mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
return mutable[0] # 放弃
except:
# 【第三种情况】:其他错误:重试几次
tb_str = '```\n' + traceback.format_exc() + '```'
print(tb_str)
tb_str = '```\n' + trimmed_format_exc() + '```'
logger.error(tb_str)
mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
if retry_op > 0:
retry_op -= 1
mutable[0] += f"[Local Message] 重试中,请稍等 {retry_times_at_unknown_error-retry_op}/{retry_times_at_unknown_error}\n\n"
if "Rate limit reached" in tb_str:
if ("Rate limit reached" in tb_str) or ("Too Many Requests" in tb_str):
time.sleep(30)
time.sleep(5)
continue # 返回重试
@@ -130,11 +163,31 @@ def request_gpt_model_in_new_thread_with_ui_alive(
yield from update_ui(chatbot=chatbot, history=[]) # 如果最后成功了,则删除报错信息
return final_result
def can_multi_process(llm) -> bool:
from request_llms.bridge_all import model_info
def default_condition(llm) -> bool:
# legacy condition
if llm.startswith('gpt-'): return True
if llm.startswith('chatgpt-'): return True
if llm.startswith('api2d-'): return True
if llm.startswith('azure-'): return True
if llm.startswith('spark'): return True
if llm.startswith('zhipuai') or llm.startswith('glm-'): return True
return False
if llm in model_info:
if 'can_multi_thread' in model_info[llm]:
return model_info[llm]['can_multi_thread']
else:
return default_condition(llm)
else:
return default_condition(llm)
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array, inputs_show_user_array, llm_kwargs,
chatbot, history_array, sys_prompt_array,
refresh_interval=0.2, max_workers=-1, scroller_max_len=30,
inputs_array, inputs_show_user_array, llm_kwargs,
chatbot, history_array, sys_prompt_array,
refresh_interval=0.2, max_workers=-1, scroller_max_len=75,
handle_token_exceed=True, show_user_at_complete=False,
retry_times_at_unknown_error=2,
):
@@ -167,13 +220,17 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
"""
import time, random
from concurrent.futures import ThreadPoolExecutor
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
from request_llms.bridge_all import predict_no_ui_long_connection
assert len(inputs_array) == len(history_array)
assert len(inputs_array) == len(sys_prompt_array)
if max_workers == -1: # 读取配置文件
try: max_workers, = get_conf('DEFAULT_WORKER_NUM')
try: max_workers = get_conf('DEFAULT_WORKER_NUM')
except: max_workers = 8
if max_workers <= 0 or max_workers >= 20: max_workers = 8
if max_workers <= 0: max_workers = 3
# 屏蔽掉 chatglm的多线程,可能会导致严重卡顿
if not can_multi_process(llm_kwargs['llm_model']):
max_workers = 1
executor = ThreadPoolExecutor(max_workers=max_workers)
n_frag = len(inputs_array)
# 用户反馈
@@ -182,33 +239,35 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
# 跨线程传递
mutable = [["", time.time(), "等待中"] for _ in range(n_frag)]
# 看门狗耐心
watch_dog_patience = 5
# 子线程任务
def _req_gpt(index, inputs, history, sys_prompt):
gpt_say = ""
retry_op = retry_times_at_unknown_error
exceeded_cnt = 0
mutable[index][2] = "执行中"
detect_timeout = lambda: len(mutable[index]) >= 2 and (time.time()-mutable[index][1]) > watch_dog_patience
while True:
# watchdog error
if len(mutable[index]) >= 2 and (time.time()-mutable[index][1]) > 5:
raise RuntimeError("检测到程序终止。")
if detect_timeout(): raise RuntimeError("检测到程序终止。")
try:
# 【第一种情况】:顺利完成
# time.sleep(10); raise RuntimeError("测试")
gpt_say = predict_no_ui_long_connection(
inputs=inputs, llm_kwargs=llm_kwargs, history=history,
inputs=inputs, llm_kwargs=llm_kwargs, history=history,
sys_prompt=sys_prompt, observe_window=mutable[index], console_slience=True
)
mutable[index][2] = "已成功"
return gpt_say
except ConnectionAbortedError as token_exceeded_error:
# 【第二种情况】Token溢出
# 【第二种情况】Token溢出
if handle_token_exceed:
exceeded_cnt += 1
# 【选择处理】 尝试计算比例,尽可能多地保留文本
from toolbox import get_reduce_token_percent
p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error))
MAX_TOKEN = 4096
MAX_TOKEN = get_max_token(llm_kwargs)
EXCEED_ALLO = 512 + 512 * exceeded_cnt
inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN-EXCEED_ALLO)
gpt_say += f'[Local Message] 警告,文本过长将进行截断,Token溢出数{n_exceed}\n\n'
@@ -216,29 +275,31 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
continue # 返回重试
else:
# 【选择放弃】
tb_str = '```\n' + traceback.format_exc() + '```'
tb_str = '```\n' + trimmed_format_exc() + '```'
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0]
mutable[index][2] = "输入过长已放弃"
return gpt_say # 放弃
except:
# 【第三种情况】:其他错误
tb_str = '```\n' + traceback.format_exc() + '```'
print(tb_str)
if detect_timeout(): raise RuntimeError("检测到程序终止。")
tb_str = '```\n' + trimmed_format_exc() + '```'
logger.error(tb_str)
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0]
if retry_op > 0:
if retry_op > 0:
retry_op -= 1
wait = random.randint(5, 20)
if "Rate limit reached" in tb_str:
if ("Rate limit reached" in tb_str) or ("Too Many Requests" in tb_str):
wait = wait * 3
fail_info = "OpenAI请求速率限制 "
fail_info = "OpenAI绑定信用卡可解除频率限制 "
else:
fail_info = ""
# 也许等待十几秒后,情况会好转
for i in range(wait):
mutable[index][2] = f"{fail_info}等待重试 {wait-i}"; time.sleep(1)
# 开始重试
if detect_timeout(): raise RuntimeError("检测到程序终止。")
mutable[index][2] = f"重试中 {retry_times_at_unknown_error-retry_op}/{retry_times_at_unknown_error}"
continue # 返回重试
else:
@@ -251,14 +312,13 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(
range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
cnt = 0
while True:
# yield一次以刷新前端页面
time.sleep(refresh_interval)
cnt += 1
worker_done = [h.done() for h in futures]
if all(worker_done):
executor.shutdown()
break
# 更好的UI视觉效果
observe_win = []
# 每个线程都要“喂狗”(看门狗)
@@ -266,123 +326,35 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
mutable[thread_index][1] = time.time()
# 在前端打印些好玩的东西
for thread_index, _ in enumerate(worker_done):
print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
replace('\n', '').replace('```', '...').replace(
' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]"
print_something_really_funny = f"[ ...`{scolling_visual_effect(mutable[thread_index][0], scroller_max_len)}`... ]"
observe_win.append(print_something_really_funny)
# 在前端打印些好玩的东西
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n'
if not done else f'`{mutable[thread_index][2]}`\n\n'
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n'
if not done else f'`{mutable[thread_index][2]}`\n\n'
for thread_index, done, obs in zip(range(len(worker_done)), worker_done, observe_win)])
# 在前端打印些好玩的东西
chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt % 10+1))]
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
if all(worker_done):
executor.shutdown()
break
# 异步任务结束
gpt_response_collection = []
for inputs_show_user, f in zip(inputs_show_user_array, futures):
gpt_res = f.result()
gpt_response_collection.extend([inputs_show_user, gpt_res])
# 是否在结束时,在界面上显示结果
if show_user_at_complete:
for inputs_show_user, f in zip(inputs_show_user_array, futures):
gpt_res = f.result()
chatbot.append([inputs_show_user, gpt_res])
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
time.sleep(0.3)
time.sleep(0.5)
return gpt_response_collection
def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
def cut(txt_tocut, must_break_at_empty_line): # 递归
if get_token_fn(txt_tocut) <= limit:
return [txt_tocut]
else:
lines = txt_tocut.split('\n')
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
estimated_line_cut = int(estimated_line_cut)
for cnt in reversed(range(estimated_line_cut)):
if must_break_at_empty_line:
if lines[cnt] != "":
continue
print(cnt)
prev = "\n".join(lines[:cnt])
post = "\n".join(lines[cnt:])
if get_token_fn(prev) < limit:
break
if cnt == 0:
raise RuntimeError("存在一行极长的文本!")
# print(len(post))
# 列表递归接龙
result = [prev]
result.extend(cut(post, must_break_at_empty_line))
return result
try:
return cut(txt, must_break_at_empty_line=True)
except RuntimeError:
return cut(txt, must_break_at_empty_line=False)
def force_breakdown(txt, limit, get_token_fn):
"""
当无法用标点、空行分割时,我们用最暴力的方法切割
"""
for i in reversed(range(len(txt))):
if get_token_fn(txt[:i]) < limit:
return txt[:i], txt[i:]
return "Tiktoken未知错误", "Tiktoken未知错误"
def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
# 递归
def cut(txt_tocut, must_break_at_empty_line, break_anyway=False):
if get_token_fn(txt_tocut) <= limit:
return [txt_tocut]
else:
lines = txt_tocut.split('\n')
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
estimated_line_cut = int(estimated_line_cut)
cnt = 0
for cnt in reversed(range(estimated_line_cut)):
if must_break_at_empty_line:
if lines[cnt] != "":
continue
prev = "\n".join(lines[:cnt])
post = "\n".join(lines[cnt:])
if get_token_fn(prev) < limit:
break
if cnt == 0:
if break_anyway:
prev, post = force_breakdown(txt_tocut, limit, get_token_fn)
else:
raise RuntimeError(f"存在一行极长的文本!{txt_tocut}")
# print(len(post))
# 列表递归接龙
result = [prev]
result.extend(cut(post, must_break_at_empty_line, break_anyway=break_anyway))
return result
try:
# 第1次尝试,将双空行\n\n作为切分点
return cut(txt, must_break_at_empty_line=True)
except RuntimeError:
try:
# 第2次尝试,将单空行\n作为切分点
return cut(txt, must_break_at_empty_line=False)
except RuntimeError:
try:
# 第3次尝试,将英文句号.)作为切分点
res = cut(txt.replace('.', '\n'), must_break_at_empty_line=False) # 这个中文的句号是故意的,作为一个标识而存在
return [r.replace('\n', '.') for r in res]
except RuntimeError as e:
try:
# 第4次尝试,将中文句号作为切分点
res = cut(txt.replace('', '。。\n'), must_break_at_empty_line=False)
return [r.replace('。。\n', '') for r in res]
except RuntimeError as e:
# 第5次尝试,没办法了,随便切一下敷衍吧
return cut(txt, must_break_at_empty_line=False, break_anyway=True)
def read_and_clean_pdf_text(fp):
"""
@@ -407,7 +379,7 @@ def read_and_clean_pdf_text(fp):
import fitz, copy
import re
import numpy as np
from colorful import print亮黄, print亮绿
# from shared_utils.colorful import print亮黄, print亮绿
fc = 0 # Index 0 文本
fs = 1 # Index 1 字体
fb = 2 # Index 2 框框
@@ -422,7 +394,7 @@ def read_and_clean_pdf_text(fp):
if wtf['size'] not in fsize_statiscs: fsize_statiscs[wtf['size']] = 0
fsize_statiscs[wtf['size']] += len(wtf['text'])
return max(fsize_statiscs, key=fsize_statiscs.get)
def ffsize_same(a,b):
"""
提取字体大小是否近似相等
@@ -458,21 +430,23 @@ def read_and_clean_pdf_text(fp):
if index == 0:
page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
'- ', '') for t in text_areas['blocks'] if 'lines' in t]
############################## <第 2 步,获取正文主字体> ##################################
fsize_statiscs = {}
for span in meta_span:
if span[1] not in fsize_statiscs: fsize_statiscs[span[1]] = 0
fsize_statiscs[span[1]] += span[2]
main_fsize = max(fsize_statiscs, key=fsize_statiscs.get)
if REMOVE_FOOT_NOTE:
give_up_fize_threshold = main_fsize * REMOVE_FOOT_FFSIZE_PERCENT
############################## <第 2 步,获取正文主字体> ##################################
try:
fsize_statiscs = {}
for span in meta_span:
if span[1] not in fsize_statiscs: fsize_statiscs[span[1]] = 0
fsize_statiscs[span[1]] += span[2]
main_fsize = max(fsize_statiscs, key=fsize_statiscs.get)
if REMOVE_FOOT_NOTE:
give_up_fize_threshold = main_fsize * REMOVE_FOOT_FFSIZE_PERCENT
except:
raise RuntimeError(f'抱歉, 我们暂时无法解析此PDF文档: {fp}')
############################## <第 3 步,切分和重新整合> ##################################
mega_sec = []
sec = []
for index, line in enumerate(meta_line):
if index == 0:
if index == 0:
sec.append(line[fc])
continue
if REMOVE_FOOT_NOTE:
@@ -533,6 +507,9 @@ def read_and_clean_pdf_text(fp):
return True
else:
return False
# 对于某些PDF会有第一个段落就以小写字母开头,为了避免索引错误将其更改为大写
if starts_with_lowercase_word(meta_txt[0]):
meta_txt[0] = meta_txt[0].capitalize()
for _ in range(100):
for index, block_txt in enumerate(meta_txt):
if starts_with_lowercase_word(block_txt):
@@ -560,3 +537,115 @@ def read_and_clean_pdf_text(fp):
# print亮绿('***************************')
return meta_txt, page_one_meta
def get_files_from_everything(txt, type): # type='.md'
"""
这个函数是用来获取指定目录下所有指定类型(如.md的文件,并且对于网络上的文件,也可以获取它。
下面是对每个参数和返回值的说明:
参数
- txt: 路径或网址,表示要搜索的文件或者文件夹路径或网络上的文件。
- type: 字符串,表示要搜索的文件类型。默认是.md。
返回值
- success: 布尔值,表示函数是否成功执行。
- file_manifest: 文件路径列表,里面包含以指定类型为后缀名的所有文件的绝对路径。
- project_folder: 字符串,表示文件所在的文件夹路径。如果是网络上的文件,就是临时文件夹的路径。
该函数详细注释已添加,请确认是否满足您的需要。
"""
import glob, os
success = True
if txt.startswith('http'):
# 网络的远程文件
import requests
from toolbox import get_conf
from toolbox import get_log_folder, gen_time_str
proxies = get_conf('proxies')
try:
r = requests.get(txt, proxies=proxies)
except:
raise ConnectionRefusedError(f"无法下载资源{txt},请检查。")
path = os.path.join(get_log_folder(plugin_name='web_download'), gen_time_str()+type)
with open(path, 'wb+') as f: f.write(r.content)
project_folder = get_log_folder(plugin_name='web_download')
file_manifest = [path]
elif txt.endswith(type):
# 直接给定文件
file_manifest = [txt]
project_folder = os.path.dirname(txt)
elif os.path.exists(txt):
# 本地路径,递归搜索
project_folder = txt
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*'+type, recursive=True)]
if len(file_manifest) == 0:
success = False
else:
project_folder = None
file_manifest = []
success = False
return success, file_manifest, project_folder
@Singleton
class nougat_interface():
def __init__(self):
self.threadLock = threading.Lock()
def nougat_with_timeout(self, command, cwd, timeout=3600):
import subprocess
from toolbox import ProxyNetworkActivate
logger.info(f'正在执行命令 {command}')
with ProxyNetworkActivate("Nougat_Download"):
process = subprocess.Popen(command, shell=False, cwd=cwd, env=os.environ)
try:
stdout, stderr = process.communicate(timeout=timeout)
except subprocess.TimeoutExpired:
process.kill()
stdout, stderr = process.communicate()
logger.error("Process timed out!")
return False
return True
def NOUGAT_parse_pdf(self, fp, chatbot, history):
from toolbox import update_ui_lastest_msg
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度:正在排队, 等待线程锁...",
chatbot=chatbot, history=history, delay=0)
self.threadLock.acquire()
import glob, threading, os
from toolbox import get_log_folder, gen_time_str
dst = os.path.join(get_log_folder(plugin_name='nougat'), gen_time_str())
os.makedirs(dst)
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度正在加载NOUGAT... 提示首次运行需要花费较长时间下载NOUGAT参数",
chatbot=chatbot, history=history, delay=0)
command = ['nougat', '--out', os.path.abspath(dst), os.path.abspath(fp)]
self.nougat_with_timeout(command, cwd=os.getcwd(), timeout=3600)
res = glob.glob(os.path.join(dst,'*.mmd'))
if len(res) == 0:
self.threadLock.release()
raise RuntimeError("Nougat解析论文失败。")
self.threadLock.release()
return res[0]
def try_install_deps(deps, reload_m=[]):
import subprocess, sys, importlib
for dep in deps:
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '--user', dep])
import site
importlib.reload(site)
for m in reload_m:
importlib.reload(__import__(m))
def get_plugin_arg(plugin_kwargs, key, default):
# 如果参数是空的
if (key in plugin_kwargs) and (plugin_kwargs[key] == ""): plugin_kwargs.pop(key)
# 正常情况
return plugin_kwargs.get(key, default)

查看文件

@@ -0,0 +1,127 @@
import os
from textwrap import indent
from loguru import logger
class FileNode:
def __init__(self, name, build_manifest=False):
self.name = name
self.children = []
self.is_leaf = False
self.level = 0
self.parenting_ship = []
self.comment = ""
self.comment_maxlen_show = 50
self.build_manifest = build_manifest
self.manifest = {}
@staticmethod
def add_linebreaks_at_spaces(string, interval=10):
return '\n'.join(string[i:i+interval] for i in range(0, len(string), interval))
def sanitize_comment(self, comment):
if len(comment) > self.comment_maxlen_show: suf = '...'
else: suf = ''
comment = comment[:self.comment_maxlen_show]
comment = comment.replace('\"', '').replace('`', '').replace('\n', '').replace('`', '').replace('$', '')
comment = self.add_linebreaks_at_spaces(comment, 10)
return '`' + comment + suf + '`'
def add_file(self, file_path, file_comment):
directory_names, file_name = os.path.split(file_path)
current_node = self
level = 1
if directory_names == "":
new_node = FileNode(file_name)
self.manifest[file_path] = new_node
current_node.children.append(new_node)
new_node.is_leaf = True
new_node.comment = self.sanitize_comment(file_comment)
new_node.level = level
current_node = new_node
else:
dnamesplit = directory_names.split(os.sep)
for i, directory_name in enumerate(dnamesplit):
found_child = False
level += 1
for child in current_node.children:
if child.name == directory_name:
current_node = child
found_child = True
break
if not found_child:
new_node = FileNode(directory_name)
current_node.children.append(new_node)
new_node.level = level - 1
current_node = new_node
term = FileNode(file_name)
self.manifest[file_path] = term
term.level = level
term.comment = self.sanitize_comment(file_comment)
term.is_leaf = True
current_node.children.append(term)
def print_files_recursively(self, level=0, code="R0"):
logger.info(' '*level + self.name + ' ' + str(self.is_leaf) + ' ' + str(self.level))
for j, child in enumerate(self.children):
child.print_files_recursively(level=level+1, code=code+str(j))
self.parenting_ship.extend(child.parenting_ship)
p1 = f"""{code}[\"🗎{self.name}\"]""" if self.is_leaf else f"""{code}[[\"📁{self.name}\"]]"""
p2 = """ --> """
p3 = f"""{code+str(j)}[\"🗎{child.name}\"]""" if child.is_leaf else f"""{code+str(j)}[[\"📁{child.name}\"]]"""
edge_code = p1 + p2 + p3
if edge_code in self.parenting_ship:
continue
self.parenting_ship.append(edge_code)
if self.comment != "":
pc1 = f"""{code}[\"🗎{self.name}\"]""" if self.is_leaf else f"""{code}[[\"📁{self.name}\"]]"""
pc2 = f""" -.-x """
pc3 = f"""C{code}[\"{self.comment}\"]:::Comment"""
edge_code = pc1 + pc2 + pc3
self.parenting_ship.append(edge_code)
MERMAID_TEMPLATE = r"""
```mermaid
flowchart LR
%% <gpt_academic_hide_mermaid_code> 一个特殊标记,用于在生成mermaid图表时隐藏代码块
classDef Comment stroke-dasharray: 5 5
subgraph {graph_name}
{relationship}
end
```
"""
def build_file_tree_mermaid_diagram(file_manifest, file_comments, graph_name):
# Create the root node
file_tree_struct = FileNode("root")
# Build the tree structure
for file_path, file_comment in zip(file_manifest, file_comments):
file_tree_struct.add_file(file_path, file_comment)
file_tree_struct.print_files_recursively()
cc = "\n".join(file_tree_struct.parenting_ship)
ccc = indent(cc, prefix=" "*8)
return MERMAID_TEMPLATE.format(graph_name=graph_name, relationship=ccc)
if __name__ == "__main__":
# File manifest
file_manifest = [
"cradle_void_terminal.ipynb",
"tests/test_utils.py",
"tests/test_plugins.py",
"tests/test_llms.py",
"config.py",
"build/ChatGLM-6b-onnx-u8s8/chatglm-6b-int8-onnx-merged/model_weights_0.bin",
"crazy_functions/latex_fns/latex_actions.py",
"crazy_functions/latex_fns/latex_toolbox.py"
]
file_comments = [
"根据位置和名称,可能是一个模块的初始化文件根据位置和名称,可能是一个模块的初始化文件根据位置和名称,可能是一个模块的初始化文件",
"包含一些用于文本处理和模型微调的函数和装饰器包含一些用于文本处理和模型微调的函数和装饰器包含一些用于文本处理和模型微调的函数和装饰器",
"用于构建HTML报告的类和方法用于构建HTML报告的类和方法用于构建HTML报告的类和方法",
"包含了用于文本切分的函数,以及处理PDF文件的示例代码包含了用于文本切分的函数,以及处理PDF文件的示例代码包含了用于文本切分的函数,以及处理PDF文件的示例代码",
"用于解析和翻译PDF文件的功能和相关辅助函数用于解析和翻译PDF文件的功能和相关辅助函数用于解析和翻译PDF文件的功能和相关辅助函数",
"是一个包的初始化文件,用于初始化包的属性和导入模块是一个包的初始化文件,用于初始化包的属性和导入模块是一个包的初始化文件,用于初始化包的属性和导入模块",
"用于加载和分割文件中的文本的通用文件加载器用于加载和分割文件中的文本的通用文件加载器用于加载和分割文件中的文本的通用文件加载器",
"包含了用于构建和管理向量数据库的函数和类包含了用于构建和管理向量数据库的函数和类包含了用于构建和管理向量数据库的函数和类",
]
logger.info(build_file_tree_mermaid_diagram(file_manifest, file_comments, "项目文件树"))

查看文件

@@ -0,0 +1,42 @@
from toolbox import CatchException, update_ui, update_ui_lastest_msg
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicGameBaseState
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.game_fns.game_utils import get_code_block, is_same_thing
import random
class MiniGame_ASCII_Art(GptAcademicGameBaseState):
def step(self, prompt, chatbot, history):
if self.step_cnt == 0:
chatbot.append(["我画你猜(动物)", "请稍等..."])
else:
if prompt.strip() == 'exit':
self.delete_game = True
yield from update_ui_lastest_msg(lastmsg=f"谜底是{self.obj},游戏结束。", chatbot=chatbot, history=history, delay=0.)
return
chatbot.append([prompt, ""])
yield from update_ui(chatbot=chatbot, history=history)
if self.step_cnt == 0:
self.lock_plugin(chatbot)
self.cur_task = 'draw'
if self.cur_task == 'draw':
avail_obj = ["","","","","老鼠",""]
self.obj = random.choice(avail_obj)
inputs = "I want to play a game called Guess the ASCII art. You can draw the ASCII art and I will try to guess it. " + \
f"This time you draw a {self.obj}. Note that you must not indicate what you have draw in the text, and you should only produce the ASCII art wrapped by ```. "
raw_res = predict_no_ui_long_connection(inputs=inputs, llm_kwargs=self.llm_kwargs, history=[], sys_prompt="")
self.cur_task = 'identify user guess'
res = get_code_block(raw_res)
history += ['', f'the answer is {self.obj}', inputs, res]
yield from update_ui_lastest_msg(lastmsg=res, chatbot=chatbot, history=history, delay=0.)
elif self.cur_task == 'identify user guess':
if is_same_thing(self.obj, prompt, self.llm_kwargs):
self.delete_game = True
yield from update_ui_lastest_msg(lastmsg="你猜对了!", chatbot=chatbot, history=history, delay=0.)
else:
self.cur_task = 'identify user guess'
yield from update_ui_lastest_msg(lastmsg="猜错了,再试试,输入“exit”获取答案。", chatbot=chatbot, history=history, delay=0.)

查看文件

@@ -0,0 +1,212 @@
prompts_hs = """ 请以“{headstart}”为开头,编写一个小说的第一幕。
- 尽量短,不要包含太多情节,因为你接下来将会与用户互动续写下面的情节,要留出足够的互动空间。
- 出现人物时,给出人物的名字。
- 积极地运用环境描写、人物描写等手法,让读者能够感受到你的故事世界。
- 积极地运用修辞手法,比如比喻、拟人、排比、对偶、夸张等等。
- 字数要求第一幕的字数少于300字,且少于2个段落。
"""
prompts_interact = """ 小说的前文回顾:
{previously_on_story}
你是一个作家,根据以上的情节,给出4种不同的后续剧情发展方向,每个发展方向都精明扼要地用一句话说明。稍后,我将在这4个选择中,挑选一种剧情发展。
输出格式例如:
1. 后续剧情发展1
2. 后续剧情发展2
3. 后续剧情发展3
4. 后续剧情发展4
"""
prompts_resume = """小说的前文回顾:
{previously_on_story}
你是一个作家,我们正在互相讨论,确定后续剧情的发展。
在以下的剧情发展中,
{choice}
我认为更合理的是:{user_choice}
请在前文的基础上(不要重复前文),围绕我选定的剧情情节,编写小说的下一幕。
- 禁止杜撰不符合我选择的剧情。
- 尽量短,不要包含太多情节,因为你接下来将会与用户互动续写下面的情节,要留出足够的互动空间。
- 不要重复前文。
- 出现人物时,给出人物的名字。
- 积极地运用环境描写、人物描写等手法,让读者能够感受到你的故事世界。
- 积极地运用修辞手法,比如比喻、拟人、排比、对偶、夸张等等。
- 小说的下一幕字数少于300字,且少于2个段落。
"""
prompts_terminate = """小说的前文回顾:
{previously_on_story}
你是一个作家,我们正在互相讨论,确定后续剧情的发展。
现在,故事该结束了,我认为最合理的故事结局是:{user_choice}
请在前文的基础上(不要重复前文),编写小说的最后一幕。
- 不要重复前文。
- 出现人物时,给出人物的名字。
- 积极地运用环境描写、人物描写等手法,让读者能够感受到你的故事世界。
- 积极地运用修辞手法,比如比喻、拟人、排比、对偶、夸张等等。
- 字数要求最后一幕的字数少于1000字。
"""
from toolbox import CatchException, update_ui, update_ui_lastest_msg
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicGameBaseState
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.game_fns.game_utils import get_code_block, is_same_thing
import random
class MiniGame_ResumeStory(GptAcademicGameBaseState):
story_headstart = [
'先行者知道,他现在是全宇宙中唯一的一个人了。',
'深夜,一个年轻人穿过天安门广场向纪念堂走去。在二十二世纪编年史中,计算机把他的代号定为M102。',
'他知道,这最后一课要提前讲了。又一阵剧痛从肝部袭来,几乎使他晕厥过去。',
'在距地球五万光年的远方,在银河系的中心,一场延续了两万年的星际战争已接近尾声。那里的太空中渐渐隐现出一个方形区域,仿佛灿烂的群星的背景被剪出一个方口。',
'伊依一行三人乘坐一艘游艇在南太平洋上做吟诗航行,他们的目的地是南极,如果几天后能顺利到达那里,他们将钻出地壳去看诗云。',
'很多人生来就会莫名其妙地迷上一样东西,仿佛他的出生就是要和这东西约会似的,正是这样,圆圆迷上了肥皂泡。'
]
def begin_game_step_0(self, prompt, chatbot, history):
# init game at step 0
self.headstart = random.choice(self.story_headstart)
self.story = []
chatbot.append(["互动写故事", f"这次的故事开头是:{self.headstart}"])
self.sys_prompt_ = '你是一个想象力丰富的杰出作家。正在与你的朋友互动,一起写故事,因此你每次写的故事段落应少于300字结局除外'
def generate_story_image(self, story_paragraph):
try:
from crazy_functions.AntFin import gen_image
prompt_ = predict_no_ui_long_connection(inputs=story_paragraph, llm_kwargs=self.llm_kwargs, history=[], sys_prompt='你需要根据用户给出的小说段落,进行简短的环境描写。要求80字以内。')
image_url, image_path = gen_image(self.llm_kwargs, prompt_, '512x512', model="dall-e-2", quality='standard', style='natural')
return f'<br/><div align="center"><img src="file={image_path}"></div>'
except:
return ''
def step(self, prompt, chatbot, history):
"""
首先,处理游戏初始化等特殊情况
"""
if self.step_cnt == 0:
self.begin_game_step_0(prompt, chatbot, history)
self.lock_plugin(chatbot)
self.cur_task = 'head_start'
else:
if prompt.strip() == 'exit' or prompt.strip() == '结束剧情':
# should we terminate game here?
self.delete_game = True
yield from update_ui_lastest_msg(lastmsg=f"游戏结束。", chatbot=chatbot, history=history, delay=0.)
return
if '剧情收尾' in prompt:
self.cur_task = 'story_terminate'
# # well, game resumes
# chatbot.append([prompt, ""])
# update ui, don't keep the user waiting
yield from update_ui(chatbot=chatbot, history=history)
"""
处理游戏的主体逻辑
"""
if self.cur_task == 'head_start':
"""
这是游戏的第一步
"""
inputs_ = prompts_hs.format(headstart=self.headstart)
history_ = []
story_paragraph = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs_, '故事开头', self.llm_kwargs,
chatbot, history_, self.sys_prompt_
)
self.story.append(story_paragraph)
# # 配图
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
# # 构建后续剧情引导
previously_on_story = ""
for s in self.story:
previously_on_story += s + '\n'
inputs_ = prompts_interact.format(previously_on_story=previously_on_story)
history_ = []
self.next_choices = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs_, '请在以下几种故事走向中,选择一种(当然,您也可以选择给出其他故事走向):', self.llm_kwargs,
chatbot,
history_,
self.sys_prompt_
)
self.cur_task = 'user_choice'
elif self.cur_task == 'user_choice':
"""
根据用户的提示,确定故事的下一步
"""
if '请在以下几种故事走向中,选择一种' in chatbot[-1][0]: chatbot.pop(-1)
previously_on_story = ""
for s in self.story:
previously_on_story += s + '\n'
inputs_ = prompts_resume.format(previously_on_story=previously_on_story, choice=self.next_choices, user_choice=prompt)
history_ = []
story_paragraph = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs_, f'下一段故事(您的选择是:{prompt})。', self.llm_kwargs,
chatbot, history_, self.sys_prompt_
)
self.story.append(story_paragraph)
# # 配图
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
# # 构建后续剧情引导
previously_on_story = ""
for s in self.story:
previously_on_story += s + '\n'
inputs_ = prompts_interact.format(previously_on_story=previously_on_story)
history_ = []
self.next_choices = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs_,
'请在以下几种故事走向中,选择一种。当然,您也可以给出您心中的其他故事走向。另外,如果您希望剧情立即收尾,请输入剧情走向,并以“剧情收尾”四个字提示程序。', self.llm_kwargs,
chatbot,
history_,
self.sys_prompt_
)
self.cur_task = 'user_choice'
elif self.cur_task == 'story_terminate':
"""
根据用户的提示,确定故事的结局
"""
previously_on_story = ""
for s in self.story:
previously_on_story += s + '\n'
inputs_ = prompts_terminate.format(previously_on_story=previously_on_story, user_choice=prompt)
history_ = []
story_paragraph = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs_, f'故事收尾(您的选择是:{prompt})。', self.llm_kwargs,
chatbot, history_, self.sys_prompt_
)
# # 配图
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
# terminate game
self.delete_game = True
return

查看文件

@@ -0,0 +1,35 @@
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
from request_llms.bridge_all import predict_no_ui_long_connection
def get_code_block(reply):
import re
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
matches = re.findall(pattern, reply) # find all code blocks in text
if len(matches) == 1:
return "```" + matches[0] + "```" # code block
raise RuntimeError("GPT is not generating proper code.")
def is_same_thing(a, b, llm_kwargs):
from pydantic import BaseModel, Field
class IsSameThing(BaseModel):
is_same_thing: bool = Field(description="determine whether two objects are same thing.", default=False)
def run_gpt_fn(inputs, sys_prompt, history=[]):
return predict_no_ui_long_connection(
inputs=inputs, llm_kwargs=llm_kwargs,
history=history, sys_prompt=sys_prompt, observe_window=[]
)
gpt_json_io = GptJsonIO(IsSameThing)
inputs_01 = "Identity whether the user input and the target is the same thing: \n target object: {a} \n user input object: {b} \n\n\n".format(a=a, b=b)
inputs_01 += "\n\n\n Note that the user may describe the target object with a different language, e.g. cat and 猫 are the same thing."
analyze_res_cot_01 = run_gpt_fn(inputs_01, "", [])
inputs_02 = inputs_01 + gpt_json_io.format_instructions
analyze_res = run_gpt_fn(inputs_02, "", [inputs_01, analyze_res_cot_01])
try:
res = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
return res.is_same_thing
except JsonStringError as e:
return False

查看文件

@@ -0,0 +1,70 @@
import time
import importlib
from toolbox import trimmed_format_exc, gen_time_str, get_log_folder
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, is_the_upload_folder
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_lastest_msg
import multiprocessing
def get_class_name(class_string):
import re
# Use regex to extract the class name
class_name = re.search(r'class (\w+)\(', class_string).group(1)
return class_name
def try_make_module(code, chatbot):
module_file = 'gpt_fn_' + gen_time_str().replace('-','_')
fn_path = f'{get_log_folder(plugin_name="gen_plugin_verify")}/{module_file}.py'
with open(fn_path, 'w', encoding='utf8') as f: f.write(code)
promote_file_to_downloadzone(fn_path, chatbot=chatbot)
class_name = get_class_name(code)
manager = multiprocessing.Manager()
return_dict = manager.dict()
p = multiprocessing.Process(target=is_function_successfully_generated, args=(fn_path, class_name, return_dict))
# only has 10 seconds to run
p.start(); p.join(timeout=10)
if p.is_alive(): p.terminate(); p.join()
p.close()
return return_dict["success"], return_dict['traceback']
# check is_function_successfully_generated
def is_function_successfully_generated(fn_path, class_name, return_dict):
return_dict['success'] = False
return_dict['traceback'] = ""
try:
# Create a spec for the module
module_spec = importlib.util.spec_from_file_location('example_module', fn_path)
# Load the module
example_module = importlib.util.module_from_spec(module_spec)
module_spec.loader.exec_module(example_module)
# Now you can use the module
some_class = getattr(example_module, class_name)
# Now you can create an instance of the class
instance = some_class()
return_dict['success'] = True
return
except:
return_dict['traceback'] = trimmed_format_exc()
return
def subprocess_worker(code, file_path, return_dict):
return_dict['result'] = None
return_dict['success'] = False
return_dict['traceback'] = ""
try:
module_file = 'gpt_fn_' + gen_time_str().replace('-','_')
fn_path = f'{get_log_folder(plugin_name="gen_plugin_run")}/{module_file}.py'
with open(fn_path, 'w', encoding='utf8') as f: f.write(code)
class_name = get_class_name(code)
# Create a spec for the module
module_spec = importlib.util.spec_from_file_location('example_module', fn_path)
# Load the module
example_module = importlib.util.module_from_spec(module_spec)
module_spec.loader.exec_module(example_module)
# Now you can use the module
some_class = getattr(example_module, class_name)
# Now you can create an instance of the class
instance = some_class()
return_dict['result'] = instance.run(file_path)
return_dict['success'] = True
except:
return_dict['traceback'] = trimmed_format_exc()

查看文件

@@ -0,0 +1,37 @@
import platform
import pickle
import multiprocessing
def run_in_subprocess_wrapper_func(v_args):
func, args, kwargs, return_dict, exception_dict = pickle.loads(v_args)
import sys
try:
result = func(*args, **kwargs)
return_dict['result'] = result
except Exception as e:
exc_info = sys.exc_info()
exception_dict['exception'] = exc_info
def run_in_subprocess_with_timeout(func, timeout=60):
if platform.system() == 'Linux':
def wrapper(*args, **kwargs):
return_dict = multiprocessing.Manager().dict()
exception_dict = multiprocessing.Manager().dict()
v_args = pickle.dumps((func, args, kwargs, return_dict, exception_dict))
process = multiprocessing.Process(target=run_in_subprocess_wrapper_func, args=(v_args,))
process.start()
process.join(timeout)
if process.is_alive():
process.terminate()
raise TimeoutError(f'功能单元{str(func)}未能在规定时间内完成任务')
process.close()
if 'exception' in exception_dict:
# ooops, the subprocess ran into an exception
exc_info = exception_dict['exception']
raise exc_info[1].with_traceback(exc_info[2])
if 'result' in return_dict.keys():
# If the subprocess ran successfully, return the result
return return_dict['result']
return wrapper
else:
return func

查看文件

@@ -0,0 +1,111 @@
"""
https://github.com/langchain-ai/langchain/blob/master/docs/extras/modules/model_io/output_parsers/pydantic.ipynb
Example 1.
# Define your desired data structure.
class Joke(BaseModel):
setup: str = Field(description="question to set up a joke")
punchline: str = Field(description="answer to resolve the joke")
# You can add custom validation logic easily with Pydantic.
@validator("setup")
def question_ends_with_question_mark(cls, field):
if field[-1] != "?":
raise ValueError("Badly formed question!")
return field
Example 2.
# Here's another example, but with a compound typed field.
class Actor(BaseModel):
name: str = Field(description="name of an actor")
film_names: List[str] = Field(description="list of names of films they starred in")
"""
import json, re
from loguru import logger as logging
PYDANTIC_FORMAT_INSTRUCTIONS = """The output should be formatted as a JSON instance that conforms to the JSON schema below.
As an example, for the schema {{"properties": {{"foo": {{"title": "Foo", "description": "a list of strings", "type": "array", "items": {{"type": "string"}}}}}}, "required": ["foo"]}}
the object {{"foo": ["bar", "baz"]}} is a well-formatted instance of the schema. The object {{"properties": {{"foo": ["bar", "baz"]}}}} is not well-formatted.
Here is the output schema:
```
{schema}
```"""
PYDANTIC_FORMAT_INSTRUCTIONS_SIMPLE = """The output should be formatted as a JSON instance that conforms to the JSON schema below.
```
{schema}
```"""
class JsonStringError(Exception): ...
class GptJsonIO():
def __init__(self, schema, example_instruction=True):
self.pydantic_object = schema
self.example_instruction = example_instruction
self.format_instructions = self.generate_format_instructions()
def generate_format_instructions(self):
schema = self.pydantic_object.schema()
# Remove extraneous fields.
reduced_schema = schema
if "title" in reduced_schema:
del reduced_schema["title"]
if "type" in reduced_schema:
del reduced_schema["type"]
# Ensure json in context is well-formed with double quotes.
schema_str = json.dumps(reduced_schema)
if self.example_instruction:
return PYDANTIC_FORMAT_INSTRUCTIONS.format(schema=schema_str)
else:
return PYDANTIC_FORMAT_INSTRUCTIONS_SIMPLE.format(schema=schema_str)
def generate_output(self, text):
# Greedy search for 1st json candidate.
match = re.search(
r"\{.*\}", text.strip(), re.MULTILINE | re.IGNORECASE | re.DOTALL
)
json_str = ""
if match: json_str = match.group()
json_object = json.loads(json_str, strict=False)
final_object = self.pydantic_object.parse_obj(json_object)
return final_object
def generate_repair_prompt(self, broken_json, error):
prompt = "Fix a broken json string.\n\n" + \
"(1) The broken json string need to fix is: \n\n" + \
"```" + "\n" + \
broken_json + "\n" + \
"```" + "\n\n" + \
"(2) The error message is: \n\n" + \
error + "\n\n" + \
"Now, fix this json string. \n\n"
return prompt
def generate_output_auto_repair(self, response, gpt_gen_fn):
"""
response: string containing canidate json
gpt_gen_fn: gpt_gen_fn(inputs, sys_prompt)
"""
try:
result = self.generate_output(response)
except Exception as e:
try:
logging.info(f'Repairing json{response}')
repair_prompt = self.generate_repair_prompt(broken_json = response, error=repr(e))
result = self.generate_output(gpt_gen_fn(repair_prompt, self.format_instructions))
logging.info('Repaire json success.')
except Exception as e:
# 没辙了,放弃治疗
logging.info('Repaire json fail.')
raise JsonStringError('Cannot repair json.', str(e))
return result

