比较提交

..

52 次代码提交

作者 SHA1 备注 提交日期
binary-husky
87d963bda5 UP 2023-04-23 11:19:16 +08:00
binary-husky
07807e4653 插件支持保存对话 2023-04-23 11:17:56 +08:00
binary-husky
95f8b2824a Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-04-22 18:56:07 +08:00
binary-husky
4065d6e234 版本3.2 2023-04-22 18:56:02 +08:00
binary-husky
d3dcd432e8 Update README.md 2023-04-22 18:47:11 +08:00
binary-husky
7d14de79bf Merge pull request #502 from mrhblfx/new_code_fun
解析项目源代码(手动指定和筛选源代码文件类型)
2023-04-22 18:40:47 +08:00
binary-husky
15c6b52b5f 修改README 2023-04-22 18:22:33 +08:00
binary-husky
c0f1b5bc8e 修改说明 2023-04-22 18:21:43 +08:00
mrhblfx
bd62c6be68 使提示更佳全面 2023-04-22 18:20:01 +08:00
binary-husky
70bd21f09a 修改二级路径运行的说明 2023-04-22 18:19:49 +08:00
Your Name
a0f15f1512 修改注释 2023-04-22 18:10:42 +08:00
mrhblfx
4575046ce1 使提示更佳全面 2023-04-22 18:08:27 +08:00
Your Name
33ea7391b5 Merge branch 'subpath' 2023-04-22 18:07:58 +08:00
Your Name
e90eee2d8e 加入subpath支持,但暂不启用 2023-04-22 18:07:24 +08:00
Your Name
7d44210a48 fix apache2 sub-path deploy issue #544 2023-04-22 17:55:50 +08:00
binary-husky
206f4138b6 Merge pull request #544 from yuxiaoyuan0406/suburl
fix apache2 sub-path deploy issue
2023-04-22 17:42:02 +08:00
mrhblfx
6d2807f499 Merge branch 'binary-husky:master' into new_code_fun 2023-04-22 17:38:26 +08:00
Your Name
f1234937c6 add check path back 2023-04-22 17:30:21 +08:00
Your Name
7beea951c6 unifying code 2023-04-22 17:24:22 +08:00
Your Name
6f7e8076c7 Merge branch 'suburl' of https://github.com/yuxiaoyuan0406/chatgpt_academic into yuxiaoyuan0406-suburl 2023-04-22 16:44:15 +08:00
binary-husky
ae24fab441 Merge pull request #562 from codycjy/codycjy
Parse and generate ipynb (Issue #501)
2023-04-22 16:22:03 +08:00
Your Name
880be21bf7 Add test for juptyer notebook plugin 2023-04-22 16:19:36 +08:00
Your Name
559b3cd6bb Merge branch 'codycjy' of https://github.com/codycjy/chatgpt_academic into codycjy-codycjy 2023-04-22 16:02:24 +08:00
binary-husky
9d9df8aa57 Update 解析JupyterNotebook.py 2023-04-22 16:01:32 +08:00
binary-husky
64548d33a9 Update crazy_functional.py 2023-04-22 15:58:43 +08:00
Your Name
c3cafd8d6f 微调界面布局 2023-04-22 15:52:21 +08:00
Your Name
e9a6efef7f 修复非压缩文件上传的读取问题 2023-04-22 15:39:51 +08:00
Your Name
89a75e26c3 修复extract_folder_path被定位到根目录的bug 2023-04-22 15:36:49 +08:00
Your Name
1139d395f2 将高级参数输入通用化(默认隐藏),应用到所有的下拉菜单函数插件中 2023-04-22 15:06:54 +08:00
saltfish
e20070939c Parse and generate ipynb (Issue #501)
Implemented code to parse and generate the ipynb files. The solution addresses Issue #501.
2023-04-22 00:36:28 +08:00
mrhblfx
3236fcca21 update 2023-04-21 21:02:11 +08:00
Your Name
5353eba376 version 3.15 添加联网回答问题 2023-04-21 20:03:38 +08:00
Your Name
7339b06acb Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-04-21 19:28:37 +08:00
Your Name
ce1fc3a999 修改chatglm不记忆上下文的bug 2023-04-21 19:28:32 +08:00
binary-husky
a9a489231a Update bridge_all.py 2023-04-21 18:56:56 +08:00
binary-husky
e889590a91 Update README.md 2023-04-21 18:49:24 +08:00
Your Name
9481405f6f 更新提示 2023-04-21 18:37:20 +08:00
Your Name
7317d79a3c 更新提醒 2023-04-21 18:28:51 +08:00
mrhblfx
de0ed4a6f5 style:accordion of 解析任意code项目 is closed by default 2023-04-20 22:01:27 +08:00
mrhblfx
0ff838443e fix a bug 2023-04-20 21:44:35 +08:00
mrhblfx
cfbfb68618 Merge branch 'master' of github.com:mrhblfx/chatgpt_academic 2023-04-20 21:12:22 +08:00
yuxiaoyuan0406
9945d5048a 更好的检查子路径逻辑 2023-04-20 18:31:26 +08:00
yuxiaoyuan0406
f0ff1f2c64 添加CUSTOM_PATH来部署到子级路径 2023-04-20 18:22:58 +08:00
yuxiaoyuan0406
7dd73e1330 添加了一个检查path的工具 2023-04-20 18:20:25 +08:00
yuxiaoyuan0406
4cfbacdb26 fix sub-path deploy 2023-04-20 17:21:47 +08:00
mrhblfx
26af2b1bb4 update by pull 2023-04-19 18:26:48 +08:00
mrhblfx
20bec70160 Merge branch 'master' of github.com:mrhblfx/chatgpt_academic 2023-04-18 23:40:51 +08:00
mrhblfx
9b5f088793 Changed matching rules 2023-04-18 23:31:12 +08:00
mrhblfx
3a561a70db Reduced one parameter 2023-04-18 23:30:19 +08:00
mrhblfx
11e33ec657 Reduced one input box 2023-04-18 23:29:18 +08:00
mrhblfx
d1926725d3 Add parsing arbitrary code items 2023-04-16 23:33:43 +08:00
mrhblfx
2f9a4e1618 Add parsing arbitrary code items 2023-04-16 23:00:45 +08:00
共有 17 个文件被更改,包括 454 次插入50 次删除

