比较提交

..

80 次代码提交

作者 SHA1 备注 提交日期
binary-husky
171e8a2744 add context clip policy 2025-06-03 00:51:18 +08:00
binary-husky
3ed1b0320e Merge branch 'master' into frontier 2025-05-06 22:18:48 +08:00
binary-husky
be83907394 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2025-05-06 22:17:34 +08:00
binary-husky
eba48a0f1a improve reset conversation ui 2025-05-06 22:10:21 +08:00
binary-husky
ee1a9e7cce support qwen3 models - edit config hint 2025-04-29 11:10:49 +08:00
binary-husky
fc06be6f7a support qwen3 models 2025-04-29 11:09:53 +08:00
binary-husky
883b513b91 add can_multi_thread 2025-04-21 00:50:24 +08:00
binary-husky
24cebaf4ec add o3 and o4 models 2025-04-21 00:48:59 +08:00
binary-husky
c6412a8d73 Merge branch 'master' into frontier 2025-04-15 01:30:40 +08:00
binary-husky
858b5f69b0 add in-text stop btn 2025-04-15 01:08:54 +08:00
davidfir3
63c61e6204 添加gemini-2.0-flash (#2180)
Co-authored-by: 柯仕锋 <12029064@zju.edu.cn>
2025-03-25 00:13:18 +08:00
BZfei
82aac97980 阿里云百炼(原灵积)增加对deepseek-r1、deepseek-v3模型支持 (#2182)
* 阿里云百炼(原灵积)增加对deepseek-r1、deepseek-v3模型支持

* update reasoning display

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2025-03-25 00:11:55 +08:00
binary-husky
045cdb15d8 ensure display none even if css load fails 2025-03-10 23:44:47 +08:00
binary-husky
c598e20f0e ensure display none even if css load fails 2025-03-10 23:41:59 +08:00
binary-husky
7af6994f7b Merge branch 'master' into frontier 2025-03-09 00:04:52 +08:00
binary-husky
e78e8b0909 allow copy original text instead of renderend text 2025-03-09 00:04:27 +08:00
binary-husky
07974a26d0 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2025-03-08 23:10:42 +08:00
binary-husky
3e56c074cc fix gui_toolbar 2025-03-08 23:09:22 +08:00
littleolaf
72dbe856d2 添加接入 火山引擎在线大模型 内容的支持 (#2165)
* use oai adaptive bridge function to handle vol engine

* add vol engine deepseek v3

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2025-03-04 23:58:03 +08:00
binary-husky
aab62aea39 Merge branch 'master' into frontier 2025-03-02 02:17:28 +08:00
Steven Moder
4a79aa6a93 typo: Fix typos and rename functions across multiple files (#2130)
* typo: Fix typos and rename functions across multiple files

This commit addresses several minor issues:
- Corrected spelling of function names (e.g., `update_ui_lastest_msg` to `update_ui_latest_msg`)
- Fixed typos in comments and variable names
- Corrected capitalization in some strings (e.g., "ArXiv" instead of "Arixv")
- Renamed some variables for consistency
- Corrected some console-related parameter names (e.g., `console_slience` to `console_silence`)

The changes span multiple files across the project, including request LLM bridges, crazy functions, and utility modules.

* fix: f-string expression part cannot include a backslash (#2139)

* raise error when the uploaded tar contain hard/soft link (#2136)

* minor bug fix

* fine tune reasoning css

* upgrade internet gpt plugin

* Update README.md

* fix GHSA-gqp5-wm97-qxcv

* typo fix

* update readme

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>
Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2025-03-02 02:16:10 +08:00
binary-husky
5dffe8627f fix GHSA-gqp5-wm97-qxcv 2025-03-02 01:58:45 +08:00
binary-husky
2aefef26db Update README.md 2025-02-21 19:51:09 +08:00
binary-husky
31e3ffd997 Merge branch 'master' into frontier 2025-02-13 00:20:16 +08:00
binary-husky
957da731db upgrade internet gpt plugin 2025-02-13 00:19:43 +08:00
binary-husky
add29eba08 fine tune reasoning css 2025-02-09 20:26:52 +08:00
binary-husky
163e59c0f3 minor bug fix 2025-02-09 19:33:02 +08:00
binary-husky
07ece29c7c raise error when the uploaded tar contain hard/soft link (#2136) 2025-02-08 20:54:01 +08:00
Steven Moder
991a903fa9 fix: f-string expression part cannot include a backslash (#2139) 2025-02-08 20:50:54 +08:00
Steven Moder
cf7c81170c fix: return 参数数量 及 返回类型考虑 (#2129) 2025-02-07 21:33:06 +08:00
barry
6dda2061dd Update bridge_openrouter.py (#2132)
fix openrouter api 400 post bug

Co-authored-by: lan <56376794+lostatnight@users.noreply.github.com>
2025-02-07 21:28:05 +08:00
binary-husky
1acd2bf292 Merge branch 'master' into frontier 2025-02-07 01:21:39 +08:00
binary-husky
8a0d96afd3 consider element missing cases in js 2025-02-07 01:21:21 +08:00
binary-husky
37f9b94dee add options to hide ui components 2025-02-07 00:17:36 +08:00
binary-husky
936e2f5206 update readme 2025-02-04 16:15:56 +08:00
binary-husky
5e0f327237 Merge branch 'master' into frontier 2025-02-04 16:12:42 +08:00
binary-husky
7f4b87a633 update readme 2025-02-04 16:08:18 +08:00
binary-husky
2ddd1bb634 Merge branch 'memset0-master' 2025-02-04 16:03:53 +08:00
binary-husky
c68285aeac update config and version 2025-02-04 16:03:01 +08:00
Memento mori.
caaebe4296 add support for Deepseek R1 model and display CoT (#2118)
* feat: add support for R1 model and display CoT

* fix unpacking

* feat: customized font & font size

* auto hide tooltip when scoll down

* tooltip glass transparent css

* fix: Enhance API key validation in is_any_api_key function (#2113)

* support qwen2.5-max!

* update minior adjustment

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
Co-authored-by: Steven Moder <java20131114@gmail.com>
2025-02-04 16:02:02 +08:00
binary-husky
39d50c1c95 update minior adjustment 2025-02-04 15:57:35 +08:00
binary-husky
25dc7bf912 Merge branch 'master' of https://github.com/memset0/gpt_academic into memset0-master 2025-01-30 22:03:31 +08:00
binary-husky
0458590a77 support qwen2.5-max! 2025-01-29 23:29:38 +08:00
Steven Moder
44fe78fff5 fix: Enhance API key validation in is_any_api_key function (#2113) 2025-01-29 21:40:30 +08:00
binary-husky
6a6eba5f16 support qwen2.5-max! 2025-01-29 21:30:54 +08:00
binary-husky
722a055879 Merge branch 'master' into frontier 2025-01-29 00:00:08 +08:00
binary-husky
5ddd657ebc tooltip glass transparent css 2025-01-28 23:50:21 +08:00
binary-husky
9b0b2cf260 auto hide tooltip when scoll down 2025-01-28 23:32:40 +08:00
binary-husky
9f39a6571a feat: customized font & font size 2025-01-28 02:52:56 +08:00
memset0
d07e736214 fix unpacking 2025-01-25 00:00:13 +08:00
memset0
a1f7ae5b55 feat: add support for R1 model and display CoT 2025-01-24 14:43:49 +08:00
binary-husky
1213ef19e5 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2025-01-22 01:50:08 +08:00
binary-husky
aaafe2a797 fix xelatex font problem in all-cap image 2025-01-22 01:49:53 +08:00
binary-husky
2716606f0c Update README.md 2025-01-16 23:40:24 +08:00
binary-husky
286f7303be fix image display bug 2025-01-12 21:54:43 +08:00
binary-husky
7eeab9e376 fix code block display bug 2025-01-09 22:31:59 +08:00
binary-husky
4ca331fb28 prevent html rendering for input 2025-01-05 21:20:12 +08:00
binary-husky
9487829930 change max_chat_preserve = 10 2025-01-03 00:34:36 +08:00
binary-husky
8254930495 Merge branch 'master' into frontier 2025-01-03 00:31:30 +08:00
binary-husky
a73074b89e upgrade chat checkpoint 2025-01-03 00:31:03 +08:00
binary-husky
ca1ab57f5d Merge branch 'master' into frontier 2024-12-29 00:08:59 +08:00
Yuki
e20177cb7d Support new azure ai key pattern (#2098)
* fix cookie overflow bug

* fix temp issue of o1

* compat bug fix

* support new azure ai key pattern

* support new azure ai key pattern

* allow disable openai proxy in `WHEN_TO_USE_PROXY`

* change padding

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-12-29 00:04:16 +08:00
Southlandi
fd93622840 修复Gemini对话错误问题(停用词数量为0的情况) (#2092) 2024-12-28 23:22:10 +08:00
whyXVI
09a82a572d Fix RuntimeError in predict_no_ui_long_connection() (#2095)
Bug fix: Fix RuntimeError in predict_no_ui_long_connection()

In the original code, calling predict_no_ui_long_connection() would trigger a RuntimeError("OpenAI拒绝了请求:" + error_msg) even when the server responded normally. The issue occurred due to incorrect handling of SSE protocol comment lines (lines starting with ":"). 

Modified the parsing logic in both `predict` and `predict_no_ui_long_connection` to handle these lines correctly, making the logic more intuitive and robust.
2024-12-28 23:21:14 +08:00
G.RQ
c53ddf65aa 修复 bug“重置”按钮报错 (#2102)
* fix 重置按钮bug

* fix version control bug

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-12-28 23:19:25 +08:00
binary-husky
6bd410582b Merge branch 'master' into frontier 2024-12-28 07:15:37 +08:00
binary-husky
ac64a77c2d allow disable openai proxy in WHEN_TO_USE_PROXY 2024-12-28 07:14:54 +08:00
binary-husky
dae8a0affc compat bug fix 2024-12-25 01:21:58 +08:00
binary-husky
97a81e9388 fix temp issue of o1 2024-12-25 00:54:03 +08:00
binary-husky
1dd1d0ed6c fix cookie overflow bug 2024-12-25 00:33:20 +08:00
Aibot
4fe638ffa8 Dev/aibot/bug fix (#2086)
* 添加为windows的环境打包以及一键启动脚本 (#2068)

* 新增自动打包windows下的环境依赖

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* update requirements

* update readme

* idor-vuln-bug-fix

* vuln-bug-fix: validate file size, default 500M

* add tts test

* remove welcome card when layout overflows

---------

Co-authored-by: Menghuan <menghuan2003@outlook.com>
Co-authored-by: binary-husky <qingxu.fu@outlook.com>
Co-authored-by: aibot <hangyuntang@qq.com>
2024-12-23 10:17:43 +08:00
binary-husky
060af0d2e6 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2024-12-22 23:33:44 +08:00
binary-husky
a848f714b6 fix welcome card bugs 2024-12-22 23:33:22 +08:00
binary-husky
924f8e30c7 Update issue stale.yml 2024-12-22 14:16:18 +08:00
binary-husky
f40347665b github action change 2024-12-22 14:15:16 +08:00
binary-husky
734c40bbde fix non-localhost javascript error 2024-12-22 14:01:22 +08:00
binary-husky
4ec87fbb54 history ng patch 1 2024-12-21 11:27:53 +08:00
binary-husky
17b5c22e61 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2024-12-19 22:46:14 +08:00
binary-husky
c6cd04a407 promote the rank of DASHSCOPE_API_KEY 2024-12-19 22:39:14 +08:00
YIQI JIANG
f60a12f8b4 Add o1 and o1-2024-12-17 model support (#2090)
* Add o1 and o1-2024-12-17 model support

* patch api key selection

---------

Co-authored-by: 蒋翌琪 <jiangyiqi99@jiangyiqideMacBook-Pro.local>
Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-12-19 22:32:57 +08:00
共有 114 个文件被更改,包括 2293 次插入789 次删除

查看文件

@@ -7,7 +7,7 @@
name: 'Close stale issues and PRs'
on:
schedule:
- cron: '*/5 * * * *'
- cron: '*/30 * * * *'
jobs:
stale:
@@ -19,7 +19,6 @@ jobs:
steps:
- uses: actions/stale@v8
with:
stale-issue-message: 'This issue is stale because it has been open 100 days with no activity. Remove stale label or comment or this will be closed in 1 days.'
stale-issue-message: 'This issue is stale because it has been open 100 days with no activity. Remove stale label or comment or this will be closed in 7 days.'
days-before-stale: 100
days-before-close: 1
debug-only: true
days-before-close: 7

查看文件

@@ -15,6 +15,7 @@ RUN echo '[global]' > /etc/pip.conf && \
# 语音输出功能以下两行,第一行更换阿里源,第二行安装ffmpeg,都可以删除
RUN UBUNTU_VERSION=$(awk -F= '/^VERSION_CODENAME=/{print $2}' /etc/os-release); echo "deb https://mirrors.aliyun.com/debian/ $UBUNTU_VERSION main non-free contrib" > /etc/apt/sources.list; apt-get update
RUN apt-get install ffmpeg -y
RUN apt-get clean
# 进入工作路径(必要)
@@ -33,6 +34,7 @@ RUN pip3 install -r requirements.txt
# 非必要步骤,用于预热模块(可以删除)
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
RUN python3 -m pip cache purge
# 启动(必要)

查看文件

@@ -1,12 +1,14 @@
> [!IMPORTANT]
> `master主分支`最新动态(2025.3.2): 修复大量代码typo / 联网组件支持Jina的api / 增加deepseek-r1支持
> `frontier开发分支`最新动态(2024.12.9): 更新对话时间线功能,优化xelatex论文翻译
> `wiki文档`最新动态(2024.12.5): 更新ollama接入指南
>
> 2024.10.10: 突发停电,紧急恢复了提供[whl包](https://drive.google.com/file/d/19U_hsLoMrjOlQSzYS3pzWX9fTzyusArP/view?usp=sharing)的文件服务器
> 2024.10.8: 版本3.90加入对llama-index的初步支持,版本3.80加入插件二级菜单功能详见wiki
> 2025.2.2: 三分钟快速接入最强qwen2.5-max[视频](https://www.bilibili.com/video/BV1LeFuerEG4)
> 2025.2.1: 支持自定义字体
> 2024.10.10: 突发停电,紧急恢复了提供[whl包](https://drive.google.com/drive/folders/14kR-3V-lIbvGxri4AHc8TpiA1fqsw7SK?usp=sharing)的文件服务器
> 2024.5.1: 加入Doc2x翻译PDF论文的功能,[查看详情](https://github.com/binary-husky/gpt_academic/wiki/Doc2x)
> 2024.3.11: 全力支持Qwen、GLM、DeepseekCoder等中文大语言模型 SoVits语音克隆模块,[查看详情](https://www.bilibili.com/video/BV1Rp421S7tF/)
> 2024.1.17: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目完全开源免费,您可通过订阅[在线服务](https://github.com/binary-husky/gpt_academic/wiki/online)的方式鼓励本项目的发展。
> 2024.1.17: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。
<br>
@@ -127,20 +129,20 @@ Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼
```mermaid
flowchart TD
A{"安装方法"} --> W1("I. 🔑直接运行 (Windows, Linux or MacOS)")
W1 --> W11["1. Python pip包管理依赖"]
W1 --> W12["2. Anaconda包管理依赖推荐⭐"]
A{"安装方法"} --> W1("I 🔑直接运行 (Windows, Linux or MacOS)")
W1 --> W11["1 Python pip包管理依赖"]
W1 --> W12["2 Anaconda包管理依赖推荐⭐"]
A --> W2["II. 🐳使用Docker (Windows, Linux or MacOS)"]
A --> W2["II 🐳使用Docker (Windows, Linux or MacOS)"]
W2 --> k1["1. 部署项目全部能力的大镜像(推荐⭐)"]
W2 --> k2["2. 仅在线模型GPT, GLM4等镜像"]
W2 --> k3["3. 在线模型 + Latex的大镜像"]
W2 --> k1["1 部署项目全部能力的大镜像(推荐⭐)"]
W2 --> k2["2 仅在线模型GPT, GLM4等镜像"]
W2 --> k3["3 在线模型 + Latex的大镜像"]
A --> W4["IV. 🚀其他部署方法"]
W4 --> C1["1. Windows/MacOS 一键安装运行脚本(推荐⭐)"]
W4 --> C2["2. Huggingface, Sealos远程部署"]
W4 --> C4["3. ... 其他 ..."]
A --> W4["IV 🚀其他部署方法"]
W4 --> C1["1 Windows/MacOS 一键安装运行脚本(推荐⭐)"]
W4 --> C2["2 Huggingface, Sealos远程部署"]
W4 --> C4["3 其他 ..."]
```
### 安装方法I直接运行 (Windows, Linux or MacOS)
@@ -426,7 +428,6 @@ timeline LR
1. `master` 分支: 主分支,稳定版
2. `frontier` 分支: 开发分支,测试版
3. 如何[接入其他大模型](request_llms/README.md)
4. 访问GPT-Academic的[在线服务并支持我们](https://github.com/binary-husky/gpt_academic/wiki/online)
### V参考与学习

查看文件

@@ -7,11 +7,16 @@
Configuration reading priority: environment variable > config_private.py > config.py
"""
# [step 1]>> API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下,还需要填写组织格式如org-123456789abcdefghijklmno的,请向下翻,找 API_ORG 设置项
API_KEY = "此处填API密钥" # 可同时填写多个API-KEY,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey3,azure-apikey4"
# [step 1-1]>> ( 接入OpenAI模型家族 ) API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下,还需要填写组织格式如org-123456789abcdefghijklmno的,请向下翻,找 API_ORG 设置项
API_KEY = "此处填APIKEY" # 可同时填写多个API-KEY,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey3,azure-apikey4"
# [step 1-2]>> ( 强烈推荐!接入通义家族 & 大模型服务平台百炼 ) 接入通义千问在线大模型,api-key获取地址 https://dashscope.console.aliyun.com/
DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY用于接入qwen-max,dashscope-qwen3-14b,dashscope-deepseek-r1等
# [step 2]>> 改为True应用代理,如果直接在海外服务器部署,此处不修改;如果使用本地或无地域限制的大模型时,此处也不需要修改
# [step 1-3]>> ( 接入 deepseek-reasoner, 即 deepseek-r1 ) 深度求索(DeepSeek) API KEY,默认请求地址为"https://api.deepseek.com/v1/chat/completions"
DEEPSEEK_API_KEY = ""
# [step 2]>> 改为True应用代理。如果使用本地或无地域限制的大模型时,此处不修改;如果直接在海外服务器部署,此处不修改
USE_PROXY = False
if USE_PROXY:
"""
@@ -32,11 +37,16 @@ else:
# [step 3]>> 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
LLM_MODEL = "gpt-3.5-turbo-16k" # 可选 ↓↓↓
AVAIL_LLM_MODELS = ["gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
AVAIL_LLM_MODELS = ["qwen-max", "o1-mini", "o1-mini-2024-09-12", "o1", "o1-2024-12-17", "o1-preview", "o1-preview-2024-09-12",
"gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
"gpt-4o", "gpt-4o-mini", "gpt-4-turbo", "gpt-4-turbo-2024-04-09",
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-4v", "glm-3-turbo",
"gemini-1.5-pro", "chatglm3", "chatglm4"
"gemini-1.5-pro", "chatglm3", "chatglm4",
"deepseek-chat", "deepseek-coder", "deepseek-reasoner",
"volcengine-deepseek-r1-250120", "volcengine-deepseek-v3-241226",
"dashscope-deepseek-r1", "dashscope-deepseek-v3",
"dashscope-qwen3-14b", "dashscope-qwen3-235b-a22b", "dashscope-qwen3-32b",
]
EMBEDDING_MODEL = "text-embedding-3-small"
@@ -47,7 +57,7 @@ EMBEDDING_MODEL = "text-embedding-3-small"
# "glm-4-0520", "glm-4-air", "glm-4-airx", "glm-4-flash",
# "qianfan", "deepseekcoder",
# "spark", "sparkv2", "sparkv3", "sparkv3.5", "sparkv4",
# "qwen-turbo", "qwen-plus", "qwen-max", "qwen-local",
# "qwen-turbo", "qwen-plus", "qwen-local",
# "moonshot-v1-128k", "moonshot-v1-32k", "moonshot-v1-8k",
# "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125", "gpt-4o-2024-05-13"
# "claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
@@ -74,7 +84,7 @@ API_URL_REDIRECT = {}
# 多线程函数插件中,默认允许多少路线程同时访问OpenAI。Free trial users的限制是每分钟3次,Pay-as-you-go users的限制是每分钟3500次
# 一言以蔽之免费5刀用户填3,OpenAI绑了信用卡的用户可以填 16 或者更高。提高限制请查询https://platform.openai.com/docs/guides/rate-limits/overview
DEFAULT_WORKER_NUM = 3
DEFAULT_WORKER_NUM = 8
# 色彩主题, 可选 ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast"]
@@ -82,6 +92,31 @@ DEFAULT_WORKER_NUM = 3
THEME = "Default"
AVAIL_THEMES = ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast", "Gstaff/Xkcd", "NoCrypt/Miku"]
FONT = "Theme-Default-Font"
AVAIL_FONTS = [
"默认值(Theme-Default-Font)",
"宋体(SimSun)",
"黑体(SimHei)",
"楷体(KaiTi)",
"仿宋(FangSong)",
"华文细黑(STHeiti Light)",
"华文楷体(STKaiti)",
"华文仿宋(STFangsong)",
"华文宋体(STSong)",
"华文中宋(STZhongsong)",
"华文新魏(STXinwei)",
"华文隶书(STLiti)",
# 备注:以下字体需要网络支持,您可以自定义任意您喜欢的字体,如下所示,需要满足的格式为 "字体昵称(字体英文真名@字体css下载链接)"
"思源宋体(Source Han Serif CN VF@https://chinese-fonts-cdn.deno.dev/packages/syst/dist/SourceHanSerifCN/result.css)",
"月星楷(Moon Stars Kai HW@https://chinese-fonts-cdn.deno.dev/packages/moon-stars-kai/dist/MoonStarsKaiHW-Regular/result.css)",
"珠圆体(MaokenZhuyuanTi@https://chinese-fonts-cdn.deno.dev/packages/mkzyt/dist/猫啃珠圆体/result.css)",
"平方萌萌哒(PING FANG MENG MNEG DA@https://chinese-fonts-cdn.deno.dev/packages/pfmmd/dist/平方萌萌哒/result.css)",
"Helvetica",
"ui-sans-serif",
"sans-serif",
"system-ui"
]
# 默认的系统提示词system prompt
INIT_SYS_PROMPT = "Serve me as a writing and programming assistant."
@@ -133,10 +168,6 @@ MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
QWEN_LOCAL_MODEL_SELECTION = "Qwen/Qwen-1_8B-Chat-Int8"
# 接入通义千问在线大模型 https://dashscope.console.aliyun.com/
DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY
# 百度千帆LLM_MODEL="qianfan"
BAIDU_CLOUD_API_KEY = ''
BAIDU_CLOUD_SECRET_KEY = ''
@@ -238,8 +269,9 @@ MOONSHOT_API_KEY = ""
# 零一万物(Yi Model) API KEY
YIMODEL_API_KEY = ""
# 深度求索(DeepSeek) API KEY,默认请求地址为"https://api.deepseek.com/v1/chat/completions"
DEEPSEEK_API_KEY = ""
# 接入火山引擎的在线大模型),api-key获取地址 https://console.volcengine.com/ark/region:ark+cn-beijing/endpoint
ARK_API_KEY = "00000000-0000-0000-0000-000000000000" # 火山引擎 API KEY
# 紫东太初大模型 https://ai-maas.wair.ac.cn
@@ -303,7 +335,7 @@ ARXIV_CACHE_DIR = "gpt_log/arxiv_cache"
# 除了连接OpenAI之外,还有哪些场合允许使用代理,请尽量不要修改
WHEN_TO_USE_PROXY = ["Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
WHEN_TO_USE_PROXY = ["Connect_OpenAI", "Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
"Warmup_Modules", "Nougat_Download", "AutoGen", "Connect_OpenAI_Embedding"]
@@ -319,6 +351,19 @@ NUM_CUSTOM_BASIC_BTN = 4
DAAS_SERVER_URLS = [ f"https://niuziniu-biligpt{i}.hf.space/stream" for i in range(1,5) ]
# 在互联网搜索组件中,负责将搜索结果整理成干净的Markdown
JINA_API_KEY = ""
# 是否自动裁剪上下文长度(是否启动,默认不启动)
AUTO_CONTEXT_CLIP_ENABLE = False
# 目标裁剪上下文的token长度如果超过这个长度,则会自动裁剪
AUTO_CONTEXT_CLIP_TRIGGER_TOKEN_LEN = 30*1000
# 无条件丢弃x以上的轮数
AUTO_CONTEXT_MAX_ROUND = 64
# 在裁剪上下文时,倒数第x次对话能“最多”保留的上下文token的比例占 AUTO_CONTEXT_CLIP_TRIGGER_TOKEN_LEN 的多少
AUTO_CONTEXT_MAX_CLIP_RATIO = [0.80, 0.60, 0.45, 0.25, 0.20, 0.18, 0.16, 0.14, 0.12, 0.10, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01]
"""
--------------- 配置关联关系说明 ---------------

查看文件

@@ -113,7 +113,7 @@ def get_crazy_functions():
"Group": "学术",
"Color": "stop",
"AsButton": True,
"Info": "Arixv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
"Info": "ArXiv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
"Function": HotReload(Latex翻译中文并重新编译PDF), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
"Class": Arxiv_Localize, # 新一代插件需要注册Class
},
@@ -352,7 +352,7 @@ def get_crazy_functions():
"ArgsReminder": r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
"Info": "Arixv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
"Info": "ArXiv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
"Function": HotReload(Latex翻译中文并重新编译PDF), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
"Class": Arxiv_Localize, # 新一代插件需要注册Class
},
@@ -434,36 +434,6 @@ def get_crazy_functions():
logger.error(trimmed_format_exc())
logger.error("Load function plugin failed")
# try:
# from crazy_functions.联网的ChatGPT import 连接网络回答问题
# function_plugins.update(
# {
# "连接网络回答问题(输入问题后点击该插件,需要访问谷歌)": {
# "Group": "对话",
# "Color": "stop",
# "AsButton": False, # 加入下拉菜单中
# # "Info": "连接网络回答问题(需要访问谷歌)| 输入参数是一个问题",
# "Function": HotReload(连接网络回答问题),
# }
# }
# )
# from crazy_functions.联网的ChatGPT_bing版 import 连接bing搜索回答问题
# function_plugins.update(
# {
# "连接网络回答问题中文Bing版,输入问题后点击该插件": {
# "Group": "对话",
# "Color": "stop",
# "AsButton": False, # 加入下拉菜单中
# "Info": "连接网络回答问题需要访问中文Bing| 输入参数是一个问题",
# "Function": HotReload(连接bing搜索回答问题),
# }
# }
# )
# except:
# logger.error(trimmed_format_exc())
# logger.error("Load function plugin failed")
try:
from crazy_functions.SourceCode_Analyse import 解析任意code项目
@@ -771,6 +741,9 @@ def get_multiplex_button_functions():
"常规对话":
"",
"查互联网后回答":
"查互联网后回答",
"多模型对话":
"询问多个GPT模型", # 映射到上面的 `询问多个GPT模型` 插件

查看文件

@@ -172,7 +172,7 @@ def 载入对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
user_request 当前用户的请求信息IP地址等
"""
from crazy_functions.crazy_utils import get_files_from_everything
success, file_manifest, _ = get_files_from_everything(txt, type='.html')
success, file_manifest, _ = get_files_from_everything(txt, type='.html',chatbot=chatbot)
if not success:
if txt == "": txt = '空空如也的输入栏'