查看文件

@@ -0,0 +1,26 @@
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
def structure_output(txt, prompt, err_msg, run_gpt_fn, pydantic_cls):
gpt_json_io = GptJsonIO(pydantic_cls)
analyze_res = run_gpt_fn(
txt,
sys_prompt=prompt + gpt_json_io.format_instructions
)
try:
friend = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
except JsonStringError as e:
return None, err_msg
err_msg = ""
return friend, err_msg
def select_tool(prompt, run_gpt_fn, pydantic_cls):
pydantic_cls_instance, err_msg = structure_output(
txt=prompt,
prompt="根据提示, 分析应该调用哪个工具函数\n\n",
err_msg=f"不能理解该联系人",
run_gpt_fn=run_gpt_fn,
pydantic_cls=pydantic_cls
)
return pydantic_cls_instance, err_msg

查看文件

@@ -0,0 +1,537 @@
import os
import re
import shutil
import numpy as np
from loguru import logger
from toolbox import update_ui, update_ui_lastest_msg, get_log_folder, gen_time_str
from toolbox import get_conf, promote_file_to_downloadzone
from crazy_functions.latex_fns.latex_toolbox import PRESERVE, TRANSFORM
from crazy_functions.latex_fns.latex_toolbox import set_forbidden_text, set_forbidden_text_begin_end, set_forbidden_text_careful_brace
from crazy_functions.latex_fns.latex_toolbox import reverse_forbidden_text_careful_brace, reverse_forbidden_text, convert_to_linklist, post_process
from crazy_functions.latex_fns.latex_toolbox import fix_content, find_main_tex_file, merge_tex_files, compile_latex_with_timeout
from crazy_functions.latex_fns.latex_toolbox import find_title_and_abs
from crazy_functions.latex_fns.latex_pickle_io import objdump, objload
pj = os.path.join
def split_subprocess(txt, project_folder, return_dict, opts):
"""
break down latex file to a linked list,
each node use a preserve flag to indicate whether it should
be proccessed by GPT.
"""
text = txt
mask = np.zeros(len(txt), dtype=np.uint8) + TRANSFORM
# 吸收title与作者以上的部分
text, mask = set_forbidden_text(text, mask, r"^(.*?)\\maketitle", re.DOTALL)
text, mask = set_forbidden_text(text, mask, r"^(.*?)\\begin{document}", re.DOTALL)
# 吸收iffalse注释
text, mask = set_forbidden_text(text, mask, r"\\iffalse(.*?)\\fi", re.DOTALL)
# 吸收在42行以内的begin-end组合
text, mask = set_forbidden_text_begin_end(text, mask, r"\\begin\{([a-z\*]*)\}(.*?)\\end\{\1\}", re.DOTALL, limit_n_lines=42)
# 吸收匿名公式
text, mask = set_forbidden_text(text, mask, [ r"\$\$([^$]+)\$\$", r"\\\[.*?\\\]" ], re.DOTALL)
# 吸收其他杂项
text, mask = set_forbidden_text(text, mask, [ r"\\section\{(.*?)\}", r"\\section\*\{(.*?)\}", r"\\subsection\{(.*?)\}", r"\\subsubsection\{(.*?)\}" ])
text, mask = set_forbidden_text(text, mask, [ r"\\bibliography\{(.*?)\}", r"\\bibliographystyle\{(.*?)\}" ])
text, mask = set_forbidden_text(text, mask, r"\\begin\{thebibliography\}.*?\\end\{thebibliography\}", re.DOTALL)
text, mask = set_forbidden_text(text, mask, r"\\begin\{lstlisting\}(.*?)\\end\{lstlisting\}", re.DOTALL)
text, mask = set_forbidden_text(text, mask, r"\\begin\{wraptable\}(.*?)\\end\{wraptable\}", re.DOTALL)
text, mask = set_forbidden_text(text, mask, r"\\begin\{algorithm\}(.*?)\\end\{algorithm\}", re.DOTALL)
text, mask = set_forbidden_text(text, mask, [r"\\begin\{wrapfigure\}(.*?)\\end\{wrapfigure\}", r"\\begin\{wrapfigure\*\}(.*?)\\end\{wrapfigure\*\}"], re.DOTALL)
text, mask = set_forbidden_text(text, mask, [r"\\begin\{figure\}(.*?)\\end\{figure\}", r"\\begin\{figure\*\}(.*?)\\end\{figure\*\}"], re.DOTALL)
text, mask = set_forbidden_text(text, mask, [r"\\begin\{multline\}(.*?)\\end\{multline\}", r"\\begin\{multline\*\}(.*?)\\end\{multline\*\}"], re.DOTALL)
text, mask = set_forbidden_text(text, mask, [r"\\begin\{table\}(.*?)\\end\{table\}", r"\\begin\{table\*\}(.*?)\\end\{table\*\}"], re.DOTALL)
text, mask = set_forbidden_text(text, mask, [r"\\begin\{minipage\}(.*?)\\end\{minipage\}", r"\\begin\{minipage\*\}(.*?)\\end\{minipage\*\}"], re.DOTALL)
text, mask = set_forbidden_text(text, mask, [r"\\begin\{align\*\}(.*?)\\end\{align\*\}", r"\\begin\{align\}(.*?)\\end\{align\}"], re.DOTALL)
text, mask = set_forbidden_text(text, mask, [r"\\begin\{equation\}(.*?)\\end\{equation\}", r"\\begin\{equation\*\}(.*?)\\end\{equation\*\}"], re.DOTALL)
text, mask = set_forbidden_text(text, mask, [r"\\includepdf\[(.*?)\]\{(.*?)\}", r"\\clearpage", r"\\newpage", r"\\appendix", r"\\tableofcontents", r"\\include\{(.*?)\}"])
text, mask = set_forbidden_text(text, mask, [r"\\vspace\{(.*?)\}", r"\\hspace\{(.*?)\}", r"\\label\{(.*?)\}", r"\\begin\{(.*?)\}", r"\\end\{(.*?)\}", r"\\item "])
text, mask = set_forbidden_text_careful_brace(text, mask, r"\\hl\{(.*?)\}", re.DOTALL)
# reverse 操作必须放在最后
text, mask = reverse_forbidden_text_careful_brace(text, mask, r"\\caption\{(.*?)\}", re.DOTALL, forbid_wrapper=True)
text, mask = reverse_forbidden_text_careful_brace(text, mask, r"\\abstract\{(.*?)\}", re.DOTALL, forbid_wrapper=True)
text, mask = reverse_forbidden_text(text, mask, r"\\begin\{abstract\}(.*?)\\end\{abstract\}", re.DOTALL, forbid_wrapper=True)
root = convert_to_linklist(text, mask)
# 最后一步处理,增强稳健性
root = post_process(root)
# 输出html调试文件,用红色标注处保留区PRESERVE,用黑色标注转换区TRANSFORM
with open(pj(project_folder, 'debug_log.html'), 'w', encoding='utf8') as f:
segment_parts_for_gpt = []
nodes = []
node = root
while True:
nodes.append(node)
show_html = node.string.replace('\n','<br/>')
if not node.preserve:
segment_parts_for_gpt.append(node.string)
f.write(f'<p style="color:black;">#{node.range}{show_html}#</p>')
else:
f.write(f'<p style="color:red;">{show_html}</p>')
node = node.next
if node is None: break
for n in nodes: n.next = None # break
return_dict['nodes'] = nodes
return_dict['segment_parts_for_gpt'] = segment_parts_for_gpt
return return_dict
class LatexPaperSplit():
"""
break down latex file to a linked list,
each node use a preserve flag to indicate whether it should
be proccessed by GPT.
"""
def __init__(self) -> None:
self.nodes = None
self.msg = "*{\\scriptsize\\textbf{警告该PDF由GPT-Academic开源项目调用大语言模型+Latex翻译插件一键生成," + \
"版权归原文作者所有。翻译内容可靠性无保障,请仔细鉴别并以原文为准。" + \
"项目Github地址 \\url{https://github.com/binary-husky/gpt_academic/}。"
# 请您不要删除或修改这行警告,除非您是论文的原作者如果您是论文原作者,欢迎加REAME中的QQ联系开发者
self.msg_declare = "为了防止大语言模型的意外谬误产生扩散影响,禁止移除或修改此警告。}}\\\\"
self.title = "unknown"
self.abstract = "unknown"
def read_title_and_abstract(self, txt):
try:
title, abstract = find_title_and_abs(txt)
if title is not None:
self.title = title.replace('\n', ' ').replace('\\\\', ' ').replace(' ', '').replace(' ', '')
if abstract is not None:
self.abstract = abstract.replace('\n', ' ').replace('\\\\', ' ').replace(' ', '').replace(' ', '')
except:
pass
def merge_result(self, arr, mode, msg, buggy_lines=[], buggy_line_surgery_n_lines=10):
"""
Merge the result after the GPT process completed
"""
result_string = ""
node_cnt = 0
line_cnt = 0
for node in self.nodes:
if node.preserve:
line_cnt += node.string.count('\n')
result_string += node.string
else:
translated_txt = fix_content(arr[node_cnt], node.string)
begin_line = line_cnt
end_line = line_cnt + translated_txt.count('\n')
# reverse translation if any error
if any([begin_line-buggy_line_surgery_n_lines <= b_line <= end_line+buggy_line_surgery_n_lines for b_line in buggy_lines]):
translated_txt = node.string
result_string += translated_txt
node_cnt += 1
line_cnt += translated_txt.count('\n')
if mode == 'translate_zh':
pattern = re.compile(r'\\begin\{abstract\}.*\n')
match = pattern.search(result_string)
if not match:
# match \abstract{xxxx}
pattern_compile = re.compile(r"\\abstract\{(.*?)\}", flags=re.DOTALL)
match = pattern_compile.search(result_string)
position = match.regs[1][0]
else:
# match \begin{abstract}xxxx\end{abstract}
position = match.end()
result_string = result_string[:position] + self.msg + msg + self.msg_declare + result_string[position:]
return result_string
def split(self, txt, project_folder, opts):
"""
break down latex file to a linked list,
each node use a preserve flag to indicate whether it should
be proccessed by GPT.
P.S. use multiprocessing to avoid timeout error
"""
import multiprocessing
manager = multiprocessing.Manager()
return_dict = manager.dict()
p = multiprocessing.Process(
target=split_subprocess,
args=(txt, project_folder, return_dict, opts))
p.start()
p.join()
p.close()
self.nodes = return_dict['nodes']
self.sp = return_dict['segment_parts_for_gpt']
return self.sp
class LatexPaperFileGroup():
"""
use tokenizer to break down text according to max_token_limit
"""
def __init__(self):
self.file_paths = []
self.file_contents = []
self.sp_file_contents = []
self.sp_file_index = []
self.sp_file_tag = []
# count_token
from request_llms.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
self.get_token_num = get_token_num
def run_file_split(self, max_token_limit=1900):
"""
use tokenizer to break down text according to max_token_limit
"""
for index, file_content in enumerate(self.file_contents):
if self.get_token_num(file_content) < max_token_limit:
self.sp_file_contents.append(file_content)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
def merge_result(self):
self.file_result = ["" for _ in range(len(self.file_paths))]
for r, k in zip(self.sp_file_result, self.sp_file_index):
self.file_result[k] += r
def write_result(self):
manifest = []
for path, res in zip(self.file_paths, self.file_result):
with open(path + '.polish.tex', 'w', encoding='utf8') as f:
manifest.append(path + '.polish.tex')
f.write(res)
return manifest
def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, mode='proofread', switch_prompt=None, opts=[]):
import time, os, re
from ..crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from .latex_actions import LatexPaperFileGroup, LatexPaperSplit
# <-------- 寻找主tex文件 ---------->
maintex = find_main_tex_file(file_manifest, mode)
chatbot.append((f"定位主Latex文件", f'[Local Message] 分析结果该项目的Latex主文件是{maintex}, 如果分析错误, 请立即终止程序, 删除或修改歧义文件, 然后重试。主程序即将开始, 请稍候。'))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
time.sleep(3)
# <-------- 读取Latex文件, 将多文件tex工程融合为一个巨型tex ---------->
main_tex_basename = os.path.basename(maintex)
assert main_tex_basename.endswith('.tex')
main_tex_basename_bare = main_tex_basename[:-4]
may_exist_bbl = pj(project_folder, f'{main_tex_basename_bare}.bbl')
if os.path.exists(may_exist_bbl):
shutil.copyfile(may_exist_bbl, pj(project_folder, f'merge.bbl'))
shutil.copyfile(may_exist_bbl, pj(project_folder, f'merge_{mode}.bbl'))
shutil.copyfile(may_exist_bbl, pj(project_folder, f'merge_diff.bbl'))
with open(maintex, 'r', encoding='utf-8', errors='replace') as f:
content = f.read()
merged_content = merge_tex_files(project_folder, content, mode)
with open(project_folder + '/merge.tex', 'w', encoding='utf-8', errors='replace') as f:
f.write(merged_content)
# <-------- 精细切分latex文件 ---------->
chatbot.append((f"Latex文件融合完成", f'[Local Message] 正在精细切分latex文件,这需要一段时间计算,文档越长耗时越长,请耐心等待。'))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
lps = LatexPaperSplit()
lps.read_title_and_abstract(merged_content)
res = lps.split(merged_content, project_folder, opts) # 消耗时间的函数
# <-------- 拆分过长的latex片段 ---------->
pfg = LatexPaperFileGroup()
for index, r in enumerate(res):
pfg.file_paths.append('segment-' + str(index))
pfg.file_contents.append(r)
pfg.run_file_split(max_token_limit=1024)
n_split = len(pfg.sp_file_contents)
# <-------- 根据需要切换prompt ---------->
inputs_array, sys_prompt_array = switch_prompt(pfg, mode)
inputs_show_user_array = [f"{mode} {f}" for f in pfg.sp_file_tag]
if os.path.exists(pj(project_folder,'temp.pkl')):
# <-------- 【仅调试】如果存在调试缓存文件,则跳过GPT请求环节 ---------->
pfg = objload(file=pj(project_folder,'temp.pkl'))
else:
# <-------- gpt 多线程请求 ---------->
history_array = [[""] for _ in range(n_split)]
# LATEX_EXPERIMENTAL, = get_conf('LATEX_EXPERIMENTAL')
# if LATEX_EXPERIMENTAL:
# paper_meta = f"The paper you processing is `{lps.title}`, a part of the abstraction is `{lps.abstract}`"
# paper_meta_max_len = 888
# history_array = [[ paper_meta[:paper_meta_max_len] + '...', "Understand, what should I do?"] for _ in range(n_split)]
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=history_array,
sys_prompt_array=sys_prompt_array,
# max_workers=5, # 并行任务数量限制, 最多同时执行5个, 其他的排队等待
scroller_max_len = 40
)
# <-------- 文本碎片重组为完整的tex片段 ---------->
pfg.sp_file_result = []
for i_say, gpt_say, orig_content in zip(gpt_response_collection[0::2], gpt_response_collection[1::2], pfg.sp_file_contents):
pfg.sp_file_result.append(gpt_say)
pfg.merge_result()
# <-------- 临时存储用于调试 ---------->
pfg.get_token_num = None
objdump(pfg, file=pj(project_folder,'temp.pkl'))
write_html(pfg.sp_file_contents, pfg.sp_file_result, chatbot=chatbot, project_folder=project_folder)
# <-------- 写出文件 ---------->
msg = f"当前大语言模型: {llm_kwargs['llm_model']},当前语言模型温度设定: {llm_kwargs['temperature']}"
final_tex = lps.merge_result(pfg.file_result, mode, msg)
objdump((lps, pfg.file_result, mode, msg), file=pj(project_folder,'merge_result.pkl'))
with open(project_folder + f'/merge_{mode}.tex', 'w', encoding='utf-8', errors='replace') as f:
if mode != 'translate_zh' or "binary" in final_tex: f.write(final_tex)
# <-------- 整理结果, 退出 ---------->
chatbot.append((f"完成了吗?", 'GPT结果已输出, 即将编译PDF'))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# <-------- 返回 ---------->
return project_folder + f'/merge_{mode}.tex'
def remove_buggy_lines(file_path, log_path, tex_name, tex_name_pure, n_fix, work_folder_modified, fixed_line=[]):
try:
with open(log_path, 'r', encoding='utf-8', errors='replace') as f:
log = f.read()
import re
buggy_lines = re.findall(tex_name+':([0-9]{1,5}):', log)
buggy_lines = [int(l) for l in buggy_lines]
buggy_lines = sorted(buggy_lines)
buggy_line = buggy_lines[0]-1
logger.warning("reversing tex line that has errors", buggy_line)
# 重组,逆转出错的段落
if buggy_line not in fixed_line:
fixed_line.append(buggy_line)
lps, file_result, mode, msg = objload(file=pj(work_folder_modified,'merge_result.pkl'))
final_tex = lps.merge_result(file_result, mode, msg, buggy_lines=fixed_line, buggy_line_surgery_n_lines=5*n_fix)
with open(pj(work_folder_modified, f"{tex_name_pure}_fix_{n_fix}.tex"), 'w', encoding='utf-8', errors='replace') as f:
f.write(final_tex)
return True, f"{tex_name_pure}_fix_{n_fix}", buggy_lines
except:
logger.error("Fatal error occurred, but we cannot identify error, please download zip, read latex log, and compile manually.")
return False, -1, [-1]
def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_folder_original, work_folder_modified, work_folder, mode='default'):
import os, time
n_fix = 1
fixed_line = []
max_try = 32
chatbot.append([f"正在编译PDF文档", f'编译已经开始。当前工作路径为{work_folder},如果程序停顿5分钟以上,请直接去该路径下取回翻译结果,或者重启之后再度尝试 ...']); yield from update_ui(chatbot=chatbot, history=history)
chatbot.append([f"正在编译PDF文档", '...']); yield from update_ui(chatbot=chatbot, history=history); time.sleep(1); chatbot[-1] = list(chatbot[-1]) # 刷新界面
yield from update_ui_lastest_msg('编译已经开始...', chatbot, history) # 刷新Gradio前端界面
while True:
import os
may_exist_bbl = pj(work_folder_modified, f'merge.bbl')
target_bbl = pj(work_folder_modified, f'{main_file_modified}.bbl')
if os.path.exists(may_exist_bbl) and not os.path.exists(target_bbl):
shutil.copyfile(may_exist_bbl, target_bbl)
# https://stackoverflow.com/questions/738755/dont-make-me-manually-abort-a-latex-compile-when-theres-an-error
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译原始PDF ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译转化后的PDF ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
if ok and os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf')):
# 只有第二步成功,才能继续下面的步骤
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译BibTex ...', chatbot, history) # 刷新Gradio前端界面
if not os.path.exists(pj(work_folder_original, f'{main_file_original}.bbl')):
ok = compile_latex_with_timeout(f'bibtex {main_file_original}.aux', work_folder_original)
if not os.path.exists(pj(work_folder_modified, f'{main_file_modified}.bbl')):
ok = compile_latex_with_timeout(f'bibtex {main_file_modified}.aux', work_folder_modified)
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译文献交叉引用 ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
if mode!='translate_zh':
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 使用latexdiff生成论文转化前后对比 ...', chatbot, history) # 刷新Gradio前端界面
logger.info( f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex')
ok = compile_latex_with_timeout(f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex', os.getcwd())
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 正在编译对比PDF ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
ok = compile_latex_with_timeout(f'bibtex merge_diff.aux', work_folder)
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
# <---------- 检查结果 ----------->
results_ = ""
original_pdf_success = os.path.exists(pj(work_folder_original, f'{main_file_original}.pdf'))
modified_pdf_success = os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf'))
diff_pdf_success = os.path.exists(pj(work_folder, f'merge_diff.pdf'))
results_ += f"原始PDF编译是否成功: {original_pdf_success};"
results_ += f"转化PDF编译是否成功: {modified_pdf_success};"
results_ += f"对比PDF编译是否成功: {diff_pdf_success};"
yield from update_ui_lastest_msg(f'{n_fix}编译结束:<br/>{results_}...', chatbot, history) # 刷新Gradio前端界面
if diff_pdf_success:
result_pdf = pj(work_folder_modified, f'merge_diff.pdf') # get pdf path
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
if modified_pdf_success:
yield from update_ui_lastest_msg(f'转化PDF编译已经成功, 正在尝试生成对比PDF, 请稍候 ...', chatbot, history) # 刷新Gradio前端界面
result_pdf = pj(work_folder_modified, f'{main_file_modified}.pdf') # get pdf path
origin_pdf = pj(work_folder_original, f'{main_file_original}.pdf') # get pdf path
if os.path.exists(pj(work_folder, '..', 'translation')):
shutil.copyfile(result_pdf, pj(work_folder, '..', 'translation', 'translate_zh.pdf'))
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
# 将两个PDF拼接
if original_pdf_success:
try:
from .latex_toolbox import merge_pdfs
concat_pdf = pj(work_folder_modified, f'comparison.pdf')
merge_pdfs(origin_pdf, result_pdf, concat_pdf)
if os.path.exists(pj(work_folder, '..', 'translation')):
shutil.copyfile(concat_pdf, pj(work_folder, '..', 'translation', 'comparison.pdf'))
promote_file_to_downloadzone(concat_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
except Exception as e:
logger.error(e)
pass
return True # 成功啦
else:
if n_fix>=max_try: break
n_fix += 1
can_retry, main_file_modified, buggy_lines = remove_buggy_lines(
file_path=pj(work_folder_modified, f'{main_file_modified}.tex'),
log_path=pj(work_folder_modified, f'{main_file_modified}.log'),
tex_name=f'{main_file_modified}.tex',
tex_name_pure=f'{main_file_modified}',
n_fix=n_fix,
work_folder_modified=work_folder_modified,
fixed_line=fixed_line
)
yield from update_ui_lastest_msg(f'由于最为关键的转化PDF编译失败, 将根据报错信息修正tex源文件并重试, 当前报错的latex代码处于第{buggy_lines}行 ...', chatbot, history) # 刷新Gradio前端界面
if not can_retry: break
return False # 失败啦
def write_html(sp_file_contents, sp_file_result, chatbot, project_folder):
# write html
try:
import shutil
from crazy_functions.pdf_fns.report_gen_html import construct_html
from toolbox import gen_time_str
ch = construct_html()
orig = ""
trans = ""
final = []
for c,r in zip(sp_file_contents, sp_file_result):
final.append(c)
final.append(r)
for i, k in enumerate(final):
if i%2==0:
orig = k
if i%2==1:
trans = k
ch.add_row(a=orig, b=trans)
create_report_file_name = f"{gen_time_str()}.trans.html"
res = ch.save_file(create_report_file_name)
shutil.copyfile(res, pj(project_folder, create_report_file_name))
promote_file_to_downloadzone(file=res, chatbot=chatbot)
except:
from toolbox import trimmed_format_exc
logger.error('writing html result failed:', trimmed_format_exc())
def upload_to_gptac_cloud_if_user_allow(chatbot, arxiv_id):
try:
# 如果用户允许,我们将arxiv论文PDF上传到GPTAC学术云
from toolbox import map_file_to_sha256
# 检查是否顺利,如果没有生成预期的文件,则跳过
is_result_good = False
for file_path in chatbot._cookies.get("files_to_promote", []):
if file_path.endswith('translate_zh.pdf'):
is_result_good = True
if not is_result_good:
return
# 上传文件
for file_path in chatbot._cookies.get("files_to_promote", []):
align_name = None
# normalized name
for name in ['translate_zh.pdf', 'comparison.pdf']:
if file_path.endswith(name): align_name = name
# if match any align name
if align_name:
logger.info(f'Uploading to GPTAC cloud as the user has set `allow_cloud_io`: {file_path}')
with open(file_path, 'rb') as f:
import requests
url = 'https://cloud-2.agent-matrix.com/arxiv_tf_paper_normal_upload'
files = {'file': (align_name, f, 'application/octet-stream')}
data = {
'arxiv_id': arxiv_id,
'file_hash': map_file_to_sha256(file_path),
'language': 'zh',
'trans_prompt': 'to_be_implemented',
'llm_model': 'to_be_implemented',
'llm_model_param': 'to_be_implemented',
}
resp = requests.post(url=url, files=files, data=data, timeout=30)
logger.info(f'Uploading terminate ({resp.status_code})`: {file_path}')
except:
# 如果上传失败,不会中断程序,因为这是次要功能
pass
def check_gptac_cloud(arxiv_id, chatbot):
import requests
success = False
downloaded = []
try:
for pdf_target in ['translate_zh.pdf', 'comparison.pdf']:
url = 'https://cloud-2.agent-matrix.com/arxiv_tf_paper_normal_exist'
data = {
'arxiv_id': arxiv_id,
'name': pdf_target,
}
resp = requests.post(url=url, data=data)
cache_hit_result = resp.text.strip('"')
if cache_hit_result.startswith("http"):
url = cache_hit_result
logger.info(f'Downloading from GPTAC cloud: {url}')
resp = requests.get(url=url, timeout=30)
target = os.path.join(get_log_folder(plugin_name='gptac_cloud'), gen_time_str(), pdf_target)
os.makedirs(os.path.dirname(target), exist_ok=True)
with open(target, 'wb') as f:
f.write(resp.content)
new_path = promote_file_to_downloadzone(target, chatbot=chatbot)
success = True
downloaded.append(new_path)
except:
pass
return success, downloaded

查看文件

@@ -0,0 +1,48 @@
import pickle
class SafeUnpickler(pickle.Unpickler):
def get_safe_classes(self):
from crazy_functions.latex_fns.latex_actions import LatexPaperFileGroup, LatexPaperSplit
from crazy_functions.latex_fns.latex_toolbox import LinkedListNode
from numpy.core.multiarray import scalar
from numpy import dtype
# 定义允许的安全类
safe_classes = {
# 在这里添加其他安全的类
'LatexPaperFileGroup': LatexPaperFileGroup,
'LatexPaperSplit': LatexPaperSplit,
'LinkedListNode': LinkedListNode,
'scalar': scalar,
'dtype': dtype,
}
return safe_classes
def find_class(self, module, name):
# 只允许特定的类进行反序列化
self.safe_classes = self.get_safe_classes()
match_class_name = None
for class_name in self.safe_classes.keys():
if (class_name in f'{module}.{name}'):
match_class_name = class_name
if match_class_name is not None:
return self.safe_classes[match_class_name]
# 如果尝试加载未授权的类,则抛出异常
raise pickle.UnpicklingError(f"Attempted to deserialize unauthorized class '{name}' from module '{module}'")
def objdump(obj, file="objdump.tmp"):
with open(file, "wb+") as f:
pickle.dump(obj, f)
return
def objload(file="objdump.tmp"):
import os
if not os.path.exists(file):
return
with open(file, "rb") as f:
unpickler = SafeUnpickler(f)
return unpickler.load()

查看文件

@@ -0,0 +1,906 @@
import os
import re
import shutil
import numpy as np
from loguru import logger
PRESERVE = 0
TRANSFORM = 1
pj = os.path.join
class LinkedListNode:
"""
Linked List Node
"""
def __init__(self, string, preserve=True) -> None:
self.string = string
self.preserve = preserve
self.next = None
self.range = None
# self.begin_line = 0
# self.begin_char = 0
def convert_to_linklist(text, mask):
root = LinkedListNode("", preserve=True)
current_node = root
for c, m, i in zip(text, mask, range(len(text))):
if (m == PRESERVE and current_node.preserve) or (
m == TRANSFORM and not current_node.preserve
):
# add
current_node.string += c
else:
current_node.next = LinkedListNode(c, preserve=(m == PRESERVE))
current_node = current_node.next
return root
def post_process(root):
# 修复括号
node = root
while True:
string = node.string
if node.preserve:
node = node.next
if node is None:
break
continue
def break_check(string):
str_stack = [""] # (lv, index)
for i, c in enumerate(string):
if c == "{":
str_stack.append("{")
elif c == "}":
if len(str_stack) == 1:
logger.warning("fixing brace error")
return i
str_stack.pop(-1)
else:
str_stack[-1] += c
return -1
bp = break_check(string)
if bp == -1:
pass
elif bp == 0:
node.string = string[:1]
q = LinkedListNode(string[1:], False)
q.next = node.next
node.next = q
else:
node.string = string[:bp]
q = LinkedListNode(string[bp:], False)
q.next = node.next
node.next = q
node = node.next
if node is None:
break
# 屏蔽空行和太短的句子
node = root
while True:
if len(node.string.strip("\n").strip("")) == 0:
node.preserve = True
if len(node.string.strip("\n").strip("")) < 42:
node.preserve = True
node = node.next
if node is None:
break
node = root
while True:
if node.next and node.preserve and node.next.preserve:
node.string += node.next.string
node.next = node.next.next
node = node.next
if node is None:
break
# 将前后断行符脱离
node = root
prev_node = None
while True:
if not node.preserve:
lstriped_ = node.string.lstrip().lstrip("\n")
if (
(prev_node is not None)
and (prev_node.preserve)
and (len(lstriped_) != len(node.string))
):
prev_node.string += node.string[: -len(lstriped_)]
node.string = lstriped_
rstriped_ = node.string.rstrip().rstrip("\n")
if (
(node.next is not None)
and (node.next.preserve)
and (len(rstriped_) != len(node.string))
):
node.next.string = node.string[len(rstriped_) :] + node.next.string
node.string = rstriped_
# =-=-=
prev_node = node
node = node.next
if node is None:
break
# 标注节点的行数范围
node = root
n_line = 0
expansion = 2
while True:
n_l = node.string.count("\n")
node.range = [n_line - expansion, n_line + n_l + expansion] # 失败时,扭转的范围
n_line = n_line + n_l
node = node.next
if node is None:
break
return root
"""
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Latex segmentation with a binary mask (PRESERVE=0, TRANSFORM=1)
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
"""
def set_forbidden_text(text, mask, pattern, flags=0):
"""
Add a preserve text area in this paper
e.g. with pattern = r"\\begin\{algorithm\}(.*?)\\end\{algorithm\}"
you can mask out (mask = PRESERVE so that text become untouchable for GPT)
everything between "\begin{equation}" and "\end{equation}"
"""
if isinstance(pattern, list):
pattern = "|".join(pattern)
pattern_compile = re.compile(pattern, flags)
for res in pattern_compile.finditer(text):
mask[res.span()[0] : res.span()[1]] = PRESERVE
return text, mask
def reverse_forbidden_text(text, mask, pattern, flags=0, forbid_wrapper=True):
"""
Move area out of preserve area (make text editable for GPT)
count the number of the braces so as to catch compelete text area.
e.g.
\begin{abstract} blablablablablabla. \end{abstract}
"""
if isinstance(pattern, list):
pattern = "|".join(pattern)
pattern_compile = re.compile(pattern, flags)
for res in pattern_compile.finditer(text):
if not forbid_wrapper:
mask[res.span()[0] : res.span()[1]] = TRANSFORM
else:
mask[res.regs[0][0] : res.regs[1][0]] = PRESERVE # '\\begin{abstract}'
mask[res.regs[1][0] : res.regs[1][1]] = TRANSFORM # abstract
mask[res.regs[1][1] : res.regs[0][1]] = PRESERVE # abstract
return text, mask
def set_forbidden_text_careful_brace(text, mask, pattern, flags=0):
"""
Add a preserve text area in this paper (text become untouchable for GPT).
count the number of the braces so as to catch compelete text area.
e.g.
\caption{blablablablabla\texbf{blablabla}blablabla.}
"""
pattern_compile = re.compile(pattern, flags)
for res in pattern_compile.finditer(text):
brace_level = -1
p = begin = end = res.regs[0][0]
for _ in range(1024 * 16):
if text[p] == "}" and brace_level == 0:
break
elif text[p] == "}":
brace_level -= 1
elif text[p] == "{":
brace_level += 1
p += 1
end = p + 1
mask[begin:end] = PRESERVE
return text, mask
def reverse_forbidden_text_careful_brace(
text, mask, pattern, flags=0, forbid_wrapper=True
):
"""
Move area out of preserve area (make text editable for GPT)
count the number of the braces so as to catch compelete text area.
e.g.
\caption{blablablablabla\texbf{blablabla}blablabla.}
"""
pattern_compile = re.compile(pattern, flags)
for res in pattern_compile.finditer(text):
brace_level = 0
p = begin = end = res.regs[1][0]
for _ in range(1024 * 16):
if text[p] == "}" and brace_level == 0:
break
elif text[p] == "}":
brace_level -= 1
elif text[p] == "{":
brace_level += 1
p += 1
end = p
mask[begin:end] = TRANSFORM
if forbid_wrapper:
mask[res.regs[0][0] : begin] = PRESERVE
mask[end : res.regs[0][1]] = PRESERVE
return text, mask
def set_forbidden_text_begin_end(text, mask, pattern, flags=0, limit_n_lines=42):
"""
Find all \begin{} ... \end{} text block that with less than limit_n_lines lines.
Add it to preserve area
"""
pattern_compile = re.compile(pattern, flags)
def search_with_line_limit(text, mask):
for res in pattern_compile.finditer(text):
cmd = res.group(1) # begin{what}
this = res.group(2) # content between begin and end
this_mask = mask[res.regs[2][0] : res.regs[2][1]]
white_list = [
"document",
"abstract",
"lemma",
"definition",
"sproof",
"em",
"emph",
"textit",
"textbf",
"itemize",
"enumerate",
]
if (cmd in white_list) or this.count(
"\n"
) >= limit_n_lines: # use a magical number 42
this, this_mask = search_with_line_limit(this, this_mask)
mask[res.regs[2][0] : res.regs[2][1]] = this_mask
else:
mask[res.regs[0][0] : res.regs[0][1]] = PRESERVE
return text, mask
return search_with_line_limit(text, mask)
"""
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Latex Merge File
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
"""
def find_main_tex_file(file_manifest, mode):
"""
在多Tex文档中,寻找主文件,必须包含documentclass,返回找到的第一个。
P.S. 但愿没人把latex模板放在里面传进来 (6.25 加入判定latex模板的代码)
"""
canidates = []
for texf in file_manifest:
if os.path.basename(texf).startswith("merge"):
continue
with open(texf, "r", encoding="utf8", errors="ignore") as f:
file_content = f.read()
if r"\documentclass" in file_content:
canidates.append(texf)
else:
continue
if len(canidates) == 0:
raise RuntimeError("无法找到一个主Tex文件包含documentclass关键字")
elif len(canidates) == 1:
return canidates[0]
else: # if len(canidates) >= 2 通过一些Latex模板中常见但通常不会出现在正文的单词,对不同latex源文件扣分,取评分最高者返回
canidates_score = []
# 给出一些判定模板文档的词作为扣分项
unexpected_words = [
"\\LaTeX",
"manuscript",
"Guidelines",
"font",
"citations",
"rejected",
"blind review",
"reviewers",
]
expected_words = ["\\input", "\\ref", "\\cite"]
for texf in canidates:
canidates_score.append(0)
with open(texf, "r", encoding="utf8", errors="ignore") as f:
file_content = f.read()
file_content = rm_comments(file_content)
for uw in unexpected_words:
if uw in file_content:
canidates_score[-1] -= 1
for uw in expected_words:
if uw in file_content:
canidates_score[-1] += 1
select = np.argmax(canidates_score) # 取评分最高者返回
return canidates[select]
def rm_comments(main_file):
new_file_remove_comment_lines = []
for l in main_file.splitlines():
# 删除整行的空注释
if l.lstrip().startswith("%"):
pass
else:
new_file_remove_comment_lines.append(l)
main_file = "\n".join(new_file_remove_comment_lines)
# main_file = re.sub(r"\\include{(.*?)}", r"\\input{\1}", main_file) # 将 \include 命令转换为 \input 命令
main_file = re.sub(r"(?<!\\)%.*", "", main_file) # 使用正则表达式查找半行注释, 并替换为空字符串
return main_file
def find_tex_file_ignore_case(fp):
dir_name = os.path.dirname(fp)
base_name = os.path.basename(fp)
# 如果输入的文件路径是正确的
if os.path.isfile(pj(dir_name, base_name)):
return pj(dir_name, base_name)
# 如果不正确,试着加上.tex后缀试试
if not base_name.endswith(".tex"):
base_name += ".tex"
if os.path.isfile(pj(dir_name, base_name)):
return pj(dir_name, base_name)
# 如果还找不到,解除大小写限制,再试一次
import glob
for f in glob.glob(dir_name + "/*.tex"):
base_name_s = os.path.basename(fp)
base_name_f = os.path.basename(f)
if base_name_s.lower() == base_name_f.lower():
return f
# 试着加上.tex后缀试试
if not base_name_s.endswith(".tex"):
base_name_s += ".tex"
if base_name_s.lower() == base_name_f.lower():
return f
return None
def merge_tex_files_(project_foler, main_file, mode):
"""
Merge Tex project recrusively
"""
main_file = rm_comments(main_file)
for s in reversed([q for q in re.finditer(r"\\input\{(.*?)\}", main_file, re.M)]):
f = s.group(1)
fp = os.path.join(project_foler, f)
fp_ = find_tex_file_ignore_case(fp)
if fp_:
try:
with open(fp_, "r", encoding="utf-8", errors="replace") as fx:
c = fx.read()
except:
c = f"\n\nWarning from GPT-Academic: LaTex source file is missing!\n\n"
else:
raise RuntimeError(f"找不到{fp},Tex源文件缺失")
c = merge_tex_files_(project_foler, c, mode)
main_file = main_file[: s.span()[0]] + c + main_file[s.span()[1] :]
return main_file
def find_title_and_abs(main_file):
def extract_abstract_1(text):
pattern = r"\\abstract\{(.*?)\}"
match = re.search(pattern, text, re.DOTALL)
if match:
return match.group(1)
else:
return None
def extract_abstract_2(text):
pattern = r"\\begin\{abstract\}(.*?)\\end\{abstract\}"
match = re.search(pattern, text, re.DOTALL)
if match:
return match.group(1)
else:
return None
def extract_title(string):
pattern = r"\\title\{(.*?)\}"
match = re.search(pattern, string, re.DOTALL)
if match:
return match.group(1)
else:
return None
abstract = extract_abstract_1(main_file)
if abstract is None:
abstract = extract_abstract_2(main_file)
title = extract_title(main_file)
return title, abstract
def merge_tex_files(project_foler, main_file, mode):
"""
Merge Tex project recrusively
P.S. 顺便把CTEX塞进去以支持中文
P.S. 顺便把Latex的注释去除
"""
main_file = merge_tex_files_(project_foler, main_file, mode)
main_file = rm_comments(main_file)
if mode == "translate_zh":
# find paper documentclass
pattern = re.compile(r"\\documentclass.*\n")
match = pattern.search(main_file)
assert match is not None, "Cannot find documentclass statement!"
position = match.end()
add_ctex = "\\usepackage{ctex}\n"
add_url = "\\usepackage{url}\n" if "{url}" not in main_file else ""
main_file = main_file[:position] + add_ctex + add_url + main_file[position:]
# fontset=windows
import platform
main_file = re.sub(
r"\\documentclass\[(.*?)\]{(.*?)}",
r"\\documentclass[\1,fontset=windows,UTF8]{\2}",
main_file,
)
main_file = re.sub(
r"\\documentclass{(.*?)}",
r"\\documentclass[fontset=windows,UTF8]{\1}",
main_file,
)
# find paper abstract
pattern_opt1 = re.compile(r"\\begin\{abstract\}.*\n")
pattern_opt2 = re.compile(r"\\abstract\{(.*?)\}", flags=re.DOTALL)
match_opt1 = pattern_opt1.search(main_file)
match_opt2 = pattern_opt2.search(main_file)
if (match_opt1 is None) and (match_opt2 is None):
# "Cannot find paper abstract section!"
main_file = insert_abstract(main_file)
match_opt1 = pattern_opt1.search(main_file)
match_opt2 = pattern_opt2.search(main_file)
assert (match_opt1 is not None) or (
match_opt2 is not None
), "Cannot find paper abstract section!"
return main_file
insert_missing_abs_str = r"""
\begin{abstract}
The GPT-Academic program cannot find abstract section in this paper.
\end{abstract}
"""
def insert_abstract(tex_content):
if "\\maketitle" in tex_content:
# find the position of "\maketitle"
find_index = tex_content.index("\\maketitle")
# find the nearest ending line
end_line_index = tex_content.find("\n", find_index)
# insert "abs_str" on the next line
modified_tex = (
tex_content[: end_line_index + 1]
+ "\n\n"
+ insert_missing_abs_str
+ "\n\n"
+ tex_content[end_line_index + 1 :]
)
return modified_tex
elif r"\begin{document}" in tex_content:
# find the position of "\maketitle"
find_index = tex_content.index(r"\begin{document}")
# find the nearest ending line
end_line_index = tex_content.find("\n", find_index)
# insert "abs_str" on the next line
modified_tex = (
tex_content[: end_line_index + 1]
+ "\n\n"
+ insert_missing_abs_str
+ "\n\n"
+ tex_content[end_line_index + 1 :]
)
return modified_tex
else:
return tex_content
"""
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Post process
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
"""
def mod_inbraket(match):
"""
为啥chatgpt会把cite里面的逗号换成中文逗号呀
"""
# get the matched string
cmd = match.group(1)
str_to_modify = match.group(2)
# modify the matched string
str_to_modify = str_to_modify.replace("", ":") # 前面是中文冒号,后面是英文冒号
str_to_modify = str_to_modify.replace("", ",") # 前面是中文逗号,后面是英文逗号
# str_to_modify = 'BOOM'
return "\\" + cmd + "{" + str_to_modify + "}"
def fix_content(final_tex, node_string):
"""
Fix common GPT errors to increase success rate
"""
final_tex = re.sub(r"(?<!\\)%", "\\%", final_tex)
final_tex = re.sub(r"\\([a-z]{2,10})\ \{", r"\\\1{", string=final_tex)
final_tex = re.sub(r"\\\ ([a-z]{2,10})\{", r"\\\1{", string=final_tex)
final_tex = re.sub(r"\\([a-z]{2,10})\{([^\}]*?)\}", mod_inbraket, string=final_tex)
if "Traceback" in final_tex and "[Local Message]" in final_tex:
final_tex = node_string # 出问题了,还原原文
if node_string.count("\\begin") != final_tex.count("\\begin"):
final_tex = node_string # 出问题了,还原原文
if node_string.count("\_") > 0 and node_string.count("\_") > final_tex.count("\_"):
# walk and replace any _ without \
final_tex = re.sub(r"(?<!\\)_", "\\_", final_tex)
def compute_brace_level(string):
# this function count the number of { and }
brace_level = 0
for c in string:
if c == "{":
brace_level += 1
elif c == "}":
brace_level -= 1
return brace_level
def join_most(tex_t, tex_o):
# this function join translated string and original string when something goes wrong
p_t = 0
p_o = 0
def find_next(string, chars, begin):
p = begin
while p < len(string):
if string[p] in chars:
return p, string[p]
p += 1
return None, None
while True:
res1, char = find_next(tex_o, ["{", "}"], p_o)
if res1 is None:
break
res2, char = find_next(tex_t, [char], p_t)
if res2 is None:
break
p_o = res1 + 1
p_t = res2 + 1
return tex_t[:p_t] + tex_o[p_o:]
if compute_brace_level(final_tex) != compute_brace_level(node_string):
# 出问题了,还原部分原文,保证括号正确
final_tex = join_most(final_tex, node_string)
return final_tex
def compile_latex_with_timeout(command, cwd, timeout=60):
import subprocess
process = subprocess.Popen(
command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=cwd
)
try:
stdout, stderr = process.communicate(timeout=timeout)
except subprocess.TimeoutExpired:
process.kill()
stdout, stderr = process.communicate()
logger.error("Process timed out (compile_latex_with_timeout)!")
return False
return True
def run_in_subprocess_wrapper_func(func, args, kwargs, return_dict, exception_dict):
import sys
try:
result = func(*args, **kwargs)
return_dict["result"] = result
except Exception as e:
exc_info = sys.exc_info()
exception_dict["exception"] = exc_info
def run_in_subprocess(func):
import multiprocessing
def wrapper(*args, **kwargs):
return_dict = multiprocessing.Manager().dict()
exception_dict = multiprocessing.Manager().dict()
process = multiprocessing.Process(
target=run_in_subprocess_wrapper_func,
args=(func, args, kwargs, return_dict, exception_dict),
)
process.start()
process.join()
process.close()
if "exception" in exception_dict:
# ooops, the subprocess ran into an exception
exc_info = exception_dict["exception"]
raise exc_info[1].with_traceback(exc_info[2])
if "result" in return_dict.keys():
# If the subprocess ran successfully, return the result
return return_dict["result"]
return wrapper
def _merge_pdfs(pdf1_path, pdf2_path, output_path):
try:
logger.info("Merging PDFs using _merge_pdfs_ng")
_merge_pdfs_ng(pdf1_path, pdf2_path, output_path)
except:
logger.info("Merging PDFs using _merge_pdfs_legacy")
_merge_pdfs_legacy(pdf1_path, pdf2_path, output_path)
def _merge_pdfs_ng(pdf1_path, pdf2_path, output_path):
import PyPDF2 # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放
from PyPDF2.generic import NameObject, TextStringObject, ArrayObject, FloatObject, NumberObject
Percent = 1
# raise RuntimeError('PyPDF2 has a serious memory leak problem, please use other tools to merge PDF files.')
# Open the first PDF file
with open(pdf1_path, "rb") as pdf1_file:
pdf1_reader = PyPDF2.PdfFileReader(pdf1_file)
# Open the second PDF file
with open(pdf2_path, "rb") as pdf2_file:
pdf2_reader = PyPDF2.PdfFileReader(pdf2_file)
# Create a new PDF file to store the merged pages
output_writer = PyPDF2.PdfFileWriter()
# Determine the number of pages in each PDF file
num_pages = max(pdf1_reader.numPages, pdf2_reader.numPages)
# Merge the pages from the two PDF files
for page_num in range(num_pages):
# Add the page from the first PDF file
if page_num < pdf1_reader.numPages:
page1 = pdf1_reader.getPage(page_num)
else:
page1 = PyPDF2.PageObject.createBlankPage(pdf1_reader)
# Add the page from the second PDF file
if page_num < pdf2_reader.numPages:
page2 = pdf2_reader.getPage(page_num)
else:
page2 = PyPDF2.PageObject.createBlankPage(pdf1_reader)
# Create a new empty page with double width
new_page = PyPDF2.PageObject.createBlankPage(
width=int(
int(page1.mediaBox.getWidth())
+ int(page2.mediaBox.getWidth()) * Percent
),
height=max(page1.mediaBox.getHeight(), page2.mediaBox.getHeight()),
)
new_page.mergeTranslatedPage(page1, 0, 0)
new_page.mergeTranslatedPage(
page2,
int(
int(page1.mediaBox.getWidth())
- int(page2.mediaBox.getWidth()) * (1 - Percent)
),
0,
)
if "/Annots" in new_page:
annotations = new_page["/Annots"]
for i, annot in enumerate(annotations):
annot_obj = annot.get_object()
# 检查注释类型是否是链接(/Link
if annot_obj.get("/Subtype") == "/Link":
# 检查是否为内部链接跳转(/GoTo或外部URI链接/URI
action = annot_obj.get("/A")
if action:
if "/S" in action and action["/S"] == "/GoTo":
# 内部链接:跳转到文档中的某个页面
dest = action.get("/D") # 目标页或目标位置
# if dest and annot.idnum in page2_annot_id:
# if dest in pdf2_reader.named_destinations:
if dest and page2.annotations:
if annot in page2.annotations:
# 获取原始文件中跳转信息,包括跳转页面
destination = pdf2_reader.named_destinations[
dest
]
page_number = (
pdf2_reader.get_destination_page_number(
destination
)
)
# 更新跳转信息,跳转到对应的页面和,指定坐标 (100, 150),缩放比例为 100%
# “/D”:[10,'/XYZ',100,100,0]
if destination.dest_array[1] == "/XYZ":
annot_obj["/A"].update(
{
NameObject("/D"): ArrayObject(
[
NumberObject(page_number),
destination.dest_array[1],
FloatObject(
destination.dest_array[
2
]
+ int(
page1.mediaBox.getWidth()
)
),
destination.dest_array[3],
destination.dest_array[4],
]
) # 确保键和值是 PdfObject
}
)
else:
annot_obj["/A"].update(
{
NameObject("/D"): ArrayObject(
[
NumberObject(page_number),
destination.dest_array[1],
]
) # 确保键和值是 PdfObject
}
)
rect = annot_obj.get("/Rect")
# 更新点击坐标
rect = ArrayObject(
[
FloatObject(
rect[0]
+ int(page1.mediaBox.getWidth())
),
rect[1],
FloatObject(
rect[2]
+ int(page1.mediaBox.getWidth())
),
rect[3],
]
)
annot_obj.update(
{
NameObject(
"/Rect"
): rect # 确保键和值是 PdfObject
}
)
# if dest and annot.idnum in page1_annot_id:
# if dest in pdf1_reader.named_destinations:
if dest and page1.annotations:
if annot in page1.annotations:
# 获取原始文件中跳转信息,包括跳转页面
destination = pdf1_reader.named_destinations[
dest
]
page_number = (
pdf1_reader.get_destination_page_number(
destination
)
)
# 更新跳转信息,跳转到对应的页面和,指定坐标 (100, 150),缩放比例为 100%
# “/D”:[10,'/XYZ',100,100,0]
if destination.dest_array[1] == "/XYZ":
annot_obj["/A"].update(
{
NameObject("/D"): ArrayObject(
[
NumberObject(page_number),
destination.dest_array[1],
FloatObject(
destination.dest_array[
2
]
),
destination.dest_array[3],
destination.dest_array[4],
]
) # 确保键和值是 PdfObject
}
)
else:
annot_obj["/A"].update(
{
NameObject("/D"): ArrayObject(
[
NumberObject(page_number),
destination.dest_array[1],
]
) # 确保键和值是 PdfObject
}
)
rect = annot_obj.get("/Rect")
rect = ArrayObject(
[
FloatObject(rect[0]),
rect[1],
FloatObject(rect[2]),
rect[3],
]
)
annot_obj.update(
{
NameObject(
"/Rect"
): rect # 确保键和值是 PdfObject
}
)
elif "/S" in action and action["/S"] == "/URI":
# 外部链接跳转到某个URI
uri = action.get("/URI")
output_writer.addPage(new_page)
# Save the merged PDF file
with open(output_path, "wb") as output_file:
output_writer.write(output_file)
def _merge_pdfs_legacy(pdf1_path, pdf2_path, output_path):
import PyPDF2 # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放
Percent = 0.95
# raise RuntimeError('PyPDF2 has a serious memory leak problem, please use other tools to merge PDF files.')
# Open the first PDF file
with open(pdf1_path, "rb") as pdf1_file:
pdf1_reader = PyPDF2.PdfFileReader(pdf1_file)
# Open the second PDF file
with open(pdf2_path, "rb") as pdf2_file:
pdf2_reader = PyPDF2.PdfFileReader(pdf2_file)
# Create a new PDF file to store the merged pages
output_writer = PyPDF2.PdfFileWriter()
# Determine the number of pages in each PDF file
num_pages = max(pdf1_reader.numPages, pdf2_reader.numPages)
# Merge the pages from the two PDF files
for page_num in range(num_pages):
# Add the page from the first PDF file
if page_num < pdf1_reader.numPages:
page1 = pdf1_reader.getPage(page_num)
else:
page1 = PyPDF2.PageObject.createBlankPage(pdf1_reader)
# Add the page from the second PDF file
if page_num < pdf2_reader.numPages:
page2 = pdf2_reader.getPage(page_num)
else:
page2 = PyPDF2.PageObject.createBlankPage(pdf1_reader)
# Create a new empty page with double width
new_page = PyPDF2.PageObject.createBlankPage(
width=int(
int(page1.mediaBox.getWidth())
+ int(page2.mediaBox.getWidth()) * Percent
),
height=max(page1.mediaBox.getHeight(), page2.mediaBox.getHeight()),
)
new_page.mergeTranslatedPage(page1, 0, 0)
new_page.mergeTranslatedPage(
page2,
int(
int(page1.mediaBox.getWidth())
- int(page2.mediaBox.getWidth()) * (1 - Percent)
),
0,
)
output_writer.addPage(new_page)
# Save the merged PDF file
with open(output_path, "wb") as output_file:
output_writer.write(output_file)
merge_pdfs = run_in_subprocess(_merge_pdfs) # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放