1
.gitignore vendored
查看文件

@@ -145,3 +145,4 @@ cradle*
debug*
private*
crazy_functions/test_project/pdf_and_word
crazy_functions/test_samples

查看文件

@@ -173,6 +173,8 @@ docker run --rm -it --net=host --gpus=all gpt-academic bash
2. 使用WSL2Windows Subsystem for Linux 子系统)
请访问[部署wiki-2](https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
3. 如何在二级网址(如`http://localhost/subpath`)下运行
请访问[FastAPI运行说明](docs/WithFastapi.md)
## 安装-代理配置
1. 常规方法
@@ -268,6 +270,8 @@ docker run --rm -it --net=host --gpus=all gpt-academic bash
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/233575247-fb00819e-6d1b-4bb7-bd54-1d7528f03dd9.png" width="800" >
<img src="https://user-images.githubusercontent.com/96192199/233779501-5ce826f0-6cca-4d59-9e5f-b4eacb8cc15f.png" width="800" >
</div>

查看文件

@@ -57,6 +57,9 @@ CONCURRENT_COUNT = 100
# [("username", "password"), ("username2", "password2"), ...]
AUTHENTICATION = []
# 重新URL重新定向,实现更换API_URL的作用常规情况下,不要修改
# 重新URL重新定向,实现更换API_URL的作用常规情况下,不要修改!!
# 格式 {"https://api.openai.com/v1/chat/completions": "重定向的URL"}
API_URL_REDIRECT = {}
# 如果需要在二级路径下运行(常规情况下,不要修改!!需要配合修改main.py才能生效!
CUSTOM_PATH = "/"

查看文件

@@ -19,12 +19,23 @@ def get_crazy_functions():
from crazy_functions.解析项目源代码 import 解析一个Lua项目
from crazy_functions.解析项目源代码 import 解析一个CSharp项目
from crazy_functions.总结word文档 import 总结word文档
from crazy_functions.解析JupyterNotebook import 解析ipynb文件
from crazy_functions.对话历史存档 import 对话历史存档
function_plugins = {
"解析整个Python项目": {
"Color": "stop", # 按钮颜色
"Function": HotReload(解析一个Python项目)
},
"保存当前的对话": {
"AsButton":False,
"Function": HotReload(对话历史存档)
},
"[测试功能] 解析Jupyter Notebook文件": {
"Color": "stop",
"AsButton":False,
"Function": HotReload(解析ipynb文件),
},
"批量总结Word文档": {
"Color": "stop",
"Function": HotReload(总结word文档)
@@ -168,7 +179,7 @@ def get_crazy_functions():
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(Markdown英译中)
},
})
###################### 第三组插件 ###########################
@@ -181,7 +192,7 @@ def get_crazy_functions():
"Function": HotReload(下载arxiv论文并翻译摘要)
}
})
from crazy_functions.联网的ChatGPT import 连接网络回答问题
function_plugins.update({
"连接网络回答问题(先输入问题,再点击按钮,需要访问谷歌)": {
@@ -191,5 +202,25 @@ def get_crazy_functions():
}
})
from crazy_functions.解析项目源代码 import 解析任意code项目
function_plugins.update({
"解析项目源代码(手动指定和筛选源代码文件类型)": {
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区默认False
"ArgsReminder": "输入时用逗号隔开, *代表通配符, 加了^代表不匹配; 不输入代表全部匹配。例如: \"*.c, ^*.cpp, config.toml, ^*.toml\"", # 高级参数输入区的显示提示
"Function": HotReload(解析任意code项目)
},
})
from crazy_functions.询问多个大语言模型 import 同时问询_指定模型
function_plugins.update({
"询问多个GPT模型手动指定询问哪些模型": {
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区默认False
"ArgsReminder": "支持任意数量的llm接口,用&符号分隔。例如chatglm&gpt-3.5-turbo&api2d-gpt-4", # 高级参数输入区的显示提示
"Function": HotReload(同时问询_指定模型)
},
})
###################### 第n组插件 ###########################
return function_plugins

