镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-06 14:36:48 +00:00
比较提交
23 次代码提交
binary-hus
...
version3.7
| 作者 | SHA1 | 提交日期 | |
|---|---|---|---|
|
|
163f12c533 | ||
|
|
bdd46c5dd1 | ||
|
|
ae51a0e686 | ||
|
|
f2582ea137 | ||
|
|
ddd2fd84da | ||
|
|
6c90ff80ea | ||
|
|
cb7c0703be | ||
|
|
5181cd441d | ||
|
|
216d4374e7 | ||
|
|
8af6c0cab6 | ||
|
|
67ad041372 | ||
|
|
725c72229c | ||
|
|
e42ede512b | ||
|
|
84ccc9e64c | ||
|
|
c172847e19 | ||
|
|
d166d25eb4 | ||
|
|
516bbb1331 | ||
|
|
c3140ce344 | ||
|
|
cd18663800 | ||
|
|
dbf1322836 | ||
|
|
98dd3ae1c0 | ||
|
|
3036709496 | ||
|
|
8e9c07644f |
@@ -1,7 +1,6 @@
|
||||
> [!IMPORTANT]
|
||||
> 2024.3.11: 恭迎Claude3和Moonshot,全力支持Qwen、GLM、DeepseekCoder等中文大语言模型!
|
||||
> 2024.1.18: 更新3.70版本,支持Mermaid绘图库(让大模型绘制脑图)
|
||||
> 2024.1.17: 恭迎GLM4,全力支持Qwen、GLM、DeepseekCoder等国内中文大语言基座模型!
|
||||
> 2024.1.17: 某些依赖包尚不兼容python 3.12,推荐python 3.11。
|
||||
> 2024.1.17: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目完全开源免费,您可通过订阅[在线服务](https://github.com/binary-husky/gpt_academic/wiki/online)的方式鼓励本项目的发展。
|
||||
|
||||
<br>
|
||||
|
||||
@@ -47,7 +47,7 @@ def backup_and_download(current_version, remote_version):
|
||||
shutil.copytree('./', backup_dir, ignore=lambda x, y: ['history'])
|
||||
proxies = get_conf('proxies')
|
||||
try: r = requests.get('https://github.com/binary-husky/chatgpt_academic/archive/refs/heads/master.zip', proxies=proxies, stream=True)
|
||||
except: r = requests.get('https://public.gpt-academic.top/publish/master.zip', proxies=proxies, stream=True)
|
||||
except: r = requests.get('https://public.agent-matrix.com/publish/master.zip', proxies=proxies, stream=True)
|
||||
zip_file_path = backup_dir+'/master.zip'
|
||||
with open(zip_file_path, 'wb+') as f:
|
||||
f.write(r.content)
|
||||
@@ -113,7 +113,7 @@ def auto_update(raise_error=False):
|
||||
import json
|
||||
proxies = get_conf('proxies')
|
||||
try: response = requests.get("https://raw.githubusercontent.com/binary-husky/chatgpt_academic/master/version", proxies=proxies, timeout=5)
|
||||
except: response = requests.get("https://public.gpt-academic.top/publish/version", proxies=proxies, timeout=5)
|
||||
except: response = requests.get("https://public.agent-matrix.com/publish/version", proxies=proxies, timeout=5)
|
||||
remote_json_data = json.loads(response.text)
|
||||
remote_version = remote_json_data['version']
|
||||
if remote_json_data["show_feature"]:
|
||||
|
||||
86
config.py
86
config.py
@@ -30,7 +30,33 @@ if USE_PROXY:
|
||||
else:
|
||||
proxies = None
|
||||
|
||||
# ------------------------------------ 以下配置可以优化体验, 但大部分场合下并不需要修改 ------------------------------------
|
||||
# [step 3]>> 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
|
||||
LLM_MODEL = "gpt-3.5-turbo-16k" # 可选 ↓↓↓
|
||||
AVAIL_LLM_MODELS = ["gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
|
||||
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
|
||||
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-3-turbo",
|
||||
"gemini-pro", "chatglm3"
|
||||
]
|
||||
# --- --- --- ---
|
||||
# P.S. 其他可用的模型还包括
|
||||
# AVAIL_LLM_MODELS = [
|
||||
# "qianfan", "deepseekcoder",
|
||||
# "spark", "sparkv2", "sparkv3", "sparkv3.5",
|
||||
# "qwen-turbo", "qwen-plus", "qwen-max", "qwen-local",
|
||||
# "moonshot-v1-128k", "moonshot-v1-32k", "moonshot-v1-8k",
|
||||
# "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125"
|
||||
# "claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
|
||||
# "moss", "llama2", "chatglm_onnx", "internlm", "jittorllms_pangualpha", "jittorllms_llama",
|
||||
# "yi-34b-chat-0205", "yi-34b-chat-200k"
|
||||
# ]
|
||||
# --- --- --- ---
|
||||
# 此外,为了更灵活地接入one-api多模型管理界面,您还可以在接入one-api时,
|
||||
# 使用"one-api-*"前缀直接使用非标准方式接入的模型,例如
|
||||
# AVAIL_LLM_MODELS = ["one-api-claude-3-sonnet-20240229(max_token=100000)"]
|
||||
# --- --- --- ---
|
||||
|
||||
|
||||
# --------------- 以下配置可以优化体验 ---------------
|
||||
|
||||
# 重新URL重新定向,实现更换API_URL的作用(高危设置! 常规情况下不要修改! 通过修改此设置,您将把您的API-KEY和对话隐私完全暴露给您设定的中间人!)
|
||||
# 格式: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
|
||||
@@ -85,20 +111,6 @@ MAX_RETRY = 2
|
||||
DEFAULT_FN_GROUPS = ['对话', '编程', '学术', '智能体']
|
||||
|
||||
|
||||
# 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
|
||||
LLM_MODEL = "gpt-3.5-turbo-16k" # 可选 ↓↓↓
|
||||
AVAIL_LLM_MODELS = ["gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
|
||||
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
|
||||
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-3-turbo",
|
||||
"gemini-pro", "chatglm3", "claude-2"]
|
||||
# P.S. 其他可用的模型还包括 [
|
||||
# "moss", "qwen-turbo", "qwen-plus", "qwen-max"
|
||||
# "zhipuai", "qianfan", "deepseekcoder", "llama2", "qwen-local", "gpt-3.5-turbo-0613",
|
||||
# "gpt-3.5-turbo-16k-0613", "gpt-3.5-random", "api2d-gpt-3.5-turbo", 'api2d-gpt-3.5-turbo-16k',
|
||||
# "spark", "sparkv2", "sparkv3", "chatglm_onnx", "claude-1-100k", "claude-2", "internlm", "jittorllms_pangualpha", "jittorllms_llama"
|
||||
# ]
|
||||
|
||||
|
||||
# 定义界面上“询问多个GPT模型”插件应该使用哪些模型,请从AVAIL_LLM_MODELS中选择,并在不同模型之间用`&`间隔,例如"gpt-3.5-turbo&chatglm3&azure-gpt-4"
|
||||
MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
|
||||
|
||||
@@ -127,6 +139,7 @@ CHATGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b
|
||||
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
|
||||
LOCAL_MODEL_QUANT = "FP16" # 默认 "FP16" "INT4" 启用量化INT4版本 "INT8" 启用量化INT8版本
|
||||
|
||||
|
||||
# 设置gradio的并行线程数(不需要修改)
|
||||
CONCURRENT_COUNT = 100
|
||||
|
||||
@@ -144,7 +157,8 @@ ADD_WAIFU = False
|
||||
AUTHENTICATION = []
|
||||
|
||||
|
||||
# 如果需要在二级路径下运行(常规情况下,不要修改!!)(需要配合修改main.py才能生效!)
|
||||
# 如果需要在二级路径下运行(常规情况下,不要修改!!)
|
||||
# (举例 CUSTOM_PATH = "/gpt_academic",可以让软件运行在 http://ip:port/gpt_academic/ 下。)
|
||||
CUSTOM_PATH = "/"
|
||||
|
||||
|
||||
@@ -172,14 +186,8 @@ AZURE_ENGINE = "填入你亲手写的部署名" # 读 docs\use_azure.
|
||||
AZURE_CFG_ARRAY = {}
|
||||
|
||||
|
||||
# 使用Newbing (不推荐使用,未来将删除)
|
||||
NEWBING_STYLE = "creative" # ["creative", "balanced", "precise"]
|
||||
NEWBING_COOKIES = """
|
||||
put your new bing cookies here
|
||||
"""
|
||||
|
||||
|
||||
# 阿里云实时语音识别 配置难度较高 仅建议高手用户使用 参考 https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md
|
||||
# 阿里云实时语音识别 配置难度较高
|
||||
# 参考 https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md
|
||||
ENABLE_AUDIO = False
|
||||
ALIYUN_TOKEN="" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
|
||||
ALIYUN_APPKEY="" # 例如 RoPlZrM88DnAFkZK
|
||||
@@ -198,16 +206,18 @@ ZHIPUAI_API_KEY = ""
|
||||
ZHIPUAI_MODEL = "" # 此选项已废弃,不再需要填写
|
||||
|
||||
|
||||
# # 火山引擎YUNQUE大模型
|
||||
# YUNQUE_SECRET_KEY = ""
|
||||
# YUNQUE_ACCESS_KEY = ""
|
||||
# YUNQUE_MODEL = ""
|
||||
|
||||
|
||||
# Claude API KEY
|
||||
ANTHROPIC_API_KEY = ""
|
||||
|
||||
|
||||
# 月之暗面 API KEY
|
||||
MOONSHOT_API_KEY = ""
|
||||
|
||||
|
||||
# 零一万物(Yi Model) API KEY
|
||||
YIMODEL_API_KEY = ""
|
||||
|
||||
|
||||
# Mathpix 拥有执行PDF的OCR功能,但是需要注册账号
|
||||
MATHPIX_APPID = ""
|
||||
MATHPIX_APPKEY = ""
|
||||
@@ -266,7 +276,11 @@ PLUGIN_HOT_RELOAD = False
|
||||
# 自定义按钮的最大数量限制
|
||||
NUM_CUSTOM_BASIC_BTN = 4
|
||||
|
||||
|
||||
|
||||
"""
|
||||
--------------- 配置关联关系说明 ---------------
|
||||
|
||||
在线大模型配置关联关系示意图
|
||||
│
|
||||
├── "gpt-3.5-turbo" 等openai模型
|
||||
@@ -290,7 +304,7 @@ NUM_CUSTOM_BASIC_BTN = 4
|
||||
│ ├── XFYUN_API_SECRET
|
||||
│ └── XFYUN_API_KEY
|
||||
│
|
||||
├── "claude-1-100k" 等claude模型
|
||||
├── "claude-3-opus-20240229" 等claude模型
|
||||
│ └── ANTHROPIC_API_KEY
|
||||
│
|
||||
├── "stack-claude"
|
||||
@@ -305,15 +319,19 @@ NUM_CUSTOM_BASIC_BTN = 4
|
||||
├── "glm-4", "glm-3-turbo", "zhipuai" 智谱AI大模型
|
||||
│ └── ZHIPUAI_API_KEY
|
||||
│
|
||||
├── "yi-34b-chat-0205", "yi-34b-chat-200k" 等零一万物(Yi Model)大模型
|
||||
│ └── YIMODEL_API_KEY
|
||||
│
|
||||
├── "qwen-turbo" 等通义千问大模型
|
||||
│ └── DASHSCOPE_API_KEY
|
||||
│
|
||||
├── "Gemini"
|
||||
│ └── GEMINI_API_KEY
|
||||
│
|
||||
└── "newbing" Newbing接口不再稳定,不推荐使用
|
||||
├── NEWBING_STYLE
|
||||
└── NEWBING_COOKIES
|
||||
└── "one-api-...(max_token=...)" 用一种更方便的方式接入one-api多模型管理界面
|
||||
├── AVAIL_LLM_MODELS
|
||||
├── API_KEY
|
||||
└── API_URL_REDIRECT
|
||||
|
||||
|
||||
本地大模型示意图
|
||||
|
||||
@@ -38,12 +38,12 @@ def get_core_functions():
|
||||
|
||||
"总结绘制脑图": {
|
||||
# 前缀,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等
|
||||
"Prefix": r"",
|
||||
"Prefix": '''"""\n\n''',
|
||||
# 后缀,会被加在你的输入之后。例如,配合前缀可以把你的输入内容用引号圈起来
|
||||
"Suffix":
|
||||
# dedent() 函数用于去除多行字符串的缩进
|
||||
dedent("\n"+r'''
|
||||
==============================
|
||||
dedent("\n\n"+r'''
|
||||
"""
|
||||
|
||||
使用mermaid flowchart对以上文本进行总结,概括上述段落的内容以及内在逻辑关系,例如:
|
||||
|
||||
@@ -57,7 +57,7 @@ def get_core_functions():
|
||||
C --> |"箭头名2"| F["节点名6"]
|
||||
```
|
||||
|
||||
警告:
|
||||
注意:
|
||||
(1)使用中文
|
||||
(2)节点名字使用引号包裹,如["Laptop"]
|
||||
(3)`|` 和 `"`之间不要存在空格
|
||||
|
||||
@@ -81,8 +81,8 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
||||
# <-------- 多线程润色开始 ---------->
|
||||
if language == 'en':
|
||||
if mode == 'polish':
|
||||
inputs_array = ["Below is a section from an academic paper, polish this section to meet the academic standard, " +
|
||||
"improve the grammar, clarity and overall readability, do not modify any latex command such as \section, \cite and equations:" +
|
||||
inputs_array = [r"Below is a section from an academic paper, polish this section to meet the academic standard, " +
|
||||
r"improve the grammar, clarity and overall readability, do not modify any latex command such as \section, \cite and equations:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
else:
|
||||
inputs_array = [r"Below is a section from an academic paper, proofread this section." +
|
||||
@@ -93,10 +93,10 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
||||
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
|
||||
elif language == 'zh':
|
||||
if mode == 'polish':
|
||||
inputs_array = [f"以下是一篇学术论文中的一段内容,请将此部分润色以满足学术标准,提高语法、清晰度和整体可读性,不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
|
||||
inputs_array = [r"以下是一篇学术论文中的一段内容,请将此部分润色以满足学术标准,提高语法、清晰度和整体可读性,不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
else:
|
||||
inputs_array = [f"以下是一篇学术论文中的一段内容,请对这部分内容进行语法矫正。不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
|
||||
inputs_array = [r"以下是一篇学术论文中的一段内容,请对这部分内容进行语法矫正。不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
inputs_show_user_array = [f"润色 {f}" for f in pfg.sp_file_tag]
|
||||
sys_prompt_array=["你是一位专业的中文学术论文作家。" for _ in range(n_split)]
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from toolbox import update_ui, trimmed_format_exc, get_conf, get_log_folder, promote_file_to_downloadzone
|
||||
from toolbox import update_ui, trimmed_format_exc, get_conf, get_log_folder, promote_file_to_downloadzone, check_repeat_upload, map_file_to_sha256
|
||||
from toolbox import CatchException, report_exception, update_ui_lastest_msg, zip_result, gen_time_str
|
||||
from functools import partial
|
||||
import glob, os, requests, time, json, tarfile
|
||||
@@ -438,47 +438,101 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# <-------------- convert pdf into tex ------------->
|
||||
project_folder = pdf2tex_project(file_manifest[0])
|
||||
hash_tag = map_file_to_sha256(file_manifest[0])
|
||||
|
||||
# Translate English Latex to Chinese Latex, and compile it
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
# <-------------- check repeated pdf ------------->
|
||||
chatbot.append([f"检查PDF是否被重复上传", "正在检查..."])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
repeat, project_folder = check_repeat_upload(file_manifest[0], hash_tag)
|
||||
|
||||
# <-------------- if is a zip/tar file ------------->
|
||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
||||
except_flag = False
|
||||
|
||||
# <-------------- move latex project away from temp folder ------------->
|
||||
project_folder = move_project(project_folder)
|
||||
if repeat:
|
||||
yield from update_ui_lastest_msg(f"发现重复上传,请查收结果(压缩包)...", chatbot=chatbot, history=history)
|
||||
|
||||
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
||||
if not os.path.exists(project_folder + '/merge_translate_zh.tex'):
|
||||
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
||||
chatbot, history, system_prompt, mode='translate_zh',
|
||||
switch_prompt=_switch_prompt_)
|
||||
try:
|
||||
trans_html_file = [f for f in glob.glob(f'{project_folder}/**/*.trans.html', recursive=True)][0]
|
||||
promote_file_to_downloadzone(trans_html_file, rename_file=None, chatbot=chatbot)
|
||||
|
||||
# <-------------- compile PDF ------------->
|
||||
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
|
||||
main_file_modified='merge_translate_zh', mode='translate_zh',
|
||||
work_folder_original=project_folder, work_folder_modified=project_folder,
|
||||
work_folder=project_folder)
|
||||
translate_pdf = [f for f in glob.glob(f'{project_folder}/**/merge_translate_zh.pdf', recursive=True)][0]
|
||||
promote_file_to_downloadzone(translate_pdf, rename_file=None, chatbot=chatbot)
|
||||
|
||||
# <-------------- zip PDF ------------->
|
||||
zip_res = zip_result(project_folder)
|
||||
if success:
|
||||
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history);
|
||||
time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
else:
|
||||
chatbot.append((f"失败了",
|
||||
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体(见Github wiki) ...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history);
|
||||
time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
comparison_pdf = [f for f in glob.glob(f'{project_folder}/**/comparison.pdf', recursive=True)][0]
|
||||
promote_file_to_downloadzone(comparison_pdf, rename_file=None, chatbot=chatbot)
|
||||
|
||||
# <-------------- we are done ------------->
|
||||
return success
|
||||
zip_res = zip_result(project_folder)
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
|
||||
return True
|
||||
|
||||
except:
|
||||
report_exception(chatbot, history, b=f"发现重复上传,但是无法找到相关文件")
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
chatbot.append([f"没有相关文件", '尝试重新翻译PDF...'])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
except_flag = True
|
||||
|
||||
|
||||
elif not repeat or except_flag:
|
||||
yield from update_ui_lastest_msg(f"未发现重复上传", chatbot=chatbot, history=history)
|
||||
|
||||
# <-------------- convert pdf into tex ------------->
|
||||
chatbot.append([f"解析项目: {txt}", "正在将PDF转换为tex项目,请耐心等待..."])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
project_folder = pdf2tex_project(file_manifest[0])
|
||||
if project_folder is None:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"PDF转换为tex项目失败")
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
return False
|
||||
|
||||
# <-------------- translate latex file into Chinese ------------->
|
||||
yield from update_ui_lastest_msg("正在tex项目将翻译为中文...", chatbot=chatbot, history=history)
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# <-------------- if is a zip/tar file ------------->
|
||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
||||
|
||||
# <-------------- move latex project away from temp folder ------------->
|
||||
project_folder = move_project(project_folder)
|
||||
|
||||
# <-------------- set a hash tag for repeat-checking ------------->
|
||||
with open(pj(project_folder, hash_tag + '.tag'), 'w') as f:
|
||||
f.write(hash_tag)
|
||||
f.close()
|
||||
|
||||
|
||||
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
||||
if not os.path.exists(project_folder + '/merge_translate_zh.tex'):
|
||||
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
||||
chatbot, history, system_prompt, mode='translate_zh',
|
||||
switch_prompt=_switch_prompt_)
|
||||
|
||||
# <-------------- compile PDF ------------->
|
||||
yield from update_ui_lastest_msg("正在将翻译好的项目tex项目编译为PDF...", chatbot=chatbot, history=history)
|
||||
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
|
||||
main_file_modified='merge_translate_zh', mode='translate_zh',
|
||||
work_folder_original=project_folder, work_folder_modified=project_folder,
|
||||
work_folder=project_folder)
|
||||
|
||||
# <-------------- zip PDF ------------->
|
||||
zip_res = zip_result(project_folder)
|
||||
if success:
|
||||
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history);
|
||||
time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
else:
|
||||
chatbot.append((f"失败了",
|
||||
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体(见Github wiki) ...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history);
|
||||
time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
|
||||
# <-------------- we are done ------------->
|
||||
return success
|
||||
|
||||
@@ -135,13 +135,25 @@ def request_gpt_model_in_new_thread_with_ui_alive(
|
||||
yield from update_ui(chatbot=chatbot, history=[]) # 如果最后成功了,则删除报错信息
|
||||
return final_result
|
||||
|
||||
def can_multi_process(llm):
|
||||
if llm.startswith('gpt-'): return True
|
||||
if llm.startswith('api2d-'): return True
|
||||
if llm.startswith('azure-'): return True
|
||||
if llm.startswith('spark'): return True
|
||||
if llm.startswith('zhipuai') or llm.startswith('glm-'): return True
|
||||
return False
|
||||
def can_multi_process(llm) -> bool:
|
||||
from request_llms.bridge_all import model_info
|
||||
|
||||
def default_condition(llm) -> bool:
|
||||
# legacy condition
|
||||
if llm.startswith('gpt-'): return True
|
||||
if llm.startswith('api2d-'): return True
|
||||
if llm.startswith('azure-'): return True
|
||||
if llm.startswith('spark'): return True
|
||||
if llm.startswith('zhipuai') or llm.startswith('glm-'): return True
|
||||
return False
|
||||
|
||||
if llm in model_info:
|
||||
if 'can_multi_thread' in model_info[llm]:
|
||||
return model_info[llm]['can_multi_thread']
|
||||
else:
|
||||
return default_condition(llm)
|
||||
else:
|
||||
return default_condition(llm)
|
||||
|
||||
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
inputs_array, inputs_show_user_array, llm_kwargs,
|
||||
|
||||
@@ -345,9 +345,12 @@ def 解析任意code项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
||||
pattern_except_suffix = [_.lstrip(" ^*.,").rstrip(" ,") for _ in txt_pattern.split(" ") if _ != "" and _.strip().startswith("^*.")]