查看文件

@@ -0,0 +1,256 @@
import time, json, sys, struct
import numpy as np
from loguru import logger as logging
from scipy.io.wavfile import WAVE_FORMAT
def write_numpy_to_wave(filename, rate, data, add_header=False):
"""
Write a NumPy array as a WAV file.
"""
def _array_tofile(fid, data):
# ravel gives a c-contiguous buffer
fid.write(data.ravel().view('b').data)
if hasattr(filename, 'write'):
fid = filename
else:
fid = open(filename, 'wb')
fs = rate
try:
dkind = data.dtype.kind
if not (dkind == 'i' or dkind == 'f' or (dkind == 'u' and
data.dtype.itemsize == 1)):
raise ValueError("Unsupported data type '%s'" % data.dtype)
header_data = b''
header_data += b'RIFF'
header_data += b'\x00\x00\x00\x00'
header_data += b'WAVE'
# fmt chunk
header_data += b'fmt '
if dkind == 'f':
format_tag = WAVE_FORMAT.IEEE_FLOAT
else:
format_tag = WAVE_FORMAT.PCM
if data.ndim == 1:
channels = 1
else:
channels = data.shape[1]
bit_depth = data.dtype.itemsize * 8
bytes_per_second = fs*(bit_depth // 8)*channels
block_align = channels * (bit_depth // 8)
fmt_chunk_data = struct.pack('<HHIIHH', format_tag, channels, fs,
bytes_per_second, block_align, bit_depth)
if not (dkind == 'i' or dkind == 'u'):
# add cbSize field for non-PCM files
fmt_chunk_data += b'\x00\x00'
header_data += struct.pack('<I', len(fmt_chunk_data))
header_data += fmt_chunk_data
# fact chunk (non-PCM files)
if not (dkind == 'i' or dkind == 'u'):
header_data += b'fact'
header_data += struct.pack('<II', 4, data.shape[0])
# check data size (needs to be immediately before the data chunk)
if ((len(header_data)-4-4) + (4+4+data.nbytes)) > 0xFFFFFFFF:
raise ValueError("Data exceeds wave file size limit")
if add_header:
fid.write(header_data)
# data chunk
fid.write(b'data')
fid.write(struct.pack('<I', data.nbytes))
if data.dtype.byteorder == '>' or (data.dtype.byteorder == '=' and
sys.byteorder == 'big'):
data = data.byteswap()
_array_tofile(fid, data)
if add_header:
# Determine file size and place it in correct
# position at start of the file.
size = fid.tell()
fid.seek(4)
fid.write(struct.pack('<I', size-8))
finally:
if not hasattr(filename, 'write'):
fid.close()
else:
fid.seek(0)
def is_speaker_speaking(vad, data, sample_rate):
# Function to detect if the speaker is speaking
# The WebRTC VAD only accepts 16-bit mono PCM audio,
# sampled at 8000, 16000, 32000 or 48000 Hz.
# A frame must be either 10, 20, or 30 ms in duration:
frame_duration = 30
n_bit_each = int(sample_rate * frame_duration / 1000)*2 # x2 because audio is 16 bit (2 bytes)
res_list = []
for t in range(len(data)):
if t!=0 and t % n_bit_each == 0:
res_list.append(vad.is_speech(data[t-n_bit_each:t], sample_rate))
info = ''.join(['^' if r else '.' for r in res_list])
info = info[:10]
if any(res_list):
return True, info
else:
return False, info
class AliyunASR():
def test_on_sentence_begin(self, message, *args):
pass
def test_on_sentence_end(self, message, *args):
message = json.loads(message)
self.parsed_sentence = message['payload']['result']
self.event_on_entence_end.set()
def test_on_start(self, message, *args):
pass
def test_on_error(self, message, *args):
logging.error("on_error args=>{}".format(args))
pass
def test_on_close(self, *args):
self.aliyun_service_ok = False
pass
def test_on_result_chg(self, message, *args):
message = json.loads(message)
self.parsed_text = message['payload']['result']
self.event_on_result_chg.set()
def test_on_completed(self, message, *args):
pass
def audio_convertion_thread(self, uuid):
# 在一个异步线程中采集音频
import nls # pip install git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
import tempfile
from scipy import io
from toolbox import get_conf
from .audio_io import change_sample_rate
from .audio_io import RealtimeAudioDistribution
NEW_SAMPLERATE = 16000
rad = RealtimeAudioDistribution()
rad.clean_up()
temp_folder = tempfile.gettempdir()
TOKEN, APPKEY = get_conf('ALIYUN_TOKEN', 'ALIYUN_APPKEY')
if len(TOKEN) == 0:
TOKEN = self.get_token()
self.aliyun_service_ok = True
URL="wss://nls-gateway.aliyuncs.com/ws/v1"
sr = nls.NlsSpeechTranscriber(
url=URL,
token=TOKEN,
appkey=APPKEY,
on_sentence_begin=self.test_on_sentence_begin,
on_sentence_end=self.test_on_sentence_end,
on_start=self.test_on_start,
on_result_changed=self.test_on_result_chg,
on_completed=self.test_on_completed,
on_error=self.test_on_error,
on_close=self.test_on_close,
callback_args=[uuid.hex]
)
timeout_limit_second = 20
r = sr.start(aformat="pcm",
timeout=timeout_limit_second,
enable_intermediate_result=True,
enable_punctuation_prediction=True,
enable_inverse_text_normalization=True)
import webrtcvad
vad = webrtcvad.Vad()
vad.set_mode(1)
is_previous_frame_transmitted = False # 上一帧是否有人说话
previous_frame_data = None
echo_cnt = 0 # 在没有声音之后,继续向服务器发送n次音频数据
echo_cnt_max = 4 # 在没有声音之后,继续向服务器发送n次音频数据
keep_alive_last_send_time = time.time()
while not self.stop:
# time.sleep(self.capture_interval)
audio = rad.read(uuid.hex)
if audio is not None:
# convert to pcm file
temp_file = f'{temp_folder}/{uuid.hex}.pcm' #
dsdata = change_sample_rate(audio, rad.rate, NEW_SAMPLERATE) # 48000 --> 16000
write_numpy_to_wave(temp_file, NEW_SAMPLERATE, dsdata)
# read pcm binary
with open(temp_file, "rb") as f: data = f.read()
is_speaking, info = is_speaker_speaking(vad, data, NEW_SAMPLERATE)
if is_speaking or echo_cnt > 0:
# 如果话筒激活 / 如果处于回声收尾阶段
echo_cnt -= 1
if not is_previous_frame_transmitted: # 上一帧没有人声,但是我们把上一帧同样加上
if previous_frame_data is not None: data = previous_frame_data + data
if is_speaking:
echo_cnt = echo_cnt_max
slices = zip(*(iter(data),) * 640) # 640个字节为一组
for i in slices: sr.send_audio(bytes(i))
keep_alive_last_send_time = time.time()
is_previous_frame_transmitted = True
else:
is_previous_frame_transmitted = False
echo_cnt = 0
# 保持链接激活,即使没有声音,也根据时间间隔,发送一些音频片段给服务器
if time.time() - keep_alive_last_send_time > timeout_limit_second/2:
slices = zip(*(iter(data),) * 640) # 640个字节为一组
for i in slices: sr.send_audio(bytes(i))
keep_alive_last_send_time = time.time()
is_previous_frame_transmitted = True
self.audio_shape = info
else:
time.sleep(0.1)
if not self.aliyun_service_ok:
self.stop = True
self.stop_msg = 'Aliyun音频服务异常,请检查ALIYUN_TOKEN和ALIYUN_APPKEY是否过期。'
r = sr.stop()
def get_token(self):
from toolbox import get_conf
import json
from aliyunsdkcore.request import CommonRequest
from aliyunsdkcore.client import AcsClient
AccessKey_ID, AccessKey_secret = get_conf('ALIYUN_ACCESSKEY', 'ALIYUN_SECRET')
# 创建AcsClient实例
client = AcsClient(
AccessKey_ID,
AccessKey_secret,
"cn-shanghai"
)
# 创建request,并设置参数。
request = CommonRequest()
request.set_method('POST')
request.set_domain('nls-meta.cn-shanghai.aliyuncs.com')
request.set_version('2019-02-28')
request.set_action_name('CreateToken')
try:
response = client.do_action_with_exception(request)
logging.info(response)
jss = json.loads(response)
if 'Token' in jss and 'Id' in jss['Token']:
token = jss['Token']['Id']
expireTime = jss['Token']['ExpireTime']
logging.info("token = " + token)
logging.info("expireTime = " + str(expireTime))
except Exception as e:
logging.error(e)
return token

查看文件

@@ -0,0 +1,51 @@
import numpy as np
from scipy import interpolate
def Singleton(cls):
_instance = {}
def _singleton(*args, **kargs):
if cls not in _instance:
_instance[cls] = cls(*args, **kargs)
return _instance[cls]
return _singleton
@Singleton
class RealtimeAudioDistribution():
def __init__(self) -> None:
self.data = {}
self.max_len = 1024*1024
self.rate = 48000 # 只读,每秒采样数量
def clean_up(self):
self.data = {}
def feed(self, uuid, audio):
self.rate, audio_ = audio
# print('feed', len(audio_), audio_[-25:])
if uuid not in self.data:
self.data[uuid] = audio_
else:
new_arr = np.concatenate((self.data[uuid], audio_))
if len(new_arr) > self.max_len: new_arr = new_arr[-self.max_len:]
self.data[uuid] = new_arr
def read(self, uuid):
if uuid in self.data:
res = self.data.pop(uuid)
# print('\r read-', len(res), '-', max(res), end='', flush=True)
else:
res = None
return res
def change_sample_rate(audio, old_sr, new_sr):
duration = audio.shape[0] / old_sr
time_old = np.linspace(0, duration, audio.shape[0])
time_new = np.linspace(0, duration, int(audio.shape[0] * new_sr / old_sr))
interpolator = interpolate.interp1d(time_old, audio.T)
new_audio = interpolator(time_new).T
return new_audio.astype(np.int16)

查看文件

@@ -0,0 +1,39 @@
from toolbox import update_ui, get_conf, promote_file_to_downloadzone, update_ui_lastest_msg, generate_file_link
from shared_utils.docker_as_service_api import stream_daas
from shared_utils.docker_as_service_api import DockerServiceApiComModel
def download_video(video_id, only_audio, user_name, chatbot, history):
from toolbox import get_log_folder
chatbot.append([None, "Processing..."])
yield from update_ui(chatbot, history)
client_command = f'{video_id} --audio-only' if only_audio else video_id
server_url = get_conf('DAAS_SERVER_URL')
docker_service_api_com_model = DockerServiceApiComModel(client_command=client_command)
save_file_dir = get_log_folder(user_name, plugin_name='media_downloader')
for output_manifest in stream_daas(docker_service_api_com_model, server_url, save_file_dir):
status_buf = ""
status_buf += "DaaS message: \n\n"
status_buf += output_manifest['server_message'].replace('\n', '<br/>')
status_buf += "\n\n"
status_buf += "DaaS standard error: \n\n"
status_buf += output_manifest['server_std_err'].replace('\n', '<br/>')
status_buf += "\n\n"
status_buf += "DaaS standard output: \n\n"
status_buf += output_manifest['server_std_out'].replace('\n', '<br/>')
status_buf += "\n\n"
status_buf += "DaaS file attach: \n\n"
status_buf += str(output_manifest['server_file_attach'])
yield from update_ui_lastest_msg(status_buf, chatbot, history)
return output_manifest['server_file_attach']
def search_videos(keywords):
from toolbox import get_log_folder
client_command = keywords
server_url = get_conf('DAAS_SERVER_URL').replace('stream', 'search')
docker_service_api_com_model = DockerServiceApiComModel(client_command=client_command)
save_file_dir = get_log_folder("default_user", plugin_name='media_downloader')
for output_manifest in stream_daas(docker_service_api_com_model, server_url, save_file_dir):
return output_manifest['server_message']

查看文件

@@ -0,0 +1,93 @@
from pydantic import BaseModel, Field
from typing import List
from toolbox import update_ui_lastest_msg, disable_auto_promotion
from toolbox import CatchException, update_ui, get_conf, select_api_key, get_log_folder
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
import time
import pickle
def have_any_recent_upload_files(chatbot):
_5min = 5 * 60
if not chatbot: return False # chatbot is None
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
if not most_recent_uploaded: return False # most_recent_uploaded is None
if time.time() - most_recent_uploaded["time"] < _5min: return True # most_recent_uploaded is new
else: return False # most_recent_uploaded is too old
class GptAcademicState():
def __init__(self):
self.reset()
def reset(self):
pass
def dump_state(self, chatbot):
chatbot._cookies['plugin_state'] = pickle.dumps(self)
def set_state(self, chatbot, key, value):
setattr(self, key, value)
chatbot._cookies['plugin_state'] = pickle.dumps(self)
def get_state(chatbot, cls=None):
state = chatbot._cookies.get('plugin_state', None)
if state is not None: state = pickle.loads(state)
elif cls is not None: state = cls()
else: state = GptAcademicState()
state.chatbot = chatbot
return state
class GptAcademicGameBaseState():
"""
1. first init: __init__ ->
"""
def init_game(self, chatbot, lock_plugin):
self.plugin_name = None
self.callback_fn = None
self.delete_game = False
self.step_cnt = 0
def lock_plugin(self, chatbot):
if self.callback_fn is None:
raise ValueError("callback_fn is None")
chatbot._cookies['lock_plugin'] = self.callback_fn
self.dump_state(chatbot)
def get_plugin_name(self):
if self.plugin_name is None:
raise ValueError("plugin_name is None")
return self.plugin_name
def dump_state(self, chatbot):
chatbot._cookies[f'plugin_state/{self.get_plugin_name()}'] = pickle.dumps(self)
def set_state(self, chatbot, key, value):
setattr(self, key, value)
chatbot._cookies[f'plugin_state/{self.get_plugin_name()}'] = pickle.dumps(self)
@staticmethod
def sync_state(chatbot, llm_kwargs, cls, plugin_name, callback_fn, lock_plugin=True):
state = chatbot._cookies.get(f'plugin_state/{plugin_name}', None)
if state is not None:
state = pickle.loads(state)
else:
state = cls()
state.init_game(chatbot, lock_plugin)
state.plugin_name = plugin_name
state.llm_kwargs = llm_kwargs
state.chatbot = chatbot
state.callback_fn = callback_fn
return state
def continue_game(self, prompt, chatbot, history):
# 游戏主体
yield from self.step(prompt, chatbot, history)
self.step_cnt += 1
# 保存状态,收尾
self.dump_state(chatbot)
# 如果游戏结束,清理
if self.delete_game:
chatbot._cookies['lock_plugin'] = None
chatbot._cookies[f'plugin_state/{self.get_plugin_name()}'] = None
yield from update_ui(chatbot=chatbot, history=history)

查看文件

@@ -0,0 +1,126 @@
from crazy_functions.ipc_fns.mp import run_in_subprocess_with_timeout
from loguru import logger
def force_breakdown(txt, limit, get_token_fn):
""" 当无法用标点、空行分割时,我们用最暴力的方法切割
"""
for i in reversed(range(len(txt))):
if get_token_fn(txt[:i]) < limit:
return txt[:i], txt[i:]
return "Tiktoken未知错误", "Tiktoken未知错误"
def maintain_storage(remain_txt_to_cut, remain_txt_to_cut_storage):
""" 为了加速计算,我们采样一个特殊的手段。当 remain_txt_to_cut > `_max` 时, 我们把 _max 后的文字转存至 remain_txt_to_cut_storage
当 remain_txt_to_cut < `_min` 时,我们再把 remain_txt_to_cut_storage 中的部分文字取出
"""
_min = int(5e4)
_max = int(1e5)
# print(len(remain_txt_to_cut), len(remain_txt_to_cut_storage))
if len(remain_txt_to_cut) < _min and len(remain_txt_to_cut_storage) > 0:
remain_txt_to_cut = remain_txt_to_cut + remain_txt_to_cut_storage
remain_txt_to_cut_storage = ""
if len(remain_txt_to_cut) > _max:
remain_txt_to_cut_storage = remain_txt_to_cut[_max:] + remain_txt_to_cut_storage
remain_txt_to_cut = remain_txt_to_cut[:_max]
return remain_txt_to_cut, remain_txt_to_cut_storage
def cut(limit, get_token_fn, txt_tocut, must_break_at_empty_line, break_anyway=False):
""" 文本切分
"""
res = []
total_len = len(txt_tocut)
fin_len = 0
remain_txt_to_cut = txt_tocut
remain_txt_to_cut_storage = ""
# 为了加速计算,我们采样一个特殊的手段。当 remain_txt_to_cut > `_max` 时, 我们把 _max 后的文字转存至 remain_txt_to_cut_storage
remain_txt_to_cut, remain_txt_to_cut_storage = maintain_storage(remain_txt_to_cut, remain_txt_to_cut_storage)
while True:
if get_token_fn(remain_txt_to_cut) <= limit:
# 如果剩余文本的token数小于限制,那么就不用切了
res.append(remain_txt_to_cut); fin_len+=len(remain_txt_to_cut)
break
else:
# 如果剩余文本的token数大于限制,那么就切
lines = remain_txt_to_cut.split('\n')
# 估计一个切分点
estimated_line_cut = limit / get_token_fn(remain_txt_to_cut) * len(lines)
estimated_line_cut = int(estimated_line_cut)
# 开始查找合适切分点的偏移cnt
cnt = 0
for cnt in reversed(range(estimated_line_cut)):
if must_break_at_empty_line:
# 首先尝试用双空行(\n\n作为切分点
if lines[cnt] != "":
continue
prev = "\n".join(lines[:cnt])
post = "\n".join(lines[cnt:])
if get_token_fn(prev) < limit:
break
if cnt == 0:
# 如果没有找到合适的切分点
if break_anyway:
# 是否允许暴力切分
prev, post = force_breakdown(remain_txt_to_cut, limit, get_token_fn)
else:
# 不允许直接报错
raise RuntimeError(f"存在一行极长的文本!{remain_txt_to_cut}")
# 追加列表
res.append(prev); fin_len+=len(prev)
# 准备下一次迭代
remain_txt_to_cut = post
remain_txt_to_cut, remain_txt_to_cut_storage = maintain_storage(remain_txt_to_cut, remain_txt_to_cut_storage)
process = fin_len/total_len
logger.info(f'正在文本切分 {int(process*100)}%')
if len(remain_txt_to_cut.strip()) == 0:
break
return res
def breakdown_text_to_satisfy_token_limit_(txt, limit, llm_model="gpt-3.5-turbo"):
""" 使用多种方式尝试切分文本,以满足 token 限制
"""
from request_llms.bridge_all import model_info
enc = model_info[llm_model]['tokenizer']
def get_token_fn(txt): return len(enc.encode(txt, disallowed_special=()))
try:
# 第1次尝试,将双空行\n\n作为切分点
return cut(limit, get_token_fn, txt, must_break_at_empty_line=True)
except RuntimeError:
try:
# 第2次尝试,将单空行\n作为切分点
return cut(limit, get_token_fn, txt, must_break_at_empty_line=False)
except RuntimeError:
try:
# 第3次尝试,将英文句号.)作为切分点
res = cut(limit, get_token_fn, txt.replace('.', '\n'), must_break_at_empty_line=False) # 这个中文的句号是故意的,作为一个标识而存在
return [r.replace('\n', '.') for r in res]
except RuntimeError as e:
try:
# 第4次尝试,将中文句号作为切分点
res = cut(limit, get_token_fn, txt.replace('', '。。\n'), must_break_at_empty_line=False)
return [r.replace('。。\n', '') for r in res]
except RuntimeError as e:
# 第5次尝试,没办法了,随便切一下吧
return cut(limit, get_token_fn, txt, must_break_at_empty_line=False, break_anyway=True)
breakdown_text_to_satisfy_token_limit = run_in_subprocess_with_timeout(breakdown_text_to_satisfy_token_limit_, timeout=60)
if __name__ == '__main__':
from crazy_functions.crazy_utils import read_and_clean_pdf_text
file_content, page_one = read_and_clean_pdf_text("build/assets/at.pdf")
from request_llms.bridge_all import model_info
for i in range(5):
file_content += file_content
logger.info(len(file_content))
TOKEN_LIMIT_PER_FRAGMENT = 2500
res = breakdown_text_to_satisfy_token_limit(file_content, TOKEN_LIMIT_PER_FRAGMENT)

查看文件

@@ -0,0 +1,171 @@
from functools import lru_cache
from toolbox import gen_time_str
from toolbox import promote_file_to_downloadzone
from toolbox import write_history_to_file, promote_file_to_downloadzone
from toolbox import get_conf
from toolbox import ProxyNetworkActivate
from shared_utils.colorful import *
import requests
import random
import copy
import os
import math
class GROBID_OFFLINE_EXCEPTION(Exception): pass
def get_avail_grobid_url():
GROBID_URLS = get_conf('GROBID_URLS')
if len(GROBID_URLS) == 0: return None
try:
_grobid_url = random.choice(GROBID_URLS) # 随机负载均衡
if _grobid_url.endswith('/'): _grobid_url = _grobid_url.rstrip('/')
with ProxyNetworkActivate('Connect_Grobid'):
res = requests.get(_grobid_url+'/api/isalive')
if res.text=='true': return _grobid_url
else: return None
except:
return None
@lru_cache(maxsize=32)
def parse_pdf(pdf_path, grobid_url):
import scipdf # pip install scipdf_parser
if grobid_url.endswith('/'): grobid_url = grobid_url.rstrip('/')
try:
with ProxyNetworkActivate('Connect_Grobid'):
article_dict = scipdf.parse_pdf_to_dict(pdf_path, grobid_url=grobid_url)
except GROBID_OFFLINE_EXCEPTION:
raise GROBID_OFFLINE_EXCEPTION("GROBID服务不可用,请修改config中的GROBID_URL,可修改成本地GROBID服务。")
except:
raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
return article_dict
def produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files):
# -=-=-=-=-=-=-=-= 写出第1个文件翻译前后混合 -=-=-=-=-=-=-=-=
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=f"{gen_time_str()}translated_and_original.md", file_fullname=None)
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(res_path)+'.md', chatbot=chatbot)
generated_conclusion_files.append(res_path)
# -=-=-=-=-=-=-=-= 写出第2个文件仅翻译后的文本 -=-=-=-=-=-=-=-=
translated_res_array = []
# 记录当前的大章节标题:
last_section_name = ""
for index, value in enumerate(gpt_response_collection):
# 先挑选偶数序列号:
if index % 2 != 0:
# 先提取当前英文标题:
cur_section_name = gpt_response_collection[index-1].split('\n')[0].split(" Part")[0]
# 如果index是1的话,则直接使用first section name
if cur_section_name != last_section_name:
cur_value = cur_section_name + '\n'
last_section_name = copy.deepcopy(cur_section_name)
else:
cur_value = ""
# 再做一个小修改重新修改当前part的标题,默认用英文的
cur_value += value
translated_res_array.append(cur_value)
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + translated_res_array,
file_basename = f"{gen_time_str()}-translated_only.md",
file_fullname = None,
auto_caption = False)
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(res_path)+'.md', chatbot=chatbot)
generated_conclusion_files.append(res_path)
return res_path
def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG, plugin_kwargs={}):
from crazy_functions.pdf_fns.report_gen_html import construct_html
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
prompt = "以下是一篇学术论文的基本信息:\n"
# title
title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
# authors
authors = article_dict.get('authors', '无法获取 authors')[:100]; prompt += f'authors:{authors}\n\n'
# abstract
abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
# command
prompt += f"请将题目和摘要翻译为{DST_LANG}"
meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ]
# 单线,获取文章meta信息
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=prompt,
inputs_show_user=prompt,
llm_kwargs=llm_kwargs,
chatbot=chatbot, history=[],
sys_prompt="You are an academic paper reader。",
)
# 多线,翻译
inputs_array = []
inputs_show_user_array = []
# get_token_num
from request_llms.bridge_all import model_info
enc = model_info[llm_kwargs['llm_model']]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
def break_down(txt):
raw_token_num = get_token_num(txt)
if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT:
return [txt]
else:
# raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
# find a smooth token limit to achieve even seperation
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
token_limit_smooth = raw_token_num // count + count
return breakdown_text_to_satisfy_token_limit(txt, limit=token_limit_smooth, llm_model=llm_kwargs['llm_model'])
for section in article_dict.get('sections'):
if len(section['text']) == 0: continue
section_frags = break_down(section['text'])
for i, fragment in enumerate(section_frags):
heading = section['heading']
if len(section_frags) > 1: heading += f' Part-{i+1}'
inputs_array.append(
f"你需要翻译{heading}章节,内容如下: \n\n{fragment}"
)
inputs_show_user_array.append(
f"# {heading}\n\n{fragment}"
)
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[meta for _ in inputs_array],
sys_prompt_array=[
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" + plugin_kwargs.get("additional_prompt", "") for _ in inputs_array],
)
# -=-=-=-=-=-=-=-= 写出Markdown文件 -=-=-=-=-=-=-=-=
produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files)
# -=-=-=-=-=-=-=-= 写出HTML文件 -=-=-=-=-=-=-=-=
ch = construct_html()
orig = ""
trans = ""
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
for i,k in enumerate(gpt_response_collection_html):
if i%2==0:
gpt_response_collection_html[i] = inputs_show_user_array[i//2]
else:
# 先提取当前英文标题:
cur_section_name = gpt_response_collection[i-1].split('\n')[0].split(" Part")[0]
cur_value = cur_section_name + "\n" + gpt_response_collection_html[i]
gpt_response_collection_html[i] = cur_value
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""]
final.extend(gpt_response_collection_html)
for i, k in enumerate(final):
if i%2==0:
orig = k
if i%2==1:
trans = k
ch.add_row(a=orig, b=trans)
create_report_file_name = f"{os.path.basename(fp)}.trans.html"
html_file = ch.save_file(create_report_file_name)
generated_conclusion_files.append(html_file)
promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot)

查看文件

@@ -0,0 +1,26 @@
import os
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str, check_packages
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
from toolbox import write_history_to_file, promote_file_to_downloadzone, get_conf, extract_archive
from crazy_functions.pdf_fns.parse_pdf import parse_pdf, translate_pdf
def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url):
import copy, json
TOKEN_LIMIT_PER_FRAGMENT = 1024
generated_conclusion_files = []
generated_html_files = []
DST_LANG = "中文"
from crazy_functions.pdf_fns.report_gen_html import construct_html
for index, fp in enumerate(file_manifest):
chatbot.append(["当前进度:", f"正在连接GROBID服务,请稍候: {grobid_url}\n如果等待时间过长,请修改config中的GROBID_URL,可修改成本地GROBID服务。"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
article_dict = parse_pdf(fp, grobid_url)
grobid_json_res = os.path.join(get_log_folder(), gen_time_str() + "grobid.json")
with open(grobid_json_res, 'w+', encoding='utf8') as f:
f.write(json.dumps(article_dict, indent=4, ensure_ascii=False))
promote_file_to_downloadzone(grobid_json_res, chatbot=chatbot)
if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG, plugin_kwargs=plugin_kwargs)
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

查看文件

@@ -0,0 +1,111 @@
from toolbox import get_log_folder
from toolbox import update_ui, promote_file_to_downloadzone
from toolbox import write_history_to_file, promote_file_to_downloadzone
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from crazy_functions.crazy_utils import read_and_clean_pdf_text
from shared_utils.colorful import *
from loguru import logger
import os
def 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
"""
注意此函数已经弃用新函数位于crazy_functions/pdf_fns/parse_pdf.py
"""
import copy
TOKEN_LIMIT_PER_FRAGMENT = 1024
generated_conclusion_files = []
generated_html_files = []
from crazy_functions.pdf_fns.report_gen_html import construct_html
for index, fp in enumerate(file_manifest):
# 读取PDF文件
file_content, page_one = read_and_clean_pdf_text(fp)
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
# 递归地切割PDF文件
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=page_one, limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model'])
# 为了更好的效果,我们剥离Introduction之后的部分如果有
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
# 单线,获取文章meta信息
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取{paper_meta}",
inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。",
llm_kwargs=llm_kwargs,
chatbot=chatbot, history=[],
sys_prompt="Your job is to collect information from materials。",
)
# 多线,翻译
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=[
f"你需要翻译以下内容:\n{frag}" for frag in paper_fragments],
inputs_show_user_array=[f"\n---\n 原文: \n\n {frag.replace('#', '')} \n---\n 翻译:\n " for frag in paper_fragments],
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[[paper_meta] for _ in paper_fragments],
sys_prompt_array=[
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" + plugin_kwargs.get("additional_prompt", "")
for _ in paper_fragments],
# max_workers=5 # OpenAI所允许的最大并行过载
)
gpt_response_collection_md = copy.deepcopy(gpt_response_collection)
# 整理报告的格式
for i,k in enumerate(gpt_response_collection_md):
if i%2==0:
gpt_response_collection_md[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection_md)//2}] \n\n {paper_fragments[i//2].replace('#', '')} \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection_md)//2}]\n "
else:
gpt_response_collection_md[i] = gpt_response_collection_md[i]
final = ["一、论文概况\n\n---\n\n", paper_meta_info.replace('# ', '### ') + '\n\n---\n\n', "二、论文翻译", ""]
final.extend(gpt_response_collection_md)
create_report_file_name = f"{os.path.basename(fp)}.trans.md"
res = write_history_to_file(final, create_report_file_name)
promote_file_to_downloadzone(res, chatbot=chatbot)
# 更新UI
generated_conclusion_files.append(f'{get_log_folder()}/{create_report_file_name}')
chatbot.append((f"{fp}完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# write html
try:
ch = construct_html()
orig = ""
trans = ""
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
for i,k in enumerate(gpt_response_collection_html):
if i%2==0:
gpt_response_collection_html[i] = paper_fragments[i//2].replace('#', '')
else:
gpt_response_collection_html[i] = gpt_response_collection_html[i]
final = ["论文概况", paper_meta_info.replace('# ', '### '), "二、论文翻译", ""]
final.extend(gpt_response_collection_html)
for i, k in enumerate(final):
if i%2==0:
orig = k
if i%2==1:
trans = k
ch.add_row(a=orig, b=trans)
create_report_file_name = f"{os.path.basename(fp)}.trans.html"
generated_html_files.append(ch.save_file(create_report_file_name))
except:
from toolbox import trimmed_format_exc
logger.error('writing html result failed:', trimmed_format_exc())
# 准备文件的下载
for pdf_path in generated_conclusion_files:
# 重命名文件
rename_file = f'翻译-{os.path.basename(pdf_path)}'
promote_file_to_downloadzone(pdf_path, rename_file=rename_file, chatbot=chatbot)
for html_path in generated_html_files:
# 重命名文件
rename_file = f'翻译-{os.path.basename(html_path)}'
promote_file_to_downloadzone(html_path, rename_file=rename_file, chatbot=chatbot)
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