查看文件

@@ -7,7 +7,7 @@ from bs4 import BeautifulSoup
from functools import lru_cache
from itertools import zip_longest
from check_proxy import check_proxy
from toolbox import CatchException, update_ui, get_conf, update_ui_lastest_msg
from toolbox import CatchException, update_ui, get_conf, update_ui_latest_msg
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
from request_llms.bridge_all import model_info
from request_llms.bridge_all import predict_no_ui_long_connection
@@ -49,7 +49,7 @@ def search_optimizer(
mutable = ["", time.time(), ""]
llm_kwargs["temperature"] = 0.8
try:
querys_json = predict_no_ui_long_connection(
query_json = predict_no_ui_long_connection(
inputs=query,
llm_kwargs=llm_kwargs,
history=[],
@@ -57,31 +57,31 @@ def search_optimizer(
observe_window=mutable,
)
except Exception:
querys_json = "1234"
query_json = "null"
#* 尝试解码优化后的搜索结果
querys_json = re.sub(r"```json|```", "", querys_json)
query_json = re.sub(r"```json|```", "", query_json)
try:
querys = json.loads(querys_json)
queries = json.loads(query_json)
except Exception:
#* 如果解码失败,降低温度再试一次
try:
llm_kwargs["temperature"] = 0.4
querys_json = predict_no_ui_long_connection(
query_json = predict_no_ui_long_connection(
inputs=query,
llm_kwargs=llm_kwargs,
history=[],
sys_prompt=sys_prompt,
observe_window=mutable,
)
querys_json = re.sub(r"```json|```", "", querys_json)
querys = json.loads(querys_json)
query_json = re.sub(r"```json|```", "", query_json)
queries = json.loads(query_json)
except Exception:
#* 如果再次失败,直接返回原始问题
querys = [query]
queries = [query]
links = []
success = 0
Exceptions = ""
for q in querys:
for q in queries:
try:
link = searxng_request(q, proxies, categories, searxng_url, engines=engines)
if len(link) > 0:
@@ -175,10 +175,17 @@ def scrape_text(url, proxies) -> str:
Returns:
str: The scraped text
"""
from loguru import logger
headers = {
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36',
'Content-Type': 'text/plain',
}
# 首先采用Jina进行文本提取
if get_conf("JINA_API_KEY"):
try: return jina_scrape_text(url)
except: logger.debug("Jina API 请求失败,回到旧方法")
try:
response = requests.get(url, headers=headers, proxies=proxies, timeout=8)
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding
@@ -193,21 +200,39 @@ def scrape_text(url, proxies) -> str:
text = "\n".join(chunk for chunk in chunks if chunk)
return text
def jina_scrape_text(url) -> str:
"jina_39727421c8fa4e4fa9bd698e5211feaaDyGeVFESNrRaepWiLT0wmHYJSh-d"
headers = {
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36',
'Content-Type': 'text/plain',
"X-Retain-Images": "none",
"Authorization": f'Bearer {get_conf("JINA_API_KEY")}'
}
response = requests.get("https://r.jina.ai/" + url, headers=headers, proxies=None, timeout=8)
if response.status_code != 200:
raise ValueError("Jina API 请求失败,开始尝试旧方法!" + response.text)
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding
result = response.text
result = result.replace("\\[", "[").replace("\\]", "]").replace("\\(", "(").replace("\\)", ")")
return response.text
def internet_search_with_analysis_prompt(prompt, analysis_prompt, llm_kwargs, chatbot):
from toolbox import get_conf
proxies = get_conf('proxies')
categories = 'general'
searxng_url = None # 使用默认的searxng_url
engines = None # 使用默认的搜索引擎
yield from update_ui_lastest_msg(lastmsg=f"检索中: {prompt} ...", chatbot=chatbot, history=[], delay=1)
yield from update_ui_latest_msg(lastmsg=f"检索中: {prompt} ...", chatbot=chatbot, history=[], delay=1)
urls = searxng_request(prompt, proxies, categories, searxng_url, engines=engines)
yield from update_ui_lastest_msg(lastmsg=f"依次访问搜索到的网站 ...", chatbot=chatbot, history=[], delay=1)
yield from update_ui_latest_msg(lastmsg=f"依次访问搜索到的网站 ...", chatbot=chatbot, history=[], delay=1)
if len(urls) == 0:
return None
max_search_result = 5 # 最多收纳多少个网页的结果
history = []
for index, url in enumerate(urls[:max_search_result]):
yield from update_ui_lastest_msg(lastmsg=f"依次访问搜索到的网站: {url['link']} ...", chatbot=chatbot, history=[], delay=1)
yield from update_ui_latest_msg(lastmsg=f"依次访问搜索到的网站: {url['link']} ...", chatbot=chatbot, history=[], delay=1)
res = scrape_text(url['link'], proxies)
prefix = f"{index}份搜索结果 [源自{url['source'][0]}搜索] {url['title'][:25]}"
history.extend([prefix, res])
@@ -222,7 +247,7 @@ def internet_search_with_analysis_prompt(prompt, analysis_prompt, llm_kwargs, ch
llm_kwargs=llm_kwargs,
history=history,
sys_prompt="请从搜索结果中抽取信息,对最相关的两个搜索结果进行总结,然后回答问题。",
console_slience=False,
console_silence=False,
)
return gpt_say
@@ -246,23 +271,52 @@ def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
urls = search_optimizer(txt, proxies, optimizer_history, llm_kwargs, optimizer, categories, searxng_url, engines)
history = []
if len(urls) == 0:
chatbot.append((f"结论:{txt}",
"[Local Message] 受到限制,无法从searxng获取信息请尝试更换搜索引擎。"))
chatbot.append((f"结论:{txt}", "[Local Message] 受到限制,无法从searxng获取信息请尝试更换搜索引擎。"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# ------------- < 第2步依次访问网页 > -------------
from concurrent.futures import ThreadPoolExecutor
from textwrap import dedent
max_search_result = 5 # 最多收纳多少个网页的结果
if optimizer == "开启(增强)":
max_search_result = 8
chatbot.append(["联网检索中 ...", None])
for index, url in enumerate(urls[:max_search_result]):
res = scrape_text(url['link'], proxies)
prefix = f"{index}份搜索结果 [源自{url['source'][0]}搜索] {url['title'][:25]}"
history.extend([prefix, res])
res_squeeze = res.replace('\n', '...')
chatbot[-1] = [prefix + "\n\n" + res_squeeze[:500] + "......", None]
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
template = dedent("""
<details>
<summary>{TITLE}</summary>
<div class="search_result">{URL}</div>
<div class="search_result">{CONTENT}</div>
</details>
""")
buffer = ""
# 创建线程池
with ThreadPoolExecutor(max_workers=5) as executor:
# 提交任务到线程池
futures = []
for index, url in enumerate(urls[:max_search_result]):
future = executor.submit(scrape_text, url['link'], proxies)
futures.append((index, future, url))
# 处理完成的任务
for index, future, url in futures:
# 开始
prefix = f"正在加载 第{index+1}份搜索结果 [源自{url['source'][0]}搜索] {url['title'][:25]}"
string_structure = template.format(TITLE=prefix, URL=url['link'], CONTENT="正在加载,请稍后 ......")
yield from update_ui_latest_msg(lastmsg=(buffer + string_structure), chatbot=chatbot, history=history, delay=0.1) # 刷新界面
# 获取结果
res = future.result()
# 显示结果
prefix = f"{index+1}份搜索结果 [源自{url['source'][0]}搜索] {url['title'][:25]}"
string_structure = template.format(TITLE=prefix, URL=url['link'], CONTENT=res[:1000] + "......")
buffer += string_structure
# 更新历史
history.extend([prefix, res])
yield from update_ui_latest_msg(lastmsg=buffer, chatbot=chatbot, history=history, delay=0.1) # 刷新界面
# ------------- < 第3步ChatGPT综合 > -------------
if (optimizer != "开启(增强)"):

查看文件

@@ -38,11 +38,12 @@ class NetworkGPT_Wrap(GptAcademicPluginTemplate):
}
return gui_definition
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def execute(txt, llm_kwargs, plugin_kwargs:dict, chatbot, history, system_prompt, user_request):
"""
执行插件
"""
if plugin_kwargs["categories"] == "网页": plugin_kwargs["categories"] = "general"
if plugin_kwargs["categories"] == "学术论文": plugin_kwargs["categories"] = "science"
if plugin_kwargs.get("categories", None) == "网页": plugin_kwargs["categories"] = "general"
elif plugin_kwargs.get("categories", None) == "学术论文": plugin_kwargs["categories"] = "science"
else: plugin_kwargs["categories"] = "general"
yield from 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)

查看文件

@@ -1,5 +1,5 @@
from toolbox import update_ui, trimmed_format_exc, get_conf, get_log_folder, promote_file_to_downloadzone, check_repeat_upload, map_file_to_sha256
from toolbox import CatchException, report_exception, update_ui_lastest_msg, zip_result, gen_time_str
from toolbox import CatchException, report_exception, update_ui_latest_msg, zip_result, gen_time_str
from functools import partial
from loguru import logger
@@ -41,7 +41,7 @@ def switch_prompt(pfg, mode, more_requirement):
return inputs_array, sys_prompt_array
def desend_to_extracted_folder_if_exist(project_folder):
def descend_to_extracted_folder_if_exist(project_folder):
"""
Descend into the extracted folder if it exists, otherwise return the original folder.
@@ -130,7 +130,7 @@ def arxiv_download(chatbot, history, txt, allow_cache=True):
if not txt.startswith('https://arxiv.org/abs/'):
msg = f"解析arxiv网址失败, 期望格式例如: https://arxiv.org/abs/1707.06690。实际得到格式: {url_}"
yield from update_ui_lastest_msg(msg, chatbot=chatbot, history=history) # 刷新界面
yield from update_ui_latest_msg(msg, chatbot=chatbot, history=history) # 刷新界面
return msg, None
# <-------------- set format ------------->
arxiv_id = url_.split('/abs/')[-1]
@@ -156,16 +156,16 @@ def arxiv_download(chatbot, history, txt, allow_cache=True):
return False
if os.path.exists(dst) and allow_cache:
yield from update_ui_lastest_msg(f"调用缓存 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
yield from update_ui_latest_msg(f"调用缓存 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
success = True
else:
yield from update_ui_lastest_msg(f"开始下载 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
yield from update_ui_latest_msg(f"开始下载 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
success = fix_url_and_download()
yield from update_ui_lastest_msg(f"下载完成 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
yield from update_ui_latest_msg(f"下载完成 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
if not success:
yield from update_ui_lastest_msg(f"下载失败 {arxiv_id}", chatbot=chatbot, history=history)
yield from update_ui_latest_msg(f"下载失败 {arxiv_id}", chatbot=chatbot, history=history)
raise tarfile.ReadError(f"论文下载失败 {arxiv_id}")
# <-------------- extract file ------------->
@@ -288,7 +288,7 @@ def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, histo
return
# <-------------- if is a zip/tar file ------------->
project_folder = desend_to_extracted_folder_if_exist(project_folder)
project_folder = descend_to_extracted_folder_if_exist(project_folder)
# <-------------- move latex project away from temp folder ------------->
from shared_utils.fastapi_server import validate_path_safety
@@ -365,7 +365,7 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
try:
txt, arxiv_id = yield from arxiv_download(chatbot, history, txt, allow_cache)
except tarfile.ReadError as e:
yield from update_ui_lastest_msg(
yield from update_ui_latest_msg(
"无法自动下载该论文的Latex源码,请前往arxiv打开此论文下载页面,点other Formats,然后download source手动下载latex源码包。接下来调用本地Latex翻译插件即可。",
chatbot=chatbot, history=history)
return
@@ -404,7 +404,7 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
return
# <-------------- if is a zip/tar file ------------->
project_folder = desend_to_extracted_folder_if_exist(project_folder)
project_folder = descend_to_extracted_folder_if_exist(project_folder)
# <-------------- move latex project away from temp folder ------------->
from shared_utils.fastapi_server import validate_path_safety
@@ -518,7 +518,7 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
# repeat, project_folder = check_repeat_upload(file_manifest[0], hash_tag)
# if repeat:
# yield from update_ui_lastest_msg(f"发现重复上传,请查收结果(压缩包)...", chatbot=chatbot, history=history)
# yield from update_ui_latest_msg(f"发现重复上传,请查收结果(压缩包)...", chatbot=chatbot, history=history)
# try:
# translate_pdf = [f for f in glob.glob(f'{project_folder}/**/merge_translate_zh.pdf', recursive=True)][0]
# promote_file_to_downloadzone(translate_pdf, rename_file=None, chatbot=chatbot)
@@ -531,7 +531,7 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
# report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"发现重复上传,但是无法找到相关文件")
# yield from update_ui(chatbot=chatbot, history=history)
# else:
# yield from update_ui_lastest_msg(f"未发现重复上传", chatbot=chatbot, history=history)
# yield from update_ui_latest_msg(f"未发现重复上传", chatbot=chatbot, history=history)
# <-------------- convert pdf into tex ------------->
chatbot.append([f"解析项目: {txt}", "正在将PDF转换为tex项目,请耐心等待..."])
@@ -543,7 +543,7 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
return False
# <-------------- translate latex file into Chinese ------------->
yield from update_ui_lastest_msg("正在tex项目将翻译为中文...", chatbot=chatbot, history=history)
yield from update_ui_latest_msg("正在tex项目将翻译为中文...", chatbot=chatbot, history=history)
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
@@ -551,7 +551,7 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
return
# <-------------- if is a zip/tar file ------------->
project_folder = desend_to_extracted_folder_if_exist(project_folder)
project_folder = descend_to_extracted_folder_if_exist(project_folder)
# <-------------- move latex project away from temp folder ------------->
from shared_utils.fastapi_server import validate_path_safety
@@ -571,7 +571,7 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
switch_prompt=_switch_prompt_)
# <-------------- compile PDF ------------->
yield from update_ui_lastest_msg("正在将翻译好的项目tex项目编译为PDF...", chatbot=chatbot, history=history)
yield from update_ui_latest_msg("正在将翻译好的项目tex项目编译为PDF...", chatbot=chatbot, history=history)
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
main_file_modified='merge_translate_zh', mode='translate_zh',
work_folder_original=project_folder, work_folder_modified=project_folder,

查看文件

@@ -1,3 +1,4 @@
from shared_utils.fastapi_server import validate_path_safety
from toolbox import update_ui, trimmed_format_exc, promote_file_to_downloadzone, get_log_folder
from toolbox import CatchException, report_exception, write_history_to_file, zip_folder
from loguru import logger
@@ -155,6 +156,7 @@ def Latex英文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
import glob, os
if os.path.exists(txt):
project_folder = txt
validate_path_safety(project_folder, chatbot.get_user())
else:
if txt == "": txt = '空空如也的输入栏'
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
@@ -193,6 +195,7 @@ def Latex中文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
import glob, os
if os.path.exists(txt):
project_folder = txt
validate_path_safety(project_folder, chatbot.get_user())
else:
if txt == "": txt = '空空如也的输入栏'
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
@@ -229,6 +232,7 @@ def Latex英文纠错(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
import glob, os
if os.path.exists(txt):
project_folder = txt
validate_path_safety(project_folder, chatbot.get_user())
else:
if txt == "": txt = '空空如也的输入栏'
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")

查看文件

@@ -1,5 +1,6 @@
import glob, shutil, os, re
from loguru import logger
from shared_utils.fastapi_server import validate_path_safety
from toolbox import update_ui, trimmed_format_exc, gen_time_str
from toolbox import CatchException, report_exception, get_log_folder
from toolbox import write_history_to_file, promote_file_to_downloadzone
@@ -118,7 +119,7 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
def get_files_from_everything(txt, preference=''):
def get_files_from_everything(txt, preference='', chatbox=None):
if txt == "": return False, None, None
success = True
if txt.startswith('http'):
@@ -146,9 +147,11 @@ def get_files_from_everything(txt, preference=''):
# 直接给定文件
file_manifest = [txt]
project_folder = os.path.dirname(txt)
validate_path_safety(project_folder, chatbot.get_user())
elif os.path.exists(txt):
# 本地路径,递归搜索
project_folder = txt
validate_path_safety(project_folder, chatbot.get_user())
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.md', recursive=True)]
else:
project_folder = None
@@ -177,7 +180,7 @@ def Markdown英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
return
history = [] # 清空历史,以免输入溢出
success, file_manifest, project_folder = get_files_from_everything(txt, preference="Github")
success, file_manifest, project_folder = get_files_from_everything(txt, preference="Github", chatbox=chatbot)
if not success:
# 什么都没有

查看文件

@@ -1,5 +1,5 @@
from toolbox import CatchException, check_packages, get_conf
from toolbox import update_ui, update_ui_lastest_msg, disable_auto_promotion
from toolbox import update_ui, update_ui_latest_msg, disable_auto_promotion
from toolbox import trimmed_format_exc_markdown
from crazy_functions.crazy_utils import get_files_from_everything
from crazy_functions.pdf_fns.parse_pdf import get_avail_grobid_url
@@ -26,7 +26,7 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
# 清空历史,以免输入溢出
history = []
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf')
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf', chatbot=chatbot)
# 检测输入参数,如没有给定输入参数,直接退出
if (not success) and txt == "": txt = '空空如也的输入栏。提示请先上传文件把PDF文件拖入对话'
@@ -57,9 +57,9 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
return
if method == "ClASSIC":
if method == "Classic":
# ------- 第三种方法,早期代码,效果不理想 -------
yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
yield from update_ui_latest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
yield from 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
return
@@ -77,7 +77,7 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
if grobid_url is not None:
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
return
yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
yield from update_ui_latest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
yield from 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
return

查看文件

@@ -19,7 +19,7 @@ class PDF_Tran(GptAcademicPluginTemplate):
"additional_prompt":
ArgProperty(title="额外提示词", description="例如:对专有名词、翻译语气等方面的要求", default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步
"pdf_parse_method":
ArgProperty(title="PDF解析方法", options=["DOC2X", "GROBID", "ClASSIC"], description="", default_value="GROBID", type="dropdown").model_dump_json(),
ArgProperty(title="PDF解析方法", options=["DOC2X", "GROBID", "Classic"], description="", default_value="GROBID", type="dropdown").model_dump_json(),
}
return gui_definition

查看文件

@@ -4,7 +4,7 @@ from typing import List
from shared_utils.fastapi_server import validate_path_safety
from toolbox import report_exception
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_latest_msg
from shared_utils.fastapi_server import validate_path_safety
from crazy_functions.crazy_utils import input_clipping
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
@@ -92,7 +92,7 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
chatbot.append([txt, f'正在清空 ({current_context}) ...'])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
rag_worker.purge_vector_store()
yield from update_ui_lastest_msg('已清空', chatbot, history, delay=0) # 刷新界面
yield from update_ui_latest_msg('已清空', chatbot, history, delay=0) # 刷新界面
return
# 3. Normal Q&A processing
@@ -109,10 +109,10 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
# 5. If input is clipped, add input to vector store before retrieve
if input_is_clipped_flag:
yield from update_ui_lastest_msg('检测到长输入, 正在向量化 ...', chatbot, history, delay=0) # 刷新界面
yield from update_ui_latest_msg('检测到长输入, 正在向量化 ...', chatbot, history, delay=0) # 刷新界面
# Save input to vector store
rag_worker.add_text_to_vector_store(txt_origin)
yield from update_ui_lastest_msg('向量化完成 ...', chatbot, history, delay=0) # 刷新界面
yield from update_ui_latest_msg('向量化完成 ...', chatbot, history, delay=0) # 刷新界面
if len(txt_origin) > REMEMBER_PREVIEW:
HALF = REMEMBER_PREVIEW // 2
@@ -142,7 +142,7 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
)
# 8. Remember Q&A
yield from update_ui_lastest_msg(
yield from update_ui_latest_msg(
model_say + '</br></br>' + f'对话记忆中, 请稍等 ({current_context}) ...',
chatbot, history, delay=0.5
)
@@ -150,4 +150,4 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
history.extend([i_say, model_say])
# 9. Final UI Update
yield from update_ui_lastest_msg(model_say, chatbot, history, delay=0, msg=tip)
yield from update_ui_latest_msg(model_say, chatbot, history, delay=0, msg=tip)

查看文件

@@ -1,5 +1,5 @@
import pickle, os, random
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_latest_msg
from crazy_functions.crazy_utils import input_clipping
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from request_llms.bridge_all import predict_no_ui_long_connection
@@ -9,7 +9,7 @@ from loguru import logger
from typing import List
SOCIAL_NETWOK_WORKER_REGISTER = {}
SOCIAL_NETWORK_WORKER_REGISTER = {}
class SocialNetwork():
def __init__(self):
@@ -78,7 +78,7 @@ class SocialNetworkWorker(SaveAndLoad):
for f in friend.friends_list:
self.add_friend(f)
msg = f"成功添加{len(friend.friends_list)}个联系人: {str(friend.friends_list)}"
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=0)
yield from update_ui_latest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=0)
def run(self, txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
@@ -104,12 +104,12 @@ class SocialNetworkWorker(SaveAndLoad):
}
try:
Explaination = '\n'.join([f'{k}: {v["explain_to_llm"]}' for k, v in self.tools_to_select.items()])
Explanation = '\n'.join([f'{k}: {v["explain_to_llm"]}' for k, v in self.tools_to_select.items()])
class UserSociaIntention(BaseModel):
intention_type: str = Field(
description=
f"The type of user intention. You must choose from {self.tools_to_select.keys()}.\n\n"
f"Explaination:\n{Explaination}",
f"Explanation:\n{Explanation}",
default="SocialAdvice"
)
pydantic_cls_instance, err_msg = select_tool(
@@ -118,7 +118,7 @@ class SocialNetworkWorker(SaveAndLoad):
pydantic_cls=UserSociaIntention
)
except Exception as e:
yield from update_ui_lastest_msg(
yield from update_ui_latest_msg(
lastmsg=f"无法理解用户意图 {err_msg}",
chatbot=chatbot,
history=history,
@@ -150,10 +150,10 @@ def I人助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt,
# 1. we retrieve worker from global context
user_name = chatbot.get_user()
checkpoint_dir=get_log_folder(user_name, plugin_name='experimental_rag')
if user_name in SOCIAL_NETWOK_WORKER_REGISTER:
social_network_worker = SOCIAL_NETWOK_WORKER_REGISTER[user_name]
if user_name in SOCIAL_NETWORK_WORKER_REGISTER:
social_network_worker = SOCIAL_NETWORK_WORKER_REGISTER[user_name]
else:
social_network_worker = SOCIAL_NETWOK_WORKER_REGISTER[user_name] = SocialNetworkWorker(
social_network_worker = SOCIAL_NETWORK_WORKER_REGISTER[user_name] = SocialNetworkWorker(
user_name,
llm_kwargs,
checkpoint_dir=checkpoint_dir,

查看文件

@@ -1,5 +1,5 @@
import os, copy, time
from toolbox import CatchException, report_exception, update_ui, zip_result, promote_file_to_downloadzone, update_ui_lastest_msg, get_conf, generate_file_link
from toolbox import CatchException, report_exception, update_ui, zip_result, promote_file_to_downloadzone, update_ui_latest_msg, get_conf, generate_file_link
from shared_utils.fastapi_server import validate_path_safety
from crazy_functions.crazy_utils import input_clipping
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
@@ -117,7 +117,7 @@ def 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
logger.error(f"文件: {fp} 的注释结果未能成功")
file_links = generate_file_link(preview_html_list)
yield from update_ui_lastest_msg(
yield from update_ui_latest_msg(
f"当前任务: <br/>{'<br/>'.join(tasks)}.<br/>" +
f"剩余源文件数量: {remain}.<br/>" +
f"已完成的文件: {sum(worker_done)}.<br/>" +

查看文件

@@ -7,7 +7,7 @@ from bs4 import BeautifulSoup
from functools import lru_cache
from itertools import zip_longest
from check_proxy import check_proxy
from toolbox import CatchException, update_ui, get_conf, promote_file_to_downloadzone, update_ui_lastest_msg, generate_file_link
from toolbox import CatchException, update_ui, get_conf, promote_file_to_downloadzone, update_ui_latest_msg, generate_file_link
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
from request_llms.bridge_all import model_info
from request_llms.bridge_all import predict_no_ui_long_connection
@@ -46,7 +46,7 @@ def download_video(bvid, user_name, chatbot, history):
# pause a while
tic_time = 8
for i in range(tic_time):
yield from update_ui_lastest_msg(
yield from update_ui_latest_msg(
lastmsg=f"即将下载音频。等待{tic_time-i}秒后自动继续, 点击“停止”键取消此操作。",
chatbot=chatbot, history=[], delay=1)
@@ -61,13 +61,13 @@ def download_video(bvid, user_name, chatbot, history):
# preview
preview_list = [promote_file_to_downloadzone(fp) for fp in downloaded_files]
file_links = generate_file_link(preview_list)
yield from update_ui_lastest_msg(f"已完成的文件: <br/>" + file_links, chatbot=chatbot, history=history, delay=0)
yield from update_ui_latest_msg(f"已完成的文件: <br/>" + file_links, chatbot=chatbot, history=history, delay=0)
chatbot.append((None, f"即将下载视频。"))
# pause a while
tic_time = 16
for i in range(tic_time):
yield from update_ui_lastest_msg(
yield from update_ui_latest_msg(
lastmsg=f"即将下载视频。等待{tic_time-i}秒后自动继续, 点击“停止”键取消此操作。",
chatbot=chatbot, history=[], delay=1)
@@ -78,7 +78,7 @@ def download_video(bvid, user_name, chatbot, history):
# preview
preview_list = [promote_file_to_downloadzone(fp) for fp in downloaded_files_part2]
file_links = generate_file_link(preview_list)
yield from update_ui_lastest_msg(f"已完成的文件: <br/>" + file_links, chatbot=chatbot, history=history, delay=0)
yield from update_ui_latest_msg(f"已完成的文件: <br/>" + file_links, chatbot=chatbot, history=history, delay=0)
# return
return downloaded_files + downloaded_files_part2
@@ -110,7 +110,7 @@ def 多媒体任务(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
# 结构化生成
internet_search_keyword = user_wish
yield from update_ui_lastest_msg(lastmsg=f"发起互联网检索: {internet_search_keyword} ...", chatbot=chatbot, history=[], delay=1)
yield from update_ui_latest_msg(lastmsg=f"发起互联网检索: {internet_search_keyword} ...", chatbot=chatbot, history=[], delay=1)
from crazy_functions.Internet_GPT import internet_search_with_analysis_prompt
result = yield from internet_search_with_analysis_prompt(
prompt=internet_search_keyword,
@@ -119,7 +119,7 @@ def 多媒体任务(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
chatbot=chatbot
)
yield from update_ui_lastest_msg(lastmsg=f"互联网检索结论: {result} \n\n 正在生成进一步检索方案 ...", chatbot=chatbot, history=[], delay=1)
yield from update_ui_latest_msg(lastmsg=f"互联网检索结论: {result} \n\n 正在生成进一步检索方案 ...", chatbot=chatbot, history=[], delay=1)
rf_req = dedent(f"""
The user wish to get the following resource:
{user_wish}
@@ -132,7 +132,7 @@ def 多媒体任务(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
rf_req = dedent(f"""
The user wish to get the following resource:
{user_wish}
Generate reseach keywords (less than 5 keywords) accordingly.
Generate research keywords (less than 5 keywords) accordingly.
""")
gpt_json_io = GptJsonIO(Query)
inputs = rf_req + gpt_json_io.format_instructions
@@ -146,12 +146,12 @@ def 多媒体任务(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 获取候选资源
candadate_dictionary: dict = get_video_resource(video_engine_keywords)
candadate_dictionary_as_str = json.dumps(candadate_dictionary, ensure_ascii=False, indent=4)
candidate_dictionary: dict = get_video_resource(video_engine_keywords)
candidate_dictionary_as_str = json.dumps(candidate_dictionary, ensure_ascii=False, indent=4)
# 展示候选资源
candadate_display = "\n".join([f"{i+1}. {it['title']}" for i, it in enumerate(candadate_dictionary)])
chatbot.append((None, f"候选:\n\n{candadate_display}"))
candidate_display = "\n".join([f"{i+1}. {it['title']}" for i, it in enumerate(candidate_dictionary)])
chatbot.append((None, f"候选:\n\n{candidate_display}"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 结构化生成
@@ -160,7 +160,7 @@ def 多媒体任务(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
{user_wish}
Select the most relevant and suitable video resource from the following search results:
{candadate_dictionary_as_str}
{candidate_dictionary_as_str}
Note:
1. The first several search video results are more likely to satisfy the user's wish.