查看文件

@@ -108,6 +108,13 @@ def test_联网回答问题():
print("当前问答:", cb[-1][-1].replace("\n"," "))
for i, it in enumerate(cb): print亮蓝(it[0]); print亮黄(it[1])
def test_解析ipynb文件():
from crazy_functions.解析JupyterNotebook import 解析ipynb文件
txt = "crazy_functions/test_samples"
for cookies, cb, hist, msg in 解析ipynb文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
# test_解析一个Python项目()
# test_Latex英文润色()
# test_Markdown中译英()
@@ -116,9 +123,8 @@ def test_联网回答问题():
# test_总结word文档()
# test_下载arxiv论文并翻译摘要()
# test_解析一个Cpp项目()
test_联网回答问题()
# test_联网回答问题()
test_解析ipynb文件()
input("程序完成,回车退出。")
print("退出。")

查看文件

@@ -0,0 +1,42 @@
from toolbox import CatchException, update_ui
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
def write_chat_to_file(chatbot, file_name=None):
"""
将对话记录history以Markdown格式写入文件中。如果没有指定文件名,则使用当前时间生成文件名。
"""
import os
import time
if file_name is None:
file_name = 'chatGPT对话历史' + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.html'
os.makedirs('./gpt_log/', exist_ok=True)
with open(f'./gpt_log/{file_name}', 'w', encoding='utf8') as f:
for i, contents in enumerate(chatbot):
for content in contents:
try: # 这个bug没找到触发条件,暂时先这样顶一下
if type(content) != str: content = str(content)
except:
continue
f.write(content)
f.write('\n\n')
f.write('<hr color="red"> \n\n')
res = '对话历史写入:' + os.path.abspath(f'./gpt_log/{file_name}')
print(res)
return res
@CatchException
def 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数,暂时没有用武之地
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
chatbot.append(("保存当前对话", f"[Local Message] {write_chat_to_file(chatbot)}"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新

查看文件

@@ -0,0 +1,140 @@
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
fast_debug = True
class PaperFileGroup():
def __init__(self):
self.file_paths = []
self.file_contents = []
self.sp_file_contents = []
self.sp_file_index = []
self.sp_file_tag = []
# count_token
from request_llm.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(
enc.encode(txt, disallowed_special=()))
self.get_token_num = get_token_num
def run_file_split(self, max_token_limit=1900):
"""
将长文本分离开来
"""
for index, file_content in enumerate(self.file_contents):
if self.get_token_num(file_content) < max_token_limit:
self.sp_file_contents.append(file_content)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
segments = breakdown_txt_to_satisfy_token_limit_for_pdf(
file_content, self.get_token_num, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)
self.sp_file_tag.append(
self.file_paths[index] + f".part-{j}.txt")
def parseNotebook(filename, enable_markdown=1):
import json
CodeBlocks = []
with open(filename, 'r', encoding='utf-8', errors='replace') as f:
notebook = json.load(f)
for cell in notebook['cells']:
if cell['cell_type'] == 'code' and cell['source']:
# remove blank lines
cell['source'] = [line for line in cell['source'] if line.strip()
!= '']
CodeBlocks.append("".join(cell['source']))
elif enable_markdown and cell['cell_type'] == 'markdown' and cell['source']:
cell['source'] = [line for line in cell['source'] if line.strip()
!= '']
CodeBlocks.append("Markdown:"+"".join(cell['source']))
Code = ""
for idx, code in enumerate(CodeBlocks):
Code += f"This is {idx+1}th code block: \n"
Code += code+"\n"
return Code
def ipynb解释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
pfg = PaperFileGroup()
print(file_manifest)
for fp in file_manifest:
file_content = parseNotebook(fp, enable_markdown=1)
pfg.file_paths.append(fp)
pfg.file_contents.append(file_content)
# <-------- 拆分过长的IPynb文件 ---------->
pfg.run_file_split(max_token_limit=1024)
n_split = len(pfg.sp_file_contents)
inputs_array = [r"This is a Jupyter Notebook file, tell me about Each Block in Chinese. Focus Just On Code." +
r"If a block starts with `Markdown` which means it's a markdown block in ipynbipynb. " +
r"Start a new line for a block and block num use Chinese." +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"{f}的分析如下" for f in pfg.sp_file_tag]
sys_prompt_array = ["You are a professional programmer."] * n_split
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[[""] for _ in range(n_split)],
sys_prompt_array=sys_prompt_array,
# max_workers=5, # OpenAI所允许的最大并行过载
scroller_max_len=80
)
# <-------- 整理结果,退出 ---------->
block_result = " \n".join(gpt_response_collection)
chatbot.append(("解析的结果如下", block_result))
history.extend(["解析的结果如下", block_result])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# <-------- 写入文件,退出 ---------->
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@CatchException
def 解析ipynb文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
chatbot.append([
"函数插件功能?",
"对IPynb文件进行解析。Contributor: codycjy."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
history = [] # 清空历史
import glob
import os
if os.path.exists(txt):
project_folder = txt
else:
if txt == "":
txt = '空空如也的输入栏'
report_execption(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
if txt.endswith('.ipynb'):
file_manifest = [txt]
else:
file_manifest = [f for f in glob.glob(
f'{project_folder}/**/*.ipynb', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到任何.ipynb文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from ipynb解释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, )