|
||||
pattern_except_suffix += ['zip', 'rar', '7z', 'tar', 'gz'] # 避免解析压缩文件
|
||||
# 将要忽略匹配的文件名(例如: ^README.md)
|
||||
pattern_except_name = [_.lstrip(" ^*,").rstrip(" ,").replace(".", "\.") for _ in txt_pattern.split(" ") if _ != "" and _.strip().startswith("^") and not _.strip().startswith("^*.")]
|
||||
pattern_except_name = [_.lstrip(" ^*,").rstrip(" ,").replace(".", r"\.") # 移除左边通配符,移除右侧逗号,转义点号
|
||||
for _ in txt_pattern.split(" ") # 以空格分割
|
||||
if (_ != "" and _.strip().startswith("^") and not _.strip().startswith("^*.")) # ^开始,但不是^*.开始
|
||||
]
|
||||
# 生成正则表达式
|
||||
pattern_except = '/[^/]+\.(' + "|".join(pattern_except_suffix) + ')$'
|
||||
pattern_except = r'/[^/]+\.(' + "|".join(pattern_except_suffix) + ')$'
|
||||
pattern_except += '|/(' + "|".join(pattern_except_name) + ')$' if pattern_except_name != [] else ''
|
||||
|
||||
history.clear()
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
## ===================================================
|
||||
# docker-compose.yml
|
||||
# docker-compose.yml
|
||||
## ===================================================
|
||||
# 1. 请在以下方案中选择任意一种,然后删除其他的方案
|
||||
# 2. 修改你选择的方案中的environment环境变量,详情请见github wiki或者config.py
|
||||
# 3. 选择一种暴露服务端口的方法,并对相应的配置做出修改:
|
||||
# 【方法1: 适用于Linux,很方便,可惜windows不支持】与宿主的网络融合为一体,这个是默认配置
|
||||
# 「方法1: 适用于Linux,很方便,可惜windows不支持」与宿主的网络融合为一体,这个是默认配置
|
||||
# network_mode: "host"
|
||||
# 【方法2: 适用于所有系统包括Windows和MacOS】端口映射,把容器的端口映射到宿主的端口(注意您需要先删除network_mode: "host",再追加以下内容)
|
||||
# 「方法2: 适用于所有系统包括Windows和MacOS」端口映射,把容器的端口映射到宿主的端口(注意您需要先删除network_mode: "host",再追加以下内容)
|
||||
# ports:
|
||||
# - "12345:12345" # 注意!12345必须与WEB_PORT环境变量相互对应
|
||||
# 4. 最后`docker-compose up`运行
|
||||
@@ -25,7 +25,7 @@
|
||||
## ===================================================
|
||||
|
||||
## ===================================================
|
||||
## 【方案零】 部署项目的全部能力(这个是包含cuda和latex的大型镜像。如果您网速慢、硬盘小或没有显卡,则不推荐使用这个)
|
||||
## 「方案零」 部署项目的全部能力(这个是包含cuda和latex的大型镜像。如果您网速慢、硬盘小或没有显卡,则不推荐使用这个)
|
||||
## ===================================================
|
||||
version: '3'
|
||||
services:
|
||||
@@ -63,10 +63,10 @@ services:
|
||||
# count: 1
|
||||
# capabilities: [gpu]
|
||||
|
||||
# 【WEB_PORT暴露方法1: 适用于Linux】与宿主的网络融合
|
||||
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
||||
network_mode: "host"
|
||||
|
||||
# 【WEB_PORT暴露方法2: 适用于所有系统】端口映射
|
||||
# 「WEB_PORT暴露方法2: 适用于所有系统」端口映射
|
||||
# ports:
|
||||
# - "12345:12345" # 12345必须与WEB_PORT相互对应
|
||||
|
||||
@@ -75,10 +75,8 @@ services:
|
||||
bash -c "python3 -u main.py"
|
||||
|
||||
|
||||
|
||||
|
||||
## ===================================================
|
||||
## 【方案一】 如果不需要运行本地模型(仅 chatgpt, azure, 星火, 千帆, claude 等在线大模型服务)
|
||||
## 「方案一」 如果不需要运行本地模型(仅 chatgpt, azure, 星火, 千帆, claude 等在线大模型服务)
|
||||
## ===================================================
|
||||
version: '3'
|
||||
services:
|
||||
@@ -97,16 +95,16 @@ services:
|
||||
# DEFAULT_WORKER_NUM: ' 10 '
|
||||
# AUTHENTICATION: ' [("username", "passwd"), ("username2", "passwd2")] '
|
||||
|
||||
# 与宿主的网络融合
|
||||
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
||||
network_mode: "host"
|
||||
|
||||
# 不使用代理网络拉取最新代码
|
||||
# 启动命令
|
||||
command: >
|
||||
bash -c "python3 -u main.py"
|
||||
|
||||
|
||||
### ===================================================
|
||||
### 【方案二】 如果需要运行ChatGLM + Qwen + MOSS等本地模型
|
||||
### 「方案二」 如果需要运行ChatGLM + Qwen + MOSS等本地模型
|
||||
### ===================================================
|
||||
version: '3'
|
||||
services:
|
||||
@@ -130,8 +128,10 @@ services:
|
||||
devices:
|
||||
- /dev/nvidia0:/dev/nvidia0
|
||||
|
||||
# 与宿主的网络融合
|
||||
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
||||
network_mode: "host"
|
||||
|
||||
# 启动命令
|
||||
command: >
|
||||
bash -c "python3 -u main.py"
|
||||
|
||||
@@ -139,8 +139,9 @@ services:
|
||||
# command: >
|
||||
# bash -c "pip install -r request_llms/requirements_qwen.txt && python3 -u main.py"
|
||||
|
||||
|
||||
### ===================================================
|
||||
### 【方案三】 如果需要运行ChatGPT + LLAMA + 盘古 + RWKV本地模型
|
||||
### 「方案三」 如果需要运行ChatGPT + LLAMA + 盘古 + RWKV本地模型
|
||||
### ===================================================
|
||||
version: '3'
|
||||
services:
|
||||
@@ -164,16 +165,16 @@ services:
|
||||
devices:
|
||||
- /dev/nvidia0:/dev/nvidia0
|
||||
|
||||
# 与宿主的网络融合
|
||||
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
||||
network_mode: "host"
|
||||
|
||||
# 不使用代理网络拉取最新代码
|
||||
# 启动命令
|
||||
command: >
|
||||
python3 -u main.py
|
||||
|
||||
|
||||
## ===================================================
|
||||
## 【方案四】 ChatGPT + Latex
|
||||
## 「方案四」 ChatGPT + Latex
|
||||
## ===================================================
|
||||
version: '3'
|
||||
services:
|
||||
@@ -190,16 +191,16 @@ services:
|
||||
DEFAULT_WORKER_NUM: ' 10 '
|
||||
WEB_PORT: ' 12303 '
|
||||
|
||||
# 与宿主的网络融合
|
||||
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
||||
network_mode: "host"
|
||||
|
||||
# 不使用代理网络拉取最新代码
|
||||
# 启动命令
|
||||
command: >
|
||||
bash -c "python3 -u main.py"
|
||||
|
||||
|
||||
## ===================================================
|
||||
## 【方案五】 ChatGPT + 语音助手 (请先阅读 docs/use_audio.md)
|
||||
## 「方案五」 ChatGPT + 语音助手 (请先阅读 docs/use_audio.md)
|
||||
## ===================================================
|
||||
version: '3'
|
||||
services:
|
||||
@@ -223,9 +224,9 @@ services:
|
||||
# (无需填写) ALIYUN_ACCESSKEY: ' LTAI5q6BrFUzoRXVGUWnekh1 '
|
||||
# (无需填写) ALIYUN_SECRET: ' eHmI20AVWIaQZ0CiTD2bGQVsaP9i68 '
|
||||
|
||||
# 与宿主的网络融合
|
||||
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
||||
network_mode: "host"
|
||||
|
||||
# 不使用代理网络拉取最新代码
|
||||
# 启动命令
|
||||
command: >
|
||||
bash -c "python3 -u main.py"
|
||||
|
||||
140
main.py
140
main.py
@@ -13,9 +13,20 @@ help_menu_description = \
|
||||
</br></br>如何语音对话: 请阅读Wiki
|
||||
</br></br>如何临时更换API_KEY: 在输入区输入临时API_KEY后提交(网页刷新后失效)"""
|
||||
|
||||
def enable_log(PATH_LOGGING):
|
||||
import logging, uuid
|
||||
admin_log_path = os.path.join(PATH_LOGGING, "admin")
|
||||
os.makedirs(admin_log_path, exist_ok=True)
|
||||
log_dir = os.path.join(admin_log_path, "chat_secrets.log")
|
||||
try:logging.basicConfig(filename=log_dir, level=logging.INFO, encoding="utf-8", format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
||||
except:logging.basicConfig(filename=log_dir, level=logging.INFO, format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
||||
# Disable logging output from the 'httpx' logger
|
||||
logging.getLogger("httpx").setLevel(logging.WARNING)
|
||||
print(f"所有对话记录将自动保存在本地目录{log_dir}, 请注意自我隐私保护哦!")
|
||||
|
||||
def main():
|
||||
import gradio as gr
|
||||
if gr.__version__ not in ['3.32.8']:
|
||||
if gr.__version__ not in ['3.32.9']:
|
||||
raise ModuleNotFoundError("使用项目内置Gradio获取最优体验! 请运行 `pip install -r requirements.txt` 指令安装内置Gradio及其他依赖, 详情信息见requirements.txt.")
|
||||
from request_llms.bridge_all import predict
|
||||
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, load_chat_cookies, DummyWith
|
||||
@@ -23,25 +34,19 @@ def main():
|
||||
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION = get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION')
|
||||
CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = get_conf('CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
||||
ENABLE_AUDIO, AUTO_CLEAR_TXT, PATH_LOGGING, AVAIL_THEMES, THEME, ADD_WAIFU = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'PATH_LOGGING', 'AVAIL_THEMES', 'THEME', 'ADD_WAIFU')
|
||||
DARK_MODE, NUM_CUSTOM_BASIC_BTN, SSL_KEYFILE, SSL_CERTFILE = get_conf('DARK_MODE', 'NUM_CUSTOM_BASIC_BTN', 'SSL_KEYFILE', 'SSL_CERTFILE')
|
||||
INIT_SYS_PROMPT = get_conf('INIT_SYS_PROMPT')
|
||||
NUM_CUSTOM_BASIC_BTN, SSL_KEYFILE, SSL_CERTFILE = get_conf('NUM_CUSTOM_BASIC_BTN', 'SSL_KEYFILE', 'SSL_CERTFILE')
|
||||
DARK_MODE, INIT_SYS_PROMPT, ADD_WAIFU = get_conf('DARK_MODE', 'INIT_SYS_PROMPT', 'ADD_WAIFU')
|
||||
|
||||
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
||||
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
||||
from check_proxy import get_current_version
|
||||
from themes.theme import adjust_theme, advanced_css, theme_declaration, js_code_clear, js_code_reset, js_code_show_or_hide, js_code_show_or_hide_group2
|
||||
from themes.theme import js_code_for_css_changing, js_code_for_toggle_darkmode, js_code_for_persistent_cookie_init
|
||||
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, init_cookie
|
||||
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
|
||||
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
|
||||
|
||||
# 问询记录, python 版本建议3.9+(越新越好)
|
||||
import logging, uuid
|
||||
os.makedirs(PATH_LOGGING, exist_ok=True)
|
||||
try:logging.basicConfig(filename=f"{PATH_LOGGING}/chat_secrets.log", level=logging.INFO, encoding="utf-8", format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
||||
except:logging.basicConfig(filename=f"{PATH_LOGGING}/chat_secrets.log", level=logging.INFO, format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
||||
# Disable logging output from the 'httpx' logger
|
||||
logging.getLogger("httpx").setLevel(logging.WARNING)
|
||||
print(f"所有问询记录将自动保存在本地目录./{PATH_LOGGING}/chat_secrets.log, 请注意自我隐私保护哦!")
