镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-06 14:36:48 +00:00
比较提交
115 次代码提交
hongyi-zha
...
version3.7
| 作者 | SHA1 | 提交日期 | |
|---|---|---|---|
|
|
163f12c533 | ||
|
|
bdd46c5dd1 | ||
|
|
ae51a0e686 | ||
|
|
f2582ea137 | ||
|
|
ddd2fd84da | ||
|
|
6c90ff80ea | ||
|
|
cb7c0703be | ||
|
|
5181cd441d | ||
|
|
216d4374e7 | ||
|
|
8af6c0cab6 | ||
|
|
67ad041372 | ||
|
|
725c72229c | ||
|
|
e42ede512b | ||
|
|
84ccc9e64c | ||
|
|
c172847e19 | ||
|
|
d166d25eb4 | ||
|
|
516bbb1331 | ||
|
|
c3140ce344 | ||
|
|
cd18663800 | ||
|
|
dbf1322836 | ||
|
|
98dd3ae1c0 | ||
|
|
3036709496 | ||
|
|
8e9c07644f | ||
|
|
90d96b77e6 | ||
|
|
66c876a9ca | ||
|
|
0665eb75ed | ||
|
|
6b784035fa | ||
|
|
8bb3d84912 | ||
|
|
a0193cf227 | ||
|
|
b72289bfb0 | ||
|
|
bdfe3862eb | ||
|
|
dae180b9ea | ||
|
|
e359fff040 | ||
|
|
2e9b4a5770 | ||
|
|
e0c5859cf9 | ||
|
|
b9b1e12dc9 | ||
|
|
8814026ec3 | ||
|
|
3025d5be45 | ||
|
|
6c13bb7b46 | ||
|
|
c27e559f10 | ||
|
|
cdb5288f49 | ||
|
|
49c6fcfe97 | ||
|
|
45fa0404eb | ||
|
|
f889ef7625 | ||
|
|
a93bf4410d | ||
|
|
1c0764753a | ||
|
|
c847209ac9 | ||
|
|
4f9d40c14f | ||
|
|
91926d24b7 | ||
|
|
ef311c4859 | ||
|
|
82795d3817 | ||
|
|
49e28a5a00 | ||
|
|
01def2e329 | ||
|
|
2291be2b28 | ||
|
|
c89ec7969f | ||
|
|
1506c19834 | ||
|
|
a6fdc493b7 | ||
|
|
113067c6ab | ||
|
|
7b6828ab07 | ||
|
|
d818c38dfe | ||
|
|
08b4e9796e | ||
|
|
b55d573819 | ||
|
|
06b0e800a2 | ||
|
|
7bbaf05961 | ||
|
|
3b83279855 | ||
|
|
37164a826e | ||
|
|
dd2a97e7a9 | ||
|
|
e579006c4a | ||
|
|
031f19b6dd | ||
|
|
142b516749 | ||
|
|
f2e73aa580 | ||
|
|
8565a35cf7 | ||
|
|
72d78eb150 | ||
|
|
7aeda537ac | ||
|
|
6cea17d4b7 | ||
|
|
20bc51d747 | ||
|
|
b8ebefa427 | ||
|
|
dcc9326f0b | ||
|
|
94fc396eb9 | ||
|
|
e594e1b928 | ||
|
|
8fe545d97b | ||
|
|
6f978fa72e | ||
|
|
19be471aa8 | ||
|
|
38956934fd | ||
|
|
32439e14b5 | ||
|
|
317389bf4b | ||
|
|
2c740fc641 | ||
|
|
96832a8228 | ||
|
|
361557da3c | ||
|
|
5f18d4a1af | ||
|
|
0d10bc570f | ||
|
|
3ce7d9347d | ||
|
|
8a78d7b89f | ||
|
|
0e43b08837 | ||
|
|
74bced2d35 | ||
|
|
961a24846f | ||
|
|
b7e4744f28 | ||
|
|
71adc40901 | ||
|
|
a2099f1622 | ||
|
|
c0a697f6c8 | ||
|
|
bdde1d2fd7 | ||
|
|
63373ab3b6 | ||
|
|
fb6566adde | ||
|
|
9f2ef9ec49 | ||
|
|
35c1aa21e4 | ||
|
|
627d739720 | ||
|
|
37f15185b6 | ||
|
|
9643e1c25f | ||
|
|
28eae2f80e | ||
|
|
7ab379688e | ||
|
|
3d4c6f54f1 | ||
|
|
1714116a89 | ||
|
|
2bc65a99ca | ||
|
|
d698b96209 | ||
|
|
6b1c6f0bf7 |
@@ -18,7 +18,6 @@ WORKDIR /gpt
|
||||
|
||||
# 安装大部分依赖,利用Docker缓存加速以后的构建 (以下三行,可以删除)
|
||||
COPY requirements.txt ./
|
||||
COPY ./docs/gradio-3.32.6-py3-none-any.whl ./docs/gradio-3.32.6-py3-none-any.whl
|
||||
RUN pip3 install -r requirements.txt
|
||||
|
||||
|
||||
|
||||
96
README.md
96
README.md
@@ -1,8 +1,7 @@
|
||||
> **Caution**
|
||||
>
|
||||
> 2023.11.12: 某些依赖包尚不兼容python 3.12,推荐python 3.11。
|
||||
>
|
||||
> 2023.12.26: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目完全开源免费,您可通过订阅[在线服务](https://github.com/binary-husky/gpt_academic/wiki/online)的方式鼓励本项目的发展。
|
||||
> [!IMPORTANT]
|
||||
> 2024.3.11: 恭迎Claude3和Moonshot,全力支持Qwen、GLM、DeepseekCoder等中文大语言模型!
|
||||
> 2024.1.18: 更新3.70版本,支持Mermaid绘图库(让大模型绘制脑图)
|
||||
> 2024.1.17: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目完全开源免费,您可通过订阅[在线服务](https://github.com/binary-husky/gpt_academic/wiki/online)的方式鼓励本项目的发展。
|
||||
|
||||
<br>
|
||||
|
||||
@@ -42,13 +41,11 @@ If you like this project, please give it a Star.
|
||||
Read this in [English](docs/README.English.md) | [日本語](docs/README.Japanese.md) | [한국어](docs/README.Korean.md) | [Русский](docs/README.Russian.md) | [Français](docs/README.French.md). All translations have been provided by the project itself. To translate this project to arbitrary language with GPT, read and run [`multi_language.py`](multi_language.py) (experimental).
|
||||
<br>
|
||||
|
||||
|
||||
> 1.请注意只有 **高亮** 标识的插件(按钮)才支持读取文件,部分插件位于插件区的**下拉菜单**中。另外我们以**最高优先级**欢迎和处理任何新插件的PR。
|
||||
>
|
||||
> 2.本项目中每个文件的功能都在[自译解报告](https://github.com/binary-husky/gpt_academic/wiki/GPT‐Academic项目自译解报告)`self_analysis.md`详细说明。随着版本的迭代,您也可以随时自行点击相关函数插件,调用GPT重新生成项目的自我解析报告。常见问题请查阅wiki。
|
||||
> [!NOTE]
|
||||
> 1.本项目中每个文件的功能都在[自译解报告](https://github.com/binary-husky/gpt_academic/wiki/GPT‐Academic项目自译解报告)`self_analysis.md`详细说明。随着版本的迭代,您也可以随时自行点击相关函数插件,调用GPT重新生成项目的自我解析报告。常见问题请查阅wiki。
|
||||
> [](#installation) [](https://github.com/binary-husky/gpt_academic/releases) [](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明) []([https://github.com/binary-husky/gpt_academic/wiki/项目配置说明](https://github.com/binary-husky/gpt_academic/wiki))
|
||||
>
|
||||
> 3.本项目兼容并鼓励尝试国产大语言模型ChatGLM等。支持多个api-key共存,可在配置文件中填写如`API_KEY="openai-key1,openai-key2,azure-key3,api2d-key4"`。需要临时更换`API_KEY`时,在输入区输入临时的`API_KEY`然后回车键提交即可生效。
|
||||
> 2.本项目兼容并鼓励尝试国内中文大语言基座模型如通义千问,智谱GLM等。支持多个api-key共存,可在配置文件中填写如`API_KEY="openai-key1,openai-key2,azure-key3,api2d-key4"`。需要临时更换`API_KEY`时,在输入区输入临时的`API_KEY`然后回车键提交即可生效。
|
||||
|
||||
<br><br>
|
||||
|
||||
@@ -56,7 +53,12 @@ Read this in [English](docs/README.English.md) | [日本語](docs/README.Japanes
|
||||
|
||||
功能(⭐= 近期新增功能) | 描述
|
||||
--- | ---
|
||||
⭐[接入新模型](https://github.com/binary-husky/gpt_academic/wiki/%E5%A6%82%E4%BD%95%E5%88%87%E6%8D%A2%E6%A8%A1%E5%9E%8B) | 百度[千帆](https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu)与文心一言, 通义千问[Qwen](https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary),上海AI-Lab[书生](https://github.com/InternLM/InternLM),讯飞[星火](https://xinghuo.xfyun.cn/),[LLaMa2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf),[智谱API](https://open.bigmodel.cn/),DALLE3, [DeepseekCoder](https://coder.deepseek.com/)
|
||||
⭐[接入新模型](https://github.com/binary-husky/gpt_academic/wiki/%E5%A6%82%E4%BD%95%E5%88%87%E6%8D%A2%E6%A8%A1%E5%9E%8B) | 百度[千帆](https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu)与文心一言, 通义千问[Qwen](https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary),上海AI-Lab[书生](https://github.com/InternLM/InternLM),讯飞[星火](https://xinghuo.xfyun.cn/),[LLaMa2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf),[智谱GLM4](https://open.bigmodel.cn/),DALLE3, [DeepseekCoder](https://coder.deepseek.com/)
|
||||
⭐支持mermaid图像渲染 | 支持让GPT生成[流程图](https://www.bilibili.com/video/BV18c41147H9/)、状态转移图、甘特图、饼状图、GitGraph等等(3.7版本)
|
||||
⭐Arxiv论文精细翻译 ([Docker](https://github.com/binary-husky/gpt_academic/pkgs/container/gpt_academic_with_latex)) | [插件] 一键[以超高质量翻译arxiv论文](https://www.bilibili.com/video/BV1dz4y1v77A/),目前最好的论文翻译工具
|
||||
⭐[实时语音对话输入](https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md) | [插件] 异步[监听音频](https://www.bilibili.com/video/BV1AV4y187Uy/),自动断句,自动寻找回答时机
|
||||
⭐AutoGen多智能体插件 | [插件] 借助微软AutoGen,探索多Agent的智能涌现可能!
|
||||
⭐虚空终端插件 | [插件] 能够使用自然语言直接调度本项目其他插件
|
||||
润色、翻译、代码解释 | 一键润色、翻译、查找论文语法错误、解释代码
|
||||
[自定义快捷键](https://www.bilibili.com/video/BV14s4y1E7jN) | 支持自定义快捷键
|
||||
模块化设计 | 支持自定义强大的[插件](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions),插件支持[热更新](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
|
||||
@@ -65,22 +67,16 @@ Read this in [English](docs/README.English.md) | [日本語](docs/README.Japanes
|
||||
Latex全文[翻译](https://www.bilibili.com/video/BV1nk4y1Y7Js/)、[润色](https://www.bilibili.com/video/BV1FT411H7c5/) | [插件] 一键翻译或润色latex论文
|
||||
批量注释生成 | [插件] 一键批量生成函数注释
|
||||
Markdown[中英互译](https://www.bilibili.com/video/BV1yo4y157jV/) | [插件] 看到上面5种语言的[README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md)了吗?就是出自他的手笔
|
||||
chat分析报告生成 | [插件] 运行后自动生成总结汇报
|
||||
[PDF论文全文翻译功能](https://www.bilibili.com/video/BV1KT411x7Wn) | [插件] PDF论文提取题目&摘要+翻译全文(多线程)
|
||||
[Arxiv小助手](https://www.bilibili.com/video/BV1LM4y1279X) | [插件] 输入arxiv文章url即可一键翻译摘要+下载PDF
|
||||
Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼写纠错+输出对照PDF
|
||||
[谷歌学术统合小助手](https://www.bilibili.com/video/BV19L411U7ia) | [插件] 给定任意谷歌学术搜索页面URL,让gpt帮你[写relatedworks](https://www.bilibili.com/video/BV1GP411U7Az/)
|
||||
互联网信息聚合+GPT | [插件] 一键[让GPT从互联网获取信息](https://www.bilibili.com/video/BV1om4y127ck)回答问题,让信息永不过时
|
||||
⭐Arxiv论文精细翻译 ([Docker](https://github.com/binary-husky/gpt_academic/pkgs/container/gpt_academic_with_latex)) | [插件] 一键[以超高质量翻译arxiv论文](https://www.bilibili.com/video/BV1dz4y1v77A/),目前最好的论文翻译工具
|
||||
⭐[实时语音对话输入](https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md) | [插件] 异步[监听音频](https://www.bilibili.com/video/BV1AV4y187Uy/),自动断句,自动寻找回答时机
|
||||
公式/图片/表格显示 | 可以同时显示公式的[tex形式和渲染形式](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png),支持公式、代码高亮
|
||||
⭐AutoGen多智能体插件 | [插件] 借助微软AutoGen,探索多Agent的智能涌现可能!
|
||||
启动暗色[主题](https://github.com/binary-husky/gpt_academic/issues/173) | 在浏览器url后面添加```/?__theme=dark```可以切换dark主题
|
||||
[多LLM模型](https://www.bilibili.com/video/BV1wT411p7yf)支持 | 同时被GPT3.5、GPT4、[清华ChatGLM2](https://github.com/THUDM/ChatGLM2-6B)、[复旦MOSS](https://github.com/OpenLMLab/MOSS)伺候的感觉一定会很不错吧?
|
||||
⭐ChatGLM2微调模型 | 支持加载ChatGLM2微调模型,提供ChatGLM2微调辅助插件
|
||||
更多LLM模型接入,支持[huggingface部署](https://huggingface.co/spaces/qingxu98/gpt-academic) | 加入Newbing接口(新必应),引入清华[Jittorllms](https://github.com/Jittor/JittorLLMs)支持[LLaMA](https://github.com/facebookresearch/llama)和[盘古α](https://openi.org.cn/pangu/)
|
||||
⭐[void-terminal](https://github.com/binary-husky/void-terminal) pip包 | 脱离GUI,在Python中直接调用本项目的所有函数插件(开发中)
|
||||
⭐虚空终端插件 | [插件] 能够使用自然语言直接调度本项目其他插件
|
||||
更多新功能展示 (图像生成等) …… | 见本文档结尾处 ……
|
||||
</div>
|
||||
|
||||
@@ -119,6 +115,25 @@ Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼
|
||||
<br><br>
|
||||
|
||||
# Installation
|
||||
|
||||
```mermaid
|
||||
flowchart TD
|
||||
A{"安装方法"} --> W1("I. 🔑直接运行 (Windows, Linux or MacOS)")
|
||||
W1 --> W11["1. Python pip包管理依赖"]
|
||||
W1 --> W12["2. Anaconda包管理依赖(推荐⭐)"]
|
||||
|
||||
A --> W2["II. 🐳使用Docker (Windows, Linux or MacOS)"]
|
||||
|
||||
W2 --> k1["1. 部署项目全部能力的大镜像(推荐⭐)"]
|
||||
W2 --> k2["2. 仅在线模型(GPT, GLM4等)镜像"]
|
||||
W2 --> k3["3. 在线模型 + Latex的大镜像"]
|
||||
|
||||
A --> W4["IV. 🚀其他部署方法"]
|
||||
W4 --> C1["1. Windows/MacOS 一键安装运行脚本(推荐⭐)"]
|
||||
W4 --> C2["2. Huggingface, Sealos远程部署"]
|
||||
W4 --> C4["3. ... 其他 ..."]
|
||||
```
|
||||
|
||||
### 安装方法I:直接运行 (Windows, Linux or MacOS)
|
||||
|
||||
1. 下载项目
|
||||
@@ -132,7 +147,7 @@ Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼
|
||||
|
||||
在`config.py`中,配置API KEY等变量。[特殊网络环境设置方法](https://github.com/binary-husky/gpt_academic/issues/1)、[Wiki-项目配置说明](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。
|
||||
|
||||
「 程序会优先检查是否存在名为`config_private.py`的私密配置文件,并用其中的配置覆盖`config.py`的同名配置。如您能理解以上读取逻辑,我们强烈建议您在`config.py`同路径下创建一个名为`config_private.py`的新配置文件,并使用`config_private.py`配置项目,以确保更新或其他用户无法轻易查看您的私有配置 」。
|
||||
「 程序会优先检查是否存在名为`config_private.py`的私密配置文件,并用其中的配置覆盖`config.py`的同名配置。如您能理解以上读取逻辑,我们强烈建议您在`config.py`同路径下创建一个名为`config_private.py`的新配置文件,并使用`config_private.py`配置项目,从而确保自动更新时不会丢失配置 」。
|
||||
|
||||
「 支持通过`环境变量`配置项目,环境变量的书写格式参考`docker-compose.yml`文件或者我们的[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。配置读取优先级: `环境变量` > `config_private.py` > `config.py` 」。
|
||||
|
||||
@@ -152,10 +167,10 @@ Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼
|
||||
<details><summary>如果需要支持清华ChatGLM2/复旦MOSS/RWKV作为后端,请点击展开此处</summary>
|
||||
<p>
|
||||
|
||||
【可选步骤】如果需要支持清华ChatGLM2/复旦MOSS作为后端,需要额外安装更多依赖(前提条件:熟悉Python + 用过Pytorch + 电脑配置够强):
|
||||
【可选步骤】如果需要支持清华ChatGLM3/复旦MOSS作为后端,需要额外安装更多依赖(前提条件:熟悉Python + 用过Pytorch + 电脑配置够强):
|
||||
|
||||
```sh
|
||||
# 【可选步骤I】支持清华ChatGLM2。清华ChatGLM备注:如果遇到"Call ChatGLM fail 不能正常加载ChatGLM的参数" 错误,参考如下: 1:以上默认安装的为torch+cpu版,使用cuda需要卸载torch重新安装torch+cuda; 2:如因本机配置不够无法加载模型,可以修改request_llm/bridge_chatglm.py中的模型精度, 将 AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) 都修改为 AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
|
||||
# 【可选步骤I】支持清华ChatGLM3。清华ChatGLM备注:如果遇到"Call ChatGLM fail 不能正常加载ChatGLM的参数" 错误,参考如下: 1:以上默认安装的为torch+cpu版,使用cuda需要卸载torch重新安装torch+cuda; 2:如因本机配置不够无法加载模型,可以修改request_llm/bridge_chatglm.py中的模型精度, 将 AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) 都修改为 AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
|
||||
python -m pip install -r request_llms/requirements_chatglm.txt
|
||||
|
||||
# 【可选步骤II】支持复旦MOSS
|
||||
@@ -197,7 +212,7 @@ pip install peft
|
||||
docker-compose up
|
||||
```
|
||||
|
||||
1. 仅ChatGPT+文心一言+spark等在线模型(推荐大多数人选择)
|
||||
1. 仅ChatGPT + GLM4 + 文心一言+spark等在线模型(推荐大多数人选择)
|
||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml)
|
||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml)
|
||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
|
||||
@@ -209,7 +224,7 @@ pip install peft
|
||||
|
||||
P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以直接使用方案4或者方案0获取Latex功能。
|
||||
|
||||
2. ChatGPT + ChatGLM2 + MOSS + LLAMA2 + 通义千问(需要熟悉[Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian)运行时)
|
||||
2. ChatGPT + GLM3 + MOSS + LLAMA2 + 通义千问(需要熟悉[Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian)运行时)
|
||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml)
|
||||
|
||||
``` sh
|
||||
@@ -237,8 +252,7 @@ P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以
|
||||
# Advanced Usage
|
||||
### I:自定义新的便捷按钮(学术快捷键)
|
||||
|
||||
任意文本编辑器打开`core_functional.py`,添加如下条目,然后重启程序。(如果按钮已存在,那么可以直接修改(前缀、后缀都已支持热修改),无需重启程序即可生效。)
|
||||
例如
|
||||
现在已可以通过UI中的`界面外观`菜单中的`自定义菜单`添加新的便捷按钮。如果需要在代码中定义,请使用任意文本编辑器打开`core_functional.py`,添加如下条目即可:
|
||||
|
||||
```python
|
||||
"超级英译中": {
|
||||
@@ -308,9 +322,9 @@ Tip:不指定文件直接点击 `载入对话历史存档` 可以查看历史h
|
||||
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/bc7ab234-ad90-48a0-8d62-f703d9e74665" width="500" >
|
||||
</div>
|
||||
|
||||
8. OpenAI音频解析与总结
|
||||
8. 基于mermaid的流图、脑图绘制
|
||||
<div align="center">
|
||||
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/709ccf95-3aee-498a-934a-e1c22d3d5d5b" width="500" >
|
||||
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/c518b82f-bd53-46e2-baf5-ad1b081c1da4" width="500" >
|
||||
</div>
|
||||
|
||||
9. Latex全文校对纠错
|
||||
@@ -327,8 +341,8 @@ Tip:不指定文件直接点击 `载入对话历史存档` 可以查看历史h
|
||||
|
||||
|
||||
### II:版本:
|
||||
|
||||
- version 3.70(todo): 优化AutoGen插件主题并设计一系列衍生插件
|
||||
- version 3.80(TODO): 优化AutoGen插件主题并设计一系列衍生插件
|
||||
- version 3.70: 引入Mermaid绘图,实现GPT画脑图等功能
|
||||
- version 3.60: 引入AutoGen作为新一代插件的基石
|
||||
- version 3.57: 支持GLM3,星火v3,文心一言v4,修复本地模型的并发BUG
|
||||
- version 3.56: 支持动态追加基础功能按钮,新汇报PDF汇总页面
|
||||
@@ -361,6 +375,32 @@ GPT Academic开发者QQ群:`610599535`
|
||||
- 某些浏览器翻译插件干扰此软件前端的运行
|
||||
- 官方Gradio目前有很多兼容性问题,请**务必使用`requirement.txt`安装Gradio**
|
||||
|
||||
```mermaid
|
||||
timeline LR
|
||||
title GPT-Academic项目发展历程
|
||||
section 2.x
|
||||
1.0~2.2: 基础功能: 引入模块化函数插件: 可折叠式布局: 函数插件支持热重载
|
||||
2.3~2.5: 增强多线程交互性: 新增PDF全文翻译功能: 新增输入区切换位置的功能: 自更新
|
||||
2.6: 重构了插件结构: 提高了交互性: 加入更多插件
|
||||
section 3.x
|
||||
3.0~3.1: 对chatglm支持: 对其他小型llm支持: 支持同时问询多个gpt模型: 支持多个apikey负载均衡
|
||||
3.2~3.3: 函数插件支持更多参数接口: 保存对话功能: 解读任意语言代码: 同时询问任意的LLM组合: 互联网信息综合功能
|
||||
3.4: 加入arxiv论文翻译: 加入latex论文批改功能
|
||||
3.44: 正式支持Azure: 优化界面易用性
|
||||
3.46: 自定义ChatGLM2微调模型: 实时语音对话
|
||||
3.49: 支持阿里达摩院通义千问: 上海AI-Lab书生: 讯飞星火: 支持百度千帆平台 & 文心一言
|
||||
3.50: 虚空终端: 支持插件分类: 改进UI: 设计新主题
|
||||
3.53: 动态选择不同界面主题: 提高稳定性: 解决多用户冲突问题
|
||||
3.55: 动态代码解释器: 重构前端界面: 引入悬浮窗口与菜单栏
|
||||
3.56: 动态追加基础功能按钮: 新汇报PDF汇总页面
|
||||
3.57: GLM3, 星火v3: 支持文心一言v4: 修复本地模型的并发BUG
|
||||
3.60: 引入AutoGen
|
||||
3.70: 引入Mermaid绘图: 实现GPT画脑图等功能
|
||||
3.80(TODO): 优化AutoGen插件主题: 设计衍生插件
|
||||
|
||||
```
|
||||
|
||||
|
||||
### III:主题
|
||||
可以通过修改`THEME`选项(config.py)变更主题
|
||||
1. `Chuanhu-Small-and-Beautiful` [网址](https://github.com/GaiZhenbiao/ChuanhuChatGPT/)
|
||||
|
||||
@@ -47,7 +47,7 @@ def backup_and_download(current_version, remote_version):
|
||||
shutil.copytree('./', backup_dir, ignore=lambda x, y: ['history'])
|
||||
proxies = get_conf('proxies')
|
||||
try: r = requests.get('https://github.com/binary-husky/chatgpt_academic/archive/refs/heads/master.zip', proxies=proxies, stream=True)
|
||||
except: r = requests.get('https://public.gpt-academic.top/publish/master.zip', proxies=proxies, stream=True)
|
||||
except: r = requests.get('https://public.agent-matrix.com/publish/master.zip', proxies=proxies, stream=True)
|
||||
zip_file_path = backup_dir+'/master.zip'
|
||||
with open(zip_file_path, 'wb+') as f:
|
||||
f.write(r.content)
|
||||
@@ -81,7 +81,7 @@ def patch_and_restart(path):
|
||||
dir_util.copy_tree(path_new_version, './')
|
||||
print亮绿('代码已经更新,即将更新pip包依赖……')
|
||||
for i in reversed(range(5)): time.sleep(1); print(i)
|
||||
try:
|
||||
try:
|
||||
import subprocess
|
||||
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-r', 'requirements.txt'])
|
||||
except:
|
||||
@@ -113,7 +113,7 @@ def auto_update(raise_error=False):
|
||||
import json
|
||||
proxies = get_conf('proxies')
|
||||
try: response = requests.get("https://raw.githubusercontent.com/binary-husky/chatgpt_academic/master/version", proxies=proxies, timeout=5)
|
||||
except: response = requests.get("https://public.gpt-academic.top/publish/version", proxies=proxies, timeout=5)
|
||||
except: response = requests.get("https://public.agent-matrix.com/publish/version", proxies=proxies, timeout=5)
|
||||
remote_json_data = json.loads(response.text)
|
||||
remote_version = remote_json_data['version']
|
||||
if remote_json_data["show_feature"]:
|
||||
@@ -159,7 +159,7 @@ def warm_up_modules():
|
||||
enc.encode("模块预热", disallowed_special=())
|
||||
enc = model_info["gpt-4"]['tokenizer']
|
||||
enc.encode("模块预热", disallowed_special=())
|
||||
|
||||
|
||||
def warm_up_vectordb():
|
||||
print('正在执行一些模块的预热 ...')
|
||||
from toolbox import ProxyNetworkActivate
|
||||
@@ -167,7 +167,7 @@ def warm_up_vectordb():
|
||||
import nltk
|
||||
with ProxyNetworkActivate("Warmup_Modules"): nltk.download("punkt")
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import os
|
||||
os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
|
||||
|
||||
@@ -3,7 +3,7 @@ from sys import stdout
|
||||
|
||||
if platform.system()=="Linux":
|
||||
pass
|
||||
else:
|
||||
else:
|
||||
from colorama import init
|
||||
init()
|
||||
|
||||
|
||||
115
config.py
115
config.py
@@ -2,8 +2,8 @@
|
||||
以下所有配置也都支持利用环境变量覆写,环境变量配置格式见docker-compose.yml。
|
||||
读取优先级:环境变量 > config_private.py > config.py
|
||||
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
|
||||
All the following configurations also support using environment variables to override,
|
||||
and the environment variable configuration format can be seen in docker-compose.yml.
|
||||
All the following configurations also support using environment variables to override,
|
||||
and the environment variable configuration format can be seen in docker-compose.yml.
|
||||
Configuration reading priority: environment variable > config_private.py > config.py
|
||||
"""
|
||||
|
||||
@@ -30,10 +30,36 @@ if USE_PROXY:
|
||||
else:
|
||||
proxies = None
|
||||
|
||||
# ------------------------------------ 以下配置可以优化体验, 但大部分场合下并不需要修改 ------------------------------------
|
||||
# [step 3]>> 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
|
||||
LLM_MODEL = "gpt-3.5-turbo-16k" # 可选 ↓↓↓
|
||||
AVAIL_LLM_MODELS = ["gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
|
||||
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
|
||||
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-3-turbo",
|
||||
"gemini-pro", "chatglm3"
|
||||
]
|
||||
# --- --- --- ---
|
||||
# P.S. 其他可用的模型还包括
|
||||
# AVAIL_LLM_MODELS = [
|
||||
# "qianfan", "deepseekcoder",
|
||||
# "spark", "sparkv2", "sparkv3", "sparkv3.5",
|
||||
# "qwen-turbo", "qwen-plus", "qwen-max", "qwen-local",
|
||||
# "moonshot-v1-128k", "moonshot-v1-32k", "moonshot-v1-8k",
|
||||
# "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125"
|
||||
# "claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
|
||||
# "moss", "llama2", "chatglm_onnx", "internlm", "jittorllms_pangualpha", "jittorllms_llama",
|
||||
# "yi-34b-chat-0205", "yi-34b-chat-200k"
|
||||
# ]
|
||||
# --- --- --- ---
|
||||
# 此外,为了更灵活地接入one-api多模型管理界面,您还可以在接入one-api时,
|
||||
# 使用"one-api-*"前缀直接使用非标准方式接入的模型,例如
|
||||
# AVAIL_LLM_MODELS = ["one-api-claude-3-sonnet-20240229(max_token=100000)"]
|
||||
# --- --- --- ---
|
||||
|
||||
|
||||
# --------------- 以下配置可以优化体验 ---------------
|
||||
|
||||
# 重新URL重新定向,实现更换API_URL的作用(高危设置! 常规情况下不要修改! 通过修改此设置,您将把您的API-KEY和对话隐私完全暴露给您设定的中间人!)
|
||||
# 格式: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
|
||||
# 格式: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
|
||||
# 举例: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "https://reverse-proxy-url/v1/chat/completions"}
|
||||
API_URL_REDIRECT = {}
|
||||
|
||||
@@ -66,7 +92,7 @@ LAYOUT = "LEFT-RIGHT" # "LEFT-RIGHT"(左右布局) # "TOP-DOWN"(上下
|
||||
|
||||
|
||||
# 暗色模式 / 亮色模式
|
||||
DARK_MODE = True
|
||||
DARK_MODE = True
|
||||
|
||||
|
||||
# 发送请求到OpenAI后,等待多久判定为超时
|
||||
@@ -85,20 +111,6 @@ MAX_RETRY = 2
|
||||
DEFAULT_FN_GROUPS = ['对话', '编程', '学术', '智能体']
|
||||
|
||||
|
||||
# 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
|
||||
LLM_MODEL = "gpt-3.5-turbo" # 可选 ↓↓↓
|
||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo-1106","gpt-4-1106-preview","gpt-4-vision-preview",
|
||||
"gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
|
||||
"gpt-4", "gpt-4-32k", "azure-gpt-4", "api2d-gpt-4",
|
||||
"gemini-pro", "chatglm3", "moss", "claude-2"]
|
||||
# P.S. 其他可用的模型还包括 [
|
||||
# "qwen-turbo", "qwen-plus", "qwen-max"
|
||||
# "zhipuai", "qianfan", "deepseekcoder", "llama2", "qwen-local", "gpt-3.5-turbo-0613",
|
||||
# "gpt-3.5-turbo-16k-0613", "gpt-3.5-random", "api2d-gpt-3.5-turbo", 'api2d-gpt-3.5-turbo-16k',
|
||||
# "spark", "sparkv2", "sparkv3", "chatglm_onnx", "claude-1-100k", "claude-2", "internlm", "jittorllms_pangualpha", "jittorllms_llama"
|
||||
# ]
|
||||
|
||||
|
||||
# 定义界面上“询问多个GPT模型”插件应该使用哪些模型,请从AVAIL_LLM_MODELS中选择,并在不同模型之间用`&`间隔,例如"gpt-3.5-turbo&chatglm3&azure-gpt-4"
|
||||
MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
|
||||
|
||||
@@ -127,6 +139,7 @@ CHATGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b
|
||||
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
|
||||
LOCAL_MODEL_QUANT = "FP16" # 默认 "FP16" "INT4" 启用量化INT4版本 "INT8" 启用量化INT8版本
|
||||
|
||||
|
||||
# 设置gradio的并行线程数(不需要修改)
|
||||
CONCURRENT_COUNT = 100
|
||||
|
||||
@@ -144,7 +157,8 @@ ADD_WAIFU = False
|
||||
AUTHENTICATION = []
|
||||
|
||||
|
||||
# 如果需要在二级路径下运行(常规情况下,不要修改!!)(需要配合修改main.py才能生效!)
|
||||
# 如果需要在二级路径下运行(常规情况下,不要修改!!)
|
||||
# (举例 CUSTOM_PATH = "/gpt_academic",可以让软件运行在 http://ip:port/gpt_academic/ 下。)
|
||||
CUSTOM_PATH = "/"
|
||||
|
||||
|
||||
@@ -158,7 +172,7 @@ API_ORG = ""
|
||||
|
||||
|
||||
# 如果需要使用Slack Claude,使用教程详情见 request_llms/README.md
|
||||
SLACK_CLAUDE_BOT_ID = ''
|
||||
SLACK_CLAUDE_BOT_ID = ''
|
||||
SLACK_CLAUDE_USER_TOKEN = ''
|
||||
|
||||
|
||||
@@ -172,14 +186,8 @@ AZURE_ENGINE = "填入你亲手写的部署名" # 读 docs\use_azure.
|
||||
AZURE_CFG_ARRAY = {}
|
||||
|
||||
|
||||
# 使用Newbing (不推荐使用,未来将删除)
|
||||
NEWBING_STYLE = "creative" # ["creative", "balanced", "precise"]
|
||||
NEWBING_COOKIES = """
|
||||
put your new bing cookies here
|
||||
"""
|
||||
|
||||
|
||||
# 阿里云实时语音识别 配置难度较高 仅建议高手用户使用 参考 https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md
|
||||
# 阿里云实时语音识别 配置难度较高
|
||||
# 参考 https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md
|
||||
ENABLE_AUDIO = False
|
||||
ALIYUN_TOKEN="" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
|
||||
ALIYUN_APPKEY="" # 例如 RoPlZrM88DnAFkZK
|
||||
@@ -195,13 +203,26 @@ XFYUN_API_KEY = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
|
||||
|
||||
# 接入智谱大模型
|
||||
ZHIPUAI_API_KEY = ""
|
||||
ZHIPUAI_MODEL = "chatglm_turbo"
|
||||
ZHIPUAI_MODEL = "" # 此选项已废弃,不再需要填写
|
||||
|
||||
|
||||
# Claude API KEY
|
||||
ANTHROPIC_API_KEY = ""
|
||||
|
||||
|
||||
# 月之暗面 API KEY
|
||||
MOONSHOT_API_KEY = ""
|
||||
|
||||
|
||||
# 零一万物(Yi Model) API KEY
|
||||
YIMODEL_API_KEY = ""
|
||||
|
||||
|
||||
# Mathpix 拥有执行PDF的OCR功能,但是需要注册账号
|
||||
MATHPIX_APPID = ""
|
||||
MATHPIX_APPKEY = ""
|
||||
|
||||
|
||||
# 自定义API KEY格式
|
||||
CUSTOM_API_KEY_PATTERN = ""
|
||||
|
||||
@@ -218,8 +239,8 @@ HUGGINGFACE_ACCESS_TOKEN = "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"
|
||||
# 获取方法:复制以下空间https://huggingface.co/spaces/qingxu98/grobid,设为public,然后GROBID_URL = "https://(你的hf用户名如qingxu98)-(你的填写的空间名如grobid).hf.space"
|
||||
GROBID_URLS = [
|
||||
"https://qingxu98-grobid.hf.space","https://qingxu98-grobid2.hf.space","https://qingxu98-grobid3.hf.space",
|
||||
"https://qingxu98-grobid4.hf.space","https://qingxu98-grobid5.hf.space", "https://qingxu98-grobid6.hf.space",
|
||||
"https://qingxu98-grobid7.hf.space", "https://qingxu98-grobid8.hf.space",
|
||||
"https://qingxu98-grobid4.hf.space","https://qingxu98-grobid5.hf.space", "https://qingxu98-grobid6.hf.space",
|
||||
"https://qingxu98-grobid7.hf.space", "https://qingxu98-grobid8.hf.space",
|
||||
]
|
||||
|
||||
|
||||
@@ -240,7 +261,7 @@ PATH_LOGGING = "gpt_log"
|
||||
|
||||
|
||||
# 除了连接OpenAI之外,还有哪些场合允许使用代理,请勿修改
|
||||
WHEN_TO_USE_PROXY = ["Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
|
||||
WHEN_TO_USE_PROXY = ["Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
|
||||
"Warmup_Modules", "Nougat_Download", "AutoGen"]
|
||||
|
||||
|
||||
@@ -255,7 +276,11 @@ PLUGIN_HOT_RELOAD = False
|
||||
# 自定义按钮的最大数量限制
|
||||
NUM_CUSTOM_BASIC_BTN = 4
|
||||
|
||||
|
||||
|
||||
"""
|
||||
--------------- 配置关联关系说明 ---------------
|
||||
|
||||
在线大模型配置关联关系示意图
|
||||
│
|
||||
├── "gpt-3.5-turbo" 等openai模型
|
||||
@@ -279,7 +304,7 @@ NUM_CUSTOM_BASIC_BTN = 4
|
||||
│ ├── XFYUN_API_SECRET
|
||||
│ └── XFYUN_API_KEY
|
||||
│
|
||||
├── "claude-1-100k" 等claude模型
|
||||
├── "claude-3-opus-20240229" 等claude模型
|
||||
│ └── ANTHROPIC_API_KEY
|
||||
│
|
||||
├── "stack-claude"
|
||||
@@ -291,9 +316,11 @@ NUM_CUSTOM_BASIC_BTN = 4
|
||||
│ ├── BAIDU_CLOUD_API_KEY
|
||||
│ └── BAIDU_CLOUD_SECRET_KEY
|
||||
│
|
||||
├── "zhipuai" 智谱AI大模型chatglm_turbo
|
||||
│ ├── ZHIPUAI_API_KEY
|
||||
│ └── ZHIPUAI_MODEL
|
||||
├── "glm-4", "glm-3-turbo", "zhipuai" 智谱AI大模型
|
||||
│ └── ZHIPUAI_API_KEY
|
||||
│
|
||||
├── "yi-34b-chat-0205", "yi-34b-chat-200k" 等零一万物(Yi Model)大模型
|
||||
│ └── YIMODEL_API_KEY
|
||||
│
|
||||
├── "qwen-turbo" 等通义千问大模型
|
||||
│ └── DASHSCOPE_API_KEY
|
||||
@@ -301,11 +328,12 @@ NUM_CUSTOM_BASIC_BTN = 4
|
||||
├── "Gemini"
|
||||
│ └── GEMINI_API_KEY
|
||||
│
|
||||
└── "newbing" Newbing接口不再稳定,不推荐使用
|
||||
├── NEWBING_STYLE
|
||||
└── NEWBING_COOKIES
|
||||
└── "one-api-...(max_token=...)" 用一种更方便的方式接入one-api多模型管理界面
|
||||
├── AVAIL_LLM_MODELS
|
||||
├── API_KEY
|
||||
└── API_URL_REDIRECT
|
||||
|
||||
|
||||
|
||||
本地大模型示意图
|
||||
│
|
||||
├── "chatglm3"
|
||||
@@ -345,6 +373,9 @@ NUM_CUSTOM_BASIC_BTN = 4
|
||||
│ └── ALIYUN_SECRET
|
||||
│
|
||||
└── PDF文档精准解析
|
||||
└── GROBID_URLS
|
||||
├── GROBID_URLS
|
||||
├── MATHPIX_APPID
|
||||
└── MATHPIX_APPKEY
|
||||
|
||||
|
||||
"""
|
||||
|
||||
@@ -3,30 +3,69 @@
|
||||
# 'stop' 颜色对应 theme.py 中的 color_er
|
||||
import importlib
|
||||
from toolbox import clear_line_break
|
||||
|
||||
from toolbox import apply_gpt_academic_string_mask_langbased
|
||||
from toolbox import build_gpt_academic_masked_string_langbased
|
||||
from textwrap import dedent
|
||||
|
||||
def get_core_functions():
|
||||
return {
|
||||
"英语学术润色": {
|
||||
# 前缀,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等
|
||||
"Prefix": r"Below is a paragraph from an academic paper. Polish the writing to meet the academic style, " +
|
||||
r"improve the spelling, grammar, clarity, concision and overall readability. When necessary, rewrite the whole sentence. " +
|
||||
r"Firstly, you should provide the polished paragraph. "
|
||||
r"Secondly, you should list all your modification and explain the reasons to do so in markdown table." + "\n\n",
|
||||
# 后缀,会被加在你的输入之后。例如,配合前缀可以把你的输入内容用引号圈起来
|
||||
|
||||
"学术语料润色": {
|
||||
# [1*] 前缀字符串,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等。
|
||||
# 这里填一个提示词字符串就行了,这里为了区分中英文情景搞复杂了一点
|
||||
"Prefix": build_gpt_academic_masked_string_langbased(
|
||||
text_show_english=
|
||||
r"Below is a paragraph from an academic paper. Polish the writing to meet the academic style, "
|
||||
r"improve the spelling, grammar, clarity, concision and overall readability. When necessary, rewrite the whole sentence. "
|
||||
r"Firstly, you should provide the polished paragraph. "
|
||||
r"Secondly, you should list all your modification and explain the reasons to do so in markdown table.",
|
||||
text_show_chinese=
|
||||
r"作为一名中文学术论文写作改进助理,你的任务是改进所提供文本的拼写、语法、清晰、简洁和整体可读性,"
|
||||
r"同时分解长句,减少重复,并提供改进建议。请先提供文本的更正版本,然后在markdown表格中列出修改的内容,并给出修改的理由:"
|
||||
) + "\n\n",
|
||||
# [2*] 后缀字符串,会被加在你的输入之后。例如,配合前缀可以把你的输入内容用引号圈起来
|
||||
"Suffix": r"",
|
||||
# 按钮颜色 (默认 secondary)
|
||||
# [3] 按钮颜色 (可选参数,默认 secondary)
|
||||
"Color": r"secondary",
|
||||
# 按钮是否可见 (默认 True,即可见)
|
||||
# [4] 按钮是否可见 (可选参数,默认 True,即可见)
|
||||
"Visible": True,
|
||||
# 是否在触发时清除历史 (默认 False,即不处理之前的对话历史)
|
||||
"AutoClearHistory": False
|
||||
# [5] 是否在触发时清除历史 (可选参数,默认 False,即不处理之前的对话历史)
|
||||
"AutoClearHistory": False,
|
||||
# [6] 文本预处理 (可选参数,默认 None,举例:写个函数移除所有的换行符)
|
||||
"PreProcess": None,
|
||||
},
|
||||
"中文学术润色": {
|
||||
"Prefix": r"作为一名中文学术论文写作改进助理,你的任务是改进所提供文本的拼写、语法、清晰、简洁和整体可读性," +
|
||||
r"同时分解长句,减少重复,并提供改进建议。请只提供文本的更正版本,避免包括解释。请编辑以下文本" + "\n\n",
|
||||
"Suffix": r"",
|
||||
|
||||
|
||||
"总结绘制脑图": {
|
||||
# 前缀,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等
|
||||
"Prefix": '''"""\n\n''',
|
||||
# 后缀,会被加在你的输入之后。例如,配合前缀可以把你的输入内容用引号圈起来
|
||||
"Suffix":
|
||||
# dedent() 函数用于去除多行字符串的缩进
|
||||
dedent("\n\n"+r'''
|
||||
"""
|
||||
|
||||
使用mermaid flowchart对以上文本进行总结,概括上述段落的内容以及内在逻辑关系,例如:
|
||||
|
||||
以下是对以上文本的总结,以mermaid flowchart的形式展示:
|
||||
```mermaid
|
||||
flowchart LR
|
||||
A["节点名1"] --> B("节点名2")
|
||||
B --> C{"节点名3"}
|
||||
C --> D["节点名4"]
|
||||
C --> |"箭头名1"| E["节点名5"]
|
||||
C --> |"箭头名2"| F["节点名6"]
|
||||
```
|
||||
|
||||
注意:
|
||||
(1)使用中文
|
||||
(2)节点名字使用引号包裹,如["Laptop"]
|
||||
(3)`|` 和 `"`之间不要存在空格
|
||||
(4)根据情况选择flowchart LR(从左到右)或者flowchart TD(从上到下)
|
||||
'''),
|
||||
},
|
||||
|
||||
|
||||
"查找语法错误": {
|
||||
"Prefix": r"Help me ensure that the grammar and the spelling is correct. "
|
||||
r"Do not try to polish the text, if no mistake is found, tell me that this paragraph is good. "
|
||||
@@ -46,42 +85,61 @@ def get_core_functions():
|
||||
"Suffix": r"",
|
||||
"PreProcess": clear_line_break, # 预处理:清除换行符
|
||||
},
|
||||
|
||||
|
||||
"中译英": {
|
||||
"Prefix": r"Please translate following sentence to English:" + "\n\n",
|
||||
"Suffix": r"",
|
||||
},
|
||||
"学术中英互译": {
|
||||
"Prefix": r"I want you to act as a scientific English-Chinese translator, " +
|
||||
r"I will provide you with some paragraphs in one language " +
|
||||
r"and your task is to accurately and academically translate the paragraphs only into the other language. " +
|
||||
r"Do not repeat the original provided paragraphs after translation. " +
|
||||
r"You should use artificial intelligence tools, " +
|
||||
r"such as natural language processing, and rhetorical knowledge " +
|
||||
r"and experience about effective writing techniques to reply. " +
|
||||
r"I'll give you my paragraphs as follows, tell me what language it is written in, and then translate:" + "\n\n",
|
||||
"Suffix": "",
|
||||
"Color": "secondary",
|
||||
|
||||
|
||||
"学术英中互译": {
|
||||
"Prefix": build_gpt_academic_masked_string_langbased(
|
||||
text_show_chinese=
|
||||
r"I want you to act as a scientific English-Chinese translator, "
|
||||
r"I will provide you with some paragraphs in one language "
|
||||
r"and your task is to accurately and academically translate the paragraphs only into the other language. "
|
||||
r"Do not repeat the original provided paragraphs after translation. "
|
||||
r"You should use artificial intelligence tools, "
|
||||
r"such as natural language processing, and rhetorical knowledge "
|
||||
r"and experience about effective writing techniques to reply. "
|
||||
r"I'll give you my paragraphs as follows, tell me what language it is written in, and then translate:",
|
||||
text_show_english=
|
||||
r"你是经验丰富的翻译,请把以下学术文章段落翻译成中文,"
|
||||
r"并同时充分考虑中文的语法、清晰、简洁和整体可读性,"
|
||||
r"必要时,你可以修改整个句子的顺序以确保翻译后的段落符合中文的语言习惯。"
|
||||
r"你需要翻译的文本如下:"
|
||||
) + "\n\n",
|
||||
"Suffix": r"",
|
||||
},
|
||||
|
||||
|
||||
"英译中": {
|
||||
"Prefix": r"翻译成地道的中文:" + "\n\n",
|
||||
"Suffix": r"",
|
||||
"Visible": False,
|
||||
"Visible": False,
|
||||
},
|
||||
|
||||
|
||||
"找图片": {
|
||||
"Prefix": r"我需要你找一张网络图片。使用Unsplash API(https://source.unsplash.com/960x640/?<英语关键词>)获取图片URL," +
|
||||
"Prefix": r"我需要你找一张网络图片。使用Unsplash API(https://source.unsplash.com/960x640/?<英语关键词>)获取图片URL,"
|
||||
r"然后请使用Markdown格式封装,并且不要有反斜线,不要用代码块。现在,请按以下描述给我发送图片:" + "\n\n",
|
||||
"Suffix": r"",
|
||||
"Visible": False,
|
||||
"Visible": False,
|
||||
},
|
||||
|
||||
|
||||
"解释代码": {
|
||||
"Prefix": r"请解释以下代码:" + "\n```\n",
|
||||
"Suffix": "\n```\n",
|
||||
},
|
||||
|
||||
|
||||
"参考文献转Bib": {
|
||||
"Prefix": r"Here are some bibliography items, please transform them into bibtex style." +
|
||||
r"Note that, reference styles maybe more than one kind, you should transform each item correctly." +
|
||||
r"Items need to be transformed:",
|
||||
"Visible": False,
|
||||
"Prefix": r"Here are some bibliography items, please transform them into bibtex style."
|
||||
r"Note that, reference styles maybe more than one kind, you should transform each item correctly."