查看文件

@@ -11,7 +11,7 @@ def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
history_array = []
sys_prompt_array = []
report_part_1 = []
assert len(file_manifest) <= 512, "源文件太多超过512个, 请缩减输入文件的数量。或者,您也可以选择删除此行警告,并修改代码拆分file_manifest列表,从而实现分批次处理。"
############################## <第一步,逐个文件分析,多线程> ##################################
for index, fp in enumerate(file_manifest):
@@ -63,10 +63,10 @@ def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
current_iteration_focus = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(this_iteration_file_manifest)])
i_say = f'根据以上分析,对程序的整体功能和构架重新做出概括。然后用一张markdown表格整理每个文件的功能包括{previous_iteration_files_string})。'
inputs_show_user = f'根据以上分析,对程序的整体功能和构架重新做出概括,由于输入长度限制,可能需要分组处理,本组文件为 {current_iteration_focus} + 已经汇总的文件组。'
this_iteration_history = copy.deepcopy(this_iteration_gpt_response_collection)
this_iteration_history = copy.deepcopy(this_iteration_gpt_response_collection)
this_iteration_history.append(last_iteration_result)
result = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=inputs_show_user, llm_kwargs=llm_kwargs, chatbot=chatbot,
inputs=i_say, inputs_show_user=inputs_show_user, llm_kwargs=llm_kwargs, chatbot=chatbot,
history=this_iteration_history, # 迭代之前的分析
sys_prompt="你是一个程序架构分析师,正在分析一个项目的源代码。")
report_part_2.extend([i_say, result])
@@ -222,8 +222,8 @@ def 解析一个Golang项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个Lua项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
@@ -243,9 +243,9 @@ def 解析一个Lua项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何lua文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个CSharp项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
@@ -263,4 +263,45 @@ def 解析一个CSharp项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何CSharp文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析任意code项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
txt_pattern = plugin_kwargs.get("advanced_arg")
txt_pattern = txt_pattern.replace("", ",")
# 将要匹配的模式(例如: *.c, *.cpp, *.py, config.toml)
pattern_include = [_.lstrip(" ,").rstrip(" ,") for _ in txt_pattern.split(",") if _ != "" and not _.strip().startswith("^")]
if not pattern_include: pattern_include = ["*"] # 不输入即全部匹配
# 将要忽略匹配的文件后缀(例如: ^*.c, ^*.cpp, ^*.py)
pattern_except_suffix = [_.lstrip(" ^*.,").rstrip(" ,") for _ in txt_pattern.split(" ") if _ != "" and _.strip().startswith("^*.")]
pattern_except_suffix += ['zip', 'rar', '7z', 'tar', 'gz'] # 避免解析压缩文件
# 将要忽略匹配的文件名(例如: ^README.md)
pattern_except_name = [_.lstrip(" ^*,").rstrip(" ,").replace(".", "\.") for _ in txt_pattern.split(" ") if _ != "" and _.strip().startswith("^") and not _.strip().startswith("^*.")]
# 生成正则表达式
pattern_except = '/[^/]+\.(' + "|".join(pattern_except_suffix) + ')$'
pattern_except += '|/(' + "|".join(pattern_except_name) + ')$' if pattern_except_name != [] else ''
history.clear()
import glob, os, re
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 若上传压缩文件, 先寻找到解压的文件夹路径, 从而避免解析压缩文件
maybe_dir = [f for f in glob.glob(f'{project_folder}/*') if os.path.isdir(f)]
if len(maybe_dir)>0 and maybe_dir[0].endswith('.extract'):
extract_folder_path = maybe_dir[0]
else:
extract_folder_path = project_folder
# 按输入的匹配模式寻找上传的非压缩文件和已解压的文件
file_manifest = [f for pattern in pattern_include for f in glob.glob(f'{extract_folder_path}/**/{pattern}', recursive=True) if "" != extract_folder_path and \
os.path.isfile(f) and (not re.search(pattern_except, f) or pattern.endswith('.' + re.search(pattern_except, f).group().split('.')[-1]))]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