|
||||
# 对话、日志记录
|
||||
enable_log(PATH_LOGGING)
|
||||
|
||||
# 一些普通功能模块
|
||||
from core_functional import get_core_functions
|
||||
@@ -74,9 +79,9 @@ def main():
|
||||
cancel_handles = []
|
||||
customize_btns = {}
|
||||
predefined_btns = {}
|
||||
with gr.Blocks(title="GPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
|
||||
with gr.Blocks(title="GPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as app_block:
|
||||
gr.HTML(title_html)
|
||||
secret_css, dark_mode, py_pickle_cookie = gr.Textbox(visible=False), gr.Textbox(DARK_MODE, visible=False), gr.Textbox(visible=False)
|
||||
secret_css, web_cookie_cache = gr.Textbox(visible=False), gr.Textbox(visible=False)
|
||||
cookies = gr.State(load_chat_cookies())
|
||||
with gr_L1():
|
||||
with gr_L2(scale=2, elem_id="gpt-chat"):
|
||||
@@ -152,9 +157,13 @@ def main():
|
||||
with gr.Tab("更换模型", elem_id="interact-panel"):
|
||||
md_dropdown = gr.Dropdown(AVAIL_LLM_MODELS, value=LLM_MODEL, label="更换LLM模型/请求源").style(container=False)
|
||||
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.01,interactive=True, label="Top-p (nucleus sampling)",)
|
||||
temperature = gr.Slider(minimum=-0, maximum=2.0, value=1.0, step=0.01, interactive=True, label="Temperature",)
|
||||
temperature = gr.Slider(minimum=-0, maximum=2.0, value=1.0, step=0.01, interactive=True, label="Temperature", elem_id="elem_temperature")
|
||||
max_length_sl = gr.Slider(minimum=256, maximum=1024*32, value=4096, step=128, interactive=True, label="Local LLM MaxLength",)
|
||||
system_prompt = gr.Textbox(show_label=True, lines=2, placeholder=f"System Prompt", label="System prompt", value=INIT_SYS_PROMPT)
|
||||
system_prompt = gr.Textbox(show_label=True, lines=2, placeholder=f"System Prompt", label="System prompt", value=INIT_SYS_PROMPT, elem_id="elem_prompt")
|
||||
temperature.change(None, inputs=[temperature], outputs=None,
|
||||
_js="""(temperature)=>gpt_academic_gradio_saveload("save", "elem_prompt", "js_temperature_cookie", temperature)""")
|
||||
system_prompt.change(None, inputs=[system_prompt], outputs=None,
|
||||
_js="""(system_prompt)=>gpt_academic_gradio_saveload("save", "elem_prompt", "js_system_prompt_cookie", system_prompt)""")
|
||||
|
||||
with gr.Tab("界面外观", elem_id="interact-panel"):
|
||||
theme_dropdown = gr.Dropdown(AVAIL_THEMES, value=THEME, label="更换UI主题").style(container=False)
|
||||
@@ -194,64 +203,19 @@ def main():
|
||||
with gr.Column(scale=1, min_width=70):
|
||||
basic_fn_confirm = gr.Button("确认并保存", variant="primary"); basic_fn_confirm.style(size="sm")
|
||||
basic_fn_clean = gr.Button("恢复默认", variant="primary"); basic_fn_clean.style(size="sm")
|
||||
def assign_btn(persistent_cookie_, cookies_, basic_btn_dropdown_, basic_fn_title, basic_fn_prefix, basic_fn_suffix, clean_up=False):
|
||||
ret = {}
|
||||
# 读取之前的自定义按钮
|
||||
customize_fn_overwrite_ = cookies_['customize_fn_overwrite']
|
||||
# 更新新的自定义按钮
|
||||
customize_fn_overwrite_.update({
|
||||
basic_btn_dropdown_:
|
||||
{
|
||||
"Title":basic_fn_title,
|
||||
"Prefix":basic_fn_prefix,
|
||||
"Suffix":basic_fn_suffix,
|
||||
}
|
||||
}
|
||||
)
|
||||
if clean_up:
|
||||
customize_fn_overwrite_ = {}
|
||||
cookies_.update(customize_fn_overwrite_) # 更新cookie
|
||||
visible = (not clean_up) and (basic_fn_title != "")
|
||||
if basic_btn_dropdown_ in customize_btns:
|
||||
# 是自定义按钮,不是预定义按钮
|
||||
ret.update({customize_btns[basic_btn_dropdown_]: gr.update(visible=visible, value=basic_fn_title)})
|
||||
else:
|
||||
# 是预定义按钮
|
||||
ret.update({predefined_btns[basic_btn_dropdown_]: gr.update(visible=visible, value=basic_fn_title)})
|
||||
ret.update({cookies: cookies_})
|
||||
try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
|
||||
except: persistent_cookie_ = {}
|
||||
persistent_cookie_["custom_bnt"] = customize_fn_overwrite_ # dict update new value
|
||||
persistent_cookie_ = to_cookie_str(persistent_cookie_) # persistent cookie to dict
|
||||
ret.update({py_pickle_cookie: persistent_cookie_}) # write persistent cookie
|
||||
return ret
|
||||
|
||||
from shared_utils.cookie_manager import assign_btn__fn_builder
|
||||
assign_btn = assign_btn__fn_builder(customize_btns, predefined_btns, cookies, web_cookie_cache)
|
||||
# update btn
|
||||
h = basic_fn_confirm.click(assign_btn, [py_pickle_cookie, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix],
|
||||
[py_pickle_cookie, cookies, *customize_btns.values(), *predefined_btns.values()])
|
||||
h.then(None, [py_pickle_cookie], None, _js="""(py_pickle_cookie)=>{setCookie("py_pickle_cookie", py_pickle_cookie, 365);}""")
|
||||
h = basic_fn_confirm.click(assign_btn, [web_cookie_cache, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix],
|
||||
[web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()])
|
||||
h.then(None, [web_cookie_cache], None, _js="""(web_cookie_cache)=>{setCookie("web_cookie_cache", web_cookie_cache, 365);}""")
|
||||
# clean up btn
|
||||
h2 = basic_fn_clean.click(assign_btn, [py_pickle_cookie, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix, gr.State(True)],
|
||||
[py_pickle_cookie, cookies, *customize_btns.values(), *predefined_btns.values()])
|
||||
h2.then(None, [py_pickle_cookie], None, _js="""(py_pickle_cookie)=>{setCookie("py_pickle_cookie", py_pickle_cookie, 365);}""")
|
||||
h2 = basic_fn_clean.click(assign_btn, [web_cookie_cache, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix, gr.State(True)],
|
||||
[web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()])
|
||||
h2.then(None, [web_cookie_cache], None, _js="""(web_cookie_cache)=>{setCookie("web_cookie_cache", web_cookie_cache, 365);}""")
|
||||
|
||||
def persistent_cookie_reload(persistent_cookie_, cookies_):
|
||||
ret = {}
|
||||
for k in customize_btns:
|
||||
ret.update({customize_btns[k]: gr.update(visible=False, value="")})
|
||||
|
||||
try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
|
||||
except: return ret
|
||||
|
||||
customize_fn_overwrite_ = persistent_cookie_.get("custom_bnt", {})
|
||||
cookies_['customize_fn_overwrite'] = customize_fn_overwrite_
|
||||
ret.update({cookies: cookies_})
|
||||
|
||||
for k,v in persistent_cookie_["custom_bnt"].items():
|
||||
if v['Title'] == "": continue
|
||||
if k in customize_btns: ret.update({customize_btns[k]: gr.update(visible=True, value=v['Title'])})
|
||||
else: ret.update({predefined_btns[k]: gr.update(visible=True, value=v['Title'])})
|
||||
return ret
|
||||
|
||||
# 功能区显示开关与功能区的互动
|
||||
def fn_area_visibility(a):
|
||||
@@ -371,11 +335,14 @@ def main():
|
||||
audio_mic.stream(deal_audio, inputs=[audio_mic, cookies])
|
||||
|
||||
|
||||
demo.load(init_cookie, inputs=[cookies], outputs=[cookies])
|
||||
demo.load(persistent_cookie_reload, inputs = [py_pickle_cookie, cookies],
|
||||
outputs = [py_pickle_cookie, cookies, *customize_btns.values(), *predefined_btns.values()], _js=js_code_for_persistent_cookie_init)
|
||||
demo.load(None, inputs=[dark_mode], outputs=None, _js="""(dark_mode)=>{apply_cookie_for_checkbox(dark_mode);}""") # 配置暗色主题或亮色主题
|
||||
demo.load(None, inputs=[gr.Textbox(LAYOUT, visible=False)], outputs=None, _js='(LAYOUT)=>{GptAcademicJavaScriptInit(LAYOUT);}')
|
||||
app_block.load(assign_user_uuid, inputs=[cookies], outputs=[cookies])
|
||||
|
||||
from shared_utils.cookie_manager import load_web_cookie_cache__fn_builder
|
||||
load_web_cookie_cache = load_web_cookie_cache__fn_builder(customize_btns, cookies, predefined_btns)
|
||||
app_block.load(load_web_cookie_cache, inputs = [web_cookie_cache, cookies],
|
||||
outputs = [web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()], _js=js_code_for_persistent_cookie_init)
|
||||
|
||||
app_block.load(None, inputs=[], outputs=None, _js=f"""()=>GptAcademicJavaScriptInit("{DARK_MODE}","{INIT_SYS_PROMPT}","{ADD_WAIFU}","{LAYOUT}")""") # 配置暗色主题或亮色主题
|
||||
|
||||
# gradio的inbrowser触发不太稳定,回滚代码到原始的浏览器打开函数
|
||||
def run_delayed_tasks():
|
||||
@@ -390,28 +357,15 @@ def main():
|
||||
|
||||
threading.Thread(target=auto_updates, name="self-upgrade", daemon=True).start() # 查看自动更新
|
||||
threading.Thread(target=open_browser, name="open-browser", daemon=True).start() # 打开浏览器页面
|
||||
threading.Thread(target=warm_up_mods, name="warm-up", daemon=True).start() # 预热tiktoken模块
|
||||
threading.Thread(target=warm_up_mods, name="warm-up", daemon=True).start() # 预热tiktoken模块
|
||||
|
||||
# 运行一些异步任务:自动更新、打开浏览器页面、预热tiktoken模块
|
||||
run_delayed_tasks()
|
||||
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(
|
||||
quiet=True,
|
||||
server_name="0.0.0.0",
|
||||
ssl_keyfile=None if SSL_KEYFILE == "" else SSL_KEYFILE,
|
||||
ssl_certfile=None if SSL_CERTFILE == "" else SSL_CERTFILE,
|
||||
ssl_verify=False,
|
||||
server_port=PORT,
|
||||
favicon_path=os.path.join(os.path.dirname(__file__), "docs/logo.png"),
|
||||
auth=AUTHENTICATION if len(AUTHENTICATION) != 0 else None,
|
||||
blocked_paths=["config.py","config_private.py","docker-compose.yml","Dockerfile",f"{PATH_LOGGING}/admin"])
|
||||
|
||||
# 如果需要在二级路径下运行
|
||||
# CUSTOM_PATH = get_conf('CUSTOM_PATH')
|
||||
# if CUSTOM_PATH != "/":
|
||||
# from toolbox import run_gradio_in_subpath
|
||||
# run_gradio_in_subpath(demo, auth=AUTHENTICATION, port=PORT, custom_path=CUSTOM_PATH)
|
||||
# else:
|
||||
# demo.launch(server_name="0.0.0.0", server_port=PORT, auth=AUTHENTICATION, favicon_path="docs/logo.png",
|
||||
# blocked_paths=["config.py","config_private.py","docker-compose.yml","Dockerfile",f"{PATH_LOGGING}/admin"])
|
||||
# 最后,正式开始服务
|
||||
from shared_utils.fastapi_server import start_app
|
||||
start_app(app_block, CONCURRENT_COUNT, AUTHENTICATION, PORT, SSL_KEYFILE, SSL_CERTFILE)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
@@ -8,10 +8,10 @@
|
||||
具备多线程调用能力的函数:在函数插件中被调用,灵活而简洁
|
||||
2. predict_no_ui_long_connection(...)
|
||||
"""
|
||||
import tiktoken, copy
|
||||
import tiktoken, copy, re
|
||||
from functools import lru_cache
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from toolbox import get_conf, trimmed_format_exc, apply_gpt_academic_string_mask
|
||||
from toolbox import get_conf, trimmed_format_exc, apply_gpt_academic_string_mask, read_one_api_model_name
|
||||
|
||||
from .bridge_chatgpt import predict_no_ui_long_connection as chatgpt_noui
|
||||
from .bridge_chatgpt import predict as chatgpt_ui
|
||||
@@ -34,6 +34,9 @@ from .bridge_google_gemini import predict_no_ui_long_connection as genai_noui
|
||||
from .bridge_zhipu import predict_no_ui_long_connection as zhipu_noui
|
||||
from .bridge_zhipu import predict as zhipu_ui
|
||||
|
||||
from .bridge_cohere import predict as cohere_ui
|
||||
from .bridge_cohere import predict_no_ui_long_connection as cohere_noui
|
||||
|
||||
colors = ['#FF00FF', '#00FFFF', '#FF0000', '#990099', '#009999', '#990044']
|
||||
|
||||
class LazyloadTiktoken(object):
|
||||
@@ -61,6 +64,11 @@ API_URL_REDIRECT, AZURE_ENDPOINT, AZURE_ENGINE = get_conf("API_URL_REDIRECT", "A
|
||||
openai_endpoint = "https://api.openai.com/v1/chat/completions"
|
||||
api2d_endpoint = "https://openai.api2d.net/v1/chat/completions"
|
||||
newbing_endpoint = "wss://sydney.bing.com/sydney/ChatHub"
|
||||
gemini_endpoint = "https://generativelanguage.googleapis.com/v1beta/models"
|
||||
claude_endpoint = "https://api.anthropic.com/v1/messages"
|
||||
yimodel_endpoint = "https://api.lingyiwanwu.com/v1/chat/completions"
|
||||
cohere_endpoint = 'https://api.cohere.ai/v1/chat'
|
||||
|
||||
if not AZURE_ENDPOINT.endswith('/'): AZURE_ENDPOINT += '/'
|
||||
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
|
||||
# 兼容旧版的配置
|
||||
@@ -75,7 +83,10 @@ except:
|
||||
if openai_endpoint in API_URL_REDIRECT: openai_endpoint = API_URL_REDIRECT[openai_endpoint]
|
||||
if api2d_endpoint in API_URL_REDIRECT: api2d_endpoint = API_URL_REDIRECT[api2d_endpoint]
|
||||
if newbing_endpoint in API_URL_REDIRECT: newbing_endpoint = API_URL_REDIRECT[newbing_endpoint]
|
||||
|
||||
if gemini_endpoint in API_URL_REDIRECT: gemini_endpoint = API_URL_REDIRECT[gemini_endpoint]
|
||||
if claude_endpoint in API_URL_REDIRECT: claude_endpoint = API_URL_REDIRECT[claude_endpoint]
|
||||
if yimodel_endpoint in API_URL_REDIRECT: yimodel_endpoint = API_URL_REDIRECT[yimodel_endpoint]
|
||||
if cohere_endpoint in API_URL_REDIRECT: cohere_endpoint = API_URL_REDIRECT[cohere_endpoint]
|
||||
|
||||
# 获取tokenizer
|
||||
tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo")
|
||||
@@ -94,7 +105,7 @@ model_info = {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": 4096,
|
||||
"max_token": 16385,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
@@ -117,15 +128,6 @@ model_info = {
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
"gpt-3.5-turbo-0125": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
"gpt-3.5-turbo-16k-0613": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
@@ -135,7 +137,16 @@ model_info = {
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
"gpt-3.5-turbo-1106": {#16k
|
||||
"gpt-3.5-turbo-1106": { #16k
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": 16385,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
"gpt-3.5-turbo-0125": { #16k
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": openai_endpoint,
|
||||
@@ -291,7 +302,7 @@ model_info = {
|
||||
"gemini-pro": {
|
||||
"fn_with_ui": genai_ui,
|
||||
"fn_without_ui": genai_noui,
|
||||
"endpoint": None,
|
||||
"endpoint": gemini_endpoint,
|
||||
"max_token": 1024 * 32,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
@@ -299,13 +310,56 @@ model_info = {
|
||||
"gemini-pro-vision": {
|
||||
"fn_with_ui": genai_ui,
|
||||
"fn_without_ui": genai_noui,
|
||||
"endpoint": gemini_endpoint,
|
||||
"max_token": 1024 * 32,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
# cohere
|
||||
"cohere-command-r-plus": {
|
||||
"fn_with_ui": cohere_ui,
|
||||
"fn_without_ui": cohere_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": cohere_endpoint,
|
||||
"max_token": 1024 * 4,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
}
|
||||
# -=-=-=-=-=-=- 月之暗面 -=-=-=-=-=-=-
|
||||
from request_llms.bridge_moonshot import predict as moonshot_ui
|
||||
from request_llms.bridge_moonshot import predict_no_ui_long_connection as moonshot_no_ui
|
||||
model_info.update({
|
||||
"moonshot-v1-8k": {
|
||||
"fn_with_ui": moonshot_ui,
|
||||
"fn_without_ui": moonshot_no_ui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 1024 * 8,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"moonshot-v1-32k": {
|
||||
"fn_with_ui": moonshot_ui,
|
||||
"fn_without_ui": moonshot_no_ui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 1024 * 32,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
}
|
||||
|
||||
"moonshot-v1-128k": {
|
||||
"fn_with_ui": moonshot_ui,
|
||||
"fn_without_ui": moonshot_no_ui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 1024 * 128,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
}
|
||||
})
|
||||
# -=-=-=-=-=-=- api2d 对齐支持 -=-=-=-=-=-=-
|
||||
for model in AVAIL_LLM_MODELS:
|
||||
if model.startswith('api2d-') and (model.replace('api2d-','') in model_info.keys()):
|
||||
@@ -321,25 +375,67 @@ for model in AVAIL_LLM_MODELS:
|
||||
model_info.update({model: mi})
|
||||
|
||||
# -=-=-=-=-=-=- 以下部分是新加入的模型,可能附带额外依赖 -=-=-=-=-=-=-
|
||||
if "claude-1-100k" in AVAIL_LLM_MODELS or "claude-2" in AVAIL_LLM_MODELS:
|
||||
# claude家族
|
||||
claude_models = ["claude-instant-1.2","claude-2.0","claude-2.1","claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229"]
|
||||
if any(item in claude_models for item in AVAIL_LLM_MODELS):
|
||||
from .bridge_claude import predict_no_ui_long_connection as claude_noui
|
||||
from .bridge_claude import predict as claude_ui
|
||||
model_info.update({
|
||||
"claude-1-100k": {
|
||||
"claude-instant-1.2": {
|
||||
"fn_with_ui": claude_ui,
|
||||
"fn_without_ui": claude_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 8196,
|
||||
"endpoint": claude_endpoint,
|
||||
"max_token": 100000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
})
|
||||
model_info.update({
|
||||
"claude-2": {
|
||||
"claude-2.0": {
|
||||
"fn_with_ui": claude_ui,
|
||||
"fn_without_ui": claude_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 8196,
|
||||
"endpoint": claude_endpoint,
|
||||
"max_token": 100000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
})
|
||||
model_info.update({
|
||||
"claude-2.1": {
|
||||
"fn_with_ui": claude_ui,
|
||||
"fn_without_ui": claude_noui,
|
||||
"endpoint": claude_endpoint,
|
||||
"max_token": 200000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
})
|
||||
model_info.update({
|
||||
"claude-3-haiku-20240307": {
|
||||
"fn_with_ui": claude_ui,
|
||||
"fn_without_ui": claude_noui,
|
||||
"endpoint": claude_endpoint,
|
||||
"max_token": 200000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
})
|
||||
model_info.update({
|
||||
"claude-3-sonnet-20240229": {
|
||||
"fn_with_ui": claude_ui,
|
||||
"fn_without_ui": claude_noui,
|
||||
"endpoint": claude_endpoint,
|
||||