|
||||
r"Items need to be transformed:" + "\n\n",
|
||||
"Visible": False,
|
||||
"Suffix": r"",
|
||||
}
|
||||
}
|
||||
@@ -98,8 +156,18 @@ def handle_core_functionality(additional_fn, inputs, history, chatbot):
|
||||
return inputs, history
|
||||
else:
|
||||
# 预制功能
|
||||
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
|
||||
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
|
||||
if "PreProcess" in core_functional[additional_fn]:
|
||||
if core_functional[additional_fn]["PreProcess"] is not None:
|
||||
inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
|
||||
# 为字符串加上上面定义的前缀和后缀。
|
||||
inputs = apply_gpt_academic_string_mask_langbased(
|
||||
string = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"],
|
||||
lang_reference = inputs,
|
||||
)
|
||||
if core_functional[additional_fn].get("AutoClearHistory", False):
|
||||
history = []
|
||||
return inputs, history
|
||||
|
||||
if __name__ == "__main__":
|
||||
t = get_core_functions()["总结绘制脑图"]
|
||||
print(t["Prefix"] + t["Suffix"])
|
||||
@@ -32,115 +32,122 @@ def get_crazy_functions():
|
||||
from crazy_functions.理解PDF文档内容 import 理解PDF文档内容标准文件输入
|
||||
from crazy_functions.Latex全文润色 import Latex中文润色
|
||||
from crazy_functions.Latex全文润色 import Latex英文纠错
|
||||
from crazy_functions.Latex全文翻译 import Latex中译英
|
||||
from crazy_functions.Latex全文翻译 import Latex英译中
|
||||
from crazy_functions.批量Markdown翻译 import Markdown中译英
|
||||
from crazy_functions.虚空终端 import 虚空终端
|
||||
|
||||
from crazy_functions.生成多种Mermaid图表 import 生成多种Mermaid图表
|
||||
|
||||
function_plugins = {
|
||||
"虚空终端": {
|
||||
"Group": "对话|编程|学术|智能体",
|
||||
"Color": "stop",
|
||||
"AsButton": True,
|
||||
"Function": HotReload(虚空终端)
|
||||
"Function": HotReload(虚空终端),
|
||||
},
|
||||
"解析整个Python项目": {
|
||||
"Group": "编程",
|
||||
"Color": "stop",
|
||||
"AsButton": True,
|
||||
"Info": "解析一个Python项目的所有源文件(.py) | 输入参数为路径",
|
||||
"Function": HotReload(解析一个Python项目)
|
||||
"Function": HotReload(解析一个Python项目),
|
||||
},
|
||||
"载入对话历史存档(先上传存档或输入路径)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"Info": "载入对话历史存档 | 输入参数为路径",
|
||||
"Function": HotReload(载入对话历史存档)
|
||||
"Function": HotReload(载入对话历史存档),
|
||||
},
|
||||
"删除所有本地对话历史记录(谨慎操作)": {
|
||||
"Group": "对话",
|
||||
"AsButton": False,
|
||||
"Info": "删除所有本地对话历史记录,谨慎操作 | 不需要输入参数",
|
||||
"Function": HotReload(删除所有本地对话历史记录)
|
||||
"Function": HotReload(删除所有本地对话历史记录),
|
||||
},
|
||||
"清除所有缓存文件(谨慎操作)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Info": "清除所有缓存文件,谨慎操作 | 不需要输入参数",
|
||||
"Function": HotReload(清除缓存)
|
||||
"Function": HotReload(清除缓存),
|
||||
},
|
||||
"生成多种Mermaid图表(从当前对话或路径(.pdf/.md/.docx)中生产图表)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"Info" : "基于当前对话或文件生成多种Mermaid图表,图表类型由模型判断",
|
||||
"Function": HotReload(生成多种Mermaid图表),
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": "请输入图类型对应的数字,不输入则为模型自行判断:1-流程图,2-序列图,3-类图,4-饼图,5-甘特图,6-状态图,7-实体关系图,8-象限提示图,9-思维导图",
|
||||
},
|
||||
"批量总结Word文档": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": True,
|
||||
"Info": "批量总结word文档 | 输入参数为路径",
|
||||
"Function": HotReload(总结word文档)
|
||||
"Function": HotReload(总结word文档),
|
||||
},
|
||||
"解析整个Matlab项目": {
|
||||
"Group": "编程",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"Info": "解析一个Matlab项目的所有源文件(.m) | 输入参数为路径",
|
||||
"Function": HotReload(解析一个Matlab项目)
|
||||
"Function": HotReload(解析一个Matlab项目),
|
||||
},
|
||||
"解析整个C++项目头文件": {
|
||||
"Group": "编程",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Info": "解析一个C++项目的所有头文件(.h/.hpp) | 输入参数为路径",
|
||||
"Function": HotReload(解析一个C项目的头文件)
|
||||
"Function": HotReload(解析一个C项目的头文件),
|
||||
},
|
||||
"解析整个C++项目(.cpp/.hpp/.c/.h)": {
|
||||
"Group": "编程",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Info": "解析一个C++项目的所有源文件(.cpp/.hpp/.c/.h)| 输入参数为路径",
|
||||
"Function": HotReload(解析一个C项目)
|
||||
"Function": HotReload(解析一个C项目),
|
||||
},
|
||||
"解析整个Go项目": {
|
||||
"Group": "编程",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Info": "解析一个Go项目的所有源文件 | 输入参数为路径",
|
||||
"Function": HotReload(解析一个Golang项目)
|
||||
"Function": HotReload(解析一个Golang项目),
|
||||
},
|
||||
"解析整个Rust项目": {
|
||||
"Group": "编程",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Info": "解析一个Rust项目的所有源文件 | 输入参数为路径",
|
||||
"Function": HotReload(解析一个Rust项目)
|
||||
"Function": HotReload(解析一个Rust项目),
|
||||
},
|
||||
"解析整个Java项目": {
|
||||
"Group": "编程",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Info": "解析一个Java项目的所有源文件 | 输入参数为路径",
|
||||
"Function": HotReload(解析一个Java项目)
|
||||
"Function": HotReload(解析一个Java项目),
|
||||
},
|
||||
"解析整个前端项目(js,ts,css等)": {
|
||||
"Group": "编程",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Info": "解析一个前端项目的所有源文件(js,ts,css等) | 输入参数为路径",
|
||||
"Function": HotReload(解析一个前端项目)
|
||||
"Function": HotReload(解析一个前端项目),
|
||||
},
|
||||
"解析整个Lua项目": {
|
||||
"Group": "编程",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Info": "解析一个Lua项目的所有源文件 | 输入参数为路径",
|
||||
"Function": HotReload(解析一个Lua项目)
|
||||
"Function": HotReload(解析一个Lua项目),
|
||||
},
|
||||
"解析整个CSharp项目": {
|
||||
"Group": "编程",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Info": "解析一个CSharp项目的所有源文件 | 输入参数为路径",
|
||||
"Function": HotReload(解析一个CSharp项目)
|
||||
"Function": HotReload(解析一个CSharp项目),
|
||||
},
|
||||
"解析Jupyter Notebook文件": {
|
||||
"Group": "编程",
|
||||
@@ -156,103 +163,104 @@ def get_crazy_functions():
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"Info": "读取Tex论文并写摘要 | 输入参数为路径",
|
||||
"Function": HotReload(读文章写摘要)
|
||||
"Function": HotReload(读文章写摘要),
|
||||
},
|
||||
"翻译README或MD": {
|
||||
"Group": "编程",
|
||||
"Color": "stop",
|
||||
"AsButton": True,
|
||||
"Info": "将Markdown翻译为中文 | 输入参数为路径或URL",
|
||||
"Function": HotReload(Markdown英译中)
|
||||
"Function": HotReload(Markdown英译中),
|
||||
},
|
||||
"翻译Markdown或README(支持Github链接)": {
|
||||
"Group": "编程",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"Info": "将Markdown或README翻译为中文 | 输入参数为路径或URL",
|
||||
"Function": HotReload(Markdown英译中)
|
||||
"Function": HotReload(Markdown英译中),
|
||||
},
|
||||
"批量生成函数注释": {
|
||||
"Group": "编程",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Info": "批量生成函数的注释 | 输入参数为路径",
|
||||
"Function": HotReload(批量生成函数注释)
|
||||
"Function": HotReload(批量生成函数注释),
|
||||
},
|
||||
"保存当前的对话": {
|
||||
"Group": "对话",
|
||||
"AsButton": True,
|
||||
"Info": "保存当前的对话 | 不需要输入参数",
|
||||
"Function": HotReload(对话历史存档)
|
||||
"Function": HotReload(对话历史存档),
|
||||
},
|
||||
"[多线程Demo]解析此项目本身(源码自译解)": {
|
||||
"Group": "对话|编程",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Info": "多线程解析并翻译此项目的源码 | 不需要输入参数",
|
||||
"Function": HotReload(解析项目本身)
|
||||
"Function": HotReload(解析项目本身),
|
||||
},
|
||||
"历史上的今天": {
|
||||
"Group": "对话",
|
||||
"AsButton": True,
|
||||
"Info": "查看历史上的今天事件 (这是一个面向开发者的插件Demo) | 不需要输入参数",
|
||||
"Function": HotReload(高阶功能模板函数)
|
||||
"Function": HotReload(高阶功能模板函数),
|
||||
},
|
||||
"精准翻译PDF论文": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": True,
|
||||
"AsButton": True,
|
||||
"Info": "精准翻译PDF论文为中文 | 输入参数为路径",
|
||||
"Function": HotReload(批量翻译PDF文档)
|
||||
"Function": HotReload(批量翻译PDF文档),
|
||||
},
|
||||
"询问多个GPT模型": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": True,
|
||||
"Function": HotReload(同时问询)
|
||||
"Function": HotReload(同时问询),
|
||||
},
|
||||
"批量总结PDF文档": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Info": "批量总结PDF文档的内容 | 输入参数为路径",
|
||||
"Function": HotReload(批量总结PDF文档)
|
||||
"Function": HotReload(批量总结PDF文档),
|
||||
},
|
||||
"谷歌学术检索助手(输入谷歌学术搜索页url)": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Info": "使用谷歌学术检索助手搜索指定URL的结果 | 输入参数为谷歌学术搜索页的URL",
|
||||
"Function": HotReload(谷歌检索小助手)
|
||||
"Function": HotReload(谷歌检索小助手),
|
||||
},
|
||||
"理解PDF文档内容 (模仿ChatPDF)": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Info": "理解PDF文档的内容并进行回答 | 输入参数为路径",
|
||||
"Function": HotReload(理解PDF文档内容标准文件输入)
|
||||
"Function": HotReload(理解PDF文档内容标准文件输入),
|
||||
},
|
||||
"英文Latex项目全文润色(输入路径或上传压缩包)": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Info": "对英文Latex项目全文进行润色处理 | 输入参数为路径或上传压缩包",
|
||||
"Function": HotReload(Latex英文润色)
|
||||
},
|
||||
"英文Latex项目全文纠错(输入路径或上传压缩包)": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Info": "对英文Latex项目全文进行纠错处理 | 输入参数为路径或上传压缩包",
|
||||
"Function": HotReload(Latex英文纠错)
|
||||
"Function": HotReload(Latex英文润色),
|
||||
},
|
||||
|
||||
"中文Latex项目全文润色(输入路径或上传压缩包)": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Info": "对中文Latex项目全文进行润色处理 | 输入参数为路径或上传压缩包",
|
||||
"Function": HotReload(Latex中文润色)
|
||||
"Function": HotReload(Latex中文润色),
|
||||
},
|
||||
|
||||
# 已经被新插件取代
|
||||
# "英文Latex项目全文纠错(输入路径或上传压缩包)": {
|
||||
# "Group": "学术",
|
||||
# "Color": "stop",
|
||||
# "AsButton": False, # 加入下拉菜单中
|
||||
# "Info": "对英文Latex项目全文进行纠错处理 | 输入参数为路径或上传压缩包",
|
||||
# "Function": HotReload(Latex英文纠错),
|
||||
# },
|
||||
# 已经被新插件取代
|
||||
# "Latex项目全文中译英(输入路径或上传压缩包)": {
|
||||
# "Group": "学术",
|
||||
@@ -261,7 +269,6 @@ def get_crazy_functions():
|
||||
# "Info": "对Latex项目全文进行中译英处理 | 输入参数为路径或上传压缩包",
|
||||
# "Function": HotReload(Latex中译英)
|
||||
# },
|
||||
|
||||
# 已经被新插件取代
|
||||
# "Latex项目全文英译中(输入路径或上传压缩包)": {
|
||||
# "Group": "学术",
|
||||
@@ -270,339 +277,417 @@ def get_crazy_functions():
|
||||
# "Info": "对Latex项目全文进行英译中处理 | 输入参数为路径或上传压缩包",
|
||||
# "Function": HotReload(Latex英译中)
|
||||
# },
|
||||
|
||||
"批量Markdown中译英(输入路径或上传压缩包)": {
|
||||
"Group": "编程",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Info": "批量将Markdown文件中文翻译为英文 | 输入参数为路径或上传压缩包",
|
||||
"Function": HotReload(Markdown中译英)
|
||||
"Function": HotReload(Markdown中译英),
|
||||
},
|
||||
}
|
||||
|
||||
# -=--=- 尚未充分测试的实验性插件 & 需要额外依赖的插件 -=--=-
|
||||
try:
|
||||
from crazy_functions.下载arxiv论文翻译摘要 import 下载arxiv论文并翻译摘要
|
||||
function_plugins.update({
|
||||
"一键下载arxiv论文并翻译摘要(先在input输入编号,如1812.10695)": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
# "Info": "下载arxiv论文并翻译摘要 | 输入参数为arxiv编号如1812.10695",
|
||||
"Function": HotReload(下载arxiv论文并翻译摘要)
|
||||
|
||||
function_plugins.update(
|
||||
{
|
||||
"一键下载arxiv论文并翻译摘要(先在input输入编号,如1812.10695)": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
# "Info": "下载arxiv论文并翻译摘要 | 输入参数为arxiv编号如1812.10695",
|
||||
"Function": HotReload(下载arxiv论文并翻译摘要),
|
||||
}
|
||||
}
|
||||
})
|
||||
)
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
print('Load function plugin failed')
|
||||
print("Load function plugin failed")
|
||||
|
||||
try:
|
||||
from crazy_functions.联网的ChatGPT import 连接网络回答问题
|
||||
function_plugins.update({
|
||||
"连接网络回答问题(输入问题后点击该插件,需要访问谷歌)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
# "Info": "连接网络回答问题(需要访问谷歌)| 输入参数是一个问题",
|
||||
"Function": HotReload(连接网络回答问题)
|
||||
|
||||
function_plugins.update(
|
||||
{
|
||||
"连接网络回答问题(输入问题后点击该插件,需要访问谷歌)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
# "Info": "连接网络回答问题(需要访问谷歌)| 输入参数是一个问题",
|
||||
"Function": HotReload(连接网络回答问题),
|
||||
}
|
||||
}
|
||||
})
|
||||
)
|
||||
from crazy_functions.联网的ChatGPT_bing版 import 连接bing搜索回答问题
|
||||
function_plugins.update({
|
||||
"连接网络回答问题(中文Bing版,输入问题后点击该插件)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Info": "连接网络回答问题(需要访问中文Bing)| 输入参数是一个问题",
|
||||
"Function": HotReload(连接bing搜索回答问题)
|
||||
|
||||
function_plugins.update(
|
||||
{
|
||||
"连接网络回答问题(中文Bing版,输入问题后点击该插件)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Info": "连接网络回答问题(需要访问中文Bing)| 输入参数是一个问题",
|
||||
"Function": HotReload(连接bing搜索回答问题),
|
||||
}
|
||||
}
|
||||
})
|
||||
)
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
print('Load function plugin failed')
|
||||
print("Load function plugin failed")
|
||||
|
||||
try:
|
||||
from crazy_functions.解析项目源代码 import 解析任意code项目
|
||||
function_plugins.update({
|
||||
"解析项目源代码(手动指定和筛选源代码文件类型)": {
|
||||
"Group": "编程",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
||||
"ArgsReminder": "输入时用逗号隔开, *代表通配符, 加了^代表不匹配; 不输入代表全部匹配。例如: \"*.c, ^*.cpp, config.toml, ^*.toml\"", # 高级参数输入区的显示提示
|
||||
"Function": HotReload(解析任意code项目)
|
||||
},
|
||||
})
|
||||
|
||||
function_plugins.update(
|
||||
{
|
||||
"解析项目源代码(手动指定和筛选源代码文件类型)": {
|
||||
"Group": "编程",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
||||
"ArgsReminder": '输入时用逗号隔开, *代表通配符, 加了^代表不匹配; 不输入代表全部匹配。例如: "*.c, ^*.cpp, config.toml, ^*.toml"', # 高级参数输入区的显示提示
|
||||
"Function": HotReload(解析任意code项目),
|
||||
},
|
||||
}
|
||||
)
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
print('Load function plugin failed')
|
||||
print("Load function plugin failed")
|
||||
|
||||
try:
|
||||
from crazy_functions.询问多个大语言模型 import 同时问询_指定模型
|
||||
function_plugins.update({
|
||||
"询问多个GPT模型(手动指定询问哪些模型)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
||||
"ArgsReminder": "支持任意数量的llm接口,用&符号分隔。例如chatglm&gpt-3.5-turbo&gpt-4", # 高级参数输入区的显示提示
|
||||
"Function": HotReload(同时问询_指定模型)
|
||||
},
|
||||
})
|
||||
|
||||
function_plugins.update(
|
||||
{
|
||||
"询问多个GPT模型(手动指定询问哪些模型)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
||||
"ArgsReminder": "支持任意数量的llm接口,用&符号分隔。例如chatglm&gpt-3.5-turbo&gpt-4", # 高级参数输入区的显示提示
|
||||
"Function": HotReload(同时问询_指定模型),
|
||||
},
|
||||
}
|
||||
)
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
print('Load function plugin failed')
|
||||
print("Load function plugin failed")
|
||||
|
||||
try:
|
||||
from crazy_functions.图片生成 import 图片生成_DALLE2, 图片生成_DALLE3, 图片修改_DALLE2
|
||||
function_plugins.update({
|
||||
"图片生成_DALLE2 (先切换模型到gpt-*)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
||||
"ArgsReminder": "在这里输入分辨率, 如1024x1024(默认),支持 256x256, 512x512, 1024x1024", # 高级参数输入区的显示提示
|
||||
"Info": "使用DALLE2生成图片 | 输入参数字符串,提供图像的内容",
|
||||
"Function": HotReload(图片生成_DALLE2)
|
||||
},
|
||||
})
|
||||
function_plugins.update({
|
||||
"图片生成_DALLE3 (先切换模型到gpt-*)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
||||
"ArgsReminder": "在这里输入自定义参数「分辨率-质量(可选)-风格(可选)」, 参数示例「1024x1024-hd-vivid」 || 分辨率支持 「1024x1024」(默认) /「1792x1024」/「1024x1792」 || 质量支持 「-standard」(默认) /「-hd」 || 风格支持 「-vivid」(默认) /「-natural」", # 高级参数输入区的显示提示
|
||||
"Info": "使用DALLE3生成图片 | 输入参数字符串,提供图像的内容",
|
||||
"Function": HotReload(图片生成_DALLE3)
|
||||
},
|
||||
})
|
||||
function_plugins.update({
|
||||
"图片修改_DALLE2 (先切换模型到gpt-*)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": False, # 调用时,唤起高级参数输入区(默认False)
|
||||
# "Info": "使用DALLE2修改图片 | 输入参数字符串,提供图像的内容",
|
||||
"Function": HotReload(图片修改_DALLE2)
|
||||
},
|
||||
})
|
||||
|
||||
function_plugins.update(
|
||||
{
|
||||
"图片生成_DALLE2 (先切换模型到gpt-*)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
||||
"ArgsReminder": "在这里输入分辨率, 如1024x1024(默认),支持 256x256, 512x512, 1024x1024", # 高级参数输入区的显示提示
|
||||
"Info": "使用DALLE2生成图片 | 输入参数字符串,提供图像的内容",
|
||||
"Function": HotReload(图片生成_DALLE2),
|
||||
},
|
||||
}
|
||||
)
|
||||
function_plugins.update(
|
||||
{
|
||||
"图片生成_DALLE3 (先切换模型到gpt-*)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
||||
"ArgsReminder": "在这里输入自定义参数「分辨率-质量(可选)-风格(可选)」, 参数示例「1024x1024-hd-vivid」 || 分辨率支持 「1024x1024」(默认) /「1792x1024」/「1024x1792」 || 质量支持 「-standard」(默认) /「-hd」 || 风格支持 「-vivid」(默认) /「-natural」", # 高级参数输入区的显示提示
|
||||
"Info": "使用DALLE3生成图片 | 输入参数字符串,提供图像的内容",
|
||||
"Function": HotReload(图片生成_DALLE3),
|
||||
},
|
||||
}
|
||||
)
|
||||
function_plugins.update(
|
||||
{
|
||||
"图片修改_DALLE2 (先切换模型到gpt-*)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": False, # 调用时,唤起高级参数输入区(默认False)
|
||||
# "Info": "使用DALLE2修改图片 | 输入参数字符串,提供图像的内容",
|
||||
"Function": HotReload(图片修改_DALLE2),
|
||||
},
|
||||
}
|
||||
)
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
print('Load function plugin failed')
|
||||
print("Load function plugin failed")
|
||||
|
||||
try:
|
||||
from crazy_functions.总结音视频 import 总结音视频
|
||||
function_plugins.update({
|
||||
"批量总结音视频(输入路径或上传压缩包)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": "调用openai api 使用whisper-1模型, 目前支持的格式:mp4, m4a, wav, mpga, mpeg, mp3。此处可以输入解析提示,例如:解析为简体中文(默认)。",
|
||||
"Info": "批量总结音频或视频 | 输入参数为路径",
|
||||
"Function": HotReload(总结音视频)
|
||||
|
||||
function_plugins.update(
|
||||
{
|
||||
"批量总结音视频(输入路径或上传压缩包)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": "调用openai api 使用whisper-1模型, 目前支持的格式:mp4, m4a, wav, mpga, mpeg, mp3。此处可以输入解析提示,例如:解析为简体中文(默认)。",
|
||||
"Info": "批量总结音频或视频 | 输入参数为路径",
|
||||
"Function": HotReload(总结音视频),
|
||||
}
|
||||
}
|
||||
})
|
||||
)
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
print('Load function plugin failed')
|
||||
print("Load function plugin failed")
|
||||
|
||||
try:
|
||||
from crazy_functions.数学动画生成manim import 动画生成
|
||||
function_plugins.update({
|
||||
"数学动画生成(Manim)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"Info": "按照自然语言描述生成一个动画 | 输入参数是一段话",
|
||||
"Function": HotReload(动画生成)
|
||||
|
||||
function_plugins.update(
|
||||
{
|
||||
"数学动画生成(Manim)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"Info": "按照自然语言描述生成一个动画 | 输入参数是一段话",
|
||||
"Function": HotReload(动画生成),
|
||||
}
|
||||
}
|
||||
})
|
||||
)
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
print('Load function plugin failed')
|
||||
print("Load function plugin failed")
|
||||
|
||||
try:
|
||||
from crazy_functions.批量Markdown翻译 import Markdown翻译指定语言
|
||||
function_plugins.update({
|
||||
"Markdown翻译(指定翻译成何种语言)": {
|
||||
"Group": "编程",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": "请输入要翻译成哪种语言,默认为Chinese。",
|
||||
"Function": HotReload(Markdown翻译指定语言)
|
||||
|
||||
function_plugins.update(
|
||||
{
|
||||
"Markdown翻译(指定翻译成何种语言)": {
|
||||
"Group": "编程",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": "请输入要翻译成哪种语言,默认为Chinese。",
|
||||
"Function": HotReload(Markdown翻译指定语言),
|
||||
}
|
||||
}
|
||||
})
|
||||
)
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
print('Load function plugin failed')
|
||||
print("Load function plugin failed")
|
||||
|
||||
try:
|
||||
from crazy_functions.知识库问答 import 知识库文件注入
|
||||
function_plugins.update({
|
||||
"构建知识库(先上传文件素材,再运行此插件)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": "此处待注入的知识库名称id, 默认为default。文件进入知识库后可长期保存。可以通过再次调用本插件的方式,向知识库追加更多文档。",
|
||||
"Function": HotReload(知识库文件注入)
|
||||
|
||||
function_plugins.update(
|
||||
{
|
||||
"构建知识库(先上传文件素材,再运行此插件)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": "此处待注入的知识库名称id, 默认为default。文件进入知识库后可长期保存。可以通过再次调用本插件的方式,向知识库追加更多文档。",
|
||||
"Function": HotReload(知识库文件注入),
|
||||
}
|
||||
}
|
||||
})
|
||||
)
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
print('Load function plugin failed')
|
||||
print("Load function plugin failed")
|
||||
|
||||
try:
|
||||
from crazy_functions.知识库问答 import 读取知识库作答
|
||||
function_plugins.update({
|
||||
"知识库文件注入(构建知识库后,再运行此插件)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": "待提取的知识库名称id, 默认为default, 您需要构建知识库后再运行此插件。",
|
||||
"Function": HotReload(读取知识库作答)
|
||||
|
||||
function_plugins.update(
|
||||
{
|
||||
"知识库文件注入(构建知识库后,再运行此插件)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": "待提取的知识库名称id, 默认为default, 您需要构建知识库后再运行此插件。",
|
||||
"Function": HotReload(读取知识库作答),
|
||||
}
|
||||
}
|
||||
})
|
||||
)
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
print('Load function plugin failed')
|
||||
print("Load function plugin failed")
|
||||
|
||||
try:
|
||||
from crazy_functions.交互功能函数模板 import 交互功能模板函数
|
||||
function_plugins.update({
|
||||
"交互功能模板Demo函数(查找wallhaven.cc的壁纸)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"Function": HotReload(交互功能模板函数)
|
||||
|
||||
function_plugins.update(
|
||||
{
|
||||
"交互功能模板Demo函数(查找wallhaven.cc的壁纸)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"Function": HotReload(交互功能模板函数),
|
||||
}
|
||||
}
|
||||
})
|
||||
)
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
print('Load function plugin failed')
|
||||
print("Load function plugin failed")
|
||||
|
||||
try:
|
||||
from crazy_functions.Latex输出PDF结果 import Latex英文纠错加PDF对比
|
||||
function_plugins.update({
|
||||
"Latex英文纠错+高亮修正位置 [需Latex]": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": "如果有必要, 请在此处追加更细致的矫错指令(使用英文)。",
|
||||
"Function": HotReload(Latex英文纠错加PDF对比)
|
||||
from crazy_functions.Latex输出PDF import Latex英文纠错加PDF对比
|
||||
from crazy_functions.Latex输出PDF import Latex翻译中文并重新编译PDF
|
||||
from crazy_functions.Latex输出PDF import PDF翻译中文并重新编译PDF
|
||||
|
||||
function_plugins.update(
|
||||
{
|
||||
"Latex英文纠错+高亮修正位置 [需Latex]": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": "如果有必要, 请在此处追加更细致的矫错指令(使用英文)。",
|
||||
"Function": HotReload(Latex英文纠错加PDF对比),
|
||||
},
|
||||
"Arxiv论文精细翻译(输入arxivID)[需Latex]": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
||||
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
||||
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||
"Info": "Arixv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
|
||||
"Function": HotReload(Latex翻译中文并重新编译PDF),
|
||||
},
|
||||
"本地Latex论文精细翻译(上传Latex项目)[需Latex]": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
||||
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
||||
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||
"Info": "本地Latex论文精细翻译 | 输入参数是路径",
|
||||
"Function": HotReload(Latex翻译中文并重新编译PDF),
|
||||
},
|
||||
"PDF翻译中文并重新编译PDF(上传PDF)[需Latex]": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
||||
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
||||
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||
"Info": "PDF翻译中文,并重新编译PDF | 输入参数为路径",
|
||||
"Function": HotReload(PDF翻译中文并重新编译PDF)
|
||||
}
|
||||
}
|
||||
})
|
||||
from crazy_functions.Latex输出PDF结果 import Latex翻译中文并重新编译PDF
|
||||
function_plugins.update({
|
||||
"Arxiv论文精细翻译(输入arxivID)[需Latex]": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder":
|
||||
"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 " +
|
||||
"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: " +
|
||||
'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||
"Info": "Arixv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
|
||||
"Function": HotReload(Latex翻译中文并重新编译PDF)
|
||||
}
|
||||
})
|
||||
function_plugins.update({
|
||||
"本地Latex论文精细翻译(上传Latex项目)[需Latex]": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder":
|
||||
"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 " +
|
||||
"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: " +
|
||||
'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||
"Info": "本地Latex论文精细翻译 | 输入参数是路径",
|
||||
"Function": HotReload(Latex翻译中文并重新编译PDF)
|
||||
}
|
||||
})
|
||||
)
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
print('Load function plugin failed')
|
||||
print("Load function plugin failed")
|
||||
|
||||
try:
|
||||
from toolbox import get_conf
|
||||
ENABLE_AUDIO = get_conf('ENABLE_AUDIO')
|
||||
|
||||
ENABLE_AUDIO = get_conf("ENABLE_AUDIO")
|
||||
if ENABLE_AUDIO:
|
||||
from crazy_functions.语音助手 import 语音助手
|
||||
function_plugins.update({
|
||||
"实时语音对话": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": True,
|
||||
"Info": "这是一个时刻聆听着的语音对话助手 | 没有输入参数",
|
||||
"Function": HotReload(语音助手)
|
||||
|
||||
function_plugins.update(
|
||||
{
|
||||
"实时语音对话": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": True,
|
||||
"Info": "这是一个时刻聆听着的语音对话助手 | 没有输入参数",
|
||||
"Function": HotReload(语音助手),
|
||||
}
|
||||
}
|
||||
})
|
||||
)
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
print('Load function plugin failed')
|
||||
print("Load function plugin failed")
|
||||
|
||||
try:
|
||||
from crazy_functions.批量翻译PDF文档_NOUGAT import 批量翻译PDF文档
|
||||
function_plugins.update({
|
||||
"精准翻译PDF文档(NOUGAT)": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"Function": HotReload(批量翻译PDF文档)
|
||||
|
||||
function_plugins.update(
|
||||
{
|
||||
"精准翻译PDF文档(NOUGAT)": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"Function": HotReload(批量翻译PDF文档),
|
||||
}
|
||||
}
|
||||
})
|
||||
)
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
print('Load function plugin failed')
|
||||
print("Load function plugin failed")
|
||||
|
||||
try:
|
||||
from crazy_functions.函数动态生成 import 函数动态生成
|
||||
function_plugins.update({
|
||||
"动态代码解释器(CodeInterpreter)": {
|
||||
"Group": "智能体",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"Function": HotReload(函数动态生成)
|
||||
|
||||
function_plugins.update(
|
||||
{
|
||||
"动态代码解释器(CodeInterpreter)": {
|
||||
"Group": "智能体",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"Function": HotReload(函数动态生成),
|
||||
}
|
||||
}
|
||||
})
|
||||
)
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
print('Load function plugin failed')
|
||||
print("Load function plugin failed")
|
||||
|
||||
try:
|
||||
from crazy_functions.多智能体 import 多智能体终端
|
||||
function_plugins.update({
|
||||
"AutoGen多智能体终端(仅供测试)": {
|
||||
"Group": "智能体",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"Function": HotReload(多智能体终端)
|
||||
|
||||
function_plugins.update(
|
||||
{
|
||||
"AutoGen多智能体终端(仅供测试)": {
|
||||
"Group": "智能体",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"Function": HotReload(多智能体终端),
|
||||
}
|
||||
}
|
||||
})
|
||||
)
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
print('Load function plugin failed')
|
||||
print("Load function plugin failed")
|
||||
|
||||
try:
|
||||
from crazy_functions.互动小游戏 import 随机小游戏
|
||||
function_plugins.update({
|
||||
"随机互动小游戏(仅供测试)": {
|
||||
"Group": "智能体",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"Function": HotReload(随机小游戏)
|
||||
|
||||
function_plugins.update(
|
||||
{
|
||||
"随机互动小游戏(仅供测试)": {
|
||||
"Group": "智能体",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"Function": HotReload(随机小游戏),
|
||||
}
|
||||
}
|
||||
})
|
||||
)
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
print('Load function plugin failed')
|
||||
print("Load function plugin failed")
|
||||
|
||||
# try:
|
||||
# from crazy_functions.高级功能函数模板 import 测试图表渲染
|
||||
# function_plugins.update({
|
||||
# "绘制逻辑关系(测试图表渲染)": {
|
||||
# "Group": "智能体",
|
||||
# "Color": "stop",
|
||||
# "AsButton": True,
|
||||
# "Function": HotReload(测试图表渲染)
|
||||
# }
|
||||
# })
|
||||
# except:
|
||||
# print(trimmed_format_exc())
|
||||
# print('Load function plugin failed')
|
||||
|
||||
# try:
|
||||
# from crazy_functions.chatglm微调工具 import 微调数据集生成
|
||||
@@ -618,8 +703,6 @@ def get_crazy_functions():
|
||||
# except:
|
||||
# print('Load function plugin failed')
|
||||
|
||||
|
||||
|
||||
"""
|
||||
设置默认值:
|
||||
- 默认 Group = 对话
|
||||
@@ -629,12 +712,12 @@ def get_crazy_functions():
|
||||
"""
|
||||
for name, function_meta in function_plugins.items():
|
||||
if "Group" not in function_meta:
|
||||
function_plugins[name]["Group"] = '对话'
|
||||
function_plugins[name]["Group"] = "对话"
|
||||
if "AsButton" not in function_meta:
|
||||
function_plugins[name]["AsButton"] = True
|
||||
if "AdvancedArgs" not in function_meta:
|
||||
function_plugins[name]["AdvancedArgs"] = False
|
||||
if "Color" not in function_meta:
|
||||
function_plugins[name]["Color"] = 'secondary'
|
||||
function_plugins[name]["Color"] = "secondary"
|
||||
|
||||
return function_plugins
|
||||
|
||||
@@ -1,232 +0,0 @@
|
||||
from collections.abc import Callable, Iterable, Mapping
|
||||
from typing import Any
|
||||
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc
|
||||
from toolbox import promote_file_to_downloadzone, get_log_folder
|
||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from .crazy_utils import input_clipping, try_install_deps
|
||||
from multiprocessing import Process, Pipe
|
||||
import os
|
||||
import time
|
||||
|
||||
templete = """
|
||||
```python
|
||||
import ... # Put dependencies here, e.g. import numpy as np
|
||||
|
||||
class TerminalFunction(object): # Do not change the name of the class, The name of the class must be `TerminalFunction`
|
||||
|
||||
def run(self, path): # The name of the function must be `run`, it takes only a positional argument.
|
||||
# rewrite the function you have just written here
|
||||
...
|
||||
return generated_file_path
|
||||
```
|
||||
"""
|
||||
|
||||
def inspect_dependency(chatbot, history):
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return True
|
||||
|
||||
def get_code_block(reply):
|
||||
import re
|
||||
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
|
||||
matches = re.findall(pattern, reply) # find all code blocks in text
|
||||
if len(matches) == 1:
|
||||
return matches[0].strip('python') # code block
|
||||
for match in matches:
|
||||
if 'class TerminalFunction' in match:
|
||||
return match.strip('python') # code block
|
||||
raise RuntimeError("GPT is not generating proper code.")
|
||||
|
||||
def gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history):
|
||||
# 输入
|
||||
prompt_compose = [
|
||||
f'Your job:\n'
|
||||
f'1. write a single Python function, which takes a path of a `{file_type}` file as the only argument and returns a `string` containing the result of analysis or the path of generated files. \n',
|
||||
f"2. You should write this function to perform following task: " + txt + "\n",
|
||||
f"3. Wrap the output python function with markdown codeblock."
|
||||
]
|
||||
i_say = "".join(prompt_compose)
|
||||
demo = []
|
||||
|
||||
# 第一步
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=demo,
|
||||
sys_prompt= r"You are a programmer."
|
||||
)
|
||||
history.extend([i_say, gpt_say])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
# 第二步
|
||||
prompt_compose = [
|
||||
"If previous stage is successful, rewrite the function you have just written to satisfy following templete: \n",
|
||||
templete
|
||||
]
|
||||
i_say = "".join(prompt_compose); inputs_show_user = "If previous stage is successful, rewrite the function you have just written to satisfy executable templete. "
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=inputs_show_user,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
sys_prompt= r"You are a programmer."
|
||||
)
|
||||
code_to_return = gpt_say
|
||||
history.extend([i_say, gpt_say])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
# # 第三步
|
||||
# i_say = "Please list to packages to install to run the code above. Then show me how to use `try_install_deps` function to install them."
|
||||
# i_say += 'For instance. `try_install_deps(["opencv-python", "scipy", "numpy"])`'
|
||||
# installation_advance = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
# inputs=i_say, inputs_show_user=inputs_show_user,
|
||||
# llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
# sys_prompt= r"You are a programmer."
|
||||
# )
|
||||
# # # 第三步
|
||||
# i_say = "Show me how to use `pip` to install packages to run the code above. "
|
||||
# i_say += 'For instance. `pip install -r opencv-python scipy numpy`'
|
||||
# installation_advance = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
# inputs=i_say, inputs_show_user=i_say,
|
||||
# llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
# sys_prompt= r"You are a programmer."
|
||||
# )
|
||||
installation_advance = ""
|
||||
|
||||
return code_to_return, installation_advance, txt, file_type, llm_kwargs, chatbot, history
|
||||
|
||||
def make_module(code):
|
||||
module_file = 'gpt_fn_' + gen_time_str().replace('-','_')
|
||||
with open(f'{get_log_folder()}/{module_file}.py', 'w', encoding='utf8') as f:
|
||||
f.write(code)
|
||||
|
||||
def get_class_name(class_string):
|
||||
import re
|
||||
# Use regex to extract the class name
|
||||
class_name = re.search(r'class (\w+)\(', class_string).group(1)
|
||||
return class_name
|
||||
|
||||
class_name = get_class_name(code)
|
||||
return f"{get_log_folder().replace('/', '.')}.{module_file}->{class_name}"
|
||||
|
||||
def init_module_instance(module):
|
||||
import importlib
|
||||
module_, class_ = module.split('->')
|
||||
init_f = getattr(importlib.import_module(module_), class_)
|
||||
return init_f()
|
||||
|
||||
def for_immediate_show_off_when_possible(file_type, fp, chatbot):
|
||||
if file_type in ['png', 'jpg']:
|
||||
image_path = os.path.abspath(fp)
|
||||
chatbot.append(['这是一张图片, 展示如下:',
|
||||
f'本地文件地址: <br/>`{image_path}`<br/>'+
|
||||
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
|
||||
])
|
||||
return chatbot
|
||||
|
||||
def subprocess_worker(instance, file_path, return_dict):
|
||||
return_dict['result'] = instance.run(file_path)
|
||||
|
||||
def have_any_recent_upload_files(chatbot):
|
||||
_5min = 5 * 60
|
||||
if not chatbot: return False # chatbot is None
|
||||
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
|
||||
if not most_recent_uploaded: return False # most_recent_uploaded is None
|
||||
if time.time() - most_recent_uploaded["time"] < _5min: return True # most_recent_uploaded is new
|
||||
else: return False # most_recent_uploaded is too old
|
||||
|
||||
def get_recent_file_prompt_support(chatbot):
|
||||
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
|
||||
path = most_recent_uploaded['path']
|
||||
return path
|
||||
|
||||
@CatchException
|
||||
def 虚空终端CodeInterpreter(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,暂时没有用武之地
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
# 清空历史,以免输入溢出
|
||||
history = []; clear_file_downloadzone(chatbot)
|
||||
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"CodeInterpreter开源版, 此插件处于开发阶段, 建议暂时不要使用, 插件初始化中 ..."
|
||||
])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
if have_any_recent_upload_files(chatbot):
|
||||
file_path = get_recent_file_prompt_support(chatbot)
|
||||
else:
|
||||
chatbot.append(["文件检索", "没有发现任何近期上传的文件。"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 读取文件
|
||||
if ("recently_uploaded_files" in plugin_kwargs) and (plugin_kwargs["recently_uploaded_files"] == ""): plugin_kwargs.pop("recently_uploaded_files")
|
||||
recently_uploaded_files = plugin_kwargs.get("recently_uploaded_files", None)
|
||||
file_path = recently_uploaded_files[-1]
|
||||
file_type = file_path.split('.')[-1]
|
||||
|
||||
# 粗心检查
|
||||
if is_the_upload_folder(txt):
|
||||
chatbot.append([
|
||||
"...",
|
||||
f"请在输入框内填写需求,然后再次点击该插件(文件路径 {file_path} 已经被记忆)"
|
||||
])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 开始干正事
|
||||
for j in range(5): # 最多重试5次
|
||||
try:
|
||||
code, installation_advance, txt, file_type, llm_kwargs, chatbot, history = \
|
||||
yield from gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history)
|
||||
code = get_code_block(code)
|
||||
res = make_module(code)
|
||||
instance = init_module_instance(res)
|
||||
break
|
||||
except Exception as e:
|
||||
chatbot.append([f"第{j}次代码生成尝试,失败了", f"错误追踪\n```\n{trimmed_format_exc()}\n```\n"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 代码生成结束, 开始执行
|
||||
try:
|
||||
import multiprocessing
|
||||
manager = multiprocessing.Manager()
|
||||
return_dict = manager.dict()
|
||||
|
||||
p = multiprocessing.Process(target=subprocess_worker, args=(instance, file_path, return_dict))
|
||||
# only has 10 seconds to run
|
||||
p.start(); p.join(timeout=10)
|
||||
if p.is_alive(): p.terminate(); p.join()
|
||||
p.close()
|
||||
res = return_dict['result']
|
||||
# res = instance.run(file_path)
|
||||
except Exception as e:
|
||||
chatbot.append(["执行失败了", f"错误追踪\n```\n{trimmed_format_exc()}\n```\n"])
|
||||
# chatbot.append(["如果是缺乏依赖,请参考以下建议", installation_advance])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 顺利完成,收尾
|
||||
res = str(res)
|
||||
if os.path.exists(res):
|
||||
chatbot.append(["执行成功了,结果是一个有效文件", "结果:" + res])
|
||||
new_file_path = promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||
chatbot = for_immediate_show_off_when_possible(file_type, new_file_path, chatbot)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
else:
|
||||
chatbot.append(["执行成功了,结果是一个字符串", "结果:" + res])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
"""
|
||||
测试:
|
||||
裁剪图像,保留下半部分
|
||||
交换图像的蓝色通道和红色通道
|
||||
将图像转为灰度图像
|
||||
将csv文件转excel表格
|
||||
"""
|
||||
@@ -46,7 +46,7 @@ class PaperFileGroup():
|
||||
manifest.append(path + '.polish.tex')
|
||||
f.write(res)
|
||||
return manifest
|
||||
|
||||
|
||||
def zip_result(self):
|
||||
import os, time
|
||||
folder = os.path.dirname(self.file_paths[0])
|
||||
@@ -59,7 +59,7 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
|
||||
|
||||
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
|
||||
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
|
||||
pfg = PaperFileGroup()
|
||||
|
||||
for index, fp in enumerate(file_manifest):
|
||||
@@ -73,31 +73,31 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
||||
pfg.file_paths.append(fp)
|
||||
pfg.file_contents.append(clean_tex_content)
|
||||
|
||||
# <-------- 拆分过长的latex文件 ---------->
|
||||
# <-------- 拆分过长的latex文件 ---------->
|
||||
pfg.run_file_split(max_token_limit=1024)
|
||||
n_split = len(pfg.sp_file_contents)
|
||||
|
||||
|
||||
# <-------- 多线程润色开始 ---------->
|
||||
# <-------- 多线程润色开始 ---------->
|
||||
if language == 'en':
|
||||
if mode == 'polish':
|
||||
inputs_array = ["Below is a section from an academic paper, polish this section to meet the academic standard, " +
|
||||
"improve the grammar, clarity and overall readability, do not modify any latex command such as \section, \cite and equations:" +
|
||||
inputs_array = [r"Below is a section from an academic paper, polish this section to meet the academic standard, " +
|
||||
r"improve the grammar, clarity and overall readability, do not modify any latex command such as \section, \cite and equations:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
else:
|
||||
inputs_array = [r"Below is a section from an academic paper, proofread this section." +
|
||||
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " +
|
||||
r"Answer me only with the revised text:" +
|
||||
inputs_array = [r"Below is a section from an academic paper, proofread this section." +
|
||||
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " +
|
||||
r"Answer me only with the revised text:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
inputs_show_user_array = [f"Polish {f}" for f in pfg.sp_file_tag]
|
||||
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
|
||||
elif language == 'zh':
|
||||
if mode == 'polish':
|
||||
inputs_array = [f"以下是一篇学术论文中的一段内容,请将此部分润色以满足学术标准,提高语法、清晰度和整体可读性,不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
|
||||
inputs_array = [r"以下是一篇学术论文中的一段内容,请将此部分润色以满足学术标准,提高语法、清晰度和整体可读性,不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
else:
|
||||
inputs_array = [f"以下是一篇学术论文中的一段内容,请对这部分内容进行语法矫正。不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
inputs_array = [r"以下是一篇学术论文中的一段内容,请对这部分内容进行语法矫正。不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
inputs_show_user_array = [f"润色 {f}" for f in pfg.sp_file_tag]
|
||||
sys_prompt_array=["你是一位专业的中文学术论文作家。" for _ in range(n_split)]
|
||||
|
||||
@@ -113,7 +113,7 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
||||
scroller_max_len = 80
|
||||
)
|
||||
|
||||
# <-------- 文本碎片重组为完整的tex文件,整理结果为压缩包 ---------->
|
||||
# <-------- 文本碎片重组为完整的tex文件,整理结果为压缩包 ---------->
|
||||
try:
|
||||
pfg.sp_file_result = []
|
||||
for i_say, gpt_say in zip(gpt_response_collection[0::2], gpt_response_collection[1::2]):
|
||||
@@ -124,7 +124,7 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
|
||||
# <-------- 整理结果,退出 ---------->
|
||||
# <-------- 整理结果,退出 ---------->
|
||||
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
|
||||
res = write_history_to_file(gpt_response_collection, file_basename=create_report_file_name)
|
||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||
@@ -135,11 +135,11 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
||||
|
||||
|
||||
@CatchException
|
||||
def Latex英文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def Latex英文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"对整个Latex项目进行润色。函数插件贡献者: Binary-Husky。(注意,此插件不调用Latex,如果有Latex环境,请使用“Latex英文纠错+高亮”插件)"])
|
||||
"对整个Latex项目进行润色。函数插件贡献者: Binary-Husky。(注意,此插件不调用Latex,如果有Latex环境,请使用「Latex英文纠错+高亮修正位置(需Latex)插件」"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
@@ -173,7 +173,7 @@ def Latex英文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
|
||||
|
||||
|
||||
@CatchException
|
||||
def Latex中文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def Latex中文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
@@ -209,7 +209,7 @@ def Latex中文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
|
||||
|
||||
|
||||
@CatchException
|
||||
def Latex英文纠错(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def Latex英文纠错(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
|
||||
@@ -39,7 +39,7 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
||||
import time, os, re
|
||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
|
||||
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
|
||||
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
|
||||
pfg = PaperFileGroup()
|
||||
|
||||
for index, fp in enumerate(file_manifest):
|
||||
@@ -53,11 +53,11 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
||||
pfg.file_paths.append(fp)
|
||||
pfg.file_contents.append(clean_tex_content)
|
||||
|
||||
# <-------- 拆分过长的latex文件 ---------->
|
||||
# <-------- 拆分过长的latex文件 ---------->
|
||||
pfg.run_file_split(max_token_limit=1024)
|
||||
n_split = len(pfg.sp_file_contents)
|
||||
|
||||
# <-------- 抽取摘要 ---------->
|
||||
# <-------- 抽取摘要 ---------->
|
||||
# if language == 'en':
|
||||
# abs_extract_inputs = f"Please write an abstract for this paper"
|
||||
|
||||
@@ -70,14 +70,14 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
||||
# sys_prompt="Your job is to collect information from materials。",
|
||||
# )
|
||||
|
||||
# <-------- 多线程润色开始 ---------->
|
||||
# <-------- 多线程润色开始 ---------->
|
||||
if language == 'en->zh':
|
||||
inputs_array = ["Below is a section from an English academic paper, translate it into Chinese, do not modify any latex command such as \section, \cite and equations:" +
|
||||
inputs_array = ["Below is a section from an English academic paper, translate it into Chinese, do not modify any latex command such as \section, \cite and equations:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
||||
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
||||
elif language == 'zh->en':
|
||||
inputs_array = [f"Below is a section from a Chinese academic paper, translate it into English, do not modify any latex command such as \section, \cite and equations:" +
|
||||
inputs_array = [f"Below is a section from a Chinese academic paper, translate it into English, do not modify any latex command such as \section, \cite and equations:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
||||
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
||||
@@ -93,7 +93,7 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
||||
scroller_max_len = 80
|
||||
)
|
||||
|
||||
# <-------- 整理结果,退出 ---------->
|
||||
# <-------- 整理结果,退出 ---------->
|
||||
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
|
||||
res = write_history_to_file(gpt_response_collection, create_report_file_name)
|
||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||
@@ -106,7 +106,7 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
||||
|
||||
|
||||
@CatchException
|
||||
def Latex英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def Latex英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
@@ -143,7 +143,7 @@ def Latex英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
|
||||
|
||||
|
||||
@CatchException
|
||||
def Latex中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def Latex中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
|
||||
538
crazy_functions/Latex输出PDF.py
普通文件
538
crazy_functions/Latex输出PDF.py
普通文件
@@ -0,0 +1,538 @@
|
||||
from toolbox import update_ui, trimmed_format_exc, get_conf, get_log_folder, promote_file_to_downloadzone, check_repeat_upload, map_file_to_sha256
|
||||
from toolbox import CatchException, report_exception, update_ui_lastest_msg, zip_result, gen_time_str
|
||||
from functools import partial
|
||||
import glob, os, requests, time, json, tarfile
|
||||
|
||||
pj = os.path.join
|
||||
ARXIV_CACHE_DIR = os.path.expanduser(f"~/arxiv_cache/")
|
||||
|
||||
|
||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- 工具函数 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
# 专业词汇声明 = 'If the term "agent" is used in this section, it should be translated to "智能体". '
|
||||
def switch_prompt(pfg, mode, more_requirement):
|
||||
"""
|
||||
Generate prompts and system prompts based on the mode for proofreading or translating.
|
||||
Args:
|
||||
- pfg: Proofreader or Translator instance.
|
||||
- mode: A string specifying the mode, either 'proofread' or 'translate_zh'.
|
||||
|
||||
Returns:
|
||||
- inputs_array: A list of strings containing prompts for users to respond to.
|
||||
- sys_prompt_array: A list of strings containing prompts for system prompts.
|
||||
"""
|
||||
n_split = len(pfg.sp_file_contents)
|
||||
if mode == 'proofread_en':
|
||||
inputs_array = [r"Below is a section from an academic paper, proofread this section." +
|
||||
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " + more_requirement +
|
||||
r"Answer me only with the revised text:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
|
||||
elif mode == 'translate_zh':
|
||||
inputs_array = [
|
||||
r"Below is a section from an English academic paper, translate it into Chinese. " + more_requirement +
|
||||
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " +
|
||||
r"Answer me only with the translated text:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
sys_prompt_array = ["You are a professional translator." for _ in range(n_split)]
|
||||
else:
|
||||
assert False, "未知指令"
|
||||
return inputs_array, sys_prompt_array
|
||||
|
||||
|
||||
def desend_to_extracted_folder_if_exist(project_folder):
|
||||
"""
|
||||
Descend into the extracted folder if it exists, otherwise return the original folder.
|
||||
|
||||
Args:
|
||||
- project_folder: A string specifying the folder path.
|
||||
|
||||
Returns:
|
||||
- A string specifying the path to the extracted folder, or the original folder if there is no extracted folder.
|
||||
"""
|
||||
maybe_dir = [f for f in glob.glob(f'{project_folder}/*') if os.path.isdir(f)]
|
||||
if len(maybe_dir) == 0: return project_folder
|
||||
if maybe_dir[0].endswith('.extract'): return maybe_dir[0]
|
||||
return project_folder
|
||||
|
||||
|
||||
def move_project(project_folder, arxiv_id=None):
|
||||
"""
|
||||
Create a new work folder and copy the project folder to it.
|
||||
|
||||
Args:
|
||||
- project_folder: A string specifying the folder path of the project.
|
||||
|
||||
Returns:
|
||||
- A string specifying the path to the new work folder.
|
||||
"""
|
||||
import shutil, time
|
||||
time.sleep(2) # avoid time string conflict
|
||||
if arxiv_id is not None:
|
||||
new_workfolder = pj(ARXIV_CACHE_DIR, arxiv_id, 'workfolder')
|
||||
else:
|
||||
new_workfolder = f'{get_log_folder()}/{gen_time_str()}'
|
||||
try:
|
||||
shutil.rmtree(new_workfolder)
|
||||
except:
|
||||
pass
|
||||
|
||||
# align subfolder if there is a folder wrapper
|
||||
items = glob.glob(pj(project_folder, '*'))
|
||||
items = [item for item in items if os.path.basename(item) != '__MACOSX']
|
||||
if len(glob.glob(pj(project_folder, '*.tex'))) == 0 and len(items) == 1:
|
||||
if os.path.isdir(items[0]): project_folder = items[0]
|
||||
|
||||
shutil.copytree(src=project_folder, dst=new_workfolder)
|
||||
return new_workfolder
|
||||
|
||||
|
||||
def arxiv_download(chatbot, history, txt, allow_cache=True):
|
||||
def check_cached_translation_pdf(arxiv_id):
|
||||
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'translation')
|
||||
if not os.path.exists(translation_dir):
|
||||
os.makedirs(translation_dir)
|
||||
target_file = pj(translation_dir, 'translate_zh.pdf')
|
||||
if os.path.exists(target_file):
|
||||
promote_file_to_downloadzone(target_file, rename_file=None, chatbot=chatbot)
|
||||
target_file_compare = pj(translation_dir, 'comparison.pdf')
|
||||
if os.path.exists(target_file_compare):
|
||||
promote_file_to_downloadzone(target_file_compare, rename_file=None, chatbot=chatbot)
|
||||
return target_file
|
||||
return False
|
||||
|
||||
def is_float(s):
|
||||
try:
|
||||
float(s)
|
||||
return True
|
||||
except ValueError:
|
||||
return False
|
||||
|
||||
if ('.' in txt) and ('/' not in txt) and is_float(txt): # is arxiv ID
|
||||
txt = 'https://arxiv.org/abs/' + txt.strip()
|
||||
if ('.' in txt) and ('/' not in txt) and is_float(txt[:10]): # is arxiv ID
|
||||
txt = 'https://arxiv.org/abs/' + txt[:10]
|
||||
|
||||
if not txt.startswith('https://arxiv.org'):
|
||||
return txt, None # 是本地文件,跳过下载
|
||||
|
||||
# <-------------- inspect format ------------->
|
||||
chatbot.append([f"检测到arxiv文档连接", '尝试下载 ...'])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
time.sleep(1) # 刷新界面
|
||||
|
||||
url_ = txt # https://arxiv.org/abs/1707.06690
|
||||
if not txt.startswith('https://arxiv.org/abs/'):
|
||||
msg = f"解析arxiv网址失败, 期望格式例如: https://arxiv.org/abs/1707.06690。实际得到格式: {url_}。"
|
||||
yield from update_ui_lastest_msg(msg, chatbot=chatbot, history=history) # 刷新界面
|
||||
return msg, None
|
||||
# <-------------- set format ------------->
|
||||
arxiv_id = url_.split('/abs/')[-1]
|
||||
if 'v' in arxiv_id: arxiv_id = arxiv_id[:10]
|
||||
cached_translation_pdf = check_cached_translation_pdf(arxiv_id)
|
||||
if cached_translation_pdf and allow_cache: return cached_translation_pdf, arxiv_id
|
||||
|
||||
url_tar = url_.replace('/abs/', '/e-print/')
|
||||
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'e-print')
|
||||
extract_dst = pj(ARXIV_CACHE_DIR, arxiv_id, 'extract')
|
||||
os.makedirs(translation_dir, exist_ok=True)
|
||||
|
||||
# <-------------- download arxiv source file ------------->
|
||||
dst = pj(translation_dir, arxiv_id + '.tar')
|
||||
if os.path.exists(dst):
|
||||
yield from update_ui_lastest_msg("调用缓存", chatbot=chatbot, history=history) # 刷新界面
|
||||
else:
|
||||
yield from update_ui_lastest_msg("开始下载", chatbot=chatbot, history=history) # 刷新界面
|
||||
proxies = get_conf('proxies')
|
||||
r = requests.get(url_tar, proxies=proxies)
|
||||
with open(dst, 'wb+') as f:
|
||||
f.write(r.content)
|
||||
# <-------------- extract file ------------->
|
||||
yield from update_ui_lastest_msg("下载完成", chatbot=chatbot, history=history) # 刷新界面
|
||||
from toolbox import extract_archive
|
||||
extract_archive(file_path=dst, dest_dir=extract_dst)
|
||||
return extract_dst, arxiv_id
|
||||
|
||||
|
||||
def pdf2tex_project(pdf_file_path):
|
||||
# Mathpix API credentials
|
||||
app_id, app_key = get_conf('MATHPIX_APPID', 'MATHPIX_APPKEY')
|
||||
headers = {"app_id": app_id, "app_key": app_key}
|
||||
|
||||
# Step 1: Send PDF file for processing
|
||||
options = {
|
||||
"conversion_formats": {"tex.zip": True},
|
||||
"math_inline_delimiters": ["$", "$"],
|
||||
"rm_spaces": True
|
||||
}
|
||||
|
||||
response = requests.post(url="https://api.mathpix.com/v3/pdf",
|
||||
headers=headers,
|
||||
data={"options_json": json.dumps(options)},
|
||||
files={"file": open(pdf_file_path, "rb")})
|
||||
|
||||
if response.ok:
|
||||
pdf_id = response.json()["pdf_id"]
|
||||
print(f"PDF processing initiated. PDF ID: {pdf_id}")
|
||||
|
||||
# Step 2: Check processing status
|
||||
while True:
|
||||
conversion_response = requests.get(f"https://api.mathpix.com/v3/pdf/{pdf_id}", headers=headers)
|
||||
conversion_data = conversion_response.json()
|
||||
|
||||
if conversion_data["status"] == "completed":
|
||||
print("PDF processing completed.")
|
||||
break
|
||||
elif conversion_data["status"] == "error":
|
||||
print("Error occurred during processing.")
|
||||
else:
|
||||
print(f"Processing status: {conversion_data['status']}")
|
||||
time.sleep(5) # wait for a few seconds before checking again
|
||||
|
||||
# Step 3: Save results to local files
|
||||
output_dir = os.path.join(os.path.dirname(pdf_file_path), 'mathpix_output')
|
||||
if not os.path.exists(output_dir):
|
||||
os.makedirs(output_dir)
|
||||
|
||||
url = f"https://api.mathpix.com/v3/pdf/{pdf_id}.tex"
|
||||
response = requests.get(url, headers=headers)
|
||||
file_name_wo_dot = '_'.join(os.path.basename(pdf_file_path).split('.')[:-1])
|
||||
output_name = f"{file_name_wo_dot}.tex.zip"
|
||||
output_path = os.path.join(output_dir, output_name)
|
||||
with open(output_path, "wb") as output_file:
|
||||
output_file.write(response.content)
|
||||
print(f"tex.zip file saved at: {output_path}")
|
||||
|
||||
import zipfile
|
||||
unzip_dir = os.path.join(output_dir, file_name_wo_dot)
|
||||
with zipfile.ZipFile(output_path, 'r') as zip_ref:
|
||||
zip_ref.extractall(unzip_dir)
|
||||
|
||||
return unzip_dir
|
||||
|
||||
else:
|
||||
print(f"Error sending PDF for processing. Status code: {response.status_code}")
|
||||
return None
|
||||
|
||||
|
||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序1 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
|
||||
|
||||
@CatchException
|
||||
def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# <-------------- information about this plugin ------------->
|
||||
chatbot.append(["函数插件功能?",
|
||||
"对整个Latex项目进行纠错, 用latex编译为PDF对修正处做高亮。函数插件贡献者: Binary-Husky。注意事项: 目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。仅在Windows系统进行了测试,其他操作系统表现未知。"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# <-------------- more requirements ------------->
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
more_req = plugin_kwargs.get("advanced_arg", "")
|
||||
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
|
||||
|
||||
# <-------------- check deps ------------->
|
||||
try:
|
||||
import glob, os, time, subprocess
|
||||
subprocess.Popen(['pdflatex', '-version'])
|
||||
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
|
||||
except Exception as e:
|
||||
chatbot.append([f"解析项目: {txt}",
|
||||
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# <-------------- clear history and read input ------------->
|
||||
history = []
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# <-------------- if is a zip/tar file ------------->
|
||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
||||
|
||||
# <-------------- move latex project away from temp folder ------------->
|
||||
project_folder = move_project(project_folder, arxiv_id=None)
|
||||
|
||||
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
||||
if not os.path.exists(project_folder + '/merge_proofread_en.tex'):
|
||||
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
||||
chatbot, history, system_prompt, mode='proofread_en',
|
||||
switch_prompt=_switch_prompt_)
|
||||
|
||||
# <-------------- compile PDF ------------->
|
||||
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
|
||||
main_file_modified='merge_proofread_en',
|
||||
work_folder_original=project_folder, work_folder_modified=project_folder,
|
||||
work_folder=project_folder)
|
||||
|
||||
# <-------------- zip PDF ------------->
|
||||
zip_res = zip_result(project_folder)
|
||||
if success:
|
||||
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history);
|
||||
time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
else:
|
||||
chatbot.append((f"失败了",
|
||||
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 也是可读的, 您可以到Github Issue区, 用该压缩包+对话历史存档进行反馈 ...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history);
|
||||
time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
|
||||
# <-------------- we are done ------------->
|
||||
return success
|
||||
|
||||
|
||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序2 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
|
||||
@CatchException
|
||||
def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# <-------------- information about this plugin ------------->
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"对整个Latex项目进行翻译, 生成中文PDF。函数插件贡献者: Binary-Husky。注意事项: 此插件Windows支持最佳,Linux下必须使用Docker安装,详见项目主README.md。目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# <-------------- more requirements ------------->
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
more_req = plugin_kwargs.get("advanced_arg", "")
|
||||
no_cache = more_req.startswith("--no-cache")
|
||||
if no_cache: more_req.lstrip("--no-cache")
|
||||
allow_cache = not no_cache
|
||||
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
|
||||
|
||||
# <-------------- check deps ------------->
|
||||
try:
|
||||
import glob, os, time, subprocess
|
||||
subprocess.Popen(['pdflatex', '-version'])
|
||||
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
|
||||
except Exception as e:
|
||||
chatbot.append([f"解析项目: {txt}",
|
||||
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# <-------------- clear history and read input ------------->
|
||||
history = []
|
||||
try:
|
||||
txt, arxiv_id = yield from arxiv_download(chatbot, history, txt, allow_cache)
|
||||
except tarfile.ReadError as e:
|
||||
yield from update_ui_lastest_msg(
|
||||
"无法自动下载该论文的Latex源码,请前往arxiv打开此论文下载页面,点other Formats,然后download source手动下载latex源码包。接下来调用本地Latex翻译插件即可。",
|
||||
chatbot=chatbot, history=history)
|
||||
return
|
||||
|
||||
if txt.endswith('.pdf'):
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"发现已经存在翻译好的PDF文档")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无法处理: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# <-------------- if is a zip/tar file ------------->
|
||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
||||
|
||||
# <-------------- move latex project away from temp folder ------------->
|
||||
project_folder = move_project(project_folder, arxiv_id)
|
||||
|
||||
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
||||
if not os.path.exists(project_folder + '/merge_translate_zh.tex'):
|
||||
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
||||
chatbot, history, system_prompt, mode='translate_zh',
|
||||
switch_prompt=_switch_prompt_)
|
||||
|
||||
# <-------------- compile PDF ------------->
|
||||
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
|
||||
main_file_modified='merge_translate_zh', mode='translate_zh',
|
||||
work_folder_original=project_folder, work_folder_modified=project_folder,
|
||||
work_folder=project_folder)
|
||||
|
||||
# <-------------- zip PDF ------------->
|
||||
zip_res = zip_result(project_folder)
|
||||
if success:
|
||||
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history);
|
||||
time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
else:
|
||||
chatbot.append((f"失败了",
|
||||
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体(见Github wiki) ...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history);
|
||||
time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
|
||||
# <-------------- we are done ------------->
|
||||
return success
|
||||
|
||||
|
||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- 插件主程序3 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
|
||||
@CatchException
|
||||
def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
# <-------------- information about this plugin ------------->
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"将PDF转换为Latex项目,翻译为中文后重新编译为PDF。函数插件贡献者: Marroh。注意事项: 此插件Windows支持最佳,Linux下必须使用Docker安装,详见项目主README.md。目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# <-------------- more requirements ------------->
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
more_req = plugin_kwargs.get("advanced_arg", "")
|
||||
no_cache = more_req.startswith("--no-cache")
|
||||
if no_cache: more_req.lstrip("--no-cache")
|
||||
allow_cache = not no_cache
|
||||
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
|
||||
|
||||
# <-------------- check deps ------------->
|
||||
try:
|
||||
import glob, os, time, subprocess
|
||||
subprocess.Popen(['pdflatex', '-version'])
|
||||
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
|
||||
except Exception as e:
|
||||
chatbot.append([f"解析项目: {txt}",
|
||||
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# <-------------- clear history and read input ------------->
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无法处理: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.pdf文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
if len(file_manifest) != 1:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"不支持同时处理多个pdf文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
app_id, app_key = get_conf('MATHPIX_APPID', 'MATHPIX_APPKEY')
|
||||
if len(app_id) == 0 or len(app_key) == 0:
|
||||
report_exception(chatbot, history, a="缺失 MATHPIX_APPID 和 MATHPIX_APPKEY。", b=f"请配置 MATHPIX_APPID 和 MATHPIX_APPKEY")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
hash_tag = map_file_to_sha256(file_manifest[0])
|
||||
|
||||
# <-------------- check repeated pdf ------------->
|
||||
chatbot.append([f"检查PDF是否被重复上传", "正在检查..."])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
repeat, project_folder = check_repeat_upload(file_manifest[0], hash_tag)
|
||||
|
||||
except_flag = False
|
||||
|
||||
if repeat:
|
||||
yield from update_ui_lastest_msg(f"发现重复上传,请查收结果(压缩包)...", chatbot=chatbot, history=history)
|
||||
|
||||
try:
|
||||
trans_html_file = [f for f in glob.glob(f'{project_folder}/**/*.trans.html', recursive=True)][0]
|
||||
promote_file_to_downloadzone(trans_html_file, rename_file=None, chatbot=chatbot)
|
||||
|
||||
translate_pdf = [f for f in glob.glob(f'{project_folder}/**/merge_translate_zh.pdf', recursive=True)][0]
|
||||
promote_file_to_downloadzone(translate_pdf, rename_file=None, chatbot=chatbot)
|
||||
|
||||
comparison_pdf = [f for f in glob.glob(f'{project_folder}/**/comparison.pdf', recursive=True)][0]
|
||||
promote_file_to_downloadzone(comparison_pdf, rename_file=None, chatbot=chatbot)
|
||||
|
||||
zip_res = zip_result(project_folder)
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
|
||||
return True
|
||||
|
||||
except:
|
||||
report_exception(chatbot, history, b=f"发现重复上传,但是无法找到相关文件")
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
chatbot.append([f"没有相关文件", '尝试重新翻译PDF...'])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
except_flag = True
|
||||
|
||||
|
||||
elif not repeat or except_flag:
|
||||
yield from update_ui_lastest_msg(f"未发现重复上传", chatbot=chatbot, history=history)
|
||||
|
||||
# <-------------- convert pdf into tex ------------->
|
||||
chatbot.append([f"解析项目: {txt}", "正在将PDF转换为tex项目,请耐心等待..."])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
project_folder = pdf2tex_project(file_manifest[0])
|
||||
if project_folder is None:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"PDF转换为tex项目失败")
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
return False
|
||||
|
||||
# <-------------- translate latex file into Chinese ------------->
|
||||
yield from update_ui_lastest_msg("正在tex项目将翻译为中文...", chatbot=chatbot, history=history)
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# <-------------- if is a zip/tar file ------------->
|
||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
||||
|
||||
# <-------------- move latex project away from temp folder ------------->
|
||||
project_folder = move_project(project_folder)
|
||||
|
||||
# <-------------- set a hash tag for repeat-checking ------------->
|
||||
with open(pj(project_folder, hash_tag + '.tag'), 'w') as f:
|
||||
f.write(hash_tag)
|
||||
f.close()
|
||||
|
||||
|
||||
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
||||
if not os.path.exists(project_folder + '/merge_translate_zh.tex'):
|
||||
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
||||
chatbot, history, system_prompt, mode='translate_zh',
|
||||
switch_prompt=_switch_prompt_)
|
||||
|
||||
# <-------------- compile PDF ------------->
|
||||
yield from update_ui_lastest_msg("正在将翻译好的项目tex项目编译为PDF...", chatbot=chatbot, history=history)
|
||||
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
|
||||
main_file_modified='merge_translate_zh', mode='translate_zh',
|
||||
work_folder_original=project_folder, work_folder_modified=project_folder,
|
||||
work_folder=project_folder)
|
||||
|
||||
# <-------------- zip PDF ------------->
|
||||
zip_res = zip_result(project_folder)
|
||||
if success:
|
||||
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history);
|
||||
time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
else:
|
||||
chatbot.append((f"失败了",
|
||||
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体(见Github wiki) ...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history);
|
||||
time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
|
||||
# <-------------- we are done ------------->
|
||||
return success
|
||||
@@ -1,306 +0,0 @@
|
||||
from toolbox import update_ui, trimmed_format_exc, get_conf, get_log_folder, promote_file_to_downloadzone
|
||||
from toolbox import CatchException, report_exception, update_ui_lastest_msg, zip_result, gen_time_str
|
||||
from functools import partial
|
||||
import glob, os, requests, time
|
||||
pj = os.path.join
|
||||
ARXIV_CACHE_DIR = os.path.expanduser(f"~/arxiv_cache/")
|
||||
|
||||
# =================================== 工具函数 ===============================================
|
||||
# 专业词汇声明 = 'If the term "agent" is used in this section, it should be translated to "智能体". '
|
||||
def switch_prompt(pfg, mode, more_requirement):
|
||||
"""
|
||||
Generate prompts and system prompts based on the mode for proofreading or translating.