查看文件

@@ -25,6 +25,35 @@ def 同时问询(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
retry_times_at_unknown_error=0
)
history.append(txt)
history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
@CatchException
def 同时问询_指定模型(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数,如温度和top_p等,一般原样传递下去就行
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
chatbot.append((txt, "正在同时咨询ChatGPT和ChatGLM……"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
# llm_kwargs['llm_model'] = 'chatglm&gpt-3.5-turbo&api2d-gpt-3.5-turbo' # 支持任意数量的llm接口,用&符号分隔
llm_kwargs['llm_model'] = plugin_kwargs.get("advanced_arg", 'chatglm&gpt-3.5-turbo') # 'chatglm&gpt-3.5-turbo' # 支持任意数量的llm接口,用&符号分隔
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=txt, inputs_show_user=txt,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
sys_prompt=system_prompt,
retry_times_at_unknown_error=0
)
history.append(txt)
history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新

43
docs/WithFastapi.md 普通文件
查看文件

@@ -0,0 +1,43 @@
# Running with fastapi
We currently support fastapi in order to solve sub-path deploy issue.
1. change CUSTOM_PATH setting in `config.py`
``` sh
nano config.py
```
2. Edit main.py
```diff
auto_opentab_delay()
- demo.queue(concurrency_count=CONCURRENT_COUNT).launch(server_name="0.0.0.0", server_port=PORT, auth=AUTHENTICATION, favicon_path="docs/logo.png")
+ demo.queue(concurrency_count=CONCURRENT_COUNT)
- # 如果需要在二级路径下运行
- # CUSTOM_PATH, = get_conf('CUSTOM_PATH')
- # if CUSTOM_PATH != "/":
- # from toolbox import run_gradio_in_subpath
- # run_gradio_in_subpath(demo, auth=AUTHENTICATION, port=PORT, custom_path=CUSTOM_PATH)
- # else:
- # demo.launch(server_name="0.0.0.0", server_port=PORT, auth=AUTHENTICATION, favicon_path="docs/logo.png")
+ 如果需要在二级路径下运行
+ CUSTOM_PATH, = get_conf('CUSTOM_PATH')
+ if CUSTOM_PATH != "/":
+ from toolbox import run_gradio_in_subpath
+ run_gradio_in_subpath(demo, auth=AUTHENTICATION, port=PORT, custom_path=CUSTOM_PATH)
+ else:
+ demo.launch(server_name="0.0.0.0", server_port=PORT, auth=AUTHENTICATION, favicon_path="docs/logo.png")
if __name__ == "__main__":
main()
```
3. Go!
``` sh
python main.py
```