"max_token": 200000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
})
|
||||
model_info.update({
|
||||
"claude-3-opus-20240229": {
|
||||
"fn_with_ui": claude_ui,
|
||||
"fn_without_ui": claude_noui,
|
||||
"endpoint": claude_endpoint,
|
||||
"max_token": 200000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
@@ -409,22 +505,6 @@ if "stack-claude" in AVAIL_LLM_MODELS:
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
}
|
||||
})
|
||||
if "newbing-free" in AVAIL_LLM_MODELS:
|
||||
try:
|
||||
from .bridge_newbingfree import predict_no_ui_long_connection as newbingfree_noui
|
||||
from .bridge_newbingfree import predict as newbingfree_ui
|
||||
model_info.update({
|
||||
"newbing-free": {
|
||||
"fn_with_ui": newbingfree_ui,
|
||||
"fn_without_ui": newbingfree_noui,
|
||||
"endpoint": newbing_endpoint,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
}
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
if "newbing" in AVAIL_LLM_MODELS: # same with newbing-free
|
||||
try:
|
||||
from .bridge_newbingfree import predict_no_ui_long_connection as newbingfree_noui
|
||||
@@ -457,6 +537,7 @@ if "chatglmft" in AVAIL_LLM_MODELS: # same with newbing-free
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
# -=-=-=-=-=-=- 上海AI-LAB书生大模型 -=-=-=-=-=-=-
|
||||
if "internlm" in AVAIL_LLM_MODELS:
|
||||
try:
|
||||
from .bridge_internlm import predict_no_ui_long_connection as internlm_noui
|
||||
@@ -489,6 +570,7 @@ if "chatglm_onnx" in AVAIL_LLM_MODELS:
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
# -=-=-=-=-=-=- 通义-本地模型 -=-=-=-=-=-=-
|
||||
if "qwen-local" in AVAIL_LLM_MODELS:
|
||||
try:
|
||||
from .bridge_qwen_local import predict_no_ui_long_connection as qwen_local_noui
|
||||
@@ -497,6 +579,7 @@ if "qwen-local" in AVAIL_LLM_MODELS:
|
||||
"qwen-local": {
|
||||
"fn_with_ui": qwen_local_ui,
|
||||
"fn_without_ui": qwen_local_noui,
|
||||
"can_multi_thread": False,
|
||||
"endpoint": None,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
@@ -505,6 +588,7 @@ if "qwen-local" in AVAIL_LLM_MODELS:
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
# -=-=-=-=-=-=- 通义-在线模型 -=-=-=-=-=-=-
|
||||
if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-max" in AVAIL_LLM_MODELS: # zhipuai
|
||||
try:
|
||||
from .bridge_qwen import predict_no_ui_long_connection as qwen_noui
|
||||
@@ -513,6 +597,7 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
||||
"qwen-turbo": {
|
||||
"fn_with_ui": qwen_ui,
|
||||
"fn_without_ui": qwen_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 6144,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
@@ -521,6 +606,7 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
||||
"qwen-plus": {
|
||||
"fn_with_ui": qwen_ui,
|
||||
"fn_without_ui": qwen_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 30720,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
@@ -529,6 +615,7 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
||||
"qwen-max": {
|
||||
"fn_with_ui": qwen_ui,
|
||||
"fn_without_ui": qwen_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 28672,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
@@ -537,7 +624,35 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
if "spark" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
||||
# -=-=-=-=-=-=- 零一万物模型 -=-=-=-=-=-=-
|
||||
if "yi-34b-chat-0205" in AVAIL_LLM_MODELS or "yi-34b-chat-200k" in AVAIL_LLM_MODELS: # zhipuai
|
||||
try:
|
||||
from .bridge_yimodel import predict_no_ui_long_connection as yimodel_noui
|
||||
from .bridge_yimodel import predict as yimodel_ui
|
||||
model_info.update({
|
||||
"yi-34b-chat-0205": {
|
||||
"fn_with_ui": yimodel_ui,
|
||||
"fn_without_ui": yimodel_noui,
|
||||
"can_multi_thread": False, # 目前来说,默认情况下并发量极低,因此禁用
|
||||
"endpoint": yimodel_endpoint,
|
||||
"max_token": 4000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"yi-34b-chat-200k": {
|
||||
"fn_with_ui": yimodel_ui,
|
||||
"fn_without_ui": yimodel_noui,
|
||||
"can_multi_thread": False, # 目前来说,默认情况下并发量极低,因此禁用
|
||||
"endpoint": yimodel_endpoint,
|
||||
"max_token": 200000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
# -=-=-=-=-=-=- 讯飞星火认知大模型 -=-=-=-=-=-=-
|
||||
if "spark" in AVAIL_LLM_MODELS:
|
||||
try:
|
||||
from .bridge_spark import predict_no_ui_long_connection as spark_noui
|
||||
from .bridge_spark import predict as spark_ui
|
||||
@@ -545,6 +660,7 @@ if "spark" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
||||
"spark": {
|
||||
"fn_with_ui": spark_ui,
|
||||
"fn_without_ui": spark_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
@@ -561,6 +677,7 @@ if "sparkv2" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
||||
"sparkv2": {
|
||||
"fn_with_ui": spark_ui,
|
||||
"fn_without_ui": spark_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
@@ -577,6 +694,7 @@ if "sparkv3" in AVAIL_LLM_MODELS or "sparkv3.5" in AVAIL_LLM_MODELS: # 讯飞
|
||||
"sparkv3": {
|
||||
"fn_with_ui": spark_ui,
|
||||
"fn_without_ui": spark_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
@@ -585,6 +703,7 @@ if "sparkv3" in AVAIL_LLM_MODELS or "sparkv3.5" in AVAIL_LLM_MODELS: # 讯飞
|
||||
"sparkv3.5": {
|
||||
"fn_with_ui": spark_ui,
|
||||
"fn_without_ui": spark_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
@@ -609,6 +728,7 @@ if "llama2" in AVAIL_LLM_MODELS: # llama2
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
# -=-=-=-=-=-=- 智谱 -=-=-=-=-=-=-
|
||||
if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai 是glm-4的别名,向后兼容配置
|
||||
try:
|
||||
model_info.update({
|
||||
@@ -623,6 +743,7 @@ if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai 是glm-4的别名,向后兼容
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
# -=-=-=-=-=-=- 幻方-深度求索大模型 -=-=-=-=-=-=-
|
||||
if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
|
||||
try:
|
||||
from .bridge_deepseekcoder import predict_no_ui_long_connection as deepseekcoder_noui
|
||||
@@ -639,26 +760,34 @@ if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
# if "skylark" in AVAIL_LLM_MODELS:
|
||||
# try:
|
||||
# from .bridge_skylark2 import predict_no_ui_long_connection as skylark_noui
|
||||
# from .bridge_skylark2 import predict as skylark_ui
|
||||
# model_info.update({
|
||||
# "skylark": {
|
||||
# "fn_with_ui": skylark_ui,
|
||||
# "fn_without_ui": skylark_noui,
|
||||
# "endpoint": None,
|
||||
# "max_token": 4096,
|
||||
# "tokenizer": tokenizer_gpt35,
|
||||
# "token_cnt": get_token_num_gpt35,
|
||||
# }
|
||||
# })
|
||||
# except:
|
||||
# print(trimmed_format_exc())
|
||||
|
||||
|
||||
# <-- 用于定义和切换多个azure模型 -->
|
||||
AZURE_CFG_ARRAY = get_conf("AZURE_CFG_ARRAY")
|
||||
# -=-=-=-=-=-=- one-api 对齐支持 -=-=-=-=-=-=-
|
||||
for model in [m for m in AVAIL_LLM_MODELS if m.startswith("one-api-")]:
|
||||
# 为了更灵活地接入one-api多模型管理界面,设计了此接口,例子:AVAIL_LLM_MODELS = ["one-api-mixtral-8x7b(max_token=6666)"]
|
||||
# 其中
|
||||
# "one-api-" 是前缀(必要)
|
||||
# "mixtral-8x7b" 是模型名(必要)
|
||||
# "(max_token=6666)" 是配置(非必要)
|
||||
try:
|
||||
_, max_token_tmp = read_one_api_model_name(model)
|
||||
except:
|
||||
print(f"one-api模型 {model} 的 max_token 配置不是整数,请检查配置文件。")
|
||||
continue
|
||||
model_info.update({
|
||||
model: {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": max_token_tmp,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
})
|
||||
|
||||
|
||||
# -=-=-=-=-=-=- azure模型对齐支持 -=-=-=-=-=-=-
|
||||
AZURE_CFG_ARRAY = get_conf("AZURE_CFG_ARRAY") # <-- 用于定义和切换多个azure模型 -->
|
||||
if len(AZURE_CFG_ARRAY) > 0:
|
||||
for azure_model_name, azure_cfg_dict in AZURE_CFG_ARRAY.items():
|
||||
# 可能会覆盖之前的配置,但这是意料之中的
|
||||
@@ -687,7 +816,7 @@ def LLM_CATCH_EXCEPTION(f):
|
||||
"""
|
||||
装饰器函数,将错误显示出来
|
||||
"""
|
||||
def decorated(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience):
|
||||
def decorated(inputs:str, llm_kwargs:dict, history:list, sys_prompt:str, observe_window:list, console_slience:bool):
|
||||
try:
|
||||
return f(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
|
||||
except Exception as e:
|
||||
@@ -697,9 +826,9 @@ def LLM_CATCH_EXCEPTION(f):
|
||||
return decorated
|
||||
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window=[], console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list, sys_prompt:str, observe_window:list=[], console_slience:bool=False):
|
||||
"""
|
||||
发送至LLM,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||
发送至LLM,等待回复,一次性完成,不显示中间过程。但内部(尽可能地)用stream的方法避免中途网线被掐。
|
||||
inputs:
|
||||
是本次问询的输入
|
||||
sys_prompt:
|
||||
@@ -717,7 +846,6 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
||||
model = llm_kwargs['llm_model']
|
||||
n_model = 1
|
||||
if '&' not in model:
|
||||
assert not model.startswith("tgui"), "TGUI不支持函数插件的实现"
|
||||
|
||||
# 如果只询问1个大语言模型:
|
||||
method = model_info[model]["fn_without_ui"]
|
||||
@@ -752,7 +880,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
||||
# 观察窗(window)
|
||||
chat_string = []
|
||||
for i in range(n_model):
|
||||
chat_string.append( f"【{str(models[i])} 说】: <font color=\"{colors[i]}\"> {window_mutex[i][0]} </font>" )
|
||||
color = colors[i%len(colors)]
|
||||
chat_string.append( f"【{str(models[i])} 说】: <font color=\"{color}\"> {window_mutex[i][0]} </font>" )
|
||||
res = '<br/><br/>\n\n---\n\n'.join(chat_string)
|
||||
# # # # # # # # # # #
|
||||
observe_window[0] = res
|
||||
@@ -769,22 +898,30 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
||||
time.sleep(1)
|
||||
|
||||
for i, future in enumerate(futures): # wait and get
|
||||
return_string_collect.append( f"【{str(models[i])} 说】: <font color=\"{colors[i]}\"> {future.result()} </font>" )
|
||||
color = colors[i%len(colors)]
|
||||
return_string_collect.append( f"【{str(models[i])} 说】: <font color=\"{color}\"> {future.result()} </font>" )
|
||||
|
||||
window_mutex[-1] = False # stop mutex thread
|
||||
res = '<br/><br/>\n\n---\n\n'.join(return_string_collect)
|
||||
return res
|
||||
|
||||
|
||||
def predict(inputs, llm_kwargs, *args, **kwargs):
|
||||
def predict(inputs:str, llm_kwargs:dict, *args, **kwargs):
|
||||
"""
|
||||
发送至LLM,流式获取输出。
|
||||
用于基础的对话功能。
|
||||
inputs 是本次问询的输入
|
||||
top_p, temperature是LLM的内部调优参数
|
||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
|
||||
完整参数列表:
|
||||
predict(
|
||||
inputs:str, # 是本次问询的输入
|
||||
llm_kwargs:dict, # 是LLM的内部调优参数
|
||||
plugin_kwargs:dict, # 是插件的内部参数
|
||||
chatbot:ChatBotWithCookies, # 原样传递,负责向用户前端展示对话,兼顾前端状态的功能
|
||||
history:list=[], # 是之前的对话列表
|
||||
system_prompt:str='', # 系统静默prompt
|
||||
stream:bool=True, # 是否流式输出(已弃用)
|
||||
additional_fn:str=None # 基础功能区按钮的附加功能
|
||||
):
|
||||
"""
|
||||
|
||||
inputs = apply_gpt_academic_string_mask(inputs, mode="show_llm")
|
||||
|
||||
@@ -137,7 +137,8 @@ class GetGLMFTHandle(Process):
|
||||
global glmft_handle
|
||||
glmft_handle = None
|
||||
#################################################################################
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
|
||||
@@ -21,7 +21,9 @@ import random
|
||||
|
||||
# config_private.py放自己的秘密如API和代理网址
|
||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, is_the_upload_folder
|
||||
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
|
||||
from toolbox import trimmed_format_exc, is_the_upload_folder, read_one_api_model_name, log_chat
|
||||
from toolbox import ChatBotWithCookies
|
||||
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
||||
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
|
||||
|
||||
@@ -68,7 +70,7 @@ def verify_endpoint(endpoint):
|
||||
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
|
||||
return endpoint
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
|
||||
"""
|
||||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||
inputs:
|
||||
@@ -125,8 +127,9 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
json_data = chunkjson['choices'][0]
|
||||
delta = json_data["delta"]
|
||||
if len(delta) == 0: break
|
||||
if "role" in delta: continue
|
||||
if "content" in delta:
|
||||
if (not has_content) and has_role: continue
|
||||
if (not has_content) and (not has_role): continue # raise RuntimeError("发现不标准的第三方接口:"+delta)
|
||||
if has_content: # has_role = True/False
|
||||
result += delta["content"]
|
||||
if not console_slience: print(delta["content"], end='')
|
||||
if observe_window is not None:
|
||||
@@ -145,7 +148,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
return result
|
||||
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||
"""
|
||||
发送至chatGPT,流式获取输出。
|
||||
用于基础的对话功能。
|
||||
@@ -171,7 +175,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
|
||||
raw_input = inputs
|
||||
logging.info(f'[raw_input] {raw_input}')
|
||||
# logging.info(f'[raw_input] {raw_input}')
|
||||
chatbot.append((inputs, ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||
|
||||
@@ -252,7 +256,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
# 前者是API2D的结束条件,后者是OPENAI的结束条件
|
||||
if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0):
|
||||
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||
logging.info(f'[response] {gpt_replying_buffer}')
|
||||
# logging.info(f'[response] {gpt_replying_buffer}')
|
||||
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||
break
|
||||
# 处理数据流的主体
|
||||
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
|
||||
@@ -264,7 +269,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
# 一些第三方接口的出现这样的错误,兼容一下吧
|
||||
continue
|
||||
else:
|
||||
# 一些垃圾第三方接口的出现这样的错误
|
||||
# 至此已经超出了正常接口应该进入的范围,一些垃圾第三方接口会出现这样的错误
|
||||
if chunkjson['choices'][0]["delta"]["content"] is None: continue # 一些垃圾第三方接口出现这样的错误,兼容一下吧
|
||||
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
|
||||
|
||||
history[-1] = gpt_replying_buffer
|
||||
@@ -356,6 +362,9 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
model = llm_kwargs['llm_model']
|
||||
if llm_kwargs['llm_model'].startswith('api2d-'):
|
||||
model = llm_kwargs['llm_model'][len('api2d-'):]
|
||||
if llm_kwargs['llm_model'].startswith('one-api-'):
|
||||
model = llm_kwargs['llm_model'][len('one-api-'):]
|
||||
model, _ = read_one_api_model_name(model)
|
||||
|
||||
if model == "gpt-3.5-random": # 随机选择, 绕过openai访问频率限制
|
||||
model = random.choice([
|
||||
|
||||
@@ -9,15 +9,15 @@
|
||||
具备多线程调用能力的函数
|
||||
2. predict_no_ui_long_connection:支持多线程
|
||||
"""
|
||||
|
||||
import os
|
||||
import json
|
||||
import time
|
||||
import gradio as gr
|
||||
import logging
|
||||
import os
|
||||
import time
|
||||
import traceback
|
||||
import json
|
||||
import requests
|
||||
import importlib
|
||||
from toolbox import get_conf, update_ui, trimmed_format_exc, encode_image, every_image_file_in_path, log_chat
|
||||
picture_system_prompt = "\n当回复图像时,必须说明正在回复哪张图像。所有图像仅在最后一个问题中提供,即使它们在历史记录中被提及。请使用'这是第X张图像:'的格式来指明您正在描述的是哪张图像。"
|
||||
Claude_3_Models = ["claude-3-haiku-20240307", "claude-3-sonnet-20240229", "claude-3-opus-20240229"]
|
||||
|
||||
# config_private.py放自己的秘密如API和代理网址
|
||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||
@@ -39,6 +39,34 @@ def get_full_error(chunk, stream_response):
|
||||
break
|
||||
return chunk
|
||||
|
||||
def decode_chunk(chunk):
|
||||
# 提前读取一些信息(用于判断异常)
|
||||
chunk_decoded = chunk.decode()
|
||||
chunkjson = None
|
||||
is_last_chunk = False
|
||||
need_to_pass = False
|
||||
if chunk_decoded.startswith('data:'):
|
||||
try:
|
||||
chunkjson = json.loads(chunk_decoded[6:])
|
||||
except:
|
||||
need_to_pass = True
|
||||
pass
|
||||
elif chunk_decoded.startswith('event:'):
|
||||
try:
|
||||
event_type = chunk_decoded.split(':')[1].strip()
|
||||
if event_type == 'content_block_stop' or event_type == 'message_stop':
|
||||
is_last_chunk = True
|
||||
elif event_type == 'content_block_start' or event_type == 'message_start':
|
||||
need_to_pass = True
|
||||
pass
|
||||
except:
|
||||
need_to_pass = True
|
||||
pass
|
||||
else:
|
||||
need_to_pass = True
|
||||
pass
|
||||
return need_to_pass, chunkjson, is_last_chunk
|
||||
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||
"""
|
||||
@@ -54,50 +82,67 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
observe_window = None:
|
||||
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||
"""
|
||||
from anthropic import Anthropic
|
||||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||
prompt = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
|
||||
retry = 0
|
||||
if len(ANTHROPIC_API_KEY) == 0:
|
||||
raise RuntimeError("没有设置ANTHROPIC_API_KEY选项")
|
||||
if inputs == "": inputs = "空空如也的输入栏"
|
||||
headers, message = generate_payload(inputs, llm_kwargs, history, sys_prompt, image_paths=None)
|
||||
retry = 0
|
||||
|
||||
|
||||
while True:
|
||||
try:
|
||||
# make a POST request to the API endpoint, stream=False
|
||||
from .bridge_all import model_info
|
||||
anthropic = Anthropic(api_key=ANTHROPIC_API_KEY)
|
||||
# endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||
# with ProxyNetworkActivate()
|
||||
stream = anthropic.completions.create(
|
||||
prompt=prompt,
|
||||
max_tokens_to_sample=4096, # The maximum number of tokens to generate before stopping.