|
||||
Args:
|
||||
- pfg: Proofreader or Translator instance.
|
||||
- mode: A string specifying the mode, either 'proofread' or 'translate_zh'.
|
||||
|
||||
Returns:
|
||||
- inputs_array: A list of strings containing prompts for users to respond to.
|
||||
- sys_prompt_array: A list of strings containing prompts for system prompts.
|
||||
"""
|
||||
n_split = len(pfg.sp_file_contents)
|
||||
if mode == 'proofread_en':
|
||||
inputs_array = [r"Below is a section from an academic paper, proofread this section." +
|
||||
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " + more_requirement +
|
||||
r"Answer me only with the revised text:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
|
||||
elif mode == 'translate_zh':
|
||||
inputs_array = [r"Below is a section from an English academic paper, translate it into Chinese. " + more_requirement +
|
||||
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " +
|
||||
r"Answer me only with the translated text:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
sys_prompt_array = ["You are a professional translator." for _ in range(n_split)]
|
||||
else:
|
||||
assert False, "未知指令"
|
||||
return inputs_array, sys_prompt_array
|
||||
|
||||
def desend_to_extracted_folder_if_exist(project_folder):
|
||||
"""
|
||||
Descend into the extracted folder if it exists, otherwise return the original folder.
|
||||
|
||||
Args:
|
||||
- project_folder: A string specifying the folder path.
|
||||
|
||||
Returns:
|
||||
- A string specifying the path to the extracted folder, or the original folder if there is no extracted folder.
|
||||
"""
|
||||
maybe_dir = [f for f in glob.glob(f'{project_folder}/*') if os.path.isdir(f)]
|
||||
if len(maybe_dir) == 0: return project_folder
|
||||
if maybe_dir[0].endswith('.extract'): return maybe_dir[0]
|
||||
return project_folder
|
||||
|
||||
def move_project(project_folder, arxiv_id=None):
|
||||
"""
|
||||
Create a new work folder and copy the project folder to it.
|
||||
|
||||
Args:
|
||||
- project_folder: A string specifying the folder path of the project.
|
||||
|
||||
Returns:
|
||||
- A string specifying the path to the new work folder.
|
||||
"""
|
||||
import shutil, time
|
||||
time.sleep(2) # avoid time string conflict
|
||||
if arxiv_id is not None:
|
||||
new_workfolder = pj(ARXIV_CACHE_DIR, arxiv_id, 'workfolder')
|
||||
else:
|
||||
new_workfolder = f'{get_log_folder()}/{gen_time_str()}'
|
||||
try:
|
||||
shutil.rmtree(new_workfolder)
|
||||
except:
|
||||
pass
|
||||
|
||||
# align subfolder if there is a folder wrapper
|
||||
items = glob.glob(pj(project_folder,'*'))
|
||||
items = [item for item in items if os.path.basename(item)!='__MACOSX']
|
||||
if len(glob.glob(pj(project_folder,'*.tex'))) == 0 and len(items) == 1:
|
||||
if os.path.isdir(items[0]): project_folder = items[0]
|
||||
|
||||
shutil.copytree(src=project_folder, dst=new_workfolder)
|
||||
return new_workfolder
|
||||
|
||||
def arxiv_download(chatbot, history, txt, allow_cache=True):
|
||||
def check_cached_translation_pdf(arxiv_id):
|
||||
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'translation')
|
||||
if not os.path.exists(translation_dir):
|
||||
os.makedirs(translation_dir)
|
||||
target_file = pj(translation_dir, 'translate_zh.pdf')
|
||||
if os.path.exists(target_file):
|
||||
promote_file_to_downloadzone(target_file, rename_file=None, chatbot=chatbot)
|
||||
target_file_compare = pj(translation_dir, 'comparison.pdf')
|
||||
if os.path.exists(target_file_compare):
|
||||
promote_file_to_downloadzone(target_file_compare, rename_file=None, chatbot=chatbot)
|
||||
return target_file
|
||||
return False
|
||||
def is_float(s):
|
||||
try:
|
||||
float(s)
|
||||
return True
|
||||
except ValueError:
|
||||
return False
|
||||
if ('.' in txt) and ('/' not in txt) and is_float(txt): # is arxiv ID
|
||||
txt = 'https://arxiv.org/abs/' + txt.strip()
|
||||
if ('.' in txt) and ('/' not in txt) and is_float(txt[:10]): # is arxiv ID
|
||||
txt = 'https://arxiv.org/abs/' + txt[:10]
|
||||
if not txt.startswith('https://arxiv.org'):
|
||||
return txt, None
|
||||
|
||||
# <-------------- inspect format ------------->
|
||||
chatbot.append([f"检测到arxiv文档连接", '尝试下载 ...'])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
time.sleep(1) # 刷新界面
|
||||
|
||||
url_ = txt # https://arxiv.org/abs/1707.06690
|
||||
if not txt.startswith('https://arxiv.org/abs/'):
|
||||
msg = f"解析arxiv网址失败, 期望格式例如: https://arxiv.org/abs/1707.06690。实际得到格式: {url_}。"
|
||||
yield from update_ui_lastest_msg(msg, chatbot=chatbot, history=history) # 刷新界面
|
||||
return msg, None
|
||||
# <-------------- set format ------------->
|
||||
arxiv_id = url_.split('/abs/')[-1]
|
||||
if 'v' in arxiv_id: arxiv_id = arxiv_id[:10]
|
||||
cached_translation_pdf = check_cached_translation_pdf(arxiv_id)
|
||||
if cached_translation_pdf and allow_cache: return cached_translation_pdf, arxiv_id
|
||||
|
||||
url_tar = url_.replace('/abs/', '/e-print/')
|
||||
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'e-print')
|
||||
extract_dst = pj(ARXIV_CACHE_DIR, arxiv_id, 'extract')
|
||||
os.makedirs(translation_dir, exist_ok=True)
|
||||
|
||||
# <-------------- download arxiv source file ------------->
|
||||
dst = pj(translation_dir, arxiv_id+'.tar')
|
||||
if os.path.exists(dst):
|
||||
yield from update_ui_lastest_msg("调用缓存", chatbot=chatbot, history=history) # 刷新界面
|
||||
else:
|
||||
yield from update_ui_lastest_msg("开始下载", chatbot=chatbot, history=history) # 刷新界面
|
||||
proxies = get_conf('proxies')
|
||||
r = requests.get(url_tar, proxies=proxies)
|
||||
with open(dst, 'wb+') as f:
|
||||
f.write(r.content)
|
||||
# <-------------- extract file ------------->
|
||||
yield from update_ui_lastest_msg("下载完成", chatbot=chatbot, history=history) # 刷新界面
|
||||
from toolbox import extract_archive
|
||||
extract_archive(file_path=dst, dest_dir=extract_dst)
|
||||
return extract_dst, arxiv_id
|
||||
# ========================================= 插件主程序1 =====================================================
|
||||
|
||||
|
||||
@CatchException
|
||||
def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
# <-------------- information about this plugin ------------->
|
||||
chatbot.append([ "函数插件功能?",
|
||||
"对整个Latex项目进行纠错, 用latex编译为PDF对修正处做高亮。函数插件贡献者: Binary-Husky。注意事项: 目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。仅在Windows系统进行了测试,其他操作系统表现未知。"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# <-------------- more requirements ------------->
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
more_req = plugin_kwargs.get("advanced_arg", "")
|
||||
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
|
||||
|
||||
# <-------------- check deps ------------->
|
||||
try:
|
||||
import glob, os, time, subprocess
|
||||
subprocess.Popen(['pdflatex', '-version'])
|
||||
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
|
||||
except Exception as e:
|
||||
chatbot.append([ f"解析项目: {txt}",
|
||||
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
# <-------------- clear history and read input ------------->
|
||||
history = []
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
# <-------------- if is a zip/tar file ------------->
|
||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
||||
|
||||
|
||||
# <-------------- move latex project away from temp folder ------------->
|
||||
project_folder = move_project(project_folder, arxiv_id=None)
|
||||
|
||||
|
||||
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
||||
if not os.path.exists(project_folder + '/merge_proofread_en.tex'):
|
||||
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
||||
chatbot, history, system_prompt, mode='proofread_en', switch_prompt=_switch_prompt_)
|
||||
|
||||
|
||||
# <-------------- compile PDF ------------->
|
||||
success = yield from 编译Latex(chatbot, history, main_file_original='merge', main_file_modified='merge_proofread_en',
|
||||
work_folder_original=project_folder, work_folder_modified=project_folder, work_folder=project_folder)
|
||||
|
||||
|
||||
# <-------------- zip PDF ------------->
|
||||
zip_res = zip_result(project_folder)
|
||||
if success:
|
||||
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
else:
|
||||
chatbot.append((f"失败了", '虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 也是可读的, 您可以到Github Issue区, 用该压缩包+对话历史存档进行反馈 ...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
|
||||
# <-------------- we are done ------------->
|
||||
return success
|
||||
|
||||
# ========================================= 插件主程序2 =====================================================
|
||||
|
||||
@CatchException
|
||||
def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
# <-------------- information about this plugin ------------->
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"对整个Latex项目进行翻译, 生成中文PDF。函数插件贡献者: Binary-Husky。注意事项: 此插件Windows支持最佳,Linux下必须使用Docker安装,详见项目主README.md。目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# <-------------- more requirements ------------->
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
more_req = plugin_kwargs.get("advanced_arg", "")
|
||||
no_cache = more_req.startswith("--no-cache")
|
||||
if no_cache: more_req.lstrip("--no-cache")
|
||||
allow_cache = not no_cache
|
||||
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
|
||||
|
||||
# <-------------- check deps ------------->
|
||||
try:
|
||||
import glob, os, time, subprocess
|
||||
subprocess.Popen(['pdflatex', '-version'])
|
||||
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
|
||||
except Exception as e:
|
||||
chatbot.append([ f"解析项目: {txt}",
|
||||
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
# <-------------- clear history and read input ------------->
|
||||
history = []
|
||||
txt, arxiv_id = yield from arxiv_download(chatbot, history, txt, allow_cache)
|
||||
if txt.endswith('.pdf'):
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"发现已经存在翻译好的PDF文档")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无法处理: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
# <-------------- if is a zip/tar file ------------->
|
||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
||||
|
||||
|
||||
# <-------------- move latex project away from temp folder ------------->
|
||||
project_folder = move_project(project_folder, arxiv_id)
|
||||
|
||||
|
||||
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
||||
if not os.path.exists(project_folder + '/merge_translate_zh.tex'):
|
||||
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
||||
chatbot, history, system_prompt, mode='translate_zh', switch_prompt=_switch_prompt_)
|
||||
|
||||
|
||||
# <-------------- compile PDF ------------->
|
||||
success = yield from 编译Latex(chatbot, history, main_file_original='merge', main_file_modified='merge_translate_zh', mode='translate_zh',
|
||||
work_folder_original=project_folder, work_folder_modified=project_folder, work_folder=project_folder)
|
||||
|
||||
# <-------------- zip PDF ------------->
|
||||
zip_res = zip_result(project_folder)
|
||||
if success:
|
||||
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
else:
|
||||
chatbot.append((f"失败了", '虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体(见Github wiki) ...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
|
||||
|
||||
# <-------------- we are done ------------->
|
||||
return success
|
||||
@@ -35,7 +35,11 @@ def gpt_academic_generate_oai_reply(
|
||||
class AutoGenGeneral(PluginMultiprocessManager):
|
||||
def gpt_academic_print_override(self, user_proxy, message, sender):
|
||||
# ⭐⭐ run in subprocess
|
||||
self.child_conn.send(PipeCom("show", sender.name + "\n\n---\n\n" + message["content"]))
|
||||
try:
|
||||
print_msg = sender.name + "\n\n---\n\n" + message["content"]
|
||||
except:
|
||||
print_msg = sender.name + "\n\n---\n\n" + message
|
||||
self.child_conn.send(PipeCom("show", print_msg))
|
||||
|
||||
def gpt_academic_get_human_input(self, user_proxy, message):
|
||||
# ⭐⭐ run in subprocess
|
||||
@@ -62,33 +66,33 @@ class AutoGenGeneral(PluginMultiprocessManager):
|
||||
def exe_autogen(self, input):
|
||||
# ⭐⭐ run in subprocess
|
||||
input = input.content
|
||||
with ProxyNetworkActivate("AutoGen"):
|
||||
code_execution_config = {"work_dir": self.autogen_work_dir, "use_docker": self.use_docker}
|
||||
agents = self.define_agents()
|
||||
user_proxy = None
|
||||
assistant = None
|
||||
for agent_kwargs in agents:
|
||||
agent_cls = agent_kwargs.pop('cls')
|
||||
kwargs = {
|
||||
'llm_config':self.llm_kwargs,
|
||||
'code_execution_config':code_execution_config
|
||||
}
|
||||
kwargs.update(agent_kwargs)
|
||||
agent_handle = agent_cls(**kwargs)
|
||||
agent_handle._print_received_message = lambda a,b: self.gpt_academic_print_override(agent_kwargs, a, b)
|
||||
for d in agent_handle._reply_func_list:
|
||||
if hasattr(d['reply_func'],'__name__') and d['reply_func'].__name__ == 'generate_oai_reply':
|
||||
d['reply_func'] = gpt_academic_generate_oai_reply
|
||||
if agent_kwargs['name'] == 'user_proxy':
|
||||
agent_handle.get_human_input = lambda a: self.gpt_academic_get_human_input(user_proxy, a)
|
||||
user_proxy = agent_handle
|
||||
if agent_kwargs['name'] == 'assistant': assistant = agent_handle
|
||||
try:
|
||||
if user_proxy is None or assistant is None: raise Exception("用户代理或助理代理未定义")
|
||||
code_execution_config = {"work_dir": self.autogen_work_dir, "use_docker": self.use_docker}
|
||||
agents = self.define_agents()
|
||||
user_proxy = None
|
||||
assistant = None
|
||||
for agent_kwargs in agents:
|
||||
agent_cls = agent_kwargs.pop('cls')
|
||||
kwargs = {
|
||||
'llm_config':self.llm_kwargs,
|
||||
'code_execution_config':code_execution_config
|
||||
}
|
||||
kwargs.update(agent_kwargs)
|
||||
agent_handle = agent_cls(**kwargs)
|
||||
agent_handle._print_received_message = lambda a,b: self.gpt_academic_print_override(agent_kwargs, a, b)
|
||||
for d in agent_handle._reply_func_list:
|
||||
if hasattr(d['reply_func'],'__name__') and d['reply_func'].__name__ == 'generate_oai_reply':
|
||||
d['reply_func'] = gpt_academic_generate_oai_reply
|
||||
if agent_kwargs['name'] == 'user_proxy':
|
||||
agent_handle.get_human_input = lambda a: self.gpt_academic_get_human_input(user_proxy, a)
|
||||
user_proxy = agent_handle
|
||||
if agent_kwargs['name'] == 'assistant': assistant = agent_handle
|
||||
try:
|
||||
if user_proxy is None or assistant is None: raise Exception("用户代理或助理代理未定义")
|
||||
with ProxyNetworkActivate("AutoGen"):
|
||||
user_proxy.initiate_chat(assistant, message=input)
|
||||
except Exception as e:
|
||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
self.child_conn.send(PipeCom("done", "AutoGen 执行失败: \n\n" + tb_str))
|
||||
except Exception as e:
|
||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
self.child_conn.send(PipeCom("done", "AutoGen 执行失败: \n\n" + tb_str))
|
||||
|
||||
def subprocess_worker(self, child_conn):
|
||||
# ⭐⭐ run in subprocess
|
||||
|
||||
@@ -9,7 +9,7 @@ class PipeCom:
|
||||
|
||||
|
||||
class PluginMultiprocessManager:
|
||||
def __init__(self, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def __init__(self, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# ⭐ run in main process
|
||||
self.autogen_work_dir = os.path.join(get_log_folder("autogen"), gen_time_str())
|
||||
self.previous_work_dir_files = {}
|
||||
@@ -18,7 +18,7 @@ class PluginMultiprocessManager:
|
||||
self.chatbot = chatbot
|
||||
self.history = history
|
||||
self.system_prompt = system_prompt
|
||||
# self.web_port = web_port
|
||||
# self.user_request = user_request
|
||||
self.alive = True
|
||||
self.use_docker = get_conf("AUTOGEN_USE_DOCKER")
|
||||
self.last_user_input = ""
|
||||
@@ -72,7 +72,7 @@ class PluginMultiprocessManager:
|
||||
if file_type.lower() in ['png', 'jpg']:
|
||||
image_path = os.path.abspath(fp)
|
||||
self.chatbot.append([
|
||||
'检测到新生图像:',
|
||||
'检测到新生图像:',
|
||||
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
|
||||
])
|
||||
yield from update_ui(chatbot=self.chatbot, history=self.history)
|
||||
@@ -114,21 +114,21 @@ class PluginMultiprocessManager:
|
||||
self.cnt = 1
|
||||
self.parent_conn = self.launch_subprocess_with_pipe() # ⭐⭐⭐
|
||||
repeated, cmd_to_autogen = self.send_command(txt)
|
||||
if txt == 'exit':
|
||||
if txt == 'exit':
|
||||
self.chatbot.append([f"结束", "结束信号已明确,终止AutoGen程序。"])
|
||||
yield from update_ui(chatbot=self.chatbot, history=self.history)
|
||||
self.terminate()
|
||||
return "terminate"
|
||||
|
||||
|
||||
# patience = 10
|
||||
|
||||
|
||||
while True:
|
||||
time.sleep(0.5)
|
||||
if not self.alive:
|
||||
# the heartbeat watchdog might have it killed
|
||||
self.terminate()
|
||||
return "terminate"
|
||||
if self.parent_conn.poll():
|
||||
if self.parent_conn.poll():
|
||||
self.feed_heartbeat_watchdog()
|
||||
if "[GPT-Academic] 等待中" in self.chatbot[-1][-1]:
|
||||
self.chatbot.pop(-1) # remove the last line
|
||||
@@ -152,8 +152,8 @@ class PluginMultiprocessManager:
|
||||
yield from update_ui(chatbot=self.chatbot, history=self.history)
|
||||
if msg.cmd == "interact":
|
||||
yield from self.overwatch_workdir_file_change()
|
||||
self.chatbot.append([f"程序抵达用户反馈节点.", msg.content +
|
||||
"\n\n等待您的进一步指令." +
|
||||
self.chatbot.append([f"程序抵达用户反馈节点.", msg.content +
|
||||
"\n\n等待您的进一步指令." +
|
||||
"\n\n(1) 一般情况下您不需要说什么, 清空输入区, 然后直接点击“提交”以继续. " +
|
||||
"\n\n(2) 如果您需要补充些什么, 输入要反馈的内容, 直接点击“提交”以继续. " +
|
||||
"\n\n(3) 如果您想终止程序, 输入exit, 直接点击“提交”以终止AutoGen并解锁. "
|
||||
|
||||
@@ -8,7 +8,7 @@ class WatchDog():
|
||||
self.interval = interval
|
||||
self.msg = msg
|
||||
self.kill_dog = False
|
||||
|
||||
|
||||
def watch(self):
|
||||
while True:
|
||||
if self.kill_dog: break
|
||||
|
||||
@@ -32,7 +32,7 @@ def string_to_options(arguments):
|
||||
return args
|
||||
|
||||
@CatchException
|
||||
def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
@@ -40,13 +40,13 @@ def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成"))
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
args = plugin_kwargs.get("advanced_arg", None)
|
||||
if args is None:
|
||||
if args is None:
|
||||
chatbot.append(("没给定指令", "退出"))
|
||||
yield from update_ui(chatbot=chatbot, history=history); return
|
||||
else:
|
||||
@@ -69,7 +69,7 @@ def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
sys_prompt_array=[arguments.system_prompt for _ in (batch)],
|
||||
max_workers=10 # OpenAI所允许的最大并行过载
|
||||
)
|
||||
|
||||
|
||||
with open(txt+'.generated.json', 'a+', encoding='utf8') as f:
|
||||
for b, r in zip(batch, res[1::2]):
|
||||
f.write(json.dumps({"content":b, "summary":r}, ensure_ascii=False)+'\n')
|
||||
@@ -80,7 +80,7 @@ def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
|
||||
|
||||
@CatchException
|
||||
def 启动微调(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 启动微调(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
@@ -88,19 +88,19 @@ def 启动微调(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
import subprocess
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成"))
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
args = plugin_kwargs.get("advanced_arg", None)
|
||||
if args is None:
|
||||
if args is None:
|
||||
chatbot.append(("没给定指令", "退出"))
|
||||
yield from update_ui(chatbot=chatbot, history=history); return
|
||||
else:
|
||||
arguments = string_to_options(arguments=args)
|
||||
|
||||
|
||||
|
||||
|
||||
pre_seq_len = arguments.pre_seq_len # 128
|
||||
|
||||
@@ -12,7 +12,7 @@ def input_clipping(inputs, history, max_token_limit):
|
||||
mode = 'input-and-history'
|
||||
# 当 输入部分的token占比 小于 全文的一半时,只裁剪历史
|
||||
input_token_num = get_token_num(inputs)
|
||||
if input_token_num < max_token_limit//2:
|
||||
if input_token_num < max_token_limit//2:
|
||||
mode = 'only-history'
|
||||
max_token_limit = max_token_limit - input_token_num
|
||||
|
||||
@@ -21,7 +21,7 @@ def input_clipping(inputs, history, max_token_limit):
|
||||
n_token = get_token_num('\n'.join(everything))
|
||||
everything_token = [get_token_num(e) for e in everything]
|
||||
delta = max(everything_token) // 16 # 截断时的颗粒度
|
||||
|
||||
|
||||
while n_token > max_token_limit:
|
||||
where = np.argmax(everything_token)
|
||||
encoded = enc.encode(everything[where], disallowed_special=())
|
||||
@@ -38,9 +38,9 @@ def input_clipping(inputs, history, max_token_limit):
|
||||
return inputs, history
|
||||
|
||||
def request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs, inputs_show_user, llm_kwargs,
|
||||
inputs, inputs_show_user, llm_kwargs,
|
||||
chatbot, history, sys_prompt, refresh_interval=0.2,
|
||||
handle_token_exceed=True,
|
||||
handle_token_exceed=True,
|
||||
retry_times_at_unknown_error=2,
|
||||
):
|
||||
"""
|
||||
@@ -77,7 +77,7 @@ def request_gpt_model_in_new_thread_with_ui_alive(
|
||||
exceeded_cnt = 0
|
||||
while True:
|
||||
# watchdog error
|
||||
if len(mutable) >= 2 and (time.time()-mutable[1]) > watch_dog_patience:
|
||||
if len(mutable) >= 2 and (time.time()-mutable[1]) > watch_dog_patience:
|
||||
raise RuntimeError("检测到程序终止。")
|
||||
try:
|
||||
# 【第一种情况】:顺利完成
|
||||
@@ -135,17 +135,29 @@ def request_gpt_model_in_new_thread_with_ui_alive(
|
||||
yield from update_ui(chatbot=chatbot, history=[]) # 如果最后成功了,则删除报错信息
|
||||
return final_result
|
||||
|
||||
def can_multi_process(llm):
|
||||
if llm.startswith('gpt-'): return True
|
||||
if llm.startswith('api2d-'): return True
|
||||
if llm.startswith('azure-'): return True
|
||||
if llm.startswith('spark'): return True
|
||||
if llm.startswith('zhipuai'): return True
|
||||
return False
|
||||
def can_multi_process(llm) -> bool:
|
||||
from request_llms.bridge_all import model_info
|
||||
|
||||
def default_condition(llm) -> bool:
|
||||
# legacy condition
|
||||
if llm.startswith('gpt-'): return True
|
||||
if llm.startswith('api2d-'): return True
|
||||
if llm.startswith('azure-'): return True
|
||||
if llm.startswith('spark'): return True
|
||||
if llm.startswith('zhipuai') or llm.startswith('glm-'): return True
|
||||
return False
|
||||
|
||||
if llm in model_info:
|
||||
if 'can_multi_thread' in model_info[llm]:
|
||||
return model_info[llm]['can_multi_thread']
|
||||
else:
|
||||
return default_condition(llm)
|
||||
else:
|
||||
return default_condition(llm)
|
||||
|
||||
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
inputs_array, inputs_show_user_array, llm_kwargs,
|
||||
chatbot, history_array, sys_prompt_array,
|
||||
inputs_array, inputs_show_user_array, llm_kwargs,
|
||||
chatbot, history_array, sys_prompt_array,
|
||||
refresh_interval=0.2, max_workers=-1, scroller_max_len=30,
|
||||
handle_token_exceed=True, show_user_at_complete=False,
|
||||
retry_times_at_unknown_error=2,
|
||||
@@ -189,7 +201,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
# 屏蔽掉 chatglm的多线程,可能会导致严重卡顿
|
||||
if not can_multi_process(llm_kwargs['llm_model']):
|
||||
max_workers = 1
|
||||
|
||||
|
||||
executor = ThreadPoolExecutor(max_workers=max_workers)
|
||||
n_frag = len(inputs_array)
|
||||
# 用户反馈
|
||||
@@ -214,7 +226,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
try:
|
||||
# 【第一种情况】:顺利完成
|
||||
gpt_say = predict_no_ui_long_connection(
|
||||
inputs=inputs, llm_kwargs=llm_kwargs, history=history,
|
||||
inputs=inputs, llm_kwargs=llm_kwargs, history=history,
|
||||
sys_prompt=sys_prompt, observe_window=mutable[index], console_slience=True
|
||||
)
|
||||
mutable[index][2] = "已成功"
|
||||
@@ -246,7 +258,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
print(tb_str)
|
||||
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n"
|
||||
if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0]
|
||||
if retry_op > 0:
|
||||
if retry_op > 0:
|
||||
retry_op -= 1
|
||||
wait = random.randint(5, 20)
|
||||
if ("Rate limit reached" in tb_str) or ("Too Many Requests" in tb_str):
|
||||
@@ -284,12 +296,11 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
# 在前端打印些好玩的东西
|
||||
for thread_index, _ in enumerate(worker_done):
|
||||
print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
|
||||
replace('\n', '').replace('`', '.').replace(
|
||||
' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]"
|
||||
replace('\n', '').replace('`', '.').replace(' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]"
|
||||
observe_win.append(print_something_really_funny)
|
||||
# 在前端打印些好玩的东西
|
||||
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n'
|
||||
if not done else f'`{mutable[thread_index][2]}`\n\n'
|
||||
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n'
|
||||
if not done else f'`{mutable[thread_index][2]}`\n\n'
|
||||
for thread_index, done, obs in zip(range(len(worker_done)), worker_done, observe_win)])
|
||||
# 在前端打印些好玩的东西
|
||||
chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt % 10+1))]
|
||||
@@ -303,7 +314,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
for inputs_show_user, f in zip(inputs_show_user_array, futures):
|
||||
gpt_res = f.result()
|
||||
gpt_response_collection.extend([inputs_show_user, gpt_res])
|
||||
|
||||
|
||||
# 是否在结束时,在界面上显示结果
|
||||
if show_user_at_complete:
|
||||
for inputs_show_user, f in zip(inputs_show_user_array, futures):
|
||||
@@ -353,7 +364,7 @@ def read_and_clean_pdf_text(fp):
|
||||
if wtf['size'] not in fsize_statiscs: fsize_statiscs[wtf['size']] = 0
|
||||
fsize_statiscs[wtf['size']] += len(wtf['text'])
|
||||
return max(fsize_statiscs, key=fsize_statiscs.get)
|
||||
|
||||
|
||||
def ffsize_same(a,b):
|
||||
"""
|
||||
提取字体大小是否近似相等
|
||||
@@ -389,7 +400,7 @@ def read_and_clean_pdf_text(fp):
|
||||
if index == 0:
|
||||
page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
|
||||
'- ', '') for t in text_areas['blocks'] if 'lines' in t]
|
||||
|
||||
|
||||
############################## <第 2 步,获取正文主字体> ##################################
|
||||
try:
|
||||
fsize_statiscs = {}
|
||||
@@ -405,7 +416,7 @@ def read_and_clean_pdf_text(fp):
|
||||
mega_sec = []
|
||||
sec = []
|
||||
for index, line in enumerate(meta_line):
|
||||
if index == 0:
|
||||
if index == 0:
|
||||
sec.append(line[fc])
|
||||
continue
|
||||
if REMOVE_FOOT_NOTE:
|
||||
@@ -502,12 +513,12 @@ def get_files_from_everything(txt, type): # type='.md'
|
||||
"""
|
||||
这个函数是用来获取指定目录下所有指定类型(如.md)的文件,并且对于网络上的文件,也可以获取它。
|
||||
下面是对每个参数和返回值的说明:
|
||||
参数
|
||||
- txt: 路径或网址,表示要搜索的文件或者文件夹路径或网络上的文件。
|
||||
参数
|
||||
- txt: 路径或网址,表示要搜索的文件或者文件夹路径或网络上的文件。
|
||||
- type: 字符串,表示要搜索的文件类型。默认是.md。
|
||||
返回值
|
||||
- success: 布尔值,表示函数是否成功执行。
|
||||
- file_manifest: 文件路径列表,里面包含以指定类型为后缀名的所有文件的绝对路径。
|
||||
返回值
|
||||
- success: 布尔值,表示函数是否成功执行。
|
||||
- file_manifest: 文件路径列表,里面包含以指定类型为后缀名的所有文件的绝对路径。
|
||||
- project_folder: 字符串,表示文件所在的文件夹路径。如果是网络上的文件,就是临时文件夹的路径。
|
||||
该函数详细注释已添加,请确认是否满足您的需要。
|
||||
"""
|
||||
@@ -571,7 +582,7 @@ class nougat_interface():
|
||||
def NOUGAT_parse_pdf(self, fp, chatbot, history):
|
||||
from toolbox import update_ui_lastest_msg
|
||||
|
||||
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度:正在排队, 等待线程锁...",
|
||||
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度:正在排队, 等待线程锁...",
|
||||
chatbot=chatbot, history=history, delay=0)
|
||||
self.threadLock.acquire()
|
||||
import glob, threading, os
|
||||
@@ -579,7 +590,7 @@ class nougat_interface():
|
||||
dst = os.path.join(get_log_folder(plugin_name='nougat'), gen_time_str())
|
||||
os.makedirs(dst)
|
||||
|
||||
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度:正在加载NOUGAT... (提示:首次运行需要花费较长时间下载NOUGAT参数)",
|
||||
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度:正在加载NOUGAT... (提示:首次运行需要花费较长时间下载NOUGAT参数)",
|
||||
chatbot=chatbot, history=history, delay=0)
|
||||
self.nougat_with_timeout(f'nougat --out "{os.path.abspath(dst)}" "{os.path.abspath(fp)}"', os.getcwd(), timeout=3600)
|
||||
res = glob.glob(os.path.join(dst,'*.mmd'))
|
||||
|
||||
@@ -0,0 +1,122 @@
|
||||
import os
|
||||
from textwrap import indent
|
||||
|
||||
class FileNode:
|
||||
def __init__(self, name):
|
||||
self.name = name
|
||||
self.children = []
|
||||
self.is_leaf = False
|
||||
self.level = 0
|
||||
self.parenting_ship = []
|
||||
self.comment = ""
|
||||
self.comment_maxlen_show = 50
|
||||
|
||||
@staticmethod
|
||||
def add_linebreaks_at_spaces(string, interval=10):
|
||||
return '\n'.join(string[i:i+interval] for i in range(0, len(string), interval))
|
||||
|
||||
def sanitize_comment(self, comment):
|
||||
if len(comment) > self.comment_maxlen_show: suf = '...'
|
||||
else: suf = ''
|
||||
comment = comment[:self.comment_maxlen_show]
|
||||
comment = comment.replace('\"', '').replace('`', '').replace('\n', '').replace('`', '').replace('$', '')
|
||||
comment = self.add_linebreaks_at_spaces(comment, 10)
|
||||
return '`' + comment + suf + '`'
|
||||
|
||||
def add_file(self, file_path, file_comment):
|
||||
directory_names, file_name = os.path.split(file_path)
|
||||
current_node = self
|
||||
level = 1
|
||||
if directory_names == "":
|
||||
new_node = FileNode(file_name)
|
||||
current_node.children.append(new_node)
|
||||
new_node.is_leaf = True
|
||||
new_node.comment = self.sanitize_comment(file_comment)
|
||||
new_node.level = level
|
||||
current_node = new_node
|
||||
else:
|
||||
dnamesplit = directory_names.split(os.sep)
|
||||
for i, directory_name in enumerate(dnamesplit):
|
||||
found_child = False
|
||||
level += 1
|
||||
for child in current_node.children:
|
||||
if child.name == directory_name:
|
||||
current_node = child
|
||||
found_child = True
|
||||
break
|
||||
if not found_child:
|
||||
new_node = FileNode(directory_name)
|
||||
current_node.children.append(new_node)
|
||||
new_node.level = level - 1
|
||||
current_node = new_node
|
||||
term = FileNode(file_name)
|
||||
term.level = level
|
||||
term.comment = self.sanitize_comment(file_comment)
|
||||
term.is_leaf = True
|
||||
current_node.children.append(term)
|
||||
|
||||
def print_files_recursively(self, level=0, code="R0"):
|
||||
print(' '*level + self.name + ' ' + str(self.is_leaf) + ' ' + str(self.level))
|
||||
for j, child in enumerate(self.children):
|
||||
child.print_files_recursively(level=level+1, code=code+str(j))
|
||||
self.parenting_ship.extend(child.parenting_ship)
|
||||
p1 = f"""{code}[\"🗎{self.name}\"]""" if self.is_leaf else f"""{code}[[\"📁{self.name}\"]]"""
|
||||
p2 = """ --> """
|
||||
p3 = f"""{code+str(j)}[\"🗎{child.name}\"]""" if child.is_leaf else f"""{code+str(j)}[[\"📁{child.name}\"]]"""
|
||||
edge_code = p1 + p2 + p3
|
||||
if edge_code in self.parenting_ship:
|
||||
continue
|
||||
self.parenting_ship.append(edge_code)
|
||||
if self.comment != "":
|
||||
pc1 = f"""{code}[\"🗎{self.name}\"]""" if self.is_leaf else f"""{code}[[\"📁{self.name}\"]]"""
|
||||
pc2 = f""" -.-x """
|
||||
pc3 = f"""C{code}[\"{self.comment}\"]:::Comment"""
|
||||
edge_code = pc1 + pc2 + pc3
|
||||
self.parenting_ship.append(edge_code)
|
||||
|
||||
|
||||
MERMAID_TEMPLATE = r"""
|
||||
```mermaid
|
||||
flowchart LR
|
||||
%% <gpt_academic_hide_mermaid_code> 一个特殊标记,用于在生成mermaid图表时隐藏代码块
|
||||
classDef Comment stroke-dasharray: 5 5
|
||||
subgraph {graph_name}
|
||||
{relationship}
|
||||
end
|
||||
```
|
||||
"""
|
||||
|
||||
def build_file_tree_mermaid_diagram(file_manifest, file_comments, graph_name):
|
||||
# Create the root node
|
||||
file_tree_struct = FileNode("root")
|
||||
# Build the tree structure
|
||||
for file_path, file_comment in zip(file_manifest, file_comments):
|
||||
file_tree_struct.add_file(file_path, file_comment)
|
||||
file_tree_struct.print_files_recursively()
|
||||
cc = "\n".join(file_tree_struct.parenting_ship)
|
||||
ccc = indent(cc, prefix=" "*8)
|
||||
return MERMAID_TEMPLATE.format(graph_name=graph_name, relationship=ccc)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# File manifest
|
||||
file_manifest = [
|
||||
"cradle_void_terminal.ipynb",
|
||||
"tests/test_utils.py",
|
||||
"tests/test_plugins.py",
|
||||
"tests/test_llms.py",
|
||||
"config.py",
|
||||
"build/ChatGLM-6b-onnx-u8s8/chatglm-6b-int8-onnx-merged/model_weights_0.bin",
|
||||
"crazy_functions/latex_fns/latex_actions.py",
|
||||
"crazy_functions/latex_fns/latex_toolbox.py"
|
||||
]
|
||||
file_comments = [
|
||||
"根据位置和名称,可能是一个模块的初始化文件根据位置和名称,可能是一个模块的初始化文件根据位置和名称,可能是一个模块的初始化文件",
|
||||
"包含一些用于文本处理和模型微调的函数和装饰器包含一些用于文本处理和模型微调的函数和装饰器包含一些用于文本处理和模型微调的函数和装饰器",
|
||||
"用于构建HTML报告的类和方法用于构建HTML报告的类和方法用于构建HTML报告的类和方法",
|
||||
"包含了用于文本切分的函数,以及处理PDF文件的示例代码包含了用于文本切分的函数,以及处理PDF文件的示例代码包含了用于文本切分的函数,以及处理PDF文件的示例代码",
|
||||
"用于解析和翻译PDF文件的功能和相关辅助函数用于解析和翻译PDF文件的功能和相关辅助函数用于解析和翻译PDF文件的功能和相关辅助函数",
|
||||
"是一个包的初始化文件,用于初始化包的属性和导入模块是一个包的初始化文件,用于初始化包的属性和导入模块是一个包的初始化文件,用于初始化包的属性和导入模块",
|
||||
"用于加载和分割文件中的文本的通用文件加载器用于加载和分割文件中的文本的通用文件加载器用于加载和分割文件中的文本的通用文件加载器",
|
||||
"包含了用于构建和管理向量数据库的函数和类包含了用于构建和管理向量数据库的函数和类包含了用于构建和管理向量数据库的函数和类",
|
||||
]
|
||||
print(build_file_tree_mermaid_diagram(file_manifest, file_comments, "项目文件树"))
|
||||
@@ -8,7 +8,7 @@ import random
|
||||
|
||||
class MiniGame_ASCII_Art(GptAcademicGameBaseState):
|
||||
def step(self, prompt, chatbot, history):
|
||||
if self.step_cnt == 0:
|
||||
if self.step_cnt == 0:
|
||||
chatbot.append(["我画你猜(动物)", "请稍等..."])
|
||||
else:
|
||||
if prompt.strip() == 'exit':
|
||||
|
||||
@@ -88,8 +88,8 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
|
||||
self.story = []
|
||||
chatbot.append(["互动写故事", f"这次的故事开头是:{self.headstart}"])
|
||||
self.sys_prompt_ = '你是一个想象力丰富的杰出作家。正在与你的朋友互动,一起写故事,因此你每次写的故事段落应少于300字(结局除外)。'
|
||||
|
||||
|
||||
|
||||
|
||||
def generate_story_image(self, story_paragraph):
|
||||
try:
|
||||
from crazy_functions.图片生成 import gen_image
|
||||
@@ -98,13 +98,13 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
|
||||
return f'<br/><div align="center"><img src="file={image_path}"></div>'
|
||||
except:
|
||||
return ''
|
||||
|
||||
|
||||
def step(self, prompt, chatbot, history):
|
||||
|
||||
|
||||
"""
|
||||
首先,处理游戏初始化等特殊情况
|
||||
"""
|
||||
if self.step_cnt == 0:
|
||||
if self.step_cnt == 0:
|
||||
self.begin_game_step_0(prompt, chatbot, history)
|
||||
self.lock_plugin(chatbot)
|
||||
self.cur_task = 'head_start'
|
||||
@@ -132,7 +132,7 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
|
||||
inputs_ = prompts_hs.format(headstart=self.headstart)
|
||||
history_ = []
|
||||
story_paragraph = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs_, '故事开头', self.llm_kwargs,
|
||||
inputs_, '故事开头', self.llm_kwargs,
|
||||
chatbot, history_, self.sys_prompt_
|
||||
)
|
||||
self.story.append(story_paragraph)
|
||||
@@ -147,7 +147,7 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
|
||||
inputs_ = prompts_interact.format(previously_on_story=previously_on_story)
|
||||
history_ = []
|
||||
self.next_choices = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs_, '请在以下几种故事走向中,选择一种(当然,您也可以选择给出其他故事走向):', self.llm_kwargs,
|
||||
inputs_, '请在以下几种故事走向中,选择一种(当然,您也可以选择给出其他故事走向):', self.llm_kwargs,
|
||||
chatbot,
|
||||
history_,
|
||||
self.sys_prompt_
|
||||
@@ -166,7 +166,7 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
|
||||
inputs_ = prompts_resume.format(previously_on_story=previously_on_story, choice=self.next_choices, user_choice=prompt)
|
||||
history_ = []
|
||||
story_paragraph = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs_, f'下一段故事(您的选择是:{prompt})。', self.llm_kwargs,
|
||||
inputs_, f'下一段故事(您的选择是:{prompt})。', self.llm_kwargs,
|
||||
chatbot, history_, self.sys_prompt_
|
||||
)
|
||||
self.story.append(story_paragraph)
|
||||
@@ -181,10 +181,10 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
|
||||
inputs_ = prompts_interact.format(previously_on_story=previously_on_story)
|
||||
history_ = []
|
||||
self.next_choices = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs_,
|
||||
'请在以下几种故事走向中,选择一种。当然,您也可以给出您心中的其他故事走向。另外,如果您希望剧情立即收尾,请输入剧情走向,并以“剧情收尾”四个字提示程序。', self.llm_kwargs,
|
||||
chatbot,
|
||||
history_,
|
||||
inputs_,
|
||||
'请在以下几种故事走向中,选择一种。当然,您也可以给出您心中的其他故事走向。另外,如果您希望剧情立即收尾,请输入剧情走向,并以“剧情收尾”四个字提示程序。', self.llm_kwargs,
|
||||
chatbot,
|
||||
history_,
|
||||
self.sys_prompt_
|
||||
)
|
||||
self.cur_task = 'user_choice'
|
||||
@@ -200,7 +200,7 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
|
||||
inputs_ = prompts_terminate.format(previously_on_story=previously_on_story, user_choice=prompt)
|
||||
history_ = []
|
||||
story_paragraph = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs_, f'故事收尾(您的选择是:{prompt})。', self.llm_kwargs,
|
||||
inputs_, f'故事收尾(您的选择是:{prompt})。', self.llm_kwargs,
|
||||
chatbot, history_, self.sys_prompt_
|
||||
)
|
||||
# # 配图
|
||||
|
||||
@@ -5,7 +5,7 @@ def get_code_block(reply):
|
||||
import re
|
||||
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
|
||||
matches = re.findall(pattern, reply) # find all code blocks in text
|
||||
if len(matches) == 1:
|
||||
if len(matches) == 1:
|
||||
return "```" + matches[0] + "```" # code block
|
||||
raise RuntimeError("GPT is not generating proper code.")
|
||||
|
||||
@@ -13,10 +13,10 @@ def is_same_thing(a, b, llm_kwargs):
|
||||
from pydantic import BaseModel, Field
|
||||
class IsSameThing(BaseModel):
|
||||
is_same_thing: bool = Field(description="determine whether two objects are same thing.", default=False)
|
||||
|
||||
def run_gpt_fn(inputs, sys_prompt, history=[]):
|
||||
|
||||
def run_gpt_fn(inputs, sys_prompt, history=[]):
|
||||
return predict_no_ui_long_connection(
|
||||
inputs=inputs, llm_kwargs=llm_kwargs,
|
||||
inputs=inputs, llm_kwargs=llm_kwargs,
|
||||
history=history, sys_prompt=sys_prompt, observe_window=[]
|
||||
)
|
||||
|
||||
@@ -24,7 +24,7 @@ def is_same_thing(a, b, llm_kwargs):
|
||||
inputs_01 = "Identity whether the user input and the target is the same thing: \n target object: {a} \n user input object: {b} \n\n\n".format(a=a, b=b)
|
||||
inputs_01 += "\n\n\n Note that the user may describe the target object with a different language, e.g. cat and 猫 are the same thing."
|
||||
analyze_res_cot_01 = run_gpt_fn(inputs_01, "", [])
|
||||
|
||||
|
||||
inputs_02 = inputs_01 + gpt_json_io.format_instructions
|
||||
analyze_res = run_gpt_fn(inputs_02, "", [inputs_01, analyze_res_cot_01])
|
||||
|
||||
|
||||
@@ -41,11 +41,11 @@ def is_function_successfully_generated(fn_path, class_name, return_dict):
|
||||
# Now you can create an instance of the class
|
||||
instance = some_class()
|
||||
return_dict['success'] = True
|
||||
return
|
||||
return
|
||||
except:
|
||||
return_dict['traceback'] = trimmed_format_exc()
|
||||
return
|
||||
|
||||
|
||||
def subprocess_worker(code, file_path, return_dict):
|
||||
return_dict['result'] = None
|
||||
return_dict['success'] = False
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
import platform
|
||||
import platform
|
||||
import pickle
|
||||
import multiprocessing
|
||||
|
||||
|
||||
@@ -89,7 +89,7 @@ class GptJsonIO():
|
||||
error + "\n\n" + \
|
||||
"Now, fix this json string. \n\n"
|
||||
return prompt
|
||||
|
||||
|
||||
def generate_output_auto_repair(self, response, gpt_gen_fn):
|
||||
"""
|
||||
response: string containing canidate json
|
||||
|
||||
@@ -90,16 +90,16 @@ class LatexPaperSplit():
|
||||
"版权归原文作者所有。翻译内容可靠性无保障,请仔细鉴别并以原文为准。" + \
|
||||
"项目Github地址 \\url{https://github.com/binary-husky/gpt_academic/}。"
|
||||
# 请您不要删除或修改这行警告,除非您是论文的原作者(如果您是论文原作者,欢迎加REAME中的QQ联系开发者)
|
||||
self.msg_declare = "为了防止大语言模型的意外谬误产生扩散影响,禁止移除或修改此警告。}}\\\\"
|
||||
self.msg_declare = "为了防止大语言模型的意外谬误产生扩散影响,禁止移除或修改此警告。}}\\\\"
|
||||
self.title = "unknown"
|
||||
self.abstract = "unknown"
|
||||
|
||||
def read_title_and_abstract(self, txt):
|
||||
try:
|
||||
title, abstract = find_title_and_abs(txt)
|
||||
if title is not None:
|
||||
if title is not None:
|
||||
self.title = title.replace('\n', ' ').replace('\\\\', ' ').replace(' ', '').replace(' ', '')
|
||||
if abstract is not None:
|
||||
if abstract is not None:
|
||||
self.abstract = abstract.replace('\n', ' ').replace('\\\\', ' ').replace(' ', '').replace(' ', '')
|
||||
except:
|
||||
pass
|
||||
@@ -111,7 +111,7 @@ class LatexPaperSplit():
|
||||
result_string = ""
|
||||
node_cnt = 0
|
||||
line_cnt = 0
|
||||
|
||||
|
||||
for node in self.nodes:
|
||||
if node.preserve:
|
||||
line_cnt += node.string.count('\n')
|
||||
@@ -144,7 +144,7 @@ class LatexPaperSplit():
|
||||
return result_string
|
||||
|
||||
|
||||
def split(self, txt, project_folder, opts):
|
||||
def split(self, txt, project_folder, opts):
|
||||
"""
|
||||
break down latex file to a linked list,
|
||||
each node use a preserve flag to indicate whether it should
|
||||
@@ -155,7 +155,7 @@ class LatexPaperSplit():
|
||||
manager = multiprocessing.Manager()
|
||||
return_dict = manager.dict()
|
||||
p = multiprocessing.Process(
|
||||
target=split_subprocess,
|
||||
target=split_subprocess,
|
||||
args=(txt, project_folder, return_dict, opts))
|
||||
p.start()
|
||||
p.join()
|
||||
@@ -217,13 +217,13 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
|
||||
from ..crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
from .latex_actions import LatexPaperFileGroup, LatexPaperSplit
|
||||
|
||||
# <-------- 寻找主tex文件 ---------->
|
||||
# <-------- 寻找主tex文件 ---------->
|
||||
maintex = find_main_tex_file(file_manifest, mode)
|
||||
chatbot.append((f"定位主Latex文件", f'[Local Message] 分析结果:该项目的Latex主文件是{maintex}, 如果分析错误, 请立即终止程序, 删除或修改歧义文件, 然后重试。主程序即将开始, 请稍候。'))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
time.sleep(3)
|
||||
|
||||
# <-------- 读取Latex文件, 将多文件tex工程融合为一个巨型tex ---------->
|
||||
# <-------- 读取Latex文件, 将多文件tex工程融合为一个巨型tex ---------->
|
||||
main_tex_basename = os.path.basename(maintex)
|
||||
assert main_tex_basename.endswith('.tex')
|
||||
main_tex_basename_bare = main_tex_basename[:-4]
|
||||
@@ -240,13 +240,13 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
|
||||
with open(project_folder + '/merge.tex', 'w', encoding='utf-8', errors='replace') as f:
|
||||
f.write(merged_content)
|
||||
|
||||
# <-------- 精细切分latex文件 ---------->
|
||||
# <-------- 精细切分latex文件 ---------->
|
||||
chatbot.append((f"Latex文件融合完成", f'[Local Message] 正在精细切分latex文件,这需要一段时间计算,文档越长耗时越长,请耐心等待。'))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
lps = LatexPaperSplit()
|
||||
lps.read_title_and_abstract(merged_content)
|
||||
res = lps.split(merged_content, project_folder, opts) # 消耗时间的函数
|
||||
# <-------- 拆分过长的latex片段 ---------->
|
||||
# <-------- 拆分过长的latex片段 ---------->
|
||||
pfg = LatexPaperFileGroup()
|
||||
for index, r in enumerate(res):
|
||||
pfg.file_paths.append('segment-' + str(index))
|
||||
@@ -255,17 +255,17 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
|
||||
pfg.run_file_split(max_token_limit=1024)
|
||||
n_split = len(pfg.sp_file_contents)
|
||||
|
||||
# <-------- 根据需要切换prompt ---------->
|
||||
# <-------- 根据需要切换prompt ---------->
|
||||
inputs_array, sys_prompt_array = switch_prompt(pfg, mode)
|
||||
inputs_show_user_array = [f"{mode} {f}" for f in pfg.sp_file_tag]
|
||||
|
||||
if os.path.exists(pj(project_folder,'temp.pkl')):
|
||||
|
||||
# <-------- 【仅调试】如果存在调试缓存文件,则跳过GPT请求环节 ---------->
|
||||
# <-------- 【仅调试】如果存在调试缓存文件,则跳过GPT请求环节 ---------->
|
||||
pfg = objload(file=pj(project_folder,'temp.pkl'))
|
||||
|
||||
else:
|
||||
# <-------- gpt 多线程请求 ---------->
|
||||
# <-------- gpt 多线程请求 ---------->
|
||||
history_array = [[""] for _ in range(n_split)]
|
||||
# LATEX_EXPERIMENTAL, = get_conf('LATEX_EXPERIMENTAL')
|
||||
# if LATEX_EXPERIMENTAL:
|
||||
@@ -284,32 +284,32 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
|
||||
scroller_max_len = 40
|
||||
)
|
||||
|
||||
# <-------- 文本碎片重组为完整的tex片段 ---------->
|
||||
# <-------- 文本碎片重组为完整的tex片段 ---------->
|
||||
pfg.sp_file_result = []
|
||||
for i_say, gpt_say, orig_content in zip(gpt_response_collection[0::2], gpt_response_collection[1::2], pfg.sp_file_contents):
|
||||
pfg.sp_file_result.append(gpt_say)
|
||||
pfg.merge_result()
|
||||
|
||||
# <-------- 临时存储用于调试 ---------->
|
||||
# <-------- 临时存储用于调试 ---------->
|
||||
pfg.get_token_num = None
|
||||
objdump(pfg, file=pj(project_folder,'temp.pkl'))
|
||||
|
||||
write_html(pfg.sp_file_contents, pfg.sp_file_result, chatbot=chatbot, project_folder=project_folder)
|
||||
|
||||
# <-------- 写出文件 ---------->
|
||||
# <-------- 写出文件 ---------->
|
||||
msg = f"当前大语言模型: {llm_kwargs['llm_model']},当前语言模型温度设定: {llm_kwargs['temperature']}。"
|
||||
final_tex = lps.merge_result(pfg.file_result, mode, msg)
|
||||
objdump((lps, pfg.file_result, mode, msg), file=pj(project_folder,'merge_result.pkl'))
|
||||
|
||||
with open(project_folder + f'/merge_{mode}.tex', 'w', encoding='utf-8', errors='replace') as f:
|
||||
if mode != 'translate_zh' or "binary" in final_tex: f.write(final_tex)
|
||||
|
||||
|
||||
# <-------- 整理结果, 退出 ---------->
|
||||
|
||||
# <-------- 整理结果, 退出 ---------->
|
||||
chatbot.append((f"完成了吗?", 'GPT结果已输出, 即将编译PDF'))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# <-------- 返回 ---------->
|
||||
# <-------- 返回 ---------->
|
||||
return project_folder + f'/merge_{mode}.tex'
|
||||
|
||||
|
||||
@@ -362,7 +362,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译转化后的PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
|
||||
|
||||
|
||||
if ok and os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf')):
|
||||
# 只有第二步成功,才能继续下面的步骤
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译BibTex ...', chatbot, history) # 刷新Gradio前端界面
|
||||
@@ -393,9 +393,9 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
original_pdf_success = os.path.exists(pj(work_folder_original, f'{main_file_original}.pdf'))
|
||||
modified_pdf_success = os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf'))
|
||||
diff_pdf_success = os.path.exists(pj(work_folder, f'merge_diff.pdf'))
|
||||
results_ += f"原始PDF编译是否成功: {original_pdf_success};"
|
||||
results_ += f"转化PDF编译是否成功: {modified_pdf_success};"
|
||||
results_ += f"对比PDF编译是否成功: {diff_pdf_success};"
|
||||
results_ += f"原始PDF编译是否成功: {original_pdf_success};"
|
||||
results_ += f"转化PDF编译是否成功: {modified_pdf_success};"
|
||||
results_ += f"对比PDF编译是否成功: {diff_pdf_success};"
|
||||
yield from update_ui_lastest_msg(f'第{n_fix}编译结束:<br/>{results_}...', chatbot, history) # 刷新Gradio前端界面
|
||||
|
||||
if diff_pdf_success:
|
||||
@@ -409,7 +409,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
shutil.copyfile(result_pdf, pj(work_folder, '..', 'translation', 'translate_zh.pdf'))
|
||||
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
|
||||
# 将两个PDF拼接
|
||||
if original_pdf_success:
|
||||
if original_pdf_success:
|
||||
try:
|
||||
from .latex_toolbox import merge_pdfs
|
||||
concat_pdf = pj(work_folder_modified, f'comparison.pdf')
|
||||
@@ -425,7 +425,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
if n_fix>=max_try: break
|
||||
n_fix += 1
|
||||
can_retry, main_file_modified, buggy_lines = remove_buggy_lines(
|
||||
file_path=pj(work_folder_modified, f'{main_file_modified}.tex'),
|
||||
file_path=pj(work_folder_modified, f'{main_file_modified}.tex'),
|
||||
log_path=pj(work_folder_modified, f'{main_file_modified}.log'),
|
||||
tex_name=f'{main_file_modified}.tex',
|
||||
tex_name_pure=f'{main_file_modified}',
|
||||
@@ -445,14 +445,14 @@ def write_html(sp_file_contents, sp_file_result, chatbot, project_folder):
|
||||
import shutil
|
||||
from crazy_functions.pdf_fns.report_gen_html import construct_html
|
||||
from toolbox import gen_time_str
|
||||
ch = construct_html()
|
||||
ch = construct_html()
|
||||
orig = ""
|
||||
trans = ""
|
||||
final = []
|
||||
for c,r in zip(sp_file_contents, sp_file_result):
|
||||
for c,r in zip(sp_file_contents, sp_file_result):
|
||||
final.append(c)
|
||||
final.append(r)
|
||||
for i, k in enumerate(final):
|
||||
for i, k in enumerate(final):
|
||||
if i%2==0:
|
||||
orig = k
|
||||
if i%2==1:
|
||||
|
||||
@@ -1,15 +1,18 @@
|
||||
import os, shutil
|
||||
import re
|
||||
import numpy as np
|
||||
|
||||
PRESERVE = 0
|
||||
TRANSFORM = 1
|
||||
|
||||
pj = os.path.join
|
||||
|
||||
class LinkedListNode():
|
||||
|
||||
class LinkedListNode:
|
||||
"""
|
||||
Linked List Node
|
||||
"""
|
||||
|
||||
def __init__(self, string, preserve=True) -> None:
|
||||
self.string = string
|
||||
self.preserve = preserve
|
||||
@@ -18,41 +21,47 @@ class LinkedListNode():
|
||||
# self.begin_line = 0
|
||||
# self.begin_char = 0
|
||||
|
||||
|
||||
def convert_to_linklist(text, mask):
|
||||
root = LinkedListNode("", preserve=True)
|
||||
current_node = root
|
||||
for c, m, i in zip(text, mask, range(len(text))):
|
||||
if (m==PRESERVE and current_node.preserve) \
|
||||
or (m==TRANSFORM and not current_node.preserve):
|
||||
if (m == PRESERVE and current_node.preserve) or (
|
||||
m == TRANSFORM and not current_node.preserve
|
||||
):
|
||||
# add
|
||||
current_node.string += c
|
||||
else:
|
||||
current_node.next = LinkedListNode(c, preserve=(m==PRESERVE))
|
||||
current_node.next = LinkedListNode(c, preserve=(m == PRESERVE))
|
||||
current_node = current_node.next
|
||||
return root
|
||||
|
||||
|
||||
def post_process(root):
|
||||
# 修复括号
|
||||
node = root
|
||||
while True:
|
||||
string = node.string
|
||||
if node.preserve:
|
||||
if node.preserve:
|
||||
node = node.next
|
||||
if node is None: break
|
||||
if node is None:
|
||||
break
|
||||
continue
|
||||
|
||||
def break_check(string):
|
||||
str_stack = [""] # (lv, index)
|
||||
str_stack = [""] # (lv, index)
|
||||
for i, c in enumerate(string):
|
||||
if c == '{':
|
||||
str_stack.append('{')
|
||||
elif c == '}':
|
||||
if c == "{":
|
||||
str_stack.append("{")
|
||||
elif c == "}":
|
||||
if len(str_stack) == 1:
|
||||
print('stack fix')
|
||||
print("stack fix")
|
||||
return i
|
||||
str_stack.pop(-1)
|
||||
else:
|
||||
str_stack[-1] += c
|
||||
return -1
|
||||
|
||||
bp = break_check(string)
|
||||
|
||||
if bp == -1:
|
||||
@@ -69,51 +78,66 @@ def post_process(root):
|
||||
node.next = q
|
||||
|
||||
node = node.next
|
||||
if node is None: break
|
||||
if node is None:
|
||||
break
|
||||
|
||||
# 屏蔽空行和太短的句子
|
||||
node = root
|
||||
while True:
|
||||
if len(node.string.strip('\n').strip(''))==0: node.preserve = True
|
||||
if len(node.string.strip('\n').strip(''))<42: node.preserve = True
|
||||
if len(node.string.strip("\n").strip("")) == 0:
|
||||
node.preserve = True
|
||||
if len(node.string.strip("\n").strip("")) < 42:
|
||||
node.preserve = True
|
||||
node = node.next
|
||||
if node is None: break
|
||||
if node is None:
|
||||
break
|
||||
node = root
|
||||
while True:
|
||||
if node.next and node.preserve and node.next.preserve:
|
||||
node.string += node.next.string
|
||||
node.next = node.next.next
|
||||
node = node.next
|
||||
if node is None: break
|
||||
if node is None:
|
||||
break
|
||||
|
||||
# 将前后断行符脱离
|
||||
node = root
|
||||
prev_node = None
|
||||
while True:
|
||||
if not node.preserve:
|
||||
lstriped_ = node.string.lstrip().lstrip('\n')
|
||||
if (prev_node is not None) and (prev_node.preserve) and (len(lstriped_)!=len(node.string)):
|
||||
prev_node.string += node.string[:-len(lstriped_)]
|
||||
lstriped_ = node.string.lstrip().lstrip("\n")
|
||||
if (
|
||||
(prev_node is not None)
|
||||
and (prev_node.preserve)
|
||||
and (len(lstriped_) != len(node.string))
|
||||
):
|
||||
prev_node.string += node.string[: -len(lstriped_)]
|
||||
node.string = lstriped_
|
||||
rstriped_ = node.string.rstrip().rstrip('\n')
|
||||
if (node.next is not None) and (node.next.preserve) and (len(rstriped_)!=len(node.string)):
|
||||
node.next.string = node.string[len(rstriped_):] + node.next.string
|
||||
rstriped_ = node.string.rstrip().rstrip("\n")
|
||||
if (
|
||||
(node.next is not None)
|
||||
and (node.next.preserve)
|
||||
and (len(rstriped_) != len(node.string))
|
||||
):
|
||||
node.next.string = node.string[len(rstriped_) :] + node.next.string
|
||||
node.string = rstriped_
|
||||
# =====
|
||||
# =-=-=
|
||||
prev_node = node
|
||||
node = node.next
|
||||
if node is None: break
|
||||
if node is None:
|
||||
break
|
||||
|
||||
# 标注节点的行数范围
|
||||
node = root
|
||||
n_line = 0
|
||||
expansion = 2
|
||||
while True:
|
||||
n_l = node.string.count('\n')
|
||||
node.range = [n_line-expansion, n_line+n_l+expansion] # 失败时,扭转的范围
|
||||
n_line = n_line+n_l
|
||||
n_l = node.string.count("\n")
|
||||
node.range = [n_line - expansion, n_line + n_l + expansion] # 失败时,扭转的范围
|
||||
n_line = n_line + n_l
|
||||
node = node.next
|
||||
if node is None: break
|
||||
if node is None:
|
||||
break
|
||||
return root
|
||||
|
||||
|
||||
@@ -128,97 +152,125 @@ def set_forbidden_text(text, mask, pattern, flags=0):
|
||||
"""
|
||||
Add a preserve text area in this paper
|
||||
e.g. with pattern = r"\\begin\{algorithm\}(.*?)\\end\{algorithm\}"
|
||||
you can mask out (mask = PRESERVE so that text become untouchable for GPT)
|
||||
you can mask out (mask = PRESERVE so that text become untouchable for GPT)
|
||||
everything between "\begin{equation}" and "\end{equation}"
|
||||
"""
|
||||
if isinstance(pattern, list): pattern = '|'.join(pattern)
|
||||
if isinstance(pattern, list):
|
||||
pattern = "|".join(pattern)
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
for res in pattern_compile.finditer(text):
|
||||
mask[res.span()[0]:res.span()[1]] = PRESERVE
|
||||
mask[res.span()[0] : res.span()[1]] = PRESERVE
|
||||
return text, mask
|
||||
|
||||
|
||||
def reverse_forbidden_text(text, mask, pattern, flags=0, forbid_wrapper=True):
|
||||
"""
|
||||
Move area out of preserve area (make text editable for GPT)
|
||||
count the number of the braces so as to catch compelete text area.