查看文件

@@ -1,5 +1,5 @@
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, ProxyNetworkActivate
from toolbox import report_exception, get_log_folder, update_ui_lastest_msg, Singleton
from toolbox import report_exception, get_log_folder, update_ui_latest_msg, Singleton
from crazy_functions.agent_fns.pipe import PluginMultiprocessManager, PipeCom
from crazy_functions.agent_fns.general import AutoGenGeneral

查看文件

@@ -8,7 +8,7 @@ class EchoDemo(PluginMultiprocessManager):
while True:
msg = self.child_conn.recv() # PipeCom
if msg.cmd == "user_input":
# wait futher user input
# wait father user input
self.child_conn.send(PipeCom("show", msg.content))
wait_success = self.subprocess_worker_wait_user_feedback(wait_msg="我准备好处理下一个问题了.")
if not wait_success:

查看文件

@@ -27,7 +27,7 @@ def gpt_academic_generate_oai_reply(
llm_kwargs=llm_config,
history=history,
sys_prompt=self._oai_system_message[0]['content'],
console_slience=True
console_silence=True
)
assumed_done = reply.endswith('\nTERMINATE')
return True, reply

查看文件

@@ -10,7 +10,7 @@ from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_
# TODO: 解决缩进问题
find_function_end_prompt = '''
Below is a page of code that you need to read. This page may not yet complete, you job is to split this page to sperate functions, class functions etc.
Below is a page of code that you need to read. This page may not yet complete, you job is to split this page to separate functions, class functions etc.
- Provide the line number where the first visible function ends.
- Provide the line number where the next visible function begins.
- If there are no other functions in this page, you should simply return the line number of the last line.
@@ -59,7 +59,7 @@ OUTPUT:
revise_funtion_prompt = '''
revise_function_prompt = '''
You need to read the following code, and revise the source code ({FILE_BASENAME}) according to following instructions:
1. You should analyze the purpose of the functions (if there are any).
2. You need to add docstring for the provided functions (if there are any).
@@ -117,7 +117,7 @@ def zip_result(folder):
'''
revise_funtion_prompt_chinese = '''
revise_function_prompt_chinese = '''
您需要阅读以下代码,并根据以下说明修订源代码({FILE_BASENAME}):
1. 如果源代码中包含函数的话, 你应该分析给定函数实现了什么功能
2. 如果源代码中包含函数的话, 你需要为函数添加docstring, docstring必须使用中文
@@ -188,9 +188,9 @@ class PythonCodeComment():
self.language = language
self.observe_window_update = observe_window_update
if self.language == "chinese":
self.core_prompt = revise_funtion_prompt_chinese
self.core_prompt = revise_function_prompt_chinese
else:
self.core_prompt = revise_funtion_prompt
self.core_prompt = revise_function_prompt
self.path = None
self.file_basename = None
self.file_brief = ""
@@ -222,7 +222,7 @@ class PythonCodeComment():
history=[],
sys_prompt="",
observe_window=[],
console_slience=True
console_silence=True
)
def extract_number(text):
@@ -316,7 +316,7 @@ class PythonCodeComment():
def tag_code(self, fn, hint):
code = fn
_, n_indent = self.dedent(code)
indent_reminder = "" if n_indent == 0 else "(Reminder: as you can see, this piece of code has indent made up with {n_indent} whitespace, please preseve them in the OUTPUT.)"
indent_reminder = "" if n_indent == 0 else "(Reminder: as you can see, this piece of code has indent made up with {n_indent} whitespace, please preserve them in the OUTPUT.)"
brief_reminder = "" if self.file_brief == "" else f"({self.file_basename} abstract: {self.file_brief})"
hint_reminder = "" if hint is None else f"(Reminder: do not ignore or modify code such as `{hint}`, provide complete code in the OUTPUT.)"
self.llm_kwargs['temperature'] = 0
@@ -333,7 +333,7 @@ class PythonCodeComment():
history=[],
sys_prompt="",
observe_window=[],
console_slience=True
console_silence=True
)
def get_code_block(reply):
@@ -400,7 +400,7 @@ class PythonCodeComment():
return revised
def begin_comment_source_code(self, chatbot=None, history=None):
# from toolbox import update_ui_lastest_msg
# from toolbox import update_ui_latest_msg
assert self.path is not None
assert '.py' in self.path # must be python source code
# write_target = self.path + '.revised.py'
@@ -409,10 +409,10 @@ class PythonCodeComment():
# with open(self.path + '.revised.py', 'w+', encoding='utf8') as f:
while True:
try:
# yield from update_ui_lastest_msg(f"({self.file_basename}) 正在读取下一段代码片段:\n", chatbot=chatbot, history=history, delay=0)
# yield from update_ui_latest_msg(f"({self.file_basename}) 正在读取下一段代码片段:\n", chatbot=chatbot, history=history, delay=0)
next_batch, line_no_start, line_no_end = self.get_next_batch()
self.observe_window_update(f"正在处理{self.file_basename} - {line_no_start}/{len(self.full_context)}\n")
# yield from update_ui_lastest_msg(f"({self.file_basename}) 处理代码片段:\n\n{next_batch}", chatbot=chatbot, history=history, delay=0)
# yield from update_ui_latest_msg(f"({self.file_basename}) 处理代码片段:\n\n{next_batch}", chatbot=chatbot, history=history, delay=0)
hint = None
MAX_ATTEMPT = 2

查看文件

@@ -1,7 +1,8 @@
import os
import threading
from loguru import logger
from shared_utils.char_visual_effect import scolling_visual_effect
from shared_utils.fastapi_server import validate_path_safety
from shared_utils.char_visual_effect import scrolling_visual_effect
from toolbox import update_ui, get_conf, trimmed_format_exc, get_max_token, Singleton
def input_clipping(inputs, history, max_token_limit, return_clip_flags=False):
@@ -256,7 +257,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
# 【第一种情况】:顺利完成
gpt_say = predict_no_ui_long_connection(
inputs=inputs, llm_kwargs=llm_kwargs, history=history,
sys_prompt=sys_prompt, observe_window=mutable[index], console_slience=True
sys_prompt=sys_prompt, observe_window=mutable[index], console_silence=True
)
mutable[index][2] = "已成功"
return gpt_say
@@ -326,7 +327,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
mutable[thread_index][1] = time.time()
# 在前端打印些好玩的东西
for thread_index, _ in enumerate(worker_done):
print_something_really_funny = f"[ ...`{scolling_visual_effect(mutable[thread_index][0], scroller_max_len)}`... ]"
print_something_really_funny = f"[ ...`{scrolling_visual_effect(mutable[thread_index][0], scroller_max_len)}`... ]"
observe_win.append(print_something_really_funny)
# 在前端打印些好玩的东西
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n'
@@ -389,11 +390,11 @@ def read_and_clean_pdf_text(fp):
"""
提取文本块主字体
"""
fsize_statiscs = {}
fsize_statistics = {}
for wtf in l['spans']:
if wtf['size'] not in fsize_statiscs: fsize_statiscs[wtf['size']] = 0
fsize_statiscs[wtf['size']] += len(wtf['text'])
return max(fsize_statiscs, key=fsize_statiscs.get)
if wtf['size'] not in fsize_statistics: fsize_statistics[wtf['size']] = 0
fsize_statistics[wtf['size']] += len(wtf['text'])
return max(fsize_statistics, key=fsize_statistics.get)
def ffsize_same(a,b):
"""
@@ -433,11 +434,11 @@ def read_and_clean_pdf_text(fp):
############################## <第 2 步,获取正文主字体> ##################################
try:
fsize_statiscs = {}
fsize_statistics = {}
for span in meta_span:
if span[1] not in fsize_statiscs: fsize_statiscs[span[1]] = 0
fsize_statiscs[span[1]] += span[2]
main_fsize = max(fsize_statiscs, key=fsize_statiscs.get)
if span[1] not in fsize_statistics: fsize_statistics[span[1]] = 0
fsize_statistics[span[1]] += span[2]
main_fsize = max(fsize_statistics, key=fsize_statistics.get)
if REMOVE_FOOT_NOTE:
give_up_fize_threshold = main_fsize * REMOVE_FOOT_FFSIZE_PERCENT
except:
@@ -539,7 +540,7 @@ def read_and_clean_pdf_text(fp):
return meta_txt, page_one_meta
def get_files_from_everything(txt, type): # type='.md'
def get_files_from_everything(txt, type, chatbot=None): # type='.md'
"""
这个函数是用来获取指定目录下所有指定类型(如.md的文件,并且对于网络上的文件,也可以获取它。
下面是对每个参数和返回值的说明:
@@ -551,6 +552,7 @@ def get_files_from_everything(txt, type): # type='.md'
- file_manifest: 文件路径列表,里面包含以指定类型为后缀名的所有文件的绝对路径。
- project_folder: 字符串,表示文件所在的文件夹路径。如果是网络上的文件,就是临时文件夹的路径。
该函数详细注释已添加,请确认是否满足您的需要。
- chatbot 带Cookies的Chatbot类,为实现更多强大的功能做基础
"""
import glob, os
@@ -573,9 +575,13 @@ def get_files_from_everything(txt, type): # type='.md'
# 直接给定文件
file_manifest = [txt]
project_folder = os.path.dirname(txt)
if chatbot is not None:
validate_path_safety(project_folder, chatbot.get_user())
elif os.path.exists(txt):
# 本地路径,递归搜索
project_folder = txt
if chatbot is not None:
validate_path_safety(project_folder, chatbot.get_user())
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*'+type, recursive=True)]
if len(file_manifest) == 0:
success = False
@@ -610,9 +616,9 @@ class nougat_interface():
def NOUGAT_parse_pdf(self, fp, chatbot, history):
from toolbox import update_ui_lastest_msg
from toolbox import update_ui_latest_msg
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度:正在排队, 等待线程锁...",
yield from update_ui_latest_msg("正在解析论文, 请稍候。进度:正在排队, 等待线程锁...",
chatbot=chatbot, history=history, delay=0)
self.threadLock.acquire()
import glob, threading, os
@@ -620,7 +626,7 @@ class nougat_interface():
dst = os.path.join(get_log_folder(plugin_name='nougat'), gen_time_str())
os.makedirs(dst)
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度正在加载NOUGAT... 提示首次运行需要花费较长时间下载NOUGAT参数",
yield from update_ui_latest_msg("正在解析论文, 请稍候。进度正在加载NOUGAT... 提示首次运行需要花费较长时间下载NOUGAT参数",
chatbot=chatbot, history=history, delay=0)
command = ['nougat', '--out', os.path.abspath(dst), os.path.abspath(fp)]
self.nougat_with_timeout(command, cwd=os.getcwd(), timeout=3600)

查看文件

@@ -1,4 +1,4 @@
from toolbox import CatchException, update_ui, update_ui_lastest_msg
from toolbox import CatchException, update_ui, update_ui_latest_msg
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicGameBaseState
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from request_llms.bridge_all import predict_no_ui_long_connection
@@ -13,7 +13,7 @@ class MiniGame_ASCII_Art(GptAcademicGameBaseState):
else:
if prompt.strip() == 'exit':
self.delete_game = True
yield from update_ui_lastest_msg(lastmsg=f"谜底是{self.obj},游戏结束。", chatbot=chatbot, history=history, delay=0.)
yield from update_ui_latest_msg(lastmsg=f"谜底是{self.obj},游戏结束。", chatbot=chatbot, history=history, delay=0.)
return
chatbot.append([prompt, ""])
yield from update_ui(chatbot=chatbot, history=history)
@@ -31,12 +31,12 @@ class MiniGame_ASCII_Art(GptAcademicGameBaseState):
self.cur_task = 'identify user guess'
res = get_code_block(raw_res)
history += ['', f'the answer is {self.obj}', inputs, res]
yield from update_ui_lastest_msg(lastmsg=res, chatbot=chatbot, history=history, delay=0.)
yield from update_ui_latest_msg(lastmsg=res, chatbot=chatbot, history=history, delay=0.)
elif self.cur_task == 'identify user guess':
if is_same_thing(self.obj, prompt, self.llm_kwargs):
self.delete_game = True
yield from update_ui_lastest_msg(lastmsg="你猜对了!", chatbot=chatbot, history=history, delay=0.)
yield from update_ui_latest_msg(lastmsg="你猜对了!", chatbot=chatbot, history=history, delay=0.)
else:
self.cur_task = 'identify user guess'
yield from update_ui_lastest_msg(lastmsg="猜错了,再试试,输入“exit”获取答案。", chatbot=chatbot, history=history, delay=0.)
yield from update_ui_latest_msg(lastmsg="猜错了,再试试,输入“exit”获取答案。", chatbot=chatbot, history=history, delay=0.)

查看文件

@@ -63,7 +63,7 @@ prompts_terminate = """小说的前文回顾:
"""
from toolbox import CatchException, update_ui, update_ui_lastest_msg
from toolbox import CatchException, update_ui, update_ui_latest_msg
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicGameBaseState
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from request_llms.bridge_all import predict_no_ui_long_connection
@@ -112,7 +112,7 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
if prompt.strip() == 'exit' or prompt.strip() == '结束剧情':
# should we terminate game here?
self.delete_game = True
yield from update_ui_lastest_msg(lastmsg=f"游戏结束。", chatbot=chatbot, history=history, delay=0.)
yield from update_ui_latest_msg(lastmsg=f"游戏结束。", chatbot=chatbot, history=history, delay=0.)
return
if '剧情收尾' in prompt:
self.cur_task = 'story_terminate'
@@ -137,8 +137,8 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
)
self.story.append(story_paragraph)
# # 配图
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
yield from update_ui_latest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
yield from update_ui_latest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
# # 构建后续剧情引导
previously_on_story = ""
@@ -171,8 +171,8 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
)
self.story.append(story_paragraph)
# # 配图
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
yield from update_ui_latest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
yield from update_ui_latest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
# # 构建后续剧情引导
previously_on_story = ""
@@ -204,8 +204,8 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
chatbot, history_, self.sys_prompt_
)
# # 配图
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
yield from update_ui_latest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
yield from update_ui_latest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
# terminate game
self.delete_game = True

查看文件

@@ -2,7 +2,7 @@ import time
import importlib
from toolbox import trimmed_format_exc, gen_time_str, get_log_folder
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, is_the_upload_folder
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_lastest_msg
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_latest_msg
import multiprocessing
def get_class_name(class_string):

查看文件

@@ -102,10 +102,10 @@ class GptJsonIO():
logging.info(f'Repairing json{response}')
repair_prompt = self.generate_repair_prompt(broken_json = response, error=repr(e))
result = self.generate_output(gpt_gen_fn(repair_prompt, self.format_instructions))
logging.info('Repaire json success.')
logging.info('Repair json success.')
except Exception as e:
# 没辙了,放弃治疗
logging.info('Repaire json fail.')
logging.info('Repair json fail.')
raise JsonStringError('Cannot repair json.', str(e))
return result

查看文件

@@ -3,7 +3,7 @@ import re
import shutil
import numpy as np
from loguru import logger
from toolbox import update_ui, update_ui_lastest_msg, get_log_folder, gen_time_str
from toolbox import update_ui, update_ui_latest_msg, get_log_folder, gen_time_str
from toolbox import get_conf, promote_file_to_downloadzone
from crazy_functions.latex_fns.latex_toolbox import PRESERVE, TRANSFORM
from crazy_functions.latex_fns.latex_toolbox import set_forbidden_text, set_forbidden_text_begin_end, set_forbidden_text_careful_brace
@@ -20,7 +20,7 @@ def split_subprocess(txt, project_folder, return_dict, opts):
"""
break down latex file to a linked list,
each node use a preserve flag to indicate whether it should
be proccessed by GPT.
be processed by GPT.
"""
text = txt
mask = np.zeros(len(txt), dtype=np.uint8) + TRANSFORM
@@ -85,14 +85,14 @@ class LatexPaperSplit():
"""
break down latex file to a linked list,
each node use a preserve flag to indicate whether it should
be proccessed by GPT.
be processed by GPT.
"""
def __init__(self) -> None:
self.nodes = None
self.msg = "*{\\scriptsize\\textbf{警告该PDF由GPT-Academic开源项目调用大语言模型+Latex翻译插件一键生成," + \
"版权归原文作者所有。翻译内容可靠性无保障,请仔细鉴别并以原文为准。" + \
"项目Github地址 \\url{https://github.com/binary-husky/gpt_academic/}。"
# 请您不要删除或修改这行警告,除非您是论文的原作者如果您是论文原作者,欢迎加REAME中的QQ联系开发者
# 请您不要删除或修改这行警告,除非您是论文的原作者如果您是论文原作者,欢迎加README中的QQ联系开发者
self.msg_declare = "为了防止大语言模型的意外谬误产生扩散影响,禁止移除或修改此警告。}}\\\\"
self.title = "unknown"
self.abstract = "unknown"
@@ -151,7 +151,7 @@ class LatexPaperSplit():
"""
break down latex file to a linked list,
each node use a preserve flag to indicate whether it should
be proccessed by GPT.
be processed by GPT.
P.S. use multiprocessing to avoid timeout error
"""
import multiprocessing
@@ -351,7 +351,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
max_try = 32
chatbot.append([f"正在编译PDF文档", f'编译已经开始。当前工作路径为{work_folder},如果程序停顿5分钟以上,请直接去该路径下取回翻译结果,或者重启之后再度尝试 ...']); yield from update_ui(chatbot=chatbot, history=history)
chatbot.append([f"正在编译PDF文档", '...']); yield from update_ui(chatbot=chatbot, history=history); time.sleep(1); chatbot[-1] = list(chatbot[-1]) # 刷新界面
yield from update_ui_lastest_msg('编译已经开始...', chatbot, history) # 刷新Gradio前端界面
yield from update_ui_latest_msg('编译已经开始...', chatbot, history) # 刷新Gradio前端界面
# 检查是否需要使用xelatex
def check_if_need_xelatex(tex_path):
try:
@@ -373,7 +373,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
# 根据编译器类型返回编译命令
def get_compile_command(compiler, filename):
compile_command = f'{compiler} -interaction=batchmode -file-line-error {filename}.tex'
logger.info('Latex 编译指令: ', compile_command)
logger.info('Latex 编译指令: ' + compile_command)
return compile_command
# 确定使用的编译器
@@ -396,32 +396,32 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
shutil.copyfile(may_exist_bbl, target_bbl)
# https://stackoverflow.com/questions/738755/dont-make-me-manually-abort-a-latex-compile-when-theres-an-error
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译原始PDF ...', chatbot, history) # 刷新Gradio前端界面
yield from update_ui_latest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译原始PDF ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_original), work_folder_original)
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译转化后的PDF ...', chatbot, history) # 刷新Gradio前端界面
yield from update_ui_latest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译转化后的PDF ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_modified), work_folder_modified)
if ok and os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf')):
# 只有第二步成功,才能继续下面的步骤
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译BibTex ...', chatbot, history) # 刷新Gradio前端界面
yield from update_ui_latest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译BibTex ...', chatbot, history) # 刷新Gradio前端界面
if not os.path.exists(pj(work_folder_original, f'{main_file_original}.bbl')):
ok = compile_latex_with_timeout(f'bibtex {main_file_original}.aux', work_folder_original)
if not os.path.exists(pj(work_folder_modified, f'{main_file_modified}.bbl')):
ok = compile_latex_with_timeout(f'bibtex {main_file_modified}.aux', work_folder_modified)
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译文献交叉引用 ...', chatbot, history) # 刷新Gradio前端界面
yield from update_ui_latest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译文献交叉引用 ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_original), work_folder_original)
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_modified), work_folder_modified)
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_original), work_folder_original)
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_modified), work_folder_modified)
if mode!='translate_zh':
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 使用latexdiff生成论文转化前后对比 ...', chatbot, history) # 刷新Gradio前端界面
yield from update_ui_latest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 使用latexdiff生成论文转化前后对比 ...', chatbot, history) # 刷新Gradio前端界面
logger.info( f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex')
ok = compile_latex_with_timeout(f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex', os.getcwd())
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 正在编译对比PDF ...', chatbot, history) # 刷新Gradio前端界面
yield from update_ui_latest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 正在编译对比PDF ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(get_compile_command(compiler, 'merge_diff'), work_folder)
ok = compile_latex_with_timeout(f'bibtex merge_diff.aux', work_folder)
ok = compile_latex_with_timeout(get_compile_command(compiler, 'merge_diff'), work_folder)
@@ -435,13 +435,13 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
results_ += f"原始PDF编译是否成功: {original_pdf_success};"
results_ += f"转化PDF编译是否成功: {modified_pdf_success};"
results_ += f"对比PDF编译是否成功: {diff_pdf_success};"
yield from update_ui_lastest_msg(f'{n_fix}编译结束:<br/>{results_}...', chatbot, history) # 刷新Gradio前端界面
yield from update_ui_latest_msg(f'{n_fix}编译结束:<br/>{results_}...', chatbot, history) # 刷新Gradio前端界面
if diff_pdf_success:
result_pdf = pj(work_folder_modified, f'merge_diff.pdf') # get pdf path
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
if modified_pdf_success:
yield from update_ui_lastest_msg(f'转化PDF编译已经成功, 正在尝试生成对比PDF, 请稍候 ...', chatbot, history) # 刷新Gradio前端界面
yield from update_ui_latest_msg(f'转化PDF编译已经成功, 正在尝试生成对比PDF, 请稍候 ...', chatbot, history) # 刷新Gradio前端界面
result_pdf = pj(work_folder_modified, f'{main_file_modified}.pdf') # get pdf path
origin_pdf = pj(work_folder_original, f'{main_file_original}.pdf') # get pdf path
if os.path.exists(pj(work_folder, '..', 'translation')):
@@ -472,7 +472,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
work_folder_modified=work_folder_modified,
fixed_line=fixed_line
)
yield from update_ui_lastest_msg(f'由于最为关键的转化PDF编译失败, 将根据报错信息修正tex源文件并重试, 当前报错的latex代码处于第{buggy_lines}行 ...', chatbot, history) # 刷新Gradio前端界面
yield from update_ui_latest_msg(f'由于最为关键的转化PDF编译失败, 将根据报错信息修正tex源文件并重试, 当前报错的latex代码处于第{buggy_lines}行 ...', chatbot, history) # 刷新Gradio前端界面
if not can_retry: break
return False # 失败啦

查看文件

@@ -168,7 +168,7 @@ def set_forbidden_text(text, mask, pattern, flags=0):
def reverse_forbidden_text(text, mask, pattern, flags=0, forbid_wrapper=True):
"""
Move area out of preserve area (make text editable for GPT)
count the number of the braces so as to catch compelete text area.
count the number of the braces so as to catch complete text area.
e.g.
\begin{abstract} blablablablablabla. \end{abstract}
"""
@@ -188,7 +188,7 @@ def reverse_forbidden_text(text, mask, pattern, flags=0, forbid_wrapper=True):
def set_forbidden_text_careful_brace(text, mask, pattern, flags=0):
"""
Add a preserve text area in this paper (text become untouchable for GPT).
count the number of the braces so as to catch compelete text area.
count the number of the braces so as to catch complete text area.
e.g.
\caption{blablablablabla\texbf{blablabla}blablabla.}
"""
@@ -214,7 +214,7 @@ def reverse_forbidden_text_careful_brace(
):
"""
Move area out of preserve area (make text editable for GPT)
count the number of the braces so as to catch compelete text area.
count the number of the braces so as to catch complete text area.
e.g.
\caption{blablablablabla\texbf{blablabla}blablabla.}
"""
@@ -287,23 +287,23 @@ def find_main_tex_file(file_manifest, mode):
在多Tex文档中,寻找主文件,必须包含documentclass,返回找到的第一个。
P.S. 但愿没人把latex模板放在里面传进来 (6.25 加入判定latex模板的代码)
"""
canidates = []
candidates = []
for texf in file_manifest:
if os.path.basename(texf).startswith("merge"):
continue
with open(texf, "r", encoding="utf8", errors="ignore") as f:
file_content = f.read()
if r"\documentclass" in file_content:
canidates.append(texf)
candidates.append(texf)
else:
continue
if len(canidates) == 0:
if len(candidates) == 0:
raise RuntimeError("无法找到一个主Tex文件包含documentclass关键字")
elif len(canidates) == 1:
return canidates[0]
else: # if len(canidates) >= 2 通过一些Latex模板中常见但通常不会出现在正文的单词,对不同latex源文件扣分,取评分最高者返回
canidates_score = []
elif len(candidates) == 1:
return candidates[0]
else: # if len(candidates) >= 2 通过一些Latex模板中常见但通常不会出现在正文的单词,对不同latex源文件扣分,取评分最高者返回
candidates_score = []
# 给出一些判定模板文档的词作为扣分项
unexpected_words = [
"\\LaTeX",
@@ -316,19 +316,19 @@ def find_main_tex_file(file_manifest, mode):
"reviewers",
]
expected_words = ["\\input", "\\ref", "\\cite"]
for texf in canidates:
canidates_score.append(0)
for texf in candidates:
candidates_score.append(0)
with open(texf, "r", encoding="utf8", errors="ignore") as f:
file_content = f.read()
file_content = rm_comments(file_content)
for uw in unexpected_words:
if uw in file_content:
canidates_score[-1] -= 1
candidates_score[-1] -= 1
for uw in expected_words:
if uw in file_content:
canidates_score[-1] += 1
select = np.argmax(canidates_score) # 取评分最高者返回
return canidates[select]
candidates_score[-1] += 1
select = np.argmax(candidates_score) # 取评分最高者返回
return candidates[select]
def rm_comments(main_file):
@@ -374,7 +374,7 @@ def find_tex_file_ignore_case(fp):
def merge_tex_files_(project_foler, main_file, mode):
"""
Merge Tex project recrusively
Merge Tex project recursively
"""
main_file = rm_comments(main_file)
for s in reversed([q for q in re.finditer(r"\\input\{(.*?)\}", main_file, re.M)]):
@@ -429,7 +429,7 @@ def find_title_and_abs(main_file):
def merge_tex_files(project_foler, main_file, mode):
"""
Merge Tex project recrusively
Merge Tex project recursively
P.S. 顺便把CTEX塞进去以支持中文
P.S. 顺便把Latex的注释去除
"""

查看文件

@@ -1,4 +1,4 @@
from toolbox import update_ui, get_conf, promote_file_to_downloadzone, update_ui_lastest_msg, generate_file_link
from toolbox import update_ui, get_conf, promote_file_to_downloadzone, update_ui_latest_msg, generate_file_link
from shared_utils.docker_as_service_api import stream_daas
from shared_utils.docker_as_service_api import DockerServiceApiComModel
import random
@@ -25,7 +25,7 @@ def download_video(video_id, only_audio, user_name, chatbot, history):
status_buf += "\n\n"
status_buf += "DaaS file attach: \n\n"
status_buf += str(output_manifest['server_file_attach'])
yield from update_ui_lastest_msg(status_buf, chatbot, history)
yield from update_ui_latest_msg(status_buf, chatbot, history)
return output_manifest['server_file_attach']