37
main.py
查看文件

@@ -45,7 +45,7 @@ def main():
gr_L1 = lambda: gr.Row().style()
gr_L2 = lambda scale: gr.Column(scale=scale)
if LAYOUT == "TOP-DOWN":
if LAYOUT == "TOP-DOWN":
gr_L1 = lambda: DummyWith()
gr_L2 = lambda scale: gr.Row()
CHATBOT_HEIGHT /= 2
@@ -88,9 +88,12 @@ def main():
with gr.Row():
with gr.Accordion("更多函数插件", open=True):
dropdown_fn_list = [k for k in crazy_fns.keys() if not crazy_fns[k].get("AsButton", True)]
with gr.Column(scale=1):
with gr.Row():
dropdown = gr.Dropdown(dropdown_fn_list, value=r"打开插件列表", label="").style(container=False)
with gr.Column(scale=1):
with gr.Row():
plugin_advanced_arg = gr.Textbox(show_label=True, label="高级参数输入区", visible=False,
placeholder="这里是特殊函数插件的高级参数输入区").style(container=False)
with gr.Row():
switchy_bt = gr.Button(r"请先从插件列表中选择", variant="secondary")
with gr.Row():
with gr.Accordion("点击展开“文件上传区”。上传本地文件可供红色函数插件调用。", open=False) as area_file_up:
@@ -100,7 +103,7 @@ def main():
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.01,interactive=True, label="Top-p (nucleus sampling)",)
temperature = gr.Slider(minimum=-0, maximum=2.0, value=1.0, step=0.01, interactive=True, label="Temperature",)
max_length_sl = gr.Slider(minimum=256, maximum=4096, value=512, step=1, interactive=True, label="Local LLM MaxLength",)
checkboxes = gr.CheckboxGroup(["基础功能区", "函数插件区", "底部输入区", "输入清除键"], value=["基础功能区", "函数插件区"], label="显示/隐藏功能区")
checkboxes = gr.CheckboxGroup(["基础功能区", "函数插件区", "底部输入区", "输入清除键", "插件参数区"], value=["基础功能区", "函数插件区"], label="显示/隐藏功能区")
md_dropdown = gr.Dropdown(AVAIL_LLM_MODELS, value=LLM_MODEL, label="更换LLM模型/请求源").style(container=False)
gr.Markdown(description)
@@ -122,11 +125,12 @@ def main():
ret.update({area_input_secondary: gr.update(visible=("底部输入区" in a))})
ret.update({clearBtn: gr.update(visible=("输入清除键" in a))})
ret.update({clearBtn2: gr.update(visible=("输入清除键" in a))})
ret.update({plugin_advanced_arg: gr.update(visible=("插件参数区" in a))})
if "底部输入区" in a: ret.update({txt: gr.update(value="")})
return ret
checkboxes.select(fn_area_visibility, [checkboxes], [area_basic_fn, area_crazy_fn, area_input_primary, area_input_secondary, txt, txt2, clearBtn, clearBtn2] )
checkboxes.select(fn_area_visibility, [checkboxes], [area_basic_fn, area_crazy_fn, area_input_primary, area_input_secondary, txt, txt2, clearBtn, clearBtn2, plugin_advanced_arg] )
# 整理反复出现的控件句柄组合
input_combo = [cookies, max_length_sl, md_dropdown, txt, txt2, top_p, temperature, chatbot, history, system_prompt]
input_combo = [cookies, max_length_sl, md_dropdown, txt, txt2, top_p, temperature, chatbot, history, system_prompt, plugin_advanced_arg]
output_combo = [cookies, chatbot, history, status]
predict_args = dict(fn=ArgsGeneralWrapper(predict), inputs=input_combo, outputs=output_combo)
# 提交按钮、重置按钮
@@ -153,14 +157,19 @@ def main():
# 函数插件-下拉菜单与随变按钮的互动
def on_dropdown_changed(k):
variant = crazy_fns[k]["Color"] if "Color" in crazy_fns[k] else "secondary"
return {switchy_bt: gr.update(value=k, variant=variant)}
dropdown.select(on_dropdown_changed, [dropdown], [switchy_bt] )
ret = {switchy_bt: gr.update(value=k, variant=variant)}
if crazy_fns[k].get("AdvancedArgs", False): # 是否唤起高级插件参数区
ret.update({plugin_advanced_arg: gr.update(visible=True, label=f"插件[{k}]的高级参数说明:" + crazy_fns[k].get("ArgsReminder", [f"没有提供高级参数功能说明"]))})
else:
ret.update({plugin_advanced_arg: gr.update(visible=False, label=f"插件[{k}]不需要高级参数。")})
return ret
dropdown.select(on_dropdown_changed, [dropdown], [switchy_bt, plugin_advanced_arg] )
def on_md_dropdown_changed(k):
return {chatbot: gr.update(label="当前模型:"+k)}
md_dropdown.select(on_md_dropdown_changed, [md_dropdown], [chatbot] )
# 随变按钮的回调函数注册
def route(k, *args, **kwargs):
if k in [r"打开插件列表", r"请先从插件列表中选择"]: return
if k in [r"打开插件列表", r"请先从插件列表中选择"]: return
yield from ArgsGeneralWrapper(crazy_fns[k]["Function"])(*args, **kwargs)
click_handle = switchy_bt.click(route,[switchy_bt, *input_combo, gr.State(PORT)], output_combo)
click_handle.then(on_report_generated, [file_upload, chatbot], [file_upload, chatbot])
@@ -178,7 +187,7 @@ def main():
print(f"如果浏览器没有自动打开,请复制并转到以下URL")
print(f"\t(亮色主题): http://localhost:{PORT}")
print(f"\t(暗色主题): http://localhost:{PORT}/?__dark-theme=true")
def open():
def open():
time.sleep(2) # 打开浏览器
webbrowser.open_new_tab(f"http://localhost:{PORT}/?__dark-theme=true")
threading.Thread(target=open, name="open-browser", daemon=True).start()
@@ -188,5 +197,13 @@ def main():
auto_opentab_delay()
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(server_name="0.0.0.0", server_port=PORT, auth=AUTHENTICATION, favicon_path="docs/logo.png")
# 如果需要在二级路径下运行
# CUSTOM_PATH, = get_conf('CUSTOM_PATH')
# if CUSTOM_PATH != "/":
# from toolbox import run_gradio_in_subpath
# run_gradio_in_subpath(demo, auth=AUTHENTICATION, port=PORT, custom_path=CUSTOM_PATH)
# else:
# demo.launch(server_name="0.0.0.0", server_port=PORT, auth=AUTHENTICATION, favicon_path="docs/logo.png")
if __name__ == "__main__":
main()