|
||||
count the number of the braces so as to catch compelete text area.
|
||||
e.g.
|
||||
\begin{abstract} blablablablablabla. \end{abstract}
|
||||
\begin{abstract} blablablablablabla. \end{abstract}
|
||||
"""
|
||||
if isinstance(pattern, list): pattern = '|'.join(pattern)
|
||||
if isinstance(pattern, list):
|
||||
pattern = "|".join(pattern)
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
for res in pattern_compile.finditer(text):
|
||||
if not forbid_wrapper:
|
||||
mask[res.span()[0]:res.span()[1]] = TRANSFORM
|
||||
mask[res.span()[0] : res.span()[1]] = TRANSFORM
|
||||
else:
|
||||
mask[res.regs[0][0]: res.regs[1][0]] = PRESERVE # '\\begin{abstract}'
|
||||
mask[res.regs[1][0]: res.regs[1][1]] = TRANSFORM # abstract
|
||||
mask[res.regs[1][1]: res.regs[0][1]] = PRESERVE # abstract
|
||||
mask[res.regs[0][0] : res.regs[1][0]] = PRESERVE # '\\begin{abstract}'
|
||||
mask[res.regs[1][0] : res.regs[1][1]] = TRANSFORM # abstract
|
||||
mask[res.regs[1][1] : res.regs[0][1]] = PRESERVE # abstract
|
||||
return text, mask
|
||||
|
||||
|
||||
def set_forbidden_text_careful_brace(text, mask, pattern, flags=0):
|
||||
"""
|
||||
Add a preserve text area in this paper (text become untouchable for GPT).
|
||||
count the number of the braces so as to catch compelete text area.
|
||||
count the number of the braces so as to catch compelete text area.
|
||||
e.g.
|
||||
\caption{blablablablabla\texbf{blablabla}blablabla.}
|
||||
\caption{blablablablabla\texbf{blablabla}blablabla.}
|
||||
"""
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
for res in pattern_compile.finditer(text):
|
||||
brace_level = -1
|
||||
p = begin = end = res.regs[0][0]
|
||||
for _ in range(1024*16):
|
||||
if text[p] == '}' and brace_level == 0: break
|
||||
elif text[p] == '}': brace_level -= 1
|
||||
elif text[p] == '{': brace_level += 1
|
||||
for _ in range(1024 * 16):
|
||||
if text[p] == "}" and brace_level == 0:
|
||||
break
|
||||
elif text[p] == "}":
|
||||
brace_level -= 1
|
||||
elif text[p] == "{":
|
||||
brace_level += 1
|
||||
p += 1
|
||||
end = p+1
|
||||
end = p + 1
|
||||
mask[begin:end] = PRESERVE
|
||||
return text, mask
|
||||
|
||||
def reverse_forbidden_text_careful_brace(text, mask, pattern, flags=0, forbid_wrapper=True):
|
||||
|
||||
def reverse_forbidden_text_careful_brace(
|
||||
text, mask, pattern, flags=0, forbid_wrapper=True
|
||||
):
|
||||
"""
|
||||
Move area out of preserve area (make text editable for GPT)
|
||||
count the number of the braces so as to catch compelete text area.
|
||||
count the number of the braces so as to catch compelete text area.
|
||||
e.g.
|
||||
\caption{blablablablabla\texbf{blablabla}blablabla.}
|
||||
\caption{blablablablabla\texbf{blablabla}blablabla.}
|
||||
"""
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
for res in pattern_compile.finditer(text):
|
||||
brace_level = 0
|
||||
p = begin = end = res.regs[1][0]
|
||||
for _ in range(1024*16):
|
||||
if text[p] == '}' and brace_level == 0: break
|
||||
elif text[p] == '}': brace_level -= 1
|
||||
elif text[p] == '{': brace_level += 1
|
||||
for _ in range(1024 * 16):
|
||||
if text[p] == "}" and brace_level == 0:
|
||||
break
|
||||
elif text[p] == "}":
|
||||
brace_level -= 1
|
||||
elif text[p] == "{":
|
||||
brace_level += 1
|
||||
p += 1
|
||||
end = p
|
||||
mask[begin:end] = TRANSFORM
|
||||
if forbid_wrapper:
|
||||
mask[res.regs[0][0]:begin] = PRESERVE
|
||||
mask[end:res.regs[0][1]] = PRESERVE
|
||||
mask[res.regs[0][0] : begin] = PRESERVE
|
||||
mask[end : res.regs[0][1]] = PRESERVE
|
||||
return text, mask
|
||||
|
||||
|
||||
def set_forbidden_text_begin_end(text, mask, pattern, flags=0, limit_n_lines=42):
|
||||
"""
|
||||
Find all \begin{} ... \end{} text block that with less than limit_n_lines lines.
|
||||
Add it to preserve area
|
||||
"""
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
|
||||
def search_with_line_limit(text, mask):
|
||||
for res in pattern_compile.finditer(text):
|
||||
cmd = res.group(1) # begin{what}
|
||||
this = res.group(2) # content between begin and end
|
||||
this_mask = mask[res.regs[2][0]:res.regs[2][1]]
|
||||
white_list = ['document', 'abstract', 'lemma', 'definition', 'sproof',
|
||||
'em', 'emph', 'textit', 'textbf', 'itemize', 'enumerate']
|
||||
if (cmd in white_list) or this.count('\n') >= limit_n_lines: # use a magical number 42
|
||||
this = res.group(2) # content between begin and end
|
||||
this_mask = mask[res.regs[2][0] : res.regs[2][1]]
|
||||
white_list = [
|
||||
"document",
|
||||
"abstract",
|
||||
"lemma",
|
||||
"definition",
|
||||
"sproof",
|
||||
"em",
|
||||
"emph",
|
||||
"textit",
|
||||
"textbf",
|
||||
"itemize",
|
||||
"enumerate",
|
||||
]
|
||||
if (cmd in white_list) or this.count(
|
||||
"\n"
|
||||
) >= limit_n_lines: # use a magical number 42
|
||||
this, this_mask = search_with_line_limit(this, this_mask)
|
||||
mask[res.regs[2][0]:res.regs[2][1]] = this_mask
|
||||
mask[res.regs[2][0] : res.regs[2][1]] = this_mask
|
||||
else:
|
||||
mask[res.regs[0][0]:res.regs[0][1]] = PRESERVE
|
||||
mask[res.regs[0][0] : res.regs[0][1]] = PRESERVE
|
||||
return text, mask
|
||||
return search_with_line_limit(text, mask)
|
||||
|
||||
return search_with_line_limit(text, mask)
|
||||
|
||||
|
||||
"""
|
||||
@@ -227,6 +279,7 @@ Latex Merge File
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
"""
|
||||
|
||||
|
||||
def find_main_tex_file(file_manifest, mode):
|
||||
"""
|
||||
在多Tex文档中,寻找主文件,必须包含documentclass,返回找到的第一个。
|
||||
@@ -234,27 +287,36 @@ def find_main_tex_file(file_manifest, mode):
|
||||
"""
|
||||
canidates = []
|
||||
for texf in file_manifest:
|
||||
if os.path.basename(texf).startswith('merge'):
|
||||
if os.path.basename(texf).startswith("merge"):
|
||||
continue
|
||||
with open(texf, 'r', encoding='utf8', errors='ignore') as f:
|
||||
with open(texf, "r", encoding="utf8", errors="ignore") as f:
|
||||
file_content = f.read()
|
||||
if r'\documentclass' in file_content:
|
||||
if r"\documentclass" in file_content:
|
||||
canidates.append(texf)
|
||||
else:
|
||||
continue
|
||||
|
||||
if len(canidates) == 0:
|
||||
raise RuntimeError('无法找到一个主Tex文件(包含documentclass关键字)')
|
||||
raise RuntimeError("无法找到一个主Tex文件(包含documentclass关键字)")
|
||||
elif len(canidates) == 1:
|
||||
return canidates[0]
|
||||
else: # if len(canidates) >= 2 通过一些Latex模板中常见(但通常不会出现在正文)的单词,对不同latex源文件扣分,取评分最高者返回
|
||||
else: # if len(canidates) >= 2 通过一些Latex模板中常见(但通常不会出现在正文)的单词,对不同latex源文件扣分,取评分最高者返回
|
||||
canidates_score = []
|
||||
# 给出一些判定模板文档的词作为扣分项
|
||||
unexpected_words = ['\\LaTeX', 'manuscript', 'Guidelines', 'font', 'citations', 'rejected', 'blind review', 'reviewers']
|
||||
expected_words = ['\\input', '\\ref', '\\cite']
|
||||
unexpected_words = [
|
||||
"\\LaTeX",
|
||||
"manuscript",
|
||||
"Guidelines",
|
||||
"font",
|
||||
"citations",
|
||||
"rejected",
|
||||
"blind review",
|
||||
"reviewers",
|
||||
]
|
||||
expected_words = ["\\input", "\\ref", "\\cite"]
|
||||
for texf in canidates:
|
||||
canidates_score.append(0)
|
||||
with open(texf, 'r', encoding='utf8', errors='ignore') as f:
|
||||
with open(texf, "r", encoding="utf8", errors="ignore") as f:
|
||||
file_content = f.read()
|
||||
file_content = rm_comments(file_content)
|
||||
for uw in unexpected_words:
|
||||
@@ -263,9 +325,10 @@ def find_main_tex_file(file_manifest, mode):
|
||||
for uw in expected_words:
|
||||
if uw in file_content:
|
||||
canidates_score[-1] += 1
|
||||
select = np.argmax(canidates_score) # 取评分最高者返回
|
||||
select = np.argmax(canidates_score) # 取评分最高者返回
|
||||
return canidates[select]
|
||||
|
||||
|
||||
|
||||
def rm_comments(main_file):
|
||||
new_file_remove_comment_lines = []
|
||||
for l in main_file.splitlines():
|
||||
@@ -274,30 +337,39 @@ def rm_comments(main_file):
|
||||
pass
|
||||
else:
|
||||
new_file_remove_comment_lines.append(l)
|
||||
main_file = '\n'.join(new_file_remove_comment_lines)
|
||||
main_file = "\n".join(new_file_remove_comment_lines)
|
||||
# main_file = re.sub(r"\\include{(.*?)}", r"\\input{\1}", main_file) # 将 \include 命令转换为 \input 命令
|
||||
main_file = re.sub(r'(?<!\\)%.*', '', main_file) # 使用正则表达式查找半行注释, 并替换为空字符串
|
||||
main_file = re.sub(r"(?<!\\)%.*", "", main_file) # 使用正则表达式查找半行注释, 并替换为空字符串
|
||||
return main_file
|
||||
|
||||
|
||||
def find_tex_file_ignore_case(fp):
|
||||
dir_name = os.path.dirname(fp)
|
||||
base_name = os.path.basename(fp)
|
||||
# 如果输入的文件路径是正确的
|
||||
if os.path.isfile(pj(dir_name, base_name)): return pj(dir_name, base_name)
|
||||
if os.path.isfile(pj(dir_name, base_name)):
|
||||
return pj(dir_name, base_name)
|
||||
# 如果不正确,试着加上.tex后缀试试
|
||||
if not base_name.endswith('.tex'): base_name+='.tex'
|
||||
if os.path.isfile(pj(dir_name, base_name)): return pj(dir_name, base_name)
|
||||
if not base_name.endswith(".tex"):
|
||||
base_name += ".tex"
|
||||
if os.path.isfile(pj(dir_name, base_name)):
|
||||
return pj(dir_name, base_name)
|
||||
# 如果还找不到,解除大小写限制,再试一次
|
||||
import glob
|
||||
for f in glob.glob(dir_name+'/*.tex'):
|
||||
|
||||
for f in glob.glob(dir_name + "/*.tex"):
|
||||
base_name_s = os.path.basename(fp)
|
||||
base_name_f = os.path.basename(f)
|
||||
if base_name_s.lower() == base_name_f.lower(): return f
|
||||
if base_name_s.lower() == base_name_f.lower():
|
||||
return f
|
||||
# 试着加上.tex后缀试试
|
||||
if not base_name_s.endswith('.tex'): base_name_s+='.tex'
|
||||
if base_name_s.lower() == base_name_f.lower(): return f
|
||||
if not base_name_s.endswith(".tex"):
|
||||
base_name_s += ".tex"
|
||||
if base_name_s.lower() == base_name_f.lower():
|
||||
return f
|
||||
return None
|
||||
|
||||
|
||||
def merge_tex_files_(project_foler, main_file, mode):
|
||||
"""
|
||||
Merge Tex project recrusively
|
||||
@@ -309,18 +381,18 @@ def merge_tex_files_(project_foler, main_file, mode):
|
||||
fp_ = find_tex_file_ignore_case(fp)
|
||||
if fp_:
|
||||
try:
|
||||
with open(fp_, 'r', encoding='utf-8', errors='replace') as fx: c = fx.read()
|
||||
with open(fp_, "r", encoding="utf-8", errors="replace") as fx:
|
||||
c = fx.read()
|
||||
except:
|
||||
c = f"\n\nWarning from GPT-Academic: LaTex source file is missing!\n\n"
|
||||
else:
|
||||
raise RuntimeError(f'找不到{fp},Tex源文件缺失!')
|
||||
raise RuntimeError(f"找不到{fp},Tex源文件缺失!")
|
||||
c = merge_tex_files_(project_foler, c, mode)
|
||||
main_file = main_file[:s.span()[0]] + c + main_file[s.span()[1]:]
|
||||
main_file = main_file[: s.span()[0]] + c + main_file[s.span()[1] :]
|
||||
return main_file
|
||||
|
||||
|
||||
def find_title_and_abs(main_file):
|
||||
|
||||
def extract_abstract_1(text):
|
||||
pattern = r"\\abstract\{(.*?)\}"
|
||||
match = re.search(pattern, text, re.DOTALL)
|
||||
@@ -362,21 +434,30 @@ def merge_tex_files(project_foler, main_file, mode):
|
||||
main_file = merge_tex_files_(project_foler, main_file, mode)
|
||||
main_file = rm_comments(main_file)
|
||||
|
||||
if mode == 'translate_zh':
|
||||
if mode == "translate_zh":
|
||||
# find paper documentclass
|
||||
pattern = re.compile(r'\\documentclass.*\n')
|
||||
pattern = re.compile(r"\\documentclass.*\n")
|
||||
match = pattern.search(main_file)
|
||||
assert match is not None, "Cannot find documentclass statement!"
|
||||
position = match.end()
|
||||
add_ctex = '\\usepackage{ctex}\n'
|
||||
add_url = '\\usepackage{url}\n' if '{url}' not in main_file else ''
|
||||
add_ctex = "\\usepackage{ctex}\n"
|
||||
add_url = "\\usepackage{url}\n" if "{url}" not in main_file else ""
|
||||
main_file = main_file[:position] + add_ctex + add_url + main_file[position:]
|
||||
# fontset=windows
|
||||
import platform
|
||||
main_file = re.sub(r"\\documentclass\[(.*?)\]{(.*?)}", r"\\documentclass[\1,fontset=windows,UTF8]{\2}",main_file)
|
||||
main_file = re.sub(r"\\documentclass{(.*?)}", r"\\documentclass[fontset=windows,UTF8]{\1}",main_file)
|
||||
|
||||
main_file = re.sub(
|
||||
r"\\documentclass\[(.*?)\]{(.*?)}",
|
||||
r"\\documentclass[\1,fontset=windows,UTF8]{\2}",
|
||||
main_file,
|
||||
)
|
||||
main_file = re.sub(
|
||||
r"\\documentclass{(.*?)}",
|
||||
r"\\documentclass[fontset=windows,UTF8]{\1}",
|
||||
main_file,
|
||||
)
|
||||
# find paper abstract
|
||||
pattern_opt1 = re.compile(r'\\begin\{abstract\}.*\n')
|
||||
pattern_opt1 = re.compile(r"\\begin\{abstract\}.*\n")
|
||||
pattern_opt2 = re.compile(r"\\abstract\{(.*?)\}", flags=re.DOTALL)
|
||||
match_opt1 = pattern_opt1.search(main_file)
|
||||
match_opt2 = pattern_opt2.search(main_file)
|
||||
@@ -385,7 +466,9 @@ def merge_tex_files(project_foler, main_file, mode):
|
||||
main_file = insert_abstract(main_file)
|
||||
match_opt1 = pattern_opt1.search(main_file)
|
||||
match_opt2 = pattern_opt2.search(main_file)
|
||||
assert (match_opt1 is not None) or (match_opt2 is not None), "Cannot find paper abstract section!"
|
||||
assert (match_opt1 is not None) or (
|
||||
match_opt2 is not None
|
||||
), "Cannot find paper abstract section!"
|
||||
return main_file
|
||||
|
||||
|
||||
@@ -395,6 +478,7 @@ The GPT-Academic program cannot find abstract section in this paper.
|
||||
\end{abstract}
|
||||
"""
|
||||
|
||||
|
||||
def insert_abstract(tex_content):
|
||||
if "\\maketitle" in tex_content:
|
||||
# find the position of "\maketitle"
|
||||
@@ -402,7 +486,13 @@ def insert_abstract(tex_content):
|
||||
# find the nearest ending line
|
||||
end_line_index = tex_content.find("\n", find_index)
|
||||
# insert "abs_str" on the next line
|
||||
modified_tex = tex_content[:end_line_index+1] + '\n\n' + insert_missing_abs_str + '\n\n' + tex_content[end_line_index+1:]
|
||||
modified_tex = (
|
||||
tex_content[: end_line_index + 1]
|
||||
+ "\n\n"
|
||||
+ insert_missing_abs_str
|
||||
+ "\n\n"
|
||||
+ tex_content[end_line_index + 1 :]
|
||||
)
|
||||
return modified_tex
|
||||
elif r"\begin{document}" in tex_content:
|
||||
# find the position of "\maketitle"
|
||||
@@ -410,29 +500,39 @@ def insert_abstract(tex_content):
|
||||
# find the nearest ending line
|
||||
end_line_index = tex_content.find("\n", find_index)
|
||||
# insert "abs_str" on the next line
|
||||
modified_tex = tex_content[:end_line_index+1] + '\n\n' + insert_missing_abs_str + '\n\n' + tex_content[end_line_index+1:]
|
||||
modified_tex = (
|
||||
tex_content[: end_line_index + 1]
|
||||
+ "\n\n"
|
||||
+ insert_missing_abs_str
|
||||
+ "\n\n"
|
||||
+ tex_content[end_line_index + 1 :]
|
||||
)
|
||||
return modified_tex
|
||||
else:
|
||||
return tex_content
|
||||
|
||||
|
||||
"""
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
Post process
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
"""
|
||||
|
||||
|
||||
def mod_inbraket(match):
|
||||
"""
|
||||
为啥chatgpt会把cite里面的逗号换成中文逗号呀
|
||||
为啥chatgpt会把cite里面的逗号换成中文逗号呀
|
||||
"""
|
||||
# get the matched string
|
||||
cmd = match.group(1)
|
||||
str_to_modify = match.group(2)
|
||||
# modify the matched string
|
||||
str_to_modify = str_to_modify.replace(':', ':') # 前面是中文冒号,后面是英文冒号
|
||||
str_to_modify = str_to_modify.replace(',', ',') # 前面是中文逗号,后面是英文逗号
|
||||
str_to_modify = str_to_modify.replace(":", ":") # 前面是中文冒号,后面是英文冒号
|
||||
str_to_modify = str_to_modify.replace(",", ",") # 前面是中文逗号,后面是英文逗号
|
||||
# str_to_modify = 'BOOM'
|
||||
return "\\" + cmd + "{" + str_to_modify + "}"
|
||||
|
||||
|
||||
def fix_content(final_tex, node_string):
|
||||
"""
|
||||
Fix common GPT errors to increase success rate
|
||||
@@ -443,10 +543,10 @@ def fix_content(final_tex, node_string):
|
||||
final_tex = re.sub(r"\\([a-z]{2,10})\{([^\}]*?)\}", mod_inbraket, string=final_tex)
|
||||
|
||||
if "Traceback" in final_tex and "[Local Message]" in final_tex:
|
||||
final_tex = node_string # 出问题了,还原原文
|
||||
if node_string.count('\\begin') != final_tex.count('\\begin'):
|
||||
final_tex = node_string # 出问题了,还原原文
|
||||
if node_string.count('\_') > 0 and node_string.count('\_') > final_tex.count('\_'):
|
||||
final_tex = node_string # 出问题了,还原原文
|
||||
if node_string.count("\\begin") != final_tex.count("\\begin"):
|
||||
final_tex = node_string # 出问题了,还原原文
|
||||
if node_string.count("\_") > 0 and node_string.count("\_") > final_tex.count("\_"):
|
||||
# walk and replace any _ without \
|
||||
final_tex = re.sub(r"(?<!\\)_", "\\_", final_tex)
|
||||
|
||||
@@ -454,24 +554,32 @@ def fix_content(final_tex, node_string):
|
||||
# this function count the number of { and }
|
||||
brace_level = 0
|
||||
for c in string:
|
||||
if c == "{": brace_level += 1
|
||||
elif c == "}": brace_level -= 1
|
||||
if c == "{":
|
||||
brace_level += 1
|
||||
elif c == "}":
|
||||
brace_level -= 1
|
||||
return brace_level
|
||||
|
||||
def join_most(tex_t, tex_o):
|
||||
# this function join translated string and original string when something goes wrong
|
||||
p_t = 0
|
||||
p_o = 0
|
||||
|
||||
def find_next(string, chars, begin):
|
||||
p = begin
|
||||
while p < len(string):
|
||||
if string[p] in chars: return p, string[p]
|
||||
if string[p] in chars:
|
||||
return p, string[p]
|
||||
p += 1
|
||||
return None, None
|
||||
|
||||
while True:
|
||||
res1, char = find_next(tex_o, ['{','}'], p_o)
|
||||
if res1 is None: break
|
||||
res1, char = find_next(tex_o, ["{", "}"], p_o)
|
||||
if res1 is None:
|
||||
break
|
||||
res2, char = find_next(tex_t, [char], p_t)
|
||||
if res2 is None: break
|
||||
if res2 is None:
|
||||
break
|
||||
p_o = res1 + 1
|
||||
p_t = res2 + 1
|
||||
return tex_t[:p_t] + tex_o[p_o:]
|
||||
@@ -480,10 +588,14 @@ def fix_content(final_tex, node_string):
|
||||
# 出问题了,还原部分原文,保证括号正确
|
||||
final_tex = join_most(final_tex, node_string)
|
||||
return final_tex
|
||||
|
||||
|
||||
|
||||
def compile_latex_with_timeout(command, cwd, timeout=60):
|
||||
import subprocess
|
||||
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=cwd)
|
||||
|
||||
process = subprocess.Popen(
|
||||
command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=cwd
|
||||
)
|
||||
try:
|
||||
stdout, stderr = process.communicate(timeout=timeout)
|
||||
except subprocess.TimeoutExpired:
|
||||
@@ -493,43 +605,52 @@ def compile_latex_with_timeout(command, cwd, timeout=60):
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def run_in_subprocess_wrapper_func(func, args, kwargs, return_dict, exception_dict):
|
||||
import sys
|
||||
|
||||
try:
|
||||
result = func(*args, **kwargs)
|
||||
return_dict['result'] = result
|
||||
return_dict["result"] = result
|
||||
except Exception as e:
|
||||
exc_info = sys.exc_info()
|
||||
exception_dict['exception'] = exc_info
|
||||
exception_dict["exception"] = exc_info
|
||||
|
||||
|
||||
def run_in_subprocess(func):
|
||||
import multiprocessing
|
||||
|
||||
def wrapper(*args, **kwargs):
|
||||
return_dict = multiprocessing.Manager().dict()
|
||||
exception_dict = multiprocessing.Manager().dict()
|
||||
process = multiprocessing.Process(target=run_in_subprocess_wrapper_func,
|
||||
args=(func, args, kwargs, return_dict, exception_dict))
|
||||
process = multiprocessing.Process(
|
||||
target=run_in_subprocess_wrapper_func,
|
||||
args=(func, args, kwargs, return_dict, exception_dict),
|
||||
)
|
||||
process.start()
|
||||
process.join()
|
||||
process.close()
|
||||
if 'exception' in exception_dict:
|
||||
if "exception" in exception_dict:
|
||||
# ooops, the subprocess ran into an exception
|
||||
exc_info = exception_dict['exception']
|
||||
exc_info = exception_dict["exception"]
|
||||
raise exc_info[1].with_traceback(exc_info[2])
|
||||
if 'result' in return_dict.keys():
|
||||
if "result" in return_dict.keys():
|
||||
# If the subprocess ran successfully, return the result
|
||||
return return_dict['result']
|
||||
return return_dict["result"]
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
def _merge_pdfs(pdf1_path, pdf2_path, output_path):
|
||||
import PyPDF2 # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放
|
||||
import PyPDF2 # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放
|
||||
|
||||
Percent = 0.95
|
||||
# raise RuntimeError('PyPDF2 has a serious memory leak problem, please use other tools to merge PDF files.')
|
||||
# Open the first PDF file
|
||||
with open(pdf1_path, 'rb') as pdf1_file:
|
||||
with open(pdf1_path, "rb") as pdf1_file:
|
||||
pdf1_reader = PyPDF2.PdfFileReader(pdf1_file)
|
||||
# Open the second PDF file
|
||||
with open(pdf2_path, 'rb') as pdf2_file:
|
||||
with open(pdf2_path, "rb") as pdf2_file:
|
||||
pdf2_reader = PyPDF2.PdfFileReader(pdf2_file)
|
||||
# Create a new PDF file to store the merged pages
|
||||
output_writer = PyPDF2.PdfFileWriter()
|
||||
@@ -549,14 +670,25 @@ def _merge_pdfs(pdf1_path, pdf2_path, output_path):
|
||||
page2 = PyPDF2.PageObject.createBlankPage(pdf1_reader)
|
||||
# Create a new empty page with double width
|
||||
new_page = PyPDF2.PageObject.createBlankPage(
|
||||
width = int(int(page1.mediaBox.getWidth()) + int(page2.mediaBox.getWidth()) * Percent),
|
||||
height = max(page1.mediaBox.getHeight(), page2.mediaBox.getHeight())
|
||||
width=int(
|
||||
int(page1.mediaBox.getWidth())
|
||||
+ int(page2.mediaBox.getWidth()) * Percent
|
||||
),
|
||||
height=max(page1.mediaBox.getHeight(), page2.mediaBox.getHeight()),
|
||||
)
|
||||
new_page.mergeTranslatedPage(page1, 0, 0)
|
||||
new_page.mergeTranslatedPage(page2, int(int(page1.mediaBox.getWidth())-int(page2.mediaBox.getWidth())* (1-Percent)), 0)
|
||||
new_page.mergeTranslatedPage(
|
||||
page2,
|
||||
int(
|
||||
int(page1.mediaBox.getWidth())
|
||||
- int(page2.mediaBox.getWidth()) * (1 - Percent)
|
||||
),
|
||||
0,
|
||||
)
|
||||
output_writer.addPage(new_page)
|
||||
# Save the merged PDF file
|
||||
with open(output_path, 'wb') as output_file:
|
||||
with open(output_path, "wb") as output_file:
|
||||
output_writer.write(output_file)
|
||||
|
||||
merge_pdfs = run_in_subprocess(_merge_pdfs) # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放
|
||||
|
||||
merge_pdfs = run_in_subprocess(_merge_pdfs) # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放
|
||||
|
||||
@@ -85,8 +85,8 @@ def write_numpy_to_wave(filename, rate, data, add_header=False):
|
||||
|
||||
def is_speaker_speaking(vad, data, sample_rate):
|
||||
# Function to detect if the speaker is speaking
|
||||
# The WebRTC VAD only accepts 16-bit mono PCM audio,
|
||||
# sampled at 8000, 16000, 32000 or 48000 Hz.
|
||||
# The WebRTC VAD only accepts 16-bit mono PCM audio,
|
||||
# sampled at 8000, 16000, 32000 or 48000 Hz.
|
||||
# A frame must be either 10, 20, or 30 ms in duration:
|
||||
frame_duration = 30
|
||||
n_bit_each = int(sample_rate * frame_duration / 1000)*2 # x2 because audio is 16 bit (2 bytes)
|
||||
@@ -94,7 +94,7 @@ def is_speaker_speaking(vad, data, sample_rate):
|
||||
for t in range(len(data)):
|
||||
if t!=0 and t % n_bit_each == 0:
|
||||
res_list.append(vad.is_speech(data[t-n_bit_each:t], sample_rate))
|
||||
|
||||
|
||||
info = ''.join(['^' if r else '.' for r in res_list])
|
||||
info = info[:10]
|
||||
if any(res_list):
|
||||
@@ -186,10 +186,10 @@ class AliyunASR():
|
||||
keep_alive_last_send_time = time.time()
|
||||
while not self.stop:
|
||||
# time.sleep(self.capture_interval)
|
||||
audio = rad.read(uuid.hex)
|
||||
audio = rad.read(uuid.hex)
|
||||
if audio is not None:
|
||||
# convert to pcm file
|
||||
temp_file = f'{temp_folder}/{uuid.hex}.pcm' #
|
||||
temp_file = f'{temp_folder}/{uuid.hex}.pcm' #
|
||||
dsdata = change_sample_rate(audio, rad.rate, NEW_SAMPLERATE) # 48000 --> 16000
|
||||
write_numpy_to_wave(temp_file, NEW_SAMPLERATE, dsdata)
|
||||
# read pcm binary
|
||||
|
||||
@@ -3,12 +3,12 @@ from scipy import interpolate
|
||||
|
||||
def Singleton(cls):
|
||||
_instance = {}
|
||||
|
||||
|
||||
def _singleton(*args, **kargs):
|
||||
if cls not in _instance:
|
||||
_instance[cls] = cls(*args, **kargs)
|
||||
return _instance[cls]
|
||||
|
||||
|
||||
return _singleton
|
||||
|
||||
|
||||
@@ -39,7 +39,7 @@ class RealtimeAudioDistribution():
|
||||
else:
|
||||
res = None
|
||||
return res
|
||||
|
||||
|
||||
def change_sample_rate(audio, old_sr, new_sr):
|
||||
duration = audio.shape[0] / old_sr
|
||||
|
||||
|
||||
@@ -40,7 +40,7 @@ class GptAcademicState():
|
||||
|
||||
class GptAcademicGameBaseState():
|
||||
"""
|
||||
1. first init: __init__ ->
|
||||
1. first init: __init__ ->
|
||||
"""
|
||||
def init_game(self, chatbot, lock_plugin):
|
||||
self.plugin_name = None
|
||||
@@ -53,7 +53,7 @@ class GptAcademicGameBaseState():
|
||||
raise ValueError("callback_fn is None")
|
||||
chatbot._cookies['lock_plugin'] = self.callback_fn
|
||||
self.dump_state(chatbot)
|
||||
|
||||
|
||||
def get_plugin_name(self):
|
||||
if self.plugin_name is None:
|
||||
raise ValueError("plugin_name is None")
|
||||
@@ -71,7 +71,7 @@ class GptAcademicGameBaseState():
|
||||
state = chatbot._cookies.get(f'plugin_state/{plugin_name}', None)
|
||||
if state is not None:
|
||||
state = pickle.loads(state)
|
||||
else:
|
||||
else:
|
||||
state = cls()
|
||||
state.init_game(chatbot, lock_plugin)
|
||||
state.plugin_name = plugin_name
|
||||
@@ -79,7 +79,7 @@ class GptAcademicGameBaseState():
|
||||
state.chatbot = chatbot
|
||||
state.callback_fn = callback_fn
|
||||
return state
|
||||
|
||||
|
||||
def continue_game(self, prompt, chatbot, history):
|
||||
# 游戏主体
|
||||
yield from self.step(prompt, chatbot, history)
|
||||
|
||||
@@ -35,7 +35,7 @@ def cut(limit, get_token_fn, txt_tocut, must_break_at_empty_line, break_anyway=F
|
||||
remain_txt_to_cut_storage = ""
|
||||
# 为了加速计算,我们采样一个特殊的手段。当 remain_txt_to_cut > `_max` 时, 我们把 _max 后的文字转存至 remain_txt_to_cut_storage
|
||||
remain_txt_to_cut, remain_txt_to_cut_storage = maintain_storage(remain_txt_to_cut, remain_txt_to_cut_storage)
|
||||
|
||||
|
||||
while True:
|
||||
if get_token_fn(remain_txt_to_cut) <= limit:
|
||||
# 如果剩余文本的token数小于限制,那么就不用切了
|
||||
|
||||
@@ -64,8 +64,8 @@ def produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chat
|
||||
# 再做一个小修改:重新修改当前part的标题,默认用英文的
|
||||
cur_value += value
|
||||
translated_res_array.append(cur_value)
|
||||
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + translated_res_array,
|
||||
file_basename = f"{gen_time_str()}-translated_only.md",
|
||||
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + translated_res_array,
|
||||
file_basename = f"{gen_time_str()}-translated_only.md",
|
||||
file_fullname = None,
|
||||
auto_caption = False)
|
||||
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(res_path)+'.md', chatbot=chatbot)
|
||||
@@ -144,11 +144,11 @@ def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_fi
|
||||
produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files)
|
||||
|
||||
# -=-=-=-=-=-=-=-= 写出HTML文件 -=-=-=-=-=-=-=-=
|
||||
ch = construct_html()
|
||||
ch = construct_html()
|
||||
orig = ""
|
||||
trans = ""
|
||||
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
|
||||
for i,k in enumerate(gpt_response_collection_html):
|
||||
for i,k in enumerate(gpt_response_collection_html):
|
||||
if i%2==0:
|
||||
gpt_response_collection_html[i] = inputs_show_user_array[i//2]
|
||||
else:
|
||||
@@ -159,7 +159,7 @@ def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_fi
|
||||
|
||||
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""]
|
||||
final.extend(gpt_response_collection_html)
|
||||
for i, k in enumerate(final):
|
||||
for i, k in enumerate(final):
|
||||
if i%2==0:
|
||||
orig = k
|
||||
if i%2==1:
|
||||
|
||||
@@ -0,0 +1,85 @@
|
||||
from crazy_functions.crazy_utils import read_and_clean_pdf_text, get_files_from_everything
|
||||
import os
|
||||
import re
|
||||
def extract_text_from_files(txt, chatbot, history):
|
||||
"""
|
||||
查找pdf/md/word并获取文本内容并返回状态以及文本
|
||||
|
||||
输入参数 Args:
|
||||
chatbot: chatbot inputs and outputs (用户界面对话窗口句柄,用于数据流可视化)
|
||||
history (list): List of chat history (历史,对话历史列表)
|
||||
|
||||
输出 Returns:
|
||||
文件是否存在(bool)
|
||||
final_result(list):文本内容
|
||||
page_one(list):第一页内容/摘要
|
||||
file_manifest(list):文件路径
|
||||
excption(string):需要用户手动处理的信息,如没出错则保持为空
|
||||
"""
|
||||
|
||||
final_result = []
|
||||
page_one = []
|
||||
file_manifest = []
|
||||
excption = ""
|
||||
|
||||
if txt == "":
|
||||
final_result.append(txt)
|
||||
return False, final_result, page_one, file_manifest, excption #如输入区内容不是文件则直接返回输入区内容
|
||||
|
||||
#查找输入区内容中的文件
|
||||
file_pdf,pdf_manifest,folder_pdf = get_files_from_everything(txt, '.pdf')
|
||||
file_md,md_manifest,folder_md = get_files_from_everything(txt, '.md')
|
||||
file_word,word_manifest,folder_word = get_files_from_everything(txt, '.docx')
|
||||
file_doc,doc_manifest,folder_doc = get_files_from_everything(txt, '.doc')
|
||||
|
||||
if file_doc:
|
||||
excption = "word"
|
||||
return False, final_result, page_one, file_manifest, excption
|
||||
|
||||
file_num = len(pdf_manifest) + len(md_manifest) + len(word_manifest)
|
||||
if file_num == 0:
|
||||
final_result.append(txt)
|
||||
return False, final_result, page_one, file_manifest, excption #如输入区内容不是文件则直接返回输入区内容
|
||||
|
||||
if file_pdf:
|
||||
try: # 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
import fitz
|
||||
except:
|
||||
excption = "pdf"
|
||||
return False, final_result, page_one, file_manifest, excption
|
||||
for index, fp in enumerate(pdf_manifest):
|
||||
file_content, pdf_one = read_and_clean_pdf_text(fp) # (尝试)按照章节切割PDF
|
||||
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||
pdf_one = str(pdf_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||
final_result.append(file_content)
|
||||
page_one.append(pdf_one)
|
||||
file_manifest.append(os.path.relpath(fp, folder_pdf))
|
||||
|
||||
if file_md:
|
||||
for index, fp in enumerate(md_manifest):
|
||||
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
||||
file_content = f.read()
|
||||
file_content = file_content.encode('utf-8', 'ignore').decode()
|
||||
headers = re.findall(r'^#\s(.*)$', file_content, re.MULTILINE) #接下来提取md中的一级/二级标题作为摘要
|
||||
if len(headers) > 0:
|
||||
page_one.append("\n".join(headers)) #合并所有的标题,以换行符分割
|
||||
else:
|
||||
page_one.append("")
|
||||
final_result.append(file_content)
|
||||
file_manifest.append(os.path.relpath(fp, folder_md))
|
||||
|
||||
if file_word:
|
||||
try: # 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
from docx import Document
|
||||
except:
|
||||
excption = "word_pip"
|
||||
return False, final_result, page_one, file_manifest, excption
|
||||
for index, fp in enumerate(word_manifest):
|
||||
doc = Document(fp)
|
||||
file_content = '\n'.join([p.text for p in doc.paragraphs])
|
||||
file_content = file_content.encode('utf-8', 'ignore').decode()
|
||||
page_one.append(file_content[:200])
|
||||
final_result.append(file_content)
|
||||
file_manifest.append(os.path.relpath(fp, folder_word))
|
||||
|
||||
return True, final_result, page_one, file_manifest, excption
|
||||
@@ -28,7 +28,7 @@ EMBEDDING_DEVICE = "cpu"
|
||||
|
||||
# 基于上下文的prompt模版,请务必保留"{question}"和"{context}"
|
||||
PROMPT_TEMPLATE = """已知信息:
|
||||
{context}
|
||||
{context}
|
||||
|
||||
根据上述已知信息,简洁和专业的来回答用户的问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题” 或 “没有提供足够的相关信息”,不允许在答案中添加编造成分,答案请使用中文。 问题是:{question}"""
|
||||
|
||||
@@ -58,7 +58,7 @@ OPEN_CROSS_DOMAIN = False
|
||||
def similarity_search_with_score_by_vector(
|
||||
self, embedding: List[float], k: int = 4
|
||||
) -> List[Tuple[Document, float]]:
|
||||
|
||||
|
||||
def seperate_list(ls: List[int]) -> List[List[int]]:
|
||||
lists = []
|
||||
ls1 = [ls[0]]
|
||||
@@ -200,7 +200,7 @@ class LocalDocQA:
|
||||
return vs_path, loaded_files
|
||||
else:
|
||||
raise RuntimeError("文件加载失败,请检查文件格式是否正确")
|
||||
|
||||
|
||||
def get_loaded_file(self, vs_path):
|
||||
ds = self.vector_store.docstore
|
||||
return set([ds._dict[k].metadata['source'].split(vs_path)[-1] for k in ds._dict])
|
||||
@@ -290,10 +290,10 @@ class knowledge_archive_interface():
|
||||
self.threadLock.acquire()
|
||||
# import uuid
|
||||
self.current_id = id
|
||||
self.qa_handle, self.kai_path = construct_vector_store(
|
||||
vs_id=self.current_id,
|
||||
self.qa_handle, self.kai_path = construct_vector_store(
|
||||
vs_id=self.current_id,
|
||||
vs_path=vs_path,
|
||||
files=file_manifest,
|
||||
files=file_manifest,
|
||||
sentence_size=100,
|
||||
history=[],
|
||||
one_conent="",
|
||||
@@ -304,7 +304,7 @@ class knowledge_archive_interface():
|
||||
|
||||
def get_current_archive_id(self):
|
||||
return self.current_id
|
||||
|
||||
|
||||
def get_loaded_file(self, vs_path):
|
||||
return self.qa_handle.get_loaded_file(vs_path)
|
||||
|
||||
@@ -312,10 +312,10 @@ class knowledge_archive_interface():
|
||||
self.threadLock.acquire()
|
||||
if not self.current_id == id:
|
||||
self.current_id = id
|
||||
self.qa_handle, self.kai_path = construct_vector_store(
|
||||
vs_id=self.current_id,
|
||||
self.qa_handle, self.kai_path = construct_vector_store(
|
||||
vs_id=self.current_id,
|
||||
vs_path=vs_path,
|
||||
files=[],
|
||||
files=[],
|
||||
sentence_size=100,
|
||||
history=[],
|
||||
one_conent="",
|
||||
@@ -329,7 +329,7 @@ class knowledge_archive_interface():
|
||||
query = txt,
|
||||
vs_path = self.kai_path,
|
||||
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
|
||||
vector_search_top_k=VECTOR_SEARCH_TOP_K,
|
||||
vector_search_top_k=VECTOR_SEARCH_TOP_K,
|
||||
chunk_conent=True,
|
||||
chunk_size=CHUNK_SIZE,
|
||||
text2vec = self.get_chinese_text2vec(),
|
||||
|
||||
@@ -35,9 +35,9 @@ def get_recent_file_prompt_support(chatbot):
|
||||
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
|
||||
path = most_recent_uploaded['path']
|
||||
prompt = "\nAdditional Information:\n"
|
||||
prompt = "In case that this plugin requires a path or a file as argument,"
|
||||
prompt += f"it is important for you to know that the user has recently uploaded a file, located at: `{path}`"
|
||||
prompt += f"Only use it when necessary, otherwise, you can ignore this file."
|
||||
prompt = "In case that this plugin requires a path or a file as argument,"
|
||||
prompt += f"it is important for you to know that the user has recently uploaded a file, located at: `{path}`"
|
||||
prompt += f"Only use it when necessary, otherwise, you can ignore this file."
|
||||
return prompt
|
||||
|
||||
def get_inputs_show_user(inputs, plugin_arr_enum_prompt):
|
||||
@@ -82,7 +82,7 @@ def execute_plugin(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
|
||||
msg += "\n但您可以尝试再试一次\n"
|
||||
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
|
||||
return
|
||||
|
||||
|
||||
# ⭐ ⭐ ⭐ 确认插件参数
|
||||
if not have_any_recent_upload_files(chatbot):
|
||||
appendix_info = ""
|
||||
@@ -99,7 +99,7 @@ def execute_plugin(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
|
||||
inputs = f"A plugin named {plugin_sel.plugin_selection} is selected, " + \
|
||||
"you should extract plugin_arg from the user requirement, the user requirement is: \n\n" + \
|
||||
">> " + (txt + appendix_info).rstrip('\n').replace('\n','\n>> ') + '\n\n' + \
|
||||
gpt_json_io.format_instructions
|
||||
gpt_json_io.format_instructions
|
||||
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(
|
||||
inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
|
||||
plugin_sel = gpt_json_io.generate_output_auto_repair(run_gpt_fn(inputs, ""), run_gpt_fn)
|
||||
|
||||
@@ -10,7 +10,7 @@ def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
ALLOW_RESET_CONFIG = get_conf('ALLOW_RESET_CONFIG')
|
||||
if not ALLOW_RESET_CONFIG:
|
||||
yield from update_ui_lastest_msg(
|
||||
lastmsg=f"当前配置不允许被修改!如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
|
||||
lastmsg=f"当前配置不允许被修改!如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
|
||||
chatbot=chatbot, history=history, delay=2
|
||||
)
|
||||
return
|
||||
@@ -35,7 +35,7 @@ def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
inputs = "Analyze how to change configuration according to following user input, answer me with json: \n\n" + \
|
||||
">> " + txt.rstrip('\n').replace('\n','\n>> ') + '\n\n' + \
|
||||
gpt_json_io.format_instructions
|
||||
|
||||
|
||||
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(
|
||||
inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
|
||||
user_intention = gpt_json_io.generate_output_auto_repair(run_gpt_fn(inputs, ""), run_gpt_fn)
|
||||
@@ -45,11 +45,11 @@ def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
ok = (explicit_conf in txt)
|
||||
if ok:
|
||||
yield from update_ui_lastest_msg(
|
||||
lastmsg=f"正在执行任务: {txt}\n\n新配置{explicit_conf}={user_intention.new_option_value}",
|
||||
lastmsg=f"正在执行任务: {txt}\n\n新配置{explicit_conf}={user_intention.new_option_value}",
|
||||
chatbot=chatbot, history=history, delay=1
|
||||
)
|
||||
yield from update_ui_lastest_msg(
|
||||
lastmsg=f"正在执行任务: {txt}\n\n新配置{explicit_conf}={user_intention.new_option_value}\n\n正在修改配置中",
|
||||
lastmsg=f"正在执行任务: {txt}\n\n新配置{explicit_conf}={user_intention.new_option_value}\n\n正在修改配置中",
|
||||
chatbot=chatbot, history=history, delay=2
|
||||
)
|
||||
|
||||
@@ -69,7 +69,7 @@ def modify_configuration_reboot(txt, llm_kwargs, plugin_kwargs, chatbot, history
|
||||
ALLOW_RESET_CONFIG = get_conf('ALLOW_RESET_CONFIG')
|
||||
if not ALLOW_RESET_CONFIG:
|
||||
yield from update_ui_lastest_msg(
|
||||
lastmsg=f"当前配置不允许被修改!如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
|
||||
lastmsg=f"当前配置不允许被修改!如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
|
||||
chatbot=chatbot, history=history, delay=2
|
||||
)
|
||||
return
|
||||
|
||||
@@ -6,7 +6,7 @@ class VoidTerminalState():
|
||||
|
||||
def reset_state(self):
|
||||
self.has_provided_explaination = False
|
||||
|
||||
|
||||
def lock_plugin(self, chatbot):
|
||||
chatbot._cookies['lock_plugin'] = 'crazy_functions.虚空终端->虚空终端'
|
||||
chatbot._cookies['plugin_state'] = pickle.dumps(self)
|
||||
|
||||
@@ -130,7 +130,7 @@ def get_name(_url_):
|
||||
|
||||
|
||||
@CatchException
|
||||
def 下载arxiv论文并翻译摘要(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 下载arxiv论文并翻译摘要(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
|
||||
CRAZY_FUNCTION_INFO = "下载arxiv论文并翻译摘要,函数插件作者[binary-husky]。正在提取摘要并下载PDF文档……"
|
||||
import glob
|
||||
@@ -144,8 +144,8 @@ def 下载arxiv论文并翻译摘要(txt, llm_kwargs, plugin_kwargs, chatbot, hi
|
||||
try:
|
||||
import bs4
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a = f"解析项目: {txt}",
|
||||
report_exception(chatbot, history,
|
||||
a = f"解析项目: {txt}",
|
||||
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade beautifulsoup4```。")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
@@ -157,12 +157,12 @@ def 下载arxiv论文并翻译摘要(txt, llm_kwargs, plugin_kwargs, chatbot, hi
|
||||
try:
|
||||
pdf_path, info = download_arxiv_(txt)
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a = f"解析项目: {txt}",
|
||||
report_exception(chatbot, history,
|
||||
a = f"解析项目: {txt}",
|
||||
b = f"下载pdf文件未成功")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
# 翻译摘要等
|
||||
i_say = f"请你阅读以下学术论文相关的材料,提取摘要,翻译为中文。材料如下:{str(info)}"
|
||||
i_say_show_user = f'请你阅读以下学术论文相关的材料,提取摘要,翻译为中文。论文:{pdf_path}'
|
||||
|
||||
@@ -5,16 +5,16 @@ from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
from crazy_functions.game_fns.game_utils import get_code_block, is_same_thing
|
||||
|
||||
@CatchException
|
||||
def 随机小游戏(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 随机小游戏(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
from crazy_functions.game_fns.game_interactive_story import MiniGame_ResumeStory
|
||||
# 清空历史
|
||||
history = []
|
||||
# 选择游戏
|
||||
cls = MiniGame_ResumeStory
|
||||
# 如果之前已经初始化了游戏实例,则继续该实例;否则重新初始化
|
||||
state = cls.sync_state(chatbot,
|
||||
llm_kwargs,
|
||||
cls,
|
||||
state = cls.sync_state(chatbot,
|
||||
llm_kwargs,
|
||||
cls,
|
||||
plugin_name='MiniGame_ResumeStory',
|
||||
callback_fn='crazy_functions.互动小游戏->随机小游戏',
|
||||
lock_plugin=True
|
||||
@@ -23,16 +23,16 @@ def 随机小游戏(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
||||
|
||||
|
||||
@CatchException
|
||||
def 随机小游戏1(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 随机小游戏1(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
from crazy_functions.game_fns.game_ascii_art import MiniGame_ASCII_Art
|
||||
# 清空历史
|
||||
history = []
|
||||
# 选择游戏
|
||||
cls = MiniGame_ASCII_Art
|
||||
# 如果之前已经初始化了游戏实例,则继续该实例;否则重新初始化
|
||||
state = cls.sync_state(chatbot,
|
||||
llm_kwargs,
|
||||
cls,
|
||||
state = cls.sync_state(chatbot,
|
||||
llm_kwargs,
|
||||
cls,
|
||||
plugin_name='MiniGame_ASCII_Art',
|
||||
callback_fn='crazy_functions.互动小游戏->随机小游戏1',
|
||||
lock_plugin=True
|
||||
|
||||
@@ -3,7 +3,7 @@ from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
|
||||
|
||||
@CatchException
|
||||
def 交互功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 交互功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数, 如温度和top_p等, 一般原样传递下去就行
|
||||
@@ -11,7 +11,7 @@ def 交互功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
chatbot.append(("这是什么功能?", "交互功能函数模板。在执行完成之后, 可以将自身的状态存储到cookie中, 等待用户的再次调用。"))
|
||||
@@ -38,7 +38,7 @@ def 交互功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
inputs=inputs_show_user=f"Extract all image urls in this html page, pick the first 5 images and show them with markdown format: \n\n {page_return}"
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=inputs, inputs_show_user=inputs_show_user,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
sys_prompt="When you want to show an image, use markdown format. e.g. . If there are no image url provided, answer 'no image url provided'"
|
||||
)
|
||||
chatbot[-1] = [chatbot[-1][0], gpt_say]
|
||||
|
||||
@@ -6,10 +6,10 @@
|
||||
- 将图像转为灰度图像
|
||||
- 将csv文件转excel表格
|
||||
|
||||
Testing:
|
||||
- Crop the image, keeping the bottom half.
|
||||
- Swap the blue channel and red channel of the image.
|
||||
- Convert the image to grayscale.
|
||||
Testing:
|
||||
- Crop the image, keeping the bottom half.
|
||||
- Swap the blue channel and red channel of the image.
|
||||
- Convert the image to grayscale.
|
||||
- Convert the CSV file to an Excel spreadsheet.
|
||||
"""
|
||||
|
||||
@@ -29,12 +29,12 @@ import multiprocessing
|
||||
|
||||
templete = """
|
||||
```python
|
||||
import ... # Put dependencies here, e.g. import numpy as np.
|
||||
import ... # Put dependencies here, e.g. import numpy as np.
|
||||
|
||||
class TerminalFunction(object): # Do not change the name of the class, The name of the class must be `TerminalFunction`
|
||||
|
||||
def run(self, path): # The name of the function must be `run`, it takes only a positional argument.
|
||||
# rewrite the function you have just written here
|
||||
# rewrite the function you have just written here
|
||||
...
|
||||
return generated_file_path
|
||||
```
|
||||
@@ -48,7 +48,7 @@ def get_code_block(reply):
|
||||
import re
|
||||
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
|
||||
matches = re.findall(pattern, reply) # find all code blocks in text
|
||||
if len(matches) == 1:
|
||||
if len(matches) == 1:
|
||||
return matches[0].strip('python') # code block
|
||||
for match in matches:
|
||||
if 'class TerminalFunction' in match:
|
||||
@@ -68,8 +68,8 @@ def gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history):
|
||||
|
||||
# 第一步
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=demo,
|
||||
inputs=i_say, inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=demo,
|
||||
sys_prompt= r"You are a world-class programmer."
|
||||
)
|
||||
history.extend([i_say, gpt_say])
|
||||
@@ -82,33 +82,33 @@ def gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history):
|
||||
]
|
||||
i_say = "".join(prompt_compose); inputs_show_user = "If previous stage is successful, rewrite the function you have just written to satisfy executable templete. "
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=inputs_show_user,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
inputs=i_say, inputs_show_user=inputs_show_user,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
sys_prompt= r"You are a programmer. You need to replace `...` with valid packages, do not give `...` in your answer!"
|
||||
)
|
||||
code_to_return = gpt_say
|
||||
history.extend([i_say, gpt_say])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
|
||||
# # 第三步
|
||||
# i_say = "Please list to packages to install to run the code above. Then show me how to use `try_install_deps` function to install them."