查看文件

@@ -0,0 +1,250 @@
from toolbox import get_log_folder, gen_time_str, get_conf
from toolbox import update_ui, promote_file_to_downloadzone
from toolbox import promote_file_to_downloadzone, extract_archive
from toolbox import generate_file_link, zip_folder
from crazy_functions.crazy_utils import get_files_from_everything
from shared_utils.colorful import *
from loguru import logger
import os
import time
def refresh_key(doc2x_api_key):
import requests, json
url = "https://api.doc2x.noedgeai.com/api/token/refresh"
res = requests.post(
url,
headers={"Authorization": "Bearer " + doc2x_api_key}
)
res_json = []
if res.status_code == 200:
decoded = res.content.decode("utf-8")
res_json = json.loads(decoded)
doc2x_api_key = res_json['data']['token']
else:
raise RuntimeError(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
return doc2x_api_key
def 解析PDF_DOC2X_转Latex(pdf_file_path):
zip_file_path, unzipped_folder = 解析PDF_DOC2X(pdf_file_path, format='tex')
return unzipped_folder
def 解析PDF_DOC2X(pdf_file_path, format='tex'):
"""
format: 'tex', 'md', 'docx'
"""
import requests, json, os
DOC2X_API_KEY = get_conf('DOC2X_API_KEY')
latex_dir = get_log_folder(plugin_name="pdf_ocr_latex")
markdown_dir = get_log_folder(plugin_name="pdf_ocr")
doc2x_api_key = DOC2X_API_KEY
# < ------ 第1步上传 ------ >
logger.info("Doc2x 第1步上传")
with open(pdf_file_path, 'rb') as file:
res = requests.post(
"https://v2.doc2x.noedgeai.com/api/v2/parse/pdf",
headers={"Authorization": "Bearer " + doc2x_api_key},
data=file
)
# res_json = []
if res.status_code == 200:
res_json = res.json()
else:
raise RuntimeError(f"Doc2x return an error: {res.json()}")
uuid = res_json['data']['uid']
# < ------ 第2步轮询等待 ------ >
logger.info("Doc2x 第2步轮询等待")
params = {'uid': uuid}
while True:
res = requests.get(
'https://v2.doc2x.noedgeai.com/api/v2/parse/status',
headers={"Authorization": "Bearer " + doc2x_api_key},
params=params
)
res_json = res.json()
if res_json['data']['status'] == "success":
break
elif res_json['data']['status'] == "processing":
time.sleep(3)
logger.info(f"Doc2x is processing at {res_json['data']['progress']}%")
elif res_json['data']['status'] == "failed":
raise RuntimeError(f"Doc2x return an error: {res_json}")
# < ------ 第3步提交转化 ------ >
logger.info("Doc2x 第3步提交转化")
data = {
"uid": uuid,
"to": format,
"formula_mode": "dollar",
"filename": "output"
}
res = requests.post(
'https://v2.doc2x.noedgeai.com/api/v2/convert/parse',
headers={"Authorization": "Bearer " + doc2x_api_key},
json=data
)
if res.status_code == 200:
res_json = res.json()
else:
raise RuntimeError(f"Doc2x return an error: {res.json()}")
# < ------ 第4步等待结果 ------ >
logger.info("Doc2x 第4步等待结果")
params = {'uid': uuid}
while True:
res = requests.get(
'https://v2.doc2x.noedgeai.com/api/v2/convert/parse/result',
headers={"Authorization": "Bearer " + doc2x_api_key},
params=params
)
res_json = res.json()
if res_json['data']['status'] == "success":
break
elif res_json['data']['status'] == "processing":
time.sleep(3)
logger.info(f"Doc2x still processing")
elif res_json['data']['status'] == "failed":
raise RuntimeError(f"Doc2x return an error: {res_json}")
# < ------ 第5步最后的处理 ------ >
logger.info("Doc2x 第5步最后的处理")
if format=='tex':
target_path = latex_dir
if format=='md':
target_path = markdown_dir
os.makedirs(target_path, exist_ok=True)
max_attempt = 3
# < ------ 下载 ------ >
for attempt in range(max_attempt):
try:
result_url = res_json['data']['url']
res = requests.get(result_url)
zip_path = os.path.join(target_path, gen_time_str() + '.zip')
unzip_path = os.path.join(target_path, gen_time_str())
if res.status_code == 200:
with open(zip_path, "wb") as f: f.write(res.content)
else:
raise RuntimeError(f"Doc2x return an error: {res.json()}")
except Exception as e:
if attempt < max_attempt - 1:
logger.error(f"Failed to download latex file, retrying... {e}")
time.sleep(3)
continue
else:
raise e
# < ------ 解压 ------ >
import zipfile
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(unzip_path)
return zip_path, unzip_path
def 解析PDF_DOC2X_单文件(fp, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, DOC2X_API_KEY, user_request):
def pdf2markdown(filepath):
chatbot.append((None, f"Doc2x 解析中"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
md_zip_path, unzipped_folder = 解析PDF_DOC2X(filepath, format='md')
promote_file_to_downloadzone(md_zip_path, chatbot=chatbot)
chatbot.append((None, f"完成解析 {md_zip_path} ..."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return md_zip_path
def deliver_to_markdown_plugin(md_zip_path, user_request):
from crazy_functions.Markdown_Translate import Markdown英译中
import shutil, re
time_tag = gen_time_str()
target_path_base = get_log_folder(chatbot.get_user())
file_origin_name = os.path.basename(md_zip_path)
this_file_path = os.path.join(target_path_base, file_origin_name)
os.makedirs(target_path_base, exist_ok=True)
shutil.copyfile(md_zip_path, this_file_path)
ex_folder = this_file_path + ".extract"
extract_archive(
file_path=this_file_path, dest_dir=ex_folder
)
# edit markdown files
success, file_manifest, project_folder = get_files_from_everything(ex_folder, type='.md')
for generated_fp in file_manifest:
# 修正一些公式问题
with open(generated_fp, 'r', encoding='utf8') as f:
content = f.read()
# 将公式中的\[ \]替换成$$
content = content.replace(r'\[', r'$$').replace(r'\]', r'$$')
# 将公式中的\( \)替换成$
content = content.replace(r'\(', r'$').replace(r'\)', r'$')
content = content.replace('```markdown', '\n').replace('```', '\n')
with open(generated_fp, 'w', encoding='utf8') as f:
f.write(content)
promote_file_to_downloadzone(generated_fp, chatbot=chatbot)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 生成在线预览html
file_name = '在线预览翻译(原文)' + gen_time_str() + '.html'
preview_fp = os.path.join(ex_folder, file_name)
from shared_utils.advanced_markdown_format import markdown_convertion_for_file
with open(generated_fp, "r", encoding="utf-8") as f:
md = f.read()
# # Markdown中使用不标准的表格,需要在表格前加上一个emoji,以便公式渲染
# md = re.sub(r'^<table>', r'.<table>', md, flags=re.MULTILINE)
html = markdown_convertion_for_file(md)
with open(preview_fp, "w", encoding="utf-8") as f: f.write(html)
chatbot.append([None, f"生成在线预览:{generate_file_link([preview_fp])}"])
promote_file_to_downloadzone(preview_fp, chatbot=chatbot)
chatbot.append((None, f"调用Markdown插件 {ex_folder} ..."))
plugin_kwargs['markdown_expected_output_dir'] = ex_folder
translated_f_name = 'translated_markdown.md'
generated_fp = plugin_kwargs['markdown_expected_output_path'] = os.path.join(ex_folder, translated_f_name)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
yield from Markdown英译中(ex_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
if os.path.exists(generated_fp):
# 修正一些公式问题
with open(generated_fp, 'r', encoding='utf8') as f: content = f.read()
content = content.replace('```markdown', '\n').replace('```', '\n')
# Markdown中使用不标准的表格,需要在表格前加上一个emoji,以便公式渲染
# content = re.sub(r'^<table>', r'.<table>', content, flags=re.MULTILINE)
with open(generated_fp, 'w', encoding='utf8') as f: f.write(content)
# 生成在线预览html
file_name = '在线预览翻译' + gen_time_str() + '.html'
preview_fp = os.path.join(ex_folder, file_name)
from shared_utils.advanced_markdown_format import markdown_convertion_for_file
with open(generated_fp, "r", encoding="utf-8") as f:
md = f.read()
html = markdown_convertion_for_file(md)
with open(preview_fp, "w", encoding="utf-8") as f: f.write(html)
promote_file_to_downloadzone(preview_fp, chatbot=chatbot)
# 生成包含图片的压缩包
dest_folder = get_log_folder(chatbot.get_user())
zip_name = '翻译后的带图文档.zip'
zip_folder(source_folder=ex_folder, dest_folder=dest_folder, zip_name=zip_name)
zip_fp = os.path.join(dest_folder, zip_name)
promote_file_to_downloadzone(zip_fp, chatbot=chatbot)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
md_zip_path = yield from pdf2markdown(fp)
yield from deliver_to_markdown_plugin(md_zip_path, user_request)
def 解析PDF_基于DOC2X(file_manifest, *args):
for index, fp in enumerate(file_manifest):
yield from 解析PDF_DOC2X_单文件(fp, *args)
return

查看文件

@@ -0,0 +1,85 @@
from crazy_functions.crazy_utils import read_and_clean_pdf_text, get_files_from_everything
import os
import re
def extract_text_from_files(txt, chatbot, history):
"""
查找pdf/md/word并获取文本内容并返回状态以及文本
输入参数 Args:
chatbot: chatbot inputs and outputs (用户界面对话窗口句柄,用于数据流可视化)
history (list): List of chat history (历史,对话历史列表)
输出 Returns:
文件是否存在(bool)
final_result(list):文本内容
page_one(list):第一页内容/摘要
file_manifest(list):文件路径
excption(string):需要用户手动处理的信息,如没出错则保持为空
"""
final_result = []
page_one = []
file_manifest = []
excption = ""
if txt == "":
final_result.append(txt)
return False, final_result, page_one, file_manifest, excption #如输入区内容不是文件则直接返回输入区内容
#查找输入区内容中的文件
file_pdf,pdf_manifest,folder_pdf = get_files_from_everything(txt, '.pdf')
file_md,md_manifest,folder_md = get_files_from_everything(txt, '.md')
file_word,word_manifest,folder_word = get_files_from_everything(txt, '.docx')
file_doc,doc_manifest,folder_doc = get_files_from_everything(txt, '.doc')
if file_doc:
excption = "word"
return False, final_result, page_one, file_manifest, excption
file_num = len(pdf_manifest) + len(md_manifest) + len(word_manifest)
if file_num == 0:
final_result.append(txt)
return False, final_result, page_one, file_manifest, excption #如输入区内容不是文件则直接返回输入区内容
if file_pdf:
try: # 尝试导入依赖,如果缺少依赖,则给出安装建议
import fitz
except:
excption = "pdf"
return False, final_result, page_one, file_manifest, excption
for index, fp in enumerate(pdf_manifest):
file_content, pdf_one = read_and_clean_pdf_text(fp) # 尝试按照章节切割PDF
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
pdf_one = str(pdf_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
final_result.append(file_content)
page_one.append(pdf_one)
file_manifest.append(os.path.relpath(fp, folder_pdf))
if file_md:
for index, fp in enumerate(md_manifest):
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
file_content = file_content.encode('utf-8', 'ignore').decode()
headers = re.findall(r'^#\s(.*)$', file_content, re.MULTILINE) #接下来提取md中的一级/二级标题作为摘要
if len(headers) > 0:
page_one.append("\n".join(headers)) #合并所有的标题,以换行符分割
else:
page_one.append("")
final_result.append(file_content)
file_manifest.append(os.path.relpath(fp, folder_md))
if file_word:
try: # 尝试导入依赖,如果缺少依赖,则给出安装建议
from docx import Document
except:
excption = "word_pip"
return False, final_result, page_one, file_manifest, excption
for index, fp in enumerate(word_manifest):
doc = Document(fp)
file_content = '\n'.join([p.text for p in doc.paragraphs])
file_content = file_content.encode('utf-8', 'ignore').decode()
page_one.append(file_content[:200])
final_result.append(file_content)
file_manifest.append(os.path.relpath(fp, folder_word))
return True, final_result, page_one, file_manifest, excption

查看文件

@@ -0,0 +1,58 @@
from toolbox import update_ui, get_conf, trimmed_format_exc, get_log_folder
import os
class construct_html():
def __init__(self) -> None:
self.html_string = ""
def add_row(self, a, b):
from toolbox import markdown_convertion
template = """
{
primary_col: {
header: String.raw`__PRIMARY_HEADER__`,
msg: String.raw`__PRIMARY_MSG__`,
},
secondary_rol: {
header: String.raw`__SECONDARY_HEADER__`,
msg: String.raw`__SECONDARY_MSG__`,
}
},
"""
def std(str):
str = str.replace(r'`',r'&#96;')
if str.endswith("\\"): str += ' '
if str.endswith("}"): str += ' '
if str.endswith("$"): str += ' '
return str
template_ = template
a_lines = a.split('\n')
b_lines = b.split('\n')
if len(a_lines) == 1 or len(a_lines[0]) > 50:
template_ = template_.replace("__PRIMARY_HEADER__", std(a[:20]))
template_ = template_.replace("__PRIMARY_MSG__", std(markdown_convertion(a)))
else:
template_ = template_.replace("__PRIMARY_HEADER__", std(a_lines[0]))
template_ = template_.replace("__PRIMARY_MSG__", std(markdown_convertion('\n'.join(a_lines[1:]))))
if len(b_lines) == 1 or len(b_lines[0]) > 50:
template_ = template_.replace("__SECONDARY_HEADER__", std(b[:20]))
template_ = template_.replace("__SECONDARY_MSG__", std(markdown_convertion(b)))
else:
template_ = template_.replace("__SECONDARY_HEADER__", std(b_lines[0]))
template_ = template_.replace("__SECONDARY_MSG__", std(markdown_convertion('\n'.join(b_lines[1:]))))
self.html_string += template_
def save_file(self, file_name):
from toolbox import get_log_folder
with open('crazy_functions/pdf_fns/report_template.html', 'r', encoding='utf8') as f:
html_template = f.read()
html_template = html_template.replace("__TF_ARR__", self.html_string)
with open(os.path.join(get_log_folder(), file_name), 'w', encoding='utf8') as f:
f.write(html_template.encode('utf-8', 'ignore').decode())
return os.path.join(get_log_folder(), file_name)

文件差异因一行或多行过长而隐藏

查看文件

@@ -0,0 +1,73 @@
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>GPT-Academic 翻译报告书</title>
<style>
.centered-a {
color: red;
text-align: center;
margin-bottom: 2%;
font-size: 1.5em;
}
.centered-b {
color: red;
text-align: center;
margin-top: 10%;
margin-bottom: 20%;
font-size: 1.5em;
}
.centered-c {
color: rgba(255, 0, 0, 0);
text-align: center;
margin-top: 2%;
margin-bottom: 20%;
font-size: 7em;
}
</style>
<script>
// Configure MathJax settings
MathJax = {
tex: {
inlineMath: [
['$', '$'],
['\(', '\)']
]
}
}
addEventListener('zero-md-rendered', () => {MathJax.typeset(); console.log('MathJax typeset!');})
</script>
<!-- Load MathJax library -->
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script>
<script
type="module"
src="https://cdn.jsdelivr.net/gh/zerodevx/zero-md@2/dist/zero-md.min.js"
></script>
</head>
<body>
<div class="test_temp1" style="width:10%; height: 500px; float:left;">
</div>
<div class="test_temp2" style="width:80%; height: 500px; float:left;">
<!-- Simply set the `src` attribute to your MD file and win -->
<div class="centered-a">
请按Ctrl+S保存此页面,否则该页面可能在几分钟后失效。
</div>
<zero-md src="translated_markdown.md" no-shadow>
</zero-md>
<div class="centered-b">
本报告由GPT-Academic开源项目生成,地址https://github.com/binary-husky/gpt_academic。
</div>
<div class="centered-c">
本报告由GPT-Academic开源项目生成,地址https://github.com/binary-husky/gpt_academic。
</div>
</div>
<div class="test_temp3" style="width:10%; height: 500px; float:left;">
</div>
</body>
</html>

查看文件

@@ -0,0 +1,52 @@
import os, json, base64
from pydantic import BaseModel, Field
from textwrap import dedent
from typing import List
class ArgProperty(BaseModel): # PLUGIN_ARG_MENU
title: str = Field(description="The title", default="")
description: str = Field(description="The description", default="")
default_value: str = Field(description="The default value", default="")
type: str = Field(description="The type", default="") # currently we support ['string', 'dropdown']
options: List[str] = Field(default=[], description="List of options available for the argument") # only used when type is 'dropdown'
class GptAcademicPluginTemplate():
def __init__(self):
# please note that `execute` method may run in different threads,
# thus you should not store any state in the plugin instance,
# which may be accessed by multiple threads
pass
def define_arg_selection_menu(self):
"""
An example as below:
```
def define_arg_selection_menu(self):
gui_definition = {
"main_input":
ArgProperty(title="main input", description="description", default_value="default_value", type="string").model_dump_json(),
"advanced_arg":
ArgProperty(title="advanced arguments", description="description", default_value="default_value", type="string").model_dump_json(),
"additional_arg_01":
ArgProperty(title="additional", description="description", default_value="default_value", type="string").model_dump_json(),
}
return gui_definition
```
"""
raise NotImplementedError("You need to implement this method in your plugin class")
def get_js_code_for_generating_menu(self, btnName):
define_arg_selection = self.define_arg_selection_menu()
if len(define_arg_selection.keys()) > 8:
raise ValueError("You can only have up to 8 arguments in the define_arg_selection")
# if "main_input" not in define_arg_selection:
# raise ValueError("You must have a 'main_input' in the define_arg_selection")
DEFINE_ARG_INPUT_INTERFACE = json.dumps(define_arg_selection)
return base64.b64encode(DEFINE_ARG_INPUT_INTERFACE.encode('utf-8')).decode('utf-8')
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
raise NotImplementedError("You need to implement this method in your plugin class")

查看文件

@@ -0,0 +1,87 @@
SearchOptimizerPrompt="""作为一个网页搜索助手,你的任务是结合历史记录,从不同角度,为“原问题”生成个不同版本的“检索词”,从而提高网页检索的精度。生成的问题要求指向对象清晰明确,并与“原问题语言相同”。例如:
历史记录:
"
Q: 对话背景。
A: 当前对话是关于 Nginx 的介绍和在Ubuntu上的使用等。
"
原问题: 怎么下载
检索词: ["Nginx 下载","Ubuntu Nginx","Ubuntu安装Nginx"]
----------------
历史记录:
"
Q: 对话背景。
A: 当前对话是关于 Nginx 的介绍和使用等。
Q: 报错 "no connection"
A: 报错"no connection"可能是因为……
"
原问题: 怎么解决
检索词: ["Nginx报错"no connection" 解决","Nginx'no connection'报错 原因","Nginx提示'no connection'"]
----------------
历史记录:
"
"
原问题: 你知道 Python 么?
检索词: ["Python","Python 使用教程。","Python 特点和优势"]
----------------
历史记录:
"
Q: 列出Java的三种特点?
A: 1. Java 是一种编译型语言。
2. Java 是一种面向对象的编程语言。
3. Java 是一种跨平台的编程语言。
"
原问题: 介绍下第2点。
检索词: ["Java 面向对象特点","Java 面向对象编程优势。","Java 面向对象编程"]
----------------
现在有历史记录:
"
{history}
"
有其原问题: {query}
直接给出最多{num}个检索词,必须以json形式给出,不得有多余字符:
"""
SearchAcademicOptimizerPrompt="""作为一个学术论文搜索助手,你的任务是结合历史记录,从不同角度,为“原问题”生成个不同版本的“检索词”,从而提高学术论文检索的精度。生成的问题要求指向对象清晰明确,并与“原问题语言相同”。例如:
历史记录:
"
Q: 对话背景。
A: 当前对话是关于深度学习的介绍和在图像识别中的应用等。
"
原问题: 怎么下载相关论文
检索词: ["深度学习 图像识别 论文下载","图像识别 深度学习 研究论文","深度学习 图像识别 论文资源","Deep Learning Image Recognition Paper Download","Image Recognition Deep Learning Research Paper"]
----------------
历史记录:
"
Q: 对话背景。
A: 当前对话是关于深度学习的介绍和应用等。
Q: 报错 "模型不收敛"
A: 报错"模型不收敛"可能是因为……
"
原问题: 怎么解决
检索词: ["深度学习 模型不收敛 解决方案 论文","深度学习 模型不收敛 原因 研究","深度学习 模型不收敛 论文","Deep Learning Model Convergence Issue Solution Paper","Deep Learning Model Convergence Problem Research"]
----------------
历史记录:
"
"
原问题: 你知道 GAN 么?
检索词: ["生成对抗网络 论文","GAN 使用教程 论文","GAN 特点和优势 研究","Generative Adversarial Network Paper","GAN Usage Tutorial Paper"]
----------------
历史记录:
"
Q: 列出机器学习的三种应用?
A: 1. 机器学习在图像识别中的应用。
2. 机器学习在自然语言处理中的应用。
3. 机器学习在推荐系统中的应用。
"
原问题: 介绍下第2点。
检索词: ["机器学习 自然语言处理 应用 论文","机器学习 自然语言处理 研究","机器学习 NLP 应用 论文","Machine Learning Natural Language Processing Application Paper","Machine Learning NLP Research"]
----------------
现在有历史记录:
"
{history}
"
有其原问题: {query}
直接给出最多{num}个检索词,必须以json形式给出,不得有多余字符:
"""

查看文件

@@ -0,0 +1,138 @@
import atexit
from loguru import logger
from typing import List
from llama_index.core import Document
from llama_index.core.ingestion import run_transformations
from llama_index.core.schema import TextNode
from crazy_functions.rag_fns.vector_store_index import GptacVectorStoreIndex
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
DEFAULT_QUERY_GENERATION_PROMPT = """\
Now, you have context information as below:
---------------------
{context_str}
---------------------
Answer the user request below (use the context information if necessary, otherwise you can ignore them):
---------------------
{query_str}
"""
QUESTION_ANSWER_RECORD = """\
{{
"type": "This is a previous conversation with the user",
"question": "{question}",
"answer": "{answer}",
}}
"""
class SaveLoad():
def does_checkpoint_exist(self, checkpoint_dir=None):
import os, glob
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
if not os.path.exists(checkpoint_dir): return False
if len(glob.glob(os.path.join(checkpoint_dir, "*.json"))) == 0: return False
return True
def save_to_checkpoint(self, checkpoint_dir=None):
logger.info(f'saving vector store to: {checkpoint_dir}')
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
self.vs_index.storage_context.persist(persist_dir=checkpoint_dir)
def load_from_checkpoint(self, checkpoint_dir=None):
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
if self.does_checkpoint_exist(checkpoint_dir=checkpoint_dir):
logger.info('loading checkpoint from disk')
from llama_index.core import StorageContext, load_index_from_storage
storage_context = StorageContext.from_defaults(persist_dir=checkpoint_dir)
self.vs_index = load_index_from_storage(storage_context, embed_model=self.embed_model)
return self.vs_index
else:
return self.create_new_vs()
def create_new_vs(self):
return GptacVectorStoreIndex.default_vector_store(embed_model=self.embed_model)
def purge(self):
import shutil
shutil.rmtree(self.checkpoint_dir, ignore_errors=True)
self.vs_index = self.create_new_vs(self.checkpoint_dir)
class LlamaIndexRagWorker(SaveLoad):
def __init__(self, user_name, llm_kwargs, auto_load_checkpoint=True, checkpoint_dir=None) -> None:
self.debug_mode = True
self.embed_model = OpenAiEmbeddingModel(llm_kwargs)
self.user_name = user_name
self.checkpoint_dir = checkpoint_dir
if auto_load_checkpoint:
self.vs_index = self.load_from_checkpoint(checkpoint_dir)
else:
self.vs_index = self.create_new_vs()
atexit.register(lambda: self.save_to_checkpoint(checkpoint_dir))
def assign_embedding_model(self):
pass
def inspect_vector_store(self):
# This function is for debugging
self.vs_index.storage_context.index_store.to_dict()
docstore = self.vs_index.storage_context.docstore.docs
vector_store_preview = "\n".join([ f"{_id} | {tn.text}" for _id, tn in docstore.items() ])
logger.info('\n++ --------inspect_vector_store begin--------')
logger.info(vector_store_preview)
logger.info('oo --------inspect_vector_store end--------')
return vector_store_preview
def add_documents_to_vector_store(self, document_list: List[Document]):
"""
Adds a list of Document objects to the vector store after processing.
"""
documents = document_list
documents_nodes = run_transformations(
documents, # type: ignore
self.vs_index._transformations,
show_progress=True
)
self.vs_index.insert_nodes(documents_nodes)
if self.debug_mode:
self.inspect_vector_store()
def add_text_to_vector_store(self, text: str):
node = TextNode(text=text)
documents_nodes = run_transformations(
[node],
self.vs_index._transformations,
show_progress=True
)
self.vs_index.insert_nodes(documents_nodes)
if self.debug_mode:
self.inspect_vector_store()
def remember_qa(self, question, answer):
formatted_str = QUESTION_ANSWER_RECORD.format(question=question, answer=answer)
self.add_text_to_vector_store(formatted_str)
def retrieve_from_store_with_query(self, query):
if self.debug_mode:
self.inspect_vector_store()
retriever = self.vs_index.as_retriever()
return retriever.retrieve(query)
def build_prompt(self, query, nodes):
context_str = self.generate_node_array_preview(nodes)
return DEFAULT_QUERY_GENERATION_PROMPT.format(context_str=context_str, query_str=query)
def generate_node_array_preview(self, nodes):
buf = "\n".join(([f"(No.{i+1} | score {n.score:.3f}): {n.text}" for i, n in enumerate(nodes)]))
if self.debug_mode: logger.info(buf)
return buf
def purge_vector_store(self):
"""
Purges the current vector store and creates a new one.
"""
self.purge()

查看文件

@@ -0,0 +1,108 @@
import llama_index
import os
import atexit
from typing import List
from loguru import logger
from llama_index.core import Document
from llama_index.core.schema import TextNode
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
from shared_utils.connect_void_terminal import get_chat_default_kwargs
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from crazy_functions.rag_fns.vector_store_index import GptacVectorStoreIndex
from llama_index.core.ingestion import run_transformations
from llama_index.core import PromptTemplate
from llama_index.core.response_synthesizers import TreeSummarize
from llama_index.core import StorageContext
from llama_index.vector_stores.milvus import MilvusVectorStore
from crazy_functions.rag_fns.llama_index_worker import LlamaIndexRagWorker
DEFAULT_QUERY_GENERATION_PROMPT = """\
Now, you have context information as below:
---------------------
{context_str}
---------------------
Answer the user request below (use the context information if necessary, otherwise you can ignore them):
---------------------
{query_str}
"""
QUESTION_ANSWER_RECORD = """\
{{
"type": "This is a previous conversation with the user",
"question": "{question}",
"answer": "{answer}",
}}
"""
class MilvusSaveLoad():
def does_checkpoint_exist(self, checkpoint_dir=None):
import os, glob
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
if not os.path.exists(checkpoint_dir): return False
if len(glob.glob(os.path.join(checkpoint_dir, "*.json"))) == 0: return False
return True
def save_to_checkpoint(self, checkpoint_dir=None):
logger.info(f'saving vector store to: {checkpoint_dir}')
# if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
# self.vs_index.storage_context.persist(persist_dir=checkpoint_dir)
def load_from_checkpoint(self, checkpoint_dir=None):
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
if self.does_checkpoint_exist(checkpoint_dir=checkpoint_dir):
logger.info('loading checkpoint from disk')
from llama_index.core import StorageContext, load_index_from_storage
storage_context = StorageContext.from_defaults(persist_dir=checkpoint_dir)
try:
self.vs_index = load_index_from_storage(storage_context, embed_model=self.embed_model)
return self.vs_index
except:
return self.create_new_vs(checkpoint_dir)
else:
return self.create_new_vs(checkpoint_dir)
def create_new_vs(self, checkpoint_dir, overwrite=False):
vector_store = MilvusVectorStore(
uri=os.path.join(checkpoint_dir, "milvus_demo.db"),
dim=self.embed_model.embedding_dimension(),
overwrite=overwrite
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = GptacVectorStoreIndex.default_vector_store(storage_context=storage_context, embed_model=self.embed_model)
return index
def purge(self):
self.vs_index = self.create_new_vs(self.checkpoint_dir, overwrite=True)
class MilvusRagWorker(MilvusSaveLoad, LlamaIndexRagWorker):
def __init__(self, user_name, llm_kwargs, auto_load_checkpoint=True, checkpoint_dir=None) -> None:
self.debug_mode = True
self.embed_model = OpenAiEmbeddingModel(llm_kwargs)
self.user_name = user_name
self.checkpoint_dir = checkpoint_dir
if auto_load_checkpoint:
self.vs_index = self.load_from_checkpoint(checkpoint_dir)
else:
self.vs_index = self.create_new_vs(checkpoint_dir)
atexit.register(lambda: self.save_to_checkpoint(checkpoint_dir))
def inspect_vector_store(self):
# This function is for debugging
try:
self.vs_index.storage_context.index_store.to_dict()
docstore = self.vs_index.storage_context.docstore.docs
if not docstore.items():
raise ValueError("cannot inspect")
vector_store_preview = "\n".join([ f"{_id} | {tn.text}" for _id, tn in docstore.items() ])
except:
dummy_retrieve_res: List["NodeWithScore"] = self.vs_index.as_retriever().retrieve(' ')
vector_store_preview = "\n".join(
[f"{node.id_} | {node.text}" for node in dummy_retrieve_res]
)
logger.info('\n++ --------inspect_vector_store begin--------')
logger.info(vector_store_preview)
logger.info('oo --------inspect_vector_store end--------')
return vector_store_preview

查看文件

@@ -0,0 +1,22 @@
import os
from llama_index.core import SimpleDirectoryReader
supports_format = ['.csv', '.docx', '.epub', '.ipynb', '.mbox', '.md', '.pdf', '.txt', '.ppt',
'.pptm', '.pptx']
# 修改后的 extract_text 函数,结合 SimpleDirectoryReader 和自定义解析逻辑
def extract_text(file_path):
_, ext = os.path.splitext(file_path.lower())
# 使用 SimpleDirectoryReader 处理它支持的文件格式
if ext in supports_format:
try:
reader = SimpleDirectoryReader(input_files=[file_path])
documents = reader.load_data()
if len(documents) > 0:
return documents[0].text
except Exception as e:
pass
return None

查看文件

@@ -0,0 +1,58 @@
from llama_index.core import VectorStoreIndex
from typing import Any, List, Optional
from llama_index.core.callbacks.base import CallbackManager
from llama_index.core.schema import TransformComponent
from llama_index.core.service_context import ServiceContext
from llama_index.core.settings import (
Settings,
callback_manager_from_settings_or_context,
transformations_from_settings_or_context,
)
from llama_index.core.storage.storage_context import StorageContext
class GptacVectorStoreIndex(VectorStoreIndex):
@classmethod
def default_vector_store(
cls,
storage_context: Optional[StorageContext] = None,
show_progress: bool = False,
callback_manager: Optional[CallbackManager] = None,
transformations: Optional[List[TransformComponent]] = None,
# deprecated
service_context: Optional[ServiceContext] = None,
embed_model = None,
**kwargs: Any,
):
"""Create index from documents.
Args:
documents (Optional[Sequence[BaseDocument]]): List of documents to
build the index from.
"""
storage_context = storage_context or StorageContext.from_defaults()
docstore = storage_context.docstore
callback_manager = (
callback_manager
or callback_manager_from_settings_or_context(Settings, service_context)
)
transformations = transformations or transformations_from_settings_or_context(
Settings, service_context
)
with callback_manager.as_trace("index_construction"):
return cls(
nodes=[],
storage_context=storage_context,
callback_manager=callback_manager,
show_progress=show_progress,
transformations=transformations,
service_context=service_context,
embed_model=embed_model,
**kwargs,
)

查看文件

@@ -1,87 +0,0 @@
#include "libipc/buffer.h"
#include "libipc/utility/pimpl.h"
#include <cstring>
namespace ipc {
bool operator==(buffer const & b1, buffer const & b2) {
return (b1.size() == b2.size()) && (std::memcmp(b1.data(), b2.data(), b1.size()) == 0);
}
bool operator!=(buffer const & b1, buffer const & b2) {
return !(b1 == b2);
}
class buffer::buffer_ : public pimpl<buffer_> {
public:
void* p_;
std::size_t s_;
void* a_;
buffer::destructor_t d_;
buffer_(void* p, std::size_t s, buffer::destructor_t d, void* a)
: p_(p), s_(s), a_(a), d_(d) {
}
~buffer_() {
if (d_ == nullptr) return;
d_((a_ == nullptr) ? p_ : a_, s_);
}
};
buffer::buffer()
: buffer(nullptr, 0, nullptr, nullptr) {
}
buffer::buffer(void* p, std::size_t s, destructor_t d)
: p_(p_->make(p, s, d, nullptr)) {
}
buffer::buffer(void* p, std::size_t s, destructor_t d, void* additional)
: p_(p_->make(p, s, d, additional)) {
}
buffer::buffer(void* p, std::size_t s)
: buffer(p, s, nullptr) {
}
buffer::buffer(char const & c)
: buffer(const_cast<char*>(&c), 1) {
}
buffer::buffer(buffer&& rhs)
: buffer() {
swap(rhs);
}
buffer::~buffer() {
p_->clear();
}
void buffer::swap(buffer& rhs) {
std::swap(p_, rhs.p_);
}
buffer& buffer::operator=(buffer rhs) {
swap(rhs);
return *this;
}
bool buffer::empty() const noexcept {
return (impl(p_)->p_ == nullptr) || (impl(p_)->s_ == 0);
}
void* buffer::data() noexcept {
return impl(p_)->p_;
}
void const * buffer::data() const noexcept {
return impl(p_)->p_;
}
std::size_t buffer::size() const noexcept {
return impl(p_)->s_;
}
} // namespace ipc