查看文件

@@ -1,6 +1,6 @@
from pydantic import BaseModel, Field
from typing import List
from toolbox import update_ui_lastest_msg, disable_auto_promotion
from toolbox import update_ui_latest_msg, disable_auto_promotion
from toolbox import CatchException, update_ui, get_conf, select_api_key, get_log_folder
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError

查看文件

@@ -113,7 +113,7 @@ def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_fi
return [txt]
else:
# raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
# find a smooth token limit to achieve even seperation
# find a smooth token limit to achieve even separation
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
token_limit_smooth = raw_token_num // count + count
return breakdown_text_to_satisfy_token_limit(txt, limit=token_limit_smooth, llm_model=llm_kwargs['llm_model'])

查看文件

@@ -1,6 +1,6 @@
import os
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str, check_packages
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_latest_msg, disable_auto_promotion
from toolbox import write_history_to_file, promote_file_to_downloadzone, get_conf, extract_archive
from crazy_functions.pdf_fns.parse_pdf import parse_pdf, translate_pdf

查看文件

@@ -242,9 +242,7 @@ def 解析PDF_DOC2X_单文件(
extract_archive(file_path=this_file_path, dest_dir=ex_folder)
# edit markdown files
success, file_manifest, project_folder = get_files_from_everything(
ex_folder, type=".md"
)
success, file_manifest, project_folder = get_files_from_everything(ex_folder, type='.md', chatbot=chatbot)
for generated_fp in file_manifest:
# 修正一些公式问题
with open(generated_fp, "r", encoding="utf8") as f:

查看文件

@@ -14,39 +14,39 @@ def extract_text_from_files(txt, chatbot, history):
final_result(list):文本内容
page_one(list):第一页内容/摘要
file_manifest(list):文件路径
excption(string):需要用户手动处理的信息,如没出错则保持为空
exception(string):需要用户手动处理的信息,如没出错则保持为空
"""
final_result = []
page_one = []
file_manifest = []
excption = ""
exception = ""
if txt == "":
final_result.append(txt)
return False, final_result, page_one, file_manifest, excption #如输入区内容不是文件则直接返回输入区内容
return False, final_result, page_one, file_manifest, exception #如输入区内容不是文件则直接返回输入区内容
#查找输入区内容中的文件
file_pdf,pdf_manifest,folder_pdf = get_files_from_everything(txt, '.pdf')
file_md,md_manifest,folder_md = get_files_from_everything(txt, '.md')
file_word,word_manifest,folder_word = get_files_from_everything(txt, '.docx')
file_doc,doc_manifest,folder_doc = get_files_from_everything(txt, '.doc')
file_pdf,pdf_manifest,folder_pdf = get_files_from_everything(txt, '.pdf', chatbot=chatbot)
file_md,md_manifest,folder_md = get_files_from_everything(txt, '.md', chatbot=chatbot)
file_word,word_manifest,folder_word = get_files_from_everything(txt, '.docx', chatbot=chatbot)
file_doc,doc_manifest,folder_doc = get_files_from_everything(txt, '.doc', chatbot=chatbot)
if file_doc:
excption = "word"
return False, final_result, page_one, file_manifest, excption
exception = "word"
return False, final_result, page_one, file_manifest, exception
file_num = len(pdf_manifest) + len(md_manifest) + len(word_manifest)
if file_num == 0:
final_result.append(txt)
return False, final_result, page_one, file_manifest, excption #如输入区内容不是文件则直接返回输入区内容
return False, final_result, page_one, file_manifest, exception #如输入区内容不是文件则直接返回输入区内容
if file_pdf:
try: # 尝试导入依赖,如果缺少依赖,则给出安装建议
import fitz
except:
excption = "pdf"
return False, final_result, page_one, file_manifest, excption
exception = "pdf"
return False, final_result, page_one, file_manifest, exception
for index, fp in enumerate(pdf_manifest):
file_content, pdf_one = read_and_clean_pdf_text(fp) # 尝试按照章节切割PDF
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
@@ -72,8 +72,8 @@ def extract_text_from_files(txt, chatbot, history):
try: # 尝试导入依赖,如果缺少依赖,则给出安装建议
from docx import Document
except:
excption = "word_pip"
return False, final_result, page_one, file_manifest, excption
exception = "word_pip"
return False, final_result, page_one, file_manifest, exception
for index, fp in enumerate(word_manifest):
doc = Document(fp)
file_content = '\n'.join([p.text for p in doc.paragraphs])
@@ -82,4 +82,4 @@ def extract_text_from_files(txt, chatbot, history):
final_result.append(file_content)
file_manifest.append(os.path.relpath(fp, folder_word))
return True, final_result, page_one, file_manifest, excption
return True, final_result, page_one, file_manifest, exception

查看文件

@@ -60,7 +60,7 @@ def similarity_search_with_score_by_vector(
self, embedding: List[float], k: int = 4
) -> List[Tuple[Document, float]]:
def seperate_list(ls: List[int]) -> List[List[int]]:
def separate_list(ls: List[int]) -> List[List[int]]:
lists = []
ls1 = [ls[0]]
for i in range(1, len(ls)):
@@ -82,7 +82,7 @@ def similarity_search_with_score_by_vector(
continue
_id = self.index_to_docstore_id[i]
doc = self.docstore.search(_id)
if not self.chunk_conent:
if not self.chunk_content:
if not isinstance(doc, Document):
raise ValueError(f"Could not find document for id {_id}, got {doc}")
doc.metadata["score"] = int(scores[0][j])
@@ -104,12 +104,12 @@ def similarity_search_with_score_by_vector(
id_set.add(l)
if break_flag:
break
if not self.chunk_conent:
if not self.chunk_content:
return docs
if len(id_set) == 0 and self.score_threshold > 0:
return []
id_list = sorted(list(id_set))
id_lists = seperate_list(id_list)
id_lists = separate_list(id_list)
for id_seq in id_lists:
for id in id_seq:
if id == id_seq[0]:
@@ -132,7 +132,7 @@ class LocalDocQA:
embeddings: object = None
top_k: int = VECTOR_SEARCH_TOP_K
chunk_size: int = CHUNK_SIZE
chunk_conent: bool = True
chunk_content: bool = True
score_threshold: int = VECTOR_SEARCH_SCORE_THRESHOLD
def init_cfg(self,
@@ -209,16 +209,16 @@ class LocalDocQA:
# query 查询内容
# vs_path 知识库路径
# chunk_conent 是否启用上下文关联
# chunk_content 是否启用上下文关联
# score_threshold 搜索匹配score阈值
# vector_search_top_k 搜索知识库内容条数,默认搜索5条结果
# chunk_sizes 匹配单段内容的连接上下文长度
def get_knowledge_based_conent_test(self, query, vs_path, chunk_conent,
def get_knowledge_based_content_test(self, query, vs_path, chunk_content,
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
vector_search_top_k=VECTOR_SEARCH_TOP_K, chunk_size=CHUNK_SIZE,
text2vec=None):
self.vector_store = FAISS.load_local(vs_path, text2vec)
self.vector_store.chunk_conent = chunk_conent
self.vector_store.chunk_content = chunk_content
self.vector_store.score_threshold = score_threshold
self.vector_store.chunk_size = chunk_size
@@ -241,7 +241,7 @@ class LocalDocQA:
def construct_vector_store(vs_id, vs_path, files, sentence_size, history, one_conent, one_content_segmentation, text2vec):
def construct_vector_store(vs_id, vs_path, files, sentence_size, history, one_content, one_content_segmentation, text2vec):
for file in files:
assert os.path.exists(file), "输入文件不存在:" + file
import nltk
@@ -297,7 +297,7 @@ class knowledge_archive_interface():
files=file_manifest,
sentence_size=100,
history=[],
one_conent="",
one_content="",
one_content_segmentation="",
text2vec = self.get_chinese_text2vec(),
)
@@ -319,19 +319,19 @@ class knowledge_archive_interface():
files=[],
sentence_size=100,
history=[],
one_conent="",
one_content="",
one_content_segmentation="",
text2vec = self.get_chinese_text2vec(),
)
VECTOR_SEARCH_SCORE_THRESHOLD = 0
VECTOR_SEARCH_TOP_K = 4
CHUNK_SIZE = 512
resp, prompt = self.qa_handle.get_knowledge_based_conent_test(
resp, prompt = self.qa_handle.get_knowledge_based_content_test(
query = txt,
vs_path = self.kai_path,
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
vector_search_top_k=VECTOR_SEARCH_TOP_K,
chunk_conent=True,
chunk_content=True,
chunk_size=CHUNK_SIZE,
text2vec = self.get_chinese_text2vec(),
)

查看文件

@@ -1,6 +1,6 @@
from pydantic import BaseModel, Field
from typing import List
from toolbox import update_ui_lastest_msg, disable_auto_promotion
from toolbox import update_ui_latest_msg, disable_auto_promotion
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
import copy, json, pickle, os, sys, time
@@ -9,14 +9,14 @@ import copy, json, pickle, os, sys, time
def read_avail_plugin_enum():
from crazy_functional import get_crazy_functions
plugin_arr = get_crazy_functions()
# remove plugins with out explaination
# remove plugins with out explanation
plugin_arr = {k:v for k, v in plugin_arr.items() if ('Info' in v) and ('Function' in v)}
plugin_arr_info = {"F_{:04d}".format(i):v["Info"] for i, v in enumerate(plugin_arr.values(), start=1)}
plugin_arr_dict = {"F_{:04d}".format(i):v for i, v in enumerate(plugin_arr.values(), start=1)}
plugin_arr_dict_parse = {"F_{:04d}".format(i):v for i, v in enumerate(plugin_arr.values(), start=1)}
plugin_arr_dict_parse.update({f"F_{i}":v for i, v in enumerate(plugin_arr.values(), start=1)})
prompt = json.dumps(plugin_arr_info, ensure_ascii=False, indent=2)
prompt = "\n\nThe defination of PluginEnum:\nPluginEnum=" + prompt
prompt = "\n\nThe definition of PluginEnum:\nPluginEnum=" + prompt
return prompt, plugin_arr_dict, plugin_arr_dict_parse
def wrap_code(txt):
@@ -55,7 +55,7 @@ def execute_plugin(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
plugin_selection: str = Field(description="The most related plugin from one of the PluginEnum.", default="F_0000")
reason_of_selection: str = Field(description="The reason why you should select this plugin.", default="This plugin satisfy user requirement most")
# ⭐ ⭐ ⭐ 选择插件
yield from update_ui_lastest_msg(lastmsg=f"正在执行任务: {txt}\n\n查找可用插件中...", chatbot=chatbot, history=history, delay=0)
yield from update_ui_latest_msg(lastmsg=f"正在执行任务: {txt}\n\n查找可用插件中...", chatbot=chatbot, history=history, delay=0)
gpt_json_io = GptJsonIO(Plugin)
gpt_json_io.format_instructions = "The format of your output should be a json that can be parsed by json.loads.\n"
gpt_json_io.format_instructions += """Output example: {"plugin_selection":"F_1234", "reason_of_selection":"F_1234 plugin satisfy user requirement most"}\n"""
@@ -74,13 +74,13 @@ def execute_plugin(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
msg += "请求的Prompt为\n" + wrap_code(get_inputs_show_user(inputs, plugin_arr_enum_prompt))
msg += "语言模型回复为:\n" + wrap_code(gpt_reply)
msg += "\n但您可以尝试再试一次\n"
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
yield from update_ui_latest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
return
if plugin_sel.plugin_selection not in plugin_arr_dict_parse:
msg = f"抱歉, 找不到合适插件执行该任务, 或者{llm_kwargs['llm_model']}无法理解您的需求。"
msg += f"语言模型{llm_kwargs['llm_model']}选择了不存在的插件:\n" + wrap_code(gpt_reply)
msg += "\n但您可以尝试再试一次\n"
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
yield from update_ui_latest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
return
# ⭐ ⭐ ⭐ 确认插件参数
@@ -90,7 +90,7 @@ def execute_plugin(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
appendix_info = get_recent_file_prompt_support(chatbot)
plugin = plugin_arr_dict_parse[plugin_sel.plugin_selection]
yield from update_ui_lastest_msg(lastmsg=f"正在执行任务: {txt}\n\n提取插件参数...", chatbot=chatbot, history=history, delay=0)
yield from update_ui_latest_msg(lastmsg=f"正在执行任务: {txt}\n\n提取插件参数...", chatbot=chatbot, history=history, delay=0)
class PluginExplicit(BaseModel):
plugin_selection: str = plugin_sel.plugin_selection
plugin_arg: str = Field(description="The argument of the plugin.", default="")
@@ -109,6 +109,6 @@ def execute_plugin(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
fn = plugin['Function']
fn_name = fn.__name__
msg = f'{llm_kwargs["llm_model"]}为您选择了插件: `{fn_name}`\n\n插件说明:{plugin["Info"]}\n\n插件参数:{plugin_sel.plugin_arg}\n\n假如偏离了您的要求,按停止键终止。'
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
yield from update_ui_latest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
yield from fn(plugin_sel.plugin_arg, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, -1)
return

查看文件

@@ -1,6 +1,6 @@
from pydantic import BaseModel, Field
from typing import List
from toolbox import update_ui_lastest_msg, get_conf
from toolbox import update_ui_latest_msg, get_conf
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.json_fns.pydantic_io import GptJsonIO
import copy, json, pickle, os, sys
@@ -9,7 +9,7 @@ import copy, json, pickle, os, sys
def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention):
ALLOW_RESET_CONFIG = get_conf('ALLOW_RESET_CONFIG')
if not ALLOW_RESET_CONFIG:
yield from update_ui_lastest_msg(
yield from update_ui_latest_msg(
lastmsg=f"当前配置不允许被修改如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
chatbot=chatbot, history=history, delay=2
)
@@ -30,7 +30,7 @@ def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
new_option_value: str = Field(description="the new value of the option", default=None)
# ⭐ ⭐ ⭐ 分析用户意图
yield from update_ui_lastest_msg(lastmsg=f"正在执行任务: {txt}\n\n读取新配置中", chatbot=chatbot, history=history, delay=0)
yield from update_ui_latest_msg(lastmsg=f"正在执行任务: {txt}\n\n读取新配置中", chatbot=chatbot, history=history, delay=0)
gpt_json_io = GptJsonIO(ModifyConfigurationIntention)
inputs = "Analyze how to change configuration according to following user input, answer me with json: \n\n" + \
">> " + txt.rstrip('\n').replace('\n','\n>> ') + '\n\n' + \
@@ -44,11 +44,11 @@ def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
ok = (explicit_conf in txt)
if ok:
yield from update_ui_lastest_msg(
yield from update_ui_latest_msg(
lastmsg=f"正在执行任务: {txt}\n\n新配置{explicit_conf}={user_intention.new_option_value}",
chatbot=chatbot, history=history, delay=1
)
yield from update_ui_lastest_msg(
yield from update_ui_latest_msg(
lastmsg=f"正在执行任务: {txt}\n\n新配置{explicit_conf}={user_intention.new_option_value}\n\n正在修改配置中",
chatbot=chatbot, history=history, delay=2
)
@@ -57,25 +57,25 @@ def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
from toolbox import set_conf
set_conf(explicit_conf, user_intention.new_option_value)
yield from update_ui_lastest_msg(
yield from update_ui_latest_msg(
lastmsg=f"正在执行任务: {txt}\n\n配置修改完成,重新页面即可生效。", chatbot=chatbot, history=history, delay=1
)
else:
yield from update_ui_lastest_msg(
yield from update_ui_latest_msg(
lastmsg=f"失败,如果需要配置{explicit_conf},您需要明确说明并在指令中提到它。", chatbot=chatbot, history=history, delay=5
)
def modify_configuration_reboot(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention):
ALLOW_RESET_CONFIG = get_conf('ALLOW_RESET_CONFIG')
if not ALLOW_RESET_CONFIG:
yield from update_ui_lastest_msg(
yield from update_ui_latest_msg(
lastmsg=f"当前配置不允许被修改如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
chatbot=chatbot, history=history, delay=2
)
return
yield from modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention)
yield from update_ui_lastest_msg(
yield from update_ui_latest_msg(
lastmsg=f"正在执行任务: {txt}\n\n配置修改完成,五秒后即将重启!若出现报错请无视即可。", chatbot=chatbot, history=history, delay=5
)
os.execl(sys.executable, sys.executable, *sys.argv)

查看文件

@@ -5,7 +5,7 @@ class VoidTerminalState():
self.reset_state()
def reset_state(self):
self.has_provided_explaination = False
self.has_provided_explanation = False
def lock_plugin(self, chatbot):
chatbot._cookies['lock_plugin'] = 'crazy_functions.虚空终端->虚空终端'

查看文件

@@ -1,4 +1,4 @@
from toolbox import CatchException, update_ui, update_ui_lastest_msg
from toolbox import CatchException, update_ui, update_ui_latest_msg
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicGameBaseState
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from request_llms.bridge_all import predict_no_ui_long_connection

查看文件

@@ -15,7 +15,7 @@ Testing:
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, is_the_upload_folder
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_lastest_msg
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_latest_msg
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_plugin_arg
from crazy_functions.crazy_utils import input_clipping, try_install_deps
from crazy_functions.gen_fns.gen_fns_shared import is_function_successfully_generated
@@ -27,7 +27,7 @@ import time
import glob
import multiprocessing
templete = """
template = """
```python
import ... # Put dependencies here, e.g. import numpy as np.
@@ -77,10 +77,10 @@ def gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history):
# 第二步
prompt_compose = [
"If previous stage is successful, rewrite the function you have just written to satisfy following templete: \n",
templete
"If previous stage is successful, rewrite the function you have just written to satisfy following template: \n",
template
]
i_say = "".join(prompt_compose); inputs_show_user = "If previous stage is successful, rewrite the function you have just written to satisfy executable templete. "
i_say = "".join(prompt_compose); inputs_show_user = "If previous stage is successful, rewrite the function you have just written to satisfy executable template. "
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=inputs_show_user,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
@@ -164,18 +164,18 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
if get_plugin_arg(plugin_kwargs, key="file_path_arg", default=False):
file_path = get_plugin_arg(plugin_kwargs, key="file_path_arg", default=None)
file_list.append(file_path)
yield from update_ui_lastest_msg(f"当前文件: {file_path}", chatbot, history, 1)
yield from update_ui_latest_msg(f"当前文件: {file_path}", chatbot, history, 1)
elif have_any_recent_upload_files(chatbot):
file_dir = get_recent_file_prompt_support(chatbot)
file_list = glob.glob(os.path.join(file_dir, '**/*'), recursive=True)
yield from update_ui_lastest_msg(f"当前文件处理列表: {file_list}", chatbot, history, 1)
yield from update_ui_latest_msg(f"当前文件处理列表: {file_list}", chatbot, history, 1)
else:
chatbot.append(["文件检索", "没有发现任何近期上传的文件。"])
yield from update_ui_lastest_msg("没有发现任何近期上传的文件。", chatbot, history, 1)
yield from update_ui_latest_msg("没有发现任何近期上传的文件。", chatbot, history, 1)
return # 2. 如果没有文件
if len(file_list) == 0:
chatbot.append(["文件检索", "没有发现任何近期上传的文件。"])
yield from update_ui_lastest_msg("没有发现任何近期上传的文件。", chatbot, history, 1)
yield from update_ui_latest_msg("没有发现任何近期上传的文件。", chatbot, history, 1)
return # 2. 如果没有文件
# 读取文件
@@ -183,7 +183,7 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
# 粗心检查
if is_the_upload_folder(txt):
yield from update_ui_lastest_msg(f"请在输入框内填写需求, 然后再次点击该插件! 至于您的文件,不用担心, 文件路径 {txt} 已经被记忆. ", chatbot, history, 1)
yield from update_ui_latest_msg(f"请在输入框内填写需求, 然后再次点击该插件! 至于您的文件,不用担心, 文件路径 {txt} 已经被记忆. ", chatbot, history, 1)
return
# 开始干正事
@@ -195,7 +195,7 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
code, installation_advance, txt, file_type, llm_kwargs, chatbot, history = \
yield from gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history)
chatbot.append(["代码生成阶段结束", ""])
yield from update_ui_lastest_msg(f"正在验证上述代码的有效性 ...", chatbot, history, 1)
yield from update_ui_latest_msg(f"正在验证上述代码的有效性 ...", chatbot, history, 1)
# ⭐ 分离代码块
code = get_code_block(code)
# ⭐ 检查模块
@@ -206,11 +206,11 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
if not traceback: traceback = trimmed_format_exc()
# 处理异常
if not traceback: traceback = trimmed_format_exc()
yield from update_ui_lastest_msg(f"{j+1}/{MAX_TRY} 次代码生成尝试, 失败了~ 别担心, 我们5秒后再试一次... \n\n此次我们的错误追踪是\n```\n{traceback}\n```\n", chatbot, history, 5)
yield from update_ui_latest_msg(f"{j+1}/{MAX_TRY} 次代码生成尝试, 失败了~ 别担心, 我们5秒后再试一次... \n\n此次我们的错误追踪是\n```\n{traceback}\n```\n", chatbot, history, 5)
# 代码生成结束, 开始执行
TIME_LIMIT = 15
yield from update_ui_lastest_msg(f"开始创建新进程并执行代码! 时间限制 {TIME_LIMIT} 秒. 请等待任务完成... ", chatbot, history, 1)
yield from update_ui_latest_msg(f"开始创建新进程并执行代码! 时间限制 {TIME_LIMIT} 秒. 请等待任务完成... ", chatbot, history, 1)
manager = multiprocessing.Manager()
return_dict = manager.dict()

查看文件

@@ -8,7 +8,7 @@
import time
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, ProxyNetworkActivate
from toolbox import get_conf, select_api_key, update_ui_lastest_msg, Singleton
from toolbox import get_conf, select_api_key, update_ui_latest_msg, Singleton
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_plugin_arg
from crazy_functions.crazy_utils import input_clipping, try_install_deps
from crazy_functions.agent_fns.persistent import GradioMultiuserManagerForPersistentClasses

查看文件

@@ -104,6 +104,8 @@ def 总结word文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pr
# 检测输入参数,如没有给定输入参数,直接退出
if os.path.exists(txt):
project_folder = txt
from shared_utils.fastapi_server import validate_path_safety
validate_path_safety(project_folder, chatbot.get_user())
else:
if txt == "": txt = '空空如也的输入栏'
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")

查看文件

@@ -1,5 +1,5 @@
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_latest_msg, disable_auto_promotion
from toolbox import write_history_to_file, promote_file_to_downloadzone
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
@@ -61,7 +61,7 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
history = []
from crazy_functions.crazy_utils import get_files_from_everything
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf')
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf', chatbot=chatbot)
if len(file_manifest) > 0:
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
@@ -73,7 +73,7 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade nougat-ocr tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
success_mmd, file_manifest_mmd, _ = get_files_from_everything(txt, type='.mmd')
success_mmd, file_manifest_mmd, _ = get_files_from_everything(txt, type='.mmd', chatbot=chatbot)
success = success or success_mmd
file_manifest += file_manifest_mmd
chatbot.append(["文件列表:", ", ".join([e.split('/')[-1] for e in file_manifest])]);

查看文件

@@ -166,7 +166,7 @@ class PointWithTrace(Scene):
```
# do not use get_graph, this funciton is deprecated
# do not use get_graph, this function is deprecated
class ExampleFunctionGraph(Scene):
def construct(self):

查看文件

@@ -87,6 +87,8 @@ def 理解PDF文档内容标准文件输入(txt, llm_kwargs, plugin_kwargs, chat
# 检测输入参数,如没有给定输入参数,直接退出
if os.path.exists(txt):
project_folder = txt
from shared_utils.fastapi_server import validate_path_safety
validate_path_safety(project_folder, chatbot.get_user())
else:
if txt == "":
txt = '空空如也的输入栏'

查看文件

@@ -39,6 +39,8 @@ def 批量生成函数注释(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
import glob, os
if os.path.exists(txt):
project_folder = txt
from shared_utils.fastapi_server import validate_path_safety
validate_path_safety(project_folder, chatbot.get_user())
else:
if txt == "": txt = '空空如也的输入栏'
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")

查看文件

@@ -324,16 +324,16 @@ def 生成多种Mermaid图表(
if os.path.exists(txt): # 如输入区无内容则直接解析历史记录
from crazy_functions.pdf_fns.parse_word import extract_text_from_files
file_exist, final_result, page_one, file_manifest, excption = (
file_exist, final_result, page_one, file_manifest, exception = (
extract_text_from_files(txt, chatbot, history)
)
else:
file_exist = False
excption = ""
exception = ""
file_manifest = []
if excption != "":
if excption == "word":
if exception != "":
if exception == "word":
report_exception(
chatbot,
history,
@@ -341,7 +341,7 @@ def 生成多种Mermaid图表(
b=f"找到了.doc文件,但是该文件格式不被支持,请先转化为.docx格式。",
)
elif excption == "pdf":
elif exception == "pdf":
report_exception(
chatbot,
history,
@@ -349,7 +349,7 @@ def 生成多种Mermaid图表(
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。",
)
elif excption == "word_pip":
elif exception == "word_pip":
report_exception(
chatbot,
history,

查看文件

@@ -1,4 +1,4 @@
from toolbox import CatchException, update_ui, ProxyNetworkActivate, update_ui_lastest_msg, get_log_folder, get_user
from toolbox import CatchException, update_ui, ProxyNetworkActivate, update_ui_latest_msg, get_log_folder, get_user
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_files_from_everything
from loguru import logger
install_msg ="""
@@ -42,14 +42,14 @@ def 知识库文件注入(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# from crazy_functions.crazy_utils import try_install_deps
# try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
# yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history)
# yield from update_ui_latest_msg("安装完成,您可以再次重试。", chatbot, history)
return
# < --------------------读取文件--------------- >
file_manifest = []
spl = ["txt", "doc", "docx", "email", "epub", "html", "json", "md", "msg", "pdf", "ppt", "pptx", "rtf"]
for sp in spl:
_, file_manifest_tmp, _ = get_files_from_everything(txt, type=f'.{sp}')
_, file_manifest_tmp, _ = get_files_from_everything(txt, type=f'.{sp}', chatbot=chatbot)
file_manifest += file_manifest_tmp
if len(file_manifest) == 0:
@@ -95,7 +95,7 @@ def 读取知识库作答(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# from crazy_functions.crazy_utils import try_install_deps
# try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
# yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history)
# yield from update_ui_latest_msg("安装完成,您可以再次重试。", chatbot, history)
return
# < ------------------- --------------- >

查看文件

@@ -47,7 +47,7 @@ explain_msg = """
from pydantic import BaseModel, Field
from typing import List
from toolbox import CatchException, update_ui, is_the_upload_folder
from toolbox import update_ui_lastest_msg, disable_auto_promotion
from toolbox import update_ui_latest_msg, disable_auto_promotion
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from crazy_functions.crazy_utils import input_clipping
@@ -113,19 +113,19 @@ def 虚空终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
# 用简单的关键词检测用户意图
is_certain, _ = analyze_intention_with_simple_rules(txt)
if is_the_upload_folder(txt):
state.set_state(chatbot=chatbot, key='has_provided_explaination', value=False)
state.set_state(chatbot=chatbot, key='has_provided_explanation', value=False)
appendix_msg = "\n\n**很好,您已经上传了文件**,现在请您描述您的需求。"
if is_certain or (state.has_provided_explaination):
if is_certain or (state.has_provided_explanation):
# 如果意图明确,跳过提示环节
state.set_state(chatbot=chatbot, key='has_provided_explaination', value=True)
state.set_state(chatbot=chatbot, key='has_provided_explanation', value=True)
state.unlock_plugin(chatbot=chatbot)
yield from update_ui(chatbot=chatbot, history=history)
yield from 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
return
else:
# 如果意图模糊,提示
state.set_state(chatbot=chatbot, key='has_provided_explaination', value=True)
state.set_state(chatbot=chatbot, key='has_provided_explanation', value=True)
state.lock_plugin(chatbot=chatbot)
chatbot.append(("虚空终端状态:", explain_msg+appendix_msg))
yield from update_ui(chatbot=chatbot, history=history)
@@ -141,7 +141,7 @@ def 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
# ⭐ ⭐ ⭐ 分析用户意图
is_certain, user_intention = analyze_intention_with_simple_rules(txt)
if not is_certain:
yield from update_ui_lastest_msg(
yield from update_ui_latest_msg(
lastmsg=f"正在执行任务: {txt}\n\n分析用户意图中", chatbot=chatbot, history=history, delay=0)
gpt_json_io = GptJsonIO(UserIntention)
rf_req = "\nchoose from ['ModifyConfiguration', 'ExecutePlugin', 'Chat']"
@@ -154,13 +154,13 @@ def 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
user_intention = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 意图={explain_intention_to_user[user_intention.intention_type]}",
except JsonStringError as e:
yield from update_ui_lastest_msg(
yield from update_ui_latest_msg(
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 失败 当前语言模型({llm_kwargs['llm_model']})不能理解您的意图", chatbot=chatbot, history=history, delay=0)
return
else:
pass
yield from update_ui_lastest_msg(
yield from update_ui_latest_msg(
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 意图={explain_intention_to_user[user_intention.intention_type]}",
chatbot=chatbot, history=history, delay=0)