|
||||
# i_say += 'For instance. `try_install_deps(["opencv-python", "scipy", "numpy"])`'
|
||||
# installation_advance = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
# inputs=i_say, inputs_show_user=inputs_show_user,
|
||||
# llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
# inputs=i_say, inputs_show_user=inputs_show_user,
|
||||
# llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
# sys_prompt= r"You are a programmer."
|
||||
# )
|
||||
|
||||
# # # 第三步
|
||||
# # # 第三步
|
||||
# i_say = "Show me how to use `pip` to install packages to run the code above. "
|
||||
# i_say += 'For instance. `pip install -r opencv-python scipy numpy`'
|
||||
# installation_advance = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
# inputs=i_say, inputs_show_user=i_say,
|
||||
# llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
# inputs=i_say, inputs_show_user=i_say,
|
||||
# llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
# sys_prompt= r"You are a programmer."
|
||||
# )
|
||||
installation_advance = ""
|
||||
|
||||
|
||||
return code_to_return, installation_advance, txt, file_type, llm_kwargs, chatbot, history
|
||||
|
||||
|
||||
@@ -117,7 +117,7 @@ def gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history):
|
||||
def for_immediate_show_off_when_possible(file_type, fp, chatbot):
|
||||
if file_type in ['png', 'jpg']:
|
||||
image_path = os.path.abspath(fp)
|
||||
chatbot.append(['这是一张图片, 展示如下:',
|
||||
chatbot.append(['这是一张图片, 展示如下:',
|
||||
f'本地文件地址: <br/>`{image_path}`<br/>'+
|
||||
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
|
||||
])
|
||||
@@ -139,7 +139,7 @@ def get_recent_file_prompt_support(chatbot):
|
||||
return path
|
||||
|
||||
@CatchException
|
||||
def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
@@ -147,7 +147,7 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
|
||||
# 清空历史
|
||||
@@ -177,7 +177,7 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
||||
chatbot.append(["文件检索", "没有发现任何近期上传的文件。"])
|
||||
yield from update_ui_lastest_msg("没有发现任何近期上传的文件。", chatbot, history, 1)
|
||||
return # 2. 如果没有文件
|
||||
|
||||
|
||||
# 读取文件
|
||||
file_type = file_list[0].split('.')[-1]
|
||||
|
||||
@@ -185,7 +185,7 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
||||
if is_the_upload_folder(txt):
|
||||
yield from update_ui_lastest_msg(f"请在输入框内填写需求, 然后再次点击该插件! 至于您的文件,不用担心, 文件路径 {txt} 已经被记忆. ", chatbot, history, 1)
|
||||
return
|
||||
|
||||
|
||||
# 开始干正事
|
||||
MAX_TRY = 3
|
||||
for j in range(MAX_TRY): # 最多重试5次
|
||||
@@ -238,7 +238,7 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
||||
# chatbot.append(["如果是缺乏依赖,请参考以下建议", installation_advance])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
# 顺利完成,收尾
|
||||
res = str(res)
|
||||
if os.path.exists(res):
|
||||
@@ -248,5 +248,5 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
else:
|
||||
chatbot.append(["执行成功了,结果是一个字符串", "结果:" + res])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
|
||||
@@ -4,7 +4,7 @@ from .crazy_utils import input_clipping
|
||||
import copy, json
|
||||
|
||||
@CatchException
|
||||
def 命令行助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 命令行助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本, 例如需要翻译的一段话, 再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数, 如温度和top_p等, 一般原样传递下去就行
|
||||
@@ -12,7 +12,7 @@ def 命令行助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
||||
chatbot 聊天显示框的句柄, 用于显示给用户
|
||||
history 聊天历史, 前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
# 清空历史, 以免输入溢出
|
||||
history = []
|
||||
@@ -21,8 +21,8 @@ def 命令行助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
||||
i_say = "请写bash命令实现以下功能:" + txt
|
||||
# 开始
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=txt,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
inputs=i_say, inputs_show_user=txt,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
sys_prompt="你是一个Linux大师级用户。注意,当我要求你写bash命令时,尽可能地仅用一行命令解决我的要求。"
|
||||
)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
@@ -7,7 +7,7 @@ def gen_image(llm_kwargs, prompt, resolution="1024x1024", model="dall-e-2", qual
|
||||
from request_llms.bridge_all import model_info
|
||||
|
||||
proxies = get_conf('proxies')
|
||||
# Set up OpenAI API key and model
|
||||
# Set up OpenAI API key and model
|
||||
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
||||
chat_endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||
# 'https://api.openai.com/v1/chat/completions'
|
||||
@@ -93,7 +93,7 @@ def edit_image(llm_kwargs, prompt, image_path, resolution="1024x1024", model="da
|
||||
|
||||
|
||||
@CatchException
|
||||
def 图片生成_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 图片生成_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
@@ -101,7 +101,7 @@ def 图片生成_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
if prompt.strip() == "":
|
||||
@@ -113,7 +113,7 @@ def 图片生成_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
resolution = plugin_kwargs.get("advanced_arg", '1024x1024')
|
||||
image_url, image_path = gen_image(llm_kwargs, prompt, resolution)
|
||||
chatbot.append([prompt,
|
||||
chatbot.append([prompt,
|
||||
f'图像中转网址: <br/>`{image_url}`<br/>'+
|
||||
f'中转网址预览: <br/><div align="center"><img src="{image_url}"></div>'
|
||||
f'本地文件地址: <br/>`{image_path}`<br/>'+
|
||||
@@ -123,7 +123,7 @@ def 图片生成_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
||||
|
||||
|
||||
@CatchException
|
||||
def 图片生成_DALLE3(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 图片生成_DALLE3(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
if prompt.strip() == "":
|
||||
chatbot.append((prompt, "[Local Message] 图像生成提示为空白,请在“输入区”输入图像生成提示。"))
|
||||
@@ -144,7 +144,7 @@ def 图片生成_DALLE3(prompt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
||||
elif part in ['vivid', 'natural']:
|
||||
style = part
|
||||
image_url, image_path = gen_image(llm_kwargs, prompt, resolution, model="dall-e-3", quality=quality, style=style)
|
||||
chatbot.append([prompt,
|
||||
chatbot.append([prompt,
|
||||
f'图像中转网址: <br/>`{image_url}`<br/>'+
|
||||
f'中转网址预览: <br/><div align="center"><img src="{image_url}"></div>'
|
||||
f'本地文件地址: <br/>`{image_path}`<br/>'+
|
||||
@@ -164,7 +164,7 @@ class ImageEditState(GptAcademicState):
|
||||
confirm = (len(file_manifest) >= 1 and file_manifest[0].endswith('.png') and os.path.exists(file_manifest[0]))
|
||||
file = None if not confirm else file_manifest[0]
|
||||
return confirm, file
|
||||
|
||||
|
||||
def lock_plugin(self, chatbot):
|
||||
chatbot._cookies['lock_plugin'] = 'crazy_functions.图片生成->图片修改_DALLE2'
|
||||
self.dump_state(chatbot)
|
||||
@@ -209,7 +209,7 @@ class ImageEditState(GptAcademicState):
|
||||
return all([x['value'] is not None for x in self.req])
|
||||
|
||||
@CatchException
|
||||
def 图片修改_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 图片修改_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# 尚未完成
|
||||
history = [] # 清空历史
|
||||
state = ImageEditState.get_state(chatbot, ImageEditState)
|
||||
|
||||
@@ -21,7 +21,7 @@ def remove_model_prefix(llm):
|
||||
|
||||
|
||||
@CatchException
|
||||
def 多智能体终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 多智能体终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
@@ -29,7 +29,7 @@ def 多智能体终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
# 检查当前的模型是否符合要求
|
||||
supported_llms = [
|
||||
@@ -50,25 +50,18 @@ def 多智能体终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
||||
return
|
||||
if model_info[llm_kwargs['llm_model']]["endpoint"] is not None: # 如果不是本地模型,加载API_KEY
|
||||
llm_kwargs['api_key'] = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
||||
|
||||
# 检查当前的模型是否符合要求
|
||||
API_URL_REDIRECT = get_conf('API_URL_REDIRECT')
|
||||
if len(API_URL_REDIRECT) > 0:
|
||||
chatbot.append([f"处理任务: {txt}", f"暂不支持中转."])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
import autogen
|
||||
if get_conf("AUTOGEN_USE_DOCKER"):
|
||||
import docker
|
||||
except:
|
||||
chatbot.append([ f"处理任务: {txt}",
|
||||
chatbot.append([ f"处理任务: {txt}",
|
||||
f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pyautogen docker```。"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
import autogen
|
||||
@@ -79,7 +72,7 @@ def 多智能体终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
||||
chatbot.append([f"处理任务: {txt}", f"缺少docker运行环境!"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
# 解锁插件
|
||||
chatbot.get_cookies()['lock_plugin'] = None
|
||||
persistent_class_multi_user_manager = GradioMultiuserManagerForPersistentClasses()
|
||||
@@ -96,7 +89,7 @@ def 多智能体终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
||||
history = []
|
||||
chatbot.append(["正在启动: 多智能体终端", "插件动态生成, 执行开始, 作者 Microsoft & Binary-Husky."])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
executor = AutoGenMath(llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port)
|
||||
executor = AutoGenMath(llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||
persistent_class_multi_user_manager.set(persistent_key, executor)
|
||||
exit_reason = yield from executor.main_process_ui_control(txt, create_or_resume="create")
|
||||
|
||||
|
||||
@@ -66,10 +66,10 @@ def read_file_to_chat(chatbot, history, file_name):
|
||||
i_say, gpt_say = h.split('<hr style="border-top: dotted 3px #ccc;">')
|
||||
chatbot.append([i_say, gpt_say])
|
||||
chatbot.append([f"存档文件详情?", f"[Local Message] 载入对话{len(html)}条,上下文{len(history)}条。"])
|
||||
return chatbot, history
|
||||
return chatbot, history
|
||||
|
||||
@CatchException
|
||||
def 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
@@ -77,10 +77,10 @@ def 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
|
||||
chatbot.append(("保存当前对话",
|
||||
chatbot.append(("保存当前对话",
|
||||
f"[Local Message] {write_chat_to_file(chatbot, history)},您可以调用下拉菜单中的“载入对话历史存档”还原当下的对话。"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
|
||||
@@ -91,7 +91,7 @@ def hide_cwd(str):
|
||||
return str.replace(current_path, replace_path)
|
||||
|
||||
@CatchException
|
||||
def 载入对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 载入对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
@@ -99,7 +99,7 @@ def 载入对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
from .crazy_utils import get_files_from_everything
|
||||
success, file_manifest, _ = get_files_from_everything(txt, type='.html')
|
||||
@@ -108,9 +108,9 @@ def 载入对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
import glob
|
||||
local_history = "<br/>".join([
|
||||
"`"+hide_cwd(f)+f" ({gen_file_preview(f)})"+"`"
|
||||
"`"+hide_cwd(f)+f" ({gen_file_preview(f)})"+"`"
|
||||
for f in glob.glob(
|
||||
f'{get_log_folder(get_user(chatbot), plugin_name="chat_history")}/**/{f_prefix}*.html',
|
||||
f'{get_log_folder(get_user(chatbot), plugin_name="chat_history")}/**/{f_prefix}*.html',
|
||||
recursive=True
|
||||
)])
|
||||
chatbot.append([f"正在查找对话历史文件(html格式): {txt}", f"找不到任何html文件: {txt}。但本地存储了以下历史文件,您可以将任意一个文件路径粘贴到输入区,然后重试:<br/>{local_history}"])
|
||||
@@ -126,7 +126,7 @@ def 载入对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
return
|
||||
|
||||
@CatchException
|
||||
def 删除所有本地对话历史记录(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 删除所有本地对话历史记录(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
@@ -134,12 +134,12 @@ def 删除所有本地对话历史记录(txt, llm_kwargs, plugin_kwargs, chatbot
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
|
||||
import glob, os
|
||||
local_history = "<br/>".join([
|
||||
"`"+hide_cwd(f)+"`"
|
||||
"`"+hide_cwd(f)+"`"
|
||||
for f in glob.glob(
|
||||
f'{get_log_folder(get_user(chatbot), plugin_name="chat_history")}/**/{f_prefix}*.html', recursive=True
|
||||
)])
|
||||
|
||||
@@ -40,10 +40,10 @@ def 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot
|
||||
i_say = f'请对下面的文章片段用中文做概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{paper_frag}```'
|
||||
i_say_show_user = f'请对下面的文章片段做概述: {os.path.abspath(fp)}的第{i+1}/{len(paper_fragments)}个片段。'
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say_show_user,
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say_show_user,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
chatbot=chatbot,
|
||||
history=[],
|
||||
sys_prompt="总结文章。"
|
||||
)
|
||||
@@ -56,10 +56,10 @@ def 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot
|
||||
if len(paper_fragments) > 1:
|
||||
i_say = f"根据以上的对话,总结文章{os.path.abspath(fp)}的主要内容。"
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say,
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
chatbot=chatbot,
|
||||
history=this_paper_history,
|
||||
sys_prompt="总结文章。"
|
||||
)
|
||||
@@ -79,7 +79,7 @@ def 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot
|
||||
|
||||
|
||||
@CatchException
|
||||
def 总结word文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 总结word文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
import glob, os
|
||||
|
||||
# 基本信息:功能、贡献者
|
||||
|
||||
@@ -53,7 +53,7 @@ class PaperFileGroup():
|
||||
def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
|
||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
|
||||
# <-------- 读取Markdown文件,删除其中的所有注释 ---------->
|
||||
# <-------- 读取Markdown文件,删除其中的所有注释 ---------->
|
||||
pfg = PaperFileGroup()
|
||||
|
||||
for index, fp in enumerate(file_manifest):
|
||||
@@ -63,23 +63,23 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
||||
pfg.file_paths.append(fp)
|
||||
pfg.file_contents.append(file_content)
|
||||
|
||||
# <-------- 拆分过长的Markdown文件 ---------->
|
||||
# <-------- 拆分过长的Markdown文件 ---------->
|
||||
pfg.run_file_split(max_token_limit=1500)
|
||||
n_split = len(pfg.sp_file_contents)
|
||||
|
||||
# <-------- 多线程翻译开始 ---------->
|
||||
# <-------- 多线程翻译开始 ---------->
|
||||
if language == 'en->zh':
|
||||
inputs_array = ["This is a Markdown file, translate it into Chinese, do not modify any existing Markdown commands:" +
|
||||
inputs_array = ["This is a Markdown file, translate it into Chinese, do not modify any existing Markdown commands:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
||||
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
||||
elif language == 'zh->en':
|
||||
inputs_array = [f"This is a Markdown file, translate it into English, do not modify any existing Markdown commands:" +
|
||||
inputs_array = [f"This is a Markdown file, translate it into English, do not modify any existing Markdown commands:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
||||
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
||||
else:
|
||||
inputs_array = [f"This is a Markdown file, translate it into {language}, do not modify any existing Markdown commands, only answer me with translated results:" +
|
||||
inputs_array = [f"This is a Markdown file, translate it into {language}, do not modify any existing Markdown commands, only answer me with translated results:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
||||
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
||||
@@ -103,7 +103,7 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
||||
except:
|
||||
logging.error(trimmed_format_exc())
|
||||
|
||||
# <-------- 整理结果,退出 ---------->
|
||||
# <-------- 整理结果,退出 ---------->
|
||||
create_report_file_name = gen_time_str() + f"-chatgpt.md"
|
||||
res = write_history_to_file(gpt_response_collection, file_basename=create_report_file_name)
|
||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||
@@ -153,7 +153,7 @@ def get_files_from_everything(txt, preference=''):
|
||||
|
||||
|
||||
@CatchException
|
||||
def Markdown英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def Markdown英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
@@ -193,7 +193,7 @@ def Markdown英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
|
||||
|
||||
|
||||
@CatchException
|
||||
def Markdown中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def Markdown中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
@@ -226,7 +226,7 @@ def Markdown中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
|
||||
|
||||
|
||||
@CatchException
|
||||
def Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
@@ -255,7 +255,7 @@ def Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history,
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
language = plugin_kwargs.get("advanced_arg", 'Chinese')
|
||||
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language=language)
|
||||
@@ -17,7 +17,7 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
||||
file_content, page_one = read_and_clean_pdf_text(file_name) # (尝试)按照章节切割PDF
|
||||
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||
|
||||
|
||||
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
||||
|
||||
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
||||
@@ -25,7 +25,7 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
||||
page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=str(page_one), limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model'])
|
||||
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
||||
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
||||
|
||||
|
||||
############################## <第 1 步,从摘要中提取高价值信息,放到history中> ##################################
|
||||
final_results = []
|
||||
final_results.append(paper_meta)
|
||||
@@ -44,10 +44,10 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
||||
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} Chinese characters: {paper_fragments[i]}"
|
||||
i_say_show_user = f"[{i+1}/{n_fragment}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} Chinese characters: {paper_fragments[i][:200]}"
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
|
||||
llm_kwargs, chatbot,
|
||||
llm_kwargs, chatbot,
|
||||
history=["The main idea of the previous section is?", last_iteration_result], # 迭代上一次的结果
|
||||
sys_prompt="Extract the main idea of this section with Chinese." # 提示
|
||||
)
|
||||
)
|
||||
iteration_results.append(gpt_say)
|
||||
last_iteration_result = gpt_say
|
||||
|
||||
@@ -67,15 +67,15 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
||||
- (2):What are the past methods? What are the problems with them? Is the approach well motivated?
|
||||
- (3):What is the research methodology proposed in this paper?
|
||||
- (4):On what task and what performance is achieved by the methods in this paper? Can the performance support their goals?
|
||||
Follow the format of the output that follows:
|
||||
Follow the format of the output that follows:
|
||||
1. Title: xxx\n\n
|
||||
2. Authors: xxx\n\n
|
||||
3. Affiliation: xxx\n\n
|
||||
4. Keywords: xxx\n\n
|
||||
5. Urls: xxx or xxx , xxx \n\n
|
||||
6. Summary: \n\n
|
||||
- (1):xxx;\n
|
||||
- (2):xxx;\n
|
||||
- (1):xxx;\n
|
||||
- (2):xxx;\n
|
||||
- (3):xxx;\n
|
||||
- (4):xxx.\n\n
|
||||
Be sure to use Chinese answers (proper nouns need to be marked in English), statements as concise and academic as possible,
|
||||
@@ -85,8 +85,8 @@ do not have too much repetitive information, numerical values using the original
|
||||
file_write_buffer.extend(final_results)
|
||||
i_say, final_results = input_clipping(i_say, final_results, max_token_limit=2000)
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user='开始最终总结',
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=final_results,
|
||||
inputs=i_say, inputs_show_user='开始最终总结',
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=final_results,
|
||||
sys_prompt= f"Extract the main idea of this paper with less than {NUM_OF_WORD} Chinese characters"
|
||||
)
|
||||
final_results.append(gpt_say)
|
||||
@@ -101,7 +101,7 @@ do not have too much repetitive information, numerical values using the original
|
||||
|
||||
|
||||
@CatchException
|
||||
def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
import glob, os
|
||||
|
||||
# 基本信息:功能、贡献者
|
||||
@@ -114,8 +114,8 @@ def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
try:
|
||||
import fitz
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a = f"解析项目: {txt}",
|
||||
report_exception(chatbot, history,
|
||||
a = f"解析项目: {txt}",
|
||||
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
@@ -134,7 +134,7 @@ def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
|
||||
# 搜索需要处理的文件清单
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)]
|
||||
|
||||
|
||||
# 如果没找到任何文件
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex或.pdf文件: {txt}")
|
||||
|
||||
@@ -85,10 +85,10 @@ def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbo
|
||||
msg = '正常'
|
||||
# ** gpt request **
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say_show_user,
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say_show_user,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
chatbot=chatbot,
|
||||
history=[],
|
||||
sys_prompt="总结文章。"
|
||||
) # 带超时倒计时
|
||||
@@ -106,10 +106,10 @@ def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbo
|
||||
msg = '正常'
|
||||
# ** gpt request **
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say,
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
chatbot=chatbot,
|
||||
history=history,
|
||||
sys_prompt="总结文章。"
|
||||
) # 带超时倒计时
|
||||
@@ -124,7 +124,7 @@ def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbo
|
||||
|
||||
|
||||
@CatchException
|
||||
def 批量总结PDF文档pdfminer(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 批量总结PDF文档pdfminer(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
|
||||
@@ -138,8 +138,8 @@ def 批量总结PDF文档pdfminer(txt, llm_kwargs, plugin_kwargs, chatbot, histo
|
||||
try:
|
||||
import pdfminer, bs4
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a = f"解析项目: {txt}",
|
||||
report_exception(chatbot, history,
|
||||
a = f"解析项目: {txt}",
|
||||
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pdfminer beautifulsoup4```。")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
@@ -48,7 +48,7 @@ def markdown_to_dict(article_content):
|
||||
|
||||
|
||||
@CatchException
|
||||
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
|
||||
disable_auto_promotion(chatbot)
|
||||
# 基本信息:功能、贡献者
|
||||
@@ -76,8 +76,8 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
success_mmd, file_manifest_mmd, _ = get_files_from_everything(txt, type='.mmd')
|
||||
success = success or success_mmd
|
||||
file_manifest += file_manifest_mmd
|
||||
chatbot.append(["文件列表:", ", ".join([e.split('/')[-1] for e in file_manifest])]);
|
||||
yield from update_ui( chatbot=chatbot, history=history)
|
||||
chatbot.append(["文件列表:", ", ".join([e.split('/')[-1] for e in file_manifest])]);
|
||||
yield from update_ui( chatbot=chatbot, history=history)
|
||||
# 检测输入参数,如没有给定输入参数,直接退出
|
||||
if not success:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
|
||||
@@ -10,7 +10,7 @@ import os
|
||||
|
||||
|
||||
@CatchException
|
||||
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
|
||||
disable_auto_promotion(chatbot)
|
||||
# 基本信息:功能、贡献者
|
||||
@@ -68,7 +68,7 @@ def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwa
|
||||
with open(grobid_json_res, 'w+', encoding='utf8') as f:
|
||||
f.write(json.dumps(article_dict, indent=4, ensure_ascii=False))
|
||||
promote_file_to_downloadzone(grobid_json_res, chatbot=chatbot)
|
||||
|
||||
|
||||
if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
|
||||
yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG)
|
||||
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
||||
@@ -97,7 +97,7 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
||||
|
||||
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
||||
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
||||
|
||||
|
||||
# 单线,获取文章meta信息
|
||||
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}",
|
||||
@@ -121,7 +121,7 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
||||
)
|
||||
gpt_response_collection_md = copy.deepcopy(gpt_response_collection)
|
||||
# 整理报告的格式
|
||||
for i,k in enumerate(gpt_response_collection_md):
|
||||
for i,k in enumerate(gpt_response_collection_md):
|
||||
if i%2==0:
|
||||
gpt_response_collection_md[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection_md)//2}]: \n\n {paper_fragments[i//2].replace('#', '')} \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection_md)//2}]:\n "
|
||||
else:
|
||||
@@ -139,18 +139,18 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
||||
|
||||
# write html
|
||||
try:
|
||||
ch = construct_html()
|
||||
ch = construct_html()
|
||||
orig = ""
|
||||
trans = ""
|
||||
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
|
||||
for i,k in enumerate(gpt_response_collection_html):
|
||||
for i,k in enumerate(gpt_response_collection_html):
|
||||
if i%2==0:
|
||||
gpt_response_collection_html[i] = paper_fragments[i//2].replace('#', '')
|
||||
else:
|
||||
gpt_response_collection_html[i] = gpt_response_collection_html[i]
|
||||
final = ["论文概况", paper_meta_info.replace('# ', '### '), "二、论文翻译", ""]
|
||||
final.extend(gpt_response_collection_html)
|
||||
for i, k in enumerate(final):
|
||||
for i, k in enumerate(final):
|
||||
if i%2==0:
|
||||
orig = k
|
||||
if i%2==1:
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
from toolbox import CatchException, update_ui, gen_time_str
|
||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from .crazy_utils import input_clipping
|
||||
import os
|
||||
from toolbox import CatchException, update_ui, gen_time_str, promote_file_to_downloadzone
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from crazy_functions.crazy_utils import input_clipping
|
||||
|
||||
def inspect_dependency(chatbot, history):
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
@@ -26,15 +27,16 @@ def eval_manim(code):
|
||||
|
||||
class_name = get_class_name(code)
|
||||
|
||||
try:
|
||||
try:
|
||||
time_str = gen_time_str()
|
||||
subprocess.check_output([sys.executable, '-c', f"from gpt_log.MyAnimation import {class_name}; {class_name}().render()"])
|
||||
shutil.move('media/videos/1080p60/{class_name}.mp4', f'gpt_log/{class_name}-{gen_time_str()}.mp4')
|
||||
return f'gpt_log/{gen_time_str()}.mp4'
|
||||
shutil.move(f'media/videos/1080p60/{class_name}.mp4', f'gpt_log/{class_name}-{time_str}.mp4')
|
||||
return f'gpt_log/{time_str}.mp4'
|
||||
except subprocess.CalledProcessError as e:
|
||||
output = e.output.decode()
|
||||
print(f"Command returned non-zero exit status {e.returncode}: {output}.")
|
||||
return f"Evaluating python script failed: {e.output}."
|
||||
except:
|
||||
except:
|
||||
print('generating mp4 failed')
|
||||
return "Generating mp4 failed."
|
||||
|
||||
@@ -43,12 +45,12 @@ def get_code_block(reply):
|
||||
import re
|
||||
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
|
||||
matches = re.findall(pattern, reply) # find all code blocks in text
|
||||
if len(matches) != 1:
|
||||
if len(matches) != 1:
|
||||
raise RuntimeError("GPT is not generating proper code.")
|
||||
return matches[0].strip('python') # code block
|
||||
|
||||
@CatchException
|
||||
def 动画生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 动画生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
@@ -56,10 +58,10 @@ def 动画生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
# 清空历史,以免输入溢出
|
||||
history = []
|
||||
history = []
|
||||
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
@@ -71,29 +73,31 @@ def 动画生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
|
||||
# 尝试导入依赖, 如果缺少依赖, 则给出安装建议
|
||||
dep_ok = yield from inspect_dependency(chatbot=chatbot, history=history) # 刷新界面
|
||||
if not dep_ok: return
|
||||
|
||||
|
||||
# 输入
|
||||
i_say = f'Generate a animation to show: ' + txt
|
||||
demo = ["Here is some examples of manim", examples_of_manim()]
|
||||
_, demo = input_clipping(inputs="", history=demo, max_token_limit=2560)
|
||||
# 开始
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=demo,
|
||||
inputs=i_say, inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=demo,
|
||||
sys_prompt=
|
||||
r"Write a animation script with 3blue1brown's manim. "+
|
||||
r"Please begin with `from manim import *`. " +
|
||||
r"Please begin with `from manim import *`. " +
|
||||
r"Answer me with a code block wrapped by ```."
|
||||
)
|
||||
chatbot.append(["开始生成动画", "..."])
|
||||
history.extend([i_say, gpt_say])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
|
||||
# 将代码转为动画
|
||||
code = get_code_block(gpt_say)
|
||||
res = eval_manim(code)
|
||||
|
||||
chatbot.append(("生成的视频文件路径", res))
|
||||
if os.path.exists(res):
|
||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
# 在这里放一些网上搜集的demo,辅助gpt生成代码
|
||||
|
||||
@@ -15,7 +15,7 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
||||
file_content, page_one = read_and_clean_pdf_text(file_name) # (尝试)按照章节切割PDF
|
||||
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||
|
||||
|
||||
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
||||
|
||||
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
||||
@@ -23,7 +23,7 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
||||
page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=str(page_one), limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model'])
|
||||
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
||||
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
||||
|
||||
|
||||
############################## <第 1 步,从摘要中提取高价值信息,放到history中> ##################################
|
||||
final_results = []
|
||||
final_results.append(paper_meta)
|
||||
@@ -42,10 +42,10 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
||||
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i]}"
|
||||
i_say_show_user = f"[{i+1}/{n_fragment}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i][:200]} ...."
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
|
||||
llm_kwargs, chatbot,
|
||||
llm_kwargs, chatbot,
|
||||
history=["The main idea of the previous section is?", last_iteration_result], # 迭代上一次的结果
|
||||
sys_prompt="Extract the main idea of this section, answer me with Chinese." # 提示
|
||||
)
|
||||
)
|
||||
iteration_results.append(gpt_say)
|
||||
last_iteration_result = gpt_say
|
||||
|
||||
@@ -63,7 +63,7 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
||||
|
||||
|
||||
@CatchException
|
||||
def 理解PDF文档内容标准文件输入(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 理解PDF文档内容标准文件输入(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
import glob, os
|
||||
|
||||
# 基本信息:功能、贡献者
|
||||
@@ -76,8 +76,8 @@ def 理解PDF文档内容标准文件输入(txt, llm_kwargs, plugin_kwargs, chat
|
||||
try:
|
||||
import fitz
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a = f"解析项目: {txt}",
|
||||
report_exception(chatbot, history,
|
||||
a = f"解析项目: {txt}",
|
||||
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
@@ -16,7 +16,7 @@ def 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
||||
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
if not fast_debug:
|
||||
if not fast_debug:
|
||||
msg = '正常'
|
||||
# ** gpt request **
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
@@ -27,7 +27,7 @@ def 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
if not fast_debug: time.sleep(2)
|
||||
|
||||
if not fast_debug:
|
||||
if not fast_debug:
|
||||
res = write_history_to_file(history)
|
||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||
chatbot.append(("完成了吗?", res))
|
||||
@@ -36,7 +36,7 @@ def 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
||||
|
||||
|
||||
@CatchException
|
||||
def 批量生成函数注释(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 批量生成函数注释(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
|
||||
296
crazy_functions/生成多种Mermaid图表.py
普通文件
296
crazy_functions/生成多种Mermaid图表.py
普通文件
@@ -0,0 +1,296 @@
|
||||
from toolbox import CatchException, update_ui, report_exception
|
||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
import datetime
|
||||
|
||||
#以下是每类图表的PROMPT
|
||||
SELECT_PROMPT = """
|
||||
“{subject}”
|
||||
=============
|
||||
以上是从文章中提取的摘要,将会使用这些摘要绘制图表。请你选择一个合适的图表类型:
|
||||
1 流程图
|
||||
2 序列图
|
||||
3 类图
|
||||
4 饼图
|
||||
5 甘特图
|
||||
6 状态图
|
||||
7 实体关系图
|
||||
8 象限提示图
|
||||
不需要解释原因,仅需要输出单个不带任何标点符号的数字。
|
||||
"""
|
||||
#没有思维导图!!!测试发现模型始终会优先选择思维导图
|
||||
#流程图
|
||||
PROMPT_1 = """
|
||||
请你给出围绕“{subject}”的逻辑关系图,使用mermaid语法,mermaid语法举例:
|
||||
```mermaid
|
||||
graph TD
|
||||
P(编程) --> L1(Python)
|
||||
P(编程) --> L2(C)
|
||||
P(编程) --> L3(C++)
|
||||
P(编程) --> L4(Javascipt)
|
||||
P(编程) --> L5(PHP)
|
||||
```
|
||||
"""
|
||||
#序列图
|
||||
PROMPT_2 = """
|
||||
请你给出围绕“{subject}”的序列图,使用mermaid语法,mermaid语法举例:
|
||||
```mermaid
|
||||
sequenceDiagram
|
||||
participant A as 用户
|
||||
participant B as 系统
|
||||
A->>B: 登录请求
|
||||
B->>A: 登录成功
|
||||
A->>B: 获取数据
|
||||
B->>A: 返回数据
|
||||
```
|
||||
"""
|
||||
#类图
|
||||
PROMPT_3 = """
|
||||
请你给出围绕“{subject}”的类图,使用mermaid语法,mermaid语法举例:
|
||||
```mermaid
|
||||
classDiagram
|
||||
Class01 <|-- AveryLongClass : Cool
|
||||
Class03 *-- Class04
|
||||
Class05 o-- Class06
|
||||
Class07 .. Class08
|
||||
Class09 --> C2 : Where am i?
|
||||
Class09 --* C3
|
||||
Class09 --|> Class07
|
||||
Class07 : equals()
|
||||
Class07 : Object[] elementData
|
||||
Class01 : size()
|
||||
Class01 : int chimp
|
||||
Class01 : int gorilla
|
||||
Class08 <--> C2: Cool label
|
||||
```
|
||||
"""
|
||||
#饼图
|
||||
PROMPT_4 = """
|
||||
请你给出围绕“{subject}”的饼图,使用mermaid语法,mermaid语法举例:
|
||||
```mermaid
|
||||
pie title Pets adopted by volunteers
|
||||
"狗" : 386
|
||||
"猫" : 85
|
||||
"兔子" : 15
|
||||
```
|
||||
"""
|
||||
#甘特图
|
||||
PROMPT_5 = """
|
||||
请你给出围绕“{subject}”的甘特图,使用mermaid语法,mermaid语法举例:
|
||||
```mermaid
|
||||
gantt
|
||||
title 项目开发流程
|
||||
dateFormat YYYY-MM-DD
|
||||
section 设计
|
||||
需求分析 :done, des1, 2024-01-06,2024-01-08
|
||||
原型设计 :active, des2, 2024-01-09, 3d
|
||||
UI设计 : des3, after des2, 5d
|
||||
section 开发
|
||||
前端开发 :2024-01-20, 10d
|
||||
后端开发 :2024-01-20, 10d
|
||||
```
|
||||
"""
|
||||
#状态图
|
||||
PROMPT_6 = """
|
||||
请你给出围绕“{subject}”的状态图,使用mermaid语法,mermaid语法举例:
|
||||
```mermaid
|
||||
stateDiagram-v2
|
||||
[*] --> Still
|
||||
Still --> [*]
|
||||
Still --> Moving
|
||||
Moving --> Still
|
||||
Moving --> Crash
|
||||
Crash --> [*]
|
||||
```
|
||||
"""
|
||||
#实体关系图
|
||||
PROMPT_7 = """
|
||||
请你给出围绕“{subject}”的实体关系图,使用mermaid语法,mermaid语法举例:
|
||||
```mermaid
|
||||
erDiagram
|
||||
CUSTOMER ||--o{ ORDER : places
|
||||
ORDER ||--|{ LINE-ITEM : contains
|
||||
CUSTOMER {
|
||||
string name
|
||||
string id
|
||||
}
|
||||
ORDER {
|
||||
string orderNumber
|
||||
date orderDate
|
||||
string customerID
|
||||
}
|
||||
LINE-ITEM {
|
||||
number quantity
|
||||
string productID
|
||||
}
|
||||
```
|
||||
"""
|
||||
#象限提示图
|
||||
PROMPT_8 = """
|
||||
请你给出围绕“{subject}”的象限图,使用mermaid语法,mermaid语法举例:
|
||||
```mermaid
|
||||
graph LR
|
||||
A[Hard skill] --> B(Programming)
|
||||
A[Hard skill] --> C(Design)
|
||||
D[Soft skill] --> E(Coordination)
|
||||
D[Soft skill] --> F(Communication)
|
||||
```
|
||||
"""
|
||||
#思维导图
|
||||
PROMPT_9 = """
|
||||
{subject}
|
||||
==========
|
||||
请给出上方内容的思维导图,充分考虑其之间的逻辑,使用mermaid语法,mermaid语法举例:
|
||||
```mermaid
|
||||
mindmap
|
||||
root((mindmap))
|
||||
Origins
|
||||
Long history
|
||||
::icon(fa fa-book)
|
||||
Popularisation
|
||||
British popular psychology author Tony Buzan
|
||||
Research
|
||||
On effectiveness<br/>and features
|
||||
On Automatic creation
|
||||
Uses
|
||||
Creative techniques
|
||||
Strategic planning
|
||||
Argument mapping
|
||||
Tools
|
||||
Pen and paper
|
||||
Mermaid
|
||||
```
|
||||
"""
|
||||
|
||||
def 解析历史输入(history,llm_kwargs,file_manifest,chatbot,plugin_kwargs):
|
||||
############################## <第 0 步,切割输入> ##################################
|
||||
# 借用PDF切割中的函数对文本进行切割
|
||||
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
||||
txt = str(history).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
||||
txt = breakdown_text_to_satisfy_token_limit(txt=txt, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
|
||||
############################## <第 1 步,迭代地历遍整个文章,提取精炼信息> ##################################
|
||||
results = []
|
||||
MAX_WORD_TOTAL = 4096
|
||||
n_txt = len(txt)
|
||||
last_iteration_result = "从以下文本中提取摘要。"
|
||||
if n_txt >= 20: print('文章极长,不能达到预期效果')
|
||||
for i in range(n_txt):
|
||||
NUM_OF_WORD = MAX_WORD_TOTAL // n_txt
|
||||
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words in Chinese: {txt[i]}"
|
||||
i_say_show_user = f"[{i+1}/{n_txt}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {txt[i][:200]} ...."
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
|
||||
llm_kwargs, chatbot,
|
||||
history=["The main content of the previous section is?", last_iteration_result], # 迭代上一次的结果
|
||||
sys_prompt="Extracts the main content from the text section where it is located for graphing purposes, answer me with Chinese." # 提示
|
||||
)
|
||||
results.append(gpt_say)
|
||||
last_iteration_result = gpt_say
|
||||
############################## <第 2 步,根据整理的摘要选择图表类型> ##################################
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
gpt_say = plugin_kwargs.get("advanced_arg", "") #将图表类型参数赋值为插件参数
|
||||
results_txt = '\n'.join(results) #合并摘要
|
||||
if gpt_say not in ['1','2','3','4','5','6','7','8','9']: #如插件参数不正确则使用对话模型判断
|
||||
i_say_show_user = f'接下来将判断适合的图表类型,如连续3次判断失败将会使用流程图进行绘制'; gpt_say = "[Local Message] 收到。" # 用户提示
|
||||
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=[]) # 更新UI
|
||||
i_say = SELECT_PROMPT.format(subject=results_txt)
|
||||
i_say_show_user = f'请判断适合使用的流程图类型,其中数字对应关系为:1-流程图,2-序列图,3-类图,4-饼图,5-甘特图,6-状态图,7-实体关系图,8-象限提示图。由于不管提供文本是什么,模型大概率认为"思维导图"最合适,因此思维导图仅能通过参数调用。'
|
||||
for i in range(3):
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say_show_user,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
sys_prompt=""
|
||||
)
|
||||
if gpt_say in ['1','2','3','4','5','6','7','8','9']: #判断返回是否正确
|
||||
break
|
||||
if gpt_say not in ['1','2','3','4','5','6','7','8','9']:
|
||||
gpt_say = '1'
|
||||
############################## <第 3 步,根据选择的图表类型绘制图表> ##################################
|
||||
if gpt_say == '1':
|
||||
i_say = PROMPT_1.format(subject=results_txt)
|
||||
elif gpt_say == '2':
|
||||
i_say = PROMPT_2.format(subject=results_txt)
|
||||
elif gpt_say == '3':
|
||||
i_say = PROMPT_3.format(subject=results_txt)
|
||||
elif gpt_say == '4':
|
||||
i_say = PROMPT_4.format(subject=results_txt)
|
||||
elif gpt_say == '5':
|
||||
i_say = PROMPT_5.format(subject=results_txt)
|
||||
elif gpt_say == '6':
|
||||
i_say = PROMPT_6.format(subject=results_txt)
|
||||
elif gpt_say == '7':
|
||||
i_say = PROMPT_7.replace("{subject}", results_txt) #由于实体关系图用到了{}符号
|
||||
elif gpt_say == '8':
|
||||
i_say = PROMPT_8.format(subject=results_txt)
|
||||
elif gpt_say == '9':
|
||||
i_say = PROMPT_9.format(subject=results_txt)
|
||||
i_say_show_user = f'请根据判断结果绘制相应的图表。如需绘制思维导图请使用参数调用,同时过大的图表可能需要复制到在线编辑器中进行渲染。'
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say_show_user,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
sys_prompt=""
|
||||
)
|
||||
history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
@CatchException
|
||||
def 生成多种Mermaid图表(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,用于灵活调整复杂功能的各种参数
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
"""
|
||||
import os
|
||||
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"根据当前聊天历史或指定的路径文件(文件内容优先)绘制多种mermaid图表,将会由对话模型首先判断适合的图表类型,随后绘制图表。\
|
||||
\n您也可以使用插件参数指定绘制的图表类型,函数插件贡献者: Menghuan1918"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
if os.path.exists(txt): #如输入区无内容则直接解析历史记录
|
||||
from crazy_functions.pdf_fns.parse_word import extract_text_from_files
|
||||
file_exist, final_result, page_one, file_manifest, excption = extract_text_from_files(txt, chatbot, history)
|
||||
else:
|
||||
file_exist = False
|
||||
excption = ""
|
||||
file_manifest = []
|
||||
|
||||
if excption != "":
|
||||
if excption == "word":
|
||||
report_exception(chatbot, history,
|
||||
a = f"解析项目: {txt}",
|
||||
b = f"找到了.doc文件,但是该文件格式不被支持,请先转化为.docx格式。")
|
||||
|
||||
elif excption == "pdf":
|
||||
report_exception(chatbot, history,
|
||||
a = f"解析项目: {txt}",
|
||||
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
|
||||
|
||||
elif excption == "word_pip":
|
||||
report_exception(chatbot, history,
|
||||
a=f"解析项目: {txt}",
|
||||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade python-docx pywin32```。")
|
||||
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
else:
|
||||
if not file_exist:
|
||||
history.append(txt) #如输入区不是文件则将输入区内容加入历史记录
|
||||
i_say_show_user = f'首先你从历史记录中提取摘要。'; gpt_say = "[Local Message] 收到。" # 用户提示
|
||||
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=history) # 更新UI
|
||||
yield from 解析历史输入(history,llm_kwargs,file_manifest,chatbot,plugin_kwargs)
|
||||
else:
|
||||
file_num = len(file_manifest)
|
||||
for i in range(file_num): #依次处理文件
|
||||
i_say_show_user = f"[{i+1}/{file_num}]处理文件{file_manifest[i]}"; gpt_say = "[Local Message] 收到。" # 用户提示
|
||||
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=history) # 更新UI
|
||||
history = [] #如输入区内容为文件则清空历史记录
|
||||
history.append(final_result[i])
|
||||
yield from 解析历史输入(history,llm_kwargs,file_manifest,chatbot,plugin_kwargs)
|
||||
@@ -9,11 +9,11 @@ install_msg ="""
|
||||
|
||||
3. python -m pip install unstructured[all-docs] --upgrade
|
||||
|
||||
4. python -c 'import nltk; nltk.download("punkt")'
|
||||
4. python -c 'import nltk; nltk.download("punkt")'
|
||||
"""
|
||||
|
||||
@CatchException
|
||||
def 知识库文件注入(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 知识库文件注入(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数, 如温度和top_p等, 一般原样传递下去就行
|
||||
@@ -21,7 +21,7 @@ def 知识库文件注入(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
|
||||
@@ -56,7 +56,7 @@ def 知识库文件注入(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
chatbot.append(["没有找到任何可读取文件", "当前支持的格式包括: txt, md, docx, pptx, pdf, json等"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
# < -------------------预热文本向量化模组--------------- >
|
||||
chatbot.append(['<br/>'.join(file_manifest), "正在预热文本向量化模组, 如果是第一次运行, 将消耗较长时间下载中文向量化模型..."])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
@@ -84,7 +84,7 @@ def 知识库文件注入(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
|
||||
@CatchException
|
||||
def 读取知识库作答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port=-1):
|
||||
def 读取知识库作答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request=-1):
|
||||
# resolve deps
|
||||
try:
|
||||
# from zh_langchain import construct_vector_store
|
||||
@@ -109,8 +109,8 @@ def 读取知识库作答(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
chatbot.append((txt, f'[知识库 {kai_id}] ' + prompt))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=prompt, inputs_show_user=txt,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
inputs=prompt, inputs_show_user=txt,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
sys_prompt=system_prompt
|
||||
)
|
||||
history.extend((prompt, gpt_say))
|
||||
|
||||
@@ -40,10 +40,10 @@ def scrape_text(url, proxies) -> str:
|
||||
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36',
|
||||
'Content-Type': 'text/plain',
|
||||
}
|
||||
try:
|
||||
try:
|
||||
response = requests.get(url, headers=headers, proxies=proxies, timeout=8)
|
||||
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding
|
||||
except:
|
||||
except:
|
||||
return "无法连接到该网页"
|
||||
soup = BeautifulSoup(response.text, "html.parser")
|
||||
for script in soup(["script", "style"]):
|
||||
@@ -55,7 +55,7 @@ def scrape_text(url, proxies) -> str:
|
||||
return text
|
||||
|
||||
@CatchException
|
||||
def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
@@ -63,10 +63,10 @@ def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
chatbot.append((f"请结合互联网信息回答以下问题:{txt}",
|
||||
chatbot.append((f"请结合互联网信息回答以下问题:{txt}",
|
||||
"[Local Message] 请注意,您正在调用一个[函数插件]的模板,该模板可以实现ChatGPT联网信息综合。该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板。您若希望分享新的功能模组,请不吝PR!"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
|
||||
@@ -91,13 +91,13 @@ def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
# ------------- < 第3步:ChatGPT综合 > -------------
|
||||
i_say = f"从以上搜索结果中抽取信息,然后回答问题:{txt}"
|
||||
i_say, history = input_clipping( # 裁剪输入,从最长的条目开始裁剪,防止爆token
|
||||
inputs=i_say,
|
||||
history=history,
|
||||
inputs=i_say,
|
||||
history=history,
|
||||
max_token_limit=model_info[llm_kwargs['llm_model']]['max_token']*3//4
|
||||
)
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
inputs=i_say, inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
sys_prompt="请从给定的若干条搜索结果中抽取信息,对最相关的两个搜索结果进行总结,然后回答问题。"
|
||||
)
|
||||
chatbot[-1] = (i_say, gpt_say)
|
||||
|
||||
@@ -55,7 +55,7 @@ def scrape_text(url, proxies) -> str:
|
||||
return text
|
||||
|
||||
@CatchException
|
||||
def 连接bing搜索回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 连接bing搜索回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
@@ -63,7 +63,7 @@ def 连接bing搜索回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, histor
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
chatbot.append((f"请结合互联网信息回答以下问题:{txt}",
|
||||
|
||||
@@ -33,7 +33,7 @@ explain_msg = """
|
||||
- 「请调用插件,解析python源代码项目,代码我刚刚打包拖到上传区了」
|
||||
- 「请问Transformer网络的结构是怎样的?」
|
||||
|
||||
2. 您可以打开插件下拉菜单以了解本项目的各种能力。
|
||||
2. 您可以打开插件下拉菜单以了解本项目的各种能力。
|
||||
|
||||
3. 如果您使用「调用插件xxx」、「修改配置xxx」、「请问」等关键词,您的意图可以被识别的更准确。
|
||||
|
||||
@@ -67,7 +67,7 @@ class UserIntention(BaseModel):
|
||||
def chat(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention):
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=txt, inputs_show_user=txt,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
sys_prompt=system_prompt
|
||||
)
|
||||
chatbot[-1] = [txt, gpt_say]
|
||||
@@ -104,7 +104,7 @@ def analyze_intention_with_simple_rules(txt):
|
||||
|
||||
|
||||
@CatchException
|
||||
def 虚空终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 虚空终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
disable_auto_promotion(chatbot=chatbot)
|
||||
# 获取当前虚空终端状态
|
||||
state = VoidTerminalState.get_state(chatbot)
|
||||
@@ -115,13 +115,13 @@ def 虚空终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
|
||||
if is_the_upload_folder(txt):
|
||||
state.set_state(chatbot=chatbot, key='has_provided_explaination', value=False)
|
||||
appendix_msg = "\n\n**很好,您已经上传了文件**,现在请您描述您的需求。"
|
||||
|
||||
|
||||
if is_certain or (state.has_provided_explaination):
|
||||
# 如果意图明确,跳过提示环节
|
||||
state.set_state(chatbot=chatbot, key='has_provided_explaination', value=True)
|
||||
state.unlock_plugin(chatbot=chatbot)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
yield from 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port)
|
||||
yield from 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||
return
|
||||
else:
|
||||
# 如果意图模糊,提示
|
||||
@@ -133,7 +133,7 @@ def 虚空终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
|
||||
|
||||
|
||||
|
||||
def 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = []
|
||||
chatbot.append(("虚空终端状态: ", f"正在执行任务: {txt}"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
@@ -152,7 +152,7 @@ def 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
analyze_res = run_gpt_fn(inputs, "")
|
||||
try:
|
||||
user_intention = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
|
||||
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 意图={explain_intention_to_user[user_intention.intention_type]}",
|
||||
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 意图={explain_intention_to_user[user_intention.intention_type]}",
|
||||
except JsonStringError as e:
|
||||
yield from update_ui_lastest_msg(
|
||||
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 失败 当前语言模型({llm_kwargs['llm_model']})不能理解您的意图", chatbot=chatbot, history=history, delay=0)
|
||||
@@ -161,7 +161,7 @@ def 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
pass
|
||||
|
||||
yield from update_ui_lastest_msg(
|
||||
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 意图={explain_intention_to_user[user_intention.intention_type]}",
|
||||
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 意图={explain_intention_to_user[user_intention.intention_type]}",
|
||||
chatbot=chatbot, history=history, delay=0)
|
||||
|
||||
# 用户意图: 修改本项目的配置
|
||||
|
||||
@@ -12,6 +12,12 @@ class PaperFileGroup():
|
||||
self.sp_file_index = []
|
||||
self.sp_file_tag = []
|
||||
|
||||
# count_token
|
||||
from request_llms.bridge_all import model_info
|
||||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||
self.get_token_num = get_token_num
|
||||
|
||||
def run_file_split(self, max_token_limit=1900):
|
||||
"""
|
||||
将长文本分离开来
|
||||
@@ -54,7 +60,7 @@ def parseNotebook(filename, enable_markdown=1):
|
||||
Code += f"This is {idx+1}th code block: \n"
|
||||
Code += code+"\n"
|
||||
|
||||
return Code
|
||||
return Code
|
||||
|
||||
|
||||
def ipynb解释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||
@@ -109,7 +115,7 @@ def ipynb解释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbo
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
@CatchException
|
||||
def 解析ipynb文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 解析ipynb文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"对IPynb文件进行解析。Contributor: codycjy."])
|
||||
|
||||
@@ -82,12 +82,13 @@ def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
||||
inputs=inputs, inputs_show_user=inputs_show_user, llm_kwargs=llm_kwargs, chatbot=chatbot,
|
||||
history=this_iteration_history_feed, # 迭代之前的分析
|
||||
sys_prompt="你是一个程序架构分析师,正在分析一个项目的源代码。" + sys_prompt_additional)
|
||||
|
||||
summary = "请用一句话概括这些文件的整体功能"
|
||||
|
||||
diagram_code = make_diagram(this_iteration_files, result, this_iteration_history_feed)
|
||||
summary = "请用一句话概括这些文件的整体功能。\n\n" + diagram_code
|
||||
summary_result = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=summary,
|
||||
inputs_show_user=summary,
|
||||
llm_kwargs=llm_kwargs,
|
||||
inputs=summary,
|
||||
inputs_show_user=summary,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history=[i_say, result], # 迭代之前的分析
|
||||
sys_prompt="你是一个程序架构分析师,正在分析一个项目的源代码。" + sys_prompt_additional)
|
||||
@@ -104,9 +105,12 @@ def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
||||
chatbot.append(("完成了吗?", res))
|
||||
yield from update_ui(chatbot=chatbot, history=history_to_return) # 刷新界面
|
||||
|
||||
def make_diagram(this_iteration_files, result, this_iteration_history_feed):
|
||||
from crazy_functions.diagram_fns.file_tree import build_file_tree_mermaid_diagram
|
||||
return build_file_tree_mermaid_diagram(this_iteration_history_feed[0::2], this_iteration_history_feed[1::2], "项目示意图")
|
||||
|
||||
@CatchException
|
||||
def 解析项目本身(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 解析项目本身(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob
|
||||
file_manifest = [f for f in glob.glob('./*.py')] + \
|
||||
@@ -119,7 +123,7 @@ def 解析项目本身(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
||||
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
@CatchException
|
||||
def 解析一个Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 解析一个Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
@@ -137,7 +141,7 @@ def 解析一个Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
@CatchException
|
||||
def 解析一个Matlab项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 解析一个Matlab项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
@@ -155,7 +159,7 @@ def 解析一个Matlab项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
@CatchException
|
||||
def 解析一个C项目的头文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 解析一个C项目的头文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
@@ -175,7 +179,7 @@ def 解析一个C项目的头文件(txt, llm_kwargs, plugin_kwargs, chatbot, his
|
||||
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
@CatchException
|
||||
def 解析一个C项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 解析一个C项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
@@ -197,7 +201,7 @@ def 解析一个C项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system
|
||||
|
||||
|
||||
@CatchException
|
||||
def 解析一个Java项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 解析一个Java项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
@@ -219,7 +223,7 @@ def 解析一个Java项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
||||
|
||||
|
||||
@CatchException
|
||||
def 解析一个前端项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 解析一个前端项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
@@ -248,7 +252,7 @@ def 解析一个前端项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
|
||||
|
||||
@CatchException
|
||||
def 解析一个Golang项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 解析一个Golang项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
@@ -269,7 +273,7 @@ def 解析一个Golang项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
@CatchException
|
||||
def 解析一个Rust项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 解析一个Rust项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
@@ -289,7 +293,7 @@ def 解析一个Rust项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
||||
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
@CatchException
|
||||
def 解析一个Lua项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 解析一个Lua项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
@@ -311,7 +315,7 @@ def 解析一个Lua项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
|
||||
|
||||
@CatchException
|
||||
def 解析一个CSharp项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 解析一个CSharp项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
@@ -331,7 +335,7 @@ def 解析一个CSharp项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
|
||||
|
||||
@CatchException
|
||||
def 解析任意code项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 解析任意code项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
txt_pattern = plugin_kwargs.get("advanced_arg")
|
||||
txt_pattern = txt_pattern.replace(",", ",")
|
||||
# 将要匹配的模式(例如: *.c, *.cpp, *.py, config.toml)
|
||||
@@ -341,9 +345,12 @@ def 解析任意code项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
||||
pattern_except_suffix = [_.lstrip(" ^*.,").rstrip(" ,") for _ in txt_pattern.split(" ") if _ != "" and _.strip().startswith("^*.")]
|
||||
pattern_except_suffix += ['zip', 'rar', '7z', 'tar', 'gz'] # 避免解析压缩文件
|
||||
# 将要忽略匹配的文件名(例如: ^README.md)
|
||||
pattern_except_name = [_.lstrip(" ^*,").rstrip(" ,").replace(".", "\.") for _ in txt_pattern.split(" ") if _ != "" and _.strip().startswith("^") and not _.strip().startswith("^*.")]
|
||||
pattern_except_name = [_.lstrip(" ^*,").rstrip(" ,").replace(".", r"\.") # 移除左边通配符,移除右侧逗号,转义点号
|
||||
for _ in txt_pattern.split(" ") # 以空格分割
|
||||
if (_ != "" and _.strip().startswith("^") and not _.strip().startswith("^*.")) # ^开始,但不是^*.开始
|
||||
]
|
||||
# 生成正则表达式
|
||||
pattern_except = '/[^/]+\.(' + "|".join(pattern_except_suffix) + ')$'
|
||||
pattern_except = r'/[^/]+\.(' + "|".join(pattern_except_suffix) + ')$'
|
||||
pattern_except += '|/(' + "|".join(pattern_except_name) + ')$' if pattern_except_name != [] else ''
|
||||
|
||||
history.clear()
|
||||
|
||||
@@ -2,7 +2,7 @@ from toolbox import CatchException, update_ui, get_conf
|
||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
import datetime
|
||||
@CatchException
|
||||
def 同时问询(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 同时问询(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
@@ -10,7 +10,7 @@ def 同时问询(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
MULTI_QUERY_LLM_MODELS = get_conf('MULTI_QUERY_LLM_MODELS')
|
||||
@@ -20,8 +20,8 @@ def 同时问询(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
|
||||
# llm_kwargs['llm_model'] = 'chatglm&gpt-3.5-turbo&api2d-gpt-3.5-turbo' # 支持任意数量的llm接口,用&符号分隔
|
||||
llm_kwargs['llm_model'] = MULTI_QUERY_LLM_MODELS # 支持任意数量的llm接口,用&符号分隔
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=txt, inputs_show_user=txt,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
inputs=txt, inputs_show_user=txt,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
sys_prompt=system_prompt,
|
||||
retry_times_at_unknown_error=0
|
||||
)
|
||||
@@ -32,7 +32,7 @@ def 同时问询(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
|
||||
|
||||
|
||||
@CatchException
|
||||
def 同时问询_指定模型(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 同时问询_指定模型(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
@@ -40,7 +40,7 @@ def 同时问询_指定模型(txt, llm_kwargs, plugin_kwargs, chatbot, history,
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
|
||||
@@ -52,8 +52,8 @@ def 同时问询_指定模型(txt, llm_kwargs, plugin_kwargs, chatbot, history,
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=txt, inputs_show_user=txt,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
inputs=txt, inputs_show_user=txt,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
sys_prompt=system_prompt,
|
||||
retry_times_at_unknown_error=0
|
||||
)
|
||||
|
||||
@@ -39,7 +39,7 @@ class AsyncGptTask():
|
||||
try:
|
||||
MAX_TOKEN_ALLO = 2560
|
||||
i_say, history = input_clipping(i_say, history, max_token_limit=MAX_TOKEN_ALLO)
|
||||
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, llm_kwargs=llm_kwargs, history=history, sys_prompt=sys_prompt,
|
||||
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, llm_kwargs=llm_kwargs, history=history, sys_prompt=sys_prompt,
|
||||
observe_window=observe_window[index], console_slience=True)
|
||||
except ConnectionAbortedError as token_exceed_err:
|
||||
print('至少一个线程任务Token溢出而失败', e)
|
||||
@@ -120,7 +120,7 @@ class InterviewAssistant(AliyunASR):
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
self.plugin_wd.feed()
|
||||
|
||||
if self.event_on_result_chg.is_set():
|
||||
if self.event_on_result_chg.is_set():
|
||||
# called when some words have finished
|
||||
self.event_on_result_chg.clear()
|
||||
chatbot[-1] = list(chatbot[-1])
|
||||
@@ -151,7 +151,7 @@ class InterviewAssistant(AliyunASR):
|
||||
# add gpt task 创建子线程请求gpt,避免线程阻塞
|
||||
history = chatbot2history(chatbot)
|
||||
self.agt.add_async_gpt_task(self.buffered_sentence, len(chatbot)-1, llm_kwargs, history, system_prompt)
|
||||
|
||||
|
||||
self.buffered_sentence = ""
|
||||
chatbot.append(["[ 请讲话 ]", "[ 正在等您说完问题 ]"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
@@ -166,7 +166,7 @@ class InterviewAssistant(AliyunASR):
|
||||
|
||||
|
||||
@CatchException
|
||||
def 语音助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 语音助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# pip install -U openai-whisper
|
||||
chatbot.append(["对话助手函数插件:使用时,双手离开鼠标键盘吧", "音频助手, 正在听您讲话(点击“停止”键可终止程序)..."])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
@@ -44,7 +44,7 @@ def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbo
|
||||
|
||||
|
||||
@CatchException
|
||||
def 读文章写摘要(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 读文章写摘要(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
|
||||
@@ -20,10 +20,10 @@ def get_meta_information(url, chatbot, history):
|
||||
proxies = get_conf('proxies')
|
||||
headers = {
|
||||
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36',
|
||||
'Accept-Encoding': 'gzip, deflate, br',
|
||||
'Accept-Encoding': 'gzip, deflate, br',
|
||||
'Accept-Language': 'en-US,en;q=0.9,zh-CN;q=0.8,zh;q=0.7',
|
||||
'Cache-Control':'max-age=0',
|
||||
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
|
||||
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
|
||||
'Connection': 'keep-alive'
|
||||
}
|
||||
try:
|
||||
@@ -95,7 +95,7 @@ def get_meta_information(url, chatbot, history):
|
||||
)
|
||||
try: paper = next(search.results())
|
||||
except: paper = None
|
||||
|
||||
|
||||
is_match = paper is not None and string_similar(title, paper.title) > 0.90
|
||||
|
||||
# 如果在Arxiv上匹配失败,检索文章的历史版本的题目
|
||||
@@ -132,7 +132,7 @@ def get_meta_information(url, chatbot, history):
|
||||
return profile
|
||||
|
||||
@CatchException
|
||||
def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
disable_auto_promotion(chatbot=chatbot)
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
@@ -146,8 +146,8 @@ def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
import math
|
||||
from bs4 import BeautifulSoup
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a = f"解析项目: {txt}",
|
||||
report_exception(chatbot, history,
|
||||
a = f"解析项目: {txt}",
|
||||
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade beautifulsoup4 arxiv```。")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
@@ -163,7 +163,7 @@ def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
if len(meta_paper_info_list[:batchsize]) > 0:
|
||||
i_say = "下面是一些学术文献的数据,提取出以下内容:" + \
|
||||
"1、英文题目;2、中文题目翻译;3、作者;4、arxiv公开(is_paper_in_arxiv);4、引用数量(cite);5、中文摘要翻译。" + \
|
||||
f"以下是信息源:{str(meta_paper_info_list[:batchsize])}"
|
||||
f"以下是信息源:{str(meta_paper_info_list[:batchsize])}"
|
||||
|
||||
inputs_show_user = f"请分析此页面中出现的所有文章:{txt},这是第{batch+1}批"
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
@@ -175,11 +175,11 @@ def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
history.extend([ f"第{batch+1}批", gpt_say ])
|
||||
meta_paper_info_list = meta_paper_info_list[batchsize:]
|
||||
|
||||
chatbot.append(["状态?",
|
||||
chatbot.append(["状态?",
|
||||
"已经全部完成,您可以试试让AI写一个Related Works,例如您可以继续输入Write a \"Related Works\" section about \"你搜索的研究领域\" for me."])