查看文件

@@ -1,4 +1,4 @@
# 如何使用其他大语言模型v3.0分支测试中)
# 如何使用其他大语言模型
## ChatGLM
@@ -15,7 +15,7 @@ LLM_MODEL = "chatglm"
---
## Text-Generation-UI (TGUI)
## Text-Generation-UI (TGUI,调试中,暂不可用)
### 1. 部署TGUI
``` sh

查看文件

@@ -1,12 +1,12 @@
"""
该文件中主要包含2个函数
该文件中主要包含2个函数,是所有LLM的通用接口,它们会继续向下调用更底层的LLM模型,处理多模型并行等细节
不具备多线程能力的函数:
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
不具备多线程能力的函数:正常对话时使用,具备完备的交互功能,不可多线程
1. predict(...)
具备多线程调用能力的函数
2. predict_no_ui_long_connection在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程
具备多线程调用能力的函数:在函数插件中被调用,灵活而简洁
2. predict_no_ui_long_connection(...)
"""
import tiktoken
from functools import lru_cache
@@ -210,7 +210,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
return_string_collect.append( f"{str(models[i])} 说】: <font color=\"{colors[i]}\"> {future.result()} </font>" )
window_mutex[-1] = False # stop mutex thread
res = '<br/>\n\n---\n\n'.join(return_string_collect)
res = '<br/><br/>\n\n---\n\n'.join(return_string_collect)
return res

查看文件

@@ -92,8 +92,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
# chatglm 没有 sys_prompt 接口,因此把prompt加入 history
history_feedin = []
history_feedin.append(["What can I do?", sys_prompt])
for i in range(len(history)//2):
history_feedin.append(["What can I do?", sys_prompt] )
history_feedin.append([history[2*i], history[2*i+1]] )
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
@@ -131,10 +131,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
history_feedin = []
history_feedin.append(["What can I do?", system_prompt] )
for i in range(len(history)//2):
history_feedin.append(["What can I do?", system_prompt] )
history_feedin.append([history[2*i], history[2*i+1]] )
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)
yield from update_ui(chatbot=chatbot, history=history)
history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history)

查看文件

@@ -21,7 +21,7 @@ import importlib
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件不受git管控,如果有,则覆盖原config文件
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys
proxies, API_KEY, TIMEOUT_SECONDS, MAX_RETRY = \
get_conf('proxies', 'API_KEY', 'TIMEOUT_SECONDS', 'MAX_RETRY')
@@ -118,7 +118,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
"""
if is_any_api_key(inputs):
chatbot._cookies['api_key'] = inputs
chatbot.append(("输入已识别为openai的api_key", "api_key已导入"))
chatbot.append(("输入已识别为openai的api_key", what_keys(inputs)))
yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") # 刷新界面
return
elif not is_any_api_key(chatbot._cookies['api_key']):
@@ -141,7 +141,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
try:
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
except RuntimeError as e:
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。")
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
return

查看文件

@@ -24,23 +24,23 @@ def ArgsGeneralWrapper(f):
"""
装饰器函数,用于重组输入参数,改变输入参数的顺序与结构。
"""
def decorated(cookies, max_length, llm_model, txt, txt2, top_p, temperature, chatbot, history, system_prompt, *args):
def decorated(cookies, max_length, llm_model, txt, txt2, top_p, temperature, chatbot, history, system_prompt, plugin_advanced_arg, *args):
txt_passon = txt
if txt == "" and txt2 != "": txt_passon = txt2
# 引入一个有cookie的chatbot
cookies.update({
'top_p':top_p,
'top_p':top_p,
'temperature':temperature,
})
llm_kwargs = {
'api_key': cookies['api_key'],
'llm_model': llm_model,
'top_p':top_p,
'top_p':top_p,
'max_length': max_length,