查看文件

@@ -126,6 +126,8 @@ def 解析ipynb文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
import os
if os.path.exists(txt):
project_folder = txt
from shared_utils.fastapi_server import validate_path_safety
validate_path_safety(project_folder, chatbot.get_user())
else:
if txt == "":
txt = '空空如也的输入栏'

查看文件

@@ -42,7 +42,7 @@ class AsyncGptTask():
MAX_TOKEN_ALLO = 2560
i_say, history = input_clipping(i_say, history, max_token_limit=MAX_TOKEN_ALLO)
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, llm_kwargs=llm_kwargs, history=history, sys_prompt=sys_prompt,
observe_window=observe_window[index], console_slience=True)
observe_window=observe_window[index], console_silence=True)
except ConnectionAbortedError as token_exceed_err:
logger.error('至少一个线程任务Token溢出而失败', e)
except Exception as e:

查看文件

@@ -48,6 +48,8 @@ def 读文章写摘要(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
import glob, os
if os.path.exists(txt):
project_folder = txt
from shared_utils.fastapi_server import validate_path_safety
validate_path_safety(project_folder, chatbot.get_user())
else:
if txt == "": txt = '空空如也的输入栏'
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")

查看文件

@@ -1,6 +1,6 @@
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from toolbox import CatchException, report_exception, promote_file_to_downloadzone
from toolbox import update_ui, update_ui_lastest_msg, disable_auto_promotion, write_history_to_file
from toolbox import update_ui, update_ui_latest_msg, disable_auto_promotion, write_history_to_file
import logging
import requests
import time
@@ -156,7 +156,7 @@ def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
history = []
meta_paper_info_list = yield from get_meta_information(txt, chatbot, history)
if len(meta_paper_info_list) == 0:
yield from update_ui_lastest_msg(lastmsg='获取文献失败,可能触发了google反爬虫机制。',chatbot=chatbot, history=history, delay=0)
yield from update_ui_latest_msg(lastmsg='获取文献失败,可能触发了google反爬虫机制。',chatbot=chatbot, history=history, delay=0)
return
batchsize = 5
for batch in range(math.ceil(len(meta_paper_info_list)/batchsize)):

查看文件

@@ -5,6 +5,10 @@ FROM fuqingxu/11.3.1-runtime-ubuntu20.04-with-texlive:latest
# edge-tts需要的依赖,某些pip包所需的依赖
RUN apt update && apt install ffmpeg build-essential -y
RUN apt-get install -y fontconfig
RUN ln -s /usr/local/texlive/2023/texmf-dist/fonts/truetype /usr/share/fonts/truetype/texlive
RUN fc-cache -fv
RUN apt-get clean
# use python3 as the system default python
WORKDIR /gpt
@@ -30,7 +34,7 @@ RUN python3 -m pip install -r request_llms/requirements_qwen.txt
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
RUN python3 -m pip install nougat-ocr
RUN python3 -m pip cache purge
# 预热Tiktoken模块
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'

查看文件

@@ -7,6 +7,7 @@ RUN apt-get install -y git python python3 python-dev python3-dev --fix-missing
# edge-tts需要的依赖,某些pip包所需的依赖
RUN apt update && apt install ffmpeg build-essential -y
RUN apt-get clean
# use python3 as the system default python
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
@@ -22,6 +23,7 @@ RUN python3 -m pip install -r request_llms/requirements_moss.txt
RUN python3 -m pip install -r request_llms/requirements_qwen.txt
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
RUN python3 -m pip cache purge
# 预热Tiktoken模块

查看文件

@@ -18,5 +18,7 @@ RUN apt update && apt install ffmpeg -y
# 可选步骤,用于预热模块
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
RUN python3 -m pip cache purge && apt-get clean
# 启动
CMD ["python3", "-u", "main.py"]

查看文件

@@ -30,5 +30,7 @@ COPY --chown=gptuser:gptuser . .
# 可选步骤,用于预热模块
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
RUN python3 -m pip cache purge
# 启动
CMD ["python3", "-u", "main.py"]

查看文件

@@ -24,6 +24,8 @@ RUN apt update && apt install ffmpeg -y
# 可选步骤,用于预热模块
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
RUN python3 -m pip cache purge && apt-get clean
# 启动
CMD ["python3", "-u", "main.py"]

查看文件

@@ -1141,7 +1141,7 @@
"内容太长了都会触发token数量溢出的错误": "An error of token overflow will be triggered if the content is too long",
"chatbot 为WebUI中显示的对话列表": "chatbot is the conversation list displayed in WebUI",
"修改它": "Modify it",
"然后yeild出去": "Then yield it out",
"然后yield出去": "Then yield it out",
"可以直接修改对话界面内容": "You can directly modify the conversation interface content",
"additional_fn代表点击的哪个按钮": "additional_fn represents which button is clicked",
"按钮见functional.py": "See functional.py for buttons",
@@ -1732,7 +1732,7 @@
"或者重启之后再度尝试": "Or try again after restarting",
"免费": "Free",
"仅在Windows系统进行了测试": "Tested only on Windows system",
"欢迎加REAME中的QQ联系开发者": "Feel free to contact the developer via QQ in REAME",
"欢迎加README中的QQ联系开发者": "Feel free to contact the developer via QQ in README",
"当前知识库内的有效文件": "Valid files in the current knowledge base",
"您可以到Github Issue区": "You can go to the Github Issue area",
"刷新Gradio前端界面": "Refresh the Gradio frontend interface",
@@ -1759,7 +1759,7 @@
"报错信息如下. 如果是与网络相关的问题": "Error message as follows. If it is related to network issues",
"功能描述": "Function description",
"禁止移除或修改此警告": "Removal or modification of this warning is prohibited",
"Arixv翻译": "Arixv translation",
"ArXiv翻译": "ArXiv translation",
"读取优先级": "Read priority",
"包含documentclass关键字": "Contains the documentclass keyword",
"根据文本使用GPT模型生成相应的图像": "Generate corresponding images using GPT model based on the text",
@@ -1998,7 +1998,7 @@
"开始最终总结": "Start final summary",
"openai的官方KEY需要伴随组织编码": "Openai's official KEY needs to be accompanied by organizational code",
"将子线程的gpt结果写入chatbot": "Write the GPT result of the sub-thread into the chatbot",
"Arixv论文精细翻译": "Fine translation of Arixv paper",
"ArXiv论文精细翻译": "Fine translation of ArXiv paper",
"开始接收chatglmft的回复": "Start receiving replies from chatglmft",
"请先将.doc文档转换为.docx文档": "Please convert .doc documents to .docx documents first",
"避免多用户干扰": "Avoid multiple user interference",
@@ -2360,7 +2360,7 @@
"请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件": "Please set ALLOW_RESET_CONFIG=True in config.py and restart the software",
"按照自然语言描述生成一个动画 | 输入参数是一段话": "Generate an animation based on natural language description | Input parameter is a sentence",
"你的hf用户名如qingxu98": "Your hf username is qingxu98",
"Arixv论文精细翻译 | 输入参数arxiv论文的ID": "Fine translation of Arixv paper | Input parameter is the ID of arxiv paper",
"ArXiv论文精细翻译 | 输入参数arxiv论文的ID": "Fine translation of ArXiv paper | Input parameter is the ID of arxiv paper",
"无法获取 abstract": "Unable to retrieve abstract",
"尽可能地仅用一行命令解决我的要求": "Try to solve my request using only one command",
"提取插件参数": "Extract plugin parameters",

查看文件

@@ -753,7 +753,7 @@
"手动指定和筛选源代码文件类型": "ソースコードファイルタイプを手動で指定およびフィルタリングする",
"更多函数插件": "その他の関数プラグイン",
"看门狗的耐心": "監視犬の忍耐力",
"然后yeild出去": "そして出力する",
"然后yield出去": "そして出力する",
"拆分过长的IPynb文件": "長すぎるIPynbファイルを分割する",
"1. 把input的余量留出来": "1. 入力の余裕を残す",
"请求超时": "リクエストがタイムアウトしました",
@@ -1803,7 +1803,7 @@
"默认值为1000": "デフォルト値は1000です",
"写出文件": "ファイルに書き出す",
"生成的视频文件路径": "生成されたビデオファイルのパス",
"Arixv论文精细翻译": "Arixv論文の詳細な翻訳",
"ArXiv论文精细翻译": "ArXiv論文の詳細な翻訳",
"用latex编译为PDF对修正处做高亮": "LaTeXでコンパイルしてPDFに修正をハイライトする",
"点击“停止”键可终止程序": "「停止」ボタンをクリックしてプログラムを終了できます",
"否则将导致每个人的Claude问询历史互相渗透": "さもないと、各人のClaudeの問い合わせ履歴が相互に侵入します",
@@ -1987,7 +1987,7 @@
"前面是中文逗号": "前面是中文逗号",
"的依赖": "的依赖",
"材料如下": "材料如下",
"欢迎加REAME中的QQ联系开发者": "欢迎加REAME中的QQ联系开发者",
"欢迎加README中的QQ联系开发者": "欢迎加README中的QQ联系开发者",
"开始下载": "開始ダウンロード",
"100字以内": "100文字以内",
"创建request": "リクエストの作成",

查看文件

@@ -771,7 +771,7 @@
"查询代理的地理位置": "查詢代理的地理位置",
"是否在输入过长时": "是否在輸入過長時",
"chatGPT分析报告": "chatGPT分析報告",
"然后yeild出去": "然後yield出去",
"然后yield出去": "然後yield出去",
"用户取消了程序": "使用者取消了程式",
"琥珀色": "琥珀色",
"这里是特殊函数插件的高级参数输入区": "這裡是特殊函數插件的高級參數輸入區",
@@ -1587,7 +1587,7 @@
"否则将导致每个人的Claude问询历史互相渗透": "否則將導致每個人的Claude問詢歷史互相滲透",
"提问吧! 但注意": "提問吧!但注意",
"待处理的word文档路径": "待處理的word文檔路徑",
"欢迎加REAME中的QQ联系开发者": "歡迎加REAME中的QQ聯繫開發者",
"欢迎加README中的QQ联系开发者": "歡迎加README中的QQ聯繫開發者",
"建议暂时不要使用": "建議暫時不要使用",
"Latex没有安装": "Latex沒有安裝",
"在这里放一些网上搜集的demo": "在這裡放一些網上搜集的demo",
@@ -1989,7 +1989,7 @@
"请耐心等待": "請耐心等待",
"在执行完成之后": "在執行完成之後",
"参数简单": "參數簡單",
"Arixv论文精细翻译": "Arixv論文精細翻譯",
"ArXiv论文精细翻译": "ArXiv論文精細翻譯",
"备份和下载": "備份和下載",
"当前报错的latex代码处于第": "當前報錯的latex代碼處於第",
"Markdown翻译": "Markdown翻譯",

23
main.py
查看文件

@@ -1,4 +1,4 @@
import os, json; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
import os; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
help_menu_description = \
"""Github源代码开源和更新[地址🚀](https://github.com/binary-husky/gpt_academic),
@@ -34,7 +34,7 @@ def encode_plugin_info(k, plugin)->str:
def main():
import gradio as gr
if gr.__version__ not in ['3.32.12']:
if gr.__version__ not in ['3.32.14', '3.32.13']:
raise ModuleNotFoundError("使用项目内置Gradio获取最优体验! 请运行 `pip install -r requirements.txt` 指令安装内置Gradio及其他依赖, 详情信息见requirements.txt.")
# 一些基础工具
@@ -49,7 +49,7 @@ def main():
# 读取配置
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION = get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION')
CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = get_conf('CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
ENABLE_AUDIO, AUTO_CLEAR_TXT, PATH_LOGGING, AVAIL_THEMES, THEME, ADD_WAIFU = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'PATH_LOGGING', 'AVAIL_THEMES', 'THEME', 'ADD_WAIFU')
ENABLE_AUDIO, AUTO_CLEAR_TXT, AVAIL_FONTS, AVAIL_THEMES, THEME, ADD_WAIFU = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'AVAIL_FONTS', 'AVAIL_THEMES', 'THEME', 'ADD_WAIFU')
NUM_CUSTOM_BASIC_BTN, SSL_KEYFILE, SSL_CERTFILE = get_conf('NUM_CUSTOM_BASIC_BTN', 'SSL_KEYFILE', 'SSL_CERTFILE')
DARK_MODE, INIT_SYS_PROMPT, ADD_WAIFU, TTS_TYPE = get_conf('DARK_MODE', 'INIT_SYS_PROMPT', 'ADD_WAIFU', 'TTS_TYPE')
if LLM_MODEL not in AVAIL_LLM_MODELS: AVAIL_LLM_MODELS += [LLM_MODEL]
@@ -57,7 +57,7 @@ def main():
# 如果WEB_PORT是-1, 则随机选取WEB端口
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
from check_proxy import get_current_version
from themes.theme import adjust_theme, advanced_css, theme_declaration, js_code_clear, js_code_show_or_hide, js_code_show_or_hide_group2
from themes.theme import adjust_theme, advanced_css, theme_declaration, js_code_clear, js_code_show_or_hide
from themes.theme import js_code_for_toggle_darkmode
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
@@ -178,13 +178,13 @@ def main():
# 左上角工具栏定义
from themes.gui_toolbar import define_gui_toolbar
checkboxes, checkboxes_2, max_length_sl, theme_dropdown, system_prompt, file_upload_2, md_dropdown, top_p, temperature = \
define_gui_toolbar(AVAIL_LLM_MODELS, LLM_MODEL, INIT_SYS_PROMPT, THEME, AVAIL_THEMES, ADD_WAIFU, help_menu_description, js_code_for_toggle_darkmode)
define_gui_toolbar(AVAIL_LLM_MODELS, LLM_MODEL, INIT_SYS_PROMPT, THEME, AVAIL_THEMES, AVAIL_FONTS, ADD_WAIFU, help_menu_description, js_code_for_toggle_darkmode)
# 浮动菜单定义
from themes.gui_floating_menu import define_gui_floating_menu
area_input_secondary, txt2, area_customize, _, resetBtn2, clearBtn2, stopBtn2 = \
define_gui_floating_menu(customize_btns, functional, predefined_btns, cookies, web_cookie_cache)
# 浮动时间线定义
gr.Spark()
@@ -210,14 +210,14 @@ def main():
ret.update({area_customize: gr.update(visible=("自定义菜单" in a))})
return ret
checkboxes_2.select(fn_area_visibility_2, [checkboxes_2], [area_customize] )
checkboxes_2.select(None, [checkboxes_2], None, _js=js_code_show_or_hide_group2)
checkboxes_2.select(None, [checkboxes_2], None, _js="""apply_checkbox_change_for_group2""")
# 整理反复出现的控件句柄组合
input_combo = [cookies, max_length_sl, md_dropdown, txt, txt2, top_p, temperature, chatbot, history, system_prompt, plugin_advanced_arg]
input_combo_order = ["cookies", "max_length_sl", "md_dropdown", "txt", "txt2", "top_p", "temperature", "chatbot", "history", "system_prompt", "plugin_advanced_arg"]
output_combo = [cookies, chatbot, history, status]
predict_args = dict(fn=ArgsGeneralWrapper(predict), inputs=[*input_combo, gr.State(True)], outputs=output_combo)
# 提交按钮、重置按钮
multiplex_submit_btn.click(
None, [multiplex_sel], None, _js="""(multiplex_sel)=>multiplex_function_begin(multiplex_sel)""")
@@ -226,11 +226,8 @@ def main():
multiplex_sel.select(
None, [multiplex_sel], None, _js=f"""(multiplex_sel)=>run_multiplex_shift(multiplex_sel)""")
cancel_handles.append(submit_btn.click(**predict_args))
resetBtn.click(None, None, [chatbot, history, status], _js="""(a,b,c)=>clear_conversation(a,b,c)""") # 先在前端快速清除chatbot&status
resetBtn2.click(None, None, [chatbot, history, status], _js="""(a,b,c)=>clear_conversation(a,b,c)""") # 先在前端快速清除chatbot&status
# reset_server_side_args = (lambda history: ([], [], "已重置"), [history], [chatbot, history, status])
# resetBtn.click(*reset_server_side_args) # 再在后端清除history
# resetBtn2.click(*reset_server_side_args) # 再在后端清除history
resetBtn.click(None, None, [chatbot, history, status], _js= """clear_conversation""") # 先在前端快速清除chatbot&status
resetBtn2.click(None, None, [chatbot, history, status], _js="""clear_conversation""") # 先在前端快速清除chatbot&status
clearBtn.click(None, None, [txt, txt2], _js=js_code_clear)
clearBtn2.click(None, None, [txt, txt2], _js=js_code_clear)
if AUTO_CLEAR_TXT:

查看文件

@@ -80,6 +80,7 @@ ollama_endpoint = "http://localhost:11434/api/chat"
yimodel_endpoint = "https://api.lingyiwanwu.com/v1/chat/completions"
deepseekapi_endpoint = "https://api.deepseek.com/v1/chat/completions"
grok_model_endpoint = "https://api.x.ai/v1/chat/completions"
volcengine_endpoint = "https://ark.cn-beijing.volces.com/api/v3/chat/completions"
if not AZURE_ENDPOINT.endswith('/'): AZURE_ENDPOINT += '/'
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
@@ -102,6 +103,7 @@ if ollama_endpoint in API_URL_REDIRECT: ollama_endpoint = API_URL_REDIRECT[ollam
if yimodel_endpoint in API_URL_REDIRECT: yimodel_endpoint = API_URL_REDIRECT[yimodel_endpoint]
if deepseekapi_endpoint in API_URL_REDIRECT: deepseekapi_endpoint = API_URL_REDIRECT[deepseekapi_endpoint]
if grok_model_endpoint in API_URL_REDIRECT: grok_model_endpoint = API_URL_REDIRECT[grok_model_endpoint]
if volcengine_endpoint in API_URL_REDIRECT: volcengine_endpoint = API_URL_REDIRECT[volcengine_endpoint]
# 获取tokenizer
tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo")
@@ -273,16 +275,88 @@ model_info = {
"token_cnt": get_token_num_gpt4,
"openai_disable_system_prompt": True,
"openai_disable_stream": True,
"openai_force_temperature_one": True,
},
"o1-mini": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": openai_endpoint,
"can_multi_thread": True,
"max_token": 128000,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
"openai_disable_system_prompt": True,
"openai_disable_stream": True,
"openai_force_temperature_one": True,
},
"o1-2024-12-17": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": openai_endpoint,
"max_token": 200000,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
"openai_disable_system_prompt": True,
"openai_disable_stream": True,
"openai_force_temperature_one": True,
},
"o1": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": openai_endpoint,
"max_token": 200000,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
"openai_disable_system_prompt": True,
"openai_disable_stream": True,
"openai_force_temperature_one": True,
},
"gpt-4.1":{
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"has_multimodal_capacity": True,
"endpoint": openai_endpoint,
"max_token": 828000,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
},
"gpt-4.1-mini":{
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"has_multimodal_capacity": True,
"endpoint": openai_endpoint,
"max_token": 828000,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
},
"o3":{
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"has_multimodal_capacity": True,
"endpoint": openai_endpoint,
"max_token": 828000,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
"openai_disable_system_prompt": True,
"openai_disable_stream": True,
"openai_force_temperature_one": True,
},
"o4-mini":{
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"has_multimodal_capacity": True,
"can_multi_thread": True,
"endpoint": openai_endpoint,
"max_token": 828000,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
},
"gpt-4-turbo": {
@@ -501,6 +575,15 @@ model_info = {
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"gemini-2.0-flash": {
"fn_with_ui": genai_ui,
"fn_without_ui": genai_noui,
"endpoint": gemini_endpoint,
"has_multimodal_capacity": True,
"max_token": 1024 * 204800,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
# cohere
"cohere-command-r-plus": {
@@ -784,8 +867,13 @@ if "qwen-local" in AVAIL_LLM_MODELS:
})
except:
logger.error(trimmed_format_exc())
# -=-=-=-=-=-=- 通义-在线模型 -=-=-=-=-=-=-
if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-max" in AVAIL_LLM_MODELS: # zhipuai
# -=-=-=-=-=-=- 阿里云百炼(通义)-在线模型 -=-=-=-=-=-=-
qwen_models = ["qwen-max-latest", "qwen-max-2025-01-25","qwen-max","qwen-turbo","qwen-plus",
"dashscope-deepseek-r1","dashscope-deepseek-v3",
"dashscope-qwen3-14b", "dashscope-qwen3-235b-a22b", "dashscope-qwen3-qwen3-32b",
]
if any(item in qwen_models for item in AVAIL_LLM_MODELS):
try:
from .bridge_qwen import predict_no_ui_long_connection as qwen_noui
from .bridge_qwen import predict as qwen_ui
@@ -795,7 +883,7 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
"fn_without_ui": qwen_noui,
"can_multi_thread": True,
"endpoint": None,
"max_token": 6144,
"max_token": 100000,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
@@ -804,7 +892,7 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
"fn_without_ui": qwen_noui,
"can_multi_thread": True,
"endpoint": None,
"max_token": 30720,
"max_token": 129024,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
@@ -813,13 +901,79 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
"fn_without_ui": qwen_noui,
"can_multi_thread": True,
"endpoint": None,
"max_token": 28672,
"max_token": 30720,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"qwen-max-latest": {
"fn_with_ui": qwen_ui,
"fn_without_ui": qwen_noui,
"can_multi_thread": True,
"endpoint": None,
"max_token": 30720,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"qwen-max-2025-01-25": {
"fn_with_ui": qwen_ui,
"fn_without_ui": qwen_noui,
"can_multi_thread": True,
"endpoint": None,
"max_token": 30720,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"dashscope-deepseek-r1": {
"fn_with_ui": qwen_ui,
"fn_without_ui": qwen_noui,
"enable_reasoning": True,
"can_multi_thread": True,
"endpoint": None,
"max_token": 57344,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"dashscope-deepseek-v3": {
"fn_with_ui": qwen_ui,
"fn_without_ui": qwen_noui,
"can_multi_thread": True,
"endpoint": None,
"max_token": 57344,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"dashscope-qwen3-14b": {
"fn_with_ui": qwen_ui,
"fn_without_ui": qwen_noui,
"enable_reasoning": True,
"can_multi_thread": True,
"endpoint": None,
"max_token": 129024,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"dashscope-qwen3-235b-a22b": {
"fn_with_ui": qwen_ui,
"fn_without_ui": qwen_noui,
"can_multi_thread": True,
"endpoint": None,
"max_token": 129024,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"dashscope-qwen3-32b": {
"fn_with_ui": qwen_ui,
"fn_without_ui": qwen_noui,
"can_multi_thread": True,
"endpoint": None,
"max_token": 129024,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}
})
except:
logger.error(trimmed_format_exc())
# -=-=-=-=-=-=- 零一万物模型 -=-=-=-=-=-=-
yi_models = ["yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview"]
if any(item in yi_models for item in AVAIL_LLM_MODELS):
@@ -908,7 +1062,7 @@ if any(item in grok_models for item in AVAIL_LLM_MODELS):
try:
grok_beta_128k_noui, grok_beta_128k_ui = get_predict_function(
api_key_conf_name="GROK_API_KEY", max_output_token=8192, disable_proxy=False
)
)
model_info.update({
"grok-beta": {
@@ -1026,7 +1180,7 @@ if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai 是glm-4的别名,向后兼容
})
except:
logger.error(trimmed_format_exc())
# -=-=-=-=-=-=- 幻方-深度求索大模型 -=-=-=-=-=-=-
# -=-=-=-=-=-=- 幻方-深度求索本地大模型 -=-=-=-=-=-=-
if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
try:
from .bridge_deepseekcoder import predict_no_ui_long_connection as deepseekcoder_noui
@@ -1043,19 +1197,21 @@ if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
})
except:
logger.error(trimmed_format_exc())
# -=-=-=-=-=-=- 幻方-深度求索大模型在线API -=-=-=-=-=-=-
if "deepseek-chat" in AVAIL_LLM_MODELS or "deepseek-coder" in AVAIL_LLM_MODELS:
claude_models = ["deepseek-chat", "deepseek-coder", "deepseek-reasoner"]
if any(item in claude_models for item in AVAIL_LLM_MODELS):
try:
deepseekapi_noui, deepseekapi_ui = get_predict_function(
api_key_conf_name="DEEPSEEK_API_KEY", max_output_token=4096, disable_proxy=False
)
)
model_info.update({
"deepseek-chat":{
"fn_with_ui": deepseekapi_ui,
"fn_without_ui": deepseekapi_noui,
"endpoint": deepseekapi_endpoint,
"can_multi_thread": True,
"max_token": 32000,
"max_token": 64000,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
@@ -1068,9 +1224,73 @@ if "deepseek-chat" in AVAIL_LLM_MODELS or "deepseek-coder" in AVAIL_LLM_MODELS:
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"deepseek-reasoner":{
"fn_with_ui": deepseekapi_ui,
"fn_without_ui": deepseekapi_noui,
"endpoint": deepseekapi_endpoint,
"can_multi_thread": True,
"max_token": 64000,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
"enable_reasoning": True
},
})
except:
logger.error(trimmed_format_exc())
# -=-=-=-=-=-=- 火山引擎 对齐支持 -=-=-=-=-=-=-
for model in [m for m in AVAIL_LLM_MODELS if m.startswith("volcengine-")]:
# 为了更灵活地接入volcengine多模型管理界面,设计了此接口,例子AVAIL_LLM_MODELS = ["volcengine-deepseek-r1-250120(max_token=6666)"]
# 其中
# "volcengine-" 是前缀(必要)
# "deepseek-r1-250120" 是模型名(必要)
# "(max_token=6666)" 是配置(非必要)
model_info_extend = model_info
model_info_extend.update({
"deepseek-r1-250120": {
"max_token": 16384,
"enable_reasoning": True,
"can_multi_thread": True,
"endpoint": volcengine_endpoint,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"deepseek-v3-241226": {
"max_token": 16384,
"enable_reasoning": False,
"can_multi_thread": True,
"endpoint": volcengine_endpoint,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
})
try:
origin_model_name, max_token_tmp = read_one_api_model_name(model)
# 如果是已知模型,则尝试获取其信息
original_model_info = model_info_extend.get(origin_model_name.replace("volcengine-", "", 1), None)
except:
logger.error(f"volcengine模型 {model} 的 max_token 配置不是整数,请检查配置文件。")
continue
volcengine_noui, volcengine_ui = get_predict_function(api_key_conf_name="ARK_API_KEY", max_output_token=8192, disable_proxy=True, model_remove_prefix = ["volcengine-"])
this_model_info = {
"fn_with_ui": volcengine_ui,
"fn_without_ui": volcengine_noui,
"endpoint": volcengine_endpoint,
"can_multi_thread": True,
"max_token": 64000,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}
# 同步已知模型的其他信息
attribute = "has_multimodal_capacity"
if original_model_info is not None and original_model_info.get(attribute, None) is not None: this_model_info.update({attribute: original_model_info.get(attribute, None)})
attribute = "enable_reasoning"
if original_model_info is not None and original_model_info.get(attribute, None) is not None: this_model_info.update({attribute: original_model_info.get(attribute, None)})
model_info.update({model: this_model_info})
# -=-=-=-=-=-=- one-api 对齐支持 -=-=-=-=-=-=-
for model in [m for m in AVAIL_LLM_MODELS if m.startswith("one-api-")]:
# 为了更灵活地接入one-api多模型管理界面,设计了此接口,例子AVAIL_LLM_MODELS = ["one-api-mixtral-8x7b(max_token=6666)"]
@@ -1209,9 +1429,9 @@ def LLM_CATCH_EXCEPTION(f):
"""
装饰器函数,将错误显示出来
"""
def decorated(inputs:str, llm_kwargs:dict, history:list, sys_prompt:str, observe_window:list, console_slience:bool):
def decorated(inputs:str, llm_kwargs:dict, history:list, sys_prompt:str, observe_window:list, console_silence:bool):
try:
return f(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
return f(inputs, llm_kwargs, history, sys_prompt, observe_window, console_silence)
except Exception as e:
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
observe_window[0] = tb_str
@@ -1219,7 +1439,7 @@ def LLM_CATCH_EXCEPTION(f):
return decorated
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list, sys_prompt:str, observe_window:list=[], console_slience:bool=False):
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list, sys_prompt:str, observe_window:list=[], console_silence:bool=False):
"""
发送至LLM,等待回复,一次性完成,不显示中间过程。但内部尽可能地用stream的方法避免中途网线被掐。
inputs
@@ -1241,7 +1461,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list, sys
if '&' not in model:
# 如果只询问“一个”大语言模型(多数情况):
method = model_info[model]["fn_without_ui"]
return method(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
return method(inputs, llm_kwargs, history, sys_prompt, observe_window, console_silence)
else:
# 如果同时询问“多个”大语言模型,这个稍微啰嗦一点,但思路相同,您不必读这个else分支
executor = ThreadPoolExecutor(max_workers=4)
@@ -1258,7 +1478,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list, sys
method = model_info[model]["fn_without_ui"]
llm_kwargs_feedin = copy.deepcopy(llm_kwargs)
llm_kwargs_feedin['llm_model'] = model
future = executor.submit(LLM_CATCH_EXCEPTION(method), inputs, llm_kwargs_feedin, history, sys_prompt, window_mutex[i], console_slience)
future = executor.submit(LLM_CATCH_EXCEPTION(method), inputs, llm_kwargs_feedin, history, sys_prompt, window_mutex[i], console_silence)
futures.append(future)
def mutex_manager(window_mutex, observe_window):
@@ -1335,6 +1555,11 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot,
inputs = apply_gpt_academic_string_mask(inputs, mode="show_llm")
if llm_kwargs['llm_model'] not in model_info:
from toolbox import update_ui
chatbot.append([inputs, f"很抱歉,模型 '{llm_kwargs['llm_model']}' 暂不支持<br/>(1) 检查config中的AVAIL_LLM_MODELS选项<br/>(2) 检查request_llms/bridge_all.py中的模型路由"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"] # 如果这里报错,检查config中的AVAIL_LLM_MODELS选项
if additional_fn: # 根据基础功能区 ModelOverride 参数调整模型类型