|
||||
msg = '正常'
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
path = write_history_to_file(history)
|
||||
promote_file_to_downloadzone(path, chatbot=chatbot)
|
||||
chatbot.append(("完成了吗?", path));
|
||||
chatbot.append(("完成了吗?", path));
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
|
||||
@@ -11,7 +11,7 @@ import os
|
||||
|
||||
|
||||
@CatchException
|
||||
def 猜你想问(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 猜你想问(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
if txt:
|
||||
show_say = txt
|
||||
prompt = txt+'\n回答完问题后,再列出用户可能提出的三个问题。'
|
||||
@@ -32,7 +32,7 @@ def 猜你想问(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
|
||||
|
||||
|
||||
@CatchException
|
||||
def 清除缓存(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 清除缓存(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
chatbot.append(['清除本地缓存数据', '执行中. 删除数据'])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
|
||||
@@ -1,8 +1,77 @@
|
||||
from toolbox import CatchException, update_ui
|
||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
import datetime
|
||||
|
||||
高阶功能模板函数示意图 = f"""
|
||||
```mermaid
|
||||
flowchart TD
|
||||
%% <gpt_academic_hide_mermaid_code> 一个特殊标记,用于在生成mermaid图表时隐藏代码块
|
||||
subgraph 函数调用["函数调用过程"]
|
||||
AA["输入栏用户输入的文本(txt)"] --> BB["gpt模型参数(llm_kwargs)"]
|
||||
BB --> CC["插件模型参数(plugin_kwargs)"]
|
||||
CC --> DD["对话显示框的句柄(chatbot)"]
|
||||
DD --> EE["对话历史(history)"]
|
||||
EE --> FF["系统提示词(system_prompt)"]
|
||||
FF --> GG["当前用户信息(web_port)"]
|
||||
|
||||
A["开始(查询5天历史事件)"]
|
||||
A --> B["获取当前月份和日期"]
|
||||
B --> C["生成历史事件查询提示词"]
|
||||
C --> D["调用大模型"]
|
||||
D --> E["更新界面"]
|
||||
E --> F["记录历史"]
|
||||
F --> |"下一天"| B
|
||||
end
|
||||
```
|
||||
"""
|
||||
|
||||
@CatchException
|
||||
def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
# 高阶功能模板函数示意图:https://mermaid.live/edit#pako:eNptk1tvEkEYhv8KmattQpvlvOyFCcdeeaVXuoYssBwie8gyhCIlqVoLhrbbtAWNUpEGUkyMEDW2Fmn_DDOL_8LZHdOwxrnamX3f7_3mmZk6yKhZCfAgV1KrmYKoQ9fDuKC4yChX0nld1Aou1JzjznQ5fWmejh8LYHW6vG2a47YAnlCLNSIRolnenKBXI_zRIBrcuqRT890u7jZx7zMDt-AaMbnW1--5olGiz2sQjwfoQxsZL0hxplSSU0-rop4vrzmKR6O2JxYjHmwcL2Y_HDatVMkXlf86YzHbGY9bO5j8XE7O8Nsbc3iNB3ukL2SMcH-XIQBgWoVOZzxuOxOJOyc63EPGV6ZQLENVrznViYStTiaJ2vw2M2d9bByRnOXkgCnXylCSU5quyto_IcmkbdvctELmJ-j1ASW3uB3g5xOmKqVTmqr_Na3AtuS_dtBFm8H90XJyHkDDT7S9xXWb4HGmRChx64AOL5HRpUm411rM5uh4H78Z4V7fCZzytjZz2seto9XaNPFue07clLaVZF8UNLygJ-VES8lah_n-O-5Ozc7-77NzJ0-K0yr0ZYrmHdqAk50t2RbA4qq9uNohBASw7YpSgaRkLWCCAtxAlnRZLGbJba9bPwUAC5IsCYAnn1kpJ1ZKUACC0iBSsQLVBzUlA3ioVyQ3qGhZEUrxokiehAz4nFgqk1VNVABfB1uAD_g2_AGPl-W8nMcbCvsDblADfNCz4feyobDPy3rYEMtxwYYbPFNVUoHdCPmDHBv2cP4AMfrCbiBli-Q-3afv0X6WdsIjW2-10fgDy1SAig
|
||||
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,用于灵活调整复杂功能的各种参数
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
chatbot.append((
|
||||
"您正在调用插件:历史上的今天",
|
||||
"[Local Message] 请注意,您正在调用一个[函数插件]的模板,该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板(该函数只有20多行代码)。此外我们也提供可同步处理大量文件的多线程Demo供您参考。您若希望分享新的功能模组,请不吝PR!" + 高阶功能模板函数示意图))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
for i in range(5):
|
||||
currentMonth = (datetime.date.today() + datetime.timedelta(days=i)).month
|
||||
currentDay = (datetime.date.today() + datetime.timedelta(days=i)).day
|
||||
i_say = f'历史中哪些事件发生在{currentMonth}月{currentDay}日?列举两条并发送相关图片。发送图片时,请使用Markdown,将Unsplash API中的PUT_YOUR_QUERY_HERE替换成描述该事件的一个最重要的单词。'
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
sys_prompt="当你想发送一张照片时,请使用Markdown, 并且不要有反斜线, 不要用代码块。使用 Unsplash API (https://source.unsplash.com/1280x720/? < PUT_YOUR_QUERY_HERE >)。"
|
||||
)
|
||||
chatbot[-1] = (i_say, gpt_say)
|
||||
history.append(i_say);history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
|
||||
|
||||
|
||||
PROMPT = """
|
||||
请你给出围绕“{subject}”的逻辑关系图,使用mermaid语法,mermaid语法举例:
|
||||
```mermaid
|
||||
graph TD
|
||||
P(编程) --> L1(Python)
|
||||
P(编程) --> L2(C)
|
||||
P(编程) --> L3(C++)
|
||||
P(编程) --> L4(Javascipt)
|
||||
P(编程) --> L5(PHP)
|
||||
```
|
||||
"""
|
||||
@CatchException
|
||||
def 测试图表渲染(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
@@ -10,20 +79,21 @@ def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
chatbot.append(("这是什么功能?", "[Local Message] 请注意,您正在调用一个[函数插件]的模板,该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板(该函数只有20多行代码)。此外我们也提供可同步处理大量文件的多线程Demo供您参考。您若希望分享新的功能模组,请不吝PR!"))
|
||||
chatbot.append(("这是什么功能?", "一个测试mermaid绘制图表的功能,您可以在输入框中输入一些关键词,然后使用mermaid+llm绘制图表。"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
for i in range(5):
|
||||
currentMonth = (datetime.date.today() + datetime.timedelta(days=i)).month
|
||||
currentDay = (datetime.date.today() + datetime.timedelta(days=i)).day
|
||||
i_say = f'历史中哪些事件发生在{currentMonth}月{currentDay}日?列举两条并发送相关图片。发送图片时,请使用Markdown,将Unsplash API中的PUT_YOUR_QUERY_HERE替换成描述该事件的一个最重要的单词。'
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
sys_prompt="当你想发送一张照片时,请使用Markdown, 并且不要有反斜线, 不要用代码块。使用 Unsplash API (https://source.unsplash.com/1280x720/? < PUT_YOUR_QUERY_HERE >)。"
|
||||
)
|
||||
chatbot[-1] = (i_say, gpt_say)
|
||||
history.append(i_say);history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
if txt == "": txt = "空白的输入栏" # 调皮一下
|
||||
|
||||
i_say_show_user = f'请绘制有关“{txt}”的逻辑关系图。'
|
||||
i_say = PROMPT.format(subject=txt)
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say_show_user,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
sys_prompt=""
|
||||
)
|
||||
history.append(i_say); history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
@@ -1,12 +1,12 @@
|
||||
## ===================================================
|
||||
# docker-compose.yml
|
||||
# docker-compose.yml
|
||||
## ===================================================
|
||||
# 1. 请在以下方案中选择任意一种,然后删除其他的方案
|
||||
# 2. 修改你选择的方案中的environment环境变量,详情请见github wiki或者config.py
|
||||
# 3. 选择一种暴露服务端口的方法,并对相应的配置做出修改:
|
||||
# 【方法1: 适用于Linux,很方便,可惜windows不支持】与宿主的网络融合为一体,这个是默认配置
|
||||
# 「方法1: 适用于Linux,很方便,可惜windows不支持」与宿主的网络融合为一体,这个是默认配置
|
||||
# network_mode: "host"
|
||||
# 【方法2: 适用于所有系统包括Windows和MacOS】端口映射,把容器的端口映射到宿主的端口(注意您需要先删除network_mode: "host",再追加以下内容)
|
||||
# 「方法2: 适用于所有系统包括Windows和MacOS」端口映射,把容器的端口映射到宿主的端口(注意您需要先删除network_mode: "host",再追加以下内容)
|
||||
# ports:
|
||||
# - "12345:12345" # 注意!12345必须与WEB_PORT环境变量相互对应
|
||||
# 4. 最后`docker-compose up`运行
|
||||
@@ -25,7 +25,7 @@
|
||||
## ===================================================
|
||||
|
||||
## ===================================================
|
||||
## 【方案零】 部署项目的全部能力(这个是包含cuda和latex的大型镜像。如果您网速慢、硬盘小或没有显卡,则不推荐使用这个)
|
||||
## 「方案零」 部署项目的全部能力(这个是包含cuda和latex的大型镜像。如果您网速慢、硬盘小或没有显卡,则不推荐使用这个)
|
||||
## ===================================================
|
||||
version: '3'
|
||||
services:
|
||||
@@ -63,10 +63,10 @@ services:
|
||||
# count: 1
|
||||
# capabilities: [gpu]
|
||||
|
||||
# 【WEB_PORT暴露方法1: 适用于Linux】与宿主的网络融合
|
||||
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
||||
network_mode: "host"
|
||||
|
||||
# 【WEB_PORT暴露方法2: 适用于所有系统】端口映射
|
||||
# 「WEB_PORT暴露方法2: 适用于所有系统」端口映射
|
||||
# ports:
|
||||
# - "12345:12345" # 12345必须与WEB_PORT相互对应
|
||||
|
||||
@@ -75,10 +75,8 @@ services:
|
||||
bash -c "python3 -u main.py"
|
||||
|
||||
|
||||
|
||||
|
||||
## ===================================================
|
||||
## 【方案一】 如果不需要运行本地模型(仅 chatgpt, azure, 星火, 千帆, claude 等在线大模型服务)
|
||||
## 「方案一」 如果不需要运行本地模型(仅 chatgpt, azure, 星火, 千帆, claude 等在线大模型服务)
|
||||
## ===================================================
|
||||
version: '3'
|
||||
services:
|
||||
@@ -97,16 +95,16 @@ services:
|
||||
# DEFAULT_WORKER_NUM: ' 10 '
|
||||
# AUTHENTICATION: ' [("username", "passwd"), ("username2", "passwd2")] '
|
||||
|
||||
# 与宿主的网络融合
|
||||
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
||||
network_mode: "host"
|
||||
|
||||
# 不使用代理网络拉取最新代码
|
||||
# 启动命令
|
||||
command: >
|
||||
bash -c "python3 -u main.py"
|
||||
|
||||
|
||||
### ===================================================
|
||||
### 【方案二】 如果需要运行ChatGLM + Qwen + MOSS等本地模型
|
||||
### 「方案二」 如果需要运行ChatGLM + Qwen + MOSS等本地模型
|
||||
### ===================================================
|
||||
version: '3'
|
||||
services:
|
||||
@@ -130,8 +128,10 @@ services:
|
||||
devices:
|
||||
- /dev/nvidia0:/dev/nvidia0
|
||||
|
||||
# 与宿主的网络融合
|
||||
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
||||
network_mode: "host"
|
||||
|
||||
# 启动命令
|
||||
command: >
|
||||
bash -c "python3 -u main.py"
|
||||
|
||||
@@ -139,8 +139,9 @@ services:
|
||||
# command: >
|
||||
# bash -c "pip install -r request_llms/requirements_qwen.txt && python3 -u main.py"
|
||||
|
||||
|
||||
### ===================================================
|
||||
### 【方案三】 如果需要运行ChatGPT + LLAMA + 盘古 + RWKV本地模型
|
||||
### 「方案三」 如果需要运行ChatGPT + LLAMA + 盘古 + RWKV本地模型
|
||||
### ===================================================
|
||||
version: '3'
|
||||
services:
|
||||
@@ -164,16 +165,16 @@ services:
|
||||
devices:
|
||||
- /dev/nvidia0:/dev/nvidia0
|
||||
|
||||
# 与宿主的网络融合
|
||||
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
||||
network_mode: "host"
|
||||
|
||||
# 不使用代理网络拉取最新代码
|
||||
# 启动命令
|
||||
command: >
|
||||
python3 -u main.py
|
||||
|
||||
|
||||
## ===================================================
|
||||
## 【方案四】 ChatGPT + Latex
|
||||
## 「方案四」 ChatGPT + Latex
|
||||
## ===================================================
|
||||
version: '3'
|
||||
services:
|
||||
@@ -190,16 +191,16 @@ services:
|
||||
DEFAULT_WORKER_NUM: ' 10 '
|
||||
WEB_PORT: ' 12303 '
|
||||
|
||||
# 与宿主的网络融合
|
||||
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
||||
network_mode: "host"
|
||||
|
||||
# 不使用代理网络拉取最新代码
|
||||
# 启动命令
|
||||
command: >
|
||||
bash -c "python3 -u main.py"
|
||||
|
||||
|
||||
## ===================================================
|
||||
## 【方案五】 ChatGPT + 语音助手 (请先阅读 docs/use_audio.md)
|
||||
## 「方案五」 ChatGPT + 语音助手 (请先阅读 docs/use_audio.md)
|
||||
## ===================================================
|
||||
version: '3'
|
||||
services:
|
||||
@@ -223,9 +224,9 @@ services:
|
||||
# (无需填写) ALIYUN_ACCESSKEY: ' LTAI5q6BrFUzoRXVGUWnekh1 '
|
||||
# (无需填写) ALIYUN_SECRET: ' eHmI20AVWIaQZ0CiTD2bGQVsaP9i68 '
|
||||
|
||||
# 与宿主的网络融合
|
||||
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
||||
network_mode: "host"
|
||||
|
||||
# 不使用代理网络拉取最新代码
|
||||
# 启动命令
|
||||
command: >
|
||||
bash -c "python3 -u main.py"
|
||||
|
||||
@@ -13,7 +13,7 @@ COPY . .
|
||||
RUN pip3 install -r requirements.txt
|
||||
|
||||
# 安装语音插件的额外依赖
|
||||
RUN pip3 install pyOpenSSL scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
|
||||
RUN pip3 install aliyun-python-sdk-core==2.13.3 pyOpenSSL webrtcvad scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
|
||||
|
||||
# 可选步骤,用于预热模块
|
||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||
|
||||
二进制文件未显示。
@@ -165,7 +165,7 @@ toolbox.py是一个工具类库,其中主要包含了一些函数装饰器和
|
||||
|
||||
3. read_file_to_chat(chatbot, history, file_name):从传入的文件中读取内容,解析出对话历史记录并更新聊天显示框。
|
||||
|
||||
4. 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):一个主要函数,用于保存当前对话记录并提醒用户。如果用户希望加载历史记录,则调用read_file_to_chat()来更新聊天显示框。如果用户希望删除历史记录,调用删除所有本地对话历史记录()函数完成删除操作。
|
||||
4. 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):一个主要函数,用于保存当前对话记录并提醒用户。如果用户希望加载历史记录,则调用read_file_to_chat()来更新聊天显示框。如果用户希望删除历史记录,调用删除所有本地对话历史记录()函数完成删除操作。
|
||||
|
||||
## [19/48] 请对下面的程序文件做一个概述: crazy_functions\总结word文档.py
|
||||
|
||||
|
||||
@@ -1668,7 +1668,7 @@
|
||||
"Markdown翻译指定语言": "TranslateMarkdownToSpecifiedLanguage",
|
||||
"Langchain知识库": "LangchainKnowledgeBase",
|
||||
"Latex英文纠错加PDF对比": "CorrectEnglishInLatexWithPDFComparison",
|
||||
"Latex输出PDF结果": "OutputPDFFromLatex",
|
||||
"Latex输出PDF": "OutputPDFFromLatex",
|
||||
"Latex翻译中文并重新编译PDF": "TranslateChineseToEnglishInLatexAndRecompilePDF",
|
||||
"sprint亮靛": "SprintIndigo",
|
||||
"寻找Latex主文件": "FindLatexMainFile",
|
||||
@@ -3004,5 +3004,7 @@
|
||||
"1. 上传图片": "TranslatedText",
|
||||
"保存状态": "TranslatedText",
|
||||
"GPT-Academic对话存档": "TranslatedText",
|
||||
"Arxiv论文精细翻译": "TranslatedText"
|
||||
"Arxiv论文精细翻译": "TranslatedText",
|
||||
"from crazy_functions.AdvancedFunctionTemplate import 测试图表渲染": "from crazy_functions.AdvancedFunctionTemplate import test_chart_rendering",
|
||||
"测试图表渲染": "test_chart_rendering"
|
||||
}
|
||||
|
||||
@@ -1492,7 +1492,7 @@
|
||||
"交互功能模板函数": "InteractiveFunctionTemplateFunction",
|
||||
"交互功能函数模板": "InteractiveFunctionFunctionTemplate",
|
||||
"Latex英文纠错加PDF对比": "LatexEnglishErrorCorrectionWithPDFComparison",
|
||||
"Latex输出PDF结果": "LatexOutputPDFResult",
|
||||
"Latex输出PDF": "LatexOutputPDFResult",
|
||||
"Latex翻译中文并重新编译PDF": "TranslateChineseAndRecompilePDF",
|
||||
"语音助手": "VoiceAssistant",
|
||||
"微调数据集生成": "FineTuneDatasetGeneration",
|
||||
|
||||
@@ -16,7 +16,7 @@
|
||||
"批量Markdown翻译": "BatchTranslateMarkdown",
|
||||
"连接bing搜索回答问题": "ConnectBingSearchAnswerQuestion",
|
||||
"Langchain知识库": "LangchainKnowledgeBase",
|
||||
"Latex输出PDF结果": "OutputPDFFromLatex",
|
||||
"Latex输出PDF": "OutputPDFFromLatex",
|
||||
"把字符太少的块清除为回车": "ClearBlocksWithTooFewCharactersToNewline",
|
||||
"Latex精细分解与转化": "DecomposeAndConvertLatex",
|
||||
"解析一个C项目的头文件": "ParseCProjectHeaderFiles",
|
||||
@@ -97,5 +97,12 @@
|
||||
"多智能体": "MultiAgent",
|
||||
"图片生成_DALLE2": "ImageGeneration_DALLE2",
|
||||
"图片生成_DALLE3": "ImageGeneration_DALLE3",
|
||||
"图片修改_DALLE2": "ImageModification_DALLE2"
|
||||
}
|
||||
"图片修改_DALLE2": "ImageModification_DALLE2",
|
||||
"生成多种Mermaid图表": "GenerateMultipleMermaidCharts",
|
||||
"知识库文件注入": "InjectKnowledgeBaseFiles",
|
||||
"PDF翻译中文并重新编译PDF": "TranslatePDFToChineseAndRecompilePDF",
|
||||
"随机小游戏": "RandomMiniGame",
|
||||
"互动小游戏": "InteractiveMiniGame",
|
||||
"解析历史输入": "ParseHistoricalInput",
|
||||
"高阶功能模板函数示意图": "HighOrderFunctionTemplateDiagram"
|
||||
}
|
||||
@@ -1468,7 +1468,7 @@
|
||||
"交互功能模板函数": "InteractiveFunctionTemplateFunctions",
|
||||
"交互功能函数模板": "InteractiveFunctionFunctionTemplates",
|
||||
"Latex英文纠错加PDF对比": "LatexEnglishCorrectionWithPDFComparison",
|
||||
"Latex输出PDF结果": "OutputPDFFromLatex",
|
||||
"Latex输出PDF": "OutputPDFFromLatex",
|
||||
"Latex翻译中文并重新编译PDF": "TranslateLatexToChineseAndRecompilePDF",
|
||||
"语音助手": "VoiceAssistant",
|
||||
"微调数据集生成": "FineTuneDatasetGeneration",
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
|
||||
## 1. 安装额外依赖
|
||||
```
|
||||
pip install --upgrade pyOpenSSL scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
|
||||
pip install --upgrade pyOpenSSL webrtcvad scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
|
||||
```
|
||||
|
||||
如果因为特色网络问题导致上述命令无法执行:
|
||||
|
||||
@@ -1,30 +0,0 @@
|
||||
try {
|
||||
$("<link>").attr({href: "file=docs/waifu_plugin/waifu.css", rel: "stylesheet", type: "text/css"}).appendTo('head');
|
||||
$('body').append('<div class="waifu"><div class="waifu-tips"></div><canvas id="live2d" class="live2d"></canvas><div class="waifu-tool"><span class="fui-home"></span> <span class="fui-chat"></span> <span class="fui-eye"></span> <span class="fui-user"></span> <span class="fui-photo"></span> <span class="fui-info-circle"></span> <span class="fui-cross"></span></div></div>');
|
||||
$.ajax({url: "file=docs/waifu_plugin/waifu-tips.js", dataType:"script", cache: true, success: function() {
|
||||
$.ajax({url: "file=docs/waifu_plugin/live2d.js", dataType:"script", cache: true, success: function() {
|
||||
/* 可直接修改部分参数 */
|
||||
live2d_settings['hitokotoAPI'] = "hitokoto.cn"; // 一言 API
|
||||
live2d_settings['modelId'] = 5; // 默认模型 ID
|
||||
live2d_settings['modelTexturesId'] = 1; // 默认材质 ID
|
||||
live2d_settings['modelStorage'] = false; // 不储存模型 ID
|
||||
live2d_settings['waifuSize'] = '210x187';
|
||||
live2d_settings['waifuTipsSize'] = '187x52';
|
||||
live2d_settings['canSwitchModel'] = true;
|
||||
live2d_settings['canSwitchTextures'] = true;
|
||||
live2d_settings['canSwitchHitokoto'] = false;
|
||||
live2d_settings['canTakeScreenshot'] = false;
|
||||
live2d_settings['canTurnToHomePage'] = false;
|
||||
live2d_settings['canTurnToAboutPage'] = false;
|
||||
live2d_settings['showHitokoto'] = false; // 显示一言
|
||||
live2d_settings['showF12Status'] = false; // 显示加载状态
|
||||
live2d_settings['showF12Message'] = false; // 显示看板娘消息
|
||||
live2d_settings['showF12OpenMsg'] = false; // 显示控制台打开提示
|
||||
live2d_settings['showCopyMessage'] = false; // 显示 复制内容 提示
|
||||
live2d_settings['showWelcomeMessage'] = true; // 显示进入面页欢迎词
|
||||
|
||||
/* 在 initModel 前添加 */
|
||||
initModel("file=docs/waifu_plugin/waifu-tips.json");
|
||||
}});
|
||||
}});
|
||||
} catch(err) { console.log("[Error] JQuery is not defined.") }
|
||||
211
main.py
211
main.py
@@ -1,9 +1,9 @@
|
||||
import os; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
|
||||
|
||||
help_menu_description = \
|
||||
"""Github源代码开源和更新[地址🚀](https://github.com/binary-husky/gpt_academic),
|
||||
"""Github源代码开源和更新[地址🚀](https://github.com/binary-husky/gpt_academic),
|
||||
感谢热情的[开发者们❤️](https://github.com/binary-husky/gpt_academic/graphs/contributors).
|
||||
</br></br>常见问题请查阅[项目Wiki](https://github.com/binary-husky/gpt_academic/wiki),
|
||||
</br></br>常见问题请查阅[项目Wiki](https://github.com/binary-husky/gpt_academic/wiki),
|
||||
如遇到Bug请前往[Bug反馈](https://github.com/binary-husky/gpt_academic/issues).
|
||||
</br></br>普通对话使用说明: 1. 输入问题; 2. 点击提交
|
||||
</br></br>基础功能区使用说明: 1. 输入文本; 2. 点击任意基础功能区按钮
|
||||
@@ -13,35 +13,40 @@ help_menu_description = \
|
||||
</br></br>如何语音对话: 请阅读Wiki
|
||||
</br></br>如何临时更换API_KEY: 在输入区输入临时API_KEY后提交(网页刷新后失效)"""
|
||||
|
||||
def enable_log(PATH_LOGGING):
|
||||
import logging, uuid
|
||||
admin_log_path = os.path.join(PATH_LOGGING, "admin")
|
||||
os.makedirs(admin_log_path, exist_ok=True)
|
||||
log_dir = os.path.join(admin_log_path, "chat_secrets.log")
|
||||
try:logging.basicConfig(filename=log_dir, level=logging.INFO, encoding="utf-8", format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
||||
except:logging.basicConfig(filename=log_dir, level=logging.INFO, format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
||||
# Disable logging output from the 'httpx' logger
|
||||
logging.getLogger("httpx").setLevel(logging.WARNING)
|
||||
print(f"所有对话记录将自动保存在本地目录{log_dir}, 请注意自我隐私保护哦!")
|
||||
|
||||
def main():
|
||||
import gradio as gr
|
||||
if gr.__version__ not in ['3.32.6', '3.32.7']:
|
||||
if gr.__version__ not in ['3.32.9']:
|
||||
raise ModuleNotFoundError("使用项目内置Gradio获取最优体验! 请运行 `pip install -r requirements.txt` 指令安装内置Gradio及其他依赖, 详情信息见requirements.txt.")
|
||||
from request_llms.bridge_all import predict
|
||||
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, load_chat_cookies, DummyWith
|
||||
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址
|
||||
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION = get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION')
|
||||
CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = get_conf('CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
||||
ENABLE_AUDIO, AUTO_CLEAR_TXT, PATH_LOGGING, AVAIL_THEMES, THEME = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'PATH_LOGGING', 'AVAIL_THEMES', 'THEME')
|
||||
DARK_MODE, NUM_CUSTOM_BASIC_BTN, SSL_KEYFILE, SSL_CERTFILE = get_conf('DARK_MODE', 'NUM_CUSTOM_BASIC_BTN', 'SSL_KEYFILE', 'SSL_CERTFILE')
|
||||
INIT_SYS_PROMPT = get_conf('INIT_SYS_PROMPT')
|
||||
ENABLE_AUDIO, AUTO_CLEAR_TXT, PATH_LOGGING, AVAIL_THEMES, THEME, ADD_WAIFU = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'PATH_LOGGING', 'AVAIL_THEMES', 'THEME', 'ADD_WAIFU')
|
||||
NUM_CUSTOM_BASIC_BTN, SSL_KEYFILE, SSL_CERTFILE = get_conf('NUM_CUSTOM_BASIC_BTN', 'SSL_KEYFILE', 'SSL_CERTFILE')
|
||||
DARK_MODE, INIT_SYS_PROMPT, ADD_WAIFU = get_conf('DARK_MODE', 'INIT_SYS_PROMPT', 'ADD_WAIFU')
|
||||
|
||||
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
||||
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
||||
from check_proxy import get_current_version
|
||||
from themes.theme import adjust_theme, advanced_css, theme_declaration
|
||||
from themes.theme import js_code_for_css_changing, js_code_for_darkmode_init, js_code_for_toggle_darkmode, js_code_for_persistent_cookie_init
|
||||
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, init_cookie
|
||||
from themes.theme import adjust_theme, advanced_css, theme_declaration, js_code_clear, js_code_reset, js_code_show_or_hide, js_code_show_or_hide_group2
|
||||
from themes.theme import js_code_for_css_changing, js_code_for_toggle_darkmode, js_code_for_persistent_cookie_init
|
||||
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
|
||||
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
|
||||
|
||||
# 问询记录, python 版本建议3.9+(越新越好)
|
||||
import logging, uuid
|
||||
os.makedirs(PATH_LOGGING, exist_ok=True)
|
||||
try:logging.basicConfig(filename=f"{PATH_LOGGING}/chat_secrets.log", level=logging.INFO, encoding="utf-8", format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
||||
except:logging.basicConfig(filename=f"{PATH_LOGGING}/chat_secrets.log", level=logging.INFO, format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
||||
# Disable logging output from the 'httpx' logger
|
||||
logging.getLogger("httpx").setLevel(logging.WARNING)
|
||||
print(f"所有问询记录将自动保存在本地目录./{PATH_LOGGING}/chat_secrets.log, 请注意自我隐私保护哦!")
|
||||
|
||||
# 对话、日志记录
|
||||
enable_log(PATH_LOGGING)
|
||||
|
||||
# 一些普通功能模块
|
||||
from core_functional import get_core_functions
|
||||
@@ -65,7 +70,7 @@ def main():
|
||||
proxy_info = check_proxy(proxies)
|
||||
|
||||
gr_L1 = lambda: gr.Row().style()
|
||||
gr_L2 = lambda scale, elem_id: gr.Column(scale=scale, elem_id=elem_id)
|
||||
gr_L2 = lambda scale, elem_id: gr.Column(scale=scale, elem_id=elem_id, min_width=400)
|
||||
if LAYOUT == "TOP-DOWN":
|
||||
gr_L1 = lambda: DummyWith()
|
||||
gr_L2 = lambda scale, elem_id: gr.Row()
|
||||
@@ -74,9 +79,9 @@ def main():
|
||||
cancel_handles = []
|
||||
customize_btns = {}
|
||||
predefined_btns = {}
|
||||
with gr.Blocks(title="GPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
|
||||
with gr.Blocks(title="GPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as app_block:
|
||||
gr.HTML(title_html)
|
||||
secret_css, dark_mode, persistent_cookie = gr.Textbox(visible=False), gr.Textbox(DARK_MODE, visible=False), gr.Textbox(visible=False)
|
||||
secret_css, web_cookie_cache = gr.Textbox(visible=False), gr.Textbox(visible=False)
|
||||
cookies = gr.State(load_chat_cookies())
|
||||
with gr_L1():
|
||||
with gr_L2(scale=2, elem_id="gpt-chat"):
|
||||
@@ -93,11 +98,12 @@ def main():
|
||||
resetBtn = gr.Button("重置", elem_id="elem_reset", variant="secondary"); resetBtn.style(size="sm")
|
||||
stopBtn = gr.Button("停止", elem_id="elem_stop", variant="secondary"); stopBtn.style(size="sm")
|
||||
clearBtn = gr.Button("清除", elem_id="elem_clear", variant="secondary", visible=False); clearBtn.style(size="sm")
|
||||
if ENABLE_AUDIO:
|
||||
if ENABLE_AUDIO:
|
||||
with gr.Row():
|
||||
audio_mic = gr.Audio(source="microphone", type="numpy", elem_id="elem_audio", streaming=True, show_label=False).style(container=False)
|
||||
with gr.Row():
|
||||
status = gr.Markdown(f"Tip: 按Enter提交, 按Shift+Enter换行。当前模型: {LLM_MODEL} \n {proxy_info}", elem_id="state-panel")
|
||||
|
||||
with gr.Accordion("基础功能区", open=True, elem_id="basic-panel") as area_basic_fn:
|
||||
with gr.Row():
|
||||
for k in range(NUM_CUSTOM_BASIC_BTN):
|
||||
@@ -114,7 +120,7 @@ def main():
|
||||
with gr.Row():
|
||||
gr.Markdown("插件可读取“输入区”文本/路径作为参数(上传文件自动修正路径)")
|
||||
with gr.Row(elem_id="input-plugin-group"):
|
||||
plugin_group_sel = gr.Dropdown(choices=all_plugin_groups, label='', show_label=False, value=DEFAULT_FN_GROUPS,
|
||||
plugin_group_sel = gr.Dropdown(choices=all_plugin_groups, label='', show_label=False, value=DEFAULT_FN_GROUPS,
|
||||
multiselect=True, interactive=True, elem_classes='normal_mut_select').style(container=False)
|
||||
with gr.Row():
|
||||
for k, plugin in plugins.items():
|
||||
@@ -122,7 +128,7 @@ def main():
|
||||
visible = True if match_group(plugin['Group'], DEFAULT_FN_GROUPS) else False
|
||||
variant = plugins[k]["Color"] if "Color" in plugin else "secondary"
|
||||
info = plugins[k].get("Info", k)
|
||||
plugin['Button'] = plugins[k]['Button'] = gr.Button(k, variant=variant,
|
||||
plugin['Button'] = plugins[k]['Button'] = gr.Button(k, variant=variant,
|
||||
visible=visible, info_str=f'函数插件区: {info}').style(size="sm")
|
||||
with gr.Row():
|
||||
with gr.Accordion("更多函数插件", open=True):
|
||||
@@ -134,7 +140,7 @@ def main():
|
||||
with gr.Row():
|
||||
dropdown = gr.Dropdown(dropdown_fn_list, value=r"打开插件列表", label="", show_label=False).style(container=False)
|
||||
with gr.Row():
|
||||
plugin_advanced_arg = gr.Textbox(show_label=True, label="高级参数输入区", visible=False,
|
||||
plugin_advanced_arg = gr.Textbox(show_label=True, label="高级参数输入区", visible=False,
|
||||
placeholder="这里是特殊函数插件的高级参数输入区").style(container=False)
|
||||
with gr.Row():
|
||||
switchy_bt = gr.Button(r"请先从插件列表中选择", variant="secondary").style(size="sm")
|
||||
@@ -142,26 +148,30 @@ def main():
|
||||
with gr.Accordion("点击展开“文件下载区”。", open=False) as area_file_up:
|
||||
file_upload = gr.Files(label="任何文件, 推荐上传压缩文件(zip, tar)", file_count="multiple", elem_id="elem_upload")
|
||||
|
||||
|
||||
with gr.Floating(init_x="0%", init_y="0%", visible=True, width=None, drag="forbidden", elem_id="tooltip"):
|
||||
with gr.Row():
|
||||
with gr.Tab("上传文件", elem_id="interact-panel"):
|
||||
gr.Markdown("请上传本地文件/压缩包供“函数插件区”功能调用。请注意: 上传文件后会自动把输入区修改为相应路径。")
|
||||
file_upload_2 = gr.Files(label="任何文件, 推荐上传压缩文件(zip, tar)", file_count="multiple", elem_id="elem_upload_float")
|
||||
|
||||
|
||||
with gr.Tab("更换模型", elem_id="interact-panel"):
|
||||
md_dropdown = gr.Dropdown(AVAIL_LLM_MODELS, value=LLM_MODEL, label="更换LLM模型/请求源").style(container=False)
|
||||
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.01,interactive=True, label="Top-p (nucleus sampling)",)
|
||||
temperature = gr.Slider(minimum=-0, maximum=2.0, value=1.0, step=0.01, interactive=True, label="Temperature",)
|
||||
temperature = gr.Slider(minimum=-0, maximum=2.0, value=1.0, step=0.01, interactive=True, label="Temperature", elem_id="elem_temperature")
|
||||
max_length_sl = gr.Slider(minimum=256, maximum=1024*32, value=4096, step=128, interactive=True, label="Local LLM MaxLength",)
|
||||
system_prompt = gr.Textbox(show_label=True, lines=2, placeholder=f"System Prompt", label="System prompt", value=INIT_SYS_PROMPT)
|
||||
system_prompt = gr.Textbox(show_label=True, lines=2, placeholder=f"System Prompt", label="System prompt", value=INIT_SYS_PROMPT, elem_id="elem_prompt")
|
||||
temperature.change(None, inputs=[temperature], outputs=None,
|
||||
_js="""(temperature)=>gpt_academic_gradio_saveload("save", "elem_prompt", "js_temperature_cookie", temperature)""")
|
||||
system_prompt.change(None, inputs=[system_prompt], outputs=None,
|
||||
_js="""(system_prompt)=>gpt_academic_gradio_saveload("save", "elem_prompt", "js_system_prompt_cookie", system_prompt)""")
|
||||
|
||||
with gr.Tab("界面外观", elem_id="interact-panel"):
|
||||
theme_dropdown = gr.Dropdown(AVAIL_THEMES, value=THEME, label="更换UI主题").style(container=False)
|
||||
checkboxes = gr.CheckboxGroup(["基础功能区", "函数插件区", "浮动输入区", "输入清除键", "插件参数区"],
|
||||
value=["基础功能区", "函数插件区"], label="显示/隐藏功能区", elem_id='cbs').style(container=False)
|
||||
checkboxes_2 = gr.CheckboxGroup(["自定义菜单"],
|
||||
value=[], label="显示/隐藏自定义菜单", elem_id='cbsc').style(container=False)
|
||||
checkboxes = gr.CheckboxGroup(["基础功能区", "函数插件区", "浮动输入区", "输入清除键", "插件参数区"], value=["基础功能区", "函数插件区"], label="显示/隐藏功能区", elem_id='cbs').style(container=False)
|
||||
opt = ["自定义菜单"]
|
||||
value=[]
|
||||
if ADD_WAIFU: opt += ["添加Live2D形象"]; value += ["添加Live2D形象"]
|
||||
checkboxes_2 = gr.CheckboxGroup(opt, value=value, label="显示/隐藏自定义菜单", elem_id='cbsc').style(container=False)
|
||||
dark_mode_btn = gr.Button("切换界面明暗 ☀", variant="secondary").style(size="sm")
|
||||
dark_mode_btn.click(None, None, None, _js=js_code_for_toggle_darkmode)
|
||||
with gr.Tab("帮助", elem_id="interact-panel"):
|
||||
@@ -178,7 +188,7 @@ def main():
|
||||
submitBtn2 = gr.Button("提交", variant="primary"); submitBtn2.style(size="sm")
|
||||
resetBtn2 = gr.Button("重置", variant="secondary"); resetBtn2.style(size="sm")
|
||||
stopBtn2 = gr.Button("停止", variant="secondary"); stopBtn2.style(size="sm")
|
||||
clearBtn2 = gr.Button("清除", variant="secondary", visible=False); clearBtn2.style(size="sm")
|
||||
clearBtn2 = gr.Button("清除", elem_id="elem_clear2", variant="secondary", visible=False); clearBtn2.style(size="sm")
|
||||
|
||||
|
||||
with gr.Floating(init_x="20%", init_y="50%", visible=False, width="40%", drag="top") as area_customize:
|
||||
@@ -192,69 +202,31 @@ def main():
|
||||
basic_fn_suffix = gr.Textbox(show_label=False, placeholder="输入新提示后缀", lines=4).style(container=False)
|
||||
with gr.Column(scale=1, min_width=70):
|
||||
basic_fn_confirm = gr.Button("确认并保存", variant="primary"); basic_fn_confirm.style(size="sm")
|
||||
basic_fn_load = gr.Button("加载已保存", variant="primary"); basic_fn_load.style(size="sm")
|
||||
def assign_btn(persistent_cookie_, cookies_, basic_btn_dropdown_, basic_fn_title, basic_fn_prefix, basic_fn_suffix):
|
||||
ret = {}
|
||||
customize_fn_overwrite_ = cookies_['customize_fn_overwrite']
|
||||
customize_fn_overwrite_.update({
|
||||
basic_btn_dropdown_:
|
||||
{
|
||||
"Title":basic_fn_title,
|
||||
"Prefix":basic_fn_prefix,
|
||||
"Suffix":basic_fn_suffix,
|
||||
}
|
||||
}
|
||||
)
|
||||
cookies_.update(customize_fn_overwrite_)
|
||||
if basic_btn_dropdown_ in customize_btns:
|
||||
ret.update({customize_btns[basic_btn_dropdown_]: gr.update(visible=True, value=basic_fn_title)})
|
||||
else:
|
||||
ret.update({predefined_btns[basic_btn_dropdown_]: gr.update(visible=True, value=basic_fn_title)})
|
||||
ret.update({cookies: cookies_})
|
||||
try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
|
||||
except: persistent_cookie_ = {}
|
||||
persistent_cookie_["custom_bnt"] = customize_fn_overwrite_ # dict update new value
|
||||
persistent_cookie_ = to_cookie_str(persistent_cookie_) # persistent cookie to dict
|
||||
ret.update({persistent_cookie: persistent_cookie_}) # write persistent cookie
|
||||
return ret
|
||||
|
||||
def reflesh_btn(persistent_cookie_, cookies_):
|
||||
ret = {}
|
||||
for k in customize_btns:
|
||||
ret.update({customize_btns[k]: gr.update(visible=False, value="")})
|
||||
basic_fn_clean = gr.Button("恢复默认", variant="primary"); basic_fn_clean.style(size="sm")
|
||||
|
||||
from shared_utils.cookie_manager import assign_btn__fn_builder
|
||||
assign_btn = assign_btn__fn_builder(customize_btns, predefined_btns, cookies, web_cookie_cache)
|
||||
# update btn
|
||||
h = basic_fn_confirm.click(assign_btn, [web_cookie_cache, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix],
|
||||
[web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()])
|
||||
h.then(None, [web_cookie_cache], None, _js="""(web_cookie_cache)=>{setCookie("web_cookie_cache", web_cookie_cache, 365);}""")
|
||||
# clean up btn
|
||||
h2 = basic_fn_clean.click(assign_btn, [web_cookie_cache, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix, gr.State(True)],
|
||||
[web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()])
|
||||
h2.then(None, [web_cookie_cache], None, _js="""(web_cookie_cache)=>{setCookie("web_cookie_cache", web_cookie_cache, 365);}""")
|
||||
|
||||
try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
|
||||
except: return ret
|
||||
|
||||
customize_fn_overwrite_ = persistent_cookie_.get("custom_bnt", {})
|
||||
cookies_['customize_fn_overwrite'] = customize_fn_overwrite_
|
||||
ret.update({cookies: cookies_})
|
||||
|
||||
for k,v in persistent_cookie_["custom_bnt"].items():
|
||||
if v['Title'] == "": continue
|
||||
if k in customize_btns: ret.update({customize_btns[k]: gr.update(visible=True, value=v['Title'])})
|
||||
else: ret.update({predefined_btns[k]: gr.update(visible=True, value=v['Title'])})
|
||||
return ret
|
||||
|
||||
basic_fn_load.click(reflesh_btn, [persistent_cookie, cookies], [cookies, *customize_btns.values(), *predefined_btns.values()])
|
||||
h = basic_fn_confirm.click(assign_btn, [persistent_cookie, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix],
|
||||
[persistent_cookie, cookies, *customize_btns.values(), *predefined_btns.values()])
|
||||
# save persistent cookie
|
||||
h.then(None, [persistent_cookie], None, _js="""(persistent_cookie)=>{setCookie("persistent_cookie", persistent_cookie, 5);}""")
|
||||
|
||||
# 功能区显示开关与功能区的互动
|
||||
def fn_area_visibility(a):
|
||||
ret = {}
|
||||
ret.update({area_basic_fn: gr.update(visible=("基础功能区" in a))})
|
||||
ret.update({area_crazy_fn: gr.update(visible=("函数插件区" in a))})
|
||||
ret.update({area_input_primary: gr.update(visible=("浮动输入区" not in a))})
|
||||
ret.update({area_input_secondary: gr.update(visible=("浮动输入区" in a))})
|
||||
ret.update({clearBtn: gr.update(visible=("输入清除键" in a))})
|
||||
ret.update({clearBtn2: gr.update(visible=("输入清除键" in a))})
|
||||
ret.update({plugin_advanced_arg: gr.update(visible=("插件参数区" in a))})
|
||||
if "浮动输入区" in a: ret.update({txt: gr.update(value="")})
|
||||
return ret
|
||||
checkboxes.select(fn_area_visibility, [checkboxes], [area_basic_fn, area_crazy_fn, area_input_primary, area_input_secondary, txt, txt2, clearBtn, clearBtn2, plugin_advanced_arg] )
|
||||
checkboxes.select(fn_area_visibility, [checkboxes], [area_basic_fn, area_crazy_fn, area_input_primary, area_input_secondary, txt, txt2, plugin_advanced_arg] )
|
||||
checkboxes.select(None, [checkboxes], None, _js=js_code_show_or_hide)
|
||||
|
||||
# 功能区显示开关与功能区的互动
|
||||
def fn_area_visibility_2(a):
|
||||
@@ -262,6 +234,7 @@ def main():
|
||||
ret.update({area_customize: gr.update(visible=("自定义菜单" in a))})
|
||||
return ret
|
||||
checkboxes_2.select(fn_area_visibility_2, [checkboxes_2], [area_customize] )
|
||||
checkboxes_2.select(None, [checkboxes_2], None, _js=js_code_show_or_hide_group2)
|
||||
|
||||
# 整理反复出现的控件句柄组合
|
||||
input_combo = [cookies, max_length_sl, md_dropdown, txt, txt2, top_p, temperature, chatbot, history, system_prompt, plugin_advanced_arg]
|
||||
@@ -272,15 +245,17 @@ def main():
|
||||
cancel_handles.append(txt2.submit(**predict_args))
|
||||
cancel_handles.append(submitBtn.click(**predict_args))
|
||||
cancel_handles.append(submitBtn2.click(**predict_args))
|
||||
resetBtn.click(lambda: ([], [], "已重置"), None, [chatbot, history, status])
|
||||
resetBtn2.click(lambda: ([], [], "已重置"), None, [chatbot, history, status])
|
||||
clearBtn.click(lambda: ("",""), None, [txt, txt2])
|
||||
clearBtn2.click(lambda: ("",""), None, [txt, txt2])
|
||||
resetBtn.click(None, None, [chatbot, history, status], _js=js_code_reset) # 先在前端快速清除chatbot&status
|
||||
resetBtn2.click(None, None, [chatbot, history, status], _js=js_code_reset) # 先在前端快速清除chatbot&status
|
||||
resetBtn.click(lambda: ([], [], "已重置"), None, [chatbot, history, status]) # 再在后端清除history
|
||||
resetBtn2.click(lambda: ([], [], "已重置"), None, [chatbot, history, status]) # 再在后端清除history
|
||||
clearBtn.click(None, None, [txt, txt2], _js=js_code_clear)
|
||||
clearBtn2.click(None, None, [txt, txt2], _js=js_code_clear)
|
||||
if AUTO_CLEAR_TXT:
|
||||
submitBtn.click(lambda: ("",""), None, [txt, txt2])
|
||||
submitBtn2.click(lambda: ("",""), None, [txt, txt2])
|
||||
txt.submit(lambda: ("",""), None, [txt, txt2])
|
||||
txt2.submit(lambda: ("",""), None, [txt, txt2])
|
||||
submitBtn.click(None, None, [txt, txt2], _js=js_code_clear)
|
||||
submitBtn2.click(None, None, [txt, txt2], _js=js_code_clear)
|
||||
txt.submit(None, None, [txt, txt2], _js=js_code_clear)
|
||||
txt2.submit(None, None, [txt, txt2], _js=js_code_clear)
|
||||
# 基础功能区的回调函数注册
|
||||
for k in functional:
|
||||
if ("Visible" in functional[k]) and (not functional[k]["Visible"]): continue
|
||||
@@ -321,7 +296,7 @@ def main():
|
||||
else:
|
||||
css_part2 = adjust_theme()._get_theme_css()
|
||||
return css_part2 + css_part1
|
||||
|
||||
|
||||
theme_handle = theme_dropdown.select(on_theme_dropdown_changed, [theme_dropdown, secret_css], [secret_css])
|
||||
theme_handle.then(
|
||||
None,
|
||||
@@ -346,13 +321,13 @@ def main():
|
||||
if not group_list: # 处理特殊情况:没有选择任何插件组
|
||||
return [*[plugin['Button'].update(visible=False) for _, plugin in plugins_as_btn.items()], gr.Dropdown.update(choices=[])]
|
||||
for k, plugin in plugins.items():
|
||||
if plugin.get("AsButton", True):
|
||||
if plugin.get("AsButton", True):
|
||||
btn_list.append(plugin['Button'].update(visible=match_group(plugin['Group'], group_list))) # 刷新按钮
|
||||
if plugin.get('AdvancedArgs', False): dropdown_fn_list.append(k) # 对于需要高级参数的插件,亦在下拉菜单中显示
|
||||
elif match_group(plugin['Group'], group_list): fns_list.append(k) # 刷新下拉列表
|
||||
return [*btn_list, gr.Dropdown.update(choices=fns_list)]
|
||||
plugin_group_sel.select(fn=on_group_change, inputs=[plugin_group_sel], outputs=[*[plugin['Button'] for name, plugin in plugins_as_btn.items()], dropdown])
|
||||
if ENABLE_AUDIO:
|
||||
if ENABLE_AUDIO:
|
||||
from crazy_functions.live_audio.audio_io import RealtimeAudioDistribution
|
||||
rad = RealtimeAudioDistribution()
|
||||
def deal_audio(audio, cookies):
|
||||
@@ -360,12 +335,15 @@ def main():
|
||||
audio_mic.stream(deal_audio, inputs=[audio_mic, cookies])
|
||||
|
||||
|
||||
demo.load(init_cookie, inputs=[cookies, chatbot], outputs=[cookies])
|
||||
darkmode_js = js_code_for_darkmode_init
|
||||
demo.load(None, inputs=None, outputs=[persistent_cookie], _js=js_code_for_persistent_cookie_init)
|
||||
demo.load(None, inputs=[dark_mode], outputs=None, _js=darkmode_js) # 配置暗色主题或亮色主题
|
||||
demo.load(None, inputs=[gr.Textbox(LAYOUT, visible=False)], outputs=None, _js='(LAYOUT)=>{GptAcademicJavaScriptInit(LAYOUT);}')
|
||||
|
||||
app_block.load(assign_user_uuid, inputs=[cookies], outputs=[cookies])
|
||||
|
||||
from shared_utils.cookie_manager import load_web_cookie_cache__fn_builder
|
||||
load_web_cookie_cache = load_web_cookie_cache__fn_builder(customize_btns, cookies, predefined_btns)
|
||||
app_block.load(load_web_cookie_cache, inputs = [web_cookie_cache, cookies],
|
||||
outputs = [web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()], _js=js_code_for_persistent_cookie_init)
|
||||
|
||||
app_block.load(None, inputs=[], outputs=None, _js=f"""()=>GptAcademicJavaScriptInit("{DARK_MODE}","{INIT_SYS_PROMPT}","{ADD_WAIFU}","{LAYOUT}")""") # 配置暗色主题或亮色主题
|
||||
|
||||
# gradio的inbrowser触发不太稳定,回滚代码到原始的浏览器打开函数
|
||||
def run_delayed_tasks():
|
||||
import threading, webbrowser, time
|
||||
@@ -376,31 +354,18 @@ def main():
|
||||
def auto_updates(): time.sleep(0); auto_update()
|
||||
def open_browser(): time.sleep(2); webbrowser.open_new_tab(f"http://localhost:{PORT}")
|
||||
def warm_up_mods(): time.sleep(6); warm_up_modules()
|
||||
|
||||
|
||||
threading.Thread(target=auto_updates, name="self-upgrade", daemon=True).start() # 查看自动更新
|
||||
threading.Thread(target=open_browser, name="open-browser", daemon=True).start() # 打开浏览器页面
|
||||
threading.Thread(target=warm_up_mods, name="warm-up", daemon=True).start() # 预热tiktoken模块
|
||||
threading.Thread(target=warm_up_mods, name="warm-up", daemon=True).start() # 预热tiktoken模块
|
||||
|
||||
# 运行一些异步任务:自动更新、打开浏览器页面、预热tiktoken模块
|
||||
run_delayed_tasks()
|
||||
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(
|
||||
quiet=True,
|
||||
server_name="0.0.0.0",
|
||||
ssl_keyfile=None if SSL_KEYFILE == "" else SSL_KEYFILE,
|
||||
ssl_certfile=None if SSL_CERTFILE == "" else SSL_CERTFILE,
|
||||
ssl_verify=False,
|
||||
server_port=PORT,
|
||||
favicon_path=os.path.join(os.path.dirname(__file__), "docs/logo.png"),
|
||||
auth=AUTHENTICATION if len(AUTHENTICATION) != 0 else None,
|
||||
blocked_paths=["config.py","config_private.py","docker-compose.yml","Dockerfile",f"{PATH_LOGGING}/admin"])
|
||||
|
||||
# 如果需要在二级路径下运行
|
||||
# CUSTOM_PATH = get_conf('CUSTOM_PATH')
|
||||
# if CUSTOM_PATH != "/":
|
||||
# from toolbox import run_gradio_in_subpath
|
||||
# run_gradio_in_subpath(demo, auth=AUTHENTICATION, port=PORT, custom_path=CUSTOM_PATH)
|
||||
# else:
|
||||
# demo.launch(server_name="0.0.0.0", server_port=PORT, auth=AUTHENTICATION, favicon_path="docs/logo.png",
|
||||
# blocked_paths=["config.py","config_private.py","docker-compose.yml","Dockerfile",f"{PATH_LOGGING}/admin"])
|
||||
# 最后,正式开始服务
|
||||
from shared_utils.fastapi_server import start_app
|
||||
start_app(app_block, CONCURRENT_COUNT, AUTHENTICATION, PORT, SSL_KEYFILE, SSL_CERTFILE)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
"""
|
||||
Translate this project to other languages (experimental, please open an issue if there is any bug)
|
||||
|
||||
|
||||
|
||||
|
||||
Usage:
|
||||
1. modify config.py, set your LLM_MODEL and API_KEY(s) to provide access to OPENAI (or any other LLM model provider)
|
||||
|
||||
@@ -11,20 +11,20 @@
|
||||
3. modify TransPrompt (below ↓)
|
||||
TransPrompt = f"Replace each json value `#` with translated results in English, e.g., \"原始文本\":\"TranslatedText\". Keep Json format. Do not answer #."
|
||||
|
||||
4. Run `python multi_language.py`.
|
||||
4. Run `python multi_language.py`.
|
||||
Note: You need to run it multiple times to increase translation coverage because GPT makes mistakes sometimes.
|
||||
(You can also run `CACHE_ONLY=True python multi_language.py` to use cached translation mapping)
|
||||
|
||||
5. Find the translated program in `multi-language\English\*`
|
||||
|
||||
|
||||
P.S.
|
||||
|
||||
|
||||
- The translation mapping will be stored in `docs/translation_xxxx.json`, you can revised mistaken translation there.
|
||||
|
||||
|
||||
- If you would like to share your `docs/translation_xxxx.json`, (so that everyone can use the cached & revised translation mapping), please open a Pull Request
|
||||
|
||||
- If there is any translation error in `docs/translation_xxxx.json`, please open a Pull Request
|
||||
|
||||
|
||||
- Welcome any Pull Request, regardless of language
|
||||
"""
|
||||
|
||||
@@ -58,7 +58,7 @@ if not os.path.exists(CACHE_FOLDER):
|
||||
|
||||
def lru_file_cache(maxsize=128, ttl=None, filename=None):
|
||||
"""
|
||||
Decorator that caches a function's return value after being called with given arguments.
|
||||
Decorator that caches a function's return value after being called with given arguments.
|
||||
It uses a Least Recently Used (LRU) cache strategy to limit the size of the cache.
|
||||
maxsize: Maximum size of the cache. Defaults to 128.
|
||||
ttl: Time-to-Live of the cache. If a value hasn't been accessed for `ttl` seconds, it will be evicted from the cache.