查看文件

@@ -1,701 +0,0 @@
#include <type_traits>
#include <cstring>
#include <algorithm>
#include <utility> // std::pair, std::move, std::forward
#include <atomic>
#include <type_traits> // aligned_storage_t
#include <string>
#include <vector>
#include <array>
#include <cassert>
#include "libipc/ipc.h"
#include "libipc/def.h"
#include "libipc/shm.h"
#include "libipc/pool_alloc.h"
#include "libipc/queue.h"
#include "libipc/policy.h"
#include "libipc/rw_lock.h"
#include "libipc/waiter.h"
#include "libipc/utility/log.h"
#include "libipc/utility/id_pool.h"
#include "libipc/utility/scope_guard.h"
#include "libipc/utility/utility.h"
#include "libipc/memory/resource.h"
#include "libipc/platform/detail.h"
#include "libipc/circ/elem_array.h"
namespace {
using msg_id_t = std::uint32_t;
using acc_t = std::atomic<msg_id_t>;
template <std::size_t DataSize, std::size_t AlignSize>
struct msg_t;
template <std::size_t AlignSize>
struct msg_t<0, AlignSize> {
msg_id_t cc_id_;
msg_id_t id_;
std::int32_t remain_;
bool storage_;
};
template <std::size_t DataSize, std::size_t AlignSize>
struct msg_t : msg_t<0, AlignSize> {
std::aligned_storage_t<DataSize, AlignSize> data_ {};
msg_t() = default;
msg_t(msg_id_t cc_id, msg_id_t id, std::int32_t remain, void const * data, std::size_t size)
: msg_t<0, AlignSize> {cc_id, id, remain, (data == nullptr) || (size == 0)} {
if (this->storage_) {
if (data != nullptr) {
// copy storage-id
*reinterpret_cast<ipc::storage_id_t*>(&data_) =
*static_cast<ipc::storage_id_t const *>(data);
}
}
else std::memcpy(&data_, data, size);
}
};
template <typename T>
ipc::buff_t make_cache(T& data, std::size_t size) {
auto ptr = ipc::mem::alloc(size);
std::memcpy(ptr, &data, (ipc::detail::min)(sizeof(data), size));
return { ptr, size, ipc::mem::free };
}
struct cache_t {
std::size_t fill_;
ipc::buff_t buff_;
cache_t(std::size_t f, ipc::buff_t && b)
: fill_(f), buff_(std::move(b))
{}
void append(void const * data, std::size_t size) {
if (fill_ >= buff_.size() || data == nullptr || size == 0) return;
auto new_fill = (ipc::detail::min)(fill_ + size, buff_.size());
std::memcpy(static_cast<ipc::byte_t*>(buff_.data()) + fill_, data, new_fill - fill_);
fill_ = new_fill;
}
};
auto cc_acc() {
static ipc::shm::handle acc_h("__CA_CONN__", sizeof(acc_t));
return static_cast<acc_t*>(acc_h.get());
}
IPC_CONSTEXPR_ std::size_t align_chunk_size(std::size_t size) noexcept {
return (((size - 1) / ipc::large_msg_align) + 1) * ipc::large_msg_align;
}
IPC_CONSTEXPR_ std::size_t calc_chunk_size(std::size_t size) noexcept {
return ipc::make_align(alignof(std::max_align_t), align_chunk_size(
ipc::make_align(alignof(std::max_align_t), sizeof(std::atomic<ipc::circ::cc_t>)) + size));
}
struct chunk_t {
std::atomic<ipc::circ::cc_t> &conns() noexcept {
return *reinterpret_cast<std::atomic<ipc::circ::cc_t> *>(this);
}
void *data() noexcept {
return reinterpret_cast<ipc::byte_t *>(this)
+ ipc::make_align(alignof(std::max_align_t), sizeof(std::atomic<ipc::circ::cc_t>));
}
};
struct chunk_info_t {
ipc::id_pool<> pool_;
ipc::spin_lock lock_;
IPC_CONSTEXPR_ static std::size_t chunks_mem_size(std::size_t chunk_size) noexcept {
return ipc::id_pool<>::max_count * chunk_size;
}
ipc::byte_t *chunks_mem() noexcept {
return reinterpret_cast<ipc::byte_t *>(this + 1);
}
chunk_t *at(std::size_t chunk_size, ipc::storage_id_t id) noexcept {
if (id < 0) return nullptr;
return reinterpret_cast<chunk_t *>(chunks_mem() + (chunk_size * id));
}
};
auto& chunk_storages() {
class chunk_handle_t {
ipc::shm::handle handle_;
public:
chunk_info_t *get_info(std::size_t chunk_size) {
if (!handle_.valid() &&
!handle_.acquire( ("__CHUNK_INFO__" + ipc::to_string(chunk_size)).c_str(),
sizeof(chunk_info_t) + chunk_info_t::chunks_mem_size(chunk_size) )) {
ipc::error("[chunk_storages] chunk_shm.id_info_.acquire failed: chunk_size = %zd\n", chunk_size);
return nullptr;
}
auto info = static_cast<chunk_info_t*>(handle_.get());
if (info == nullptr) {
ipc::error("[chunk_storages] chunk_shm.id_info_.get failed: chunk_size = %zd\n", chunk_size);
return nullptr;
}
return info;
}
};
static ipc::map<std::size_t, chunk_handle_t> chunk_hs;
return chunk_hs;
}
chunk_info_t *chunk_storage_info(std::size_t chunk_size) {
auto &storages = chunk_storages();
std::decay_t<decltype(storages)>::iterator it;
{
static ipc::rw_lock lock;
IPC_UNUSED_ std::shared_lock<ipc::rw_lock> guard {lock};
if ((it = storages.find(chunk_size)) == storages.end()) {
using chunk_handle_t = std::decay_t<decltype(storages)>::value_type::second_type;
guard.unlock();
IPC_UNUSED_ std::lock_guard<ipc::rw_lock> guard {lock};
it = storages.emplace(chunk_size, chunk_handle_t{}).first;
}
}
return it->second.get_info(chunk_size);
}
std::pair<ipc::storage_id_t, void*> acquire_storage(std::size_t size, ipc::circ::cc_t conns) {
std::size_t chunk_size = calc_chunk_size(size);
auto info = chunk_storage_info(chunk_size);
if (info == nullptr) return {};
info->lock_.lock();
info->pool_.prepare();
// got an unique id
auto id = info->pool_.acquire();
info->lock_.unlock();
auto chunk = info->at(chunk_size, id);
if (chunk == nullptr) return {};
chunk->conns().store(conns, std::memory_order_relaxed);
return { id, chunk->data() };
}
void *find_storage(ipc::storage_id_t id, std::size_t size) {
if (id < 0) {
ipc::error("[find_storage] id is invalid: id = %ld, size = %zd\n", (long)id, size);
return nullptr;
}
std::size_t chunk_size = calc_chunk_size(size);
auto info = chunk_storage_info(chunk_size);
if (info == nullptr) return nullptr;
return info->at(chunk_size, id)->data();
}
void release_storage(ipc::storage_id_t id, std::size_t size) {
if (id < 0) {
ipc::error("[release_storage] id is invalid: id = %ld, size = %zd\n", (long)id, size);
return;
}
std::size_t chunk_size = calc_chunk_size(size);
auto info = chunk_storage_info(chunk_size);
if (info == nullptr) return;
info->lock_.lock();
info->pool_.release(id);
info->lock_.unlock();
}
template <ipc::relat Rp, ipc::relat Rc>
bool sub_rc(ipc::wr<Rp, Rc, ipc::trans::unicast>,
std::atomic<ipc::circ::cc_t> &/*conns*/, ipc::circ::cc_t /*curr_conns*/, ipc::circ::cc_t /*conn_id*/) noexcept {
return true;
}
template <ipc::relat Rp, ipc::relat Rc>
bool sub_rc(ipc::wr<Rp, Rc, ipc::trans::broadcast>,
std::atomic<ipc::circ::cc_t> &conns, ipc::circ::cc_t curr_conns, ipc::circ::cc_t conn_id) noexcept {
auto last_conns = curr_conns & ~conn_id;
for (unsigned k = 0;;) {
auto chunk_conns = conns.load(std::memory_order_acquire);
if (conns.compare_exchange_weak(chunk_conns, chunk_conns & last_conns, std::memory_order_release)) {
return (chunk_conns & last_conns) == 0;
}
ipc::yield(k);
}
}
template <typename Flag>
void recycle_storage(ipc::storage_id_t id, std::size_t size, ipc::circ::cc_t curr_conns, ipc::circ::cc_t conn_id) {
if (id < 0) {
ipc::error("[recycle_storage] id is invalid: id = %ld, size = %zd\n", (long)id, size);
return;
}
std::size_t chunk_size = calc_chunk_size(size);
auto info = chunk_storage_info(chunk_size);
if (info == nullptr) return;
auto chunk = info->at(chunk_size, id);
if (chunk == nullptr) return;
if (!sub_rc(Flag{}, chunk->conns(), curr_conns, conn_id)) {
return;
}
info->lock_.lock();
info->pool_.release(id);
info->lock_.unlock();
}
template <typename MsgT>
bool clear_message(void* p) {
auto msg = static_cast<MsgT*>(p);
if (msg->storage_) {
std::int32_t r_size = static_cast<std::int32_t>(ipc::data_length) + msg->remain_;
if (r_size <= 0) {
ipc::error("[clear_message] invalid msg size: %d\n", (int)r_size);
return true;
}
release_storage(
*reinterpret_cast<ipc::storage_id_t*>(&msg->data_),
static_cast<std::size_t>(r_size));
}
return true;
}
struct conn_info_head {
ipc::string name_;
msg_id_t cc_id_; // connection-info id
ipc::detail::waiter cc_waiter_, wt_waiter_, rd_waiter_;
ipc::shm::handle acc_h_;
conn_info_head(char const * name)
: name_ {name}
, cc_id_ {(cc_acc() == nullptr) ? 0 : cc_acc()->fetch_add(1, std::memory_order_relaxed)}
, cc_waiter_{("__CC_CONN__" + name_).c_str()}
, wt_waiter_{("__WT_CONN__" + name_).c_str()}
, rd_waiter_{("__RD_CONN__" + name_).c_str()}
, acc_h_ {("__AC_CONN__" + name_).c_str(), sizeof(acc_t)} {
}
void quit_waiting() {
cc_waiter_.quit_waiting();
wt_waiter_.quit_waiting();
rd_waiter_.quit_waiting();
}
auto acc() {
return static_cast<acc_t*>(acc_h_.get());
}
auto& recv_cache() {
thread_local ipc::unordered_map<msg_id_t, cache_t> tls;
return tls;
}
};
template <typename W, typename F>
bool wait_for(W& waiter, F&& pred, std::uint64_t tm) {
if (tm == 0) return !pred();
for (unsigned k = 0; pred();) {
bool ret = true;
ipc::sleep(k, [&k, &ret, &waiter, &pred, tm] {
ret = waiter.wait_if(std::forward<F>(pred), tm);
k = 0;
});
if (!ret) return false; // timeout or fail
if (k == 0) break; // k has been reset
}
return true;
}
template <typename Policy,
std::size_t DataSize = ipc::data_length,
std::size_t AlignSize = (ipc::detail::min)(DataSize, alignof(std::max_align_t))>
struct queue_generator {
using queue_t = ipc::queue<msg_t<DataSize, AlignSize>, Policy>;
struct conn_info_t : conn_info_head {
queue_t que_;
conn_info_t(char const * name)
: conn_info_head{name}
, que_{("__QU_CONN__" +
ipc::to_string(DataSize) + "__" +
ipc::to_string(AlignSize) + "__" + name).c_str()} {
}
void disconnect_receiver() {
bool dis = que_.disconnect();
this->quit_waiting();
if (dis) {
this->recv_cache().clear();
}
}
};
};
template <typename Policy>
struct detail_impl {
using policy_t = Policy;
using flag_t = typename policy_t::flag_t;
using queue_t = typename queue_generator<policy_t>::queue_t;
using conn_info_t = typename queue_generator<policy_t>::conn_info_t;
constexpr static conn_info_t* info_of(ipc::handle_t h) noexcept {
return static_cast<conn_info_t*>(h);
}
constexpr static queue_t* queue_of(ipc::handle_t h) noexcept {
return (info_of(h) == nullptr) ? nullptr : &(info_of(h)->que_);
}
/* API implementations */
static void disconnect(ipc::handle_t h) {
auto que = queue_of(h);
if (que == nullptr) {
return;
}
que->shut_sending();
assert(info_of(h) != nullptr);
info_of(h)->disconnect_receiver();
}
static bool reconnect(ipc::handle_t * ph, bool start_to_recv) {
assert(ph != nullptr);
assert(*ph != nullptr);
auto que = queue_of(*ph);
if (que == nullptr) {
return false;
}
if (start_to_recv) {
que->shut_sending();
if (que->connect()) { // wouldn't connect twice
info_of(*ph)->cc_waiter_.broadcast();
return true;
}
return false;
}
// start_to_recv == false
if (que->connected()) {
info_of(*ph)->disconnect_receiver();
}
return que->ready_sending();
}
static bool connect(ipc::handle_t * ph, char const * name, bool start_to_recv) {
assert(ph != nullptr);
if (*ph == nullptr) {
*ph = ipc::mem::alloc<conn_info_t>(name);
}
return reconnect(ph, start_to_recv);
}
static void destroy(ipc::handle_t h) {
disconnect(h);
ipc::mem::free(info_of(h));
}
static std::size_t recv_count(ipc::handle_t h) noexcept {
auto que = queue_of(h);
if (que == nullptr) {
return ipc::invalid_value;
}
return que->conn_count();
}
static bool wait_for_recv(ipc::handle_t h, std::size_t r_count, std::uint64_t tm) {
auto que = queue_of(h);
if (que == nullptr) {
return false;
}
return wait_for(info_of(h)->cc_waiter_, [que, r_count] {
return que->conn_count() < r_count;
}, tm);
}
template <typename F>
static bool send(F&& gen_push, ipc::handle_t h, void const * data, std::size_t size) {
if (data == nullptr || size == 0) {
ipc::error("fail: send(%p, %zd)\n", data, size);
return false;
}
auto que = queue_of(h);
if (que == nullptr) {
ipc::error("fail: send, queue_of(h) == nullptr\n");
return false;
}
if (que->elems() == nullptr) {
ipc::error("fail: send, queue_of(h)->elems() == nullptr\n");
return false;
}
if (!que->ready_sending()) {
ipc::error("fail: send, que->ready_sending() == false\n");
return false;
}
ipc::circ::cc_t conns = que->elems()->connections(std::memory_order_relaxed);
if (conns == 0) {
ipc::error("fail: send, there is no receiver on this connection.\n");
return false;
}
// calc a new message id
auto acc = info_of(h)->acc();
if (acc == nullptr) {
ipc::error("fail: send, info_of(h)->acc() == nullptr\n");
return false;
}
auto msg_id = acc->fetch_add(1, std::memory_order_relaxed);
auto try_push = std::forward<F>(gen_push)(info_of(h), que, msg_id);
if (size > ipc::large_msg_limit) {
auto dat = acquire_storage(size, conns);
void * buf = dat.second;
if (buf != nullptr) {
std::memcpy(buf, data, size);
return try_push(static_cast<std::int32_t>(size) -
static_cast<std::int32_t>(ipc::data_length), &(dat.first), 0);
}
// try using message fragment
//ipc::log("fail: shm::handle for big message. msg_id: %zd, size: %zd\n", msg_id, size);
}
// push message fragment
std::int32_t offset = 0;
for (std::int32_t i = 0; i < static_cast<std::int32_t>(size / ipc::data_length); ++i, offset += ipc::data_length) {
if (!try_push(static_cast<std::int32_t>(size) - offset - static_cast<std::int32_t>(ipc::data_length),
static_cast<ipc::byte_t const *>(data) + offset, ipc::data_length)) {
return false;
}
}
// if remain > 0, this is the last message fragment
std::int32_t remain = static_cast<std::int32_t>(size) - offset;
if (remain > 0) {
if (!try_push(remain - static_cast<std::int32_t>(ipc::data_length),
static_cast<ipc::byte_t const *>(data) + offset,
static_cast<std::size_t>(remain))) {
return false;
}
}
return true;
}
static bool send(ipc::handle_t h, void const * data, std::size_t size, std::uint64_t tm) {
return send([tm](auto info, auto que, auto msg_id) {
return [tm, info, que, msg_id](std::int32_t remain, void const * data, std::size_t size) {
if (!wait_for(info->wt_waiter_, [&] {
return !que->push(
[](void*) { return true; },
info->cc_id_, msg_id, remain, data, size);
}, tm)) {
ipc::log("force_push: msg_id = %zd, remain = %d, size = %zd\n", msg_id, remain, size);
if (!que->force_push(
clear_message<typename queue_t::value_t>,
info->cc_id_, msg_id, remain, data, size)) {
return false;
}
}
info->rd_waiter_.broadcast();
return true;
};
}, h, data, size);
}
static bool try_send(ipc::handle_t h, void const * data, std::size_t size, std::uint64_t tm) {
return send([tm](auto info, auto que, auto msg_id) {
return [tm, info, que, msg_id](std::int32_t remain, void const * data, std::size_t size) {
if (!wait_for(info->wt_waiter_, [&] {
return !que->push(
[](void*) { return true; },
info->cc_id_, msg_id, remain, data, size);
}, tm)) {
return false;
}
info->rd_waiter_.broadcast();
return true;
};
}, h, data, size);
}
static ipc::buff_t recv(ipc::handle_t h, std::uint64_t tm) {
auto que = queue_of(h);
if (que == nullptr) {
ipc::error("fail: recv, queue_of(h) == nullptr\n");
return {};
}
if (!que->connected()) {
// hasn't connected yet, just return.
return {};
}
auto& rc = info_of(h)->recv_cache();
for (;;) {
// pop a new message
typename queue_t::value_t msg;
if (!wait_for(info_of(h)->rd_waiter_, [que, &msg] {
return !que->pop(msg);
}, tm)) {
// pop failed, just return.
return {};
}
info_of(h)->wt_waiter_.broadcast();
if ((info_of(h)->acc() != nullptr) && (msg.cc_id_ == info_of(h)->cc_id_)) {
continue; // ignore message to self
}
// msg.remain_ may minus & abs(msg.remain_) < data_length
std::int32_t r_size = static_cast<std::int32_t>(ipc::data_length) + msg.remain_;
if (r_size <= 0) {
ipc::error("fail: recv, r_size = %d\n", (int)r_size);
return {};
}
std::size_t msg_size = static_cast<std::size_t>(r_size);
// large message
if (msg.storage_) {
ipc::storage_id_t buf_id = *reinterpret_cast<ipc::storage_id_t*>(&msg.data_);
void* buf = find_storage(buf_id, msg_size);
if (buf != nullptr) {
struct recycle_t {
ipc::storage_id_t storage_id;
ipc::circ::cc_t curr_conns;
ipc::circ::cc_t conn_id;
} *r_info = ipc::mem::alloc<recycle_t>(recycle_t{
buf_id, que->elems()->connections(std::memory_order_relaxed), que->connected_id()
});
if (r_info == nullptr) {
ipc::log("fail: ipc::mem::alloc<recycle_t>.\n");
return ipc::buff_t{buf, msg_size}; // no recycle
} else {
return ipc::buff_t{buf, msg_size, [](void* p_info, std::size_t size) {
auto r_info = static_cast<recycle_t *>(p_info);
IPC_UNUSED_ auto finally = ipc::guard([r_info] {
ipc::mem::free(r_info);
});
recycle_storage<flag_t>(r_info->storage_id, size, r_info->curr_conns, r_info->conn_id);
}, r_info};
}
} else {
ipc::log("fail: shm::handle for large message. msg_id: %zd, buf_id: %zd, size: %zd\n", msg.id_, buf_id, msg_size);
continue;
}
}
// find cache with msg.id_
auto cac_it = rc.find(msg.id_);
if (cac_it == rc.end()) {
if (msg_size <= ipc::data_length) {
return make_cache(msg.data_, msg_size);
}
// gc
if (rc.size() > 1024) {
std::vector<msg_id_t> need_del;
for (auto const & pair : rc) {
auto cmp = std::minmax(msg.id_, pair.first);
if (cmp.second - cmp.first > 8192) {
need_del.push_back(pair.first);
}
}
for (auto id : need_del) rc.erase(id);
}
// cache the first message fragment
rc.emplace(msg.id_, cache_t { ipc::data_length, make_cache(msg.data_, msg_size) });
}
// has cached before this message
else {
auto& cac = cac_it->second;
// this is the last message fragment
if (msg.remain_ <= 0) {
cac.append(&(msg.data_), msg_size);
// finish this message, erase it from cache
auto buff = std::move(cac.buff_);
rc.erase(cac_it);
return buff;
}
// there are remain datas after this message
cac.append(&(msg.data_), ipc::data_length);
}
}
}
static ipc::buff_t try_recv(ipc::handle_t h) {
return recv(h, 0);
}
}; // detail_impl<Policy>
template <typename Flag>
using policy_t = ipc::policy::choose<ipc::circ::elem_array, Flag>;
} // internal-linkage
namespace ipc {
template <typename Flag>
ipc::handle_t chan_impl<Flag>::inited() {
ipc::detail::waiter::init();
return nullptr;
}
template <typename Flag>
bool chan_impl<Flag>::connect(ipc::handle_t * ph, char const * name, unsigned mode) {
return detail_impl<policy_t<Flag>>::connect(ph, name, mode & receiver);
}
template <typename Flag>
bool chan_impl<Flag>::reconnect(ipc::handle_t * ph, unsigned mode) {
return detail_impl<policy_t<Flag>>::reconnect(ph, mode & receiver);
}
template <typename Flag>
void chan_impl<Flag>::disconnect(ipc::handle_t h) {
detail_impl<policy_t<Flag>>::disconnect(h);
}
template <typename Flag>
void chan_impl<Flag>::destroy(ipc::handle_t h) {
detail_impl<policy_t<Flag>>::destroy(h);
}
template <typename Flag>
char const * chan_impl<Flag>::name(ipc::handle_t h) {
auto info = detail_impl<policy_t<Flag>>::info_of(h);
return (info == nullptr) ? nullptr : info->name_.c_str();
}
template <typename Flag>
std::size_t chan_impl<Flag>::recv_count(ipc::handle_t h) {
return detail_impl<policy_t<Flag>>::recv_count(h);
}
template <typename Flag>
bool chan_impl<Flag>::wait_for_recv(ipc::handle_t h, std::size_t r_count, std::uint64_t tm) {
return detail_impl<policy_t<Flag>>::wait_for_recv(h, r_count, tm);
}
template <typename Flag>
bool chan_impl<Flag>::send(ipc::handle_t h, void const * data, std::size_t size, std::uint64_t tm) {
return detail_impl<policy_t<Flag>>::send(h, data, size, tm);
}
template <typename Flag>
buff_t chan_impl<Flag>::recv(ipc::handle_t h, std::uint64_t tm) {
return detail_impl<policy_t<Flag>>::recv(h, tm);
}
template <typename Flag>
bool chan_impl<Flag>::try_send(ipc::handle_t h, void const * data, std::size_t size, std::uint64_t tm) {
return detail_impl<policy_t<Flag>>::try_send(h, data, size, tm);
}
template <typename Flag>
buff_t chan_impl<Flag>::try_recv(ipc::handle_t h) {
return detail_impl<policy_t<Flag>>::try_recv(h);
}
template struct chan_impl<ipc::wr<relat::single, relat::single, trans::unicast >>;
// template struct chan_impl<ipc::wr<relat::single, relat::multi , trans::unicast >>; // TBD
// template struct chan_impl<ipc::wr<relat::multi , relat::multi , trans::unicast >>; // TBD
template struct chan_impl<ipc::wr<relat::single, relat::multi , trans::broadcast>>;
template struct chan_impl<ipc::wr<relat::multi , relat::multi , trans::broadcast>>;
} // namespace ipc

查看文件

@@ -1,25 +0,0 @@
#pragma once
#include <type_traits>
#include "libipc/def.h"
#include "libipc/prod_cons.h"
#include "libipc/circ/elem_array.h"
namespace ipc {
namespace policy {
template <template <typename, std::size_t...> class Elems, typename Flag>
struct choose;
template <typename Flag>
struct choose<circ::elem_array, Flag> {
using flag_t = Flag;
template <std::size_t DataSize, std::size_t AlignSize>
using elems_t = circ::elem_array<ipc::prod_cons_impl<flag_t>, DataSize, AlignSize>;
};
} // namespace policy
} // namespace ipc

查看文件

@@ -1,17 +0,0 @@
#include "libipc/pool_alloc.h"
#include "libipc/memory/resource.h"
namespace ipc {
namespace mem {
void* pool_alloc::alloc(std::size_t size) {
return async_pool_alloc::alloc(size);
}
void pool_alloc::free(void* p, std::size_t size) {
async_pool_alloc::free(p, size);
}
} // namespace mem
} // namespace ipc

查看文件

@@ -1,433 +0,0 @@
#pragma once
#include <atomic>
#include <utility>
#include <cstring>
#include <type_traits>
#include <cstdint>
#include "libipc/def.h"
#include "libipc/platform/detail.h"
#include "libipc/circ/elem_def.h"
#include "libipc/utility/log.h"
#include "libipc/utility/utility.h"
namespace ipc {
////////////////////////////////////////////////////////////////
/// producer-consumer implementation
////////////////////////////////////////////////////////////////
template <typename Flag>
struct prod_cons_impl;
template <>
struct prod_cons_impl<wr<relat::single, relat::single, trans::unicast>> {
template <std::size_t DataSize, std::size_t AlignSize>
struct elem_t {
std::aligned_storage_t<DataSize, AlignSize> data_ {};
};
alignas(cache_line_size) std::atomic<circ::u2_t> rd_; // read index
alignas(cache_line_size) std::atomic<circ::u2_t> wt_; // write index
constexpr circ::u2_t cursor() const noexcept {
return 0;
}
template <typename W, typename F, typename E>
bool push(W* /*wrapper*/, F&& f, E* elems) {
auto cur_wt = circ::index_of(wt_.load(std::memory_order_relaxed));
if (cur_wt == circ::index_of(rd_.load(std::memory_order_acquire) - 1)) {
return false; // full
}
std::forward<F>(f)(&(elems[cur_wt].data_));
wt_.fetch_add(1, std::memory_order_release);
return true;
}
/**
* In single-single-unicast, 'force_push' means 'no reader' or 'the only one reader is dead'.
* So we could just disconnect all connections of receiver, and return false.
*/
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&&, E*) {
wrapper->elems()->disconnect_receiver(~static_cast<circ::cc_t>(0u));
return false;
}
template <typename W, typename F, typename R, typename E>
bool pop(W* /*wrapper*/, circ::u2_t& /*cur*/, F&& f, R&& out, E* elems) {
auto cur_rd = circ::index_of(rd_.load(std::memory_order_relaxed));
if (cur_rd == circ::index_of(wt_.load(std::memory_order_acquire))) {
return false; // empty
}
std::forward<F>(f)(&(elems[cur_rd].data_));
std::forward<R>(out)(true);
rd_.fetch_add(1, std::memory_order_release);
return true;
}
};
template <>
struct prod_cons_impl<wr<relat::single, relat::multi , trans::unicast>>
: prod_cons_impl<wr<relat::single, relat::single, trans::unicast>> {
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&&, E*) {
wrapper->elems()->disconnect_receiver(1);
return false;
}
template <typename W, typename F, typename R,
template <std::size_t, std::size_t> class E, std::size_t DS, std::size_t AS>
bool pop(W* /*wrapper*/, circ::u2_t& /*cur*/, F&& f, R&& out, E<DS, AS>* elems) {
byte_t buff[DS];
for (unsigned k = 0;;) {
auto cur_rd = rd_.load(std::memory_order_relaxed);
if (circ::index_of(cur_rd) ==
circ::index_of(wt_.load(std::memory_order_acquire))) {
return false; // empty
}
std::memcpy(buff, &(elems[circ::index_of(cur_rd)].data_), sizeof(buff));
if (rd_.compare_exchange_weak(cur_rd, cur_rd + 1, std::memory_order_release)) {
std::forward<F>(f)(buff);
std::forward<R>(out)(true);
return true;
}
ipc::yield(k);
}
}
};
template <>
struct prod_cons_impl<wr<relat::multi , relat::multi, trans::unicast>>
: prod_cons_impl<wr<relat::single, relat::multi, trans::unicast>> {
using flag_t = std::uint64_t;
template <std::size_t DataSize, std::size_t AlignSize>
struct elem_t {
std::aligned_storage_t<DataSize, AlignSize> data_ {};
std::atomic<flag_t> f_ct_ { 0 }; // commit flag
};
alignas(cache_line_size) std::atomic<circ::u2_t> ct_; // commit index
template <typename W, typename F, typename E>
bool push(W* /*wrapper*/, F&& f, E* elems) {
circ::u2_t cur_ct, nxt_ct;
for (unsigned k = 0;;) {
cur_ct = ct_.load(std::memory_order_relaxed);
if (circ::index_of(nxt_ct = cur_ct + 1) ==
circ::index_of(rd_.load(std::memory_order_acquire))) {
return false; // full
}
if (ct_.compare_exchange_weak(cur_ct, nxt_ct, std::memory_order_acq_rel)) {
break;
}
ipc::yield(k);
}
auto* el = elems + circ::index_of(cur_ct);
std::forward<F>(f)(&(el->data_));
// set flag & try update wt
el->f_ct_.store(~static_cast<flag_t>(cur_ct), std::memory_order_release);
while (1) {
auto cac_ct = el->f_ct_.load(std::memory_order_acquire);
if (cur_ct != wt_.load(std::memory_order_relaxed)) {
return true;
}
if ((~cac_ct) != cur_ct) {
return true;
}
if (!el->f_ct_.compare_exchange_strong(cac_ct, 0, std::memory_order_relaxed)) {
return true;
}
wt_.store(nxt_ct, std::memory_order_release);
cur_ct = nxt_ct;
nxt_ct = cur_ct + 1;
el = elems + circ::index_of(cur_ct);
}
return true;
}
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&&, E*) {
wrapper->elems()->disconnect_receiver(1);
return false;
}
template <typename W, typename F, typename R,
template <std::size_t, std::size_t> class E, std::size_t DS, std::size_t AS>
bool pop(W* /*wrapper*/, circ::u2_t& /*cur*/, F&& f, R&& out, E<DS, AS>* elems) {
byte_t buff[DS];
for (unsigned k = 0;;) {
auto cur_rd = rd_.load(std::memory_order_relaxed);
auto cur_wt = wt_.load(std::memory_order_acquire);
auto id_rd = circ::index_of(cur_rd);
auto id_wt = circ::index_of(cur_wt);
if (id_rd == id_wt) {
auto* el = elems + id_wt;
auto cac_ct = el->f_ct_.load(std::memory_order_acquire);
if ((~cac_ct) != cur_wt) {
return false; // empty
}
if (el->f_ct_.compare_exchange_weak(cac_ct, 0, std::memory_order_relaxed)) {
wt_.store(cur_wt + 1, std::memory_order_release);
}
k = 0;
}
else {
std::memcpy(buff, &(elems[circ::index_of(cur_rd)].data_), sizeof(buff));
if (rd_.compare_exchange_weak(cur_rd, cur_rd + 1, std::memory_order_release)) {
std::forward<F>(f)(buff);
std::forward<R>(out)(true);
return true;
}
ipc::yield(k);
}
}
}
};
template <>
struct prod_cons_impl<wr<relat::single, relat::multi, trans::broadcast>> {
using rc_t = std::uint64_t;
enum : rc_t {
ep_mask = 0x00000000ffffffffull,
ep_incr = 0x0000000100000000ull
};
template <std::size_t DataSize, std::size_t AlignSize>
struct elem_t {
std::aligned_storage_t<DataSize, AlignSize> data_ {};
std::atomic<rc_t> rc_ { 0 }; // read-counter
};
alignas(cache_line_size) std::atomic<circ::u2_t> wt_; // write index
alignas(cache_line_size) rc_t epoch_ { 0 }; // only one writer
circ::u2_t cursor() const noexcept {
return wt_.load(std::memory_order_acquire);
}
template <typename W, typename F, typename E>
bool push(W* wrapper, F&& f, E* elems) {
E* el;
for (unsigned k = 0;;) {
circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
if (cc == 0) return false; // no reader
el = elems + circ::index_of(wt_.load(std::memory_order_relaxed));
// check all consumers have finished reading this element
auto cur_rc = el->rc_.load(std::memory_order_acquire);
circ::cc_t rem_cc = cur_rc & ep_mask;
if ((cc & rem_cc) && ((cur_rc & ~ep_mask) == epoch_)) {
return false; // has not finished yet
}
// consider rem_cc to be 0 here
if (el->rc_.compare_exchange_weak(
cur_rc, epoch_ | static_cast<rc_t>(cc), std::memory_order_release)) {
break;
}
ipc::yield(k);
}
std::forward<F>(f)(&(el->data_));
wt_.fetch_add(1, std::memory_order_release);
return true;
}
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&& f, E* elems) {
E* el;
epoch_ += ep_incr;
for (unsigned k = 0;;) {
circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
if (cc == 0) return false; // no reader
el = elems + circ::index_of(wt_.load(std::memory_order_relaxed));
// check all consumers have finished reading this element
auto cur_rc = el->rc_.load(std::memory_order_acquire);
circ::cc_t rem_cc = cur_rc & ep_mask;
if (cc & rem_cc) {
ipc::log("force_push: k = %u, cc = %u, rem_cc = %u\n", k, cc, rem_cc);
cc = wrapper->elems()->disconnect_receiver(rem_cc); // disconnect all invalid readers
if (cc == 0) return false; // no reader
}
// just compare & exchange
if (el->rc_.compare_exchange_weak(
cur_rc, epoch_ | static_cast<rc_t>(cc), std::memory_order_release)) {
break;
}
ipc::yield(k);
}
std::forward<F>(f)(&(el->data_));
wt_.fetch_add(1, std::memory_order_release);
return true;
}
template <typename W, typename F, typename R, typename E>
bool pop(W* wrapper, circ::u2_t& cur, F&& f, R&& out, E* elems) {
if (cur == cursor()) return false; // acquire
auto* el = elems + circ::index_of(cur++);
std::forward<F>(f)(&(el->data_));
for (unsigned k = 0;;) {
auto cur_rc = el->rc_.load(std::memory_order_acquire);
if ((cur_rc & ep_mask) == 0) {
std::forward<R>(out)(true);
return true;
}
auto nxt_rc = cur_rc & ~static_cast<rc_t>(wrapper->connected_id());
if (el->rc_.compare_exchange_weak(cur_rc, nxt_rc, std::memory_order_release)) {
std::forward<R>(out)((nxt_rc & ep_mask) == 0);
return true;
}
ipc::yield(k);
}
}
};
template <>
struct prod_cons_impl<wr<relat::multi, relat::multi, trans::broadcast>> {
using rc_t = std::uint64_t;
using flag_t = std::uint64_t;
enum : rc_t {
rc_mask = 0x00000000ffffffffull,
ep_mask = 0x00ffffffffffffffull,
ep_incr = 0x0100000000000000ull,
ic_mask = 0xff000000ffffffffull,
ic_incr = 0x0000000100000000ull
};
template <std::size_t DataSize, std::size_t AlignSize>
struct elem_t {
std::aligned_storage_t<DataSize, AlignSize> data_ {};
std::atomic<rc_t > rc_ { 0 }; // read-counter
std::atomic<flag_t> f_ct_ { 0 }; // commit flag
};
alignas(cache_line_size) std::atomic<circ::u2_t> ct_; // commit index
alignas(cache_line_size) std::atomic<rc_t> epoch_ { 0 };
circ::u2_t cursor() const noexcept {
return ct_.load(std::memory_order_acquire);
}
constexpr static rc_t inc_rc(rc_t rc) noexcept {
return (rc & ic_mask) | ((rc + ic_incr) & ~ic_mask);
}
constexpr static rc_t inc_mask(rc_t rc) noexcept {
return inc_rc(rc) & ~rc_mask;
}
template <typename W, typename F, typename E>
bool push(W* wrapper, F&& f, E* elems) {
E* el;
circ::u2_t cur_ct;
rc_t epoch = epoch_.load(std::memory_order_acquire);
for (unsigned k = 0;;) {
circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
if (cc == 0) return false; // no reader
el = elems + circ::index_of(cur_ct = ct_.load(std::memory_order_relaxed));
// check all consumers have finished reading this element
auto cur_rc = el->rc_.load(std::memory_order_relaxed);
circ::cc_t rem_cc = cur_rc & rc_mask;
if ((cc & rem_cc) && ((cur_rc & ~ep_mask) == epoch)) {
return false; // has not finished yet
}
else if (!rem_cc) {
auto cur_fl = el->f_ct_.load(std::memory_order_acquire);
if ((cur_fl != cur_ct) && cur_fl) {
return false; // full
}
}
// consider rem_cc to be 0 here
if (el->rc_.compare_exchange_weak(
cur_rc, inc_mask(epoch | (cur_rc & ep_mask)) | static_cast<rc_t>(cc), std::memory_order_relaxed) &&
epoch_.compare_exchange_weak(epoch, epoch, std::memory_order_acq_rel)) {
break;
}
ipc::yield(k);
}
// only one thread/process would touch here at one time
ct_.store(cur_ct + 1, std::memory_order_release);
std::forward<F>(f)(&(el->data_));
// set flag & try update wt
el->f_ct_.store(~static_cast<flag_t>(cur_ct), std::memory_order_release);
return true;
}
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&& f, E* elems) {
E* el;
circ::u2_t cur_ct;
rc_t epoch = epoch_.fetch_add(ep_incr, std::memory_order_release) + ep_incr;
for (unsigned k = 0;;) {
circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
if (cc == 0) return false; // no reader
el = elems + circ::index_of(cur_ct = ct_.load(std::memory_order_relaxed));
// check all consumers have finished reading this element
auto cur_rc = el->rc_.load(std::memory_order_acquire);
circ::cc_t rem_cc = cur_rc & rc_mask;
if (cc & rem_cc) {
ipc::log("force_push: k = %u, cc = %u, rem_cc = %u\n", k, cc, rem_cc);
cc = wrapper->elems()->disconnect_receiver(rem_cc); // disconnect all invalid readers
if (cc == 0) return false; // no reader
}
// just compare & exchange
if (el->rc_.compare_exchange_weak(
cur_rc, inc_mask(epoch | (cur_rc & ep_mask)) | static_cast<rc_t>(cc), std::memory_order_relaxed)) {
if (epoch == epoch_.load(std::memory_order_acquire)) {
break;
}
else if (push(wrapper, std::forward<F>(f), elems)) {
return true;
}
epoch = epoch_.fetch_add(ep_incr, std::memory_order_release) + ep_incr;
}
ipc::yield(k);
}
// only one thread/process would touch here at one time
ct_.store(cur_ct + 1, std::memory_order_release);
std::forward<F>(f)(&(el->data_));
// set flag & try update wt
el->f_ct_.store(~static_cast<flag_t>(cur_ct), std::memory_order_release);
return true;
}
template <typename W, typename F, typename R, typename E, std::size_t N>
bool pop(W* wrapper, circ::u2_t& cur, F&& f, R&& out, E(& elems)[N]) {
auto* el = elems + circ::index_of(cur);
auto cur_fl = el->f_ct_.load(std::memory_order_acquire);
if (cur_fl != ~static_cast<flag_t>(cur)) {
return false; // empty
}
++cur;
std::forward<F>(f)(&(el->data_));
for (unsigned k = 0;;) {
auto cur_rc = el->rc_.load(std::memory_order_acquire);
if ((cur_rc & rc_mask) == 0) {
std::forward<R>(out)(true);
el->f_ct_.store(cur + N - 1, std::memory_order_release);
return true;
}
auto nxt_rc = inc_rc(cur_rc) & ~static_cast<rc_t>(wrapper->connected_id());
bool last_one = false;
if ((last_one = (nxt_rc & rc_mask) == 0)) {
el->f_ct_.store(cur + N - 1, std::memory_order_release);
}
if (el->rc_.compare_exchange_weak(cur_rc, nxt_rc, std::memory_order_release)) {
std::forward<R>(out)(last_one);
return true;
}
ipc::yield(k);
}
}
};
} // namespace ipc

查看文件

@@ -1,216 +0,0 @@
#pragma once
#include <type_traits>
#include <new>
#include <utility> // [[since C++14]]: std::exchange
#include <algorithm>
#include <atomic>
#include <tuple>
#include <thread>
#include <chrono>
#include <string>
#include <cassert> // assert
#include "libipc/def.h"
#include "libipc/shm.h"
#include "libipc/rw_lock.h"
#include "libipc/utility/log.h"
#include "libipc/platform/detail.h"
#include "libipc/circ/elem_def.h"
namespace ipc {
namespace detail {
class queue_conn {
protected:
circ::cc_t connected_ = 0;
shm::handle elems_h_;
template <typename Elems>
Elems* open(char const * name) {
if (name == nullptr || name[0] == '\0') {
ipc::error("fail open waiter: name is empty!\n");
return nullptr;
}
if (!elems_h_.acquire(name, sizeof(Elems))) {
return nullptr;
}
auto elems = static_cast<Elems*>(elems_h_.get());
if (elems == nullptr) {
ipc::error("fail acquire elems: %s\n", name);
return nullptr;
}
elems->init();
return elems;
}
void close() {
elems_h_.release();
}
public:
queue_conn() = default;
queue_conn(const queue_conn&) = delete;
queue_conn& operator=(const queue_conn&) = delete;
bool connected() const noexcept {
return connected_ != 0;
}
circ::cc_t connected_id() const noexcept {
return connected_;
}
template <typename Elems>
auto connect(Elems* elems) noexcept
/*needs 'optional' here*/
-> std::tuple<bool, bool, decltype(std::declval<Elems>().cursor())> {
if (elems == nullptr) return {};
// if it's already connected, just return
if (connected()) return {connected(), false, 0};
connected_ = elems->connect_receiver();
return {connected(), true, elems->cursor()};
}
template <typename Elems>
bool disconnect(Elems* elems) noexcept {
if (elems == nullptr) return false;
// if it's already disconnected, just return false
if (!connected()) return false;
elems->disconnect_receiver(std::exchange(connected_, 0));
return true;
}
};
template <typename Elems>
class queue_base : public queue_conn {
using base_t = queue_conn;
public:
using elems_t = Elems;
using policy_t = typename elems_t::policy_t;
protected:
elems_t * elems_ = nullptr;
decltype(std::declval<elems_t>().cursor()) cursor_ = 0;
bool sender_flag_ = false;
public:
using base_t::base_t;
queue_base() = default;
explicit queue_base(char const * name)
: queue_base{} {
elems_ = open<elems_t>(name);
}
explicit queue_base(elems_t * elems) noexcept
: queue_base{} {
assert(elems != nullptr);
elems_ = elems;
}
/* not virtual */ ~queue_base() {
base_t::close();
}
elems_t * elems() noexcept { return elems_; }
elems_t const * elems() const noexcept { return elems_; }
bool ready_sending() noexcept {
if (elems_ == nullptr) return false;
return sender_flag_ || (sender_flag_ = elems_->connect_sender());
}
void shut_sending() noexcept {
if (elems_ == nullptr) return;
if (!sender_flag_) return;
elems_->disconnect_sender();
}
bool connect() noexcept {
auto tp = base_t::connect(elems_);
if (std::get<0>(tp) && std::get<1>(tp)) {
cursor_ = std::get<2>(tp);
return true;
}
return std::get<0>(tp);
}
bool disconnect() noexcept {
return base_t::disconnect(elems_);
}
std::size_t conn_count() const noexcept {
return (elems_ == nullptr) ? static_cast<std::size_t>(invalid_value) : elems_->conn_count();
}
bool valid() const noexcept {
return elems_ != nullptr;
}
bool empty() const noexcept {
return !valid() || (cursor_ == elems_->cursor());
}
template <typename T, typename F, typename... P>
bool push(F&& prep, P&&... params) {
if (elems_ == nullptr) return false;
return elems_->push(this, [&](void* p) {
if (prep(p)) ::new (p) T(std::forward<P>(params)...);
});
}
template <typename T, typename F, typename... P>
bool force_push(F&& prep, P&&... params) {
if (elems_ == nullptr) return false;
return elems_->force_push(this, [&](void* p) {
if (prep(p)) ::new (p) T(std::forward<P>(params)...);
});
}
template <typename T, typename F>
bool pop(T& item, F&& out) {
if (elems_ == nullptr) {
return false;
}
return elems_->pop(this, &(this->cursor_), [&item](void* p) {
::new (&item) T(std::move(*static_cast<T*>(p)));
}, std::forward<F>(out));
}
};
} // namespace detail
template <typename T, typename Policy>
class queue final : public detail::queue_base<typename Policy::template elems_t<sizeof(T), alignof(T)>> {
using base_t = detail::queue_base<typename Policy::template elems_t<sizeof(T), alignof(T)>>;
public:
using value_t = T;
using base_t::base_t;
template <typename... P>
bool push(P&&... params) {
return base_t::template push<T>(std::forward<P>(params)...);
}
template <typename... P>
bool force_push(P&&... params) {
return base_t::template force_push<T>(std::forward<P>(params)...);
}
bool pop(T& item) {
return base_t::pop(item, [](bool) {});
}
template <typename F>
bool pop(T& item, F&& out) {
return base_t::pop(item, std::forward<F>(out));
}
};
} // namespace ipc

查看文件

@@ -1,103 +0,0 @@
#include <string>
#include <utility>
#include "libipc/shm.h"
#include "libipc/utility/pimpl.h"
#include "libipc/memory/resource.h"
namespace ipc {
namespace shm {
class handle::handle_ : public pimpl<handle_> {
public:
shm::id_t id_ = nullptr;
void* m_ = nullptr;
ipc::string n_;
std::size_t s_ = 0;
};
handle::handle()
: p_(p_->make()) {
}
handle::handle(char const * name, std::size_t size, unsigned mode)
: handle() {
acquire(name, size, mode);
}
handle::handle(handle&& rhs)
: handle() {
swap(rhs);
}
handle::~handle() {
release();
p_->clear();
}
void handle::swap(handle& rhs) {
std::swap(p_, rhs.p_);
}
handle& handle::operator=(handle rhs) {
swap(rhs);
return *this;
}
bool handle::valid() const noexcept {
return impl(p_)->m_ != nullptr;
}
std::size_t handle::size() const noexcept {
return impl(p_)->s_;
}
char const * handle::name() const noexcept {
return impl(p_)->n_.c_str();
}
std::int32_t handle::ref() const noexcept {
return shm::get_ref(impl(p_)->id_);
}
void handle::sub_ref() noexcept {
shm::sub_ref(impl(p_)->id_);
}
bool handle::acquire(char const * name, std::size_t size, unsigned mode) {
release();
impl(p_)->id_ = shm::acquire((impl(p_)->n_ = name).c_str(), size, mode);
impl(p_)->m_ = shm::get_mem(impl(p_)->id_, &(impl(p_)->s_));
return valid();
}
std::int32_t handle::release() {
if (impl(p_)->id_ == nullptr) return -1;
return shm::release(detach());
}
void* handle::get() const {
return impl(p_)->m_;
}
void handle::attach(id_t id) {
if (id == nullptr) return;
release();
impl(p_)->id_ = id;
impl(p_)->m_ = shm::get_mem(impl(p_)->id_, &(impl(p_)->s_));
}
id_t handle::detach() {
auto old = impl(p_)->id_;
impl(p_)->id_ = nullptr;
impl(p_)->m_ = nullptr;
impl(p_)->s_ = 0;
impl(p_)->n_.clear();
return old;
}
} // namespace shm
} // namespace ipc

查看文件

@@ -1,83 +0,0 @@
#pragma once
#include <utility>
#include <string>
#include <mutex>
#include <atomic>
#include "libipc/def.h"
#include "libipc/mutex.h"
#include "libipc/condition.h"
#include "libipc/platform/detail.h"
namespace ipc {
namespace detail {
class waiter {
ipc::sync::condition cond_;
ipc::sync::mutex lock_;
std::atomic<bool> quit_ {false};
public:
static void init();
waiter() = default;
waiter(char const *name) {
open(name);
}
~waiter() {
close();
}
bool valid() const noexcept {
return cond_.valid() && lock_.valid();
}
bool open(char const *name) noexcept {
quit_.store(false, std::memory_order_relaxed);
if (!cond_.open((std::string{"_waiter_cond_"} + name).c_str())) {
return false;
}
if (!lock_.open((std::string{"_waiter_lock_"} + name).c_str())) {
cond_.close();
return false;
}
return valid();
}
void close() noexcept {
cond_.close();
lock_.close();
}
template <typename F>
bool wait_if(F &&pred, std::uint64_t tm = ipc::invalid_value) noexcept {
IPC_UNUSED_ std::lock_guard<ipc::sync::mutex> guard {lock_};
while ([this, &pred] {
return !quit_.load(std::memory_order_relaxed)
&& std::forward<F>(pred)();
}()) {
if (!cond_.wait(lock_, tm)) return false;
}
return true;
}
bool notify() noexcept {
std::lock_guard<ipc::sync::mutex>{lock_}; // barrier
return cond_.notify(lock_);
}
bool broadcast() noexcept {
std::lock_guard<ipc::sync::mutex>{lock_}; // barrier
return cond_.broadcast(lock_);
}
bool quit_waiting() {
quit_.store(true, std::memory_order_release);
return broadcast();
}
};
} // namespace detail
} // namespace ipc

查看文件

@@ -1,3 +0,0 @@
https://github.com/mutouyun/cpp-ipc
A high-performance inter-process communication library using shared memory on Linux/Windows.