|
||||
model=llm_kwargs['llm_model'],
|
||||
stream=True,
|
||||
temperature = llm_kwargs['temperature']
|
||||
)
|
||||
break
|
||||
except Exception as e:
|
||||
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||
response = requests.post(endpoint, headers=headers, json=message,
|
||||
proxies=proxies, stream=True, timeout=TIMEOUT_SECONDS);break
|
||||
except requests.exceptions.ReadTimeout as e:
|
||||
retry += 1
|
||||
traceback.print_exc()
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||
stream_response = response.iter_lines()
|
||||
result = ''
|
||||
try:
|
||||
for completion in stream:
|
||||
result += completion.completion
|
||||
if not console_slience: print(completion.completion, end='')
|
||||
if observe_window is not None:
|
||||
# 观测窗,把已经获取的数据显示出去
|
||||
if len(observe_window) >= 1: observe_window[0] += completion.completion
|
||||
# 看门狗,如果超过期限没有喂狗,则终止
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("用户取消了程序。")
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
while True:
|
||||
try: chunk = next(stream_response)
|
||||
except StopIteration:
|
||||
break
|
||||
except requests.exceptions.ConnectionError:
|
||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||
need_to_pass, chunkjson, is_last_chunk = decode_chunk(chunk)
|
||||
if chunk:
|
||||
try:
|
||||
if need_to_pass:
|
||||
pass
|
||||
elif is_last_chunk:
|
||||
# logging.info(f'[response] {result}')
|
||||
break
|
||||
else:
|
||||
if chunkjson and chunkjson['type'] == 'content_block_delta':
|
||||
result += chunkjson['delta']['text']
|
||||
print(chunkjson['delta']['text'], end='')
|
||||
if observe_window is not None:
|
||||
# 观测窗,把已经获取的数据显示出去
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] += chunkjson['delta']['text']
|
||||
# 看门狗,如果超过期限没有喂狗,则终止
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("用户取消了程序。")
|
||||
except Exception as e:
|
||||
chunk = get_full_error(chunk, stream_response)
|
||||
chunk_decoded = chunk.decode()
|
||||
error_msg = chunk_decoded
|
||||
print(error_msg)
|
||||
raise RuntimeError("Json解析不合常规")
|
||||
|
||||
return result
|
||||
|
||||
def make_media_input(history,inputs,image_paths):
|
||||
for image_path in image_paths:
|
||||
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
||||
return inputs
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
@@ -109,7 +154,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
from anthropic import Anthropic
|
||||
if inputs == "": inputs = "空空如也的输入栏"
|
||||
if len(ANTHROPIC_API_KEY) == 0:
|
||||
chatbot.append((inputs, "没有设置ANTHROPIC_API_KEY"))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||
@@ -119,13 +164,23 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
|
||||
raw_input = inputs
|
||||
logging.info(f'[raw_input] {raw_input}')
|
||||
chatbot.append((inputs, ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||
have_recent_file, image_paths = every_image_file_in_path(chatbot)
|
||||
if len(image_paths) > 20:
|
||||
chatbot.append((inputs, "图片数量超过api上限(20张)"))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应")
|
||||
return
|
||||
|
||||
if any([llm_kwargs['llm_model'] == model for model in Claude_3_Models]) and have_recent_file:
|
||||
if inputs == "" or inputs == "空空如也的输入栏": inputs = "请描述给出的图片"
|
||||
system_prompt += picture_system_prompt # 由于没有单独的参数保存包含图片的历史,所以只能通过提示词对第几张图片进行定位
|
||||
chatbot.append((make_media_input(history,inputs, image_paths), ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||
else:
|
||||
chatbot.append((inputs, ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||
|
||||
try:
|
||||
prompt = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||||
headers, message = generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths)
|
||||
except RuntimeError as e:
|
||||
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
||||
@@ -138,91 +193,117 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
try:
|
||||
# make a POST request to the API endpoint, stream=True
|
||||
from .bridge_all import model_info
|
||||
anthropic = Anthropic(api_key=ANTHROPIC_API_KEY)
|
||||
# endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||
# with ProxyNetworkActivate()
|
||||
stream = anthropic.completions.create(
|
||||
prompt=prompt,
|
||||
max_tokens_to_sample=4096, # The maximum number of tokens to generate before stopping.
|
||||
model=llm_kwargs['llm_model'],
|
||||
stream=True,
|
||||
temperature = llm_kwargs['temperature']
|
||||
)
|
||||
|
||||
break
|
||||
except:
|
||||
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||
response = requests.post(endpoint, headers=headers, json=message,
|
||||
proxies=proxies, stream=True, timeout=TIMEOUT_SECONDS);break
|
||||
except requests.exceptions.ReadTimeout as e:
|
||||
retry += 1
|
||||
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
|
||||
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
||||
traceback.print_exc()
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
|
||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||
stream_response = response.iter_lines()
|
||||
gpt_replying_buffer = ""
|
||||
|
||||
for completion in stream:
|
||||
try:
|
||||
gpt_replying_buffer = gpt_replying_buffer + completion.completion
|
||||
history[-1] = gpt_replying_buffer
|
||||
chatbot[-1] = (history[-2], history[-1])
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg='正常') # 刷新界面
|
||||
while True:
|
||||
try: chunk = next(stream_response)
|
||||
except StopIteration:
|
||||
break
|
||||
except requests.exceptions.ConnectionError:
|
||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||
need_to_pass, chunkjson, is_last_chunk = decode_chunk(chunk)
|
||||
if chunk:
|
||||
try:
|
||||
if need_to_pass:
|
||||
pass
|
||||
elif is_last_chunk:
|
||||
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||
# logging.info(f'[response] {gpt_replying_buffer}')
|
||||
break
|
||||
else:
|
||||
if chunkjson and chunkjson['type'] == 'content_block_delta':
|
||||
gpt_replying_buffer += chunkjson['delta']['text']
|
||||
history[-1] = gpt_replying_buffer
|
||||
chatbot[-1] = (history[-2], history[-1])
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg='正常') # 刷新界面
|
||||
|
||||
except Exception as e:
|
||||
from toolbox import regular_txt_to_markdown
|
||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str}")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + tb_str) # 刷新界面
|
||||
return
|
||||
except Exception as e:
|
||||
chunk = get_full_error(chunk, stream_response)
|
||||
chunk_decoded = chunk.decode()
|
||||
error_msg = chunk_decoded
|
||||
print(error_msg)
|
||||
raise RuntimeError("Json解析不合常规")
|
||||
|
||||
def multiple_picture_types(image_paths):
|
||||
"""
|
||||
根据图片类型返回image/jpeg, image/png, image/gif, image/webp,无法判断则返回image/jpeg
|
||||
"""
|
||||
for image_path in image_paths:
|
||||
if image_path.endswith('.jpeg') or image_path.endswith('.jpg'):
|
||||
return 'image/jpeg'
|
||||
elif image_path.endswith('.png'):
|
||||
return 'image/png'
|
||||
elif image_path.endswith('.gif'):
|
||||
return 'image/gif'
|
||||
elif image_path.endswith('.webp'):
|
||||
return 'image/webp'
|
||||
return 'image/jpeg'
|
||||
|
||||
|
||||
|
||||
# https://github.com/jtsang4/claude-to-chatgpt/blob/main/claude_to_chatgpt/adapter.py
|
||||
def convert_messages_to_prompt(messages):
|
||||
prompt = ""
|
||||
role_map = {
|
||||
"system": "Human",
|
||||
"user": "Human",
|
||||
"assistant": "Assistant",
|
||||
}
|
||||
for message in messages:
|
||||
role = message["role"]
|
||||
content = message["content"]
|
||||
transformed_role = role_map[role]
|
||||
prompt += f"\n\n{transformed_role.capitalize()}: {content}"
|
||||
prompt += "\n\nAssistant: "
|
||||
return prompt
|
||||
|
||||
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths):
|
||||
"""
|
||||
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||||
"""
|
||||
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
|
||||
|
||||
conversation_cnt = len(history) // 2
|
||||
|
||||
messages = [{"role": "system", "content": system_prompt}]
|
||||
messages = []
|
||||
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2*conversation_cnt, 2):
|
||||
what_i_have_asked = {}
|
||||
what_i_have_asked["role"] = "user"
|
||||
what_i_have_asked["content"] = history[index]
|
||||
what_i_have_asked["content"] = [{"type": "text", "text": history[index]}]
|
||||
what_gpt_answer = {}
|
||||
what_gpt_answer["role"] = "assistant"
|
||||
what_gpt_answer["content"] = history[index+1]
|
||||
if what_i_have_asked["content"] != "":
|
||||
if what_gpt_answer["content"] == "": continue
|
||||
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
||||
what_gpt_answer["content"] = [{"type": "text", "text": history[index+1]}]
|
||||
if what_i_have_asked["content"][0]["text"] != "":
|
||||
if what_i_have_asked["content"][0]["text"] == "": continue
|
||||
if what_i_have_asked["content"][0]["text"] == timeout_bot_msg: continue
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
else:
|
||||
messages[-1]['content'] = what_gpt_answer['content']
|
||||
messages[-1]['content'][0]['text'] = what_gpt_answer['content'][0]['text']
|
||||
|
||||
what_i_ask_now = {}
|
||||
what_i_ask_now["role"] = "user"
|
||||
what_i_ask_now["content"] = inputs
|
||||
if any([llm_kwargs['llm_model'] == model for model in Claude_3_Models]) and image_paths:
|
||||
what_i_ask_now = {}
|
||||
what_i_ask_now["role"] = "user"
|
||||
what_i_ask_now["content"] = []
|
||||
for image_path in image_paths:
|
||||
what_i_ask_now["content"].append({
|
||||
"type": "image",
|
||||
"source": {
|
||||
"type": "base64",
|
||||
"media_type": multiple_picture_types(image_paths),
|
||||
"data": encode_image(image_path),
|
||||
}
|
||||
})
|
||||
what_i_ask_now["content"].append({"type": "text", "text": inputs})
|
||||
else:
|
||||
what_i_ask_now = {}
|
||||
what_i_ask_now["role"] = "user"
|
||||
what_i_ask_now["content"] = [{"type": "text", "text": inputs}]
|
||||
messages.append(what_i_ask_now)
|
||||
prompt = convert_messages_to_prompt(messages)
|
||||
|
||||
return prompt
|
||||
|
||||
|
||||
# 开始整理headers与message
|
||||
headers = {
|
||||
'x-api-key': ANTHROPIC_API_KEY,
|
||||
'anthropic-version': '2023-06-01',
|
||||
'content-type': 'application/json'
|
||||
}
|
||||
payload = {
|
||||
'model': llm_kwargs['llm_model'],
|
||||
'max_tokens': 4096,
|
||||
'messages': messages,
|
||||
'temperature': llm_kwargs['temperature'],
|
||||
'stream': True,
|
||||
'system': system_prompt
|
||||
}
|
||||
return headers, payload
|
||||
|
||||
328
request_llms/bridge_cohere.py
普通文件
328
request_llms/bridge_cohere.py
普通文件
@@ -0,0 +1,328 @@
|
||||
# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目
|
||||
|
||||
"""
|
||||
该文件中主要包含三个函数
|
||||
|
||||
不具备多线程能力的函数:
|
||||
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
|
||||
|
||||
具备多线程调用能力的函数
|
||||
2. predict_no_ui_long_connection:支持多线程
|
||||
"""
|
||||
|
||||
import json
|
||||
import time
|
||||
import gradio as gr
|
||||
import logging
|
||||
import traceback
|
||||
import requests
|
||||
import importlib
|
||||
import random
|
||||
|
||||
# config_private.py放自己的秘密如API和代理网址
|
||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
|
||||
from toolbox import trimmed_format_exc, is_the_upload_folder, read_one_api_model_name, log_chat
|
||||
from toolbox import ChatBotWithCookies
|
||||
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
||||
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
|
||||
|
||||
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||||
|
||||
def get_full_error(chunk, stream_response):
|
||||
"""
|
||||
获取完整的从Cohere返回的报错
|
||||
"""
|
||||
while True:
|
||||
try:
|
||||
chunk += next(stream_response)
|
||||
except:
|
||||
break
|
||||
return chunk
|
||||
|
||||
def decode_chunk(chunk):
|
||||
# 提前读取一些信息 (用于判断异常)
|
||||
chunk_decoded = chunk.decode()
|
||||
chunkjson = None
|
||||
has_choices = False
|
||||
choice_valid = False
|
||||
has_content = False
|
||||
has_role = False
|
||||
try:
|
||||
chunkjson = json.loads(chunk_decoded)
|
||||
has_choices = 'choices' in chunkjson
|
||||
if has_choices: choice_valid = (len(chunkjson['choices']) > 0)
|
||||
if has_choices and choice_valid: has_content = ("content" in chunkjson['choices'][0]["delta"])
|
||||
if has_content: has_content = (chunkjson['choices'][0]["delta"]["content"] is not None)
|
||||
if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"]
|
||||
except:
|
||||
pass
|
||||
return chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role
|
||||
|
||||
from functools import lru_cache
|
||||
@lru_cache(maxsize=32)
|
||||
def verify_endpoint(endpoint):
|
||||
"""
|
||||
检查endpoint是否可用
|
||||
"""
|
||||
if "你亲手写的api名称" in endpoint:
|
||||
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
|
||||
return endpoint
|
||||
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
|
||||
"""
|
||||
发送,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||
inputs:
|
||||
是本次问询的输入
|
||||
sys_prompt:
|
||||
系统静默prompt
|
||||
llm_kwargs:
|
||||
内部调优参数
|
||||
history:
|
||||
是之前的对话列表
|
||||
observe_window = None:
|
||||
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||
"""
|
||||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
# make a POST request to the API endpoint, stream=False
|
||||
from .bridge_all import model_info
|
||||
endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
|
||||
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
|
||||
except requests.exceptions.ReadTimeout as e:
|
||||
retry += 1
|
||||
traceback.print_exc()
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||
|
||||
stream_response = response.iter_lines()
|
||||
result = ''
|
||||
json_data = None
|
||||
while True:
|
||||
try: chunk = next(stream_response)
|
||||
except StopIteration:
|
||||
break
|
||||
except requests.exceptions.ConnectionError:
|
||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
||||
if chunkjson['event_type'] == 'stream-start': continue
|
||||
if chunkjson['event_type'] == 'text-generation':
|
||||
result += chunkjson["text"]
|
||||
if not console_slience: print(chunkjson["text"], end='')
|
||||
if observe_window is not None:
|
||||
# 观测窗,把已经获取的数据显示出去
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] += chunkjson["text"]
|
||||
# 看门狗,如果超过期限没有喂狗,则终止
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("用户取消了程序。")
|
||||
if chunkjson['event_type'] == 'stream-end': break
|
||||
return result
|
||||
|
||||
|
||||
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||
"""
|
||||
发送至chatGPT,流式获取输出。
|
||||
用于基础的对话功能。
|
||||
inputs 是本次问询的输入
|
||||
top_p, temperature是chatGPT的内部调优参数
|
||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
# if is_any_api_key(inputs):
|
||||
# chatbot._cookies['api_key'] = inputs
|
||||
# chatbot.append(("输入已识别为Cohere的api_key", what_keys(inputs)))
|
||||
# yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") # 刷新界面
|
||||
# return
|
||||
# elif not is_any_api_key(chatbot._cookies['api_key']):
|
||||
# chatbot.append((inputs, "缺少api_key。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。"))
|
||||
# yield from update_ui(chatbot=chatbot, history=history, msg="缺少api_key") # 刷新界面
|
||||
# return
|
||||
|
||||
user_input = inputs
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
|
||||
raw_input = inputs
|
||||
# logging.info(f'[raw_input] {raw_input}')
|
||||
chatbot.append((inputs, ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||
|
||||
# check mis-behavior
|
||||
if is_the_upload_folder(user_input):
|
||||
chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
|
||||
time.sleep(2)
|
||||
|
||||
try:
|
||||
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||||
except RuntimeError as e:
|
||||
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
||||
return
|
||||
|
||||
# 检查endpoint是否合法
|
||||
try:
|
||||
from .bridge_all import model_info
|
||||
endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
|
||||
except:
|
||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
chatbot[-1] = (inputs, tb_str)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Endpoint不满足要求") # 刷新界面
|
||||
return
|
||||
|
||||
history.append(inputs); history.append("")
|
||||
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
# make a POST request to the API endpoint, stream=True
|
||||
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
|
||||
except:
|
||||
retry += 1
|
||||
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
|
||||
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
|
||||
gpt_replying_buffer = ""
|
||||
|
||||
is_head_of_the_stream = True
|
||||
if stream:
|
||||
stream_response = response.iter_lines()
|
||||
while True:
|
||||
try:
|
||||
chunk = next(stream_response)
|
||||
except StopIteration:
|
||||
# 非Cohere官方接口的出现这样的报错,Cohere和API2D不会走这里
|
||||
chunk_decoded = chunk.decode()
|
||||
error_msg = chunk_decoded
|
||||
# 其他情况,直接返回报错
|
||||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="非Cohere官方接口返回了错误:" + chunk.decode()) # 刷新界面
|
||||
return
|
||||
|
||||
# 提前读取一些信息 (用于判断异常)
|
||||
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
||||
|
||||
if chunkjson:
|
||||
try:
|
||||
if chunkjson['event_type'] == 'stream-start':
|
||||
continue
|
||||
if chunkjson['event_type'] == 'text-generation':
|
||||
gpt_replying_buffer = gpt_replying_buffer + chunkjson["text"]
|
||||
history[-1] = gpt_replying_buffer
|
||||
chatbot[-1] = (history[-2], history[-1])
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
|
||||
if chunkjson['event_type'] == 'stream-end':
|
||||
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||
history[-1] = gpt_replying_buffer
|
||||
chatbot[-1] = (history[-2], history[-1])
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
|
||||
break
|
||||
except Exception as e:
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
|
||||
chunk = get_full_error(chunk, stream_response)
|
||||
chunk_decoded = chunk.decode()
|
||||
error_msg = chunk_decoded
|
||||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
||||
print(error_msg)
|
||||
return
|
||||
|
||||
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
|
||||
from .bridge_all import model_info
|
||||
Cohere_website = ' 请登录Cohere查看详情 https://platform.Cohere.com/signup'
|
||||
if "reduce the length" in error_msg:
|
||||
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
||||
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
||||
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
||||
elif "does not exist" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格.")
