比较提交

..

7 次代码提交

作者 SHA1 备注 提交日期
Your Name
5353eba376 version 3.15 添加联网回答问题 2023-04-21 20:03:38 +08:00
Your Name
7339b06acb Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-04-21 19:28:37 +08:00
Your Name
ce1fc3a999 修改chatglm不记忆上下文的bug 2023-04-21 19:28:32 +08:00
binary-husky
a9a489231a Update bridge_all.py 2023-04-21 18:56:56 +08:00
binary-husky
e889590a91 Update README.md 2023-04-21 18:49:24 +08:00
Your Name
9481405f6f 更新提示 2023-04-21 18:37:20 +08:00
Your Name
7317d79a3c 更新提醒 2023-04-21 18:28:51 +08:00
共有 6 个文件被更改,包括 33 次插入17 次删除

查看文件

@@ -1,4 +1,4 @@
# 如何使用其他大语言模型v3.0分支测试中)
# 如何使用其他大语言模型
## ChatGLM
@@ -15,7 +15,7 @@ LLM_MODEL = "chatglm"
---
## Text-Generation-UI (TGUI)
## Text-Generation-UI (TGUI,调试中,暂不可用)
### 1. 部署TGUI
``` sh

查看文件

@@ -1,12 +1,12 @@
"""
该文件中主要包含2个函数
该文件中主要包含2个函数,是所有LLM的通用接口,它们会继续向下调用更底层的LLM模型,处理多模型并行等细节
不具备多线程能力的函数:
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
不具备多线程能力的函数:正常对话时使用,具备完备的交互功能,不可多线程
1. predict(...)
具备多线程调用能力的函数
2. predict_no_ui_long_connection在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程
具备多线程调用能力的函数:在函数插件中被调用,灵活而简洁
2. predict_no_ui_long_connection(...)
"""
import tiktoken
from functools import lru_cache
@@ -210,7 +210,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
return_string_collect.append( f"{str(models[i])} 说】: <font color=\"{colors[i]}\"> {future.result()} </font>" )
window_mutex[-1] = False # stop mutex thread
res = '<br/>\n\n---\n\n'.join(return_string_collect)
res = '<br/><br/>\n\n---\n\n'.join(return_string_collect)
return res

查看文件

@@ -92,8 +92,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
# chatglm 没有 sys_prompt 接口,因此把prompt加入 history
history_feedin = []
history_feedin.append(["What can I do?", sys_prompt])
for i in range(len(history)//2):
history_feedin.append(["What can I do?", sys_prompt] )
history_feedin.append([history[2*i], history[2*i+1]] )
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
@@ -131,10 +131,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
history_feedin = []
history_feedin.append(["What can I do?", system_prompt] )
for i in range(len(history)//2):
history_feedin.append(["What can I do?", system_prompt] )
history_feedin.append([history[2*i], history[2*i+1]] )
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)
yield from update_ui(chatbot=chatbot, history=history)
history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history)

查看文件

@@ -21,7 +21,7 @@ import importlib
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件不受git管控,如果有,则覆盖原config文件
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys
proxies, API_KEY, TIMEOUT_SECONDS, MAX_RETRY = \
get_conf('proxies', 'API_KEY', 'TIMEOUT_SECONDS', 'MAX_RETRY')
@@ -118,7 +118,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
"""
if is_any_api_key(inputs):
chatbot._cookies['api_key'] = inputs
chatbot.append(("输入已识别为openai的api_key", "api_key已导入"))
chatbot.append(("输入已识别为openai的api_key", what_keys(inputs)))
yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") # 刷新界面
return
elif not is_any_api_key(chatbot._cookies['api_key']):
@@ -141,7 +141,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
try:
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
except RuntimeError as e:
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。")
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
return

查看文件

@@ -432,6 +432,19 @@ def is_any_api_key(key):
else:
return is_openai_api_key(key) or is_api2d_key(key)
def what_keys(keys):
avail_key_list = {'OpenAI Key':0, "API2D Key":0}
key_list = keys.split(',')
for k in key_list:
if is_openai_api_key(k):
avail_key_list['OpenAI Key'] += 1
for k in key_list:
if is_api2d_key(k):
avail_key_list['API2D Key'] += 1
return f"检测到: OpenAI Key {avail_key_list['OpenAI Key']} 个,API2D Key {avail_key_list['API2D Key']}"
def select_api_key(keys, llm_model):
import random
@@ -447,7 +460,7 @@ def select_api_key(keys, llm_model):
if is_api2d_key(k): avail_key_list.append(k)
if len(avail_key_list) == 0:
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。")
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源。")
api_key = random.choice(avail_key_list) # 随机负载均衡
return api_key

查看文件

@@ -1,5 +1,5 @@
{
"version": 3.1,
"version": 3.15,
"show_feature": true,
"new_feature": "添加支持清华ChatGLM和GPT-4 <-> 改进架构,支持与多个LLM模型同时对话 <-> 添加支持API2D国内,可支持gpt4<-> 支持多API-KEY负载均衡并列填写,逗号分割 <-> 添加输入区文本清除按键"
"new_feature": "添加联网Google回答问题插件 <-> 修复ChatGLM上下文BUG <-> 添加支持清华ChatGLM和GPT-4 <-> 改进架构,支持与多个LLM模型同时对话 <-> 添加支持API2D国内,可支持gpt4"
}