查看文件

@@ -139,7 +139,7 @@ global glmft_handle
glmft_handle = None
#################################################################################
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
observe_window:list=[], console_slience:bool=False):
observe_window:list=[], console_silence:bool=False):
"""
多线程方法
函数的说明请见 request_llms/bridge_all.py

查看文件

@@ -23,8 +23,13 @@ from loguru import logger
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
from toolbox import trimmed_format_exc, is_the_upload_folder, read_one_api_model_name, log_chat
from toolbox import ChatBotWithCookies, have_any_recent_upload_image_files, encode_image
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
proxies, WHEN_TO_USE_PROXY, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
get_conf('proxies', 'WHEN_TO_USE_PROXY', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
if "Connect_OpenAI" not in WHEN_TO_USE_PROXY:
if proxies is not None:
logger.error("虽然您配置了代理设置,但不会在连接OpenAI的过程中起作用,请检查WHEN_TO_USE_PROXY配置。")
proxies = None
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
@@ -120,7 +125,7 @@ def verify_endpoint(endpoint):
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
return endpoint
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_silence:bool=False):
"""
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
inputs
@@ -180,19 +185,25 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
else:
raise RuntimeError("OpenAI拒绝了请求" + error_msg)
if ('data: [DONE]' in chunk_decoded): break # api2d 正常完成
if ('data: [DONE]' in chunk_decoded): break # api2d & one-api 正常完成
# 提前读取一些信息 (用于判断异常)
if has_choices and not choice_valid:
# 一些垃圾第三方接口的出现这样的错误
continue
json_data = chunkjson['choices'][0]
delta = json_data["delta"]
if len(delta) == 0: break
if len(delta) == 0:
is_termination_certain = False
if (has_choices) and (chunkjson['choices'][0].get('finish_reason', 'null') == 'stop'): is_termination_certain = True
if is_termination_certain: break
else: continue # 对于不符合规范的狗屎接口,这里需要继续
if (not has_content) and has_role: continue
if (not has_content) and (not has_role): continue # raise RuntimeError("发现不标准的第三方接口:"+delta)
if has_content: # has_role = True/False
result += delta["content"]
if not console_slience: print(delta["content"], end='')
if not console_silence: print(delta["content"], end='')
if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1:
@@ -220,7 +231,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
inputs 是本次问询的输入
top_p, temperature是chatGPT的内部调优参数
history 是之前的对话列表注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
chatbot 为WebUI中显示的对话列表,修改它,然后yield出去,可以直接修改对话界面内容
additional_fn代表点击的哪个按钮,按钮见functional.py
"""
from request_llms.bridge_all import model_info
@@ -285,6 +296,8 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
history.extend([inputs, ""])
retry = 0
previous_ui_reflesh_time = 0
ui_reflesh_min_interval = 0.0
while True:
try:
# make a POST request to the API endpoint, stream=True
@@ -297,13 +310,13 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
if retry > MAX_RETRY: raise TimeoutError
if not stream:
# 该分支仅适用于不支持stream的o1模型,其他情形一律不适用
yield from handle_o1_model_special(response, inputs, llm_kwargs, chatbot, history)
return
if stream:
reach_termination = False # 处理一些 new-api 的奇葩异常
gpt_replying_buffer = ""
is_head_of_the_stream = True
stream_response = response.iter_lines()
@@ -316,11 +329,14 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
error_msg = chunk_decoded
# 首先排除一个one-api没有done数据包的第三方Bug情形
if len(gpt_replying_buffer.strip()) > 0 and len(error_msg) == 0:
yield from update_ui(chatbot=chatbot, history=history, msg="检测到有缺陷的非OpenAI官方接口,建议选择更稳定的接口。")
yield from update_ui(chatbot=chatbot, history=history, msg="检测到有缺陷的接口,建议选择更稳定的接口。")
if not reach_termination:
reach_termination = True
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
break
# 其他情况,直接返回报错
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
yield from update_ui(chatbot=chatbot, history=history, msg="非OpenAI官方接口返回了错误:" + chunk.decode()) # 刷新界面
yield from update_ui(chatbot=chatbot, history=history, msg="接口返回了错误:" + chunk.decode()) # 刷新界面
return
# 提前读取一些信息 (用于判断异常)
@@ -330,6 +346,8 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
# 数据流的第一帧不携带content
is_head_of_the_stream = False; continue
if "error" in chunk_decoded: logger.error(f"接口返回了未知错误: {chunk_decoded}")
if chunk:
try:
if has_choices and not choice_valid:
@@ -338,14 +356,25 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
if ('data: [DONE]' not in chunk_decoded) and len(chunk_decoded) > 0 and (chunkjson is None):
# 传递进来一些奇怪的东西
raise ValueError(f'无法读取以下数据,请检查配置。\n\n{chunk_decoded}')
# 前者是API2D的结束条件,后者是OPENAI的结束条件
if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0):
# 判定为数据流的结束,gpt_replying_buffer也写完了
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
break
# 前者是API2D & One-API的结束条件,后者是OPENAI的结束条件
one_api_terminate = ('data: [DONE]' in chunk_decoded)
openai_terminate = (has_choices) and (len(chunkjson['choices'][0]["delta"]) == 0)
if one_api_terminate or openai_terminate:
is_termination_certain = False
if one_api_terminate: is_termination_certain = True # 抓取符合规范的结束条件
elif (has_choices) and (chunkjson['choices'][0].get('finish_reason', 'null') == 'stop'): is_termination_certain = True # 抓取符合规范的结束条件
if is_termination_certain:
reach_termination = True
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
break # 对于符合规范的接口,这里可以break
else:
continue # 对于不符合规范的接口,这里需要继续
# 到这里,我们已经可以假定必须包含choice了
try:
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
except:
logger.error(f"一些第三方接口出现这样的错误,兼容一下吧: {chunk_decoded}")
# 处理数据流的主体
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
if has_content:
# 正常情况
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
@@ -353,22 +382,27 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
# 一些第三方接口的出现这样的错误,兼容一下吧
continue
else:
# 至此已经超出了正常接口应该进入的范围,一些垃圾第三方接口会出现这样的错误
if chunkjson['choices'][0]["delta"]["content"] is None: continue # 一些垃圾第三方接口出现这样的错误,兼容一下吧
# 至此已经超出了正常接口应该进入的范围,一些第三方接口会出现这样的错误
if chunkjson['choices'][0]["delta"].get("content", None) is None:
logger.error(f"一些第三方接口出现这样的错误,兼容一下吧: {chunk_decoded}")
continue
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
history[-1] = gpt_replying_buffer
chatbot[-1] = (history[-2], history[-1])
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
if time.time() - previous_ui_reflesh_time > ui_reflesh_min_interval:
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
previous_ui_reflesh_time = time.time()
except Exception as e:
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
chunk = get_full_error(chunk, stream_response)
chunk_decoded = chunk.decode()
error_msg = chunk_decoded
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析异常" + error_msg) # 刷新界面
logger.error(error_msg)
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析异常" + error_msg) # 刷新界面
return
yield from update_ui(chatbot=chatbot, history=history, msg="完成") # 刷新界面
return # return from stream-branch
def handle_o1_model_special(response, inputs, llm_kwargs, chatbot, history):
@@ -536,6 +570,8 @@ def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:st
"n": 1,
"stream": stream,
}
openai_force_temperature_one = model_info[llm_kwargs['llm_model']].get('openai_force_temperature_one', False)
if openai_force_temperature_one:
payload.pop('temperature')
return headers,payload

查看文件

@@ -16,7 +16,7 @@ import base64
import glob
from loguru import logger
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, is_the_upload_folder, \
update_ui_lastest_msg, get_max_token, encode_image, have_any_recent_upload_image_files, log_chat
update_ui_latest_msg, get_max_token, encode_image, have_any_recent_upload_image_files, log_chat
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
@@ -67,7 +67,7 @@ def verify_endpoint(endpoint):
"""
return endpoint
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_silence=False):
raise NotImplementedError
@@ -183,7 +183,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0):
# 判定为数据流的结束,gpt_replying_buffer也写完了
lastmsg = chatbot[-1][-1] + f"\n\n\n\n{llm_kwargs['llm_model']}调用结束,该模型不具备上下文对话能力,如需追问,请及时切换模型。」"
yield from update_ui_lastest_msg(lastmsg, chatbot, history, delay=1)
yield from update_ui_latest_msg(lastmsg, chatbot, history, delay=1)
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
break
# 处理数据流的主体

查看文件

@@ -69,7 +69,7 @@ def decode_chunk(chunk):
return need_to_pass, chunkjson, is_last_chunk
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_silence=False):
"""
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
inputs
@@ -151,7 +151,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
inputs 是本次问询的输入
top_p, temperature是chatGPT的内部调优参数
history 是之前的对话列表注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
chatbot 为WebUI中显示的对话列表,修改它,然后yield出去,可以直接修改对话界面内容
additional_fn代表点击的哪个按钮,按钮见functional.py
"""
if inputs == "": inputs = "空空如也的输入栏"

查看文件

@@ -68,7 +68,7 @@ def verify_endpoint(endpoint):
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
return endpoint
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_silence:bool=False):
"""
发送,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
inputs
@@ -111,7 +111,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
if chunkjson['event_type'] == 'stream-start': continue
if chunkjson['event_type'] == 'text-generation':
result += chunkjson["text"]
if not console_slience: print(chunkjson["text"], end='')
if not console_silence: print(chunkjson["text"], end='')
if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1:
@@ -132,7 +132,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
inputs 是本次问询的输入
top_p, temperature是chatGPT的内部调优参数
history 是之前的对话列表注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
chatbot 为WebUI中显示的对话列表,修改它,然后yield出去,可以直接修改对话界面内容
additional_fn代表点击的哪个按钮,按钮见functional.py
"""
# if is_any_api_key(inputs):

查看文件

@@ -6,7 +6,6 @@ from toolbox import get_conf
from request_llms.local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
from threading import Thread
from loguru import logger
import torch
import os
def download_huggingface_model(model_name, max_retry, local_dir):
@@ -29,6 +28,7 @@ class GetCoderLMHandle(LocalLLMHandle):
self.cmd_to_install = cmd_to_install
def load_model_and_tokenizer(self):
import torch
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
with ProxyNetworkActivate('Download_LLM'):
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer

查看文件

@@ -8,7 +8,7 @@ import os
import time
from request_llms.com_google import GoogleChatInit
from toolbox import ChatBotWithCookies
from toolbox import get_conf, update_ui, update_ui_lastest_msg, have_any_recent_upload_image_files, trimmed_format_exc, log_chat, encode_image
from toolbox import get_conf, update_ui, update_ui_latest_msg, have_any_recent_upload_image_files, trimmed_format_exc, log_chat, encode_image
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY')
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
@@ -16,7 +16,7 @@ timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=[],
console_slience:bool=False):
console_silence:bool=False):
# 检查API_KEY
if get_conf("GEMINI_API_KEY") == "":
raise ValueError(f"请配置 GEMINI_API_KEY。")
@@ -60,7 +60,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
# 检查API_KEY
if get_conf("GEMINI_API_KEY") == "":
yield from update_ui_lastest_msg(f"请配置 GEMINI_API_KEY。", chatbot=chatbot, history=history, delay=0)
yield from update_ui_latest_msg(f"请配置 GEMINI_API_KEY。", chatbot=chatbot, history=history, delay=0)
return
# 适配润色区域

查看文件

@@ -55,7 +55,7 @@ class GetGLMHandle(Process):
if self.jittorllms_model is None:
device = get_conf('LOCAL_MODEL_DEVICE')
from .jittorllms.models import get_model
# availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
# available_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
args_dict = {'model': 'llama'}
print('self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))')
self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))
@@ -107,7 +107,7 @@ global llama_glm_handle
llama_glm_handle = None
#################################################################################
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
observe_window:list=[], console_slience:bool=False):
observe_window:list=[], console_silence:bool=False):
"""
多线程方法
函数的说明请见 request_llms/bridge_all.py

查看文件

@@ -55,7 +55,7 @@ class GetGLMHandle(Process):
if self.jittorllms_model is None:
device = get_conf('LOCAL_MODEL_DEVICE')
from .jittorllms.models import get_model
# availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
# available_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
args_dict = {'model': 'pangualpha'}
print('self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))')
self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))
@@ -107,7 +107,7 @@ global pangu_glm_handle
pangu_glm_handle = None
#################################################################################
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
observe_window:list=[], console_slience:bool=False):
observe_window:list=[], console_silence:bool=False):
"""
多线程方法
函数的说明请见 request_llms/bridge_all.py

查看文件

@@ -55,7 +55,7 @@ class GetGLMHandle(Process):
if self.jittorllms_model is None:
device = get_conf('LOCAL_MODEL_DEVICE')
from .jittorllms.models import get_model
# availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
# available_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
args_dict = {'model': 'chatrwkv'}
print('self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))')
self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))
@@ -107,7 +107,7 @@ global rwkv_glm_handle
rwkv_glm_handle = None
#################################################################################
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
observe_window:list=[], console_slience:bool=False):
observe_window:list=[], console_silence:bool=False):
"""
多线程方法
函数的说明请见 request_llms/bridge_all.py

查看文件

@@ -46,8 +46,8 @@ class GetLlamaHandle(LocalLLMHandle):
top_p = kwargs['top_p']
temperature = kwargs['temperature']
history = kwargs['history']
console_slience = kwargs.get('console_slience', True)
return query, max_length, top_p, temperature, history, console_slience
console_silence = kwargs.get('console_silence', True)
return query, max_length, top_p, temperature, history, console_silence
def convert_messages_to_prompt(query, history):
prompt = ""
@@ -57,7 +57,7 @@ class GetLlamaHandle(LocalLLMHandle):
prompt += f"\n[INST]{query}[/INST]"
return prompt
query, max_length, top_p, temperature, history, console_slience = adaptor(kwargs)
query, max_length, top_p, temperature, history, console_silence = adaptor(kwargs)
prompt = convert_messages_to_prompt(query, history)
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-
# code from transformers.llama
@@ -72,9 +72,9 @@ class GetLlamaHandle(LocalLLMHandle):
generated_text = ""
for new_text in streamer:
generated_text += new_text
if not console_slience: print(new_text, end='')
if not console_silence: print(new_text, end='')
yield generated_text.lstrip(prompt_tk_back).rstrip("</s>")
if not console_slience: print()
if not console_silence: print()
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-
def try_to_import_special_deps(self, **kwargs):

查看文件

@@ -169,7 +169,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_bro_result)
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None,
console_slience=False):
console_silence=False):
gpt_bro_init = MoonShotInit()
watch_dog_patience = 60 # 看门狗的耐心, 设置10秒即可
stream_response = gpt_bro_init.generate_messages(inputs, llm_kwargs, history, sys_prompt, True)

查看文件

@@ -95,7 +95,7 @@ class GetGLMHandle(Process):
- Its responses must not be vague, accusatory, rude, controversial, off-topic, or defensive.
- It should avoid giving subjective opinions but rely on objective facts or phrases like \"in this context a human might say...\", \"some people might think...\", etc.
- Its responses must also be positive, polite, interesting, entertaining, and engaging.
- It can provide additional relevant details to answer in-depth and comprehensively covering mutiple aspects.
- It can provide additional relevant details to answer in-depth and comprehensively covering multiple aspects.
- It apologizes and accepts the user's suggestion if the user corrects the incorrect answer generated by MOSS.
Capabilities and tools that MOSS can possess.
"""
@@ -172,7 +172,7 @@ global moss_handle
moss_handle = None
#################################################################################
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
observe_window:list=[], console_slience:bool=False):
observe_window:list=[], console_silence:bool=False):
"""
多线程方法
函数的说明请见 request_llms/bridge_all.py

查看文件

@@ -209,7 +209,7 @@ def predict_no_ui_long_connection(
history=[],
sys_prompt="",
observe_window=[],
console_slience=False,
console_silence=False,
):
"""
多线程方法

查看文件

@@ -52,7 +52,7 @@ def decode_chunk(chunk):
pass
return chunk_decoded, chunkjson, is_last_chunk
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_silence=False):
"""
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
inputs
@@ -99,7 +99,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
logger.info(f'[response] {result}')
break
result += chunkjson['message']["content"]
if not console_slience: print(chunkjson['message']["content"], end='')
if not console_silence: print(chunkjson['message']["content"], end='')
if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1:
@@ -124,7 +124,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
inputs 是本次问询的输入
top_p, temperature是chatGPT的内部调优参数
history 是之前的对话列表注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
chatbot 为WebUI中显示的对话列表,修改它,然后yield出去,可以直接修改对话界面内容
additional_fn代表点击的哪个按钮,按钮见functional.py
"""
if inputs == "": inputs = "空空如也的输入栏"

查看文件

@@ -119,7 +119,7 @@ def verify_endpoint(endpoint):
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
return endpoint
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_silence:bool=False):
"""
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
inputs
@@ -170,7 +170,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
except requests.exceptions.ConnectionError:
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
if len(chunk_decoded)==0: continue
if len(chunk_decoded)==0 or chunk_decoded.startswith(':'): continue
if not chunk_decoded.startswith('data:'):
error_msg = get_full_error(chunk, stream_response).decode()
if "reduce the length" in error_msg:
@@ -181,9 +181,6 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
raise RuntimeError("OpenAI拒绝了请求" + error_msg)
if ('data: [DONE]' in chunk_decoded): break # api2d 正常完成
# 提前读取一些信息 (用于判断异常)
if (has_choices and not choice_valid) or ('OPENROUTER PROCESSING' in chunk_decoded):
# 一些垃圾第三方接口的出现这样的错误,openrouter的特殊处理
continue
json_data = chunkjson['choices'][0]
delta = json_data["delta"]
if len(delta) == 0: break
@@ -191,7 +188,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
if (not has_content) and (not has_role): continue # raise RuntimeError("发现不标准的第三方接口:"+delta)
if has_content: # has_role = True/False
result += delta["content"]
if not console_slience: print(delta["content"], end='')
if not console_silence: print(delta["content"], end='')
if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1:
@@ -216,7 +213,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
inputs 是本次问询的输入
top_p, temperature是chatGPT的内部调优参数
history 是之前的对话列表注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
chatbot 为WebUI中显示的对话列表,修改它,然后yield出去,可以直接修改对话界面内容
additional_fn代表点击的哪个按钮,按钮见functional.py
"""
from request_llms.bridge_all import model_info
@@ -328,8 +325,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
if chunk:
try:
if (has_choices and not choice_valid) or ('OPENROUTER PROCESSING' in chunk_decoded):
# 一些垃圾第三方接口的出现这样的错误, 或者OPENROUTER的特殊处理,因为OPENROUTER的数据流未连接到模型时会出现OPENROUTER PROCESSING
if (has_choices and not choice_valid) or chunk_decoded.startswith(':'):
continue
if ('data: [DONE]' not in chunk_decoded) and len(chunk_decoded) > 0 and (chunkjson is None):
# 传递进来一些奇怪的东西
@@ -516,7 +512,7 @@ def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:st
model, _ = read_one_api_model_name(model)
if llm_kwargs['llm_model'].startswith('openrouter-'):
model = llm_kwargs['llm_model'][len('openrouter-'):]
model= read_one_api_model_name(model)
model, _= read_one_api_model_name(model)
if model == "gpt-3.5-random": # 随机选择, 绕过openai访问频率限制
model = random.choice([
"gpt-3.5-turbo",

查看文件

@@ -121,7 +121,7 @@ def generate_from_baidu_qianfan(inputs, llm_kwargs, history, system_prompt):
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
observe_window:list=[], console_slience:bool=False):
observe_window:list=[], console_silence:bool=False):
"""
⭐多线程方法
函数的说明请见 request_llms/bridge_all.py

查看文件

@@ -1,12 +1,12 @@
import time
import os
from toolbox import update_ui, get_conf, update_ui_lastest_msg
from toolbox import update_ui, get_conf, update_ui_latest_msg
from toolbox import check_packages, report_exception, log_chat
model_name = 'Qwen'
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
observe_window:list=[], console_slience:bool=False):
observe_window:list=[], console_silence:bool=False):
"""
⭐多线程方法
函数的说明请见 request_llms/bridge_all.py
@@ -35,13 +35,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
try:
check_packages(["dashscope"])
except:
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade dashscope```。",
yield from update_ui_latest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade dashscope```。",
chatbot=chatbot, history=history, delay=0)
return
# 检查DASHSCOPE_API_KEY
if get_conf("DASHSCOPE_API_KEY") == "":
yield from update_ui_lastest_msg(f"请配置 DASHSCOPE_API_KEY。",
yield from update_ui_latest_msg(f"请配置 DASHSCOPE_API_KEY。",
chatbot=chatbot, history=history, delay=0)
return

查看文件

@@ -1,5 +1,5 @@
import time
from toolbox import update_ui, get_conf, update_ui_lastest_msg
from toolbox import update_ui, get_conf, update_ui_latest_msg
from toolbox import check_packages, report_exception
model_name = '云雀大模型'
@@ -10,7 +10,7 @@ def validate_key():
return True
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
observe_window:list=[], console_slience:bool=False):
observe_window:list=[], console_silence:bool=False):
"""
⭐ 多线程方法
函数的说明请见 request_llms/bridge_all.py
@@ -42,12 +42,12 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
try:
check_packages(["zhipuai"])
except:
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade zhipuai```。",
yield from update_ui_latest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade zhipuai```。",
chatbot=chatbot, history=history, delay=0)
return
if validate_key() is False:
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置HUOSHAN_API_KEY", chatbot=chatbot, history=history, delay=0)
yield from update_ui_latest_msg(lastmsg="[Local Message] 请配置HUOSHAN_API_KEY", chatbot=chatbot, history=history, delay=0)
return
if additional_fn is not None:

查看文件

@@ -2,7 +2,7 @@
import time
import threading
import importlib
from toolbox import update_ui, get_conf, update_ui_lastest_msg
from toolbox import update_ui, get_conf, update_ui_latest_msg
from multiprocessing import Process, Pipe
model_name = '星火认知大模型'
@@ -14,7 +14,7 @@ def validate_key():
return True
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
observe_window:list=[], console_slience:bool=False):
observe_window:list=[], console_silence:bool=False):
"""
⭐多线程方法
函数的说明请见 request_llms/bridge_all.py
@@ -43,7 +43,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
yield from update_ui(chatbot=chatbot, history=history)
if validate_key() is False:
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置讯飞星火大模型的XFYUN_APPID, XFYUN_API_KEY, XFYUN_API_SECRET", chatbot=chatbot, history=history, delay=0)
yield from update_ui_latest_msg(lastmsg="[Local Message] 请配置讯飞星火大模型的XFYUN_APPID, XFYUN_API_KEY, XFYUN_API_SECRET", chatbot=chatbot, history=history, delay=0)
return
if additional_fn is not None:

查看文件

@@ -225,7 +225,7 @@ def predict_no_ui_long_connection(
history=[],
sys_prompt="",
observe_window=None,
console_slience=False,
console_silence=False,
):
"""
多线程方法

查看文件

@@ -1,6 +1,6 @@
import time
import os
from toolbox import update_ui, get_conf, update_ui_lastest_msg, log_chat
from toolbox import update_ui, get_conf, update_ui_latest_msg, log_chat
from toolbox import check_packages, report_exception, have_any_recent_upload_image_files
from toolbox import ChatBotWithCookies
@@ -13,7 +13,7 @@ def validate_key():
return True
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
observe_window:list=[], console_slience:bool=False):
observe_window:list=[], console_silence:bool=False):
"""
⭐多线程方法
函数的说明请见 request_llms/bridge_all.py
@@ -49,7 +49,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
yield from update_ui(chatbot=chatbot, history=history)
if validate_key() is False:
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置ZHIPUAI_API_KEY", chatbot=chatbot, history=history, delay=0)
yield from update_ui_latest_msg(lastmsg="[Local Message] 请配置ZHIPUAI_API_KEY", chatbot=chatbot, history=history, delay=0)
return
if additional_fn is not None:

查看文件

@@ -91,7 +91,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
inputs 是本次问询的输入
top_p, temperature是chatGPT的内部调优参数
history 是之前的对话列表注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
chatbot 为WebUI中显示的对话列表,修改它,然后yield出去,可以直接修改对话界面内容
additional_fn代表点击的哪个按钮,按钮见functional.py
"""
if additional_fn is not None:
@@ -112,7 +112,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
mutable = ["", time.time()]
def run_coorotine(mutable):
def run_coroutine(mutable):
async def get_result(mutable):
# "tgui:galactica-1.3b@localhost:7860"
@@ -126,7 +126,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
break
asyncio.run(get_result(mutable))
thread_listen = threading.Thread(target=run_coorotine, args=(mutable,), daemon=True)
thread_listen = threading.Thread(target=run_coroutine, args=(mutable,), daemon=True)
thread_listen.start()
while thread_listen.is_alive():
@@ -142,7 +142,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience=False):
def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window, console_silence=False):
raw_input = "What I would like to say is the following: " + inputs
prompt = raw_input
tgui_say = ""
@@ -151,7 +151,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
addr, port = addr_port.split(':')
def run_coorotine(observe_window):
def run_coroutine(observe_window):
async def get_result(observe_window):
async for response in run(context=prompt, max_token=llm_kwargs['max_length'],
temperature=llm_kwargs['temperature'],
@@ -162,6 +162,6 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
print('exit when no listener')
break
asyncio.run(get_result(observe_window))
thread_listen = threading.Thread(target=run_coorotine, args=(observe_window,))
thread_listen = threading.Thread(target=run_coroutine, args=(observe_window,))
thread_listen.start()
return observe_window[0]

查看文件

@@ -1,6 +1,6 @@
import time
import os
from toolbox import update_ui, get_conf, update_ui_lastest_msg, log_chat
from toolbox import update_ui, get_conf, update_ui_latest_msg, log_chat
from toolbox import check_packages, report_exception, have_any_recent_upload_image_files
from toolbox import ChatBotWithCookies
@@ -18,7 +18,7 @@ def make_media_input(inputs, image_paths):
return inputs
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
observe_window:list=[], console_slience:bool=False):
observe_window:list=[], console_silence:bool=False):
"""
⭐多线程方法
函数的说明请见 request_llms/bridge_all.py
@@ -57,12 +57,12 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
try:
check_packages(["zhipuai"])
except:
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade zhipuai```。",
yield from update_ui_latest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade zhipuai```。",
chatbot=chatbot, history=history, delay=0)
return
if validate_key() is False:
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置ZHIPUAI_API_KEY", chatbot=chatbot, history=history, delay=0)
yield from update_ui_latest_msg(lastmsg="[Local Message] 请配置ZHIPUAI_API_KEY", chatbot=chatbot, history=history, delay=0)
return
if additional_fn is not None:

查看文件

@@ -202,16 +202,29 @@ class GoogleChatInit:
) # 处理 history
messages.append(self.__conversation_user(inputs, llm_kwargs, enable_multimodal_capacity)) # 处理用户对话
payload = {
"contents": messages,
"generationConfig": {
# "maxOutputTokens": llm_kwargs.get("max_token", 1024),
"stopSequences": str(llm_kwargs.get("stop", "")).split(" "),
"temperature": llm_kwargs.get("temperature", 1),
"topP": llm_kwargs.get("top_p", 0.8),
"topK": 10,
},
}
stop_sequences = str(llm_kwargs.get("stop", "")).split(" ")
# 过滤空字符串并确保至少有一个停止序列
stop_sequences = [s for s in stop_sequences if s]
if not stop_sequences:
payload = {
"contents": messages,
"generationConfig": {
"temperature": llm_kwargs.get("temperature", 1),
"topP": llm_kwargs.get("top_p", 0.8),
"topK": 10,
},
}
else:
payload = {
"contents": messages,
"generationConfig": {
# "maxOutputTokens": llm_kwargs.get("max_token", 1024),
"stopSequences": stop_sequences,
"temperature": llm_kwargs.get("temperature", 1),
"topP": llm_kwargs.get("top_p", 0.8),
"topK": 10,
},
}
return header, payload

查看文件

@@ -3,6 +3,7 @@ from toolbox import get_conf
import threading
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
model_prefix_to_remove = 'dashscope-'
class QwenRequestInstance():
def __init__(self):
@@ -20,22 +21,28 @@ class QwenRequestInstance():
raise RuntimeError('请配置 DASHSCOPE_API_KEY')
dashscope.api_key = get_conf("DASHSCOPE_API_KEY")
def format_reasoning(self, reasoning_content:str, main_content:str):
if reasoning_content:
reasoning_content_paragraphs = ''.join([f'<p style="margin: 1.25em 0;">{line}</p>' for line in reasoning_content.split('\n')])
formatted_reasoning_content = f'<div class="reasoning_process">{reasoning_content_paragraphs}</div>\n\n---\n\n'
return formatted_reasoning_content + main_content
else:
return main_content
def generate(self, inputs, llm_kwargs, history, system_prompt):
# import _thread as thread
from dashscope import Generation
QWEN_MODEL = {
'qwen-turbo': Generation.Models.qwen_turbo,
'qwen-plus': Generation.Models.qwen_plus,
'qwen-max': Generation.Models.qwen_max,
}[llm_kwargs['llm_model']]
top_p = llm_kwargs.get('top_p', 0.8)
if top_p == 0: top_p += 1e-5
if top_p == 1: top_p -= 1e-5
model_name = llm_kwargs['llm_model']
if model_name.startswith(model_prefix_to_remove): model_name = model_name[len(model_prefix_to_remove):]
self.reasoning_buf = ""
self.result_buf = ""
responses = Generation.call(
model=QWEN_MODEL,
model=model_name,
messages=generate_message_payload(inputs, llm_kwargs, history, system_prompt),
top_p=top_p,
temperature=llm_kwargs.get('temperature', 1.0),
@@ -51,18 +58,24 @@ class QwenRequestInstance():
self.result_buf += response.output.choices[0].message.content
except:
pass
yield self.result_buf
yield self.format_reasoning(self.reasoning_buf, self.result_buf)
break
elif response.output.choices[0].finish_reason == 'length':
self.result_buf += "[Local Message] 生成长度过长,后续输出被截断"
yield self.result_buf
yield self.format_reasoning(self.reasoning_buf, self.result_buf)
break
else:
try:
contain_reasoning = hasattr(response.output.choices[0].message, 'reasoning_content')
except:
contain_reasoning = False
if contain_reasoning:
self.reasoning_buf += response.output.choices[0].message.reasoning_content
self.result_buf += response.output.choices[0].message.content
yield self.result_buf
yield self.format_reasoning(self.reasoning_buf, self.result_buf)
else:
self.result_buf += f"[Local Message] 请求错误:状态码:{response.status_code},错误码:{response.code},消息:{response.message}"
yield self.result_buf
yield self.format_reasoning(self.reasoning_buf, self.result_buf)
break
# 耗尽generator避免报错

查看文件

@@ -216,7 +216,7 @@ class LocalLLMHandle(Process):
def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='classic'):
load_message = f"{model_name}尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,{model_name}消耗大量的内存CPU或显存GPU,也许会导致低配计算机卡死 ……"
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=[], console_slience:bool=False):
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=[], console_silence:bool=False):
"""
refer to request_llms/bridge_all.py
"""

查看文件

@@ -2,15 +2,9 @@ import json
import time
import traceback
import requests
from loguru import logger
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件不受git管控,如果有,则覆盖原config文件
from toolbox import (
get_conf,
update_ui,
is_the_upload_folder,
)
from loguru import logger
from toolbox import get_conf, is_the_upload_folder, update_ui, update_ui_latest_msg
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf(
"proxies", "TIMEOUT_SECONDS", "MAX_RETRY"
@@ -36,35 +30,50 @@ def get_full_error(chunk, stream_response):
def decode_chunk(chunk):
"""
用于解读"content""finish_reason"的内容
用于解读"content""finish_reason"的内容(如果支持思维链也会返回"reasoning_content"内容)
"""
chunk = chunk.decode()
respose = ""
response = ""
reasoning_content = ""
finish_reason = "False"
# 考虑返回类型是 text/json 和 text/event-stream 两种
if chunk.startswith("data: "):
chunk = chunk[6:]
else:
chunk = chunk
try:
chunk = json.loads(chunk[6:])
chunk = json.loads(chunk)
except:
respose = ""
response = ""
finish_reason = chunk
# 错误处理部分
if "error" in chunk:
respose = "API_ERROR"
response = "API_ERROR"
try:
chunk = json.loads(chunk)
finish_reason = chunk["error"]["code"]
except:
finish_reason = "API_ERROR"
return respose, finish_reason
return response, reasoning_content, finish_reason, str(chunk)
try:
respose = chunk["choices"][0]["delta"]["content"]
if chunk["choices"][0]["delta"]["content"] is not None:
response = chunk["choices"][0]["delta"]["content"]
except:
pass
try:
if chunk["choices"][0]["delta"]["reasoning_content"] is not None:
reasoning_content = chunk["choices"][0]["delta"]["reasoning_content"]
except:
pass
try:
finish_reason = chunk["choices"][0]["finish_reason"]
except:
pass
return respose, finish_reason
return response, reasoning_content, finish_reason, str(chunk)
def generate_message(input, model, key, history, max_output_token, system_prompt, temperature):
@@ -99,7 +108,7 @@ def generate_message(input, model, key, history, max_output_token, system_prompt
what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = input
messages.append(what_i_ask_now)
playload = {
payload = {
"model": model,
"messages": messages,
"temperature": temperature,
@@ -107,13 +116,14 @@ def generate_message(input, model, key, history, max_output_token, system_prompt
"max_tokens": max_output_token,
}
return headers, playload
return headers, payload
def get_predict_function(
api_key_conf_name,
max_output_token,
disable_proxy = False
disable_proxy = False,
model_remove_prefix = [],
):
"""
为openai格式的API生成响应函数,其中传入参数
@@ -128,13 +138,23 @@ def get_predict_function(
APIKEY = get_conf(api_key_conf_name)
def remove_prefix(model_name):
# 去除模型名字的前缀,输入 volcengine-deepseek-r1-250120 会返回 deepseek-r1-250120
if not model_remove_prefix:
return model_name
model_without_prefix = model_name
for prefix in model_remove_prefix:
if model_without_prefix.startswith(prefix):
model_without_prefix = model_without_prefix[len(prefix):]
return model_without_prefix
def predict_no_ui_long_connection(
inputs,
llm_kwargs,
history=[],
sys_prompt="",
observe_window=None,
console_slience=False,
console_silence=False,
):
"""
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
@@ -149,43 +169,38 @@ def get_predict_function(
observe_window = None
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]观测窗。observe_window[1]:看门狗
"""
watch_dog_patience = 5 # 看门狗的耐心,设置5秒不准咬人(咬的也不是人
from .bridge_all import model_info
watch_dog_patience = 5 # 看门狗的耐心,设置5秒不准咬人 (咬的也不是人)
if len(APIKEY) == 0:
raise RuntimeError(f"APIKEY为空,请检查配置文件的{APIKEY}")
if inputs == "":
inputs = "你好👋"
headers, playload = generate_message(
headers, payload = generate_message(
input=inputs,
model=llm_kwargs["llm_model"],
model=remove_prefix(llm_kwargs["llm_model"]),
key=APIKEY,
history=history,
max_output_token=max_output_token,
system_prompt=sys_prompt,
temperature=llm_kwargs["temperature"],
)
reasoning = model_info[llm_kwargs['llm_model']].get('enable_reasoning', False)
retry = 0
while True:
try:
from .bridge_all import model_info
endpoint = model_info[llm_kwargs["llm_model"]]["endpoint"]
if not disable_proxy:
response = requests.post(
endpoint,
headers=headers,
proxies=proxies,
json=playload,
stream=True,
timeout=TIMEOUT_SECONDS,
)
else:
response = requests.post(
endpoint,
headers=headers,
json=playload,
stream=True,
timeout=TIMEOUT_SECONDS,
)
response = requests.post(
endpoint,
headers=headers,
proxies=None if disable_proxy else proxies,
json=payload,
stream=True,
timeout=TIMEOUT_SECONDS,
)
break
except:
retry += 1
@@ -194,10 +209,13 @@ def get_predict_function(
raise TimeoutError
if MAX_RETRY != 0:
logger.error(f"请求超时,正在重试 ({retry}/{MAX_RETRY}) ……")
stream_response = response.iter_lines()
result = ""
finish_reason = ""
if reasoning:
reasoning_buffer = ""
stream_response = response.iter_lines()
while True:
try:
chunk = next(stream_response)
@@ -207,9 +225,9 @@ def get_predict_function(
break
except requests.exceptions.ConnectionError:
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
response_text, finish_reason = decode_chunk(chunk)
response_text, reasoning_content, finish_reason, decoded_chunk = decode_chunk(chunk)
# 返回的数据流第一次为空,继续等待
if response_text == "" and finish_reason != "False":
if response_text == "" and (reasoning == False or reasoning_content == "") and finish_reason != "False":
continue
if response_text == "API_ERROR" and (
finish_reason != "False" or finish_reason != "stop"
@@ -223,10 +241,12 @@ def get_predict_function(
if chunk:
try:
if finish_reason == "stop":
if not console_slience:
if not console_silence:
print(f"[response] {result}")
break
result += response_text
if reasoning:
reasoning_buffer += reasoning_content
if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1:
@@ -241,6 +261,9 @@ def get_predict_function(
error_msg = chunk_decoded
logger.error(error_msg)
raise RuntimeError("Json解析不合常规")
if reasoning:
paragraphs = ''.join([f'<p style="margin: 1.25em 0;">{line}</p>' for line in reasoning_buffer.split('\n')])
return f'''<div class="reasoning_process" >{paragraphs}</div>\n\n''' + result
return result
def predict(
@@ -259,9 +282,10 @@ def get_predict_function(
inputs 是本次问询的输入
top_p, temperature是chatGPT的内部调优参数
history 是之前的对话列表注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
chatbot 为WebUI中显示的对话列表,修改它,然后yield出去,可以直接修改对话界面内容
additional_fn代表点击的哪个按钮,按钮见functional.py
"""
from .bridge_all import model_info
if len(APIKEY) == 0:
raise RuntimeError(f"APIKEY为空,请检查配置文件的{APIKEY}")
if inputs == "":
@@ -289,41 +313,32 @@ def get_predict_function(
) # 刷新界面
time.sleep(2)
headers, playload = generate_message(
headers, payload = generate_message(
input=inputs,
model=llm_kwargs["llm_model"],
model=remove_prefix(llm_kwargs["llm_model"]),
key=APIKEY,
history=history,
max_output_token=max_output_token,
system_prompt=system_prompt,
temperature=llm_kwargs["temperature"],
)
reasoning = model_info[llm_kwargs['llm_model']].get('enable_reasoning', False)
history.append(inputs)
history.append("")
retry = 0
while True:
try:
from .bridge_all import model_info
endpoint = model_info[llm_kwargs["llm_model"]]["endpoint"]
if not disable_proxy:
response = requests.post(
endpoint,
headers=headers,
proxies=proxies,
json=playload,
stream=True,
timeout=TIMEOUT_SECONDS,
)
else:
response = requests.post(
endpoint,
headers=headers,
json=playload,
stream=True,
timeout=TIMEOUT_SECONDS,
)
response = requests.post(
endpoint,
headers=headers,
proxies=None if disable_proxy else proxies,
json=payload,
stream=True,
timeout=TIMEOUT_SECONDS,
)
break
except:
retry += 1
@@ -338,18 +353,27 @@ def get_predict_function(
raise TimeoutError
gpt_replying_buffer = ""
if reasoning:
gpt_reasoning_buffer = ""
stream_response = response.iter_lines()
wait_counter = 0
while True:
try:
chunk = next(stream_response)
except StopIteration:
if wait_counter != 0 and gpt_replying_buffer == "":
yield from update_ui_latest_msg(lastmsg="模型调用失败 ...", chatbot=chatbot, history=history, msg="failed")
break
except requests.exceptions.ConnectionError:
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
response_text, finish_reason = decode_chunk(chunk)
response_text, reasoning_content, finish_reason, decoded_chunk = decode_chunk(chunk)
if decoded_chunk == ': keep-alive':
wait_counter += 1
yield from update_ui_latest_msg(lastmsg="等待中 " + "".join(["."] * (wait_counter%10)), chatbot=chatbot, history=history, msg="waiting ...")
continue
# 返回的数据流第一次为空,继续等待
if response_text == "" and finish_reason != "False":
if response_text == "" and (reasoning == False or reasoning_content == "") and finish_reason != "False":
status_text = f"finish_reason: {finish_reason}"
yield from update_ui(
chatbot=chatbot, history=history, msg=status_text
@@ -364,7 +388,7 @@ def get_predict_function(
chunk_decoded = chunk.decode()
chatbot[-1] = (
chatbot[-1][0],
"[Local Message] {finish_reason},获得以下报错信息:\n"
f"[Local Message] {finish_reason}, 获得以下报错信息:\n"
+ chunk_decoded,
)
yield from update_ui(
@@ -379,9 +403,15 @@ def get_predict_function(
logger.info(f"[response] {gpt_replying_buffer}")
break
status_text = f"finish_reason: {finish_reason}"
gpt_replying_buffer += response_text
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
history[-1] = gpt_replying_buffer
if reasoning:
gpt_replying_buffer += response_text
gpt_reasoning_buffer += reasoning_content
paragraphs = ''.join([f'<p style="margin: 1.25em 0;">{line}</p>' for line in gpt_reasoning_buffer.split('\n')])
history[-1] = f'<div class="reasoning_process">{paragraphs}</div>\n\n---\n\n' + gpt_replying_buffer
else:
gpt_replying_buffer += response_text
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
history[-1] = gpt_replying_buffer
chatbot[-1] = (history[-2], history[-1])
yield from update_ui(
chatbot=chatbot, history=history, msg=status_text

查看文件

@@ -1,4 +1,4 @@
https://public.agent-matrix.com/publish/gradio-3.32.12-py3-none-any.whl
https://public.agent-matrix.com/publish/gradio-3.32.14-py3-none-any.whl
fastapi==0.110
gradio-client==0.8
pypdf2==2.12.1
@@ -13,7 +13,7 @@ scipdf_parser>=0.52
spacy==3.7.4
anthropic>=0.18.1
python-markdown-math
pymdown-extensions
pymdown-extensions>=10.14
websocket-client
beautifulsoup4
prompt_toolkit

查看文件

@@ -2,7 +2,9 @@ import markdown
import re
import os
import math
import html
import base64
import gzip
from loguru import logger
from textwrap import dedent
from functools import lru_cache
@@ -324,6 +326,14 @@ def markdown_convertion_for_file(txt):
# cat them together
return pre + convert_stage_5 + suf
def compress_string(s):
compress_string = gzip.compress(s.encode('utf-8'))
return base64.b64encode(compress_string).decode()
def decompress_string(s):
decoded_string = base64.b64decode(s)
return gzip.decompress(decoded_string).decode('utf-8')
@lru_cache(maxsize=128) # 使用 lru缓存 加快转换速度
def markdown_convertion(txt):
"""
@@ -335,6 +345,12 @@ def markdown_convertion(txt):
# print('警告,输入了已经经过转化的字符串,二次转化可能出问题')
return txt # 已经被转化过,不需要再次转化
# 在文本中插入一个base64编码的原始文本,以便在复制时能够获得原始文本
raw_text_encoded = compress_string(txt)
raw_text_node = f'<div class="raw_text" style="display:none">{raw_text_encoded}</div><div class="message_tail" style="display:none"/>'
suf = raw_text_node + "</div>"
# 用于查找数学公式的正则表达式
find_equation_pattern = r'<script type="math/tex(?:.*?)>(.*?)</script>'
txt = fix_markdown_indent(txt)
@@ -384,6 +400,24 @@ def markdown_convertion(txt):
)
def code_block_title_replace_format(match):
lang = match.group(1)
filename = match.group(2)
return f"```{lang} {{title=\"{filename}\"}}\n"
def get_last_backticks_indent(text):
# 从后向前查找最后一个 ```
lines = text.splitlines()
for line in reversed(lines):
if '```' in line:
# 计算前面的空格数量
indent = len(line) - len(line.lstrip())
return indent
return 0 # 如果没找到返回0
@lru_cache(maxsize=16) # 使用lru缓存
def close_up_code_segment_during_stream(gpt_reply):
"""
在gpt输出代码的中途输出了前面的```,但还没输出完后面的```),补上后面的```
@@ -397,6 +431,12 @@ def close_up_code_segment_during_stream(gpt_reply):
"""
if "```" not in gpt_reply:
return gpt_reply
# replace [```python:warp.py] to [```python {title="warp.py"}]
pattern = re.compile(r"```([a-z]{1,12}):([^:\n]{1,35}\.([a-zA-Z^:\n]{1,3}))\n")
if pattern.search(gpt_reply):
gpt_reply = pattern.sub(code_block_title_replace_format, gpt_reply)
if gpt_reply.endswith("```"):
return gpt_reply
@@ -404,7 +444,11 @@ def close_up_code_segment_during_stream(gpt_reply):
segments = gpt_reply.split("```")
n_mark = len(segments) - 1
if n_mark % 2 == 1:
return gpt_reply + "\n```" # 输出代码片段中!
try:
num_padding = get_last_backticks_indent(gpt_reply)
except:
num_padding = 0
return gpt_reply + "\n" + " "*num_padding + "```" # 输出代码片段中!
else:
return gpt_reply
@@ -421,6 +465,19 @@ def special_render_issues_for_mermaid(text):
return text
def contain_html_tag(text):
"""
判断文本中是否包含HTML标签。
"""
pattern = r'</?([a-zA-Z0-9_]{3,16})>|<script\s+[^>]*src=["\']([^"\']+)["\'][^>]*>'
return re.search(pattern, text) is not None
def contain_image(text):
pattern = r'<br/><br/><div align="center"><img src="file=(.*?)" base64="(.*?)"></div>'
return re.search(pattern, text) is not None
def compat_non_markdown_input(text):
"""
改善非markdown输入的显示效果,例如将空格转换为&nbsp;,将换行符转换为</br>等。
@@ -429,9 +486,13 @@ def compat_non_markdown_input(text):
# careful inputmarkdown输入
text = special_render_issues_for_mermaid(text) # 处理特殊的渲染问题
return text
elif "</div>" in text:
elif ("<" in text) and (">" in text) and contain_html_tag(text):
# careful inputhtml输入
return text
if contain_image(text):
return text
else:
escaped_text = html.escape(text)
return escaped_text
else:
# whatever input非markdown输入
lines = text.split("\n")
@@ -447,6 +508,7 @@ def simple_markdown_convertion(text):
suf = "</div>"
if text.startswith(pre) and text.endswith(suf):
return text # 已经被转化过,不需要再次转化
text = compat_non_markdown_input(text) # 兼容非markdown输入
text = markdown.markdown(
text,

查看文件

@@ -8,7 +8,7 @@ def is_full_width_char(ch):
return True # CJK标点符号
return False
def scolling_visual_effect(text, scroller_max_len):
def scrolling_visual_effect(text, scroller_max_len):
text = text.\
replace('\n', '').replace('`', '.').replace(' ', '.').replace('<br/>', '.....').replace('$', '.')
place_take_cnt = 0

查看文件

@@ -85,7 +85,7 @@ def get_chat_default_kwargs():
"history": [],
"sys_prompt": "You are AI assistant",
"observe_window": None,
"console_slience": False,
"console_silence": False,
}
return default_chat_kwargs