|
||||
elif "Incorrect API key" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. Cohere以提供了不正确的API_KEY为由, 拒绝服务. " + Cohere_website)
|
||||
elif "exceeded your current quota" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. Cohere以账户额度不足为由, 拒绝服务." + Cohere_website)
|
||||
elif "account is not active" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Your account is not active. Cohere以账户失效为由, 拒绝服务." + Cohere_website)
|
||||
elif "associated with a deactivated account" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] You are associated with a deactivated account. Cohere以账户失效为由, 拒绝服务." + Cohere_website)
|
||||
elif "API key has been deactivated" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] API key has been deactivated. Cohere以账户失效为由, 拒绝服务." + Cohere_website)
|
||||
elif "bad forward key" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.")
|
||||
elif "Not enough point" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Not enough point. API2D账户点数不足.")
|
||||
else:
|
||||
from toolbox import regular_txt_to_markdown
|
||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
|
||||
return chatbot, history
|
||||
|
||||
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
"""
|
||||
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||||
"""
|
||||
# if not is_any_api_key(llm_kwargs['api_key']):
|
||||
# raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。")
|
||||
|
||||
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
||||
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {api_key}"
|
||||
}
|
||||
if API_ORG.startswith('org-'): headers.update({"Cohere-Organization": API_ORG})
|
||||
if llm_kwargs['llm_model'].startswith('azure-'):
|
||||
headers.update({"api-key": api_key})
|
||||
if llm_kwargs['llm_model'] in AZURE_CFG_ARRAY.keys():
|
||||
azure_api_key_unshared = AZURE_CFG_ARRAY[llm_kwargs['llm_model']]["AZURE_API_KEY"]
|
||||
headers.update({"api-key": azure_api_key_unshared})
|
||||
|
||||
conversation_cnt = len(history) // 2
|
||||
|
||||
messages = [{"role": "SYSTEM", "message": system_prompt}]
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2*conversation_cnt, 2):
|
||||
what_i_have_asked = {}
|
||||
what_i_have_asked["role"] = "USER"
|
||||
what_i_have_asked["message"] = history[index]
|
||||
what_gpt_answer = {}
|
||||
what_gpt_answer["role"] = "CHATBOT"
|
||||
what_gpt_answer["message"] = history[index+1]
|
||||
if what_i_have_asked["message"] != "":
|
||||
if what_gpt_answer["message"] == "": continue
|
||||
if what_gpt_answer["message"] == timeout_bot_msg: continue
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
else:
|
||||
messages[-1]['message'] = what_gpt_answer['message']
|
||||
|
||||
model = llm_kwargs['llm_model']
|
||||
if model.startswith('cohere-'): model = model[len('cohere-'):]
|
||||
payload = {
|
||||
"model": model,
|
||||
"message": inputs,
|
||||
"chat_history": messages,
|
||||
"temperature": llm_kwargs['temperature'], # 1.0,
|
||||
"top_p": llm_kwargs['top_p'], # 1.0,
|
||||
"n": 1,
|
||||
"stream": stream,
|
||||
"presence_penalty": 0,
|
||||
"frequency_penalty": 0,
|
||||
}
|
||||
|
||||
return headers,payload
|
||||
|
||||
|
||||
@@ -7,6 +7,7 @@ import re
|
||||
import os
|
||||
import time
|
||||
from request_llms.com_google import GoogleChatInit
|
||||
from toolbox import ChatBotWithCookies
|
||||
from toolbox import get_conf, update_ui, update_ui_lastest_msg, have_any_recent_upload_image_files, trimmed_format_exc
|
||||
|
||||
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY')
|
||||
@@ -20,7 +21,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
if get_conf("GEMINI_API_KEY") == "":
|
||||
raise ValueError(f"请配置 GEMINI_API_KEY。")
|
||||
|
||||
genai = GoogleChatInit()
|
||||
genai = GoogleChatInit(llm_kwargs)
|
||||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||
gpt_replying_buffer = ''
|
||||
stream_response = genai.generate_chat(inputs, llm_kwargs, history, sys_prompt)
|
||||
@@ -44,7 +45,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
return gpt_replying_buffer
|
||||
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
|
||||
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||
# 检查API_KEY
|
||||
if get_conf("GEMINI_API_KEY") == "":
|
||||
yield from update_ui_lastest_msg(f"请配置 GEMINI_API_KEY。", chatbot=chatbot, history=history, delay=0)
|
||||
@@ -70,7 +72,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
|
||||
chatbot.append((inputs, ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
genai = GoogleChatInit()
|
||||
genai = GoogleChatInit(llm_kwargs)
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
import time
|
||||
import threading
|
||||
import importlib
|
||||
from toolbox import update_ui, get_conf
|
||||
from multiprocessing import Process, Pipe
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
|
||||
load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||
|
||||
@@ -106,7 +106,8 @@ class GetGLMHandle(Process):
|
||||
global llama_glm_handle
|
||||
llama_glm_handle = None
|
||||
#################################################################################
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
import time
|
||||
import threading
|
||||
import importlib
|
||||
from toolbox import update_ui, get_conf
|
||||
from multiprocessing import Process, Pipe
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
|
||||
load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||
|
||||
@@ -106,7 +106,8 @@ class GetGLMHandle(Process):
|
||||
global pangu_glm_handle
|
||||
pangu_glm_handle = None
|
||||
#################################################################################
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
|
||||
@@ -106,7 +106,8 @@ class GetGLMHandle(Process):
|
||||
global rwkv_glm_handle
|
||||
rwkv_glm_handle = None
|
||||
#################################################################################
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
|
||||
197
request_llms/bridge_moonshot.py
普通文件
197
request_llms/bridge_moonshot.py
普通文件
@@ -0,0 +1,197 @@
|
||||
# encoding: utf-8
|
||||
# @Time : 2024/3/3
|
||||
# @Author : Spike
|
||||
# @Descr :
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
import logging
|
||||
|
||||
from toolbox import get_conf, update_ui, log_chat
|
||||
from toolbox import ChatBotWithCookies
|
||||
|
||||
import requests
|
||||
|
||||
|
||||
class MoonShotInit:
|
||||
|
||||
def __init__(self):
|
||||
self.llm_model = None
|
||||
self.url = 'https://api.moonshot.cn/v1/chat/completions'
|
||||
self.api_key = get_conf('MOONSHOT_API_KEY')
|
||||
|
||||
def __converter_file(self, user_input: str):
|
||||
what_ask = []
|
||||
for f in user_input.splitlines():
|
||||
if os.path.exists(f):
|
||||
files = []
|
||||
if os.path.isdir(f):
|
||||
file_list = os.listdir(f)
|
||||
files.extend([os.path.join(f, file) for file in file_list])
|
||||
else:
|
||||
files.append(f)
|
||||
for file in files:
|
||||
if file.split('.')[-1] in ['pdf']:
|
||||
with open(file, 'r') as fp:
|
||||
from crazy_functions.crazy_utils import read_and_clean_pdf_text
|
||||
file_content, _ = read_and_clean_pdf_text(fp)
|
||||
what_ask.append({"role": "system", "content": file_content})
|
||||
return what_ask
|
||||
|
||||
def __converter_user(self, user_input: str):
|
||||
what_i_ask_now = {"role": "user", "content": user_input}
|
||||
return what_i_ask_now
|
||||
|
||||
def __conversation_history(self, history):
|
||||
conversation_cnt = len(history) // 2
|
||||
messages = []
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2 * conversation_cnt, 2):
|
||||
what_i_have_asked = {
|
||||
"role": "user",
|
||||
"content": str(history[index])
|
||||
}
|
||||
what_gpt_answer = {
|
||||
"role": "assistant",
|
||||
"content": str(history[index + 1])
|
||||
}
|
||||
if what_i_have_asked["content"] != "":
|
||||
if what_gpt_answer["content"] == "": continue
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
else:
|
||||
messages[-1]['content'] = what_gpt_answer['content']
|
||||
return messages
|
||||
|
||||
def _analysis_content(self, chuck):
|
||||
chunk_decoded = chuck.decode("utf-8")
|
||||
chunk_json = {}
|
||||
content = ""
|
||||
try:
|
||||
chunk_json = json.loads(chunk_decoded[6:])
|
||||
content = chunk_json['choices'][0]["delta"].get("content", "")
|
||||
except:
|
||||
pass
|
||||
return chunk_decoded, chunk_json, content
|
||||
|
||||
def generate_payload(self, inputs, llm_kwargs, history, system_prompt, stream):
|
||||
self.llm_model = llm_kwargs['llm_model']
|
||||
llm_kwargs.update({'use-key': self.api_key})
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
messages.extend(self.__converter_file(inputs))
|
||||
for i in history[0::2]: # 历史文件继续上传
|
||||
messages.extend(self.__converter_file(i))
|
||||
messages.extend(self.__conversation_history(history))
|
||||
messages.append(self.__converter_user(inputs))
|
||||
header = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {self.api_key}",
|
||||
}
|
||||
payload = {
|
||||
"model": self.llm_model,
|
||||
"messages": messages,
|
||||
"temperature": llm_kwargs.get('temperature', 0.3), # 1.0,
|
||||
"top_p": llm_kwargs.get('top_p', 1.0), # 1.0,
|
||||
"n": llm_kwargs.get('n_choices', 1),
|
||||
"stream": stream
|
||||
}
|
||||
return payload, header
|
||||
|
||||
def generate_messages(self, inputs, llm_kwargs, history, system_prompt, stream):
|
||||
payload, headers = self.generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||||
response = requests.post(self.url, headers=headers, json=payload, stream=stream)
|
||||
|
||||
chunk_content = ""
|
||||
gpt_bro_result = ""
|
||||
for chuck in response.iter_lines():
|
||||
chunk_decoded, check_json, content = self._analysis_content(chuck)
|
||||
chunk_content += chunk_decoded
|
||||
if content:
|
||||
gpt_bro_result += content
|
||||
yield content, gpt_bro_result, ''
|
||||
else:
|
||||
error_msg = msg_handle_error(llm_kwargs, chunk_decoded)
|
||||
if error_msg:
|
||||
yield error_msg, gpt_bro_result, error_msg
|
||||
break
|
||||
|
||||
|
||||
def msg_handle_error(llm_kwargs, chunk_decoded):
|
||||
use_ket = llm_kwargs.get('use-key', '')
|
||||
api_key_encryption = use_ket[:8] + '****' + use_ket[-5:]
|
||||
openai_website = f' 请登录OpenAI查看详情 https://platform.openai.com/signup api-key: `{api_key_encryption}`'
|
||||
error_msg = ''
|
||||
if "does not exist" in chunk_decoded:
|
||||
error_msg = f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格."
|
||||
elif "Incorrect API key" in chunk_decoded:
|
||||
error_msg = f"[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由, 拒绝服务." + openai_website
|
||||
elif "exceeded your current quota" in chunk_decoded:
|
||||
error_msg = "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由, 拒绝服务." + openai_website
|
||||
elif "account is not active" in chunk_decoded:
|
||||
error_msg = "[Local Message] Your account is not active. OpenAI以账户失效为由, 拒绝服务." + openai_website
|
||||
elif "associated with a deactivated account" in chunk_decoded:
|
||||
error_msg = "[Local Message] You are associated with a deactivated account. OpenAI以账户失效为由, 拒绝服务." + openai_website
|
||||
elif "API key has been deactivated" in chunk_decoded:
|
||||
error_msg = "[Local Message] API key has been deactivated. OpenAI以账户失效为由, 拒绝服务." + openai_website
|
||||
elif "bad forward key" in chunk_decoded:
|
||||
error_msg = "[Local Message] Bad forward key. API2D账户额度不足."
|
||||
elif "Not enough point" in chunk_decoded:
|
||||
error_msg = "[Local Message] Not enough point. API2D账户点数不足."