|
||||
@@ -151,7 +151,7 @@ def map_to_json(map, language):
|
||||
|
||||
def read_map_from_json(language):
|
||||
if os.path.exists(f'docs/translate_{language.lower()}.json'):
|
||||
with open(f'docs/translate_{language.lower()}.json', 'r', encoding='utf8') as f:
|
||||
with open(f'docs/translate_{language.lower()}.json', 'r', encoding='utf8') as f:
|
||||
res = json.load(f)
|
||||
res = {k:v for k, v in res.items() if v is not None and contains_chinese(k)}
|
||||
return res
|
||||
@@ -168,7 +168,7 @@ def advanced_split(splitted_string, spliter, include_spliter=False):
|
||||
splitted[i] += spliter
|
||||
splitted[i] = splitted[i].strip()
|
||||
for i in reversed(range(len(splitted))):
|
||||
if not contains_chinese(splitted[i]):
|
||||
if not contains_chinese(splitted[i]):
|
||||
splitted.pop(i)
|
||||
splitted_string_tmp.extend(splitted)
|
||||
else:
|
||||
@@ -183,12 +183,12 @@ def trans(word_to_translate, language, special=False):
|
||||
if len(word_to_translate) == 0: return {}
|
||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
from toolbox import get_conf, ChatBotWithCookies, load_chat_cookies
|
||||
|
||||
|
||||
cookies = load_chat_cookies()
|
||||
llm_kwargs = {
|
||||
'api_key': cookies['api_key'],
|
||||
'llm_model': cookies['llm_model'],
|
||||
'top_p':1.0,
|
||||
'top_p':1.0,
|
||||
'max_length': None,
|
||||
'temperature':0.4,
|
||||
}
|
||||
@@ -204,12 +204,12 @@ def trans(word_to_translate, language, special=False):
|
||||
sys_prompt_array = [f"Translate following sentences to {LANG}. E.g., You should translate sentences to the following format ['translation of sentence 1', 'translation of sentence 2']. Do NOT answer with Chinese!" for _ in inputs_array]
|
||||
chatbot = ChatBotWithCookies(llm_kwargs)
|
||||
gpt_say_generator = request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
inputs_array,
|
||||
inputs_show_user_array,
|
||||
llm_kwargs,
|
||||
chatbot,
|
||||
history_array,
|
||||
sys_prompt_array,
|
||||
inputs_array,
|
||||
inputs_show_user_array,
|
||||
llm_kwargs,
|
||||
chatbot,
|
||||
history_array,
|
||||
sys_prompt_array,
|
||||
)
|
||||
while True:
|
||||
try:
|
||||
@@ -224,7 +224,7 @@ def trans(word_to_translate, language, special=False):
|
||||
try:
|
||||
res_before_trans = eval(result[i-1])
|
||||
res_after_trans = eval(result[i])
|
||||
if len(res_before_trans) != len(res_after_trans):
|
||||
if len(res_before_trans) != len(res_after_trans):
|
||||
raise RuntimeError
|
||||
for a,b in zip(res_before_trans, res_after_trans):
|
||||
translated_result[a] = b
|
||||
@@ -246,12 +246,12 @@ def trans_json(word_to_translate, language, special=False):
|
||||
if len(word_to_translate) == 0: return {}
|
||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
from toolbox import get_conf, ChatBotWithCookies, load_chat_cookies
|
||||
|
||||
|
||||
cookies = load_chat_cookies()
|
||||
llm_kwargs = {
|
||||
'api_key': cookies['api_key'],
|
||||
'llm_model': cookies['llm_model'],
|
||||
'top_p':1.0,
|
||||
'top_p':1.0,
|
||||
'max_length': None,
|
||||
'temperature':0.4,
|
||||
}
|
||||
@@ -261,18 +261,18 @@ def trans_json(word_to_translate, language, special=False):
|
||||
word_to_translate_split = split_list(word_to_translate, N_EACH_REQ)
|
||||
inputs_array = [{k:"#" for k in s} for s in word_to_translate_split]
|
||||
inputs_array = [ json.dumps(i, ensure_ascii=False) for i in inputs_array]
|
||||
|
||||
|
||||
inputs_show_user_array = inputs_array
|
||||
history_array = [[] for _ in inputs_array]
|
||||
sys_prompt_array = [TransPrompt for _ in inputs_array]
|
||||
chatbot = ChatBotWithCookies(llm_kwargs)
|
||||
gpt_say_generator = request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
inputs_array,
|
||||
inputs_show_user_array,
|
||||
llm_kwargs,
|
||||
chatbot,
|
||||
history_array,
|
||||
sys_prompt_array,
|
||||
inputs_array,
|
||||
inputs_show_user_array,
|
||||
llm_kwargs,
|
||||
chatbot,
|
||||
history_array,
|
||||
sys_prompt_array,
|
||||
)
|
||||
while True:
|
||||
try:
|
||||
@@ -336,7 +336,7 @@ def step_1_core_key_translate():
|
||||
cached_translation = read_map_from_json(language=LANG_STD)
|
||||
cached_translation_keys = list(cached_translation.keys())
|
||||
for d in chinese_core_keys_norepeat:
|
||||
if d not in cached_translation_keys:
|
||||
if d not in cached_translation_keys:
|
||||
need_translate.append(d)
|
||||
|
||||
if CACHE_ONLY:
|
||||
@@ -352,9 +352,9 @@ def step_1_core_key_translate():
|
||||
chinese_core_keys_norepeat_mapping.update({k:cached_translation[k]})
|
||||
chinese_core_keys_norepeat_mapping = dict(sorted(chinese_core_keys_norepeat_mapping.items(), key=lambda x: -len(x[0])))
|
||||
|
||||
# ===============================================
|
||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
# copy
|
||||
# ===============================================
|
||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
def copy_source_code():
|
||||
|
||||
from toolbox import get_conf
|
||||
@@ -367,9 +367,9 @@ def step_1_core_key_translate():
|
||||
shutil.copytree('./', backup_dir, ignore=lambda x, y: blacklist)
|
||||
copy_source_code()
|
||||
|
||||
# ===============================================
|
||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
# primary key replace
|
||||
# ===============================================
|
||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
directory_path = f'./multi-language/{LANG}/'
|
||||
for root, dirs, files in os.walk(directory_path):
|
||||
for file in files:
|
||||
@@ -379,7 +379,7 @@ def step_1_core_key_translate():
|
||||
# read again
|
||||
with open(file_path, 'r', encoding='utf-8') as f:
|
||||
content = f.read()
|
||||
|
||||
|
||||
for k, v in chinese_core_keys_norepeat_mapping.items():
|
||||
content = content.replace(k, v)
|
||||
|
||||
@@ -389,9 +389,9 @@ def step_1_core_key_translate():
|
||||
|
||||
def step_2_core_key_translate():
|
||||
|
||||
# =================================================================================================
|
||||
# step2
|
||||
# =================================================================================================
|
||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
# step2
|
||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
|
||||
def load_string(strings, string_input):
|
||||
string_ = string_input.strip().strip(',').strip().strip('.').strip()
|
||||
@@ -423,7 +423,7 @@ def step_2_core_key_translate():
|
||||
splitted_string = advanced_split(splitted_string, spliter=" ", include_spliter=False)
|
||||
splitted_string = advanced_split(splitted_string, spliter="- ", include_spliter=False)
|
||||
splitted_string = advanced_split(splitted_string, spliter="---", include_spliter=False)
|
||||
|
||||
|
||||
# --------------------------------------
|
||||
for j, s in enumerate(splitted_string): # .com
|
||||
if '.com' in s: continue
|
||||
@@ -457,7 +457,7 @@ def step_2_core_key_translate():
|
||||
comments_arr = []
|
||||
for code_sp in content.splitlines():
|
||||
comments = re.findall(r'#.*$', code_sp)
|
||||
for comment in comments:
|
||||
for comment in comments:
|
||||
load_string(strings=comments_arr, string_input=comment)
|
||||
string_literals.extend(comments_arr)
|
||||
|
||||
@@ -479,7 +479,7 @@ def step_2_core_key_translate():
|
||||
cached_translation = read_map_from_json(language=LANG)
|
||||
cached_translation_keys = list(cached_translation.keys())
|
||||
for d in chinese_literal_names_norepeat:
|
||||
if d not in cached_translation_keys:
|
||||
if d not in cached_translation_keys:
|
||||
need_translate.append(d)
|
||||
|
||||
if CACHE_ONLY:
|
||||
@@ -492,9 +492,9 @@ def step_2_core_key_translate():
|
||||
cached_translation.update(read_map_from_json(language=LANG_STD))
|
||||
cached_translation = dict(sorted(cached_translation.items(), key=lambda x: -len(x[0])))
|
||||
|
||||
# ===============================================
|
||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
# literal key replace
|
||||
# ===============================================
|
||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
directory_path = f'./multi-language/{LANG}/'
|
||||
for root, dirs, files in os.walk(directory_path):
|
||||
for file in files:
|
||||
@@ -504,18 +504,18 @@ def step_2_core_key_translate():
|
||||
# read again
|
||||
with open(file_path, 'r', encoding='utf-8') as f:
|
||||
content = f.read()
|
||||
|
||||
|
||||
for k, v in cached_translation.items():
|
||||
if v is None: continue
|
||||
if '"' in v:
|
||||
if '"' in v:
|
||||
v = v.replace('"', "`")
|
||||
if '\'' in v:
|
||||
if '\'' in v:
|
||||
v = v.replace('\'', "`")
|
||||
content = content.replace(k, v)
|
||||
|
||||
with open(file_path, 'w', encoding='utf-8') as f:
|
||||
f.write(content)
|
||||
|
||||
|
||||
if file.strip('.py') in cached_translation:
|
||||
file_new = cached_translation[file.strip('.py')] + '.py'
|
||||
file_path_new = os.path.join(root, file_new)
|
||||
|
||||
@@ -8,10 +8,10 @@
|
||||
具备多线程调用能力的函数:在函数插件中被调用,灵活而简洁
|
||||
2. predict_no_ui_long_connection(...)
|
||||
"""
|
||||
import tiktoken, copy
|
||||
import tiktoken, copy, re
|
||||
from functools import lru_cache
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from toolbox import get_conf, trimmed_format_exc
|
||||
from toolbox import get_conf, trimmed_format_exc, apply_gpt_academic_string_mask, read_one_api_model_name
|
||||
|
||||
from .bridge_chatgpt import predict_no_ui_long_connection as chatgpt_noui
|
||||
from .bridge_chatgpt import predict as chatgpt_ui
|
||||
@@ -31,6 +31,12 @@ from .bridge_qianfan import predict as qianfan_ui
|
||||
from .bridge_google_gemini import predict as genai_ui
|
||||
from .bridge_google_gemini import predict_no_ui_long_connection as genai_noui
|
||||
|
||||
from .bridge_zhipu import predict_no_ui_long_connection as zhipu_noui
|
||||
from .bridge_zhipu import predict as zhipu_ui
|
||||
|
||||
from .bridge_cohere import predict as cohere_ui
|
||||
from .bridge_cohere import predict_no_ui_long_connection as cohere_noui
|
||||
|
||||
colors = ['#FF00FF', '#00FFFF', '#FF0000', '#990099', '#009999', '#990044']
|
||||
|
||||
class LazyloadTiktoken(object):
|
||||
@@ -44,13 +50,13 @@ class LazyloadTiktoken(object):
|
||||
tmp = tiktoken.encoding_for_model(model)
|
||||
print('加载tokenizer完毕')
|
||||
return tmp
|
||||
|
||||
|
||||
def encode(self, *args, **kwargs):
|
||||
encoder = self.get_encoder(self.model)
|
||||
encoder = self.get_encoder(self.model)
|
||||
return encoder.encode(*args, **kwargs)
|
||||
|
||||
|
||||
def decode(self, *args, **kwargs):
|
||||
encoder = self.get_encoder(self.model)
|
||||
encoder = self.get_encoder(self.model)
|
||||
return encoder.decode(*args, **kwargs)
|
||||
|
||||
# Endpoint 重定向
|
||||
@@ -58,12 +64,17 @@ API_URL_REDIRECT, AZURE_ENDPOINT, AZURE_ENGINE = get_conf("API_URL_REDIRECT", "A
|
||||
openai_endpoint = "https://api.openai.com/v1/chat/completions"
|
||||
api2d_endpoint = "https://openai.api2d.net/v1/chat/completions"
|
||||
newbing_endpoint = "wss://sydney.bing.com/sydney/ChatHub"
|
||||
gemini_endpoint = "https://generativelanguage.googleapis.com/v1beta/models"
|
||||
claude_endpoint = "https://api.anthropic.com/v1/messages"
|
||||
yimodel_endpoint = "https://api.lingyiwanwu.com/v1/chat/completions"
|
||||
cohere_endpoint = 'https://api.cohere.ai/v1/chat'
|
||||
|
||||
if not AZURE_ENDPOINT.endswith('/'): AZURE_ENDPOINT += '/'
|
||||
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
|
||||
# 兼容旧版的配置
|
||||
try:
|
||||
API_URL = get_conf("API_URL")
|
||||
if API_URL != "https://api.openai.com/v1/chat/completions":
|
||||
if API_URL != "https://api.openai.com/v1/chat/completions":
|
||||
openai_endpoint = API_URL
|
||||
print("警告!API_URL配置选项将被弃用,请更换为API_URL_REDIRECT配置")
|
||||
except:
|
||||
@@ -72,7 +83,10 @@ except:
|
||||
if openai_endpoint in API_URL_REDIRECT: openai_endpoint = API_URL_REDIRECT[openai_endpoint]
|
||||
if api2d_endpoint in API_URL_REDIRECT: api2d_endpoint = API_URL_REDIRECT[api2d_endpoint]
|
||||
if newbing_endpoint in API_URL_REDIRECT: newbing_endpoint = API_URL_REDIRECT[newbing_endpoint]
|
||||
|
||||
if gemini_endpoint in API_URL_REDIRECT: gemini_endpoint = API_URL_REDIRECT[gemini_endpoint]
|
||||
if claude_endpoint in API_URL_REDIRECT: claude_endpoint = API_URL_REDIRECT[claude_endpoint]
|
||||
if yimodel_endpoint in API_URL_REDIRECT: yimodel_endpoint = API_URL_REDIRECT[yimodel_endpoint]
|
||||
if cohere_endpoint in API_URL_REDIRECT: cohere_endpoint = API_URL_REDIRECT[cohere_endpoint]
|
||||
|
||||
# 获取tokenizer
|
||||
tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo")
|
||||
@@ -91,11 +105,11 @@ model_info = {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": 4096,
|
||||
"max_token": 16385,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
|
||||
"gpt-3.5-turbo-16k": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
@@ -123,7 +137,16 @@ model_info = {
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
"gpt-3.5-turbo-1106": {#16k
|
||||
"gpt-3.5-turbo-1106": { #16k
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": 16385,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
"gpt-3.5-turbo-0125": { #16k
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": openai_endpoint,
|
||||
@@ -150,6 +173,15 @@ model_info = {
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
},
|
||||
|
||||
"gpt-4-turbo-preview": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": 128000,
|
||||
"tokenizer": tokenizer_gpt4,
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
},
|
||||
|
||||
"gpt-4-1106-preview": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
@@ -159,6 +191,15 @@ model_info = {
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
},
|
||||
|
||||
"gpt-4-0125-preview": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": 128000,
|
||||
"tokenizer": tokenizer_gpt4,
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
},
|
||||
|
||||
"gpt-3.5-random": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
@@ -167,7 +208,7 @@ model_info = {
|
||||
"tokenizer": tokenizer_gpt4,
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
},
|
||||
|
||||
|
||||
"gpt-4-vision-preview": {
|
||||
"fn_with_ui": chatgpt_vision_ui,
|
||||
"fn_without_ui": chatgpt_vision_noui,
|
||||
@@ -197,16 +238,25 @@ model_info = {
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
},
|
||||
|
||||
# api_2d (此后不需要在此处添加api2d的接口了,因为下面的代码会自动添加)
|
||||
"api2d-gpt-3.5-turbo": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": api2d_endpoint,
|
||||
"max_token": 4096,
|
||||
# 智谱AI
|
||||
"glm-4": {
|
||||
"fn_with_ui": zhipu_ui,
|
||||
"fn_without_ui": zhipu_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 10124 * 8,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"glm-3-turbo": {
|
||||
"fn_with_ui": zhipu_ui,
|
||||
"fn_without_ui": zhipu_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 10124 * 4,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
# api_2d (此后不需要在此处添加api2d的接口了,因为下面的代码会自动添加)
|
||||
"api2d-gpt-4": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
@@ -252,7 +302,7 @@ model_info = {
|
||||
"gemini-pro": {
|
||||
"fn_with_ui": genai_ui,
|
||||
"fn_without_ui": genai_noui,
|
||||
"endpoint": None,
|
||||
"endpoint": gemini_endpoint,
|
||||
"max_token": 1024 * 32,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
@@ -260,13 +310,56 @@ model_info = {
|
||||
"gemini-pro-vision": {
|
||||
"fn_with_ui": genai_ui,
|
||||
"fn_without_ui": genai_noui,
|
||||
"endpoint": gemini_endpoint,
|
||||
"max_token": 1024 * 32,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
# cohere
|
||||
"cohere-command-r-plus": {
|
||||
"fn_with_ui": cohere_ui,
|
||||
"fn_without_ui": cohere_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": cohere_endpoint,
|
||||
"max_token": 1024 * 4,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
}
|
||||
# -=-=-=-=-=-=- 月之暗面 -=-=-=-=-=-=-
|
||||
from request_llms.bridge_moonshot import predict as moonshot_ui
|
||||
from request_llms.bridge_moonshot import predict_no_ui_long_connection as moonshot_no_ui
|
||||
model_info.update({
|
||||
"moonshot-v1-8k": {
|
||||
"fn_with_ui": moonshot_ui,
|
||||
"fn_without_ui": moonshot_no_ui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 1024 * 8,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"moonshot-v1-32k": {
|
||||
"fn_with_ui": moonshot_ui,
|
||||
"fn_without_ui": moonshot_no_ui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 1024 * 32,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
}
|
||||
|
||||
"moonshot-v1-128k": {
|
||||
"fn_with_ui": moonshot_ui,
|
||||
"fn_without_ui": moonshot_no_ui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 1024 * 128,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
}
|
||||
})
|
||||
# -=-=-=-=-=-=- api2d 对齐支持 -=-=-=-=-=-=-
|
||||
for model in AVAIL_LLM_MODELS:
|
||||
if model.startswith('api2d-') and (model.replace('api2d-','') in model_info.keys()):
|
||||
@@ -282,25 +375,67 @@ for model in AVAIL_LLM_MODELS:
|
||||
model_info.update({model: mi})
|
||||
|
||||
# -=-=-=-=-=-=- 以下部分是新加入的模型,可能附带额外依赖 -=-=-=-=-=-=-
|
||||
if "claude-1-100k" in AVAIL_LLM_MODELS or "claude-2" in AVAIL_LLM_MODELS:
|
||||
# claude家族
|
||||
claude_models = ["claude-instant-1.2","claude-2.0","claude-2.1","claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229"]
|
||||
if any(item in claude_models for item in AVAIL_LLM_MODELS):
|
||||
from .bridge_claude import predict_no_ui_long_connection as claude_noui
|
||||
from .bridge_claude import predict as claude_ui
|
||||
model_info.update({
|
||||
"claude-1-100k": {
|
||||
"claude-instant-1.2": {
|
||||
"fn_with_ui": claude_ui,
|
||||
"fn_without_ui": claude_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 8196,
|
||||
"endpoint": claude_endpoint,
|
||||
"max_token": 100000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
})
|
||||
model_info.update({
|
||||
"claude-2": {
|
||||
"claude-2.0": {
|
||||
"fn_with_ui": claude_ui,
|
||||
"fn_without_ui": claude_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 8196,
|
||||
"endpoint": claude_endpoint,
|
||||
"max_token": 100000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
})
|
||||
model_info.update({
|
||||
"claude-2.1": {
|
||||
"fn_with_ui": claude_ui,
|
||||
"fn_without_ui": claude_noui,
|
||||
"endpoint": claude_endpoint,
|
||||
"max_token": 200000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
})
|
||||
model_info.update({
|
||||
"claude-3-haiku-20240307": {
|
||||
"fn_with_ui": claude_ui,
|
||||
"fn_without_ui": claude_noui,
|
||||
"endpoint": claude_endpoint,
|
||||
"max_token": 200000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
})
|
||||
model_info.update({
|
||||
"claude-3-sonnet-20240229": {
|
||||
"fn_with_ui": claude_ui,
|
||||
"fn_without_ui": claude_noui,
|
||||
"endpoint": claude_endpoint,
|
||||
"max_token": 200000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
})
|
||||
model_info.update({
|
||||
"claude-3-opus-20240229": {
|
||||
"fn_with_ui": claude_ui,
|
||||
"fn_without_ui": claude_noui,
|
||||
"endpoint": claude_endpoint,
|
||||
"max_token": 200000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
@@ -370,22 +505,6 @@ if "stack-claude" in AVAIL_LLM_MODELS:
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
}
|
||||
})
|
||||
if "newbing-free" in AVAIL_LLM_MODELS:
|
||||
try:
|
||||
from .bridge_newbingfree import predict_no_ui_long_connection as newbingfree_noui
|
||||
from .bridge_newbingfree import predict as newbingfree_ui
|
||||
model_info.update({
|
||||
"newbing-free": {
|
||||
"fn_with_ui": newbingfree_ui,
|
||||
"fn_without_ui": newbingfree_noui,
|
||||
"endpoint": newbing_endpoint,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
}
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
if "newbing" in AVAIL_LLM_MODELS: # same with newbing-free
|
||||
try:
|
||||
from .bridge_newbingfree import predict_no_ui_long_connection as newbingfree_noui
|
||||
@@ -418,6 +537,7 @@ if "chatglmft" in AVAIL_LLM_MODELS: # same with newbing-free
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
# -=-=-=-=-=-=- 上海AI-LAB书生大模型 -=-=-=-=-=-=-
|
||||
if "internlm" in AVAIL_LLM_MODELS:
|
||||
try:
|
||||
from .bridge_internlm import predict_no_ui_long_connection as internlm_noui
|
||||
@@ -450,6 +570,7 @@ if "chatglm_onnx" in AVAIL_LLM_MODELS:
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
# -=-=-=-=-=-=- 通义-本地模型 -=-=-=-=-=-=-
|
||||
if "qwen-local" in AVAIL_LLM_MODELS:
|
||||
try:
|
||||
from .bridge_qwen_local import predict_no_ui_long_connection as qwen_local_noui
|
||||
@@ -458,6 +579,7 @@ if "qwen-local" in AVAIL_LLM_MODELS:
|
||||
"qwen-local": {
|
||||
"fn_with_ui": qwen_local_ui,
|
||||
"fn_without_ui": qwen_local_noui,
|
||||
"can_multi_thread": False,
|
||||
"endpoint": None,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
@@ -466,6 +588,7 @@ if "qwen-local" in AVAIL_LLM_MODELS:
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
# -=-=-=-=-=-=- 通义-在线模型 -=-=-=-=-=-=-
|
||||
if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-max" in AVAIL_LLM_MODELS: # zhipuai
|
||||
try:
|
||||
from .bridge_qwen import predict_no_ui_long_connection as qwen_noui
|
||||
@@ -474,6 +597,7 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
||||
"qwen-turbo": {
|
||||
"fn_with_ui": qwen_ui,
|
||||
"fn_without_ui": qwen_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 6144,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
@@ -482,6 +606,7 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
||||
"qwen-plus": {
|
||||
"fn_with_ui": qwen_ui,
|
||||
"fn_without_ui": qwen_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 30720,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
@@ -490,6 +615,7 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
||||
"qwen-max": {
|
||||
"fn_with_ui": qwen_ui,
|
||||
"fn_without_ui": qwen_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 28672,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
@@ -498,7 +624,35 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
if "spark" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
||||
# -=-=-=-=-=-=- 零一万物模型 -=-=-=-=-=-=-
|
||||
if "yi-34b-chat-0205" in AVAIL_LLM_MODELS or "yi-34b-chat-200k" in AVAIL_LLM_MODELS: # zhipuai
|
||||
try:
|
||||
from .bridge_yimodel import predict_no_ui_long_connection as yimodel_noui
|
||||
from .bridge_yimodel import predict as yimodel_ui
|
||||
model_info.update({
|
||||
"yi-34b-chat-0205": {
|
||||
"fn_with_ui": yimodel_ui,
|
||||
"fn_without_ui": yimodel_noui,
|
||||
"can_multi_thread": False, # 目前来说,默认情况下并发量极低,因此禁用
|
||||
"endpoint": yimodel_endpoint,
|
||||
"max_token": 4000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"yi-34b-chat-200k": {
|
||||
"fn_with_ui": yimodel_ui,
|
||||
"fn_without_ui": yimodel_noui,
|
||||
"can_multi_thread": False, # 目前来说,默认情况下并发量极低,因此禁用
|
||||
"endpoint": yimodel_endpoint,
|
||||
"max_token": 200000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
# -=-=-=-=-=-=- 讯飞星火认知大模型 -=-=-=-=-=-=-
|
||||
if "spark" in AVAIL_LLM_MODELS:
|
||||
try:
|
||||
from .bridge_spark import predict_no_ui_long_connection as spark_noui
|
||||
from .bridge_spark import predict as spark_ui
|
||||
@@ -506,6 +660,7 @@ if "spark" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
||||
"spark": {
|
||||
"fn_with_ui": spark_ui,
|
||||
"fn_without_ui": spark_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
@@ -522,6 +677,7 @@ if "sparkv2" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
||||
"sparkv2": {
|
||||
"fn_with_ui": spark_ui,
|
||||
"fn_without_ui": spark_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
@@ -530,7 +686,7 @@ if "sparkv2" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
if "sparkv3" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
||||
if "sparkv3" in AVAIL_LLM_MODELS or "sparkv3.5" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
||||
try:
|
||||
from .bridge_spark import predict_no_ui_long_connection as spark_noui
|
||||
from .bridge_spark import predict as spark_ui
|
||||
@@ -538,6 +694,16 @@ if "sparkv3" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
||||
"sparkv3": {
|
||||
"fn_with_ui": spark_ui,
|
||||
"fn_without_ui": spark_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"sparkv3.5": {
|
||||
"fn_with_ui": spark_ui,
|
||||
"fn_without_ui": spark_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
@@ -562,22 +728,22 @@ if "llama2" in AVAIL_LLM_MODELS: # llama2
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai
|
||||
# -=-=-=-=-=-=- 智谱 -=-=-=-=-=-=-
|
||||
if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai 是glm-4的别名,向后兼容配置
|
||||
try:
|
||||
from .bridge_zhipu import predict_no_ui_long_connection as zhipu_noui
|
||||
from .bridge_zhipu import predict as zhipu_ui
|
||||
model_info.update({
|
||||
"zhipuai": {
|
||||
"fn_with_ui": zhipu_ui,
|
||||
"fn_without_ui": zhipu_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 4096,
|
||||
"max_token": 10124 * 8,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
}
|
||||
},
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
# -=-=-=-=-=-=- 幻方-深度求索大模型 -=-=-=-=-=-=-
|
||||
if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
|
||||
try:
|
||||
from .bridge_deepseekcoder import predict_no_ui_long_connection as deepseekcoder_noui
|
||||
@@ -595,12 +761,37 @@ if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
|
||||
# <-- 用于定义和切换多个azure模型 -->
|
||||
AZURE_CFG_ARRAY = get_conf("AZURE_CFG_ARRAY")
|
||||
|
||||
# -=-=-=-=-=-=- one-api 对齐支持 -=-=-=-=-=-=-
|
||||
for model in [m for m in AVAIL_LLM_MODELS if m.startswith("one-api-")]:
|
||||
# 为了更灵活地接入one-api多模型管理界面,设计了此接口,例子:AVAIL_LLM_MODELS = ["one-api-mixtral-8x7b(max_token=6666)"]
|
||||
# 其中
|
||||
# "one-api-" 是前缀(必要)
|
||||
# "mixtral-8x7b" 是模型名(必要)
|
||||
# "(max_token=6666)" 是配置(非必要)
|
||||
try:
|
||||
_, max_token_tmp = read_one_api_model_name(model)
|
||||
except:
|
||||
print(f"one-api模型 {model} 的 max_token 配置不是整数,请检查配置文件。")
|
||||
continue
|
||||
model_info.update({
|
||||
model: {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": max_token_tmp,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
})
|
||||
|
||||
|
||||
# -=-=-=-=-=-=- azure模型对齐支持 -=-=-=-=-=-=-
|
||||
AZURE_CFG_ARRAY = get_conf("AZURE_CFG_ARRAY") # <-- 用于定义和切换多个azure模型 -->
|
||||
if len(AZURE_CFG_ARRAY) > 0:
|
||||
for azure_model_name, azure_cfg_dict in AZURE_CFG_ARRAY.items():
|
||||
# 可能会覆盖之前的配置,但这是意料之中的
|
||||
if not azure_model_name.startswith('azure'):
|
||||
if not azure_model_name.startswith('azure'):
|
||||
raise ValueError("AZURE_CFG_ARRAY中配置的模型必须以azure开头")
|
||||
endpoint_ = azure_cfg_dict["AZURE_ENDPOINT"] + \
|
||||
f'openai/deployments/{azure_cfg_dict["AZURE_ENGINE"]}/chat/completions?api-version=2023-05-15'
|
||||
@@ -625,7 +816,7 @@ def LLM_CATCH_EXCEPTION(f):
|
||||
"""
|
||||
装饰器函数,将错误显示出来
|
||||
"""
|
||||
def decorated(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience):
|
||||
def decorated(inputs:str, llm_kwargs:dict, history:list, sys_prompt:str, observe_window:list, console_slience:bool):
|
||||
try:
|
||||
return f(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
|
||||
except Exception as e:
|
||||
@@ -635,9 +826,9 @@ def LLM_CATCH_EXCEPTION(f):
|
||||
return decorated
|
||||
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window=[], console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list, sys_prompt:str, observe_window:list=[], console_slience:bool=False):
|
||||
"""
|
||||
发送至LLM,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||
发送至LLM,等待回复,一次性完成,不显示中间过程。但内部(尽可能地)用stream的方法避免中途网线被掐。
|
||||
inputs:
|
||||
是本次问询的输入
|
||||
sys_prompt:
|
||||
@@ -651,10 +842,10 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
||||
"""
|
||||
import threading, time, copy
|
||||
|
||||
inputs = apply_gpt_academic_string_mask(inputs, mode="show_llm")
|
||||
model = llm_kwargs['llm_model']
|
||||
n_model = 1
|
||||
if '&' not in model:
|
||||
assert not model.startswith("tgui"), "TGUI不支持函数插件的实现"
|
||||
|
||||
# 如果只询问1个大语言模型:
|
||||
method = model_info[model]["fn_without_ui"]
|
||||
@@ -665,7 +856,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
||||
executor = ThreadPoolExecutor(max_workers=4)
|
||||
models = model.split('&')
|
||||
n_model = len(models)
|
||||
|
||||
|
||||
window_len = len(observe_window)
|
||||
assert window_len==3
|
||||
window_mutex = [["", time.time(), ""] for _ in range(n_model)] + [True]
|
||||
@@ -684,12 +875,13 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
||||
time.sleep(0.25)
|
||||
if not window_mutex[-1]: break
|
||||
# 看门狗(watchdog)
|
||||
for i in range(n_model):
|
||||
for i in range(n_model):
|
||||
window_mutex[i][1] = observe_window[1]
|
||||
# 观察窗(window)
|
||||
chat_string = []
|
||||
for i in range(n_model):
|
||||
chat_string.append( f"【{str(models[i])} 说】: <font color=\"{colors[i]}\"> {window_mutex[i][0]} </font>" )
|
||||
color = colors[i%len(colors)]
|
||||
chat_string.append( f"【{str(models[i])} 说】: <font color=\"{color}\"> {window_mutex[i][0]} </font>" )
|
||||
res = '<br/><br/>\n\n---\n\n'.join(chat_string)
|
||||
# # # # # # # # # # #
|
||||
observe_window[0] = res
|
||||
@@ -706,24 +898,33 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
||||
time.sleep(1)
|
||||
|
||||
for i, future in enumerate(futures): # wait and get
|
||||
return_string_collect.append( f"【{str(models[i])} 说】: <font color=\"{colors[i]}\"> {future.result()} </font>" )
|
||||
color = colors[i%len(colors)]
|
||||
return_string_collect.append( f"【{str(models[i])} 说】: <font color=\"{color}\"> {future.result()} </font>" )
|
||||
|
||||
window_mutex[-1] = False # stop mutex thread
|
||||
res = '<br/><br/>\n\n---\n\n'.join(return_string_collect)
|
||||
return res
|
||||
|
||||
|
||||
def predict(inputs, llm_kwargs, *args, **kwargs):
|
||||
def predict(inputs:str, llm_kwargs:dict, *args, **kwargs):
|
||||
"""
|
||||
发送至LLM,流式获取输出。
|
||||
用于基础的对话功能。
|
||||
inputs 是本次问询的输入
|
||||
top_p, temperature是LLM的内部调优参数
|
||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
|
||||
完整参数列表:
|
||||
predict(
|
||||
inputs:str, # 是本次问询的输入
|
||||
llm_kwargs:dict, # 是LLM的内部调优参数
|
||||
plugin_kwargs:dict, # 是插件的内部参数
|
||||
chatbot:ChatBotWithCookies, # 原样传递,负责向用户前端展示对话,兼顾前端状态的功能
|
||||
history:list=[], # 是之前的对话列表
|
||||
system_prompt:str='', # 系统静默prompt
|
||||
stream:bool=True, # 是否流式输出(已弃用)
|
||||
additional_fn:str=None # 基础功能区按钮的附加功能
|
||||
):
|
||||
"""
|
||||
|
||||
inputs = apply_gpt_academic_string_mask(inputs, mode="show_llm")
|
||||
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"] # 如果这里报错,检查config中的AVAIL_LLM_MODELS选项
|
||||
yield from method(inputs, llm_kwargs, *args, **kwargs)
|
||||
|
||||
|
||||
@@ -56,15 +56,15 @@ class GetGLM2Handle(LocalLLMHandle):
|
||||
|
||||
query, max_length, top_p, temperature, history = adaptor(kwargs)
|
||||
|
||||
for response, history in self._model.stream_chat(self._tokenizer,
|
||||
query,
|
||||
history,
|
||||
for response, history in self._model.stream_chat(self._tokenizer,
|
||||
query,
|
||||
history,
|
||||
max_length=max_length,
|
||||
top_p=top_p,
|
||||
temperature=temperature,
|
||||
):
|
||||
yield response
|
||||
|
||||
|
||||
def try_to_import_special_deps(self, **kwargs):
|
||||
# import something that will raise error if the user does not install requirement_*.txt
|
||||
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
||||
|
||||
@@ -55,15 +55,15 @@ class GetGLM3Handle(LocalLLMHandle):
|
||||
|
||||
query, max_length, top_p, temperature, history = adaptor(kwargs)
|
||||
|
||||
for response, history in self._model.stream_chat(self._tokenizer,
|
||||
query,
|
||||
history,
|
||||
for response, history in self._model.stream_chat(self._tokenizer,
|
||||
query,
|
||||
history,
|
||||
max_length=max_length,
|
||||
top_p=top_p,
|
||||
temperature=temperature,
|
||||
):
|
||||
yield response
|
||||
|
||||
|
||||
def try_to_import_special_deps(self, **kwargs):
|
||||
# import something that will raise error if the user does not install requirement_*.txt
|
||||
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
||||
|
||||
@@ -37,7 +37,7 @@ class GetGLMFTHandle(Process):
|
||||
self.check_dependency()
|
||||
self.start()
|
||||
self.threadLock = threading.Lock()
|
||||
|
||||
|
||||
def check_dependency(self):
|
||||
try:
|
||||
import sentencepiece
|
||||
@@ -101,7 +101,7 @@ class GetGLMFTHandle(Process):
|
||||
break
|
||||
except Exception as e:
|
||||
retry += 1
|
||||
if retry > 3:
|
||||
if retry > 3:
|
||||
self.child.send('[Local Message] Call ChatGLMFT fail 不能正常加载ChatGLMFT的参数。')
|
||||
raise RuntimeError("不能正常加载ChatGLMFT的参数!")
|
||||
|
||||
@@ -113,7 +113,7 @@ class GetGLMFTHandle(Process):
|
||||
for response, history in self.chatglmft_model.stream_chat(self.chatglmft_tokenizer, **kwargs):
|
||||
self.child.send(response)
|
||||
# # 中途接收可能的终止指令(如果有的话)
|
||||
# if self.child.poll():
|
||||
# if self.child.poll():
|
||||
# command = self.child.recv()
|
||||
# if command == '[Terminate]': break
|
||||
except:
|
||||
@@ -133,11 +133,12 @@ class GetGLMFTHandle(Process):
|
||||
else:
|
||||
break
|
||||
self.threadLock.release()
|
||||
|
||||
|
||||
global glmft_handle
|
||||
glmft_handle = None
|
||||
#################################################################################
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
@@ -146,7 +147,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
if glmft_handle is None:
|
||||
glmft_handle = GetGLMFTHandle()
|
||||
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + glmft_handle.info
|
||||
if not glmft_handle.success:
|
||||
if not glmft_handle.success:
|
||||
error = glmft_handle.info
|
||||
glmft_handle = None
|
||||
raise RuntimeError(error)
|
||||
@@ -161,7 +162,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
response = ""
|
||||
for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
if len(observe_window) >= 1: observe_window[0] = response
|
||||
if len(observe_window) >= 2:
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("程序终止。")
|
||||
return response
|
||||
@@ -180,7 +181,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
glmft_handle = GetGLMFTHandle()
|
||||
chatbot[-1] = (inputs, load_message + "\n\n" + glmft_handle.info)
|
||||
yield from update_ui(chatbot=chatbot, history=[])
|
||||
if not glmft_handle.success:
|
||||
if not glmft_handle.success:
|
||||
glmft_handle = None
|
||||
return
|
||||
|
||||
|
||||
@@ -59,7 +59,7 @@ class GetONNXGLMHandle(LocalLLMHandle):
|
||||
temperature=temperature,
|
||||
):
|
||||
yield answer
|
||||
|
||||
|
||||
def try_to_import_special_deps(self, **kwargs):
|
||||
# import something that will raise error if the user does not install requirement_*.txt
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
|
||||
@@ -21,7 +21,9 @@ import random
|
||||
|
||||
# config_private.py放自己的秘密如API和代理网址
|
||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, is_the_upload_folder
|
||||
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
|
||||
from toolbox import trimmed_format_exc, is_the_upload_folder, read_one_api_model_name, log_chat
|
||||
from toolbox import ChatBotWithCookies
|
||||
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
||||
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
|
||||
|
||||
@@ -47,14 +49,14 @@ def decode_chunk(chunk):
|
||||
choice_valid = False
|
||||
has_content = False
|
||||
has_role = False
|
||||
try:
|
||||
try:
|
||||
chunkjson = json.loads(chunk_decoded[6:])
|
||||
has_choices = 'choices' in chunkjson
|
||||
if has_choices: choice_valid = (len(chunkjson['choices']) > 0)
|
||||
if has_choices and choice_valid: has_content = ("content" in chunkjson['choices'][0]["delta"])
|
||||
if has_content: has_content = (chunkjson['choices'][0]["delta"]["content"] is not None)
|
||||
if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"]
|
||||
except:
|
||||
except:
|
||||
pass
|
||||
return chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role
|
||||
|
||||
@@ -68,7 +70,7 @@ def verify_endpoint(endpoint):
|
||||
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
|
||||
return endpoint
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
|
||||
"""
|
||||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||
inputs:
|
||||
@@ -103,16 +105,18 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
json_data = None
|
||||
while True:
|
||||
try: chunk = next(stream_response)
|
||||
except StopIteration:
|
||||
except StopIteration:
|
||||
break
|
||||
except requests.exceptions.ConnectionError:
|
||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
||||
if len(chunk_decoded)==0: continue
|
||||
if not chunk_decoded.startswith('data:'):
|
||||
if not chunk_decoded.startswith('data:'):
|
||||
error_msg = get_full_error(chunk, stream_response).decode()
|
||||
if "reduce the length" in error_msg:
|
||||
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
|
||||
elif """type":"upstream_error","param":"307""" in error_msg:
|
||||
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
|
||||
else:
|
||||
raise RuntimeError("OpenAI拒绝了请求:" + error_msg)
|
||||
if ('data: [DONE]' in chunk_decoded): break # api2d 正常完成
|
||||
@@ -123,11 +127,12 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
json_data = chunkjson['choices'][0]
|
||||
delta = json_data["delta"]
|
||||
if len(delta) == 0: break
|
||||
if "role" in delta: continue
|
||||
if "content" in delta:
|
||||
if (not has_content) and has_role: continue
|
||||
if (not has_content) and (not has_role): continue # raise RuntimeError("发现不标准的第三方接口:"+delta)
|
||||
if has_content: # has_role = True/False
|
||||
result += delta["content"]
|
||||
if not console_slience: print(delta["content"], end='')
|
||||
if observe_window is not None:
|
||||
if observe_window is not None:
|
||||
# 观测窗,把已经获取的数据显示出去
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] += delta["content"]
|
||||
@@ -143,7 +148,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
return result
|
||||
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||
"""
|
||||
发送至chatGPT,流式获取输出。
|
||||
用于基础的对话功能。
|
||||
@@ -169,7 +175,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
|
||||
raw_input = inputs
|
||||
logging.info(f'[raw_input] {raw_input}')
|
||||
# logging.info(f'[raw_input] {raw_input}')
|
||||
chatbot.append((inputs, ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||
|
||||
@@ -185,7 +191,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
# 检查endpoint是否合法
|
||||
try:
|
||||
from .bridge_all import model_info
|
||||
@@ -195,7 +201,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
chatbot[-1] = (inputs, tb_str)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Endpoint不满足要求") # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
history.append(inputs); history.append("")
|
||||
|
||||
retry = 0
|
||||
@@ -212,7 +218,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
|
||||
gpt_replying_buffer = ""
|
||||
|
||||
|
||||
is_head_of_the_stream = True
|
||||
if stream:
|
||||
stream_response = response.iter_lines()
|
||||
@@ -224,30 +230,34 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
chunk_decoded = chunk.decode()
|
||||
error_msg = chunk_decoded
|
||||
# 首先排除一个one-api没有done数据包的第三方Bug情形
|
||||
if len(gpt_replying_buffer.strip()) > 0 and len(error_msg) == 0:
|
||||
if len(gpt_replying_buffer.strip()) > 0 and len(error_msg) == 0:
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="检测到有缺陷的非OpenAI官方接口,建议选择更稳定的接口。")
|
||||
break
|
||||
# 其他情况,直接返回报错
|
||||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="非OpenAI官方接口返回了错误:" + chunk.decode()) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
# 提前读取一些信息 (用于判断异常)
|
||||
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
||||
|
||||
if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r"content" not in chunk_decoded):
|
||||
# 数据流的第一帧不携带content
|
||||
is_head_of_the_stream = False; continue
|
||||
|
||||
|
||||
if chunk:
|
||||
try:
|
||||
if has_choices and not choice_valid:
|
||||
# 一些垃圾第三方接口的出现这样的错误
|
||||
continue
|
||||
if ('data: [DONE]' not in chunk_decoded) and len(chunk_decoded) > 0 and (chunkjson is None):
|
||||
# 传递进来一些奇怪的东西
|
||||
raise ValueError(f'无法读取以下数据,请检查配置。\n\n{chunk_decoded}')
|
||||
# 前者是API2D的结束条件,后者是OPENAI的结束条件
|
||||
if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0):
|
||||
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||
logging.info(f'[response] {gpt_replying_buffer}')
|
||||
# logging.info(f'[response] {gpt_replying_buffer}')
|
||||
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||
break
|
||||
# 处理数据流的主体
|
||||
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
|
||||
@@ -259,7 +269,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
# 一些第三方接口的出现这样的错误,兼容一下吧
|
||||
continue
|
||||
else:
|
||||
# 一些垃圾第三方接口的出现这样的错误
|
||||
# 至此已经超出了正常接口应该进入的范围,一些垃圾第三方接口会出现这样的错误
|
||||
if chunkjson['choices'][0]["delta"]["content"] is None: continue # 一些垃圾第三方接口出现这样的错误,兼容一下吧
|
||||
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
|
||||
|
||||
history[-1] = gpt_replying_buffer
|
||||
@@ -280,7 +291,7 @@ def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
|
||||
if "reduce the length" in error_msg:
|
||||
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
||||
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
||||
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
||||
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
||||
elif "does not exist" in error_msg:
|
||||
@@ -319,7 +330,7 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
"Authorization": f"Bearer {api_key}"
|
||||
}
|
||||
if API_ORG.startswith('org-'): headers.update({"OpenAI-Organization": API_ORG})
|
||||
if llm_kwargs['llm_model'].startswith('azure-'):
|
||||
if llm_kwargs['llm_model'].startswith('azure-'):
|
||||
headers.update({"api-key": api_key})
|
||||
if llm_kwargs['llm_model'] in AZURE_CFG_ARRAY.keys():
|
||||
azure_api_key_unshared = AZURE_CFG_ARRAY[llm_kwargs['llm_model']]["AZURE_API_KEY"]
|
||||
@@ -351,10 +362,13 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
model = llm_kwargs['llm_model']
|
||||
if llm_kwargs['llm_model'].startswith('api2d-'):
|
||||
model = llm_kwargs['llm_model'][len('api2d-'):]
|
||||
if llm_kwargs['llm_model'].startswith('one-api-'):
|
||||
model = llm_kwargs['llm_model'][len('one-api-'):]
|
||||
model, _ = read_one_api_model_name(model)
|
||||
|
||||
if model == "gpt-3.5-random": # 随机选择, 绕过openai访问频率限制
|
||||
model = random.choice([
|
||||
"gpt-3.5-turbo",
|
||||
"gpt-3.5-turbo",
|
||||
"gpt-3.5-turbo-16k",
|
||||
"gpt-3.5-turbo-1106",
|
||||
"gpt-3.5-turbo-0613",
|
||||
@@ -365,7 +379,7 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
|
||||
payload = {
|
||||
"model": model,
|
||||
"messages": messages,
|
||||
"messages": messages,
|
||||
"temperature": llm_kwargs['temperature'], # 1.0,
|
||||
"top_p": llm_kwargs['top_p'], # 1.0,
|
||||
"n": 1,
|
||||
|
||||
@@ -27,7 +27,7 @@ timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check
|
||||
|
||||
|
||||
def report_invalid_key(key):
|
||||
if get_conf("BLOCK_INVALID_APIKEY"):
|
||||
if get_conf("BLOCK_INVALID_APIKEY"):
|
||||
# 实验性功能,自动检测并屏蔽失效的KEY,请勿使用
|
||||
from request_llms.key_manager import ApiKeyManager
|
||||
api_key = ApiKeyManager().add_key_to_blacklist(key)
|
||||
@@ -51,13 +51,13 @@ def decode_chunk(chunk):
|
||||
choice_valid = False
|
||||
has_content = False
|
||||
has_role = False
|
||||
try:
|
||||
try:
|
||||
chunkjson = json.loads(chunk_decoded[6:])
|
||||
has_choices = 'choices' in chunkjson
|
||||
if has_choices: choice_valid = (len(chunkjson['choices']) > 0)
|
||||
if has_choices and choice_valid: has_content = "content" in chunkjson['choices'][0]["delta"]
|
||||
if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"]
|
||||
except:
|
||||
except:
|
||||
pass
|
||||
return chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role
|
||||
|
||||
@@ -103,7 +103,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
|
||||
raw_input = inputs
|
||||
logging.info(f'[raw_input] {raw_input}')
|
||||
def make_media_input(inputs, image_paths):
|
||||
def make_media_input(inputs, image_paths):
|
||||
for image_path in image_paths:
|
||||
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
||||
return inputs
|
||||
@@ -122,7 +122,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
# 检查endpoint是否合法
|
||||
try:
|
||||
from .bridge_all import model_info
|
||||
@@ -150,7 +150,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
|
||||
gpt_replying_buffer = ""
|
||||
|
||||
|
||||
is_head_of_the_stream = True
|
||||
if stream:
|
||||
stream_response = response.iter_lines()
|
||||
@@ -162,21 +162,21 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
chunk_decoded = chunk.decode()
|
||||
error_msg = chunk_decoded
|
||||
# 首先排除一个one-api没有done数据包的第三方Bug情形
|
||||
if len(gpt_replying_buffer.strip()) > 0 and len(error_msg) == 0:
|
||||
if len(gpt_replying_buffer.strip()) > 0 and len(error_msg) == 0:
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="检测到有缺陷的非OpenAI官方接口,建议选择更稳定的接口。")
|
||||
break
|
||||
# 其他情况,直接返回报错
|
||||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg, api_key)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="非OpenAI官方接口返回了错误:" + chunk.decode()) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
# 提前读取一些信息 (用于判断异常)
|
||||
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
||||
|
||||
if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r"content" not in chunk_decoded):
|
||||
# 数据流的第一帧不携带content
|
||||
is_head_of_the_stream = False; continue
|
||||
|
||||
|
||||
if chunk:
|
||||
try:
|
||||
if has_choices and not choice_valid:
|
||||
@@ -220,7 +220,7 @@ def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg,
|
||||
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
|
||||
if "reduce the length" in error_msg:
|
||||
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
||||
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
||||
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
||||
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
||||
elif "does not exist" in error_msg:
|
||||
@@ -260,7 +260,7 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths):
|
||||
"Authorization": f"Bearer {api_key}"
|
||||
}
|
||||
if API_ORG.startswith('org-'): headers.update({"OpenAI-Organization": API_ORG})
|
||||
if llm_kwargs['llm_model'].startswith('azure-'):
|
||||
if llm_kwargs['llm_model'].startswith('azure-'):
|
||||
headers.update({"api-key": api_key})
|
||||
if llm_kwargs['llm_model'] in AZURE_CFG_ARRAY.keys():
|
||||
azure_api_key_unshared = AZURE_CFG_ARRAY[llm_kwargs['llm_model']]["AZURE_API_KEY"]
|
||||
@@ -294,7 +294,7 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths):
|
||||
|
||||
payload = {
|
||||
"model": model,
|
||||
"messages": messages,
|
||||
"messages": messages,
|
||||
"temperature": llm_kwargs['temperature'], # 1.0,
|
||||
"top_p": llm_kwargs['top_p'], # 1.0,
|
||||
"n": 1,
|
||||
|
||||
@@ -73,12 +73,12 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
result = ''
|
||||
while True:
|
||||
try: chunk = next(stream_response).decode()
|
||||
except StopIteration:
|
||||
except StopIteration:
|
||||
break
|
||||
except requests.exceptions.ConnectionError:
|
||||
chunk = next(stream_response).decode() # 失败了,重试一次?再失败就没办法了。
|
||||
if len(chunk)==0: continue
|
||||
if not chunk.startswith('data:'):
|
||||
if not chunk.startswith('data:'):
|
||||
error_msg = get_full_error(chunk.encode('utf8'), stream_response).decode()
|
||||
if "reduce the length" in error_msg:
|
||||
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
|
||||
@@ -89,14 +89,14 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
delta = json_data["delta"]
|
||||
if len(delta) == 0: break
|
||||
if "role" in delta: continue
|
||||
if "content" in delta:
|
||||
if "content" in delta:
|
||||
result += delta["content"]
|
||||
if not console_slience: print(delta["content"], end='')
|
||||
if observe_window is not None:
|
||||
if observe_window is not None:
|
||||
# 观测窗,把已经获取的数据显示出去
|
||||
if len(observe_window) >= 1: observe_window[0] += delta["content"]
|
||||
# 看门狗,如果超过期限没有喂狗,则终止
|
||||
if len(observe_window) >= 2:
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("用户取消了程序。")
|
||||
else: raise RuntimeError("意外Json结构:"+delta)
|
||||
@@ -132,7 +132,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
history.append(inputs); history.append("")
|
||||
|
||||
retry = 0
|
||||
@@ -151,7 +151,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
|
||||
gpt_replying_buffer = ""
|
||||
|
||||
|
||||
is_head_of_the_stream = True
|
||||
if stream:
|
||||
stream_response = response.iter_lines()
|
||||
@@ -165,12 +165,12 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="非Openai官方接口返回了错误:" + chunk.decode()) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
# print(chunk.decode()[6:])
|
||||
if is_head_of_the_stream and (r'"object":"error"' not in chunk.decode()):
|
||||
# 数据流的第一帧不携带content
|
||||
is_head_of_the_stream = False; continue
|
||||
|
||||
|
||||
if chunk:
|
||||
try:
|
||||
chunk_decoded = chunk.decode()
|
||||
@@ -203,7 +203,7 @@ def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
|
||||
if "reduce the length" in error_msg:
|
||||
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
||||
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
||||
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
||||
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
||||
# history = [] # 清除历史
|
||||
@@ -264,7 +264,7 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
|
||||
payload = {
|
||||
"model": llm_kwargs['llm_model'].strip('api2d-'),
|
||||
"messages": messages,
|
||||
"messages": messages,
|
||||
"temperature": llm_kwargs['temperature'], # 1.0,
|
||||
"top_p": llm_kwargs['top_p'], # 1.0,
|
||||
"n": 1,
|
||||
|
||||
@@ -9,15 +9,15 @@
|
||||
具备多线程调用能力的函数
|
||||
2. predict_no_ui_long_connection:支持多线程
|
||||
"""
|
||||
|
||||
import os
|
||||
import json
|
||||
import time
|
||||
import gradio as gr
|
||||
import logging
|
||||
import os
|
||||
import time
|
||||
import traceback
|
||||
import json
|
||||
import requests
|
||||
import importlib
|
||||
from toolbox import get_conf, update_ui, trimmed_format_exc, encode_image, every_image_file_in_path, log_chat
|
||||
picture_system_prompt = "\n当回复图像时,必须说明正在回复哪张图像。所有图像仅在最后一个问题中提供,即使它们在历史记录中被提及。请使用'这是第X张图像:'的格式来指明您正在描述的是哪张图像。"
|
||||
Claude_3_Models = ["claude-3-haiku-20240307", "claude-3-sonnet-20240229", "claude-3-opus-20240229"]
|
||||
|
||||
# config_private.py放自己的秘密如API和代理网址
|
||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||
@@ -39,6 +39,34 @@ def get_full_error(chunk, stream_response):
|
||||
break
|
||||
return chunk
|
||||
|
||||
def decode_chunk(chunk):
|
||||
# 提前读取一些信息(用于判断异常)
|
||||
chunk_decoded = chunk.decode()
|
||||
chunkjson = None
|
||||
is_last_chunk = False
|
||||
need_to_pass = False
|
||||
if chunk_decoded.startswith('data:'):
|
||||
try:
|
||||
chunkjson = json.loads(chunk_decoded[6:])
|
||||
except:
|
||||
need_to_pass = True
|
||||
pass
|
||||
elif chunk_decoded.startswith('event:'):
|
||||
try:
|
||||
event_type = chunk_decoded.split(':')[1].strip()
|
||||
if event_type == 'content_block_stop' or event_type == 'message_stop':
|
||||
is_last_chunk = True
|
||||
elif event_type == 'content_block_start' or event_type == 'message_start':
|
||||
need_to_pass = True
|
||||
pass
|
||||
except:
|
||||
need_to_pass = True
|
||||
pass
|
||||
else:
|
||||
need_to_pass = True
|
||||
pass
|
||||
return need_to_pass, chunkjson, is_last_chunk
|
||||
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||
"""
|
||||
@@ -54,50 +82,67 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
observe_window = None:
|
||||
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||
"""
|
||||
from anthropic import Anthropic
|
||||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||
prompt = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
|
||||
retry = 0
|
||||
if len(ANTHROPIC_API_KEY) == 0:
|
||||
raise RuntimeError("没有设置ANTHROPIC_API_KEY选项")
|
||||
if inputs == "": inputs = "空空如也的输入栏"
|
||||
headers, message = generate_payload(inputs, llm_kwargs, history, sys_prompt, image_paths=None)
|
||||
retry = 0
|
||||
|
||||
|
||||
while True:
|
||||
try:
|
||||
# make a POST request to the API endpoint, stream=False
|
||||
from .bridge_all import model_info
|
||||
anthropic = Anthropic(api_key=ANTHROPIC_API_KEY)
|
||||
# endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||
# with ProxyNetworkActivate()
|
||||
stream = anthropic.completions.create(
|
||||
prompt=prompt,
|
||||
max_tokens_to_sample=4096, # The maximum number of tokens to generate before stopping.
|
||||
model=llm_kwargs['llm_model'],
|
||||
stream=True,
|
||||
temperature = llm_kwargs['temperature']
|
||||
)
|
||||
break
|
||||
except Exception as e:
|
||||
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||
response = requests.post(endpoint, headers=headers, json=message,
|
||||
proxies=proxies, stream=True, timeout=TIMEOUT_SECONDS);break
|
||||
except requests.exceptions.ReadTimeout as e:
|
||||
retry += 1
|
||||
traceback.print_exc()
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||
stream_response = response.iter_lines()
|
||||
result = ''
|
||||
try:
|
||||
for completion in stream:
|
||||
result += completion.completion
|
||||
if not console_slience: print(completion.completion, end='')
|
||||
if observe_window is not None:
|
||||
# 观测窗,把已经获取的数据显示出去
|
||||
if len(observe_window) >= 1: observe_window[0] += completion.completion
|
||||
# 看门狗,如果超过期限没有喂狗,则终止
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("用户取消了程序。")
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
while True:
|
||||
try: chunk = next(stream_response)
|
||||
except StopIteration:
|
||||
break
|
||||
except requests.exceptions.ConnectionError:
|
||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||
need_to_pass, chunkjson, is_last_chunk = decode_chunk(chunk)
|
||||
if chunk:
|
||||
try:
|
||||
if need_to_pass:
|
||||
pass
|
||||
elif is_last_chunk:
|
||||
# logging.info(f'[response] {result}')
|
||||
break
|
||||
else:
|
||||
if chunkjson and chunkjson['type'] == 'content_block_delta':
|
||||
result += chunkjson['delta']['text']
|
||||
print(chunkjson['delta']['text'], end='')
|
||||
if observe_window is not None:
|
||||
# 观测窗,把已经获取的数据显示出去
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] += chunkjson['delta']['text']
|
||||
# 看门狗,如果超过期限没有喂狗,则终止
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("用户取消了程序。")
|
||||
except Exception as e:
|
||||
chunk = get_full_error(chunk, stream_response)
|
||||
chunk_decoded = chunk.decode()
|
||||
error_msg = chunk_decoded
|
||||
print(error_msg)
|
||||
raise RuntimeError("Json解析不合常规")
|
||||
|
||||
return result
|
||||
|
||||
def make_media_input(history,inputs,image_paths):
|
||||
for image_path in image_paths:
|
||||
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
||||
return inputs
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
@@ -109,23 +154,33 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
from anthropic import Anthropic
|
||||
if inputs == "": inputs = "空空如也的输入栏"
|
||||
if len(ANTHROPIC_API_KEY) == 0:
|
||||
chatbot.append((inputs, "没有设置ANTHROPIC_API_KEY"))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
|
||||
raw_input = inputs
|
||||
logging.info(f'[raw_input] {raw_input}')
|
||||
chatbot.append((inputs, ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||
have_recent_file, image_paths = every_image_file_in_path(chatbot)
|
||||
if len(image_paths) > 20:
|
||||
chatbot.append((inputs, "图片数量超过api上限(20张)"))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应")
|
||||
return
|
||||
|
||||
if any([llm_kwargs['llm_model'] == model for model in Claude_3_Models]) and have_recent_file:
|
||||
if inputs == "" or inputs == "空空如也的输入栏": inputs = "请描述给出的图片"
|
||||
system_prompt += picture_system_prompt # 由于没有单独的参数保存包含图片的历史,所以只能通过提示词对第几张图片进行定位
|
||||
chatbot.append((make_media_input(history,inputs, image_paths), ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||
else:
|
||||
chatbot.append((inputs, ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||
|
||||
try:
|
||||
prompt = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||||
headers, message = generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths)
|
||||
except RuntimeError as e:
|
||||
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
||||
@@ -138,91 +193,117 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
try:
|
||||
# make a POST request to the API endpoint, stream=True
|
||||
from .bridge_all import model_info
|
||||
anthropic = Anthropic(api_key=ANTHROPIC_API_KEY)
|
||||
# endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||
# with ProxyNetworkActivate()
|
||||
stream = anthropic.completions.create(
|
||||
prompt=prompt,
|
||||
max_tokens_to_sample=4096, # The maximum number of tokens to generate before stopping.