'temperature':temperature,
}
plugin_kwargs = {
# 目前还没有
"advanced_arg": plugin_advanced_arg,
}
chatbot_with_cookie = ChatBotWithCookies(cookies)
chatbot_with_cookie.write_list(chatbot)
@@ -219,7 +219,7 @@ def markdown_convertion(txt):
return content
else:
return tex2mathml_catch_exception(content)
def markdown_bug_hunt(content):
"""
解决一个mdx_math的bug单$包裹begin命令时多余<script>
@@ -227,7 +227,7 @@ def markdown_convertion(txt):
content = content.replace('<script type="math/tex">\n<script type="math/tex; mode=display">', '<script type="math/tex; mode=display">')
content = content.replace('</script>\n</script>', '</script>')
return content
if ('$' in txt) and ('```' not in txt): # 有$标识的公式符号,且没有代码段```的标识
# convert everything to html format
@@ -248,7 +248,7 @@ def markdown_convertion(txt):
def close_up_code_segment_during_stream(gpt_reply):
"""
在gpt输出代码的中途输出了前面的```,但还没输出完后面的```),补上后面的```
Args:
gpt_reply (str): GPT模型返回的回复字符串。
@@ -432,6 +432,19 @@ def is_any_api_key(key):
else:
return is_openai_api_key(key) or is_api2d_key(key)
def what_keys(keys):
avail_key_list = {'OpenAI Key':0, "API2D Key":0}
key_list = keys.split(',')
for k in key_list:
if is_openai_api_key(k):
avail_key_list['OpenAI Key'] += 1
for k in key_list:
if is_api2d_key(k):
avail_key_list['API2D Key'] += 1
return f"检测到: OpenAI Key {avail_key_list['OpenAI Key']} 个,API2D Key {avail_key_list['API2D Key']}"
def select_api_key(keys, llm_model):
import random
@@ -447,7 +460,7 @@ def select_api_key(keys, llm_model):
if is_api2d_key(k): avail_key_list.append(k)
if len(avail_key_list) == 0:
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。")
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源。")
api_key = random.choice(avail_key_list) # 随机负载均衡
return api_key
@@ -498,7 +511,7 @@ class DummyWith():
它的作用是……额……没用,即在代码结构不变得情况下取代其他的上下文管理器。
上下文管理器是一种Python对象,用于与with语句一起使用,
以确保一些资源在代码块执行期间得到正确的初始化和清理。
上下文管理器必须实现两个方法,分别为 __enter__()和 __exit__()。
上下文管理器必须实现两个方法,分别为 __enter__()和 __exit__()。
在上下文执行开始的情况下,__enter__()方法会在代码块被执行前被调用,
而在上下文执行结束时,__exit__()方法则会被调用。
"""
@@ -507,3 +520,34 @@ class DummyWith():
def __exit__(self, exc_type, exc_value, traceback):
return
def run_gradio_in_subpath(demo, auth, port, custom_path):
def is_path_legal(path: str)->bool:
'''
check path for sub url
path: path to check
return value: do sub url wrap
'''
if path == "/": return True
if len(path) == 0:
print("ilegal custom path: {}\npath must not be empty\ndeploy on root url".format(path))
return False
if path[0] == '/':
if path[1] != '/':
print("deploy on sub-path {}".format(path))
return True
return False
print("ilegal custom path: {}\npath should begin with \'/\'\ndeploy on root url".format(path))
return False
if not is_path_legal(custom_path): raise RuntimeError('Ilegal custom path')
import uvicorn
import gradio as gr
from fastapi import FastAPI
app = FastAPI()
if custom_path != "/":
@app.get("/")
def read_main():
return {"message": f"Gradio is running at: {custom_path}"}
app = gr.mount_gradio_app(app, demo, path=custom_path)
uvicorn.run(app, host="0.0.0.0", port=port) # , auth=auth

查看文件

@@ -1,5 +1,5 @@
{
"version": 3.1,
"version": 3.2,
"show_feature": true,
"new_feature": "添加支持清华ChatGLM和GPT-4 <-> 改进架构,支持与多个LLM模型同时对话 <-> 添加支持API2D国内,可支持gpt4<-> 支持多API-KEY负载均衡并列填写,逗号分割 <-> 添加输入区文本清除按键"
"new_feature": "保存对话功能 <-> 解读任意语言代码+同时询问任意的LLM组合 <-> 添加联网Google回答问题插件 <-> 修复ChatGLM上下文BUG <-> 添加支持清华ChatGLM和GPT-4 <-> 改进架构,支持与多个LLM模型同时对话 <-> 添加支持API2D国内,可支持gpt4"
}