|
||||
elif 'error' in str(chunk_decoded).lower():
|
||||
try:
|
||||
error_msg = json.dumps(json.loads(chunk_decoded[:6]), indent=4, ensure_ascii=False)
|
||||
except:
|
||||
error_msg = chunk_decoded
|
||||
return error_msg
|
||||
|
||||
|
||||
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||
chatbot.append([inputs, ""])
|
||||
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||
gpt_bro_init = MoonShotInit()
|
||||
history.extend([inputs, ''])
|
||||
stream_response = gpt_bro_init.generate_messages(inputs, llm_kwargs, history, system_prompt, stream)
|
||||
for content, gpt_bro_result, error_bro_meg in stream_response:
|
||||
chatbot[-1] = [inputs, gpt_bro_result]
|
||||
history[-1] = gpt_bro_result
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
if error_bro_meg:
|
||||
chatbot[-1] = [inputs, error_bro_meg]
|
||||
history = history[:-2]
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
break
|
||||
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_bro_result)
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None,
|
||||
console_slience=False):
|
||||
gpt_bro_init = MoonShotInit()
|
||||
watch_dog_patience = 60 # 看门狗的耐心, 设置10秒即可
|
||||
stream_response = gpt_bro_init.generate_messages(inputs, llm_kwargs, history, sys_prompt, True)
|
||||
moonshot_bro_result = ''
|
||||
for content, moonshot_bro_result, error_bro_meg in stream_response:
|
||||
moonshot_bro_result = moonshot_bro_result
|
||||
if error_bro_meg:
|
||||
if len(observe_window) >= 3:
|
||||
observe_window[2] = error_bro_meg
|
||||
return f'{moonshot_bro_result} 对话错误'
|
||||
# 观测窗
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] = moonshot_bro_result
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time() - observe_window[1]) > watch_dog_patience:
|
||||
observe_window[2] = "请求超时,程序终止。"
|
||||
raise RuntimeError(f"{moonshot_bro_result} 程序终止。")
|
||||
return moonshot_bro_result
|
||||
|
||||
if __name__ == '__main__':
|
||||
moon_ai = MoonShotInit()
|
||||
for g in moon_ai.generate_messages('hello', {'llm_model': 'moonshot-v1-8k'},
|
||||
[], '', True):
|
||||
print(g)
|
||||
@@ -171,7 +171,8 @@ class GetGLMHandle(Process):
|
||||
global moss_handle
|
||||
moss_handle = None
|
||||
#################################################################################
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
|
||||
@@ -117,7 +117,8 @@ def generate_from_baidu_qianfan(inputs, llm_kwargs, history, system_prompt):
|
||||
raise RuntimeError(dec['error_msg'])
|
||||
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
"""
|
||||
⭐多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
|
||||
@@ -5,7 +5,8 @@ from toolbox import check_packages, report_exception
|
||||
|
||||
model_name = 'Qwen'
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
"""
|
||||
⭐多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
@@ -47,6 +48,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
chatbot[-1] = (inputs, "")
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 开始接收回复
|
||||
from .com_qwenapi import QwenRequestInstance
|
||||
|
||||
@@ -9,7 +9,8 @@ def validate_key():
|
||||
if YUNQUE_SECRET_KEY == '': return False
|
||||
return True
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
"""
|
||||
⭐ 多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
|
||||
@@ -13,7 +13,8 @@ def validate_key():
|
||||
return False
|
||||
return True
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
"""
|
||||
⭐多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
|
||||
283
request_llms/bridge_yimodel.py
普通文件
283
request_llms/bridge_yimodel.py
普通文件
@@ -0,0 +1,283 @@
|
||||
# 借鉴自同目录下的bridge_chatgpt.py
|
||||
|
||||
"""
|
||||
该文件中主要包含三个函数
|
||||
|
||||
不具备多线程能力的函数:
|
||||
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
|
||||
|
||||
具备多线程调用能力的函数
|
||||
2. predict_no_ui_long_connection:支持多线程
|
||||
"""
|
||||
|
||||
import json
|
||||
import time
|
||||
import gradio as gr
|
||||
import logging
|
||||
import traceback
|
||||
import requests
|
||||
import importlib
|
||||
import random
|
||||
|
||||
# config_private.py放自己的秘密如API和代理网址
|
||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||
from toolbox import get_conf, update_ui, trimmed_format_exc, is_the_upload_folder, read_one_api_model_name
|
||||
proxies, TIMEOUT_SECONDS, MAX_RETRY, YIMODEL_API_KEY = \
|
||||
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'YIMODEL_API_KEY')
|
||||
|
||||
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||||
|
||||
def get_full_error(chunk, stream_response):
|
||||
"""
|
||||
获取完整的从Openai返回的报错
|
||||
"""
|
||||
while True:
|
||||
try:
|
||||
chunk += next(stream_response)
|
||||
except:
|
||||
break
|
||||
return chunk
|
||||
|
||||
def decode_chunk(chunk):
|
||||
# 提前读取一些信息(用于判断异常)
|
||||
chunk_decoded = chunk.decode()
|
||||
chunkjson = None
|
||||
is_last_chunk = False
|
||||
try:
|
||||
chunkjson = json.loads(chunk_decoded[6:])
|
||||
is_last_chunk = chunkjson.get("lastOne", False)
|
||||
except:
|
||||
pass
|
||||
return chunk_decoded, chunkjson, is_last_chunk
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||
"""
|
||||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||
inputs:
|
||||
是本次问询的输入
|
||||
sys_prompt:
|
||||
系统静默prompt
|
||||
llm_kwargs:
|
||||
chatGPT的内部调优参数
|
||||
history:
|
||||
是之前的对话列表
|
||||
observe_window = None:
|
||||
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||
"""
|
||||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||
if inputs == "": inputs = "空空如也的输入栏"
|
||||
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
# make a POST request to the API endpoint, stream=False
|
||||
from .bridge_all import model_info
|
||||
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
|
||||
except requests.exceptions.ReadTimeout as e:
|
||||
retry += 1
|
||||
traceback.print_exc()
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||
|
||||
stream_response = response.iter_lines()
|
||||
result = ''
|
||||
is_head_of_the_stream = True
|
||||
while True:
|
||||
try: chunk = next(stream_response)
|
||||
except StopIteration:
|
||||
break
|
||||
except requests.exceptions.ConnectionError:
|
||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||
chunk_decoded, chunkjson, is_last_chunk = decode_chunk(chunk)
|
||||
if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r'"role":"assistant"' in chunk_decoded):
|
||||
# 数据流的第一帧不携带content
|
||||
is_head_of_the_stream = False; continue
|
||||
if chunk:
|
||||
try:
|
||||
if is_last_chunk:
|
||||
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||
logging.info(f'[response] {result}')
|
||||
break
|
||||
result += chunkjson['choices'][0]["delta"]["content"]
|
||||
if not console_slience: print(chunkjson['choices'][0]["delta"]["content"], end='')
|
||||
if observe_window is not None:
|
||||
# 观测窗,把已经获取的数据显示出去
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] += chunkjson['choices'][0]["delta"]["content"]
|
||||
# 看门狗,如果超过期限没有喂狗,则终止
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("用户取消了程序。")
|
||||
except Exception as e:
|
||||
chunk = get_full_error(chunk, stream_response)
|
||||
chunk_decoded = chunk.decode()
|
||||
error_msg = chunk_decoded
|
||||
print(error_msg)
|
||||
raise RuntimeError("Json解析不合常规")
|
||||
return result
|
||||
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
发送至chatGPT,流式获取输出。
|
||||
用于基础的对话功能。
|
||||
inputs 是本次问询的输入
|
||||
top_p, temperature是chatGPT的内部调优参数
|
||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
if len(YIMODEL_API_KEY) == 0:
|
||||
raise RuntimeError("没有设置YIMODEL_API_KEY选项")
|
||||
if inputs == "": inputs = "空空如也的输入栏"
|
||||
user_input = inputs
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
|
||||
raw_input = inputs
|
||||
logging.info(f'[raw_input] {raw_input}')
|
||||
chatbot.append((inputs, ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||
|
||||
# check mis-behavior
|
||||
if is_the_upload_folder(user_input):
|
||||
chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
|
||||
time.sleep(2)
|
||||
|
||||
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||||
|
||||
from .bridge_all import model_info
|
||||
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||
|
||||
history.append(inputs); history.append("")
|
||||
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
# make a POST request to the API endpoint, stream=True
|
||||
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
|
||||
except:
|
||||
retry += 1
|
||||
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
|
||||
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
|
||||
gpt_replying_buffer = ""
|
||||
|
||||
is_head_of_the_stream = True
|
||||
if stream:
|
||||
stream_response = response.iter_lines()
|
||||
while True:
|
||||
try:
|
||||
chunk = next(stream_response)
|
||||
except StopIteration:
|
||||
break
|
||||
except requests.exceptions.ConnectionError:
|
||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||
|
||||
# 提前读取一些信息 (用于判断异常)
|
||||
chunk_decoded, chunkjson, is_last_chunk = decode_chunk(chunk)
|
||||
|
||||
if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r'"role":"assistant"' in chunk_decoded):
|
||||
# 数据流的第一帧不携带content
|
||||
is_head_of_the_stream = False; continue
|
||||
|
||||
if chunk:
|
||||
try:
|
||||
if is_last_chunk:
|
||||
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||
logging.info(f'[response] {gpt_replying_buffer}')
|
||||
break
|
||||
# 处理数据流的主体
|
||||
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
|
||||
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
|
||||
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
|
||||
history[-1] = gpt_replying_buffer
|
||||
chatbot[-1] = (history[-2], history[-1])
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
|
||||
except Exception as e:
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
|
||||
chunk = get_full_error(chunk, stream_response)
|
||||
chunk_decoded = chunk.decode()
|
||||
error_msg = chunk_decoded
|
||||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
||||
print(error_msg)
|
||||
return
|
||||
|
||||
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
|
||||
from .bridge_all import model_info
|
||||
if "bad_request" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] 已经超过了模型的最大上下文或是模型格式错误,请尝试削减单次输入的文本量。")
|
||||
elif "authentication_error" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. 请确保API key有效。")
|
||||
elif "not_found" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] {llm_kwargs['llm_model']} 无效,请确保使用小写的模型名称。")
|
||||
elif "rate_limit" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] 遇到了控制请求速率限制,请一分钟后重试。")
|
||||
elif "system_busy" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] 系统繁忙,请一分钟后重试。")
|
||||
else:
|
||||
from toolbox import regular_txt_to_markdown
|
||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
|
||||
return chatbot, history
|
||||
|
||||
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
"""
|
||||
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||||
"""
|
||||
api_key = f"Bearer {YIMODEL_API_KEY}"
|
||||
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": api_key
|
||||
}
|
||||
|
||||
conversation_cnt = len(history) // 2
|
||||
|
||||
messages = [{"role": "system", "content": system_prompt}]
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2*conversation_cnt, 2):
|
||||
what_i_have_asked = {}
|
||||
what_i_have_asked["role"] = "user"
|
||||
what_i_have_asked["content"] = history[index]
|
||||
what_gpt_answer = {}
|
||||
what_gpt_answer["role"] = "assistant"
|
||||
what_gpt_answer["content"] = history[index+1]
|
||||
if what_i_have_asked["content"] != "":
|
||||
if what_gpt_answer["content"] == "": continue
|
||||
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
else:
|
||||
messages[-1]['content'] = what_gpt_answer['content']
|
||||
|
||||
what_i_ask_now = {}
|
||||
what_i_ask_now["role"] = "user"
|
||||
what_i_ask_now["content"] = inputs
|
||||
messages.append(what_i_ask_now)
|
||||
model = llm_kwargs['llm_model']
|
||||
if llm_kwargs['llm_model'].startswith('one-api-'):
|
||||
model = llm_kwargs['llm_model'][len('one-api-'):]
|
||||
model, _ = read_one_api_model_name(model)
|
||||
tokens = 600 if llm_kwargs['llm_model'] == 'yi-34b-chat-0205' else 4096 #yi-34b-chat-0205只有4k上下文...
|
||||
payload = {
|
||||
"model": model,
|
||||
"messages": messages,
|
||||
"temperature": llm_kwargs['temperature'], # 1.0,
|
||||
"stream": stream,
|
||||
"max_tokens": tokens
|
||||
}
|
||||
try:
|
||||
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
|
||||
except:
|
||||
print('输入中可能存在乱码。')
|
||||
return headers,payload
|
||||
@@ -1,7 +1,8 @@
|
||||
import time
|
||||
import os
|
||||
from toolbox import update_ui, get_conf, update_ui_lastest_msg
|
||||
from toolbox import update_ui, get_conf, update_ui_lastest_msg, log_chat
|
||||
from toolbox import check_packages, report_exception, have_any_recent_upload_image_files
|
||||
from toolbox import ChatBotWithCookies
|
||||
|
||||
model_name = '智谱AI大模型'
|
||||
zhipuai_default_model = 'glm-4'
|
||||
@@ -16,7 +17,8 @@ def make_media_input(inputs, image_paths):
|
||||
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
||||
return inputs
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
"""
|
||||
⭐多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
@@ -42,7 +44,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
return response
|
||||
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
|
||||
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||
"""
|
||||
⭐单线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
@@ -90,4 +93,5 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
chatbot[-1] = [inputs, response]
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
history.extend([inputs, response])
|
||||
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
@@ -114,8 +114,10 @@ def html_local_img(__file, layout="left", max_width=None, max_height=None, md=Tr
|
||||
|
||||
|
||||
class GoogleChatInit:
|
||||
def __init__(self):
|
||||
self.url_gemini = "https://generativelanguage.googleapis.com/v1beta/models/%m:streamGenerateContent?key=%k"
|
||||
def __init__(self, llm_kwargs):
|
||||
from .bridge_all import model_info
|
||||
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||
self.url_gemini = endpoint + "/%m:streamGenerateContent?key=%k"
|
||||
|
||||
def generate_chat(self, inputs, llm_kwargs, history, system_prompt):
|
||||
headers, payload = self.generate_message_payload(
|
||||
|
||||
@@ -48,6 +48,10 @@ class QwenRequestInstance():
|
||||
for response in responses:
|
||||
if response.status_code == HTTPStatus.OK:
|
||||
if response.output.choices[0].finish_reason == 'stop':
|
||||
try:
|
||||
self.result_buf += response.output.choices[0].message.content
|
||||
except:
|
||||
pass
|
||||
yield self.result_buf
|
||||
break
|
||||
elif response.output.choices[0].finish_reason == 'length':
|
||||
|
||||
@@ -8,7 +8,7 @@ from toolbox import get_conf, encode_image, get_pictures_list
|
||||
import logging, os
|
||||
|
||||
|
||||
def input_encode_handler(inputs, llm_kwargs):
|
||||
def input_encode_handler(inputs:str, llm_kwargs:dict):
|
||||
if llm_kwargs["most_recent_uploaded"].get("path"):
|
||||
image_paths = get_pictures_list(llm_kwargs["most_recent_uploaded"]["path"])
|
||||
md_encode = []
|
||||
@@ -28,7 +28,7 @@ class ZhipuChatInit:
|
||||
self.zhipu_bro = ZhipuAI(api_key=ZHIPUAI_API_KEY)
|
||||
self.model = ''
|
||||
|
||||
def __conversation_user(self, user_input: str, llm_kwargs):
|
||||
def __conversation_user(self, user_input: str, llm_kwargs:dict):
|
||||
if self.model not in ["glm-4v"]:
|
||||
return {"role": "user", "content": user_input}
|
||||
else:
|
||||
@@ -41,7 +41,7 @@ class ZhipuChatInit:
|
||||
what_i_have_asked['content'].append(img_d)
|
||||
return what_i_have_asked
|
||||
|
||||
def __conversation_history(self, history, llm_kwargs):
|
||||
def __conversation_history(self, history:list, llm_kwargs:dict):
|
||||
messages = []
|
||||
conversation_cnt = len(history) // 2
|
||||
if conversation_cnt:
|
||||
@@ -55,22 +55,67 @@ class ZhipuChatInit:
|
||||
messages.append(what_gpt_answer)
|
||||
return messages
|
||||
|
||||
def __conversation_message_payload(self, inputs, llm_kwargs, history, system_prompt):
|
||||
@staticmethod
|
||||
def preprocess_param(param, default=0.95, min_val=0.01, max_val=0.99):
|
||||
"""预处理参数,保证其在允许范围内,并处理精度问题"""
|
||||
try:
|
||||
param = float(param)
|
||||
except ValueError:
|
||||
return default
|
||||
|
||||
if param <= min_val:
|
||||
return min_val
|
||||
elif param >= max_val:
|
||||
return max_val
|
||||
else:
|
||||
return round(param, 2) # 可挑选精度,目前是两位小数
|
||||
|
||||
def __conversation_message_payload(self, inputs:str, llm_kwargs:dict, history:list, system_prompt:str):
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
self.model = llm_kwargs['llm_model']
|
||||
messages.extend(self.__conversation_history(history, llm_kwargs)) # 处理 history
|
||||
if inputs.strip() == "": # 处理空输入导致报错的问题 https://github.com/binary-husky/gpt_academic/issues/1640 提示 {"error":{"code":"1214","message":"messages[1]:content和tool_calls 字段不能同时为空"}
|
||||
inputs = "." # 空格、换行、空字符串都会报错,所以用最没有意义的一个点代替
|
||||
messages.append(self.__conversation_user(inputs, llm_kwargs)) # 处理用户对话
|
||||
"""
|
||||
采样温度,控制输出的随机性,必须为正数
|
||||
取值范围是:(0.0, 1.0),不能等于 0,默认值为 0.95,
|
||||
值越大,会使输出更随机,更具创造性;
|
||||
值越小,输出会更加稳定或确定
|
||||
建议您根据应用场景调整 top_p 或 temperature 参数,但不要同时调整两个参数
|
||||
"""
|
||||
temperature = self.preprocess_param(
|
||||
param=llm_kwargs.get('temperature', 0.95),
|
||||
default=0.95,
|
||||
min_val=0.01,
|
||||
max_val=0.99
|
||||
)
|
||||
"""
|
||||
用温度取样的另一种方法,称为核取样
|
||||
取值范围是:(0.0, 1.0) 开区间,
|
||||
不能等于 0 或 1,默认值为 0.7
|
||||
模型考虑具有 top_p 概率质量 tokens 的结果
|
||||
例如:0.1 意味着模型解码器只考虑从前 10% 的概率的候选集中取 tokens
|
||||
建议您根据应用场景调整 top_p 或 temperature 参数,
|
||||
但不要同时调整两个参数
|
||||
"""
|
||||
top_p = self.preprocess_param(
|
||||
param=llm_kwargs.get('top_p', 0.70),
|
||||
default=0.70,
|
||||
min_val=0.01,
|
||||
max_val=0.99
|
||||
)
|
||||
response = self.zhipu_bro.chat.completions.create(
|
||||
model=self.model, messages=messages, stream=True,
|
||||
temperature=llm_kwargs.get('temperature', 0.95) * 0.95, # 只能传默认的 temperature 和 top_p
|
||||
top_p=llm_kwargs.get('top_p', 0.7) * 0.7,
|
||||
max_tokens=llm_kwargs.get('max_tokens', 1024 * 4), # 最大输出模型的一半
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
max_tokens=llm_kwargs.get('max_tokens', 1024 * 4),
|
||||
)
|
||||
return response
|
||||
|
||||
def generate_chat(self, inputs, llm_kwargs, history, system_prompt):
|
||||
def generate_chat(self, inputs:str, llm_kwargs:dict, history:list, system_prompt:str):
|
||||
self.model = llm_kwargs['llm_model']
|
||||
response = self.__conversation_message_payload(inputs, llm_kwargs, history, system_prompt)
|
||||
bro_results = ''
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import time
|
||||
import threading
|
||||
from toolbox import update_ui, Singleton
|
||||
from toolbox import ChatBotWithCookies
|
||||
from multiprocessing import Process, Pipe
|
||||
from contextlib import redirect_stdout
|
||||
from request_llms.queued_pipe import create_queue_pipe
|
||||
@@ -214,7 +215,7 @@ class LocalLLMHandle(Process):
|
||||
def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='classic'):
|
||||
load_message = f"{model_name}尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,{model_name}消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=[], console_slience:bool=False):
|
||||
"""
|
||||
refer to request_llms/bridge_all.py
|
||||
"""
|
||||
@@ -260,7 +261,8 @@ def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='cla
|
||||
raise RuntimeError("程序终止。")
|
||||
return response
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
|
||||
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||
"""
|
||||
refer to request_llms/bridge_all.py
|
||||
"""
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
https://public.agent-matrix.com/publish/gradio-3.32.8-py3-none-any.whl
|
||||
https://public.agent-matrix.com/publish/gradio-3.32.9-py3-none-any.whl
|
||||
gradio-client==0.8
|
||||
pypdf2==2.12.1
|
||||
zhipuai>=2
|
||||
@@ -8,6 +8,7 @@ pydantic==2.5.2
|
||||
protobuf==3.18
|
||||
transformers>=4.27.1
|
||||
scipdf_parser>=0.52
|
||||
anthropic>=0.18.1
|
||||
python-markdown-math
|
||||
pymdown-extensions
|
||||
websocket-client
|
||||
@@ -16,7 +17,7 @@ prompt_toolkit
|
||||
latex2mathml
|
||||
python-docx
|
||||
mdtex2html
|
||||
anthropic
|
||||
dashscope
|
||||
pyautogen
|
||||
colorama
|
||||
Markdown
|
||||
|
||||
61
shared_utils/cookie_manager.py
普通文件
61
shared_utils/cookie_manager.py
普通文件
@@ -0,0 +1,61 @@
|
||||
from typing import Callable
|
||||
def load_web_cookie_cache__fn_builder(customize_btns, cookies, predefined_btns)->Callable:
|
||||
def load_web_cookie_cache(persistent_cookie_, cookies_):
|
||||
import gradio as gr
|
||||
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
|
||||
|
||||
ret = {}
|
||||
for k in customize_btns:
|
||||
ret.update({customize_btns[k]: gr.update(visible=False, value="")})
|
||||
|
||||
try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
|
||||
except: return ret
|
||||
|
||||
customize_fn_overwrite_ = persistent_cookie_.get("custom_bnt", {})
|
||||
cookies_['customize_fn_overwrite'] = customize_fn_overwrite_
|
||||
ret.update({cookies: cookies_})
|
||||
|
||||
for k,v in persistent_cookie_["custom_bnt"].items():
|
||||
if v['Title'] == "": continue
|
||||
if k in customize_btns: ret.update({customize_btns[k]: gr.update(visible=True, value=v['Title'])})
|
||||
else: ret.update({predefined_btns[k]: gr.update(visible=True, value=v['Title'])})
|
||||
return ret
|
||||
return load_web_cookie_cache
|
||||
|
||||
|
||||
def assign_btn__fn_builder(customize_btns, predefined_btns, cookies, web_cookie_cache)->Callable:
|
||||
def assign_btn(persistent_cookie_, cookies_, basic_btn_dropdown_, basic_fn_title, basic_fn_prefix, basic_fn_suffix, clean_up=False):
|
||||
import gradio as gr
|
||||
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
|
||||
ret = {}
|
||||
# 读取之前的自定义按钮
|
||||
customize_fn_overwrite_ = cookies_['customize_fn_overwrite']
|
||||
# 更新新的自定义按钮
|
||||
customize_fn_overwrite_.update({
|
||||
basic_btn_dropdown_:
|
||||
{
|
||||
"Title":basic_fn_title,
|
||||
"Prefix":basic_fn_prefix,
|
||||
"Suffix":basic_fn_suffix,
|
||||
}
|
||||
}
|
||||
)
|
||||
if clean_up:
|
||||
customize_fn_overwrite_ = {}
|
||||
cookies_.update(customize_fn_overwrite_) # 更新cookie
|
||||
visible = (not clean_up) and (basic_fn_title != "")
|
||||
if basic_btn_dropdown_ in customize_btns:
|
||||
# 是自定义按钮,不是预定义按钮
|
||||
ret.update({customize_btns[basic_btn_dropdown_]: gr.update(visible=visible, value=basic_fn_title)})
|
||||
else:
|
||||
# 是预定义按钮
|
||||
ret.update({predefined_btns[basic_btn_dropdown_]: gr.update(visible=visible, value=basic_fn_title)})
|
||||
ret.update({cookies: cookies_})
|
||||
try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
|
||||
except: persistent_cookie_ = {}
|
||||
persistent_cookie_["custom_bnt"] = customize_fn_overwrite_ # dict update new value
|
||||
persistent_cookie_ = to_cookie_str(persistent_cookie_) # persistent cookie to dict
|
||||
ret.update({web_cookie_cache: persistent_cookie_}) # write persistent cookie
|
||||
return ret
|
||||
return assign_btn
|
||||
|
||||
211
shared_utils/fastapi_server.py
普通文件
211
shared_utils/fastapi_server.py
普通文件
@@ -0,0 +1,211 @@
|
||||
"""
|
||||
Tests:
|
||||
|
||||
- custom_path false / no user auth:
|
||||
-- upload file(yes)
|
||||
-- download file(yes)
|
||||
-- websocket(yes)
|
||||
-- block __pycache__ access(yes)
|
||||
-- rel (yes)
|
||||
-- abs (yes)
|
||||
-- block user access(fail) http://localhost:45013/file=gpt_log/admin/chat_secrets.log
|
||||
-- fix(commit f6bf05048c08f5cd84593f7fdc01e64dec1f584a)-> block successful
|
||||
|
||||
- custom_path yes("/cc/gptac") / no user auth:
|
||||
-- upload file(yes)
|
||||
-- download file(yes)
|
||||
-- websocket(yes)
|
||||
-- block __pycache__ access(yes)
|
||||
-- block user access(yes)
|
||||
|
||||
- custom_path yes("/cc/gptac/") / no user auth:
|
||||
-- upload file(yes)
|
||||
-- download file(yes)
|
||||
-- websocket(yes)
|
||||
-- block user access(yes)
|
||||
|
||||
- custom_path yes("/cc/gptac/") / + user auth:
|
||||
-- upload file(yes)
|
||||
-- download file(yes)
|
||||
-- websocket(yes)
|
||||
-- block user access(yes)
|
||||
-- block user-wise access (yes)
|
||||
|
||||
- custom_path no + user auth:
|
||||
-- upload file(yes)
|
||||
-- download file(yes)
|
||||
-- websocket(yes)
|
||||
-- block user access(yes)
|
||||
-- block user-wise access (yes)
|
||||
|
||||
queue cocurrent effectiveness
|
||||
-- upload file(yes)
|
||||
-- download file(yes)
|
||||
-- websocket(yes)
|
||||
"""
|
||||
|
||||
import os, requests, threading, time
|
||||
import uvicorn
|
||||
|
||||
def _authorize_user(path_or_url, request, gradio_app):
|
||||
from toolbox import get_conf, default_user_name
|
||||
PATH_PRIVATE_UPLOAD, PATH_LOGGING = get_conf('PATH_PRIVATE_UPLOAD', 'PATH_LOGGING')
|
||||
sensitive_path = None
|
||||
path_or_url = os.path.relpath(path_or_url)
|
||||
if path_or_url.startswith(PATH_LOGGING):
|
||||
sensitive_path = PATH_LOGGING
|
||||
if path_or_url.startswith(PATH_PRIVATE_UPLOAD):
|
||||
sensitive_path = PATH_PRIVATE_UPLOAD
|
||||
if sensitive_path:
|
||||
token = request.cookies.get("access-token") or request.cookies.get("access-token-unsecure")
|
||||
user = gradio_app.tokens.get(token) # get user
|
||||
allowed_users = [user, 'autogen', default_user_name] # three user path that can be accessed
|
||||
for user_allowed in allowed_users:
|
||||
# exact match
|
||||
if f"{os.sep}".join(path_or_url.split(os.sep)[:2]) == os.path.join(sensitive_path, user_allowed):
|
||||
return True
|
||||
return False # "越权访问!"