|
||||
model=llm_kwargs['llm_model'],
|
||||
stream=True,
|
||||
temperature = llm_kwargs['temperature']
|
||||
)
|
||||
|
||||
break
|
||||
except:
|
||||
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||
response = requests.post(endpoint, headers=headers, json=message,
|
||||
proxies=proxies, stream=True, timeout=TIMEOUT_SECONDS);break
|
||||
except requests.exceptions.ReadTimeout as e:
|
||||
retry += 1
|
||||
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
|
||||
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
||||
traceback.print_exc()
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
|
||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||
stream_response = response.iter_lines()
|
||||
gpt_replying_buffer = ""
|
||||
|
||||
for completion in stream:
|
||||
try:
|
||||
gpt_replying_buffer = gpt_replying_buffer + completion.completion
|
||||
history[-1] = gpt_replying_buffer
|
||||
chatbot[-1] = (history[-2], history[-1])
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg='正常') # 刷新界面
|
||||
|
||||
except Exception as e:
|
||||
from toolbox import regular_txt_to_markdown
|
||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str}")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + tb_str) # 刷新界面
|
||||
return
|
||||
|
||||
while True:
|
||||
try: chunk = next(stream_response)
|
||||
except StopIteration:
|
||||
break
|
||||
except requests.exceptions.ConnectionError:
|
||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||
need_to_pass, chunkjson, is_last_chunk = decode_chunk(chunk)
|
||||
if chunk:
|
||||
try:
|
||||
if need_to_pass:
|
||||
pass
|
||||
elif is_last_chunk:
|
||||
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||
# logging.info(f'[response] {gpt_replying_buffer}')
|
||||
break
|
||||
else:
|
||||
if chunkjson and chunkjson['type'] == 'content_block_delta':
|
||||
gpt_replying_buffer += chunkjson['delta']['text']
|
||||
history[-1] = gpt_replying_buffer
|
||||
chatbot[-1] = (history[-2], history[-1])
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg='正常') # 刷新界面
|
||||
|
||||
except Exception as e:
|
||||
chunk = get_full_error(chunk, stream_response)
|
||||
chunk_decoded = chunk.decode()
|
||||
error_msg = chunk_decoded
|
||||
print(error_msg)
|
||||
raise RuntimeError("Json解析不合常规")
|
||||
|
||||
def multiple_picture_types(image_paths):
|
||||
"""
|
||||
根据图片类型返回image/jpeg, image/png, image/gif, image/webp,无法判断则返回image/jpeg
|
||||
"""
|
||||
for image_path in image_paths:
|
||||
if image_path.endswith('.jpeg') or image_path.endswith('.jpg'):
|
||||
return 'image/jpeg'
|
||||
elif image_path.endswith('.png'):
|
||||
return 'image/png'
|
||||
elif image_path.endswith('.gif'):
|
||||
return 'image/gif'
|
||||
elif image_path.endswith('.webp'):
|
||||
return 'image/webp'
|
||||
return 'image/jpeg'
|
||||
|
||||
# https://github.com/jtsang4/claude-to-chatgpt/blob/main/claude_to_chatgpt/adapter.py
|
||||
def convert_messages_to_prompt(messages):
|
||||
prompt = ""
|
||||
role_map = {
|
||||
"system": "Human",
|
||||
"user": "Human",
|
||||
"assistant": "Assistant",
|
||||
}
|
||||
for message in messages:
|
||||
role = message["role"]
|
||||
content = message["content"]
|
||||
transformed_role = role_map[role]
|
||||
prompt += f"\n\n{transformed_role.capitalize()}: {content}"
|
||||
prompt += "\n\nAssistant: "
|
||||
return prompt
|
||||
|
||||
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths):
|
||||
"""
|
||||
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||||
"""
|
||||
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
|
||||
|
||||
conversation_cnt = len(history) // 2
|
||||
|
||||
messages = [{"role": "system", "content": system_prompt}]
|
||||
messages = []
|
||||
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2*conversation_cnt, 2):
|
||||
what_i_have_asked = {}
|
||||
what_i_have_asked["role"] = "user"
|
||||
what_i_have_asked["content"] = history[index]
|
||||
what_i_have_asked["content"] = [{"type": "text", "text": history[index]}]
|
||||
what_gpt_answer = {}
|
||||
what_gpt_answer["role"] = "assistant"
|
||||
what_gpt_answer["content"] = history[index+1]
|
||||
if what_i_have_asked["content"] != "":
|
||||
if what_gpt_answer["content"] == "": continue
|
||||
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
||||
what_gpt_answer["content"] = [{"type": "text", "text": history[index+1]}]
|
||||
if what_i_have_asked["content"][0]["text"] != "":
|
||||
if what_i_have_asked["content"][0]["text"] == "": continue
|
||||
if what_i_have_asked["content"][0]["text"] == timeout_bot_msg: continue
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
else:
|
||||
messages[-1]['content'] = what_gpt_answer['content']
|
||||
messages[-1]['content'][0]['text'] = what_gpt_answer['content'][0]['text']
|
||||
|
||||
what_i_ask_now = {}
|
||||
what_i_ask_now["role"] = "user"
|
||||
what_i_ask_now["content"] = inputs
|
||||
if any([llm_kwargs['llm_model'] == model for model in Claude_3_Models]) and image_paths:
|
||||
what_i_ask_now = {}
|
||||
what_i_ask_now["role"] = "user"
|
||||
what_i_ask_now["content"] = []
|
||||
for image_path in image_paths:
|
||||
what_i_ask_now["content"].append({
|
||||
"type": "image",
|
||||
"source": {
|
||||
"type": "base64",
|
||||
"media_type": multiple_picture_types(image_paths),
|
||||
"data": encode_image(image_path),
|
||||
}
|
||||
})
|
||||
what_i_ask_now["content"].append({"type": "text", "text": inputs})
|
||||
else:
|
||||
what_i_ask_now = {}
|
||||
what_i_ask_now["role"] = "user"
|
||||
what_i_ask_now["content"] = [{"type": "text", "text": inputs}]
|
||||
messages.append(what_i_ask_now)
|
||||
prompt = convert_messages_to_prompt(messages)
|
||||
|
||||
return prompt
|
||||
|
||||
|
||||
# 开始整理headers与message
|
||||
headers = {
|
||||
'x-api-key': ANTHROPIC_API_KEY,
|
||||
'anthropic-version': '2023-06-01',
|
||||
'content-type': 'application/json'
|
||||
}
|
||||
payload = {
|
||||
'model': llm_kwargs['llm_model'],
|
||||
'max_tokens': 4096,
|
||||
'messages': messages,
|
||||
'temperature': llm_kwargs['temperature'],
|
||||
'stream': True,
|
||||
'system': system_prompt
|
||||
}
|
||||
return headers, payload
|
||||
|
||||
328
request_llms/bridge_cohere.py
普通文件
328
request_llms/bridge_cohere.py
普通文件
@@ -0,0 +1,328 @@
|
||||
# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目
|
||||
|
||||
"""
|
||||
该文件中主要包含三个函数
|
||||
|
||||
不具备多线程能力的函数:
|
||||
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
|
||||
|
||||
具备多线程调用能力的函数
|
||||
2. predict_no_ui_long_connection:支持多线程
|
||||
"""
|
||||
|
||||
import json
|
||||
import time
|
||||
import gradio as gr
|
||||
import logging
|
||||
import traceback
|
||||
import requests
|
||||
import importlib
|
||||
import random
|
||||
|
||||
# config_private.py放自己的秘密如API和代理网址
|
||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
|
||||
from toolbox import trimmed_format_exc, is_the_upload_folder, read_one_api_model_name, log_chat
|
||||
from toolbox import ChatBotWithCookies
|
||||
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
||||
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
|
||||
|
||||
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||||
|
||||
def get_full_error(chunk, stream_response):
|
||||
"""
|
||||
获取完整的从Cohere返回的报错
|
||||
"""
|
||||
while True:
|
||||
try:
|
||||
chunk += next(stream_response)
|
||||
except:
|
||||
break
|
||||
return chunk
|
||||
|
||||
def decode_chunk(chunk):
|
||||
# 提前读取一些信息 (用于判断异常)
|
||||
chunk_decoded = chunk.decode()
|
||||
chunkjson = None
|
||||
has_choices = False
|
||||
choice_valid = False
|
||||
has_content = False
|
||||
has_role = False
|
||||
try:
|
||||
chunkjson = json.loads(chunk_decoded)
|
||||
has_choices = 'choices' in chunkjson
|
||||
if has_choices: choice_valid = (len(chunkjson['choices']) > 0)
|
||||
if has_choices and choice_valid: has_content = ("content" in chunkjson['choices'][0]["delta"])
|
||||
if has_content: has_content = (chunkjson['choices'][0]["delta"]["content"] is not None)
|
||||
if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"]
|
||||
except:
|
||||
pass
|
||||
return chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role
|
||||
|
||||
from functools import lru_cache
|
||||
@lru_cache(maxsize=32)
|
||||
def verify_endpoint(endpoint):
|
||||
"""
|
||||
检查endpoint是否可用
|
||||
"""
|
||||
if "你亲手写的api名称" in endpoint:
|
||||
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
|
||||
return endpoint
|
||||
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
|
||||
"""
|
||||
发送,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||
inputs:
|
||||
是本次问询的输入
|
||||
sys_prompt:
|
||||
系统静默prompt
|
||||
llm_kwargs:
|
||||
内部调优参数
|
||||
history:
|
||||
是之前的对话列表
|
||||
observe_window = None:
|
||||
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||
"""
|
||||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
# make a POST request to the API endpoint, stream=False
|
||||
from .bridge_all import model_info
|
||||
endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
|
||||
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
|
||||
except requests.exceptions.ReadTimeout as e:
|
||||
retry += 1
|
||||
traceback.print_exc()
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||
|
||||
stream_response = response.iter_lines()
|
||||
result = ''
|
||||
json_data = None
|
||||
while True:
|
||||
try: chunk = next(stream_response)
|
||||
except StopIteration:
|
||||
break
|
||||
except requests.exceptions.ConnectionError:
|
||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
||||
if chunkjson['event_type'] == 'stream-start': continue
|
||||
if chunkjson['event_type'] == 'text-generation':
|
||||
result += chunkjson["text"]
|
||||
if not console_slience: print(chunkjson["text"], end='')
|
||||
if observe_window is not None:
|
||||
# 观测窗,把已经获取的数据显示出去
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] += chunkjson["text"]
|
||||
# 看门狗,如果超过期限没有喂狗,则终止
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("用户取消了程序。")
|
||||
if chunkjson['event_type'] == 'stream-end': break
|
||||
return result
|
||||
|
||||
|
||||
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||
"""
|
||||
发送至chatGPT,流式获取输出。
|
||||
用于基础的对话功能。
|
||||
inputs 是本次问询的输入
|
||||
top_p, temperature是chatGPT的内部调优参数
|
||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
# if is_any_api_key(inputs):
|
||||
# chatbot._cookies['api_key'] = inputs
|
||||
# chatbot.append(("输入已识别为Cohere的api_key", what_keys(inputs)))
|
||||
# yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") # 刷新界面
|
||||
# return
|
||||
# elif not is_any_api_key(chatbot._cookies['api_key']):
|
||||
# chatbot.append((inputs, "缺少api_key。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。"))
|
||||
# yield from update_ui(chatbot=chatbot, history=history, msg="缺少api_key") # 刷新界面
|
||||
# return
|
||||
|
||||
user_input = inputs
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
|
||||
raw_input = inputs
|
||||
# logging.info(f'[raw_input] {raw_input}')
|
||||
chatbot.append((inputs, ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||
|
||||
# check mis-behavior
|
||||
if is_the_upload_folder(user_input):
|
||||
chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
|
||||
time.sleep(2)
|
||||
|
||||
try:
|
||||
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||||
except RuntimeError as e:
|
||||
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
||||
return
|
||||
|
||||
# 检查endpoint是否合法
|
||||
try:
|
||||
from .bridge_all import model_info
|
||||
endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
|
||||
except:
|
||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
chatbot[-1] = (inputs, tb_str)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Endpoint不满足要求") # 刷新界面
|
||||
return
|
||||
|
||||
history.append(inputs); history.append("")
|
||||
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
# make a POST request to the API endpoint, stream=True
|
||||
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
|
||||
except:
|
||||
retry += 1
|
||||
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
|
||||
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
|
||||
gpt_replying_buffer = ""
|
||||
|
||||
is_head_of_the_stream = True
|
||||
if stream:
|
||||
stream_response = response.iter_lines()
|
||||
while True:
|
||||
try:
|
||||
chunk = next(stream_response)
|
||||
except StopIteration:
|
||||
# 非Cohere官方接口的出现这样的报错,Cohere和API2D不会走这里
|
||||
chunk_decoded = chunk.decode()
|
||||
error_msg = chunk_decoded
|
||||
# 其他情况,直接返回报错
|
||||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="非Cohere官方接口返回了错误:" + chunk.decode()) # 刷新界面
|
||||
return
|
||||
|
||||
# 提前读取一些信息 (用于判断异常)
|
||||
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
||||
|
||||
if chunkjson:
|
||||
try:
|
||||
if chunkjson['event_type'] == 'stream-start':
|
||||
continue
|
||||
if chunkjson['event_type'] == 'text-generation':
|
||||
gpt_replying_buffer = gpt_replying_buffer + chunkjson["text"]
|
||||
history[-1] = gpt_replying_buffer
|
||||
chatbot[-1] = (history[-2], history[-1])
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
|
||||
if chunkjson['event_type'] == 'stream-end':
|
||||
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||
history[-1] = gpt_replying_buffer
|
||||
chatbot[-1] = (history[-2], history[-1])
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
|
||||
break
|
||||
except Exception as e:
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
|
||||
chunk = get_full_error(chunk, stream_response)
|
||||
chunk_decoded = chunk.decode()
|
||||
error_msg = chunk_decoded
|
||||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
||||
print(error_msg)
|
||||
return
|
||||
|
||||
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
|
||||
from .bridge_all import model_info
|
||||
Cohere_website = ' 请登录Cohere查看详情 https://platform.Cohere.com/signup'
|
||||
if "reduce the length" in error_msg:
|
||||
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
||||
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
||||
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
||||
elif "does not exist" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格.")
|
||||
elif "Incorrect API key" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. Cohere以提供了不正确的API_KEY为由, 拒绝服务. " + Cohere_website)
|
||||
elif "exceeded your current quota" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. Cohere以账户额度不足为由, 拒绝服务." + Cohere_website)
|
||||
elif "account is not active" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Your account is not active. Cohere以账户失效为由, 拒绝服务." + Cohere_website)
|
||||
elif "associated with a deactivated account" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] You are associated with a deactivated account. Cohere以账户失效为由, 拒绝服务." + Cohere_website)
|
||||
elif "API key has been deactivated" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] API key has been deactivated. Cohere以账户失效为由, 拒绝服务." + Cohere_website)
|
||||
elif "bad forward key" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.")
|
||||
elif "Not enough point" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Not enough point. API2D账户点数不足.")
|
||||
else:
|
||||
from toolbox import regular_txt_to_markdown
|
||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
|
||||
return chatbot, history
|
||||
|
||||
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
"""
|
||||
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||||
"""
|
||||
# if not is_any_api_key(llm_kwargs['api_key']):
|
||||
# raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。")
|
||||
|
||||
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
||||
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {api_key}"
|
||||
}
|
||||
if API_ORG.startswith('org-'): headers.update({"Cohere-Organization": API_ORG})
|
||||
if llm_kwargs['llm_model'].startswith('azure-'):
|
||||
headers.update({"api-key": api_key})
|
||||
if llm_kwargs['llm_model'] in AZURE_CFG_ARRAY.keys():
|
||||
azure_api_key_unshared = AZURE_CFG_ARRAY[llm_kwargs['llm_model']]["AZURE_API_KEY"]
|
||||
headers.update({"api-key": azure_api_key_unshared})
|
||||
|
||||
conversation_cnt = len(history) // 2
|
||||
|
||||
messages = [{"role": "SYSTEM", "message": system_prompt}]
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2*conversation_cnt, 2):
|
||||
what_i_have_asked = {}
|
||||
what_i_have_asked["role"] = "USER"
|
||||
what_i_have_asked["message"] = history[index]
|
||||
what_gpt_answer = {}
|
||||
what_gpt_answer["role"] = "CHATBOT"
|
||||
what_gpt_answer["message"] = history[index+1]
|
||||
if what_i_have_asked["message"] != "":
|
||||
if what_gpt_answer["message"] == "": continue
|
||||
if what_gpt_answer["message"] == timeout_bot_msg: continue
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
else:
|
||||
messages[-1]['message'] = what_gpt_answer['message']
|
||||
|
||||
model = llm_kwargs['llm_model']
|
||||
if model.startswith('cohere-'): model = model[len('cohere-'):]
|
||||
payload = {
|
||||
"model": model,
|
||||
"message": inputs,
|
||||
"chat_history": messages,
|
||||
"temperature": llm_kwargs['temperature'], # 1.0,
|
||||
"top_p": llm_kwargs['top_p'], # 1.0,
|
||||
"n": 1,
|
||||
"stream": stream,
|
||||
"presence_penalty": 0,
|
||||
"frequency_penalty": 0,
|
||||
}
|
||||
|
||||
return headers,payload
|
||||
|
||||
|
||||
@@ -88,7 +88,7 @@ class GetCoderLMHandle(LocalLLMHandle):
|
||||
temperature = kwargs['temperature']
|
||||
history = kwargs['history']
|
||||
return query, max_length, top_p, temperature, history
|
||||
|
||||
|
||||
query, max_length, top_p, temperature, history = adaptor(kwargs)
|
||||
history.append({ 'role': 'user', 'content': query})
|
||||
messages = history
|
||||
@@ -97,14 +97,14 @@ class GetCoderLMHandle(LocalLLMHandle):
|
||||
inputs = inputs[:, -max_length:]
|
||||
inputs = inputs.to(self._model.device)
|
||||
generation_kwargs = dict(
|
||||
inputs=inputs,
|
||||
inputs=inputs,
|
||||
max_new_tokens=max_length,
|
||||
do_sample=False,
|
||||
top_p=top_p,
|
||||
streamer = self._streamer,
|
||||
top_k=50,
|
||||
temperature=temperature,
|
||||
num_return_sequences=1,
|
||||
num_return_sequences=1,
|
||||
eos_token_id=32021,
|
||||
)
|
||||
thread = Thread(target=self._model.generate, kwargs=generation_kwargs, daemon=True)
|
||||
|
||||
@@ -7,6 +7,7 @@ import re
|
||||
import os
|
||||
import time
|
||||
from request_llms.com_google import GoogleChatInit
|
||||
from toolbox import ChatBotWithCookies
|
||||
from toolbox import get_conf, update_ui, update_ui_lastest_msg, have_any_recent_upload_image_files, trimmed_format_exc
|
||||
|
||||
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY')
|
||||
@@ -19,8 +20,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
# 检查API_KEY
|
||||
if get_conf("GEMINI_API_KEY") == "":
|
||||
raise ValueError(f"请配置 GEMINI_API_KEY。")
|
||||
|
||||
genai = GoogleChatInit()
|
||||
|
||||
genai = GoogleChatInit(llm_kwargs)
|
||||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||
gpt_replying_buffer = ''
|
||||
stream_response = genai.generate_chat(inputs, llm_kwargs, history, sys_prompt)
|
||||
@@ -44,15 +45,25 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
return gpt_replying_buffer
|
||||
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
|
||||
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||
# 检查API_KEY
|
||||
if get_conf("GEMINI_API_KEY") == "":
|
||||
yield from update_ui_lastest_msg(f"请配置 GEMINI_API_KEY。", chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
|
||||
# 适配润色区域
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
|
||||
if "vision" in llm_kwargs["llm_model"]:
|
||||
have_recent_file, image_paths = have_any_recent_upload_image_files(chatbot)
|
||||
def make_media_input(inputs, image_paths):
|
||||
if not have_recent_file:
|
||||
chatbot.append((inputs, "没有检测到任何近期上传的图像文件,请上传jpg格式的图片,此外,请注意拓展名需要小写"))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待图片") # 刷新界面
|
||||
return
|
||||
def make_media_input(inputs, image_paths):
|
||||
for image_path in image_paths:
|
||||
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
||||
return inputs
|
||||
@@ -61,7 +72,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
|
||||
chatbot.append((inputs, ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
genai = GoogleChatInit()
|
||||
genai = GoogleChatInit(llm_kwargs)
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
|
||||
@@ -82,7 +82,7 @@ class GetInternlmHandle(LocalLLMHandle):
|
||||
history = kwargs['history']
|
||||
real_prompt = combine_history(prompt, history)
|
||||
return model, tokenizer, real_prompt, max_length, top_p, temperature
|
||||
|
||||
|
||||
model, tokenizer, prompt, max_length, top_p, temperature = adaptor()
|
||||
prefix_allowed_tokens_fn = None
|
||||
logits_processor = None
|
||||
@@ -183,7 +183,7 @@ class GetInternlmHandle(LocalLLMHandle):
|
||||
outputs, model_kwargs, is_encoder_decoder=False
|
||||
)
|
||||
unfinished_sequences = unfinished_sequences.mul((min(next_tokens != i for i in eos_token_id)).long())
|
||||
|
||||
|
||||
output_token_ids = input_ids[0].cpu().tolist()
|
||||
output_token_ids = output_token_ids[input_length:]
|
||||
for each_eos_token_id in eos_token_id:
|
||||
@@ -196,7 +196,7 @@ class GetInternlmHandle(LocalLLMHandle):
|
||||
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
||||
return
|
||||
|
||||
|
||||
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
# 🔌💻 GPT-Academic Interface
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
import time
|
||||
import threading
|
||||
import importlib
|
||||
from toolbox import update_ui, get_conf
|
||||
from multiprocessing import Process, Pipe
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
|
||||
load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||
|
||||
@@ -20,7 +20,7 @@ class GetGLMHandle(Process):
|
||||
self.check_dependency()
|
||||
self.start()
|
||||
self.threadLock = threading.Lock()
|
||||
|
||||
|
||||
def check_dependency(self):
|
||||
try:
|
||||
import pandas
|
||||
@@ -102,11 +102,12 @@ class GetGLMHandle(Process):
|
||||
else:
|
||||
break
|
||||
self.threadLock.release()
|
||||
|
||||
|
||||
global llama_glm_handle
|
||||
llama_glm_handle = None
|
||||
#################################################################################
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
@@ -115,7 +116,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
if llama_glm_handle is None:
|
||||
llama_glm_handle = GetGLMHandle()
|
||||
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + llama_glm_handle.info
|
||||
if not llama_glm_handle.success:
|
||||
if not llama_glm_handle.success:
|
||||
error = llama_glm_handle.info
|
||||
llama_glm_handle = None
|
||||
raise RuntimeError(error)
|
||||
@@ -130,7 +131,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
for response in llama_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
print(response)
|
||||
if len(observe_window) >= 1: observe_window[0] = response
|
||||
if len(observe_window) >= 2:
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("程序终止。")
|
||||
return response
|
||||
@@ -149,7 +150,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
llama_glm_handle = GetGLMHandle()
|
||||
chatbot[-1] = (inputs, load_message + "\n\n" + llama_glm_handle.info)
|
||||
yield from update_ui(chatbot=chatbot, history=[])
|
||||
if not llama_glm_handle.success:
|
||||
if not llama_glm_handle.success:
|
||||
llama_glm_handle = None
|
||||
return
|
||||
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
import time
|
||||
import threading
|
||||
import importlib
|
||||
from toolbox import update_ui, get_conf
|
||||
from multiprocessing import Process, Pipe
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
|
||||
load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||
|
||||
@@ -20,7 +20,7 @@ class GetGLMHandle(Process):
|
||||
self.check_dependency()
|
||||
self.start()
|
||||
self.threadLock = threading.Lock()
|
||||
|
||||
|
||||
def check_dependency(self):
|
||||
try:
|
||||
import pandas
|
||||
@@ -102,11 +102,12 @@ class GetGLMHandle(Process):
|
||||
else:
|
||||
break
|
||||
self.threadLock.release()
|
||||
|
||||
|
||||
global pangu_glm_handle
|
||||
pangu_glm_handle = None
|
||||
#################################################################################
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
@@ -115,7 +116,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
if pangu_glm_handle is None:
|
||||
pangu_glm_handle = GetGLMHandle()
|
||||
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + pangu_glm_handle.info
|
||||
if not pangu_glm_handle.success:
|
||||
if not pangu_glm_handle.success:
|
||||
error = pangu_glm_handle.info
|
||||
pangu_glm_handle = None
|
||||
raise RuntimeError(error)
|
||||
@@ -130,7 +131,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
for response in pangu_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
print(response)
|
||||
if len(observe_window) >= 1: observe_window[0] = response
|
||||
if len(observe_window) >= 2:
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("程序终止。")
|
||||
return response
|
||||
@@ -149,7 +150,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
pangu_glm_handle = GetGLMHandle()
|
||||
chatbot[-1] = (inputs, load_message + "\n\n" + pangu_glm_handle.info)
|
||||
yield from update_ui(chatbot=chatbot, history=[])
|
||||
if not pangu_glm_handle.success:
|
||||
if not pangu_glm_handle.success:
|
||||
pangu_glm_handle = None
|
||||
return
|
||||
|
||||
|
||||
@@ -20,7 +20,7 @@ class GetGLMHandle(Process):
|
||||
self.check_dependency()
|
||||
self.start()
|
||||
self.threadLock = threading.Lock()
|
||||
|
||||
|
||||
def check_dependency(self):
|
||||
try:
|
||||
import pandas
|
||||
@@ -102,11 +102,12 @@ class GetGLMHandle(Process):
|
||||
else:
|
||||
break
|
||||
self.threadLock.release()
|
||||
|
||||
|
||||
global rwkv_glm_handle
|
||||
rwkv_glm_handle = None
|
||||
#################################################################################
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
@@ -115,7 +116,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
if rwkv_glm_handle is None:
|
||||
rwkv_glm_handle = GetGLMHandle()
|
||||
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + rwkv_glm_handle.info
|
||||
if not rwkv_glm_handle.success:
|
||||
if not rwkv_glm_handle.success:
|
||||
error = rwkv_glm_handle.info
|
||||
rwkv_glm_handle = None
|
||||
raise RuntimeError(error)
|
||||
@@ -130,7 +131,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
for response in rwkv_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
print(response)
|
||||
if len(observe_window) >= 1: observe_window[0] = response
|
||||
if len(observe_window) >= 2:
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("程序终止。")
|
||||
return response
|
||||
@@ -149,7 +150,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
rwkv_glm_handle = GetGLMHandle()
|
||||
chatbot[-1] = (inputs, load_message + "\n\n" + rwkv_glm_handle.info)
|
||||
yield from update_ui(chatbot=chatbot, history=[])
|
||||
if not rwkv_glm_handle.success:
|
||||
if not rwkv_glm_handle.success:
|
||||
rwkv_glm_handle = None
|
||||
return
|
||||
|
||||
|
||||
@@ -48,7 +48,7 @@ class GetLlamaHandle(LocalLLMHandle):
|
||||
history = kwargs['history']
|
||||
console_slience = kwargs.get('console_slience', True)
|
||||
return query, max_length, top_p, temperature, history, console_slience
|
||||
|
||||
|
||||
def convert_messages_to_prompt(query, history):
|
||||
prompt = ""
|
||||
for a, b in history:
|
||||
@@ -56,7 +56,7 @@ class GetLlamaHandle(LocalLLMHandle):
|
||||
prompt += "\n{b}" + b
|
||||
prompt += f"\n[INST]{query}[/INST]"
|
||||
return prompt
|
||||
|
||||
|
||||
query, max_length, top_p, temperature, history, console_slience = adaptor(kwargs)
|
||||
prompt = convert_messages_to_prompt(query, history)
|
||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-
|
||||
@@ -70,13 +70,13 @@ class GetLlamaHandle(LocalLLMHandle):
|
||||
thread = Thread(target=self._model.generate, kwargs=generation_kwargs)
|
||||
thread.start()
|
||||
generated_text = ""
|
||||
for new_text in streamer:
|
||||
for new_text in streamer:
|
||||
generated_text += new_text
|
||||
if not console_slience: print(new_text, end='')
|
||||
yield generated_text.lstrip(prompt_tk_back).rstrip("</s>")
|
||||
if not console_slience: print()
|
||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-
|
||||
|
||||
|
||||
def try_to_import_special_deps(self, **kwargs):
|
||||
# import something that will raise error if the user does not install requirement_*.txt
|
||||
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
||||
|
||||
197
request_llms/bridge_moonshot.py
普通文件
197
request_llms/bridge_moonshot.py
普通文件
@@ -0,0 +1,197 @@
|
||||
# encoding: utf-8
|
||||
# @Time : 2024/3/3
|
||||
# @Author : Spike
|
||||
# @Descr :
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
import logging
|
||||
|
||||
from toolbox import get_conf, update_ui, log_chat
|
||||
from toolbox import ChatBotWithCookies
|
||||
|
||||
import requests
|
||||
|
||||
|
||||
class MoonShotInit:
|
||||
|
||||
def __init__(self):
|
||||
self.llm_model = None
|
||||
self.url = 'https://api.moonshot.cn/v1/chat/completions'
|
||||
self.api_key = get_conf('MOONSHOT_API_KEY')
|
||||
|
||||
def __converter_file(self, user_input: str):
|
||||
what_ask = []
|
||||
for f in user_input.splitlines():
|
||||
if os.path.exists(f):
|
||||
files = []
|
||||
if os.path.isdir(f):
|
||||
file_list = os.listdir(f)
|
||||
files.extend([os.path.join(f, file) for file in file_list])
|
||||
else:
|
||||
files.append(f)
|
||||
for file in files:
|
||||
if file.split('.')[-1] in ['pdf']:
|
||||
with open(file, 'r') as fp:
|
||||
from crazy_functions.crazy_utils import read_and_clean_pdf_text
|
||||
file_content, _ = read_and_clean_pdf_text(fp)
|
||||
what_ask.append({"role": "system", "content": file_content})
|
||||
return what_ask
|
||||
|
||||
def __converter_user(self, user_input: str):
|
||||
what_i_ask_now = {"role": "user", "content": user_input}
|
||||
return what_i_ask_now
|
||||
|
||||
def __conversation_history(self, history):
|
||||
conversation_cnt = len(history) // 2
|
||||
messages = []
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2 * conversation_cnt, 2):
|
||||
what_i_have_asked = {
|
||||
"role": "user",
|
||||
"content": str(history[index])
|
||||
}
|
||||
what_gpt_answer = {
|
||||
"role": "assistant",
|
||||
"content": str(history[index + 1])
|
||||
}
|
||||
if what_i_have_asked["content"] != "":
|
||||
if what_gpt_answer["content"] == "": continue
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
else:
|
||||
messages[-1]['content'] = what_gpt_answer['content']
|
||||
return messages
|
||||
|
||||
def _analysis_content(self, chuck):
|
||||
chunk_decoded = chuck.decode("utf-8")
|
||||
chunk_json = {}
|
||||
content = ""
|
||||
try:
|
||||
chunk_json = json.loads(chunk_decoded[6:])
|
||||
content = chunk_json['choices'][0]["delta"].get("content", "")
|
||||
except:
|
||||
pass
|
||||
return chunk_decoded, chunk_json, content
|
||||
|
||||
def generate_payload(self, inputs, llm_kwargs, history, system_prompt, stream):
|
||||
self.llm_model = llm_kwargs['llm_model']
|
||||
llm_kwargs.update({'use-key': self.api_key})
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
messages.extend(self.__converter_file(inputs))
|
||||
for i in history[0::2]: # 历史文件继续上传
|
||||
messages.extend(self.__converter_file(i))
|
||||
messages.extend(self.__conversation_history(history))
|
||||
messages.append(self.__converter_user(inputs))
|
||||
header = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {self.api_key}",
|
||||
}
|
||||
payload = {
|
||||
"model": self.llm_model,
|
||||
"messages": messages,
|
||||
"temperature": llm_kwargs.get('temperature', 0.3), # 1.0,
|
||||
"top_p": llm_kwargs.get('top_p', 1.0), # 1.0,
|
||||
"n": llm_kwargs.get('n_choices', 1),
|
||||
"stream": stream
|
||||
}
|
||||
return payload, header
|
||||
|
||||
def generate_messages(self, inputs, llm_kwargs, history, system_prompt, stream):
|
||||
payload, headers = self.generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||||
response = requests.post(self.url, headers=headers, json=payload, stream=stream)
|
||||
|
||||
chunk_content = ""
|
||||
gpt_bro_result = ""
|
||||
for chuck in response.iter_lines():
|
||||
chunk_decoded, check_json, content = self._analysis_content(chuck)
|
||||
chunk_content += chunk_decoded
|
||||
if content:
|
||||
gpt_bro_result += content
|
||||
yield content, gpt_bro_result, ''
|
||||
else:
|
||||
error_msg = msg_handle_error(llm_kwargs, chunk_decoded)
|
||||
if error_msg:
|
||||
yield error_msg, gpt_bro_result, error_msg
|
||||
break
|
||||
|
||||
|
||||
def msg_handle_error(llm_kwargs, chunk_decoded):
|
||||
use_ket = llm_kwargs.get('use-key', '')
|
||||
api_key_encryption = use_ket[:8] + '****' + use_ket[-5:]
|
||||
openai_website = f' 请登录OpenAI查看详情 https://platform.openai.com/signup api-key: `{api_key_encryption}`'
|
||||
error_msg = ''
|
||||
if "does not exist" in chunk_decoded:
|
||||
error_msg = f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格."
|
||||
elif "Incorrect API key" in chunk_decoded:
|
||||
error_msg = f"[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由, 拒绝服务." + openai_website
|
||||
elif "exceeded your current quota" in chunk_decoded:
|
||||
error_msg = "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由, 拒绝服务." + openai_website
|
||||
elif "account is not active" in chunk_decoded:
|
||||
error_msg = "[Local Message] Your account is not active. OpenAI以账户失效为由, 拒绝服务." + openai_website
|
||||
elif "associated with a deactivated account" in chunk_decoded:
|
||||
error_msg = "[Local Message] You are associated with a deactivated account. OpenAI以账户失效为由, 拒绝服务." + openai_website
|
||||
elif "API key has been deactivated" in chunk_decoded:
|
||||
error_msg = "[Local Message] API key has been deactivated. OpenAI以账户失效为由, 拒绝服务." + openai_website
|
||||
elif "bad forward key" in chunk_decoded:
|
||||
error_msg = "[Local Message] Bad forward key. API2D账户额度不足."
|
||||
elif "Not enough point" in chunk_decoded:
|
||||
error_msg = "[Local Message] Not enough point. API2D账户点数不足."
|
||||
elif 'error' in str(chunk_decoded).lower():
|
||||
try:
|
||||
error_msg = json.dumps(json.loads(chunk_decoded[:6]), indent=4, ensure_ascii=False)
|
||||
except:
|
||||
error_msg = chunk_decoded
|
||||
return error_msg
|
||||
|
||||
|
||||
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||
chatbot.append([inputs, ""])
|
||||
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||
gpt_bro_init = MoonShotInit()
|
||||
history.extend([inputs, ''])
|
||||
stream_response = gpt_bro_init.generate_messages(inputs, llm_kwargs, history, system_prompt, stream)
|
||||
for content, gpt_bro_result, error_bro_meg in stream_response:
|
||||
chatbot[-1] = [inputs, gpt_bro_result]
|
||||
history[-1] = gpt_bro_result
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
if error_bro_meg:
|
||||
chatbot[-1] = [inputs, error_bro_meg]
|
||||
history = history[:-2]
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
break
|
||||
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_bro_result)
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None,
|
||||
console_slience=False):
|
||||
gpt_bro_init = MoonShotInit()
|
||||
watch_dog_patience = 60 # 看门狗的耐心, 设置10秒即可
|
||||
stream_response = gpt_bro_init.generate_messages(inputs, llm_kwargs, history, sys_prompt, True)
|
||||
moonshot_bro_result = ''
|
||||
for content, moonshot_bro_result, error_bro_meg in stream_response:
|
||||
moonshot_bro_result = moonshot_bro_result
|
||||
if error_bro_meg:
|
||||
if len(observe_window) >= 3:
|
||||
observe_window[2] = error_bro_meg
|
||||
return f'{moonshot_bro_result} 对话错误'
|
||||
# 观测窗
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] = moonshot_bro_result
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time() - observe_window[1]) > watch_dog_patience:
|
||||
observe_window[2] = "请求超时,程序终止。"
|
||||
raise RuntimeError(f"{moonshot_bro_result} 程序终止。")
|
||||
return moonshot_bro_result
|
||||
|
||||
if __name__ == '__main__':
|
||||
moon_ai = MoonShotInit()
|
||||
for g in moon_ai.generate_messages('hello', {'llm_model': 'moonshot-v1-8k'},
|
||||
[], '', True):
|
||||
print(g)
|
||||
@@ -18,7 +18,7 @@ class GetGLMHandle(Process):
|
||||
if self.check_dependency():
|
||||
self.start()
|
||||
self.threadLock = threading.Lock()
|
||||
|
||||
|
||||
def check_dependency(self): # 主进程执行
|
||||
try:
|
||||
import datasets, os
|
||||
@@ -54,9 +54,9 @@ class GetGLMHandle(Process):
|
||||
from models.tokenization_moss import MossTokenizer
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model_name", default="fnlp/moss-moon-003-sft-int4",
|
||||
choices=["fnlp/moss-moon-003-sft",
|
||||
"fnlp/moss-moon-003-sft-int8",
|
||||
parser.add_argument("--model_name", default="fnlp/moss-moon-003-sft-int4",
|
||||
choices=["fnlp/moss-moon-003-sft",
|
||||
"fnlp/moss-moon-003-sft-int8",
|
||||
"fnlp/moss-moon-003-sft-int4"], type=str)
|
||||
parser.add_argument("--gpu", default="0", type=str)
|
||||
args = parser.parse_args()
|
||||
@@ -76,7 +76,7 @@ class GetGLMHandle(Process):
|
||||
|
||||
config = MossConfig.from_pretrained(model_path)
|
||||
self.tokenizer = MossTokenizer.from_pretrained(model_path)
|
||||
if num_gpus > 1:
|
||||
if num_gpus > 1:
|
||||
print("Waiting for all devices to be ready, it may take a few minutes...")
|
||||
with init_empty_weights():
|
||||
raw_model = MossForCausalLM._from_config(config, torch_dtype=torch.float16)
|
||||
@@ -135,15 +135,15 @@ class GetGLMHandle(Process):
|
||||
inputs = self.tokenizer(self.prompt, return_tensors="pt")
|
||||
with torch.no_grad():
|
||||
outputs = self.model.generate(
|
||||
inputs.input_ids.cuda(),
|
||||
attention_mask=inputs.attention_mask.cuda(),
|
||||
max_length=2048,
|
||||
do_sample=True,
|
||||
top_k=40,
|
||||
top_p=0.8,
|
||||
inputs.input_ids.cuda(),
|
||||
attention_mask=inputs.attention_mask.cuda(),
|
||||
max_length=2048,
|
||||
do_sample=True,
|
||||
top_k=40,
|
||||
top_p=0.8,
|
||||
temperature=0.7,
|
||||
repetition_penalty=1.02,
|
||||
num_return_sequences=1,
|
||||
num_return_sequences=1,
|
||||
eos_token_id=106068,
|
||||
pad_token_id=self.tokenizer.pad_token_id)
|
||||
response = self.tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
||||
@@ -167,11 +167,12 @@ class GetGLMHandle(Process):
|
||||
else:
|
||||
break
|
||||
self.threadLock.release()
|
||||
|
||||
|
||||
global moss_handle
|
||||
moss_handle = None
|
||||
#################################################################################
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
@@ -180,7 +181,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
if moss_handle is None:
|
||||
moss_handle = GetGLMHandle()
|
||||
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + moss_handle.info
|
||||
if not moss_handle.success:
|
||||
if not moss_handle.success:
|
||||
error = moss_handle.info
|
||||
moss_handle = None
|
||||
raise RuntimeError(error)
|
||||
@@ -194,7 +195,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
response = ""
|
||||
for response in moss_handle.stream_chat(query=inputs, history=history_feedin, sys_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
if len(observe_window) >= 1: observe_window[0] = response
|
||||
if len(observe_window) >= 2:
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("程序终止。")
|
||||
return response
|
||||
@@ -213,7 +214,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
moss_handle = GetGLMHandle()
|
||||
chatbot[-1] = (inputs, load_message + "\n\n" + moss_handle.info)
|
||||
yield from update_ui(chatbot=chatbot, history=[])
|
||||
if not moss_handle.success:
|
||||
if not moss_handle.success:
|
||||
moss_handle = None
|
||||
return
|
||||
else:
|
||||
|
||||
@@ -1,16 +1,17 @@
|
||||
"""
|
||||
========================================================================
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
第一部分:来自EdgeGPT.py
|
||||
https://github.com/acheong08/EdgeGPT
|
||||
========================================================================
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
"""
|
||||
from .edge_gpt_free import Chatbot as NewbingChatbot
|
||||
|
||||
load_message = "等待NewBing响应。"
|
||||
|
||||
"""
|
||||
========================================================================
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
第二部分:子进程Worker(调用主体)
|
||||
========================================================================
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
"""
|
||||
import time
|
||||
import json
|
||||
@@ -22,19 +23,30 @@ import threading
|
||||
from toolbox import update_ui, get_conf, trimmed_format_exc
|
||||
from multiprocessing import Process, Pipe
|
||||
|
||||
|
||||
def preprocess_newbing_out(s):
|
||||
pattern = r'\^(\d+)\^' # 匹配^数字^
|
||||
sub = lambda m: '('+m.group(1)+')' # 将匹配到的数字作为替换值
|
||||
result = re.sub(pattern, sub, s) # 替换操作
|
||||
if '[1]' in result:
|
||||
result += '\n\n```reference\n' + "\n".join([r for r in result.split('\n') if r.startswith('[')]) + '\n```\n'
|
||||
pattern = r"\^(\d+)\^" # 匹配^数字^
|
||||
sub = lambda m: "(" + m.group(1) + ")" # 将匹配到的数字作为替换值
|
||||
result = re.sub(pattern, sub, s) # 替换操作
|
||||
if "[1]" in result:
|
||||
result += (
|
||||
"\n\n```reference\n"
|
||||
+ "\n".join([r for r in result.split("\n") if r.startswith("[")])
|
||||
+ "\n```\n"
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
def preprocess_newbing_out_simple(result):
|
||||
if '[1]' in result:
|
||||
result += '\n\n```reference\n' + "\n".join([r for r in result.split('\n') if r.startswith('[')]) + '\n```\n'
|
||||
if "[1]" in result:
|
||||
result += (
|
||||
"\n\n```reference\n"
|
||||
+ "\n".join([r for r in result.split("\n") if r.startswith("[")])
|
||||
+ "\n```\n"
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
class NewBingHandle(Process):
|
||||
def __init__(self):
|
||||
super().__init__(daemon=True)
|
||||
@@ -46,11 +58,12 @@ class NewBingHandle(Process):
|
||||
self.check_dependency()
|
||||
self.start()
|
||||
self.threadLock = threading.Lock()
|
||||
|
||||
|
||||
def check_dependency(self):
|
||||
try:
|
||||
self.success = False
|
||||
import certifi, httpx, rich
|
||||
|
||||
self.info = "依赖检测通过,等待NewBing响应。注意目前不能多人同时调用NewBing接口(有线程锁),否则将导致每个人的NewBing问询历史互相渗透。调用NewBing时,会自动使用已配置的代理。"
|
||||
self.success = True
|
||||
except:
|
||||
@@ -62,18 +75,19 @@ class NewBingHandle(Process):
|
||||
|
||||
async def async_run(self):
|
||||
# 读取配置
|
||||
NEWBING_STYLE = get_conf('NEWBING_STYLE')
|
||||
NEWBING_STYLE = get_conf("NEWBING_STYLE")
|
||||
from request_llms.bridge_all import model_info
|
||||
endpoint = model_info['newbing']['endpoint']
|
||||
|
||||
endpoint = model_info["newbing"]["endpoint"]
|
||||
while True:
|
||||
# 等待
|
||||
kwargs = self.child.recv()
|
||||
question=kwargs['query']
|
||||
history=kwargs['history']
|
||||
system_prompt=kwargs['system_prompt']
|
||||
question = kwargs["query"]
|
||||
history = kwargs["history"]
|
||||
system_prompt = kwargs["system_prompt"]
|
||||
|
||||
# 是否重置
|
||||
if len(self.local_history) > 0 and len(history)==0:
|
||||
if len(self.local_history) > 0 and len(history) == 0:
|
||||
await self.newbing_model.reset()
|
||||
self.local_history = []
|
||||
|
||||
@@ -81,34 +95,33 @@ class NewBingHandle(Process):
|
||||
prompt = ""
|
||||
if system_prompt not in self.local_history:
|
||||
self.local_history.append(system_prompt)
|
||||
prompt += system_prompt + '\n'
|
||||
prompt += system_prompt + "\n"
|
||||
|
||||
# 追加历史
|
||||
for ab in history:
|
||||
a, b = ab
|
||||
if a not in self.local_history:
|
||||
self.local_history.append(a)
|
||||
prompt += a + '\n'
|
||||
prompt += a + "\n"
|
||||
|
||||
# 问题
|
||||
prompt += question
|
||||
self.local_history.append(question)
|
||||
print('question:', prompt)
|
||||
print("question:", prompt)
|
||||
# 提交
|
||||
async for final, response in self.newbing_model.ask_stream(
|
||||
prompt=question,
|
||||
conversation_style=NEWBING_STYLE, # ["creative", "balanced", "precise"]
|
||||
wss_link=endpoint, # "wss://sydney.bing.com/sydney/ChatHub"
|
||||
conversation_style=NEWBING_STYLE, # ["creative", "balanced", "precise"]
|
||||
wss_link=endpoint, # "wss://sydney.bing.com/sydney/ChatHub"
|
||||
):
|
||||
if not final:
|
||||
print(response)
|
||||
self.child.send(str(response))
|
||||
else:
|
||||
print('-------- receive final ---------')
|
||||
self.child.send('[Finish]')
|
||||
print("-------- receive final ---------")
|
||||
self.child.send("[Finish]")
|
||||
# self.local_history.append(response)
|
||||
|
||||
|
||||
def run(self):
|
||||
"""
|
||||
这个函数运行在子进程
|
||||
@@ -118,32 +131,37 @@ class NewBingHandle(Process):
|
||||
self.local_history = []
|
||||
if (self.newbing_model is None) or (not self.success):
|
||||
# 代理设置
|
||||
proxies, NEWBING_COOKIES = get_conf('proxies', 'NEWBING_COOKIES')
|
||||
if proxies is None:
|
||||
proxies, NEWBING_COOKIES = get_conf("proxies", "NEWBING_COOKIES")
|
||||
if proxies is None:
|
||||
self.proxies_https = None
|
||||
else:
|
||||
self.proxies_https = proxies['https']
|
||||
else:
|
||||
self.proxies_https = proxies["https"]
|
||||
|
||||
if (NEWBING_COOKIES is not None) and len(NEWBING_COOKIES) > 100:
|
||||
try:
|
||||
cookies = json.loads(NEWBING_COOKIES)
|
||||
except:
|
||||
self.success = False
|
||||
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
|
||||
self.child.send(f'[Local Message] NEWBING_COOKIES未填写或有格式错误。')
|
||||
self.child.send('[Fail]'); self.child.send('[Finish]')
|
||||
tb_str = "\n```\n" + trimmed_format_exc() + "\n```\n"
|
||||
self.child.send(f"[Local Message] NEWBING_COOKIES未填写或有格式错误。")
|
||||
self.child.send("[Fail]")
|
||||
self.child.send("[Finish]")
|
||||
raise RuntimeError(f"NEWBING_COOKIES未填写或有格式错误。")
|
||||
else:
|
||||
cookies = None
|
||||
|
||||
try:
|
||||
self.newbing_model = NewbingChatbot(proxy=self.proxies_https, cookies=cookies)
|
||||
self.newbing_model = NewbingChatbot(
|
||||
proxy=self.proxies_https, cookies=cookies
|
||||
)
|
||||
except:
|
||||
self.success = False
|
||||
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
|
||||
self.child.send(f'[Local Message] 不能加载Newbing组件,请注意Newbing组件已不再维护。{tb_str}')
|
||||
self.child.send('[Fail]')
|
||||
self.child.send('[Finish]')
|
||||
tb_str = "\n```\n" + trimmed_format_exc() + "\n```\n"
|
||||
self.child.send(
|
||||
f"[Local Message] 不能加载Newbing组件,请注意Newbing组件已不再维护。{tb_str}"
|
||||
)
|
||||
self.child.send("[Fail]")
|
||||
self.child.send("[Finish]")
|
||||
raise RuntimeError(f"不能加载Newbing组件,请注意Newbing组件已不再维护。")
|
||||
|
||||
self.success = True
|
||||
@@ -151,66 +169,100 @@ class NewBingHandle(Process):
|
||||
# 进入任务等待状态
|
||||
asyncio.run(self.async_run())
|
||||
except Exception:
|
||||
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
|
||||
self.child.send(f'[Local Message] Newbing 请求失败,报错信息如下. 如果是与网络相关的问题,建议更换代理协议(推荐http)或代理节点 {tb_str}.')
|
||||
self.child.send('[Fail]')
|
||||
self.child.send('[Finish]')
|
||||
|
||||
tb_str = "\n```\n" + trimmed_format_exc() + "\n```\n"
|
||||
self.child.send(
|
||||
f"[Local Message] Newbing 请求失败,报错信息如下. 如果是与网络相关的问题,建议更换代理协议(推荐http)或代理节点 {tb_str}."
|
||||
)
|
||||
self.child.send("[Fail]")
|
||||
self.child.send("[Finish]")
|
||||
|
||||
def stream_chat(self, **kwargs):
|
||||
"""
|
||||
这个函数运行在主进程
|
||||
"""
|
||||
self.threadLock.acquire() # 获取线程锁
|
||||
self.parent.send(kwargs) # 请求子进程
|
||||
self.threadLock.acquire() # 获取线程锁
|
||||
self.parent.send(kwargs) # 请求子进程
|
||||
while True:
|
||||
res = self.parent.recv() # 等待newbing回复的片段
|
||||
if res == '[Finish]': break # 结束
|
||||
elif res == '[Fail]': self.success = False; break # 失败
|
||||
else: yield res # newbing回复的片段
|
||||
self.threadLock.release() # 释放线程锁
|
||||
res = self.parent.recv() # 等待newbing回复的片段
|
||||
if res == "[Finish]":
|
||||
break # 结束
|
||||
elif res == "[Fail]":
|
||||
self.success = False
|
||||
break # 失败
|
||||
else:
|
||||
yield res # newbing回复的片段
|
||||
self.threadLock.release() # 释放线程锁
|
||||
|
||||
|
||||
"""
|
||||
========================================================================
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
第三部分:主进程统一调用函数接口
|
||||
========================================================================
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
"""
|
||||
global newbingfree_handle
|
||||
newbingfree_handle = None
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
|
||||
def predict_no_ui_long_connection(
|
||||
inputs,
|
||||
llm_kwargs,
|
||||
history=[],
|
||||
sys_prompt="",
|
||||
observe_window=[],
|
||||
console_slience=False,
|
||||
):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
global newbingfree_handle
|
||||
if (newbingfree_handle is None) or (not newbingfree_handle.success):
|
||||
newbingfree_handle = NewBingHandle()
|
||||
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + newbingfree_handle.info
|
||||
if not newbingfree_handle.success:
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] = load_message + "\n\n" + newbingfree_handle.info
|
||||
if not newbingfree_handle.success:
|
||||
error = newbingfree_handle.info
|
||||
newbingfree_handle = None
|
||||
raise RuntimeError(error)
|
||||
|
||||
# 没有 sys_prompt 接口,因此把prompt加入 history
|
||||
history_feedin = []
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
for i in range(len(history) // 2):
|
||||
history_feedin.append([history[2 * i], history[2 * i + 1]])
|
||||
|
||||
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
||||
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
||||
response = ""
|
||||
if len(observe_window) >= 1: observe_window[0] = "[Local Message] 等待NewBing响应中 ..."
|
||||
for response in newbingfree_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
if len(observe_window) >= 1: observe_window[0] = preprocess_newbing_out_simple(response)
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] = "[Local Message] 等待NewBing响应中 ..."
|
||||
for response in newbingfree_handle.stream_chat(
|
||||
query=inputs,
|
||||
history=history_feedin,
|
||||
system_prompt=sys_prompt,
|
||||
max_length=llm_kwargs["max_length"],
|
||||
top_p=llm_kwargs["top_p"],
|
||||
temperature=llm_kwargs["temperature"],
|
||||
):
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] = preprocess_newbing_out_simple(response)
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time() - observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("程序终止。")
|
||||
return preprocess_newbing_out_simple(response)
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
|
||||
def predict(
|
||||
inputs,
|
||||
llm_kwargs,
|
||||
plugin_kwargs,
|
||||
chatbot,
|
||||
history=[],
|
||||
system_prompt="",
|
||||
stream=True,
|
||||
additional_fn=None,
|
||||
):
|
||||
"""
|
||||
单线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
单线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, "[Local Message] 等待NewBing响应中 ..."))
|
||||
|
||||
@@ -219,27 +271,41 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
newbingfree_handle = NewBingHandle()
|
||||
chatbot[-1] = (inputs, load_message + "\n\n" + newbingfree_handle.info)
|
||||
yield from update_ui(chatbot=chatbot, history=[])
|
||||
if not newbingfree_handle.success:
|
||||
if not newbingfree_handle.success:
|
||||
newbingfree_handle = None
|
||||
return
|
||||
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
|
||||
inputs, history = handle_core_functionality(
|
||||
additional_fn, inputs, history, chatbot
|
||||
)
|
||||
|
||||
history_feedin = []
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
for i in range(len(history) // 2):
|
||||
history_feedin.append([history[2 * i], history[2 * i + 1]])
|
||||
|
||||
chatbot[-1] = (inputs, "[Local Message] 等待NewBing响应中 ...")
|
||||
response = "[Local Message] 等待NewBing响应中 ..."
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="NewBing响应缓慢,尚未完成全部响应,请耐心完成后再提交新问题。")
|
||||
for response in newbingfree_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
yield from update_ui(
|
||||
chatbot=chatbot, history=history, msg="NewBing响应缓慢,尚未完成全部响应,请耐心完成后再提交新问题。"
|
||||
)
|
||||
for response in newbingfree_handle.stream_chat(
|
||||
query=inputs,
|
||||
history=history_feedin,
|
||||
system_prompt=system_prompt,
|
||||
max_length=llm_kwargs["max_length"],
|
||||
top_p=llm_kwargs["top_p"],
|
||||
temperature=llm_kwargs["temperature"],
|
||||
):
|
||||
chatbot[-1] = (inputs, preprocess_newbing_out(response))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="NewBing响应缓慢,尚未完成全部响应,请耐心完成后再提交新问题。")
|
||||
if response == "[Local Message] 等待NewBing响应中 ...": response = "[Local Message] NewBing响应异常,请刷新界面重试 ..."
|
||||
yield from update_ui(
|
||||
chatbot=chatbot, history=history, msg="NewBing响应缓慢,尚未完成全部响应,请耐心完成后再提交新问题。"
|
||||
)
|
||||
if response == "[Local Message] 等待NewBing响应中 ...":
|
||||
response = "[Local Message] NewBing响应异常,请刷新界面重试 ..."
|
||||
history.extend([inputs, response])
|
||||
logging.info(f'[raw_input] {inputs}')
|
||||
logging.info(f'[response] {response}')
|
||||
logging.info(f"[raw_input] {inputs}")
|
||||
logging.info(f"[response] {response}")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="完成全部响应,请提交新问题。")
|
||||
|
||||
|
||||
@@ -117,7 +117,8 @@ def generate_from_baidu_qianfan(inputs, llm_kwargs, history, system_prompt):
|
||||
raise RuntimeError(dec['error_msg'])
|
||||
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
"""
|
||||
⭐多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
@@ -146,21 +147,22 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
# 开始接收回复
|
||||
try:
|
||||
response = f"[Local Message] 等待{model_name}响应中 ..."
|
||||
for response in generate_from_baidu_qianfan(inputs, llm_kwargs, history, system_prompt):
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
history.extend([inputs, response])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
except ConnectionAbortedError as e:
|
||||
from .bridge_all import model_info
|
||||
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
||||
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
||||
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
||||
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="异常") # 刷新界面
|
||||
return
|
||||
|
||||
# 总结输出
|
||||
response = f"[Local Message] {model_name}响应异常 ..."
|
||||
if response == f"[Local Message] 等待{model_name}响应中 ...":
|
||||
response = f"[Local Message] {model_name}响应异常 ..."
|
||||
history.extend([inputs, response])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
except RuntimeError as e:
|
||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
chatbot[-1] = (chatbot[-1][0], tb_str)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="异常") # 刷新界面
|
||||
return
|
||||
@@ -5,7 +5,8 @@ from toolbox import check_packages, report_exception
|
||||
|
||||
model_name = 'Qwen'
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
"""
|
||||
⭐多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
@@ -47,10 +48,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
chatbot[-1] = (inputs, "")
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 开始接收回复
|
||||
from .com_qwenapi import QwenRequestInstance
|
||||
sri = QwenRequestInstance()
|
||||
response = f"[Local Message] 等待{model_name}响应中 ..."
|
||||
for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
某些文件未显示,因为此 diff 中更改的文件太多 显示更多
在新工单中引用
屏蔽一个用户