文件差异内容过多而无法显示 加载差异

查看文件

@@ -1,316 +0,0 @@
// jpgd.h - C++ class for JPEG decompression.
// Public domain, Rich Geldreich <richgel99@gmail.com>
#ifndef JPEG_DECODER_H
#define JPEG_DECODER_H
#include <stdlib.h>
#include <stdio.h>
#include <setjmp.h>
namespace jpgd
{
typedef unsigned char uint8;
typedef signed short int16;
typedef unsigned short uint16;
typedef unsigned int uint;
typedef signed int int32;
// Loads a JPEG image from a memory buffer or a file.
// req_comps can be 1 (grayscale), 3 (RGB), or 4 (RGBA).
// On return, width/height will be set to the image's dimensions, and actual_comps will be set to the either 1 (grayscale) or 3 (RGB).
// Notes: For more control over where and how the source data is read, see the decompress_jpeg_image_from_stream() function below, or call the jpeg_decoder class directly.
// Requesting a 8 or 32bpp image is currently a little faster than 24bpp because the jpeg_decoder class itself currently always unpacks to either 8 or 32bpp.
// BEGIN EPIC MOD
//unsigned char *decompress_jpeg_image_from_memory(const unsigned char *pSrc_data, int src_data_size, int *width, int *height, int *actual_comps, int req_comps);
unsigned char *decompress_jpeg_image_from_memory(const unsigned char *pSrc_data, int src_data_size, int *width, int *height, int *actual_comps, int req_comps, int format);
// END EPIC MOD
unsigned char *decompress_jpeg_image_from_file(const char *pSrc_filename, int *width, int *height, int *actual_comps, int req_comps);
// Success/failure error codes.
enum jpgd_status
{
JPGD_SUCCESS = 0, JPGD_FAILED = -1, JPGD_DONE = 1,
JPGD_BAD_DHT_COUNTS = -256, JPGD_BAD_DHT_INDEX, JPGD_BAD_DHT_MARKER, JPGD_BAD_DQT_MARKER, JPGD_BAD_DQT_TABLE,
JPGD_BAD_PRECISION, JPGD_BAD_HEIGHT, JPGD_BAD_WIDTH, JPGD_TOO_MANY_COMPONENTS,
JPGD_BAD_SOF_LENGTH, JPGD_BAD_VARIABLE_MARKER, JPGD_BAD_DRI_LENGTH, JPGD_BAD_SOS_LENGTH,
JPGD_BAD_SOS_COMP_ID, JPGD_W_EXTRA_BYTES_BEFORE_MARKER, JPGD_NO_ARITHMITIC_SUPPORT, JPGD_UNEXPECTED_MARKER,
JPGD_NOT_JPEG, JPGD_UNSUPPORTED_MARKER, JPGD_BAD_DQT_LENGTH, JPGD_TOO_MANY_BLOCKS,
JPGD_UNDEFINED_QUANT_TABLE, JPGD_UNDEFINED_HUFF_TABLE, JPGD_NOT_SINGLE_SCAN, JPGD_UNSUPPORTED_COLORSPACE,
JPGD_UNSUPPORTED_SAMP_FACTORS, JPGD_DECODE_ERROR, JPGD_BAD_RESTART_MARKER, JPGD_ASSERTION_ERROR,
JPGD_BAD_SOS_SPECTRAL, JPGD_BAD_SOS_SUCCESSIVE, JPGD_STREAM_READ, JPGD_NOTENOUGHMEM
};
// Input stream interface.
// Derive from this class to read input data from sources other than files or memory. Set m_eof_flag to true when no more data is available.
// The decoder is rather greedy: it will keep on calling this method until its internal input buffer is full, or until the EOF flag is set.
// It the input stream contains data after the JPEG stream's EOI (end of image) marker it will probably be pulled into the internal buffer.
// Call the get_total_bytes_read() method to determine the actual size of the JPEG stream after successful decoding.
class jpeg_decoder_stream
{
public:
jpeg_decoder_stream() { }
virtual ~jpeg_decoder_stream() { }
// The read() method is called when the internal input buffer is empty.
// Parameters:
// pBuf - input buffer
// max_bytes_to_read - maximum bytes that can be written to pBuf
// pEOF_flag - set this to true if at end of stream (no more bytes remaining)
// Returns -1 on error, otherwise return the number of bytes actually written to the buffer (which may be 0).
// Notes: This method will be called in a loop until you set *pEOF_flag to true or the internal buffer is full.
virtual int read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag) = 0;
};
// stdio FILE stream class.
class jpeg_decoder_file_stream : public jpeg_decoder_stream
{
jpeg_decoder_file_stream(const jpeg_decoder_file_stream &);
jpeg_decoder_file_stream &operator =(const jpeg_decoder_file_stream &);
FILE *m_pFile;
bool m_eof_flag, m_error_flag;
public:
jpeg_decoder_file_stream();
virtual ~jpeg_decoder_file_stream();
bool open(const char *Pfilename);
void close();
virtual int read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag);
};
// Memory stream class.
class jpeg_decoder_mem_stream : public jpeg_decoder_stream
{
const uint8 *m_pSrc_data;
uint m_ofs, m_size;
public:
jpeg_decoder_mem_stream() : m_pSrc_data(NULL), m_ofs(0), m_size(0) { }
jpeg_decoder_mem_stream(const uint8 *pSrc_data, uint size) : m_pSrc_data(pSrc_data), m_ofs(0), m_size(size) { }
virtual ~jpeg_decoder_mem_stream() { }
bool open(const uint8 *pSrc_data, uint size);
void close() { m_pSrc_data = NULL; m_ofs = 0; m_size = 0; }
virtual int read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag);
};
// Loads JPEG file from a jpeg_decoder_stream.
unsigned char *decompress_jpeg_image_from_stream(jpeg_decoder_stream *pStream, int *width, int *height, int *actual_comps, int req_comps);
enum
{
JPGD_IN_BUF_SIZE = 8192, JPGD_MAX_BLOCKS_PER_MCU = 10, JPGD_MAX_HUFF_TABLES = 8, JPGD_MAX_QUANT_TABLES = 4,
JPGD_MAX_COMPONENTS = 4, JPGD_MAX_COMPS_IN_SCAN = 4, JPGD_MAX_BLOCKS_PER_ROW = 8192, JPGD_MAX_HEIGHT = 16384, JPGD_MAX_WIDTH = 16384
};
typedef int16 jpgd_quant_t;
typedef int16 jpgd_block_t;
class jpeg_decoder
{
public:
// Call get_error_code() after constructing to determine if the stream is valid or not. You may call the get_width(), get_height(), etc.
// methods after the constructor is called. You may then either destruct the object, or begin decoding the image by calling begin_decoding(), then decode() on each scanline.
jpeg_decoder(jpeg_decoder_stream *pStream);
~jpeg_decoder();
// Call this method after constructing the object to begin decompression.
// If JPGD_SUCCESS is returned you may then call decode() on each scanline.
int begin_decoding();
// Returns the next scan line.
// For grayscale images, pScan_line will point to a buffer containing 8-bit pixels (get_bytes_per_pixel() will return 1).
// Otherwise, it will always point to a buffer containing 32-bit RGBA pixels (A will always be 255, and get_bytes_per_pixel() will return 4).
// Returns JPGD_SUCCESS if a scan line has been returned.
// Returns JPGD_DONE if all scan lines have been returned.
// Returns JPGD_FAILED if an error occurred. Call get_error_code() for a more info.
int decode(const void** pScan_line, uint* pScan_line_len);
inline jpgd_status get_error_code() const { return m_error_code; }
inline int get_width() const { return m_image_x_size; }
inline int get_height() const { return m_image_y_size; }
inline int get_num_components() const { return m_comps_in_frame; }
inline int get_bytes_per_pixel() const { return m_dest_bytes_per_pixel; }
inline int get_bytes_per_scan_line() const { return m_image_x_size * get_bytes_per_pixel(); }
// Returns the total number of bytes actually consumed by the decoder (which should equal the actual size of the JPEG file).
inline int get_total_bytes_read() const { return m_total_bytes_read; }
private:
jpeg_decoder(const jpeg_decoder &);
jpeg_decoder &operator =(const jpeg_decoder &);
typedef void (*pDecode_block_func)(jpeg_decoder *, int, int, int);
struct huff_tables
{
bool ac_table;
uint look_up[256];
uint look_up2[256];
uint8 code_size[256];
uint tree[512];
};
struct coeff_buf
{
uint8 *pData;
int block_num_x, block_num_y;
int block_len_x, block_len_y;
int block_size;
};
struct mem_block
{
mem_block *m_pNext;
size_t m_used_count;
size_t m_size;
char m_data[1];
};
jmp_buf m_jmp_state;
mem_block *m_pMem_blocks;
int m_image_x_size;
int m_image_y_size;
jpeg_decoder_stream *m_pStream;
int m_progressive_flag;
uint8 m_huff_ac[JPGD_MAX_HUFF_TABLES];
uint8* m_huff_num[JPGD_MAX_HUFF_TABLES]; // pointer to number of Huffman codes per bit size
uint8* m_huff_val[JPGD_MAX_HUFF_TABLES]; // pointer to Huffman codes per bit size
jpgd_quant_t* m_quant[JPGD_MAX_QUANT_TABLES]; // pointer to quantization tables
int m_scan_type; // Gray, Yh1v1, Yh1v2, Yh2v1, Yh2v2 (CMYK111, CMYK4114 no longer supported)
int m_comps_in_frame; // # of components in frame
int m_comp_h_samp[JPGD_MAX_COMPONENTS]; // component's horizontal sampling factor
int m_comp_v_samp[JPGD_MAX_COMPONENTS]; // component's vertical sampling factor
int m_comp_quant[JPGD_MAX_COMPONENTS]; // component's quantization table selector
int m_comp_ident[JPGD_MAX_COMPONENTS]; // component's ID
int m_comp_h_blocks[JPGD_MAX_COMPONENTS];
int m_comp_v_blocks[JPGD_MAX_COMPONENTS];
int m_comps_in_scan; // # of components in scan
int m_comp_list[JPGD_MAX_COMPS_IN_SCAN]; // components in this scan
int m_comp_dc_tab[JPGD_MAX_COMPONENTS]; // component's DC Huffman coding table selector
int m_comp_ac_tab[JPGD_MAX_COMPONENTS]; // component's AC Huffman coding table selector
int m_spectral_start; // spectral selection start
int m_spectral_end; // spectral selection end
int m_successive_low; // successive approximation low
int m_successive_high; // successive approximation high
int m_max_mcu_x_size; // MCU's max. X size in pixels
int m_max_mcu_y_size; // MCU's max. Y size in pixels
int m_blocks_per_mcu;
int m_max_blocks_per_row;
int m_mcus_per_row, m_mcus_per_col;
int m_mcu_org[JPGD_MAX_BLOCKS_PER_MCU];
int m_total_lines_left; // total # lines left in image
int m_mcu_lines_left; // total # lines left in this MCU
int m_real_dest_bytes_per_scan_line;
int m_dest_bytes_per_scan_line; // rounded up
int m_dest_bytes_per_pixel; // 4 (RGB) or 1 (Y)
huff_tables* m_pHuff_tabs[JPGD_MAX_HUFF_TABLES];
coeff_buf* m_dc_coeffs[JPGD_MAX_COMPONENTS];
coeff_buf* m_ac_coeffs[JPGD_MAX_COMPONENTS];
int m_eob_run;
int m_block_y_mcu[JPGD_MAX_COMPONENTS];
uint8* m_pIn_buf_ofs;
int m_in_buf_left;
int m_tem_flag;
bool m_eof_flag;
uint8 m_in_buf_pad_start[128];
uint8 m_in_buf[JPGD_IN_BUF_SIZE + 128];
uint8 m_in_buf_pad_end[128];
int m_bits_left;
uint m_bit_buf;
int m_restart_interval;
int m_restarts_left;
int m_next_restart_num;
int m_max_mcus_per_row;
int m_max_blocks_per_mcu;
int m_expanded_blocks_per_mcu;
int m_expanded_blocks_per_row;
int m_expanded_blocks_per_component;
bool m_freq_domain_chroma_upsample;
int m_max_mcus_per_col;
uint m_last_dc_val[JPGD_MAX_COMPONENTS];
jpgd_block_t* m_pMCU_coefficients;
int m_mcu_block_max_zag[JPGD_MAX_BLOCKS_PER_MCU];
uint8* m_pSample_buf;
int m_crr[256];
int m_cbb[256];
int m_crg[256];
int m_cbg[256];
uint8* m_pScan_line_0;
uint8* m_pScan_line_1;
jpgd_status m_error_code;
bool m_ready_flag;
int m_total_bytes_read;
void free_all_blocks();
// BEGIN EPIC MOD
UE_NORETURN void stop_decoding(jpgd_status status);
// END EPIC MOD
void *alloc(size_t n, bool zero = false);
void word_clear(void *p, uint16 c, uint n);
void prep_in_buffer();
void read_dht_marker();
void read_dqt_marker();
void read_sof_marker();
void skip_variable_marker();
void read_dri_marker();
void read_sos_marker();
int next_marker();
int process_markers();
void locate_soi_marker();
void locate_sof_marker();
int locate_sos_marker();
void init(jpeg_decoder_stream * pStream);
void create_look_ups();
void fix_in_buffer();
void transform_mcu(int mcu_row);
void transform_mcu_expand(int mcu_row);
coeff_buf* coeff_buf_open(int block_num_x, int block_num_y, int block_len_x, int block_len_y);
inline jpgd_block_t *coeff_buf_getp(coeff_buf *cb, int block_x, int block_y);
void load_next_row();
void decode_next_row();
void make_huff_table(int index, huff_tables *pH);
void check_quant_tables();
void check_huff_tables();
void calc_mcu_block_order();
int init_scan();
void init_frame();
void process_restart();
void decode_scan(pDecode_block_func decode_block_func);
void init_progressive();
void init_sequential();
void decode_start();
void decode_init(jpeg_decoder_stream * pStream);
void H2V2Convert();
void H2V1Convert();
void H1V2Convert();
void H1V1Convert();
void gray_convert();
void expanded_convert();
void find_eoi();
inline uint get_char();
inline uint get_char(bool *pPadding_flag);
inline void stuff_char(uint8 q);
inline uint8 get_octet();
inline uint get_bits(int num_bits);
inline uint get_bits_no_markers(int numbits);
inline int huff_decode(huff_tables *pH);
inline int huff_decode(huff_tables *pH, int& extrabits);
static inline uint8 clamp(int i);
static void decode_block_dc_first(jpeg_decoder *pD, int component_id, int block_x, int block_y);
static void decode_block_dc_refine(jpeg_decoder *pD, int component_id, int block_x, int block_y);
static void decode_block_ac_first(jpeg_decoder *pD, int component_id, int block_x, int block_y);
static void decode_block_ac_refine(jpeg_decoder *pD, int component_id, int block_x, int block_y);
};
} // namespace jpgd
#endif // JPEG_DECODER_H

文件差异内容过多而无法显示 加载差异

查看文件

@@ -1,172 +0,0 @@
// jpge.h - C++ class for JPEG compression.
// Public domain, Rich Geldreich <richgel99@gmail.com>
// Alex Evans: Added RGBA support, linear memory allocator.
#ifndef JPEG_ENCODER_H
#define JPEG_ENCODER_H
#include <stdint.h>
namespace jpge
{
typedef unsigned char uint8;
typedef signed short int16;
typedef signed int int32;
typedef unsigned short uint16;
typedef unsigned int uint32;
typedef unsigned int uint;
// JPEG chroma subsampling factors. Y_ONLY (grayscale images) and H2V2 (color images) are the most common.
enum subsampling_t { Y_ONLY = 0, H1V1 = 1, H2V1 = 2, H2V2 = 3 };
// JPEG compression parameters structure.
struct params
{
inline params() : m_quality(85), m_subsampling(H2V2), m_no_chroma_discrim_flag(false), m_two_pass_flag(false) { }
inline bool check_valid() const
{
if ((m_quality < 1) || (m_quality > 100)) return false;
if ((uint)m_subsampling > (uint)H2V2) return false;
return true;
}
// Quality: 1-100, higher is better. Typical values are around 50-95.
int m_quality;
// m_subsampling:
// 0 = Y (grayscale) only
// 1 = YCbCr, no subsampling (H1V1, YCbCr 1x1x1, 3 blocks per MCU)
// 2 = YCbCr, H2V1 subsampling (YCbCr 2x1x1, 4 blocks per MCU)
// 3 = YCbCr, H2V2 subsampling (YCbCr 4x1x1, 6 blocks per MCU-- very common)
subsampling_t m_subsampling;
// Disables CbCr discrimination - only intended for testing.
// If true, the Y quantization table is also used for the CbCr channels.
bool m_no_chroma_discrim_flag;
bool m_two_pass_flag;
};
// Writes JPEG image to a file.
// num_channels must be 1 (Y) or 3 (RGB), image pitch must be width*num_channels.
bool compress_image_to_jpeg_file(const char *pFilename, int64_t width, int64_t height, int64_t num_channels, const uint8 *pImage_data, const params &comp_params = params());
// Writes JPEG image to memory buffer.
// On entry, buf_size is the size of the output buffer pointed at by pBuf, which should be at least ~1024 bytes.
// If return value is true, buf_size will be set to the size of the compressed data.
bool compress_image_to_jpeg_file_in_memory(void *pBuf, int64_t &buf_size, int64_t width, int64_t height, int64_t num_channels, const uint8 *pImage_data, const params &comp_params = params());
// Output stream abstract class - used by the jpeg_encoder class to write to the output stream.
// put_buf() is generally called with len==JPGE_OUT_BUF_SIZE bytes, but for headers it'll be called with smaller amounts.
class output_stream
{
public:
virtual ~output_stream() { };
virtual bool put_buf(const void* Pbuf, int64_t len) = 0;
template<class T> inline bool put_obj(const T& obj) { return put_buf(&obj, sizeof(T)); }
};
// Lower level jpeg_encoder class - useful if more control is needed than the above helper functions.
class jpeg_encoder
{
public:
jpeg_encoder();
~jpeg_encoder();
// Initializes the compressor.
// pStream: The stream object to use for writing compressed data.
// params - Compression parameters structure, defined above.
// width, height - Image dimensions.
// channels - May be 1, or 3. 1 indicates grayscale, 3 indicates RGB source data.
// Returns false on out of memory or if a stream write fails.
bool init(output_stream *pStream, int64_t width, int64_t height, int64_t src_channels, const params &comp_params = params());
const params &get_params() const { return m_params; }
// Deinitializes the compressor, freeing any allocated memory. May be called at any time.
void deinit();
uint get_total_passes() const { return m_params.m_two_pass_flag ? 2 : 1; }
inline uint get_cur_pass() { return m_pass_num; }
// Call this method with each source scanline.
// width * src_channels bytes per scanline is expected (RGB or Y format).
// You must call with NULL after all scanlines are processed to finish compression.
// Returns false on out of memory or if a stream write fails.
bool process_scanline(const void* pScanline);
private:
jpeg_encoder(const jpeg_encoder &);
jpeg_encoder &operator =(const jpeg_encoder &);
typedef int32 sample_array_t;
output_stream *m_pStream;
params m_params;
uint8 m_num_components;
uint8 m_comp_h_samp[3], m_comp_v_samp[3];
int m_image_x, m_image_y, m_image_bpp, m_image_bpl;
int m_image_x_mcu, m_image_y_mcu;
int m_image_bpl_xlt, m_image_bpl_mcu;
int m_mcus_per_row;
int m_mcu_x, m_mcu_y;
uint8 *m_mcu_lines[16];
uint8 m_mcu_y_ofs;
sample_array_t m_sample_array[64];
int16 m_coefficient_array[64];
int32 m_quantization_tables[2][64];
uint m_huff_codes[4][256];
uint8 m_huff_code_sizes[4][256];
uint8 m_huff_bits[4][17];
uint8 m_huff_val[4][256];
uint32 m_huff_count[4][256];
int m_last_dc_val[3];
enum { JPGE_OUT_BUF_SIZE = 2048 };
uint8 m_out_buf[JPGE_OUT_BUF_SIZE];
uint8 *m_pOut_buf;
uint m_out_buf_left;
uint32 m_bit_buffer;
uint m_bits_in;
uint8 m_pass_num;
bool m_all_stream_writes_succeeded;
void optimize_huffman_table(int table_num, int table_len);
void emit_byte(uint8 i);
void emit_word(uint i);
void emit_marker(int marker);
void emit_jfif_app0();
void emit_dqt();
void emit_sof();
void emit_dht(uint8 *bits, uint8 *val, int index, bool ac_flag);
void emit_dhts();
void emit_sos();
void emit_markers();
void compute_huffman_table(uint *codes, uint8 *code_sizes, uint8 *bits, uint8 *val);
void compute_quant_table(int32 *dst, int16 *src);
void adjust_quant_table(int32 *dst, int32 *src);
void first_pass_init();
bool second_pass_init();
bool jpg_open(int p_x_res, int p_y_res, int src_channels);
void load_block_8_8_grey(int x);
void load_block_8_8(int x, int y, int c);
void load_block_16_8(int x, int c);
void load_block_16_8_8(int x, int c);
void load_quantized_coefficients(int component_num);
void flush_output_buffer();
void put_bits(uint bits, uint len);
void code_coefficients_pass_one(int component_num);
void code_coefficients_pass_two(int component_num);
void code_block(int component_num);
void process_mcu_row();
bool terminate_pass_one();
bool terminate_pass_two();
bool process_end_of_image();
void load_mcu(const void* src);
void clear();
void init();
};
} // namespace jpge
#endif // JPEG_ENCODER

查看文件

@@ -1,3 +0,0 @@
jpge.h - C++ class for JPEG compression.
Public domain, Rich Geldreich <richgel99@gmail.com>
Alex Evans: Added RGBA support, linear memory allocator.

查看文件

@@ -1,433 +0,0 @@
#pragma once
#include <atomic>
#include <utility>
#include <cstring>
#include <type_traits>
#include <cstdint>
#include "libipc/def.h"
#include "libipc/platform/detail.h"
#include "libipc/circ/elem_def.h"
#include "libipc/utility/log.h"
#include "libipc/utility/utility.h"
namespace ipc {
////////////////////////////////////////////////////////////////
/// producer-consumer implementation
////////////////////////////////////////////////////////////////
template <typename Flag>
struct prod_cons_impl;
template <>
struct prod_cons_impl<wr<relat::single, relat::single, trans::unicast>> {
template <std::size_t DataSize, std::size_t AlignSize>
struct elem_t {
std::aligned_storage_t<DataSize, AlignSize> data_ {};
};
alignas(cache_line_size) std::atomic<circ::u2_t> rd_; // read index
alignas(cache_line_size) std::atomic<circ::u2_t> wt_; // write index
constexpr circ::u2_t cursor() const noexcept {
return 0;
}
template <typename W, typename F, typename E>
bool push(W* /*wrapper*/, F&& f, E* elems) {
auto cur_wt = circ::index_of(wt_.load(std::memory_order_relaxed));
if (cur_wt == circ::index_of(rd_.load(std::memory_order_acquire) - 1)) {
return false; // full
}
std::forward<F>(f)(&(elems[cur_wt].data_));
wt_.fetch_add(1, std::memory_order_release);
return true;
}
/**
* In single-single-unicast, 'force_push' means 'no reader' or 'the only one reader is dead'.
* So we could just disconnect all connections of receiver, and return false.
*/
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&&, E*) {
wrapper->elems()->disconnect_receiver(~static_cast<circ::cc_t>(0u));
return false;
}
template <typename W, typename F, typename R, typename E>
bool pop(W* /*wrapper*/, circ::u2_t& /*cur*/, F&& f, R&& out, E* elems) {
auto cur_rd = circ::index_of(rd_.load(std::memory_order_relaxed));
if (cur_rd == circ::index_of(wt_.load(std::memory_order_acquire))) {
return false; // empty
}
std::forward<F>(f)(&(elems[cur_rd].data_));
std::forward<R>(out)(true);
rd_.fetch_add(1, std::memory_order_release);
return true;
}
};
template <>
struct prod_cons_impl<wr<relat::single, relat::multi , trans::unicast>>
: prod_cons_impl<wr<relat::single, relat::single, trans::unicast>> {
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&&, E*) {
wrapper->elems()->disconnect_receiver(1);
return false;
}
template <typename W, typename F, typename R,
template <std::size_t, std::size_t> class E, std::size_t DS, std::size_t AS>
bool pop(W* /*wrapper*/, circ::u2_t& /*cur*/, F&& f, R&& out, E<DS, AS>* elems) {
byte_t buff[DS];
for (unsigned k = 0;;) {
auto cur_rd = rd_.load(std::memory_order_relaxed);
if (circ::index_of(cur_rd) ==
circ::index_of(wt_.load(std::memory_order_acquire))) {
return false; // empty
}
std::memcpy(buff, &(elems[circ::index_of(cur_rd)].data_), sizeof(buff));
if (rd_.compare_exchange_weak(cur_rd, cur_rd + 1, std::memory_order_release)) {
std::forward<F>(f)(buff);
std::forward<R>(out)(true);
return true;
}
ipc::yield(k);
}
}
};
template <>
struct prod_cons_impl<wr<relat::multi , relat::multi, trans::unicast>>
: prod_cons_impl<wr<relat::single, relat::multi, trans::unicast>> {
using flag_t = std::uint64_t;
template <std::size_t DataSize, std::size_t AlignSize>
struct elem_t {
std::aligned_storage_t<DataSize, AlignSize> data_ {};
std::atomic<flag_t> f_ct_ { 0 }; // commit flag
};
alignas(cache_line_size) std::atomic<circ::u2_t> ct_; // commit index
template <typename W, typename F, typename E>
bool push(W* /*wrapper*/, F&& f, E* elems) {
circ::u2_t cur_ct, nxt_ct;
for (unsigned k = 0;;) {
cur_ct = ct_.load(std::memory_order_relaxed);
if (circ::index_of(nxt_ct = cur_ct + 1) ==
circ::index_of(rd_.load(std::memory_order_acquire))) {
return false; // full
}
if (ct_.compare_exchange_weak(cur_ct, nxt_ct, std::memory_order_acq_rel)) {
break;
}
ipc::yield(k);
}
auto* el = elems + circ::index_of(cur_ct);
std::forward<F>(f)(&(el->data_));
// set flag & try update wt
el->f_ct_.store(~static_cast<flag_t>(cur_ct), std::memory_order_release);
while (1) {
auto cac_ct = el->f_ct_.load(std::memory_order_acquire);
if (cur_ct != wt_.load(std::memory_order_relaxed)) {
return true;
}
if ((~cac_ct) != cur_ct) {
return true;
}
if (!el->f_ct_.compare_exchange_strong(cac_ct, 0, std::memory_order_relaxed)) {
return true;
}
wt_.store(nxt_ct, std::memory_order_release);
cur_ct = nxt_ct;
nxt_ct = cur_ct + 1;
el = elems + circ::index_of(cur_ct);
}
return true;
}
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&&, E*) {
wrapper->elems()->disconnect_receiver(1);
return false;
}
template <typename W, typename F, typename R,
template <std::size_t, std::size_t> class E, std::size_t DS, std::size_t AS>
bool pop(W* /*wrapper*/, circ::u2_t& /*cur*/, F&& f, R&& out, E<DS, AS>* elems) {
byte_t buff[DS];
for (unsigned k = 0;;) {
auto cur_rd = rd_.load(std::memory_order_relaxed);
auto cur_wt = wt_.load(std::memory_order_acquire);
auto id_rd = circ::index_of(cur_rd);
auto id_wt = circ::index_of(cur_wt);
if (id_rd == id_wt) {
auto* el = elems + id_wt;
auto cac_ct = el->f_ct_.load(std::memory_order_acquire);
if ((~cac_ct) != cur_wt) {
return false; // empty
}
if (el->f_ct_.compare_exchange_weak(cac_ct, 0, std::memory_order_relaxed)) {
wt_.store(cur_wt + 1, std::memory_order_release);
}
k = 0;
}
else {
std::memcpy(buff, &(elems[circ::index_of(cur_rd)].data_), sizeof(buff));
if (rd_.compare_exchange_weak(cur_rd, cur_rd + 1, std::memory_order_release)) {
std::forward<F>(f)(buff);
std::forward<R>(out)(true);
return true;
}
ipc::yield(k);
}
}
}
};
template <>
struct prod_cons_impl<wr<relat::single, relat::multi, trans::broadcast>> {
using rc_t = std::uint64_t;
enum : rc_t {
ep_mask = 0x00000000ffffffffull,
ep_incr = 0x0000000100000000ull
};
template <std::size_t DataSize, std::size_t AlignSize>
struct elem_t {
std::aligned_storage_t<DataSize, AlignSize> data_ {};
std::atomic<rc_t> rc_ { 0 }; // read-counter
};
alignas(cache_line_size) std::atomic<circ::u2_t> wt_; // write index
alignas(cache_line_size) rc_t epoch_ { 0 }; // only one writer
circ::u2_t cursor() const noexcept {
return wt_.load(std::memory_order_acquire);
}
template <typename W, typename F, typename E>
bool push(W* wrapper, F&& f, E* elems) {
E* el;
for (unsigned k = 0;;) {
circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
if (cc == 0) return false; // no reader
el = elems + circ::index_of(wt_.load(std::memory_order_relaxed));
// check all consumers have finished reading this element
auto cur_rc = el->rc_.load(std::memory_order_acquire);
circ::cc_t rem_cc = cur_rc & ep_mask;
if ((cc & rem_cc) && ((cur_rc & ~ep_mask) == epoch_)) {
return false; // has not finished yet
}
// consider rem_cc to be 0 here
if (el->rc_.compare_exchange_weak(
cur_rc, epoch_ | static_cast<rc_t>(cc), std::memory_order_release)) {
break;
}
ipc::yield(k);
}
std::forward<F>(f)(&(el->data_));
wt_.fetch_add(1, std::memory_order_release);
return true;
}
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&& f, E* elems) {
E* el;
epoch_ += ep_incr;
for (unsigned k = 0;;) {
circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
if (cc == 0) return false; // no reader
el = elems + circ::index_of(wt_.load(std::memory_order_relaxed));
// check all consumers have finished reading this element
auto cur_rc = el->rc_.load(std::memory_order_acquire);
circ::cc_t rem_cc = cur_rc & ep_mask;
if (cc & rem_cc) {
ipc::log("force_push: k = %u, cc = %u, rem_cc = %u\n", k, cc, rem_cc);
cc = wrapper->elems()->disconnect_receiver(rem_cc); // disconnect all invalid readers
if (cc == 0) return false; // no reader
}
// just compare & exchange
if (el->rc_.compare_exchange_weak(
cur_rc, epoch_ | static_cast<rc_t>(cc), std::memory_order_release)) {
break;
}
ipc::yield(k);
}
std::forward<F>(f)(&(el->data_));
wt_.fetch_add(1, std::memory_order_release);
return true;
}
template <typename W, typename F, typename R, typename E>
bool pop(W* wrapper, circ::u2_t& cur, F&& f, R&& out, E* elems) {
if (cur == cursor()) return false; // acquire
auto* el = elems + circ::index_of(cur++);
std::forward<F>(f)(&(el->data_));
for (unsigned k = 0;;) {
auto cur_rc = el->rc_.load(std::memory_order_acquire);
if ((cur_rc & ep_mask) == 0) {
std::forward<R>(out)(true);
return true;
}
auto nxt_rc = cur_rc & ~static_cast<rc_t>(wrapper->connected_id());
if (el->rc_.compare_exchange_weak(cur_rc, nxt_rc, std::memory_order_release)) {
std::forward<R>(out)((nxt_rc & ep_mask) == 0);
return true;
}
ipc::yield(k);
}
}
};
template <>
struct prod_cons_impl<wr<relat::multi, relat::multi, trans::broadcast>> {
using rc_t = std::uint64_t;
using flag_t = std::uint64_t;
enum : rc_t {
rc_mask = 0x00000000ffffffffull,
ep_mask = 0x00ffffffffffffffull,
ep_incr = 0x0100000000000000ull,
ic_mask = 0xff000000ffffffffull,
ic_incr = 0x0000000100000000ull
};
template <std::size_t DataSize, std::size_t AlignSize>
struct elem_t {
std::aligned_storage_t<DataSize, AlignSize> data_ {};
std::atomic<rc_t > rc_ { 0 }; // read-counter
std::atomic<flag_t> f_ct_ { 0 }; // commit flag
};
alignas(cache_line_size) std::atomic<circ::u2_t> ct_; // commit index
alignas(cache_line_size) std::atomic<rc_t> epoch_ { 0 };
circ::u2_t cursor() const noexcept {
return ct_.load(std::memory_order_acquire);
}
constexpr static rc_t inc_rc(rc_t rc) noexcept {
return (rc & ic_mask) | ((rc + ic_incr) & ~ic_mask);
}
constexpr static rc_t inc_mask(rc_t rc) noexcept {
return inc_rc(rc) & ~rc_mask;
}
template <typename W, typename F, typename E>
bool push(W* wrapper, F&& f, E* elems) {
E* el;
circ::u2_t cur_ct;
rc_t epoch = epoch_.load(std::memory_order_acquire);
for (unsigned k = 0;;) {
circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
if (cc == 0) return false; // no reader
el = elems + circ::index_of(cur_ct = ct_.load(std::memory_order_relaxed));
// check all consumers have finished reading this element
auto cur_rc = el->rc_.load(std::memory_order_relaxed);
circ::cc_t rem_cc = cur_rc & rc_mask;
if ((cc & rem_cc) && ((cur_rc & ~ep_mask) == epoch)) {
return false; // has not finished yet
}
else if (!rem_cc) {
auto cur_fl = el->f_ct_.load(std::memory_order_acquire);
if ((cur_fl != cur_ct) && cur_fl) {
return false; // full
}
}
// consider rem_cc to be 0 here
if (el->rc_.compare_exchange_weak(
cur_rc, inc_mask(epoch | (cur_rc & ep_mask)) | static_cast<rc_t>(cc), std::memory_order_relaxed) &&
epoch_.compare_exchange_weak(epoch, epoch, std::memory_order_acq_rel)) {
break;
}
ipc::yield(k);
}
// only one thread/process would touch here at one time
ct_.store(cur_ct + 1, std::memory_order_release);
std::forward<F>(f)(&(el->data_));
// set flag & try update wt
el->f_ct_.store(~static_cast<flag_t>(cur_ct), std::memory_order_release);
return true;
}
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&& f, E* elems) {
E* el;
circ::u2_t cur_ct;
rc_t epoch = epoch_.fetch_add(ep_incr, std::memory_order_release) + ep_incr;
for (unsigned k = 0;;) {
circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
if (cc == 0) return false; // no reader
el = elems + circ::index_of(cur_ct = ct_.load(std::memory_order_relaxed));
// check all consumers have finished reading this element
auto cur_rc = el->rc_.load(std::memory_order_acquire);
circ::cc_t rem_cc = cur_rc & rc_mask;
if (cc & rem_cc) {
ipc::log("force_push: k = %u, cc = %u, rem_cc = %u\n", k, cc, rem_cc);
cc = wrapper->elems()->disconnect_receiver(rem_cc); // disconnect all invalid readers
if (cc == 0) return false; // no reader
}
// just compare & exchange
if (el->rc_.compare_exchange_weak(
cur_rc, inc_mask(epoch | (cur_rc & ep_mask)) | static_cast<rc_t>(cc), std::memory_order_relaxed)) {
if (epoch == epoch_.load(std::memory_order_acquire)) {
break;
}
else if (push(wrapper, std::forward<F>(f), elems)) {
return true;
}
epoch = epoch_.fetch_add(ep_incr, std::memory_order_release) + ep_incr;
}
ipc::yield(k);
}
// only one thread/process would touch here at one time
ct_.store(cur_ct + 1, std::memory_order_release);
std::forward<F>(f)(&(el->data_));
// set flag & try update wt
el->f_ct_.store(~static_cast<flag_t>(cur_ct), std::memory_order_release);
return true;
}
template <typename W, typename F, typename R, typename E, std::size_t N>
bool pop(W* wrapper, circ::u2_t& cur, F&& f, R&& out, E(& elems)[N]) {
auto* el = elems + circ::index_of(cur);
auto cur_fl = el->f_ct_.load(std::memory_order_acquire);
if (cur_fl != ~static_cast<flag_t>(cur)) {
return false; // empty
}
++cur;
std::forward<F>(f)(&(el->data_));
for (unsigned k = 0;;) {
auto cur_rc = el->rc_.load(std::memory_order_acquire);
if ((cur_rc & rc_mask) == 0) {
std::forward<R>(out)(true);
el->f_ct_.store(cur + N - 1, std::memory_order_release);
return true;
}
auto nxt_rc = inc_rc(cur_rc) & ~static_cast<rc_t>(wrapper->connected_id());
bool last_one = false;
if ((last_one = (nxt_rc & rc_mask) == 0)) {
el->f_ct_.store(cur + N - 1, std::memory_order_release);
}
if (el->rc_.compare_exchange_weak(cur_rc, nxt_rc, std::memory_order_release)) {
std::forward<R>(out)(last_one);
return true;
}
ipc::yield(k);
}
}
};
} // namespace ipc