查看文件

@@ -0,0 +1,296 @@
import copy
from shared_utils.config_loader import get_conf
def get_token_num(txt, tokenizer):
return len(tokenizer.encode(txt, disallowed_special=()))
def get_model_info():
from request_llms.bridge_all import model_info
return model_info
def clip_history(inputs, history, tokenizer, max_token_limit):
"""
reduce the length of history by clipping.
this function search for the longest entries to clip, little by little,
until the number of token of history is reduced under threshold.
通过裁剪来缩短历史记录的长度。
此函数逐渐地搜索最长的条目进行剪辑,
直到历史记录的标记数量降低到阈值以下。
被动触发裁剪
"""
import numpy as np
input_token_num = get_token_num(inputs)
if max_token_limit < 5000:
output_token_expect = 256 # 4k & 2k models
elif max_token_limit < 9000:
output_token_expect = 512 # 8k models
else:
output_token_expect = 1024 # 16k & 32k models
if input_token_num < max_token_limit * 3 / 4:
# 当输入部分的token占比小于限制的3/4时,裁剪时
# 1. 把input的余量留出来
max_token_limit = max_token_limit - input_token_num
# 2. 把输出用的余量留出来
max_token_limit = max_token_limit - output_token_expect
# 3. 如果余量太小了,直接清除历史
if max_token_limit < output_token_expect:
history = []
return history
else:
# 当输入部分的token占比 > 限制的3/4时,直接清除历史
history = []
return history
everything = [""]
everything.extend(history)
n_token = get_token_num("\n".join(everything))
everything_token = [get_token_num(e) for e in everything]
# 截断时的颗粒度
delta = max(everything_token) // 16
while n_token > max_token_limit:
where = np.argmax(everything_token)
encoded = tokenizer.encode(everything[where], disallowed_special=())
clipped_encoded = encoded[: len(encoded) - delta]
everything[where] = tokenizer.decode(clipped_encoded)[
:-1
] # -1 to remove the may-be illegal char
everything_token[where] = get_token_num(everything[where])
n_token = get_token_num("\n".join(everything))
history = everything[1:]
return history
def auto_context_clip_each_message(current, history):
"""
clip_history 是被动触发的
主动触发裁剪
"""
context = history + [current]
trigger_clip_token_len = get_conf('AUTO_CONTEXT_CLIP_TRIGGER_TOKEN_LEN')
model_info = get_model_info()
tokenizer = model_info['gpt-4']['tokenizer']
# 只保留最近的128条记录,无论token长度,防止计算token时计算过长的时间
max_round = get_conf('AUTO_CONTEXT_MAX_ROUND')
char_len = sum([len(h) for h in context])
if char_len < trigger_clip_token_len*2:
# 不需要裁剪
history = context[:-1]
current = context[-1]
return current, history
if len(context) > max_round:
context = context[-max_round:]
# 计算各个历史记录的token长度
context_token_num = [get_token_num(h, tokenizer) for h in context]
context_token_num_old = copy.copy(context_token_num)
total_token_num = total_token_num_old = sum(context_token_num)
if total_token_num < trigger_clip_token_len:
# 不需要裁剪
history = context[:-1]
current = context[-1]
return current, history
clip_token_len = trigger_clip_token_len * 0.85
# 越长越先被裁,越靠后越先被裁
max_clip_ratio: list[float] = get_conf('AUTO_CONTEXT_MAX_CLIP_RATIO')
max_clip_ratio = list(reversed(max_clip_ratio))
if len(context) > len(max_clip_ratio):
# give up the oldest context
context = context[-len(max_clip_ratio):]
context_token_num = context_token_num[-len(max_clip_ratio):]
if len(context) < len(max_clip_ratio):
# match the length of two array
max_clip_ratio = max_clip_ratio[-len(context):]
# compute rank
clip_prior_weight = [(token_num/clip_token_len + (len(context) - index)*0.1) for index, token_num in enumerate(context_token_num)]
# print('clip_prior_weight', clip_prior_weight)
# get sorted index of context_token_num, from largest to smallest
sorted_index = sorted(range(len(context_token_num)), key=lambda k: clip_prior_weight[k], reverse=True)
# pre compute space yield
for index in sorted_index:
print('index', index, f'current total {total_token_num}, target {clip_token_len}')
if total_token_num < clip_token_len:
# no need to clip
break
# clip room left
clip_room_left = total_token_num - clip_token_len
# get the clip ratio
allowed_token_num_this_entry = max_clip_ratio[index] * clip_token_len
if context_token_num[index] < allowed_token_num_this_entry:
print('index', index, '[allowed] before', context_token_num[index], 'allowed', allowed_token_num_this_entry)
continue
token_to_clip = context_token_num[index] - allowed_token_num_this_entry
if token_to_clip*0.85 > clip_room_left:
print('index', index, '[careful clip] token_to_clip', token_to_clip, 'clip_room_left', clip_room_left)
token_to_clip = clip_room_left
token_percent_to_clip = token_to_clip / context_token_num[index]
char_percent_to_clip = token_percent_to_clip
text_this_entry = context[index]
char_num_to_clip = int(len(text_this_entry) * char_percent_to_clip)
if char_num_to_clip < 500:
# 如果裁剪的字符数小于500,则不裁剪
print('index', index, 'before', context_token_num[index], 'allowed', allowed_token_num_this_entry)
continue
char_num_to_clip += 200 # 稍微多加一点
char_to_preseve = len(text_this_entry) - char_num_to_clip
_half = int(char_to_preseve / 2)
# 前半 + ... (content clipped because token overflows) ... + 后半
text_this_entry_clip = text_this_entry[:_half] + \
" ... (content clipped because token overflows) ... " \
+ text_this_entry[-_half:]
context[index] = text_this_entry_clip
post_clip_token_cnt = get_token_num(text_this_entry_clip, tokenizer)
print('index', index, 'before', context_token_num[index], 'allowed', allowed_token_num_this_entry, 'after', post_clip_token_cnt)
context_token_num[index] = post_clip_token_cnt
total_token_num = sum(context_token_num)
context_token_num_final = [get_token_num(h, tokenizer) for h in context]
print('context_token_num_old', context_token_num_old)
print('context_token_num_final', context_token_num_final)
print('token change from', total_token_num_old, 'to', sum(context_token_num_final), 'target', clip_token_len)
history = context[:-1]
current = context[-1]
return current, history
def auto_context_clip_search_optimal(current, history, promote_latest_long_message=False):
"""
current: 当前消息
history: 历史消息列表
promote_latest_long_message: 是否特别提高最后一条长message的权重,避免过度裁剪
主动触发裁剪
"""
context = history + [current]
trigger_clip_token_len = get_conf('AUTO_CONTEXT_CLIP_TRIGGER_TOKEN_LEN')
model_info = get_model_info()
tokenizer = model_info['gpt-4']['tokenizer']
# 只保留最近的128条记录,无论token长度,防止计算token时计算过长的时间
max_round = get_conf('AUTO_CONTEXT_MAX_ROUND')
char_len = sum([len(h) for h in context])
if char_len < trigger_clip_token_len:
# 不需要裁剪
history = context[:-1]
current = context[-1]
return current, history
if len(context) > max_round:
context = context[-max_round:]
# 计算各个历史记录的token长度
context_token_num = [get_token_num(h, tokenizer) for h in context]
context_token_num_old = copy.copy(context_token_num)
total_token_num = total_token_num_old = sum(context_token_num)
if total_token_num < trigger_clip_token_len:
# 不需要裁剪
history = context[:-1]
current = context[-1]
return current, history
clip_token_len = trigger_clip_token_len * 0.90
max_clip_ratio: list[float] = get_conf('AUTO_CONTEXT_MAX_CLIP_RATIO')
max_clip_ratio = list(reversed(max_clip_ratio))
if len(context) > len(max_clip_ratio):
# give up the oldest context
context = context[-len(max_clip_ratio):]
context_token_num = context_token_num[-len(max_clip_ratio):]
if len(context) < len(max_clip_ratio):
# match the length of two array
max_clip_ratio = max_clip_ratio[-len(context):]
_scale = _scale_init = 1.25
token_percent_arr = [(token_num/clip_token_len) for index, token_num in enumerate(context_token_num)]
# promote last long message, avoid clipping it too much
if promote_latest_long_message:
promote_weight_constant = 1.6
promote_index = -1
threshold = 0.50
for index, token_percent in enumerate(token_percent_arr):
if token_percent > threshold:
promote_index = index
if promote_index >= 0:
max_clip_ratio[promote_index] = promote_weight_constant
max_clip_ratio_arr = max_clip_ratio
step = 0.05
for i in range(int(_scale_init / step) - 1):
_take = 0
for max_clip, token_r in zip(max_clip_ratio_arr, token_percent_arr):
_take += min(max_clip * _scale, token_r)
if _take < 1.0:
break
_scale -= 0.05
# print('optimal scale', _scale)
# print([_scale * max_clip for max_clip in max_clip_ratio_arr])
# print([token_r for token_r in token_percent_arr])
# print([min(token_r, _scale * max_clip) for token_r, max_clip in zip(token_percent_arr, max_clip_ratio_arr)])
eps = 0.05
max_clip_ratio = [_scale * max_clip + eps for max_clip in max_clip_ratio_arr]
# compute rank
# clip_prior_weight_old = [(token_num/clip_token_len + (len(context) - index)*0.1) for index, token_num in enumerate(context_token_num)]
clip_prior_weight = [ token_r / max_clip for max_clip, token_r in zip(max_clip_ratio_arr, token_percent_arr)]
# sorted_index_old = sorted(range(len(context_token_num)), key=lambda k: clip_prior_weight_old[k], reverse=True)
# print('sorted_index_old', sorted_index_old)
sorted_index = sorted(range(len(context_token_num)), key=lambda k: clip_prior_weight[k], reverse=True)
# print('sorted_index', sorted_index)
# pre compute space yield
for index in sorted_index:
# print('index', index, f'current total {total_token_num}, target {clip_token_len}')
if total_token_num < clip_token_len:
# no need to clip
break
# clip room left
clip_room_left = total_token_num - clip_token_len
# get the clip ratio
allowed_token_num_this_entry = max_clip_ratio[index] * clip_token_len
if context_token_num[index] < allowed_token_num_this_entry:
# print('index', index, '[allowed] before', context_token_num[index], 'allowed', allowed_token_num_this_entry)
continue
token_to_clip = context_token_num[index] - allowed_token_num_this_entry
if token_to_clip*0.85 > clip_room_left:
# print('index', index, '[careful clip] token_to_clip', token_to_clip, 'clip_room_left', clip_room_left)
token_to_clip = clip_room_left
token_percent_to_clip = token_to_clip / context_token_num[index]
char_percent_to_clip = token_percent_to_clip
text_this_entry = context[index]
char_num_to_clip = int(len(text_this_entry) * char_percent_to_clip)
if char_num_to_clip < 500:
# 如果裁剪的字符数小于500,则不裁剪
# print('index', index, 'before', context_token_num[index], 'allowed', allowed_token_num_this_entry)
continue
eps = 200
char_num_to_clip = char_num_to_clip + eps # 稍微多加一点
char_to_preseve = len(text_this_entry) - char_num_to_clip
_half = int(char_to_preseve / 2)
# 前半 + ... (content clipped because token overflows) ... + 后半
text_this_entry_clip = text_this_entry[:_half] + \
" ... (content clipped because token overflows) ... " \
+ text_this_entry[-_half:]
context[index] = text_this_entry_clip
post_clip_token_cnt = get_token_num(text_this_entry_clip, tokenizer)
# print('index', index, 'before', context_token_num[index], 'allowed', allowed_token_num_this_entry, 'after', post_clip_token_cnt)
context_token_num[index] = post_clip_token_cnt
total_token_num = sum(context_token_num)
context_token_num_final = [get_token_num(h, tokenizer) for h in context]
# print('context_token_num_old', context_token_num_old)
# print('context_token_num_final', context_token_num_final)
# print('token change from', total_token_num_old, 'to', sum(context_token_num_final), 'target', clip_token_len)
history = context[:-1]
current = context[-1]
return current, history

查看文件

@@ -51,7 +51,7 @@ def validate_path_safety(path_or_url, user):
from toolbox import get_conf, default_user_name
from toolbox import FriendlyException
PATH_PRIVATE_UPLOAD, PATH_LOGGING = get_conf('PATH_PRIVATE_UPLOAD', 'PATH_LOGGING')
sensitive_path = None
sensitive_path = None # 必须不能包含 '/',即不能是多级路径
path_or_url = os.path.relpath(path_or_url)
if path_or_url.startswith(PATH_LOGGING): # 日志文件(按用户划分)
sensitive_path = PATH_LOGGING

查看文件

@@ -88,6 +88,32 @@ def zip_extract_member_new(self, member, targetpath, pwd):
return targetpath
def safe_extract_rar(file_path, dest_dir):
import rarfile
import posixpath
with rarfile.RarFile(file_path) as rf:
os.makedirs(dest_dir, exist_ok=True)
base_path = os.path.abspath(dest_dir)
for file_info in rf.infolist():
orig_filename = file_info.filename
filename = posixpath.normpath(orig_filename).lstrip('/')
# 路径遍历防护
if '..' in filename or filename.startswith('../'):
raise Exception(f"Attempted Path Traversal in {orig_filename}")
# 符号链接防护
if hasattr(file_info, 'is_symlink') and file_info.is_symlink():
raise Exception(f"Attempted Symlink in {orig_filename}")
# 构造完整目标路径
target_path = os.path.join(base_path, filename)
final_path = os.path.normpath(target_path)
# 最终路径校验
if not final_path.startswith(base_path):
raise Exception(f"Attempted Path Traversal in {orig_filename}")
rf.extractall(dest_dir)
def extract_archive(file_path, dest_dir):
import zipfile
import tarfile
@@ -111,6 +137,8 @@ def extract_archive(file_path, dest_dir):
member_path = os.path.normpath(member.name)
full_path = os.path.join(dest_dir, member_path)
full_path = os.path.abspath(full_path)
if member.islnk() or member.issym():
raise Exception(f"Attempted Symlink in {member.name}")
if not full_path.startswith(os.path.abspath(dest_dir) + os.sep):
raise Exception(f"Attempted Path Traversal in {member.name}")
@@ -130,14 +158,11 @@ def extract_archive(file_path, dest_dir):
# 此外,Windows上还需要安装winrar软件,配置其Path环境变量,如"C:\Program Files\WinRAR"才可以
elif file_extension == ".rar":
try:
import rarfile
with rarfile.RarFile(file_path) as rf:
rf.extractall(path=dest_dir)
logger.info("Successfully extracted rar archive to {}".format(dest_dir))
import rarfile # 用来检查rarfile是否安装,不要删除
safe_extract_rar(file_path, dest_dir)
except:
logger.info("Rar format requires additional dependencies to install")
return "\n\n解压失败! 需要安装pip install rarfile来解压rar文件。建议使用zip压缩格式。"
return "<br/><br/>解压失败! 需要安装pip install rarfile来解压rar文件。建议使用zip压缩格式。"
# 第三方库,需要预先pip install py7zr
elif file_extension == ".7z":
@@ -149,7 +174,7 @@ def extract_archive(file_path, dest_dir):
logger.info("Successfully extracted 7z archive to {}".format(dest_dir))
except:
logger.info("7z format requires additional dependencies to install")
return "\n\n解压失败! 需要安装pip install py7zr来解压7z文件"
return "<br/><br/>解压失败! 需要安装pip install py7zr来解压7z文件"
else:
return ""
return ""

查看文件

@@ -4,7 +4,6 @@ from functools import wraps, lru_cache
from shared_utils.advanced_markdown_format import format_io
from shared_utils.config_loader import get_conf as get_conf
pj = os.path.join
default_user_name = 'default_user'
@@ -12,11 +11,13 @@ default_user_name = 'default_user'
openai_regex = re.compile(
r"sk-[a-zA-Z0-9_-]{48}$|" +
r"sk-[a-zA-Z0-9_-]{92}$|" +
r"sk-proj-[a-zA-Z0-9_-]{48}$|"+
r"sk-proj-[a-zA-Z0-9_-]{124}$|"+
r"sk-proj-[a-zA-Z0-9_-]{156}$|"+ #新版apikey位数不匹配故修改此正则表达式
r"sk-proj-[a-zA-Z0-9_-]{48}$|" +
r"sk-proj-[a-zA-Z0-9_-]{124}$|" +
r"sk-proj-[a-zA-Z0-9_-]{156}$|" + #新版apikey位数不匹配故修改此正则表达式
r"sess-[a-zA-Z0-9]{40}$"
)
def is_openai_api_key(key):
CUSTOM_API_KEY_PATTERN = get_conf('CUSTOM_API_KEY_PATTERN')
if len(CUSTOM_API_KEY_PATTERN) != 0:
@@ -27,7 +28,7 @@ def is_openai_api_key(key):
def is_azure_api_key(key):
API_MATCH_AZURE = re.match(r"[a-zA-Z0-9]{32}$", key)
API_MATCH_AZURE = re.match(r"^[a-zA-Z0-9]{32}$|^[a-zA-Z0-9]{84}", key)
return bool(API_MATCH_AZURE)
@@ -35,16 +36,25 @@ def is_api2d_key(key):
API_MATCH_API2D = re.match(r"fk[a-zA-Z0-9]{6}-[a-zA-Z0-9]{32}$", key)
return bool(API_MATCH_API2D)
def is_openroute_api_key(key):
API_MATCH_OPENROUTE = re.match(r"sk-or-v1-[a-zA-Z0-9]{64}$", key)
return bool(API_MATCH_OPENROUTE)
def is_cohere_api_key(key):
API_MATCH_AZURE = re.match(r"[a-zA-Z0-9]{40}$", key)
return bool(API_MATCH_AZURE)
def is_any_api_key(key):
# key 一般只包含字母、数字、下划线、逗号、中划线
if not re.match(r"^[a-zA-Z0-9_\-,]+$", key):
# 如果配置了 CUSTOM_API_KEY_PATTERN,再检查以下以免误杀
if CUSTOM_API_KEY_PATTERN := get_conf('CUSTOM_API_KEY_PATTERN'):
return bool(re.match(CUSTOM_API_KEY_PATTERN, key))
return False
if ',' in key:
keys = key.split(',')
for k in keys:
@@ -72,6 +82,14 @@ def what_keys(keys):
return f"检测到: OpenAI Key {avail_key_list['OpenAI Key']} 个, Azure Key {avail_key_list['Azure Key']} 个, API2D Key {avail_key_list['API2D Key']}"
def is_o_family_for_openai(llm_model):
if not llm_model.startswith('o'):
return False
if llm_model in ['o1', 'o2', 'o3', 'o4', 'o5', 'o6', 'o7', 'o8']:
return True
if llm_model[:3] in ['o1-', 'o2-', 'o3-', 'o4-', 'o5-', 'o6-', 'o7-', 'o8-']:
return True
return False
def select_api_key(keys, llm_model):
import random
@@ -79,7 +97,7 @@ def select_api_key(keys, llm_model):
key_list = keys.split(',')
if llm_model.startswith('gpt-') or llm_model.startswith('chatgpt-') or \
llm_model.startswith('one-api-') or llm_model.startswith('o1-'):
llm_model.startswith('one-api-') or is_o_family_for_openai(llm_model):
for k in key_list:
if is_openai_api_key(k): avail_key_list.append(k)
@@ -94,7 +112,7 @@ def select_api_key(keys, llm_model):
if llm_model.startswith('cohere-'):
for k in key_list:
if is_cohere_api_key(k): avail_key_list.append(k)
if llm_model.startswith('openrouter-'):
for k in key_list:
if is_openroute_api_key(k): avail_key_list.append(k)
@@ -102,7 +120,7 @@ def select_api_key(keys, llm_model):
if len(avail_key_list) == 0:
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源左上角更换模型菜单中可切换openai,azure,claude,cohere等请求源")
api_key = random.choice(avail_key_list) # 随机负载均衡
api_key = random.choice(avail_key_list) # 随机负载均衡
return api_key
@@ -118,5 +136,5 @@ def select_api_key_for_embed_models(keys, llm_model):
if len(avail_key_list) == 0:
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源。")
api_key = random.choice(avail_key_list) # 随机负载均衡
api_key = random.choice(avail_key_list) # 随机负载均衡
return api_key

查看文件

@@ -20,7 +20,7 @@ Replace 'Tex/' with the actual directory path where your files are located befor
md = """
Following code including wrapper
```mermaid
```python:wrapper.py
graph TD
A[Enter Chart Definition] --> B(Preview)
B --> C{decide}
@@ -41,6 +41,166 @@ Any folded content here. It requires an empty line just above it.
</details>
"""
md ="""
<details>
<summary>第0份搜索结果 [源自google搜索] (汤姆·赫兰德):</summary>
<div class="search_result">https://baike.baidu.com/item/%E6%B1%A4%E5%A7%86%C2%B7%E8%B5%AB%E5%85%B0%E5%BE%B7/3687216</div>
<div class="search_result">Title: 汤姆·赫兰德
URL Source: https://baike.baidu.com/item/%E6%B1%A4%E5%A7%86%C2%B7%E8%B5%AB%E5%85%B0%E5%BE%B7/3687216
Markdown Content:
网页新闻贴吧知道网盘图片视频地图文库资讯采购百科
百度首页
登录
注册
进入词条
全站搜索
帮助
首页
秒懂百科
特色百科
知识专题
加入百科
百科团队
权威合作
个人中心
汤姆·赫兰德
播报
讨论
上传视频
英国男演员
汤姆·赫兰德Tom Holland,1996年6月1日出生于英国英格兰泰晤士河畔金斯顿,英国男演员。2008年,出演音乐剧《跳出我天地》而崭露头角。2010年,作为主演参加音乐剧《跳出我天地》的五周年特别演出。2012年10月11日,主演的个人首部电影《海啸奇迹》上映,并凭该电影获得第84届美国国家评论协会奖最具突破男演员奖。2016年10月15日,与查理·汉纳姆、西耶娜·米勒合作出演的电影《 ... >>>
目录
1早年经历
2演艺经历
▪影坛新星
▪角色多变
▪跨界翘楚
3个人生活
▪家庭
▪恋情
▪社交
4主要作品
▪参演电影
▪参演电视剧
▪配音作品
▪导演作品
▪杂志写真
5社会活动
6获奖记录
7人物评价
基本信息
汤姆·赫兰德Tom Holland,1996年6月1日出生于英国英格兰泰晤士河畔金斯顿,英国男演员。 [67]
2008年,出演音乐剧《跳出我天地》而崭露头角 [1]。2010年,作为主演参加音乐剧《跳出我天地》的五周年特别演出 [2]。2012年10月11日,主演的个人首部电影《海啸奇迹》上映,并凭该电影获得第84届美国国家评论协会奖最具突破男演员奖 [3]。2016年10月15日,与查理·汉纳姆、西耶娜·米勒合作出演的电影《迷失Z城》在纽约电影节首映 [17];2017年,主演的《蜘蛛侠英雄归来》上映,他凭该电影获得第19届青少年选择奖最佳暑期电影男演员奖,以及第70届英国电影和电视艺术学院奖最佳新星奖。 [72]2019年,主演的电影《蜘蛛侠英雄远征》上映 [5];同年,凭借该电影获得第21届青少年选择奖最佳夏日电影男演员奖 [6]。2024年4月,汤姆·霍兰德主演的伦敦西区新版舞台剧《罗密欧与朱丽叶》公布演员名单。 [66]
2024年,......</div>
</details>
<details>
<summary>第1份搜索结果 [源自google搜索] (汤姆·霍兰德):</summary>
<div class="search_result">https://zh.wikipedia.org/zh-hans/%E6%B1%A4%E5%A7%86%C2%B7%E8%B5%AB%E5%85%B0%E5%BE%B7</div>
<div class="search_result">Title: 汤姆·赫兰德
URL Source: https://zh.wikipedia.org/zh-hans/%E6%B1%A4%E5%A7%86%C2%B7%E8%B5%AB%E5%85%B0%E5%BE%B7
Published Time: 2015-06-24T01:08:01Z
Markdown Content:
| 汤姆·霍兰德
Tom Holland |
| --- |
| [![Image 19](https://upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Tom_Holland_by_Gage_Skidmore.jpg/220px-Tom_Holland_by_Gage_Skidmore.jpg)](https://zh.wikipedia.org/wiki/File:Tom_Holland_by_Gage_Skidmore.jpg)
2016年在[圣地牙哥国际漫画展](https://zh.wikipedia.org/wiki/%E8%81%96%E5%9C%B0%E7%89%99%E5%93%A5%E5%9C%8B%E9%9A%9B%E6%BC%AB%E7%95%AB%E5%B1%95 "圣地牙哥国际漫画展")的霍兰德
|
| 男演员 |
| 昵称 | 荷兰弟[\[1\]](https://zh.wikipedia.org/zh-hans/%E6%B1%A4%E5%A7%86%C2%B7%E8%B5%AB%E5%85%B0%E5%BE%B7#cite_note-1) |
| 出生 | 汤玛斯·史丹利·霍兰德
Thomas Stanley Holland[\[2\]](https://zh.wikipedia.org/zh-hans/%E6%B1%A4%E5%A7%86%C2%B7%E8%B5%AB%E5%85%B0%E5%BE%B7#cite_note-2)
1996年6月1日28岁
英国[英格兰](https://zh.wikipedia.org/wiki/%E8%8B%B1%E6%A0%BC%E8%98%AD "英格兰")[泰晤士河畔金斯顿](https://zh.wikipedia.org/wiki/%E6%B3%B0%E6%99%A4......</div>
</details>
<details>
<summary>第2份搜索结果 [源自google搜索] (为什么汤姆赫兰德被称为荷兰弟?):</summary>
<div class="search_result">https://www.zhihu.com/question/363988307</div>
<div class="search_result">Title: 为什么汤姆赫兰德被称为荷兰弟? - 知乎
URL Source: https://www.zhihu.com/question/363988307
Markdown Content:
要说漫威演员里面,谁是最牛的存在,不好说,各有各的看法,但要说谁是最能剧透的,毫无疑问,是我们的汤姆赫兰德荷兰弟,可以说,他算得上是把剧透给玩明白了,先后剧透了不少的电影桥段,以至于漫威后面像防贼一样防着人家荷兰弟,可大家知道吗?你永远想象不到荷兰弟的嘴巴到底有多能漏风?
![Image 9](https://pica.zhimg.com/50/v2-a0aa9972315519ec4975f974f01fc6ca_720w.jpg?source=1def8aca)
故事要回到《侏罗纪世界2》的筹备期间,当时,荷兰弟也参与了面试,计划在剧中饰演一个角色,原本,这也没啥,这都是好莱坞的传统了,可是,当时的导演胡安根本不知道荷兰弟的“风光伟绩”,于是乎,人家便屁颠屁颠把侏罗纪世界2的资料拿过来给荷兰弟,虽然,后面没有让荷兰弟出演这部电影,但导演似乎忘了他的嘴巴是开过光的。
![Image 10](https://picx.zhimg.com/50/v2-1da72b482c6a44e1826abb430d95a062_720w.jpg?source=1def8aca)
荷兰弟把剧情刻在了脑子
......</div>
</details>
<details>
<summary>第3份搜索结果 [源自google搜索] 爱戴名表被喷配不上赞达亚,荷兰弟曝近照气质大变,2</summary>
<div class="search_result">https://www.sohu.com/a/580380519_120702487</div>
<div class="search_result">Title: 爱戴名表被喷配不上赞达亚,荷兰弟曝近照气质大变,26岁资产惊人_蜘蛛侠_手表_罗伯特·唐尼
URL Source: https://www.sohu.com/a/580380519_120702487
Markdown Content:
2022-08-27 19:00 来源: [BEGEEL宾爵表](https://www.sohu.com/a/580380519_120702487?spm=smpc.content-abroad.content.1.1739375950559fBhgNpP)
发布于:广东省
近日,大家熟悉的荷兰弟,也就演漫威超级英雄“蜘蛛侠”而走红的英国男星汤姆·赫兰德Tom Holland,最近在没有任何预警的情况下宣布自己暂停使用社交媒体,原因网络暴力已经严重影响到他的心理健康了。虽然自出演蜘蛛侠以来,对荷兰弟的骂声就没停过,但不可否认他确实是一位才貌双全的好演员,同时也是一位拥有高雅品味的地道英伦绅士,从他近年名表收藏的趋势也能略知一二。
![Image 37](https://p5.itc.cn/q_70/images03/20220827/86aca867047b4119ba96a59e33d2d387.jpeg)
2016年,《美国队长3内战》上映,汤姆·赫兰德扮演的“史上最嫩”蜘蛛侠也正式登场。这个美国普通学生,由于意外被一只受过放射性感染的蜘蛛咬到,并因此获得超能力,化身邻居英雄蜘蛛侠警恶惩奸。和蜘蛛侠彼得·帕克一样,当时年仅20岁的荷兰弟无论戏里戏外的穿搭都是少年感十足,走的阳光邻家大男孩路线,手上戴的最多的就是来自卡西欧的电子表,还有来自Nixon sentry的手表,千元级别甚至是百元级。
20岁的荷兰弟走的是邻家大男孩路线
![Image 38](https://p3.itc.cn/q_70/images03/20220827/aded82ecfb1d439a8fd4741b49a8eb9b.png)
随着荷兰弟主演的《蜘蛛侠英雄归来》上演,第三代蜘蛛侠的话痨性格和年轻活力的形象瞬间圈粉无数。荷兰弟的知名度和演艺收入都大幅度增长,他的穿衣品味也渐渐从稚嫩少年风转变成轻熟绅士风。从简单的T恤短袖搭配牛仔裤,开始向更加丰富的造型发展,其中变化最明显的就是他手腕上的表。
荷兰弟的衣品日......</div>
</details>
<details>
<summary>第4份搜索结果 [源自google搜索] (荷兰弟居然要休息一年,因演戏演到精神分裂…):</summary>
<div class="search_result">https://www.sohu.com/a/683718058_544020</div>
<div class="search_result">Title: 荷兰弟居然要休息一年,因演戏演到精神分裂…_Holland_Tom_工作
URL Source: https://www.sohu.com/a/683718058_544020
Markdown Content:
荷兰弟居然要休息一年,因演戏演到精神分裂…\_Holland\_Tom\_工作
===============
* [](http://www.sohu.com/?spm=smpc.content-abroad.nav.1.1739375954055TcEvWsY)
* [新闻](http://news.sohu.com/?spm=smpc.content-abroad.nav.2.1739375954055TcEvWsY)
* [体育](http://sports.sohu.com/?spm=smpc.content-abroad.nav.3.1739375954055TcEvWsY)
* [汽车](http://auto.sohu.com/?spm=smpc.content-abroad.nav.4.1739375954055TcEvWsY)
* [房产](http://www.focus.cn/?spm=smpc.content-abroad.nav.5.1739375954055TcEvWsY)
* [旅游](http://travel.sohu.com/?spm=smpc.content-abroad.nav.6.1739375954055TcEvWsY)
* [教育](http://learning.sohu.com/?spm=smpc.content-abroad.nav.7.1739375954055TcEvWsY)
* [时尚](http://fashion.sohu.com/?spm=smpc.content-abroad.nav.8.1739375954055TcEvWsY)
* [科技](http://it.sohu.com/?spm=smpc.content-abroad.nav.9.1739375954055TcEvWsY)
* [财经](http://business.sohu.com/?spm=smpc.content-abroad.nav.10.17393759......</div>
</details>
"""
def validate_path():
import os, sys
@@ -53,10 +213,12 @@ def validate_path():
validate_path() # validate path so you can run from base directory
from toolbox import markdown_convertion
from shared_utils.advanced_markdown_format import markdown_convertion_for_file
# from shared_utils.advanced_markdown_format import markdown_convertion_for_file
from shared_utils.advanced_markdown_format import close_up_code_segment_during_stream
# with open("gpt_log/default_user/shared/2024-04-22-01-27-43.zip.extract/translated_markdown.md", "r", encoding="utf-8") as f:
# md = f.read()
html = markdown_convertion_for_file(md)
md = close_up_code_segment_during_stream(md)
html = markdown_convertion(md)
# print(html)
with open("test.html", "w", encoding="utf-8") as f:
f.write(html)

某些文件未显示,因为此 diff 中更改的文件太多 显示更多