查看文件

@@ -1,58 +0,0 @@
The goal of reducing sequential computation also forms the foundation of the Extended Neural GPU \citep{extendedngpu}, ByteNet \citep{NalBytenet2017} and ConvS2S \citep{JonasFaceNet2017}, all of which use convolutional neural networks as basic building block, computing hidden representations in parallel for all input and output positions. In these models, the number of operations required to relate signals from two arbitrary input or output positions grows in the distance between positions, linearly for ConvS2S and logarithmically for ByteNet. This makes it more difficult to learn dependencies between distant positions \citep{hochreiter2001gradient}. In the Transformer this is reduced to a constant number of operations, albeit at the cost of reduced effective resolution due to averaging attention-weighted positions, an effect we counteract with Multi-Head Attention as described in section~\ref{sec:attention}.
Self-attention, sometimes called intra-attention is an attention mechanism relating different positions of a single sequence in order to compute a representation of the sequence. Self-attention has been used successfully in a variety of tasks including reading comprehension, abstractive summarization, textual entailment and learning task-independent sentence representations \citep{cheng2016long, decomposableAttnModel, paulus2017deep, lin2017structured}.
End-to-end memory networks are based on a recurrent attention mechanism instead of sequence-aligned recurrence and have been shown to perform well on simple-language question answering and language modeling tasks \citep{sukhbaatar2015}.
To the best of our knowledge, however, the Transformer is the first transduction model relying entirely on self-attention to compute representations of its input and output without using sequence-aligned RNNs or convolution.
In the following sections, we will describe the Transformer, motivate self-attention and discuss its advantages over models such as \citep{neural_gpu, NalBytenet2017} and \citep{JonasFaceNet2017}.
%\citep{JonasFaceNet2017} report new SOTA on machine translation for English-to-German (EnDe), Enlish-to-French (EnFr) and English-to-Romanian language pairs.
%For example,! in MT, we must draw information from both input and previous output words to translate an output word accurately. An attention layer \citep{bahdanau2014neural} can connect a very large number of positions at low computation cost, making it an essential ingredient in competitive recurrent models for machine translation.
%A natural question to ask then is, "Could we replace recurrence with attention?". \marginpar{Don't know if it's the most natural question to ask given the previous statements. Also, need to say that the complexity table summarizes these statements} Such a model would be blessed with the computational efficiency of attention and the power of cross-positional communication. In this work, show that pure attention models work remarkably well for MT, achieving new SOTA results on EnDe and EnFr, and can be trained in under $2$ days on xyz architecture.
%After the seminal models introduced in \citep{sutskever14, bahdanau2014neural, cho2014learning}, recurrent models have become the dominant solution for both sequence modeling and sequence-to-sequence transduction. Many efforts such as \citep{wu2016google,luong2015effective,jozefowicz2016exploring} have pushed the boundaries of machine translation (MT) and language modeling with recurrent endoder-decoder and recurrent language models. Recent effort \citep{shazeer2017outrageously} has successfully combined the power of conditional computation with sequence models to train very large models for MT, pushing SOTA at lower computational cost.
%Recurrent models compute a vector of hidden states $h_t$, for each time step $t$ of computation. $h_t$ is a function of both the input at time $t$ and the previous hidden state $h_t$. This dependence on the previous hidden state precludes processing all timesteps at once, instead requiring long sequences of sequential operations. In practice, this results in greatly reduced computational efficiency, as on modern computing hardware, a single operation on a large batch is much faster than a large number of operations on small batches. The problem gets worse at longer sequence lengths. Although sequential computation is not a severe bottleneck at inference time, as autoregressively generating each output requires all previous outputs, the inability to compute scores at all output positions at once hinders us from rapidly training our models over large datasets. Although impressive work such as \citep{Kuchaiev2017Factorization} is able to significantly accelerate the training of LSTMs with factorization tricks, we are still bound by the linear dependence on sequence length.
%If the model could compute hidden states at each time step using only the inputs and outputs, it would be liberated from the dependence on results from previous time steps during training. This line of thought is the foundation of recent efforts such as the Markovian neural GPU \citep{neural_gpu}, ByteNet \citep{NalBytenet2017} and ConvS2S \citep{JonasFaceNet2017}, all of which use convolutional neural networks as a building block to compute hidden representations simultaneously for all timesteps, resulting in $O(1)$ sequential time complexity. \citep{JonasFaceNet2017} report new SOTA on machine translation for English-to-German (EnDe), Enlish-to-French (EnFr) and English-to-Romanian language pairs.
%A crucial component for accurate sequence prediction is modeling cross-positional communication. For example, in MT, we must draw information from both input and previous output words to translate an output word accurately. An attention layer \citep{bahdanau2014neural} can connect a very large number of positions at a low computation cost, also $O(1)$ sequential time complexity, making it an essential ingredient in recurrent encoder-decoder architectures for MT. A natural question to ask then is, "Could we replace recurrence with attention?". \marginpar{Don't know if it's the most natural question to ask given the previous statements. Also, need to say that the complexity table summarizes these statements} Such a model would be blessed with the computational efficiency of attention and the power of cross-positional communication. In this work, show that pure attention models work remarkably well for MT, achieving new SOTA results on EnDe and EnFr, and can be trained in under $2$ days on xyz architecture.
%Note: Facebook model is no better than RNNs in this regard, since it requires a number of layers proportional to the distance you want to communicate. Bytenet is more promising, since it requires a logarithmnic number of layers (does bytenet have SOTA results)?
%Note: An attention layer can connect a very large number of positions at a low computation cost in O(1) sequential operations. This is why encoder-decoder attention has been so successful in seq-to-seq models so far. It is only natural, then, to also use attention to connect the timesteps of the same sequence.
%Note: I wouldn't say that long sequences are not a problem during inference. It would be great if we could infer with no long sequences. We could just say later on that, while our training graph is constant-depth, our model still requires sequential operations in the decoder part during inference due to the autoregressive nature of the model.
%\begin{table}[h!]
%\caption{Attention models are quite efficient for cross-positional communications when sequence length is smaller than channel depth. $n$ represents the sequence length and $d$ represents the channel depth.}
%\label{tab:op_complexities}
%\begin{center}
%\vspace{-5pt}
%\scalebox{0.75}{
%\begin{tabular}{l|c|c|c}
%\hline \hline
%Layer Type & Receptive & Complexity & Sequential \\
% & Field & & Operations \\
%\hline
%Pointwise Feed-Forward & $1$ & $O(n \cdot d^2)$ & $O(1)$ \\
%\hline
%Recurrent & $n$ & $O(n \cdot d^2)$ & $O(n)$ \\
%\hline
%Convolutional & $r$ & $O(r \cdot n \cdot d^2)$ & $O(1)$ \\
%\hline
%Convolutional (separable) & $r$ & $O(r \cdot n \cdot d + n %\cdot d^2)$ & $O(1)$ \\
%\hline
%Attention & $r$ & $O(r \cdot n \cdot d)$ & $O(1)$ \\
%\hline \hline
%\end{tabular}
%}
%\end{center}
%\end{table}

查看文件

@@ -1,18 +0,0 @@
Recurrent neural networks, long short-term memory \citep{hochreiter1997} and gated recurrent \citep{gruEval14} neural networks in particular, have been firmly established as state of the art approaches in sequence modeling and transduction problems such as language modeling and machine translation \citep{sutskever14, bahdanau2014neural, cho2014learning}. Numerous efforts have since continued to push the boundaries of recurrent language models and encoder-decoder architectures \citep{wu2016google,luong2015effective,jozefowicz2016exploring}.
Recurrent models typically factor computation along the symbol positions of the input and output sequences. Aligning the positions to steps in computation time, they generate a sequence of hidden states $h_t$, as a function of the previous hidden state $h_{t-1}$ and the input for position $t$. This inherently sequential nature precludes parallelization within training examples, which becomes critical at longer sequence lengths, as memory constraints limit batching across examples.
%\marginpar{not sure if the memory constraints are understandable here}
Recent work has achieved significant improvements in computational efficiency through factorization tricks \citep{Kuchaiev2017Factorization} and conditional computation \citep{shazeer2017outrageously}, while also improving model performance in case of the latter. The fundamental constraint of sequential computation, however, remains.
%\marginpar{@all: there is work on analyzing what attention really does in seq2seq models, couldn't find it right away}
Attention mechanisms have become an integral part of compelling sequence modeling and transduction models in various tasks, allowing modeling of dependencies without regard to their distance in the input or output sequences \citep{bahdanau2014neural, structuredAttentionNetworks}. In all but a few cases \citep{decomposableAttnModel}, however, such attention mechanisms are used in conjunction with a recurrent network.
%\marginpar{not sure if "cross-positional communication" is understandable without explanation}
%\marginpar{insert exact training times and stats for the model that reaches sota earliest, maybe even a single GPU model?}
In this work we propose the Transformer, a model architecture eschewing recurrence and instead relying entirely on an attention mechanism to draw global dependencies between input and output. The Transformer allows for significantly more parallelization and can reach a new state of the art in translation quality after being trained for as little as twelve hours on eight P100 GPUs.
%\marginpar{you removed the constant number of repetitions part. I wrote it because I wanted to make it clear that the model does not only perform attention once, while it's also not recurrent. I thought that might be important to get across early.}
% Just a standard paragraph with citations, rewrite.
%After the seminal papers of \citep{sutskever14}, \citep{bahdanau2014neural}, and \citep{cho2014learning}, recurrent models have become the dominant solution for both sequence modeling and sequence-to-sequence transduction. Many efforts such as \citep{wu2016google,luong2015effective,jozefowicz2016exploring} have pushed the boundaries of machine translation and language modeling with recurrent sequence models. Recent effort \citep{shazeer2017outrageously} has combined the power of conditional computation with sequence models to train very large models for machine translation, pushing SOTA at lower computational cost. Recurrent models compute a vector of hidden states $h_t$, for each time step $t$ of computation. $h_t$ is a function of both the input at time $t$ and the previous hidden state $h_t$. This dependence on the previous hidden state encumbers recurrnet models to process multiple inputs at once, and their time complexity is a linear function of the length of the input and output, both during training and inference. [What I want to say here is that although this is fine during decoding, at training time, we are given both input and output and this linear nature does not allow the RNN to process all inputs and outputs simultaneously and haven't been used on datasets that are the of the scale of the web. What's the largest dataset we have ? . Talk about Nividia and possibly other's effors to speed up things, and possibly other efforts that alleviate this, but are still limited by it's comptuational nature]. Rest of the intro: What if you could construct the state based on the actual inputs and outputs, then you could construct them all at once. This has been the foundation of many promising recent efforts, bytenet,facenet (Also talk about quasi rnn here). Now we talk about attention!! Along with cell architectures such as long short-term meory (LSTM) \citep{hochreiter1997}, and gated recurrent units (GRUs) \citep{cho2014learning}, attention has emerged as an essential ingredient in successful sequence models, in particular for machine translation. In recent years, many, if not all, state-of-the-art (SOTA) results in machine translation have been achieved with attention-based sequence models \citep{wu2016google,luong2015effective,jozefowicz2016exploring}. Talk about the neon work on how it played with attention to do self attention! Then talk about what we do.

查看文件

@@ -1,155 +0,0 @@
\begin{figure}
\centering
\includegraphics[scale=0.6]{Figures/ModalNet-21}
\caption{The Transformer - model architecture.}
\label{fig:model-arch}
\end{figure}
% Although the primary workhorse of our model is attention,
%Our model maintains the encoder-decoder structure that is common to many so-called sequence-to-sequence models \citep{bahdanau2014neural,sutskever14}. As in all such architectures, the encoder computes a representation of the input sequence, and the decoder consumes these representations along with the output tokens to autoregressively produce the output sequence. Where, traditionally, the encoder and decoder contain stacks of recurrent or convolutional layers, our encoder and decoder stacks are composed of attention layers and position-wise feed-forward layers (Figure~\ref{fig:model-arch}). The following sections describe the gross architecture and these particular components in detail.
Most competitive neural sequence transduction models have an encoder-decoder structure \citep{cho2014learning,bahdanau2014neural,sutskever14}. Here, the encoder maps an input sequence of symbol representations $(x_1, ..., x_n)$ to a sequence of continuous representations $\mathbf{z} = (z_1, ..., z_n)$. Given $\mathbf{z}$, the decoder then generates an output sequence $(y_1,...,y_m)$ of symbols one element at a time. At each step the model is auto-regressive \citep{graves2013generating}, consuming the previously generated symbols as additional input when generating the next.
The Transformer follows this overall architecture using stacked self-attention and point-wise, fully connected layers for both the encoder and decoder, shown in the left and right halves of Figure~\ref{fig:model-arch}, respectively.
\subsection{Encoder and Decoder Stacks}
\paragraph{Encoder:}The encoder is composed of a stack of $N=6$ identical layers. Each layer has two sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-wise fully connected feed-forward network. We employ a residual connection \citep{he2016deep} around each of the two sub-layers, followed by layer normalization \cite{layernorm2016}. That is, the output of each sub-layer is $\mathrm{LayerNorm}(x + \mathrm{Sublayer}(x))$, where $\mathrm{Sublayer}(x)$ is the function implemented by the sub-layer itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding layers, produce outputs of dimension $\dmodel=512$.
\paragraph{Decoder:}The decoder is also composed of a stack of $N=6$ identical layers. In addition to the two sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head attention over the output of the encoder stack. Similar to the encoder, we employ residual connections around each of the sub-layers, followed by layer normalization. We also modify the self-attention sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This masking, combined with fact that the output embeddings are offset by one position, ensures that the predictions for position $i$ can depend only on the known outputs at positions less than $i$.
% In our model (Figure~\ref{fig:model-arch}), the encoder and decoder are composed of stacks of alternating self-attention layers (for cross-positional communication) and position-wise feed-forward layers (for in-place computation). In addition, the decoder stack contains encoder-decoder attention layers. Since attention is agnostic to the distances between words, our model requires a "positional encoding" to be added to the encoder and decoder input. The following sections describe all of these components in detail.
\subsection{Attention} \label{sec:attention}
An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is computed as a weighted sum of the values, where the weight assigned to each value is computed by a compatibility function of the query with the corresponding key.
\subsubsection{Scaled Dot-Product Attention} \label{sec:scaled-dot-prod}
% \begin{figure}
% \centering
% \includegraphics[scale=0.6]{Figures/ModalNet-19}
% \caption{Scaled Dot-Product Attention.}
% \label{fig:multi-head-att}
% \end{figure}
We call our particular attention "Scaled Dot-Product Attention" (Figure~\ref{fig:multi-head-att}). The input consists of queries and keys of dimension $d_k$, and values of dimension $d_v$. We compute the dot products of the query with all keys, divide each by $\sqrt{d_k}$, and apply a softmax function to obtain the weights on the values.
In practice, we compute the attention function on a set of queries simultaneously, packed together into a matrix $Q$. The keys and values are also packed together into matrices $K$ and $V$. We compute the matrix of outputs as:
\begin{equation}
\mathrm{Attention}(Q, K, V) = \mathrm{softmax}(\frac{QK^T}{\sqrt{d_k}})V
\end{equation}
The two most commonly used attention functions are additive attention \citep{bahdanau2014neural}, and dot-product (multiplicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor of $\frac{1}{\sqrt{d_k}}$. Additive attention computes the compatibility function using a feed-forward network with a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is much faster and more space-efficient in practice, since it can be implemented using highly optimized matrix multiplication code.
%We scale the dot products by $1/\sqrt{d_k}$ to limit the magnitude of the dot products, which works well in practice. Otherwise, we found applying the softmax to often result in weights very close to 0 or 1, and hence minuscule gradients.
% Already described in the subsequent section
%When used as part of decoder self-attention, an optional mask function is applied just before the softmax to prevent positions from attending to subsequent positions. This mask simply sets the logits corresponding to all illegal connections (those outside of the lower triangle) to $-\infty$.
%\paragraph{Comparison to Additive Attention: } We choose dot product attention over additive attention \citep{bahdanau2014neural} since it can be computed using highly optimized matrix multiplication code. This optimization is particularly important to us, as we employ many attention layers in our model.
While for small values of $d_k$ the two mechanisms perform similarly, additive attention outperforms dot product attention without scaling for larger values of $d_k$ \citep{DBLP:journals/corr/BritzGLL17}. We suspect that for large values of $d_k$, the dot products grow large in magnitude, pushing the softmax function into regions where it has extremely small gradients \footnote{To illustrate why the dot products get large, assume that the components of $q$ and $k$ are independent random variables with mean $0$ and variance $1$. Then their dot product, $q \cdot k = \sum_{i=1}^{d_k} q_ik_i$, has mean $0$ and variance $d_k$.}. To counteract this effect, we scale the dot products by $\frac{1}{\sqrt{d_k}}$.
%We suspect this to be caused by the dot products growing too large in magnitude to result in useful gradients after applying the softmax function. To counteract this, we scale the dot product by $1/\sqrt{d_k}$.
\subsubsection{Multi-Head Attention} \label{sec:multihead}
\begin{figure}
\begin{minipage}[t]{0.5\textwidth}
\centering
Scaled Dot-Product Attention \\
\vspace{0.5cm}
\includegraphics[scale=0.6]{Figures/ModalNet-19}
\end{minipage}
\begin{minipage}[t]{0.5\textwidth}
\centering
Multi-Head Attention \\
\vspace{0.1cm}
\includegraphics[scale=0.6]{Figures/ModalNet-20}
\end{minipage}
% \centering
\caption{(left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers running in parallel.}
\label{fig:multi-head-att}
\end{figure}
Instead of performing a single attention function with $\dmodel$-dimensional keys, values and queries, we found it beneficial to linearly project the queries, keys and values $h$ times with different, learned linear projections to $d_k$, $d_k$ and $d_v$ dimensions, respectively.
On each of these projected versions of queries, keys and values we then perform the attention function in parallel, yielding $d_v$-dimensional output values. These are concatenated and once again projected, resulting in the final values, as depicted in Figure~\ref{fig:multi-head-att}.
Multi-head attention allows the model to jointly attend to information from different representation subspaces at different positions. With a single attention head, averaging inhibits this.
\begin{align*}
\mathrm{MultiHead}(Q, K, V) &= \mathrm{Concat}(\mathrm{head_1}, ..., \mathrm{head_h})W^O\\
% \mathrm{where} \mathrm{head_i} &= \mathrm{Attention}(QW_Q_i^{\dmodel \times d_q}, KW_K_i^{\dmodel \times d_k}, VW^V_i^{\dmodel \times d_v})\\
\text{where}~\mathrm{head_i} &= \mathrm{Attention}(QW^Q_i, KW^K_i, VW^V_i)\\
\end{align*}
Where the projections are parameter matrices $W^Q_i \in \mathbb{R}^{\dmodel \times d_k}$, $W^K_i \in \mathbb{R}^{\dmodel \times d_k}$, $W^V_i \in \mathbb{R}^{\dmodel \times d_v}$ and $W^O \in \mathbb{R}^{hd_v \times \dmodel}$.
%find it better (and no more expensive) to have multiple parallel attention layers (each over the full set of positions) with proportionally lower-dimensional keys, values and queries. We call this "Multi-Head Attention" (Figure~\ref{fig:multi-head-att}). The keys, values, and queries for each of these parallel attention layers are computed by learned linear transformations of the inputs to the multi-head attention. We use different linear transformations across different parallel attention layers. The output of the parallel attention layers are concatenated, and then passed through a final learned linear transformation.
In this work we employ $h=8$ parallel attention layers, or heads. For each of these we use $d_k=d_v=\dmodel/h=64$.
Due to the reduced dimension of each head, the total computational cost is similar to that of single-head attention with full dimensionality.
\subsubsection{Applications of Attention in our Model}
The Transformer uses multi-head attention in three different ways:
\begin{itemize}
\item In "encoder-decoder attention" layers, the queries come from the previous decoder layer, and the memory keys and values come from the output of the encoder. This allows every position in the decoder to attend over all positions in the input sequence. This mimics the typical encoder-decoder attention mechanisms in sequence-to-sequence models such as \citep{wu2016google, bahdanau2014neural,JonasFaceNet2017}.
\item The encoder contains self-attention layers. In a self-attention layer all of the keys, values and queries come from the same place, in this case, the output of the previous layer in the encoder. Each position in the encoder can attend to all positions in the previous layer of the encoder.
\item Similarly, self-attention layers in the decoder allow each position in the decoder to attend to all positions in the decoder up to and including that position. We need to prevent leftward information flow in the decoder to preserve the auto-regressive property. We implement this inside of scaled dot-product attention by masking out (setting to $-\infty$) all values in the input of the softmax which correspond to illegal connections. See Figure~\ref{fig:multi-head-att}.
\end{itemize}
\subsection{Position-wise Feed-Forward Networks}\label{sec:ffn}
In addition to attention sub-layers, each of the layers in our encoder and decoder contains a fully connected feed-forward network, which is applied to each position separately and identically. This consists of two linear transformations with a ReLU activation in between.
\begin{equation}
\mathrm{FFN}(x)=\max(0, xW_1 + b_1) W_2 + b_2
\end{equation}
While the linear transformations are the same across different positions, they use different parameters from layer to layer. Another way of describing this is as two convolutions with kernel size 1. The dimensionality of input and output is $\dmodel=512$, and the inner-layer has dimensionality $d_{ff}=2048$.
%In the appendix, we describe how the position-wise feed-forward network can also be seen as a form of attention.
%from Jakob: The number of operations required for the model to relate signals from two arbitrary input or output positions grows in the distance between positions in input or output, linearly for ConvS2S and logarithmically for ByteNet, making it harder to learn dependencies between these positions \citep{hochreiter2001gradient}. In the transformer this is reduced to a constant number of operations, albeit at the cost of effective resolution caused by averaging attention-weighted positions, an effect we aim to counteract with multi-headed attention.
%Figure~\ref{fig:simple-att} presents a simple attention function, $A$, with a single head, that forms the basis of our multi-head attention. $A$ takes a query key vector $\kq$, matrices of memory keys $\km$ and memory values $\vm$ ,and produces a query value vector $\vq$ as
%\begin{equation*} \label{eq:attention}
% A(\kq, \km, \vm) = {\vm}^T (Softmax(\km \kq).
%\end{equation*}
%We linearly transform $\kq,\,\km$, and $\vm$ with learned matrices ${\Wkq \text{,} \, \Wkm}$, and ${\Wvm}$ before calling the attention function, and transform the output query with $\Wvq$ before handing it to the feed forward layer. Each attention layer has it's own set of transformation matrices, which are shared across all query positions. $A$ is applied in parallel for each query position, and is implemented very efficiently as a batch of matrix multiplies. The self-attention and encoder-decoder attention layers use $A$, but with different arguments. For example, in encdoder self-attention, queries in encoder layer $i$ attention to memories in encoder layer $i-1$. To ensure that decoder self-attention layers do not look at future words, we add $- \inf$ to the softmax logits in positions $j+1$ to query length for query position $l$.
%In simple attention, the query value is a weighted combination of the memory values where the attention weights sum to one. Although this function performs well in practice, the constraint on attention weights can restrict the amount of information that flows from memories to queries because the query cannot focus on multiple memory positions at once, which might be desirable when translating long sequences. \marginpar{@usz, could you think of an example of this ?} We remedy this by maintaining multiple attention heads at each query position that attend to all memory positions in parallel, with a different set of parameters per attention head $h$.
%\marginpar{}
\subsection{Embeddings and Softmax}
Similarly to other sequence transduction models, we use learned embeddings to convert the input tokens and output tokens to vectors of dimension $\dmodel$. We also use the usual learned linear transformation and softmax function to convert the decoder output to predicted next-token probabilities. In our model, we share the same weight matrix between the two embedding layers and the pre-softmax linear transformation, similar to \citep{press2016using}. In the embedding layers, we multiply those weights by $\sqrt{\dmodel}$.
\subsection{Positional Encoding}
Since our model contains no recurrence and no convolution, in order for the model to make use of the order of the sequence, we must inject some information about the relative or absolute position of the tokens in the sequence. To this end, we add "positional encodings" to the input embeddings at the bottoms of the encoder and decoder stacks. The positional encodings have the same dimension $\dmodel$ as the embeddings, so that the two can be summed. There are many choices of positional encodings, learned and fixed \citep{JonasFaceNet2017}.
In this work, we use sine and cosine functions of different frequencies:
\begin{align*}
PE_{(pos,2i)} = sin(pos / 10000^{2i/\dmodel}) \\
PE_{(pos,2i+1)} = cos(pos / 10000^{2i/\dmodel})
\end{align*}
where $pos$ is the position and $i$ is the dimension. That is, each dimension of the positional encoding corresponds to a sinusoid. The wavelengths form a geometric progression from $2\pi$ to $10000 \cdot 2\pi$. We chose this function because we hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset $k$, $PE_{pos+k}$ can be represented as a linear function of $PE_{pos}$.
We also experimented with using learned positional embeddings \citep{JonasFaceNet2017} instead, and found that the two versions produced nearly identical results (see Table~\ref{tab:variations} row (E)). We chose the sinusoidal version because it may allow the model to extrapolate to sequence lengths longer than the ones encountered during training.

查看文件

@@ -1,45 +0,0 @@
\pagebreak
\section*{Two Feed-Forward Layers = Attention over Parameters}\label{sec:parameter_attention}
In addition to attention layers, our model contains position-wise feed-forward networks (Section \ref{sec:ffn}), which consist of two linear transformations with a ReLU activation in between. In fact, these networks too can be seen as a form of attention. Compare the formula for such a network with the formula for a simple dot-product attention layer (biases and scaling factors omitted):
\begin{align*}
FFN(x, W_1, W_2) = ReLU(xW_1)W_2 \\
A(q, K, V) = Softmax(qK^T)V
\end{align*}
Based on the similarity of these formulae, the two-layer feed-forward network can be seen as a kind of attention, where the keys and values are the rows of the trainable parameter matrices $W_1$ and $W_2$, and where we use ReLU instead of Softmax in the compatibility function.
%the compatablity function is $compat(q, k_i) = ReLU(q \cdot k_i)$ instead of $Softmax(qK_T)_i$.
Given this similarity, we experimented with replacing the position-wise feed-forward networks with attention layers similar to the ones we use everywhere else our model. The multi-head-attention-over-parameters sublayer is identical to the multi-head attention described in \ref{sec:multihead}, except that the "keys" and "values" inputs to each attention head are trainable model parameters, as opposed to being linear projections of a previous layer. These parameters are scaled up by a factor of $\sqrt{d_{model}}$ in order to be more similar to activations.
In our first experiment, we replaced each position-wise feed-forward network with a multi-head-attention-over-parameters sublayer with $h_p=8$ heads, key-dimensionality $d_{pk}=64$, and value-dimensionality $d_{pv}=64$, using $n_p=1536$ key-value pairs for each attention head. The sublayer has a total of $2097152$ parameters, including the parameters in the query projection and the output projection. This matches the number of parameters in the position-wise feed-forward network that we replaced. While the theoretical amount of computation is also the same, in practice, the attention version caused the step times to be about 30\% longer.
In our second experiment, we used $h_p=8$ heads, and $n_p=512$ key-value pairs for each attention head, again matching the total number of parameters in the base model.
Results for the first experiment were slightly worse than for the base model, and results for the second experiment were slightly better, see Table~\ref{tab:parameter_attention}.
\begin{table}[h]
\caption{Replacing the position-wise feed-forward networks with multihead-attention-over-parameters produces similar results to the base model. All metrics are on the English-to-German translation development set, newstest2013.}
\label{tab:parameter_attention}
\begin{center}
\vspace{-2mm}
%\scalebox{1.0}{
\begin{tabular}{c|cccccc|cccc}
\hline\rule{0pt}{2.0ex}
& \multirow{2}{*}{$\dmodel$} & \multirow{2}{*}{$\dff$} &
\multirow{2}{*}{$h_p$} & \multirow{2}{*}{$d_{pk}$} & \multirow{2}{*}{$d_{pv}$} &
\multirow{2}{*}{$n_p$} &
PPL & BLEU & params & training\\
& & & & & & & (dev) & (dev) & $\times10^6$ & time \\
\hline\rule{0pt}{2.0ex}
base & 512 & 2048 & & & & & 4.92 & 25.8 & 65 & 12 hours\\
\hline\rule{0pt}{2.0ex}
AOP$_1$ & 512 & & 8 & 64 & 64 & 1536 & 4.92& 25.5 & 65 & 16 hours\\
AOP$_2$ & 512 & & 16 & 64 & 64 & 512 & \textbf{4.86} & \textbf{25.9} & 65 & 16 hours \\
\hline
\end{tabular}
%}
\end{center}
\end{table}

查看文件

@@ -1,8 +0,0 @@
chatgpt的老祖宗《Attention is all you need》
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin
真实的摘要如下
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.
https://arxiv.org/abs/1706.03762

查看文件

@@ -1,2 +0,0 @@
from stable_baselines3.dqn.dqn import DQN
from stable_baselines3.dqn.policies import CnnPolicy, MlpPolicy

查看文件

@@ -1,245 +0,0 @@
from typing import Any, Dict, List, Optional, Tuple, Type, Union
import gym
import numpy as np
import torch as th
from torch.nn import functional as F
from stable_baselines3.common import logger
from stable_baselines3.common.off_policy_algorithm import OffPolicyAlgorithm
from stable_baselines3.common.preprocessing import maybe_transpose
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule
from stable_baselines3.common.utils import get_linear_fn, is_vectorized_observation, polyak_update
from stable_baselines3.dqn.policies import DQNPolicy
class DQN(OffPolicyAlgorithm):
"""
Deep Q-Network (DQN)
Paper: https://arxiv.org/abs/1312.5602, https://www.nature.com/articles/nature14236
Default hyperparameters are taken from the nature paper,
except for the optimizer and learning rate that were taken from Stable Baselines defaults.
:param policy: The policy model to use (MlpPolicy, CnnPolicy, ...)
:param env: The environment to learn from (if registered in Gym, can be str)
:param learning_rate: The learning rate, it can be a function
of the current progress remaining (from 1 to 0)
:param buffer_size: size of the replay buffer
:param learning_starts: how many steps of the model to collect transitions for before learning starts
:param batch_size: Minibatch size for each gradient update
:param tau: the soft update coefficient ("Polyak update", between 0 and 1) default 1 for hard update
:param gamma: the discount factor
:param train_freq: Update the model every ``train_freq`` steps. Alternatively pass a tuple of frequency and unit
like ``(5, "step")`` or ``(2, "episode")``.
:param gradient_steps: How many gradient steps to do after each rollout (see ``train_freq``)
Set to ``-1`` means to do as many gradient steps as steps done in the environment
during the rollout.
:param optimize_memory_usage: Enable a memory efficient variant of the replay buffer
at a cost of more complexity.
See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195
:param target_update_interval: update the target network every ``target_update_interval``
environment steps.
:param exploration_fraction: fraction of entire training period over which the exploration rate is reduced
:param exploration_initial_eps: initial value of random action probability
:param exploration_final_eps: final value of random action probability
:param max_grad_norm: The maximum value for the gradient clipping
:param tensorboard_log: the log location for tensorboard (if None, no logging)
:param create_eval_env: Whether to create a second environment that will be
used for evaluating the agent periodically. (Only available when passing string for the environment)
:param policy_kwargs: additional arguments to be passed to the policy on creation
:param verbose: the verbosity level: 0 no output, 1 info, 2 debug
:param seed: Seed for the pseudo random generators
:param device: Device (cpu, cuda, ...) on which the code should be run.
Setting it to auto, the code will be run on the GPU if possible.
:param _init_setup_model: Whether or not to build the network at the creation of the instance
"""
def __init__(
self,
policy: Union[str, Type[DQNPolicy]],
env: Union[GymEnv, str],
learning_rate: Union[float, Schedule] = 1e-4,
buffer_size: int = 1000000,
learning_starts: int = 50000,
batch_size: Optional[int] = 32,
tau: float = 1.0,
gamma: float = 0.99,
train_freq: Union[int, Tuple[int, str]] = 4,
gradient_steps: int = 1,
optimize_memory_usage: bool = False,
target_update_interval: int = 10000,
exploration_fraction: float = 0.1,
exploration_initial_eps: float = 1.0,
exploration_final_eps: float = 0.05,
max_grad_norm: float = 10,
tensorboard_log: Optional[str] = None,
create_eval_env: bool = False,
policy_kwargs: Optional[Dict[str, Any]] = None,
verbose: int = 0,
seed: Optional[int] = None,
device: Union[th.device, str] = "auto",
_init_setup_model: bool = True,
):
super(DQN, self).__init__(
policy,
env,
DQNPolicy,
learning_rate,
buffer_size,
learning_starts,
batch_size,
tau,
gamma,
train_freq,
gradient_steps,
action_noise=None, # No action noise
policy_kwargs=policy_kwargs,
tensorboard_log=tensorboard_log,
verbose=verbose,
device=device,
create_eval_env=create_eval_env,
seed=seed,
sde_support=False,
optimize_memory_usage=optimize_memory_usage,
supported_action_spaces=(gym.spaces.Discrete,),
)
self.exploration_initial_eps = exploration_initial_eps
self.exploration_final_eps = exploration_final_eps
self.exploration_fraction = exploration_fraction
self.target_update_interval = target_update_interval
self.max_grad_norm = max_grad_norm
# "epsilon" for the epsilon-greedy exploration
self.exploration_rate = 0.0
# Linear schedule will be defined in `_setup_model()`
self.exploration_schedule = None
self.q_net, self.q_net_target = None, None
if _init_setup_model:
self._setup_model()
def _setup_model(self) -> None:
super(DQN, self)._setup_model()
self._create_aliases()
self.exploration_schedule = get_linear_fn(
self.exploration_initial_eps, self.exploration_final_eps, self.exploration_fraction
)
def _create_aliases(self) -> None:
self.q_net = self.policy.q_net
self.q_net_target = self.policy.q_net_target
def _on_step(self) -> None:
"""
Update the exploration rate and target network if needed.
This method is called in ``collect_rollouts()`` after each step in the environment.
"""
if self.num_timesteps % self.target_update_interval == 0:
polyak_update(self.q_net.parameters(), self.q_net_target.parameters(), self.tau)
self.exploration_rate = self.exploration_schedule(self._current_progress_remaining)
logger.record("rollout/exploration rate", self.exploration_rate)
def train(self, gradient_steps: int, batch_size: int = 100) -> None:
# Update learning rate according to schedule
self._update_learning_rate(self.policy.optimizer)
losses = []
for _ in range(gradient_steps):
# Sample replay buffer
replay_data = self.replay_buffer.sample(batch_size, env=self._vec_normalize_env)
with th.no_grad():
# Compute the next Q-values using the target network
next_q_values = self.q_net_target(replay_data.next_observations)
# Follow greedy policy: use the one with the highest value
next_q_values, _ = next_q_values.max(dim=1)
# Avoid potential broadcast issue
next_q_values = next_q_values.reshape(-1, 1)
# 1-step TD target
target_q_values = replay_data.rewards + (1 - replay_data.dones) * self.gamma * next_q_values
# Get current Q-values estimates
current_q_values = self.q_net(replay_data.observations)
# Retrieve the q-values for the actions from the replay buffer
current_q_values = th.gather(current_q_values, dim=1, index=replay_data.actions.long())
# Compute Huber loss (less sensitive to outliers)
loss = F.smooth_l1_loss(current_q_values, target_q_values)
losses.append(loss.item())
# Optimize the policy
self.policy.optimizer.zero_grad()
loss.backward()
# Clip gradient norm
th.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm)
self.policy.optimizer.step()
# Increase update counter
self._n_updates += gradient_steps
logger.record("train/n_updates", self._n_updates, exclude="tensorboard")
logger.record("train/loss", np.mean(losses))
def predict(
self,
observation: np.ndarray,
state: Optional[np.ndarray] = None,
mask: Optional[np.ndarray] = None,
deterministic: bool = False,
) -> Tuple[np.ndarray, Optional[np.ndarray]]:
"""
Overrides the base_class predict function to include epsilon-greedy exploration.
:param observation: the input observation
:param state: The last states (can be None, used in recurrent policies)
:param mask: The last masks (can be None, used in recurrent policies)
:param deterministic: Whether or not to return deterministic actions.
:return: the model's action and the next state
(used in recurrent policies)
"""
if not deterministic and np.random.rand() < self.exploration_rate:
if is_vectorized_observation(maybe_transpose(observation, self.observation_space), self.observation_space):
n_batch = observation.shape[0]
action = np.array([self.action_space.sample() for _ in range(n_batch)])
else:
action = np.array(self.action_space.sample())
else:
action, state = self.policy.predict(observation, state, mask, deterministic)
return action, state
def learn(
self,
total_timesteps: int,
callback: MaybeCallback = None,
log_interval: int = 4,
eval_env: Optional[GymEnv] = None,
eval_freq: int = -1,
n_eval_episodes: int = 5,
tb_log_name: str = "DQN",
eval_log_path: Optional[str] = None,
reset_num_timesteps: bool = True,
) -> OffPolicyAlgorithm:
return super(DQN, self).learn(
total_timesteps=total_timesteps,
callback=callback,
log_interval=log_interval,
eval_env=eval_env,
eval_freq=eval_freq,
n_eval_episodes=n_eval_episodes,
tb_log_name=tb_log_name,
eval_log_path=eval_log_path,
reset_num_timesteps=reset_num_timesteps,
)
def _excluded_save_params(self) -> List[str]:
return super(DQN, self)._excluded_save_params() + ["q_net", "q_net_target"]
def _get_torch_save_params(self) -> Tuple[List[str], List[str]]:
state_dicts = ["policy", "policy.optimizer"]
return state_dicts, []

查看文件

@@ -1,237 +0,0 @@
from typing import Any, Dict, List, Optional, Type
import gym
import torch as th
from torch import nn
from stable_baselines3.common.policies import BasePolicy, register_policy
from stable_baselines3.common.torch_layers import BaseFeaturesExtractor, FlattenExtractor, NatureCNN, create_mlp
from stable_baselines3.common.type_aliases import Schedule
class QNetwork(BasePolicy):
"""
Action-Value (Q-Value) network for DQN
:param observation_space: Observation space
:param action_space: Action space
:param net_arch: The specification of the policy and value networks.
:param activation_fn: Activation function
:param normalize_images: Whether to normalize images or not,
dividing by 255.0 (True by default)
"""
def __init__(
self,
observation_space: gym.spaces.Space,
action_space: gym.spaces.Space,
features_extractor: nn.Module,
features_dim: int,
net_arch: Optional[List[int]] = None,
activation_fn: Type[nn.Module] = nn.ReLU,
normalize_images: bool = True,
):
super(QNetwork, self).__init__(
observation_space,
action_space,
features_extractor=features_extractor,
normalize_images=normalize_images,
)
if net_arch is None:
net_arch = [64, 64]
self.net_arch = net_arch
self.activation_fn = activation_fn
self.features_extractor = features_extractor
self.features_dim = features_dim
self.normalize_images = normalize_images
action_dim = self.action_space.n # number of actions
q_net = create_mlp(self.features_dim, action_dim, self.net_arch, self.activation_fn)
self.q_net = nn.Sequential(*q_net)
def forward(self, obs: th.Tensor) -> th.Tensor:
"""
Predict the q-values.
:param obs: Observation
:return: The estimated Q-Value for each action.
"""
return self.q_net(self.extract_features(obs))
def _predict(self, observation: th.Tensor, deterministic: bool = True) -> th.Tensor:
q_values = self.forward(observation)
# Greedy action
action = q_values.argmax(dim=1).reshape(-1)
return action
def _get_constructor_parameters(self) -> Dict[str, Any]:
data = super()._get_constructor_parameters()
data.update(
dict(
net_arch=self.net_arch,
features_dim=self.features_dim,
activation_fn=self.activation_fn,
features_extractor=self.features_extractor,
)
)
return data
class DQNPolicy(BasePolicy):
"""
Policy class with Q-Value Net and target net for DQN
:param observation_space: Observation space
:param action_space: Action space
:param lr_schedule: Learning rate schedule (could be constant)
:param net_arch: The specification of the policy and value networks.
:param activation_fn: Activation function
:param features_extractor_class: Features extractor to use.
:param features_extractor_kwargs: Keyword arguments
to pass to the features extractor.
:param normalize_images: Whether to normalize images or not,
dividing by 255.0 (True by default)
:param optimizer_class: The optimizer to use,
``th.optim.Adam`` by default
:param optimizer_kwargs: Additional keyword arguments,
excluding the learning rate, to pass to the optimizer
"""
def __init__(
self,
observation_space: gym.spaces.Space,
action_space: gym.spaces.Space,
lr_schedule: Schedule,
net_arch: Optional[List[int]] = None,
activation_fn: Type[nn.Module] = nn.ReLU,
features_extractor_class: Type[BaseFeaturesExtractor] = FlattenExtractor,
features_extractor_kwargs: Optional[Dict[str, Any]] = None,
normalize_images: bool = True,
optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam,
optimizer_kwargs: Optional[Dict[str, Any]] = None,
):
super(DQNPolicy, self).__init__(
observation_space,
action_space,
features_extractor_class,
features_extractor_kwargs,
optimizer_class=optimizer_class,
optimizer_kwargs=optimizer_kwargs,
)
if net_arch is None:
if features_extractor_class == FlattenExtractor:
net_arch = [64, 64]
else:
net_arch = []
self.net_arch = net_arch
self.activation_fn = activation_fn
self.normalize_images = normalize_images
self.net_args = {
"observation_space": self.observation_space,
"action_space": self.action_space,
"net_arch": self.net_arch,
"activation_fn": self.activation_fn,
"normalize_images": normalize_images,
}
self.q_net, self.q_net_target = None, None
self._build(lr_schedule)
def _build(self, lr_schedule: Schedule) -> None:
"""
Create the network and the optimizer.
:param lr_schedule: Learning rate schedule
lr_schedule(1) is the initial learning rate
"""
self.q_net = self.make_q_net()
self.q_net_target = self.make_q_net()
self.q_net_target.load_state_dict(self.q_net.state_dict())
# Setup optimizer with initial learning rate
self.optimizer = self.optimizer_class(self.parameters(), lr=lr_schedule(1), **self.optimizer_kwargs)
def make_q_net(self) -> QNetwork:
# Make sure we always have separate networks for features extractors etc
net_args = self._update_features_extractor(self.net_args, features_extractor=None)
return QNetwork(**net_args).to(self.device)
def forward(self, obs: th.Tensor, deterministic: bool = True) -> th.Tensor:
return self._predict(obs, deterministic=deterministic)
def _predict(self, obs: th.Tensor, deterministic: bool = True) -> th.Tensor:
return self.q_net._predict(obs, deterministic=deterministic)
def _get_constructor_parameters(self) -> Dict[str, Any]:
data = super()._get_constructor_parameters()
data.update(
dict(
net_arch=self.net_args["net_arch"],
activation_fn=self.net_args["activation_fn"],
lr_schedule=self._dummy_schedule, # dummy lr schedule, not needed for loading policy alone
optimizer_class=self.optimizer_class,
optimizer_kwargs=self.optimizer_kwargs,
features_extractor_class=self.features_extractor_class,
features_extractor_kwargs=self.features_extractor_kwargs,
)
)
return data
MlpPolicy = DQNPolicy
class CnnPolicy(DQNPolicy):
"""
Policy class for DQN when using images as input.
:param observation_space: Observation space
:param action_space: Action space
:param lr_schedule: Learning rate schedule (could be constant)
:param net_arch: The specification of the policy and value networks.
:param activation_fn: Activation function
:param features_extractor_class: Features extractor to use.
:param normalize_images: Whether to normalize images or not,
dividing by 255.0 (True by default)
:param optimizer_class: The optimizer to use,
``th.optim.Adam`` by default
:param optimizer_kwargs: Additional keyword arguments,
excluding the learning rate, to pass to the optimizer
"""
def __init__(
self,
observation_space: gym.spaces.Space,
action_space: gym.spaces.Space,
lr_schedule: Schedule,
net_arch: Optional[List[int]] = None,
activation_fn: Type[nn.Module] = nn.ReLU,
features_extractor_class: Type[BaseFeaturesExtractor] = NatureCNN,
features_extractor_kwargs: Optional[Dict[str, Any]] = None,
normalize_images: bool = True,
optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam,
optimizer_kwargs: Optional[Dict[str, Any]] = None,
):
super(CnnPolicy, self).__init__(
observation_space,
action_space,
lr_schedule,
net_arch,
activation_fn,
features_extractor_class,
features_extractor_kwargs,
normalize_images,
optimizer_class,
optimizer_kwargs,
)
register_policy("MlpPolicy", MlpPolicy)
register_policy("CnnPolicy", CnnPolicy)

查看文件

@@ -1,2 +0,0 @@
github stablebaseline3
https://github.com/DLR-RM/stable-baselines3

查看文件

@@ -1,27 +0,0 @@
"In practice, we found that a high-entropy initial state is more likely to increase the speed of training.
The entropy is calculated by:
$$H=-\sum_{k= 1}^{n_k} p(k) \cdot \log p(k), p(k)=\frac{|A_k|}{|\mathcal{A}|}$$
where $H$ is the entropy, $|A_k|$ is the number of agent nodes in $k$-th cluster, $|\mathcal{A}|$ is the total number of agents.
To ensure the Cooperation Graph initialization has higher entropy,
we will randomly generate multiple initial states,
rank by their entropy and then pick the one with maximum $H$."
```
FROM ubuntu:latest
RUN apt-get update && \
apt-get install -y python3 python3-pip && \
rm -rf /var/lib/apt/lists/*
RUN echo '[global]' > /etc/pip.conf && \
echo 'index-url = https://mirrors.aliyun.com/pypi/simple/' >> /etc/pip.conf && \
echo 'trusted-host = mirrors.aliyun.com' >> /etc/pip.conf
RUN pip3 install gradio requests[socks] mdtex2html
COPY . /gpt
WORKDIR /gpt
CMD ["python3", "main.py"]
```

查看文件

查看文件

@@ -0,0 +1,70 @@
# From project chatglm-langchain
from langchain.document_loaders import UnstructuredFileLoader
from langchain.text_splitter import CharacterTextSplitter
import re
from typing import List
class ChineseTextSplitter(CharacterTextSplitter):
def __init__(self, pdf: bool = False, sentence_size: int = None, **kwargs):
super().__init__(**kwargs)
self.pdf = pdf
self.sentence_size = sentence_size
def split_text1(self, text: str) -> List[str]:
if self.pdf:
text = re.sub(r"\n{3,}", "\n", text)
text = re.sub('\s', ' ', text)
text = text.replace("\n\n", "")
sent_sep_pattern = re.compile('([﹒﹔﹖﹗.。!?]["’”」』]{0,2}|(?=["‘“「『]{1,2}|$))') # del :;
sent_list = []
for ele in sent_sep_pattern.split(text):
if sent_sep_pattern.match(ele) and sent_list:
sent_list[-1] += ele
elif ele:
sent_list.append(ele)
return sent_list
def split_text(self, text: str) -> List[str]: ##此处需要进一步优化逻辑
if self.pdf:
text = re.sub(r"\n{3,}", r"\n", text)
text = re.sub('\s', " ", text)
text = re.sub("\n\n", "", text)
text = re.sub(r'([;;.!?。!?\?])([^”’])', r"\1\n\2", text) # 单字符断句符
text = re.sub(r'(\.{6})([^"’”」』])', r"\1\n\2", text) # 英文省略号
text = re.sub(r'(\{2})([^"’”」』])', r"\1\n\2", text) # 中文省略号
text = re.sub(r'([;;!?。!?\?]["’”」』]{0,2})([^;;!?,。!?\?])', r'\1\n\2', text)
# 如果双引号前有终止符,那么双引号才是句子的终点,把分句符\n放到双引号后,注意前面的几句都小心保留了双引号
text = text.rstrip() # 段尾如果有多余的\n就去掉它
# 很多规则中会考虑分号;,但是这里我把它忽略不计,破折号、英文双引号等同样忽略,需要的再做些简单调整即可。
ls = [i for i in text.split("\n") if i]
for ele in ls:
if len(ele) > self.sentence_size:
ele1 = re.sub(r'([,,.]["’”」』]{0,2})([^,,.])', r'\1\n\2', ele)
ele1_ls = ele1.split("\n")
for ele_ele1 in ele1_ls:
if len(ele_ele1) > self.sentence_size:
ele_ele2 = re.sub(r'([\n]{1,}| {2,}["’”」』]{0,2})([^\s])', r'\1\n\2', ele_ele1)
ele2_ls = ele_ele2.split("\n")
for ele_ele2 in ele2_ls:
if len(ele_ele2) > self.sentence_size:
ele_ele3 = re.sub('( ["’”」』]{0,2})([^ ])', r'\1\n\2', ele_ele2)
ele2_id = ele2_ls.index(ele_ele2)
ele2_ls = ele2_ls[:ele2_id] + [i for i in ele_ele3.split("\n") if i] + ele2_ls[
ele2_id + 1:]
ele_id = ele1_ls.index(ele_ele1)
ele1_ls = ele1_ls[:ele_id] + [i for i in ele2_ls if i] + ele1_ls[ele_id + 1:]
id = ls.index(ele)
ls = ls[:id] + [i for i in ele1_ls if i] + ls[id + 1:]
return ls
def load_file(filepath, sentence_size):
loader = UnstructuredFileLoader(filepath, mode="elements")
textsplitter = ChineseTextSplitter(pdf=False, sentence_size=sentence_size)
docs = loader.load_and_split(text_splitter=textsplitter)
# write_check_file(filepath, docs)
return docs

查看文件

@@ -0,0 +1,339 @@
# From project chatglm-langchain
import os
import os
import uuid
import tqdm
import shutil
import threading
import numpy as np
from toolbox import Singleton
from loguru import logger
from langchain.vectorstores import FAISS
from langchain.docstore.document import Document
from typing import List, Tuple
from crazy_functions.vector_fns.general_file_loader import load_file
embedding_model_dict = {
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
"ernie-base": "nghuyong/ernie-3.0-base-zh",
"text2vec-base": "shibing624/text2vec-base-chinese",
"text2vec": "GanymedeNil/text2vec-large-chinese",
}
# Embedding model name
EMBEDDING_MODEL = "text2vec"
# Embedding running device
EMBEDDING_DEVICE = "cpu"
# 基于上下文的prompt模版,请务必保留"{question}"和"{context}"
PROMPT_TEMPLATE = """已知信息:
{context}
根据上述已知信息,简洁和专业的来回答用户的问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题” 或 “没有提供足够的相关信息”,不允许在答案中添加编造成分,答案请使用中文。 问题是:{question}"""
# 文本分句长度
SENTENCE_SIZE = 100
# 匹配后单段上下文长度
CHUNK_SIZE = 250
# LLM input history length
LLM_HISTORY_LEN = 3
# return top-k text chunk from vector store
VECTOR_SEARCH_TOP_K = 5
# 知识检索内容相关度 Score, 数值范围约为0-1100,如果为0,则不生效,经测试设置为小于500时,匹配结果更精准
VECTOR_SEARCH_SCORE_THRESHOLD = 0
NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data")
FLAG_USER_NAME = uuid.uuid4().hex
# 是否开启跨域,默认为False,如果需要开启,请设置为True
# is open cross domain
OPEN_CROSS_DOMAIN = False
def similarity_search_with_score_by_vector(
self, embedding: List[float], k: int = 4
) -> List[Tuple[Document, float]]:
def seperate_list(ls: List[int]) -> List[List[int]]:
lists = []
ls1 = [ls[0]]
for i in range(1, len(ls)):
if ls[i - 1] + 1 == ls[i]:
ls1.append(ls[i])
else:
lists.append(ls1)
ls1 = [ls[i]]
lists.append(ls1)
return lists
scores, indices = self.index.search(np.array([embedding], dtype=np.float32), k)
docs = []
id_set = set()
store_len = len(self.index_to_docstore_id)
for j, i in enumerate(indices[0]):
if i == -1 or 0 < self.score_threshold < scores[0][j]:
# This happens when not enough docs are returned.
continue
_id = self.index_to_docstore_id[i]
doc = self.docstore.search(_id)
if not self.chunk_conent:
if not isinstance(doc, Document):
raise ValueError(f"Could not find document for id {_id}, got {doc}")
doc.metadata["score"] = int(scores[0][j])
docs.append(doc)
continue
id_set.add(i)
docs_len = len(doc.page_content)
for k in range(1, max(i, store_len - i)):
break_flag = False
for l in [i + k, i - k]:
if 0 <= l < len(self.index_to_docstore_id):
_id0 = self.index_to_docstore_id[l]
doc0 = self.docstore.search(_id0)
if docs_len + len(doc0.page_content) > self.chunk_size:
break_flag = True
break
elif doc0.metadata["source"] == doc.metadata["source"]:
docs_len += len(doc0.page_content)
id_set.add(l)
if break_flag:
break
if not self.chunk_conent:
return docs
if len(id_set) == 0 and self.score_threshold > 0:
return []
id_list = sorted(list(id_set))
id_lists = seperate_list(id_list)
for id_seq in id_lists:
for id in id_seq:
if id == id_seq[0]:
_id = self.index_to_docstore_id[id]
doc = self.docstore.search(_id)
else:
_id0 = self.index_to_docstore_id[id]
doc0 = self.docstore.search(_id0)
doc.page_content += " " + doc0.page_content
if not isinstance(doc, Document):
raise ValueError(f"Could not find document for id {_id}, got {doc}")
doc_score = min([scores[0][id] for id in [indices[0].tolist().index(i) for i in id_seq if i in indices[0]]])
doc.metadata["score"] = int(doc_score)
docs.append(doc)
return docs
class LocalDocQA:
llm: object = None
embeddings: object = None
top_k: int = VECTOR_SEARCH_TOP_K
chunk_size: int = CHUNK_SIZE
chunk_conent: bool = True
score_threshold: int = VECTOR_SEARCH_SCORE_THRESHOLD
def init_cfg(self,
top_k=VECTOR_SEARCH_TOP_K,
):
self.llm = None
self.top_k = top_k
def init_knowledge_vector_store(self,
filepath,
vs_path: str or os.PathLike = None,
sentence_size=SENTENCE_SIZE,
text2vec=None):
loaded_files = []
failed_files = []
if isinstance(filepath, str):
if not os.path.exists(filepath):
logger.error("路径不存在")
return None
elif os.path.isfile(filepath):
file = os.path.split(filepath)[-1]
try:
docs = load_file(filepath, SENTENCE_SIZE)
logger.info(f"{file} 已成功加载")
loaded_files.append(filepath)
except Exception as e:
logger.error(e)
logger.error(f"{file} 未能成功加载")
return None
elif os.path.isdir(filepath):
docs = []
for file in tqdm(os.listdir(filepath), desc="加载文件"):
fullfilepath = os.path.join(filepath, file)
try:
docs += load_file(fullfilepath, SENTENCE_SIZE)
loaded_files.append(fullfilepath)
except Exception as e:
logger.error(e)
failed_files.append(file)
if len(failed_files) > 0:
logger.error("以下文件未能成功加载:")
for file in failed_files:
logger.error(f"{file}\n")
else:
docs = []
for file in filepath:
docs += load_file(file, SENTENCE_SIZE)
logger.info(f"{file} 已成功加载")
loaded_files.append(file)
if len(docs) > 0:
logger.info("文件加载完毕,正在生成向量库")
if vs_path and os.path.isdir(vs_path):
try:
self.vector_store = FAISS.load_local(vs_path, text2vec)
self.vector_store.add_documents(docs)
except:
self.vector_store = FAISS.from_documents(docs, text2vec)
else:
self.vector_store = FAISS.from_documents(docs, text2vec) # docs 为Document列表
self.vector_store.save_local(vs_path)
return vs_path, loaded_files
else:
raise RuntimeError("文件加载失败,请检查文件格式是否正确")
def get_loaded_file(self, vs_path):
ds = self.vector_store.docstore
return set([ds._dict[k].metadata['source'].split(vs_path)[-1] for k in ds._dict])
# query 查询内容
# vs_path 知识库路径
# chunk_conent 是否启用上下文关联
# score_threshold 搜索匹配score阈值
# vector_search_top_k 搜索知识库内容条数,默认搜索5条结果
# chunk_sizes 匹配单段内容的连接上下文长度
def get_knowledge_based_conent_test(self, query, vs_path, chunk_conent,
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
vector_search_top_k=VECTOR_SEARCH_TOP_K, chunk_size=CHUNK_SIZE,
text2vec=None):
self.vector_store = FAISS.load_local(vs_path, text2vec)
self.vector_store.chunk_conent = chunk_conent
self.vector_store.score_threshold = score_threshold
self.vector_store.chunk_size = chunk_size
embedding = self.vector_store.embedding_function.embed_query(query)
related_docs_with_score = similarity_search_with_score_by_vector(self.vector_store, embedding, k=vector_search_top_k)
if not related_docs_with_score:
response = {"query": query,
"source_documents": []}
return response, ""
# prompt = f"{query}. You should answer this question using information from following documents: \n\n"
prompt = f"{query}. 你必须利用以下文档中包含的信息回答这个问题: \n\n---\n\n"
prompt += "\n\n".join([f"({k}): " + doc.page_content for k, doc in enumerate(related_docs_with_score)])
prompt += "\n\n---\n\n"
prompt = prompt.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
# logger.info(prompt)
response = {"query": query, "source_documents": related_docs_with_score}
return response, prompt
def construct_vector_store(vs_id, vs_path, files, sentence_size, history, one_conent, one_content_segmentation, text2vec):
for file in files:
assert os.path.exists(file), "输入文件不存在:" + file
import nltk
if NLTK_DATA_PATH not in nltk.data.path: nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path
local_doc_qa = LocalDocQA()
local_doc_qa.init_cfg()
filelist = []
if not os.path.exists(os.path.join(vs_path, vs_id)):
os.makedirs(os.path.join(vs_path, vs_id))
for file in files:
file_name = file.name if not isinstance(file, str) else file
filename = os.path.split(file_name)[-1]
shutil.copyfile(file_name, os.path.join(vs_path, vs_id, filename))
filelist.append(os.path.join(vs_path, vs_id, filename))
vs_path, loaded_files = local_doc_qa.init_knowledge_vector_store(filelist, os.path.join(vs_path, vs_id), sentence_size, text2vec)
if len(loaded_files):
file_status = f"已添加 {''.join([os.path.split(i)[-1] for i in loaded_files if i])} 内容至知识库,并已加载知识库,请开始提问"
else:
pass
# file_status = "文件未成功加载,请重新上传文件"
# logger.info(file_status)
return local_doc_qa, vs_path
@Singleton
class knowledge_archive_interface():
def __init__(self) -> None:
self.threadLock = threading.Lock()
self.current_id = ""
self.kai_path = None
self.qa_handle = None
self.text2vec_large_chinese = None
def get_chinese_text2vec(self):
if self.text2vec_large_chinese is None:
# < -------------------预热文本向量化模组--------------- >
from toolbox import ProxyNetworkActivate
logger.info('Checking Text2vec ...')
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
self.text2vec_large_chinese = HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
return self.text2vec_large_chinese
def feed_archive(self, file_manifest, vs_path, id="default"):
self.threadLock.acquire()
# import uuid
self.current_id = id
self.qa_handle, self.kai_path = construct_vector_store(
vs_id=self.current_id,
vs_path=vs_path,
files=file_manifest,
sentence_size=100,
history=[],
one_conent="",
one_content_segmentation="",
text2vec = self.get_chinese_text2vec(),
)
self.threadLock.release()
def get_current_archive_id(self):
return self.current_id
def get_loaded_file(self, vs_path):
return self.qa_handle.get_loaded_file(vs_path)
def answer_with_archive_by_id(self, txt, id, vs_path):
self.threadLock.acquire()
if not self.current_id == id:
self.current_id = id
self.qa_handle, self.kai_path = construct_vector_store(
vs_id=self.current_id,
vs_path=vs_path,
files=[],
sentence_size=100,
history=[],
one_conent="",
one_content_segmentation="",
text2vec = self.get_chinese_text2vec(),
)
VECTOR_SEARCH_SCORE_THRESHOLD = 0
VECTOR_SEARCH_TOP_K = 4
CHUNK_SIZE = 512
resp, prompt = self.qa_handle.get_knowledge_based_conent_test(
query = txt,
vs_path = self.kai_path,
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
vector_search_top_k=VECTOR_SEARCH_TOP_K,
chunk_conent=True,
chunk_size=CHUNK_SIZE,
text2vec = self.get_chinese_text2vec(),
)
self.threadLock.release()
return resp, prompt

查看文件

@@ -0,0 +1,114 @@
from pydantic import BaseModel, Field
from typing import List
from toolbox import update_ui_lastest_msg, disable_auto_promotion
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
import copy, json, pickle, os, sys, time
def read_avail_plugin_enum():
from crazy_functional import get_crazy_functions
plugin_arr = get_crazy_functions()
# remove plugins with out explaination
plugin_arr = {k:v for k, v in plugin_arr.items() if ('Info' in v) and ('Function' in v)}
plugin_arr_info = {"F_{:04d}".format(i):v["Info"] for i, v in enumerate(plugin_arr.values(), start=1)}
plugin_arr_dict = {"F_{:04d}".format(i):v for i, v in enumerate(plugin_arr.values(), start=1)}
plugin_arr_dict_parse = {"F_{:04d}".format(i):v for i, v in enumerate(plugin_arr.values(), start=1)}
plugin_arr_dict_parse.update({f"F_{i}":v for i, v in enumerate(plugin_arr.values(), start=1)})
prompt = json.dumps(plugin_arr_info, ensure_ascii=False, indent=2)
prompt = "\n\nThe defination of PluginEnum:\nPluginEnum=" + prompt
return prompt, plugin_arr_dict, plugin_arr_dict_parse
def wrap_code(txt):
txt = txt.replace('```','')
return f"\n```\n{txt}\n```\n"
def have_any_recent_upload_files(chatbot):
_5min = 5 * 60
if not chatbot: return False # chatbot is None
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
if not most_recent_uploaded: return False # most_recent_uploaded is None
if time.time() - most_recent_uploaded["time"] < _5min: return True # most_recent_uploaded is new
else: return False # most_recent_uploaded is too old
def get_recent_file_prompt_support(chatbot):
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
path = most_recent_uploaded['path']
prompt = "\nAdditional Information:\n"
prompt = "In case that this plugin requires a path or a file as argument,"
prompt += f"it is important for you to know that the user has recently uploaded a file, located at: `{path}`"
prompt += f"Only use it when necessary, otherwise, you can ignore this file."
return prompt
def get_inputs_show_user(inputs, plugin_arr_enum_prompt):
# remove plugin_arr_enum_prompt from inputs string
inputs_show_user = inputs.replace(plugin_arr_enum_prompt, "")
inputs_show_user += plugin_arr_enum_prompt[:200] + '...'
inputs_show_user += '\n...\n'
inputs_show_user += '...\n'
inputs_show_user += '...}'
return inputs_show_user
def execute_plugin(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention):
plugin_arr_enum_prompt, plugin_arr_dict, plugin_arr_dict_parse = read_avail_plugin_enum()
class Plugin(BaseModel):
plugin_selection: str = Field(description="The most related plugin from one of the PluginEnum.", default="F_0000")
reason_of_selection: str = Field(description="The reason why you should select this plugin.", default="This plugin satisfy user requirement most")
# ⭐ ⭐ ⭐ 选择插件
yield from update_ui_lastest_msg(lastmsg=f"正在执行任务: {txt}\n\n查找可用插件中...", chatbot=chatbot, history=history, delay=0)
gpt_json_io = GptJsonIO(Plugin)
gpt_json_io.format_instructions = "The format of your output should be a json that can be parsed by json.loads.\n"
gpt_json_io.format_instructions += """Output example: {"plugin_selection":"F_1234", "reason_of_selection":"F_1234 plugin satisfy user requirement most"}\n"""
gpt_json_io.format_instructions += "The plugins you are authorized to use are listed below:\n"
gpt_json_io.format_instructions += plugin_arr_enum_prompt
inputs = "Choose the correct plugin according to user requirements, the user requirement is: \n\n" + \
">> " + txt.rstrip('\n').replace('\n','\n>> ') + '\n\n' + gpt_json_io.format_instructions
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(
inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
try:
gpt_reply = run_gpt_fn(inputs, "")
plugin_sel = gpt_json_io.generate_output_auto_repair(gpt_reply, run_gpt_fn)
except JsonStringError:
msg = f"抱歉, {llm_kwargs['llm_model']}无法理解您的需求。"
msg += "请求的Prompt为\n" + wrap_code(get_inputs_show_user(inputs, plugin_arr_enum_prompt))
msg += "语言模型回复为:\n" + wrap_code(gpt_reply)
msg += "\n但您可以尝试再试一次\n"
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
return
if plugin_sel.plugin_selection not in plugin_arr_dict_parse:
msg = f"抱歉, 找不到合适插件执行该任务, 或者{llm_kwargs['llm_model']}无法理解您的需求。"
msg += f"语言模型{llm_kwargs['llm_model']}选择了不存在的插件:\n" + wrap_code(gpt_reply)
msg += "\n但您可以尝试再试一次\n"
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
return
# ⭐ ⭐ ⭐ 确认插件参数
if not have_any_recent_upload_files(chatbot):
appendix_info = ""
else:
appendix_info = get_recent_file_prompt_support(chatbot)
plugin = plugin_arr_dict_parse[plugin_sel.plugin_selection]
yield from update_ui_lastest_msg(lastmsg=f"正在执行任务: {txt}\n\n提取插件参数...", chatbot=chatbot, history=history, delay=0)
class PluginExplicit(BaseModel):
plugin_selection: str = plugin_sel.plugin_selection
plugin_arg: str = Field(description="The argument of the plugin.", default="")
gpt_json_io = GptJsonIO(PluginExplicit)
gpt_json_io.format_instructions += "The information about this plugin is:" + plugin["Info"]
inputs = f"A plugin named {plugin_sel.plugin_selection} is selected, " + \
"you should extract plugin_arg from the user requirement, the user requirement is: \n\n" + \
">> " + (txt + appendix_info).rstrip('\n').replace('\n','\n>> ') + '\n\n' + \
gpt_json_io.format_instructions
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(
inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
plugin_sel = gpt_json_io.generate_output_auto_repair(run_gpt_fn(inputs, ""), run_gpt_fn)
# ⭐ ⭐ ⭐ 执行插件
fn = plugin['Function']
fn_name = fn.__name__
msg = f'{llm_kwargs["llm_model"]}为您选择了插件: `{fn_name}`\n\n插件说明:{plugin["Info"]}\n\n插件参数:{plugin_sel.plugin_arg}\n\n假如偏离了您的要求,按停止键终止。'
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
yield from fn(plugin_sel.plugin_arg, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, -1)
return

查看文件

@@ -0,0 +1,81 @@
from pydantic import BaseModel, Field
from typing import List
from toolbox import update_ui_lastest_msg, get_conf
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.json_fns.pydantic_io import GptJsonIO
import copy, json, pickle, os, sys
def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention):
ALLOW_RESET_CONFIG = get_conf('ALLOW_RESET_CONFIG')
if not ALLOW_RESET_CONFIG:
yield from update_ui_lastest_msg(
lastmsg=f"当前配置不允许被修改如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
chatbot=chatbot, history=history, delay=2
)
return
# ⭐ ⭐ ⭐ 读取可配置项目条目
names = {}
from enum import Enum
import config
for k, v in config.__dict__.items():
if k.startswith('__'): continue
names.update({k:k})
# if len(names) > 20: break # 限制最多前10个配置项,如果太多了会导致gpt无法理解
ConfigOptions = Enum('ConfigOptions', names)
class ModifyConfigurationIntention(BaseModel):
which_config_to_modify: ConfigOptions = Field(description="the name of the configuration to modify, you must choose from one of the ConfigOptions enum.", default=None)
new_option_value: str = Field(description="the new value of the option", default=None)
# ⭐ ⭐ ⭐ 分析用户意图
yield from update_ui_lastest_msg(lastmsg=f"正在执行任务: {txt}\n\n读取新配置中", chatbot=chatbot, history=history, delay=0)
gpt_json_io = GptJsonIO(ModifyConfigurationIntention)
inputs = "Analyze how to change configuration according to following user input, answer me with json: \n\n" + \
">> " + txt.rstrip('\n').replace('\n','\n>> ') + '\n\n' + \
gpt_json_io.format_instructions
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(
inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
user_intention = gpt_json_io.generate_output_auto_repair(run_gpt_fn(inputs, ""), run_gpt_fn)
explicit_conf = user_intention.which_config_to_modify.value
ok = (explicit_conf in txt)
if ok:
yield from update_ui_lastest_msg(
lastmsg=f"正在执行任务: {txt}\n\n新配置{explicit_conf}={user_intention.new_option_value}",
chatbot=chatbot, history=history, delay=1
)
yield from update_ui_lastest_msg(
lastmsg=f"正在执行任务: {txt}\n\n新配置{explicit_conf}={user_intention.new_option_value}\n\n正在修改配置中",
chatbot=chatbot, history=history, delay=2
)
# ⭐ ⭐ ⭐ 立即应用配置
from toolbox import set_conf
set_conf(explicit_conf, user_intention.new_option_value)
yield from update_ui_lastest_msg(
lastmsg=f"正在执行任务: {txt}\n\n配置修改完成,重新页面即可生效。", chatbot=chatbot, history=history, delay=1
)
else:
yield from update_ui_lastest_msg(
lastmsg=f"失败,如果需要配置{explicit_conf},您需要明确说明并在指令中提到它。", chatbot=chatbot, history=history, delay=5
)
def modify_configuration_reboot(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention):
ALLOW_RESET_CONFIG = get_conf('ALLOW_RESET_CONFIG')
if not ALLOW_RESET_CONFIG:
yield from update_ui_lastest_msg(
lastmsg=f"当前配置不允许被修改如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
chatbot=chatbot, history=history, delay=2
)
return
yield from modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention)
yield from update_ui_lastest_msg(
lastmsg=f"正在执行任务: {txt}\n\n配置修改完成,五秒后即将重启!若出现报错请无视即可。", chatbot=chatbot, history=history, delay=5
)
os.execl(sys.executable, sys.executable, *sys.argv)

查看文件

@@ -0,0 +1,28 @@
import pickle
class VoidTerminalState():
def __init__(self):
self.reset_state()
def reset_state(self):
self.has_provided_explaination = False
def lock_plugin(self, chatbot):
chatbot._cookies['lock_plugin'] = 'crazy_functions.虚空终端->虚空终端'
chatbot._cookies['plugin_state'] = pickle.dumps(self)
def unlock_plugin(self, chatbot):
self.reset_state()
chatbot._cookies['lock_plugin'] = None
chatbot._cookies['plugin_state'] = pickle.dumps(self)
def set_state(self, chatbot, key, value):
setattr(self, key, value)
chatbot._cookies['plugin_state'] = pickle.dumps(self)
def get_state(chatbot):
state = chatbot._cookies.get('plugin_state', None)
if state is not None: state = pickle.loads(state)
else: state = VoidTerminalState()
state.chatbot = chatbot
return state

文件差异内容过多而无法显示 加载差异

查看文件

@@ -1,194 +0,0 @@
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file, get_conf
import re, requests, unicodedata, os
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
def download_arxiv_(url_pdf):
if 'arxiv.org' not in url_pdf:
if ('.' in url_pdf) and ('/' not in url_pdf):
new_url = 'https://arxiv.org/abs/'+url_pdf
print('下载编号:', url_pdf, '自动定位:', new_url)
# download_arxiv_(new_url)
return download_arxiv_(new_url)
else:
print('不能识别的URL')
return None
if 'abs' in url_pdf:
url_pdf = url_pdf.replace('abs', 'pdf')
url_pdf = url_pdf + '.pdf'
url_abs = url_pdf.replace('.pdf', '').replace('pdf', 'abs')
title, other_info = get_name(_url_=url_abs)
paper_id = title.split()[0] # '[1712.00559]'
if '2' in other_info['year']:
title = other_info['year'] + ' ' + title
known_conf = ['NeurIPS', 'NIPS', 'Nature', 'Science', 'ICLR', 'AAAI']
for k in known_conf:
if k in other_info['comment']:
title = k + ' ' + title
download_dir = './gpt_log/arxiv/'
os.makedirs(download_dir, exist_ok=True)
title_str = title.replace('?', '')\
.replace(':', '')\
.replace('\"', '')\
.replace('\n', '')\
.replace(' ', ' ')\
.replace(' ', ' ')
requests_pdf_url = url_pdf
file_path = download_dir+title_str
# if os.path.exists(file_path):
# print('返回缓存文件')
# return './gpt_log/arxiv/'+title_str
print('下载中')
proxies, = get_conf('proxies')
r = requests.get(requests_pdf_url, proxies=proxies)
with open(file_path, 'wb+') as f:
f.write(r.content)
print('下载完成')
# print('输出下载命令:','aria2c -o \"%s\" %s'%(title_str,url_pdf))
# subprocess.call('aria2c --all-proxy=\"172.18.116.150:11084\" -o \"%s\" %s'%(download_dir+title_str,url_pdf), shell=True)
x = "%s %s %s.bib" % (paper_id, other_info['year'], other_info['authors'])
x = x.replace('?', '')\
.replace(':', '')\
.replace('\"', '')\
.replace('\n', '')\
.replace(' ', ' ')\
.replace(' ', ' ')
return './gpt_log/arxiv/'+title_str, other_info
def get_name(_url_):
import os
from bs4 import BeautifulSoup
print('正在获取文献名!')
print(_url_)
# arxiv_recall = {}
# if os.path.exists('./arxiv_recall.pkl'):
# with open('./arxiv_recall.pkl', 'rb') as f:
# arxiv_recall = pickle.load(f)
# if _url_ in arxiv_recall:
# print('在缓存中')
# return arxiv_recall[_url_]
proxies, = get_conf('proxies')
res = requests.get(_url_, proxies=proxies)
bs = BeautifulSoup(res.text, 'html.parser')
other_details = {}
# get year
try:
year = bs.find_all(class_='dateline')[0].text
year = re.search(r'(\d{4})', year, re.M | re.I).group(1)
other_details['year'] = year
abstract = bs.find_all(class_='abstract mathjax')[0].text
other_details['abstract'] = abstract
except:
other_details['year'] = ''
print('年份获取失败')
# get author
try:
authors = bs.find_all(class_='authors')[0].text
authors = authors.split('Authors:')[1]
other_details['authors'] = authors
except:
other_details['authors'] = ''
print('authors获取失败')
# get comment
try:
comment = bs.find_all(class_='metatable')[0].text
real_comment = None
for item in comment.replace('\n', ' ').split(' '):
if 'Comments' in item:
real_comment = item
if real_comment is not None:
other_details['comment'] = real_comment
else:
other_details['comment'] = ''
except:
other_details['comment'] = ''
print('年份获取失败')
title_str = BeautifulSoup(
res.text, 'html.parser').find('title').contents[0]
print('获取成功:', title_str)
# arxiv_recall[_url_] = (title_str+'.pdf', other_details)
# with open('./arxiv_recall.pkl', 'wb') as f:
# pickle.dump(arxiv_recall, f)
return title_str+'.pdf', other_details
@CatchException
def 下载arxiv论文并翻译摘要(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
CRAZY_FUNCTION_INFO = "下载arxiv论文并翻译摘要,函数插件作者[binary-husky]。正在提取摘要并下载PDF文档……"
import glob
import os
# 基本信息:功能、贡献者
chatbot.append(["函数插件功能?", CRAZY_FUNCTION_INFO])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import pdfminer, bs4
except:
report_execption(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pdfminer beautifulsoup4```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 清空历史,以免输入溢出
history = []
# 提取摘要,下载PDF文档
try:
pdf_path, info = download_arxiv_(txt)
except:
report_execption(chatbot, history,
a = f"解析项目: {txt}",
b = f"下载pdf文件未成功")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 翻译摘要等
i_say = f"请你阅读以下学术论文相关的材料,提取摘要,翻译为中文。材料如下:{str(info)}"
i_say_show_user = f'请你阅读以下学术论文相关的材料,提取摘要,翻译为中文。论文:{pdf_path}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
msg = '正常'
# ** gpt request **
# 单线,获取文章meta信息
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say_show_user,
llm_kwargs=llm_kwargs,
chatbot=chatbot, history=[],
sys_prompt="Your job is to collect information from materials and translate to Chinese。",
)
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
# 写入文件
import shutil
# 重置文件的创建时间
shutil.copyfile(pdf_path, f'./gpt_log/{os.path.basename(pdf_path)}'); os.remove(pdf_path)
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res + "\n\nPDF文件也已经下载"))
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面

查看文件

@@ -1,139 +0,0 @@
import threading
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
from toolbox import update_ui
from toolbox import CatchException, write_results_to_file, report_execption
from .crazy_utils import breakdown_txt_to_satisfy_token_limit
def extract_code_block_carefully(txt):
splitted = txt.split('```')
n_code_block_seg = len(splitted) - 1
if n_code_block_seg <= 1: return txt
# 剩下的情况都开头除去 ``` 结尾除去一次 ```
txt_out = '```'.join(splitted[1:-1])
return txt_out
def break_txt_into_half_at_some_linebreak(txt):
lines = txt.split('\n')
n_lines = len(lines)
pre = lines[:(n_lines//2)]
post = lines[(n_lines//2):]
return "\n".join(pre), "\n".join(post)
@CatchException
def 全项目切换英文(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys_prompt, web_port):
# 第1步清空历史,以免输入溢出
history = []
# 第2步尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
except:
report_execption(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 第3步集合文件
import time, glob, os, shutil, re
os.makedirs('gpt_log/generated_english_version', exist_ok=True)
os.makedirs('gpt_log/generated_english_version/crazy_functions', exist_ok=True)
file_manifest = [f for f in glob.glob('./*.py') if ('test_project' not in f) and ('gpt_log' not in f)] + \
[f for f in glob.glob('./crazy_functions/*.py') if ('test_project' not in f) and ('gpt_log' not in f)]
# file_manifest = ['./toolbox.py']
i_say_show_user_buffer = []
# 第4步随便显示点什么防止卡顿的感觉
for index, fp in enumerate(file_manifest):
# if 'test_project' in fp: continue
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
i_say_show_user =f'[{index}/{len(file_manifest)}] 接下来请将以下代码中包含的所有中文转化为英文,只输出转化后的英文代码,请用代码块输出代码: {os.path.abspath(fp)}'
i_say_show_user_buffer.append(i_say_show_user)
chatbot.append((i_say_show_user, "[Local Message] 等待多线程操作,中间过程不予显示."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 第5步Token限制下的截断与处理
MAX_TOKEN = 3000
import tiktoken
from toolbox import get_conf
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
def get_token_fn(txt): return len(enc.encode(txt, disallowed_special=()))
# 第6步任务函数
mutable_return = [None for _ in file_manifest]
observe_window = [[""] for _ in file_manifest]
def thread_worker(fp,index):
if index > 10:
time.sleep(60)
print('Openai 限制免费用户每分钟20次请求,降低请求频率中。')
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
i_say_template = lambda fp, file_content: f'接下来请将以下代码中包含的所有中文转化为英文,只输出代码,文件名是{fp},文件代码是 ```{file_content}```'
try:
gpt_say = ""
# 分解代码文件
file_content_breakdown = breakdown_txt_to_satisfy_token_limit(file_content, get_token_fn, MAX_TOKEN)
for file_content_partial in file_content_breakdown:
i_say = i_say_template(fp, file_content_partial)
# # ** gpt request **
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=observe_window[index])
gpt_say_partial = extract_code_block_carefully(gpt_say_partial)
gpt_say += gpt_say_partial
mutable_return[index] = gpt_say
except ConnectionAbortedError as token_exceed_err:
print('至少一个线程任务Token溢出而失败', e)
except Exception as e:
print('至少一个线程任务意外失败', e)
# 第7步所有线程同时开始执行任务函数
handles = [threading.Thread(target=thread_worker, args=(fp,index)) for index, fp in enumerate(file_manifest)]
for h in handles:
h.daemon = True
h.start()
chatbot.append(('开始了吗?', f'多线程操作已经开始'))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 第8步循环轮询各个线程是否执行完毕
cnt = 0
while True:
cnt += 1
time.sleep(0.2)
th_alive = [h.is_alive() for h in handles]
if not any(th_alive): break
# 更好的UI视觉效果
observe_win = []
for thread_index, alive in enumerate(th_alive):
observe_win.append("[ ..."+observe_window[thread_index][0][-60:].replace('\n','').replace('```','...').replace(' ','.').replace('<br/>','.....').replace('$','.')+"... ]")
stat = [f'执行中: {obs}\n\n' if alive else '已完成\n\n' for alive, obs in zip(th_alive, observe_win)]
stat_str = ''.join(stat)
chatbot[-1] = (chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt%10+1)))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 第9步把结果写入文件
for index, h in enumerate(handles):
h.join() # 这里其实不需要join了,肯定已经都结束了
fp = file_manifest[index]
gpt_say = mutable_return[index]
i_say_show_user = i_say_show_user_buffer[index]
where_to_relocate = f'gpt_log/generated_english_version/{fp}'
if gpt_say is not None:
with open(where_to_relocate, 'w+', encoding='utf-8') as f:
f.write(gpt_say)
else: # 失败
shutil.copyfile(file_manifest[index], where_to_relocate)
chatbot.append((i_say_show_user, f'[Local Message] 已完成{os.path.abspath(fp)}的转化,\n\n存入{os.path.abspath(where_to_relocate)}'))
history.append(i_say_show_user); history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
time.sleep(1)
# 第10步备份一个文件
res = write_results_to_file(history)
chatbot.append(("生成一份任务执行报告", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

查看文件

@@ -1,139 +0,0 @@
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
fast_debug = False
def 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
import time, os
# pip install python-docx 用于docx格式,跨平台
# pip install pywin32 用于doc格式,仅支持Win平台
print('begin analysis on:', file_manifest)
for index, fp in enumerate(file_manifest):
if fp.split(".")[-1] == "docx":
from docx import Document
doc = Document(fp)
file_content = "\n".join([para.text for para in doc.paragraphs])
else:
import win32com.client
word = win32com.client.Dispatch("Word.Application")
word.visible = False
# 打开文件
print('fp', os.getcwd())
doc = word.Documents.Open(os.getcwd() + '/' + fp)
# file_content = doc.Content.Text
doc = word.ActiveDocument
file_content = doc.Range().Text
doc.Close()
word.Quit()
print(file_content)
prefix = "接下来请你逐文件分析下面的论文文件," if index == 0 else ""
# private_upload里面的文件名在解压zip后容易出现乱码rar和7z格式正常,故可以只分析文章内容,不输入文件名
i_say = prefix + f'请对下面的文章片段用中英文做概述,文件名是{os.path.relpath(fp, project_folder)},' \
f'文章内容是 ```{file_content}```'
i_say_show_user = prefix + f'[{index+1}/{len(file_manifest)}] 假设你是论文审稿专家,请对下面的文章片段做概述: {os.path.abspath(fp)}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say_show_user,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=[],
sys_prompt="总结文章。"
) # 带超时倒计时
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user)
history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
if not fast_debug: time.sleep(2)
"""
# 可按需启用
i_say = f'根据你上述的分析,对全文进行概括,用学术性语言写一段中文摘要,然后再写一篇英文的。'
chatbot.append((i_say, "[Local Message] waiting gpt response."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
i_say = f'我想让你做一个论文写作导师。您的任务是使用人工智能工具(例如自然语言处理)提供有关如何改进其上述文章的反馈。' \
f'您还应该利用您在有效写作技巧方面的修辞知识和经验来建议作者可以更好地以书面形式表达他们的想法和想法的方法。' \
f'根据你之前的分析,提出建议'
chatbot.append((i_say, "[Local Message] waiting gpt response."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
"""
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=history,
sys_prompt="总结文章。"
) # 带超时倒计时
chatbot[-1] = (i_say, gpt_say)
history.append(i_say)
history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
@CatchException
def 总结word文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
import glob, os
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"批量总结Word文档。函数插件贡献者: JasonGuo1"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
from docx import Document
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade python-docx pywin32```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 清空历史,以免输入溢出
history = []
# 检测输入参数,如没有给定输入参数,直接退出
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 搜索需要处理的文件清单
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.docx', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.doc', recursive=True)]
# [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] + \
# [f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)] + \
# [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
# 如果没找到任何文件
if len(file_manifest) == 0:
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.docx或doc文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 开始正式执行任务
yield from 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

某些文件未显示,因为此 diff 中更改的文件太多 显示更多