|
||||
return True
|
||||
|
||||
|
||||
class Server(uvicorn.Server):
|
||||
# A server that runs in a separate thread
|
||||
def install_signal_handlers(self):
|
||||
pass
|
||||
|
||||
def run_in_thread(self):
|
||||
self.thread = threading.Thread(target=self.run, daemon=True)
|
||||
self.thread.start()
|
||||
while not self.started:
|
||||
time.sleep(1e-3)
|
||||
|
||||
def close(self):
|
||||
self.should_exit = True
|
||||
self.thread.join()
|
||||
|
||||
|
||||
def start_app(app_block, CONCURRENT_COUNT, AUTHENTICATION, PORT, SSL_KEYFILE, SSL_CERTFILE):
|
||||
import uvicorn
|
||||
import fastapi
|
||||
import gradio as gr
|
||||
from fastapi import FastAPI
|
||||
from gradio.routes import App
|
||||
from toolbox import get_conf
|
||||
CUSTOM_PATH, PATH_LOGGING = get_conf('CUSTOM_PATH', 'PATH_LOGGING')
|
||||
|
||||
# --- --- configurate gradio app block --- ---
|
||||
app_block:gr.Blocks
|
||||
app_block.ssl_verify = False
|
||||
app_block.auth_message = '请登录'
|
||||
app_block.favicon_path = os.path.join(os.path.dirname(os.path.dirname(__file__)), "docs/logo.png")
|
||||
app_block.auth = AUTHENTICATION if len(AUTHENTICATION) != 0 else None
|
||||
app_block.blocked_paths = ["config.py", "__pycache__", "config_private.py", "docker-compose.yml", "Dockerfile", f"{PATH_LOGGING}/admin"]
|
||||
app_block.dev_mode = False
|
||||
app_block.config = app_block.get_config_file()
|
||||
app_block.enable_queue = True
|
||||
app_block.queue(concurrency_count=CONCURRENT_COUNT)
|
||||
app_block.validate_queue_settings()
|
||||
app_block.show_api = False
|
||||
app_block.config = app_block.get_config_file()
|
||||
max_threads = 40
|
||||
app_block.max_threads = max(
|
||||
app_block._queue.max_thread_count if app_block.enable_queue else 0, max_threads
|
||||
)
|
||||
app_block.is_colab = False
|
||||
app_block.is_kaggle = False
|
||||
app_block.is_sagemaker = False
|
||||
|
||||
gradio_app = App.create_app(app_block)
|
||||
|
||||
# --- --- replace gradio endpoint to forbid access to sensitive files --- ---
|
||||
if len(AUTHENTICATION) > 0:
|
||||
dependencies = []
|
||||
endpoint = None
|
||||
for route in list(gradio_app.router.routes):
|
||||
if route.path == "/file/{path:path}":
|
||||
gradio_app.router.routes.remove(route)
|
||||
if route.path == "/file={path_or_url:path}":
|
||||
dependencies = route.dependencies
|
||||
endpoint = route.endpoint
|
||||
gradio_app.router.routes.remove(route)
|
||||
@gradio_app.get("/file/{path:path}", dependencies=dependencies)
|
||||
@gradio_app.head("/file={path_or_url:path}", dependencies=dependencies)
|
||||
@gradio_app.get("/file={path_or_url:path}", dependencies=dependencies)
|
||||
async def file(path_or_url: str, request: fastapi.Request):
|
||||
if len(AUTHENTICATION) > 0:
|
||||
if not _authorize_user(path_or_url, request, gradio_app):
|
||||
return "越权访问!"
|
||||
return await endpoint(path_or_url, request)
|
||||
|
||||
# --- --- app_lifespan --- ---
|
||||
from contextlib import asynccontextmanager
|
||||
@asynccontextmanager
|
||||
async def app_lifespan(app):
|
||||
async def startup_gradio_app():
|
||||
if gradio_app.get_blocks().enable_queue:
|
||||
gradio_app.get_blocks().startup_events()
|
||||
async def shutdown_gradio_app():
|
||||
pass
|
||||
await startup_gradio_app() # startup logic here
|
||||
yield # The application will serve requests after this point
|
||||
await shutdown_gradio_app() # cleanup/shutdown logic here
|
||||
|
||||
# --- --- FastAPI --- ---
|
||||
fastapi_app = FastAPI(lifespan=app_lifespan)
|
||||
fastapi_app.mount(CUSTOM_PATH, gradio_app)
|
||||
|
||||
# --- --- favicon --- ---
|
||||
if CUSTOM_PATH != '/':
|
||||
from fastapi.responses import FileResponse
|
||||
@fastapi_app.get("/favicon.ico")
|
||||
async def favicon():
|
||||
return FileResponse(app_block.favicon_path)
|
||||
|
||||
# --- --- uvicorn.Config --- ---
|
||||
ssl_keyfile = None if SSL_KEYFILE == "" else SSL_KEYFILE
|
||||
ssl_certfile = None if SSL_CERTFILE == "" else SSL_CERTFILE
|
||||
server_name = "0.0.0.0"
|
||||
config = uvicorn.Config(
|
||||
fastapi_app,
|
||||
host=server_name,
|
||||
port=PORT,
|
||||
reload=False,
|
||||
log_level="warning",
|
||||
ssl_keyfile=ssl_keyfile,
|
||||
ssl_certfile=ssl_certfile,
|
||||
)
|
||||
server = Server(config)
|
||||
url_host_name = "localhost" if server_name == "0.0.0.0" else server_name
|
||||
if ssl_keyfile is not None:
|
||||
if ssl_certfile is None:
|
||||
raise ValueError(
|
||||
"ssl_certfile must be provided if ssl_keyfile is provided."
|
||||
)
|
||||
path_to_local_server = f"https://{url_host_name}:{PORT}/"
|
||||
else:
|
||||
path_to_local_server = f"http://{url_host_name}:{PORT}/"
|
||||
if CUSTOM_PATH != '/':
|
||||
path_to_local_server += CUSTOM_PATH.lstrip('/').rstrip('/') + '/'
|
||||
# --- --- begin --- ---
|
||||
server.run_in_thread()
|
||||
|
||||
# --- --- after server launch --- ---
|
||||
app_block.server = server
|
||||
app_block.server_name = server_name
|
||||
app_block.local_url = path_to_local_server
|
||||
app_block.protocol = (
|
||||
"https"
|
||||
if app_block.local_url.startswith("https") or app_block.is_colab
|
||||
else "http"
|
||||
)
|
||||
|
||||
if app_block.enable_queue:
|
||||
app_block._queue.set_url(path_to_local_server)
|
||||
|
||||
forbid_proxies = {
|
||||
"http": "",
|
||||
"https": "",
|
||||
}
|
||||
requests.get(f"{app_block.local_url}startup-events", verify=app_block.ssl_verify, proxies=forbid_proxies)
|
||||
app_block.is_running = True
|
||||
app_block.block_thread()
|
||||
@@ -28,6 +28,11 @@ def is_api2d_key(key):
|
||||
return bool(API_MATCH_API2D)
|
||||
|
||||
|
||||
def is_cohere_api_key(key):
|
||||
API_MATCH_AZURE = re.match(r"[a-zA-Z0-9]{40}$", key)
|
||||
return bool(API_MATCH_AZURE)
|
||||
|
||||
|
||||
def is_any_api_key(key):
|
||||
if ',' in key:
|
||||
keys = key.split(',')
|
||||
@@ -35,7 +40,7 @@ def is_any_api_key(key):
|
||||
if is_any_api_key(k): return True
|
||||
return False
|
||||
else:
|
||||
return is_openai_api_key(key) or is_api2d_key(key) or is_azure_api_key(key)
|
||||
return is_openai_api_key(key) or is_api2d_key(key) or is_azure_api_key(key) or is_cohere_api_key(key)
|
||||
|
||||
|
||||
def what_keys(keys):
|
||||
@@ -62,7 +67,7 @@ def select_api_key(keys, llm_model):
|
||||
avail_key_list = []
|
||||
key_list = keys.split(',')
|
||||
|
||||
if llm_model.startswith('gpt-'):
|
||||
if llm_model.startswith('gpt-') or llm_model.startswith('one-api-'):
|
||||
for k in key_list:
|
||||
if is_openai_api_key(k): avail_key_list.append(k)
|
||||
|
||||
@@ -74,8 +79,12 @@ def select_api_key(keys, llm_model):
|
||||
for k in key_list:
|
||||
if is_azure_api_key(k): avail_key_list.append(k)
|
||||
|
||||
if llm_model.startswith('cohere-'):
|
||||
for k in key_list:
|
||||
if is_cohere_api_key(k): avail_key_list.append(k)
|
||||
|
||||
if len(avail_key_list) == 0:
|
||||
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源(右下角更换模型菜单中可切换openai,azure,claude,api2d等请求源)。")
|
||||
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源(左上角更换模型菜单中可切换openai,azure,claude,cohere等请求源)。")
|
||||
|
||||
api_key = random.choice(avail_key_list) # 随机负载均衡
|
||||
return api_key
|
||||
|
||||
34
shared_utils/map_names.py
普通文件
34
shared_utils/map_names.py
普通文件
@@ -0,0 +1,34 @@
|
||||
import re
|
||||
mapping_dic = {
|
||||
# "qianfan": "qianfan(文心一言大模型)",
|
||||
# "zhipuai": "zhipuai(智谱GLM4超级模型🔥)",
|
||||
# "gpt-4-1106-preview": "gpt-4-1106-preview(新调优版本GPT-4🔥)",
|
||||
# "gpt-4-vision-preview": "gpt-4-vision-preview(识图模型GPT-4V)",
|
||||
}
|
||||
|
||||
rev_mapping_dic = {}
|
||||
for k, v in mapping_dic.items():
|
||||
rev_mapping_dic[v] = k
|
||||
|
||||
def map_model_to_friendly_names(m):
|
||||
if m in mapping_dic:
|
||||
return mapping_dic[m]
|
||||
return m
|
||||
|
||||
def map_friendly_names_to_model(m):
|
||||
if m in rev_mapping_dic:
|
||||
return rev_mapping_dic[m]
|
||||
return m
|
||||
|
||||
def read_one_api_model_name(model: str):
|
||||
"""return real model name and max_token.
|
||||
"""
|
||||
max_token_pattern = r"\(max_token=(\d+)\)"
|
||||
match = re.search(max_token_pattern, model)
|
||||
if match:
|
||||
max_token_tmp = match.group(1) # 获取 max_token 的值
|
||||
max_token_tmp = int(max_token_tmp)
|
||||
model = re.sub(max_token_pattern, "", model) # 从原字符串中删除 "(max_token=...)"
|
||||
else:
|
||||
max_token_tmp = 4096
|
||||
return model, max_token_tmp
|
||||
@@ -11,28 +11,45 @@ def validate_path():
|
||||
|
||||
|
||||
validate_path() # validate path so you can run from base directory
|
||||
if __name__ == "__main__":
|
||||
# from request_llms.bridge_newbingfree import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_moss import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_jittorllms_pangualpha import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_jittorllms_llama import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_claude import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_internlm import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_deepseekcoder import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_qwen_7B import predict_no_ui_long_connection
|
||||
from request_llms.bridge_qwen_local import predict_no_ui_long_connection
|
||||
|
||||
# from request_llms.bridge_spark import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_zhipu import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_chatglm3 import predict_no_ui_long_connection
|
||||
if "在线模型":
|
||||
if __name__ == "__main__":
|
||||
from request_llms.bridge_cohere import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_spark import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_zhipu import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_chatglm3 import predict_no_ui_long_connection
|
||||
llm_kwargs = {
|
||||
"llm_model": "command-r-plus",
|
||||
"max_length": 4096,
|
||||
"top_p": 1,
|
||||
"temperature": 1,
|
||||
}
|
||||
|
||||
llm_kwargs = {
|
||||
"max_length": 4096,
|
||||
"top_p": 1,
|
||||
"temperature": 1,
|
||||
}
|
||||
result = predict_no_ui_long_connection(
|
||||
inputs="请问什么是质子?", llm_kwargs=llm_kwargs, history=["你好", "我好!"], sys_prompt="系统"
|
||||
)
|
||||
print("final result:", result)
|
||||
print("final result:", result)
|
||||
|
||||
|
||||
if "本地模型":
|
||||
if __name__ == "__main__":
|
||||
# from request_llms.bridge_newbingfree import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_moss import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_jittorllms_pangualpha import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_jittorllms_llama import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_claude import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_internlm import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_deepseekcoder import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_qwen_7B import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_qwen_local import predict_no_ui_long_connection
|
||||
llm_kwargs = {
|
||||
"max_length": 4096,
|
||||
"top_p": 1,
|
||||
"temperature": 1,
|
||||
}
|
||||
result = predict_no_ui_long_connection(
|
||||
inputs="请问什么是质子?", llm_kwargs=llm_kwargs, history=["你好", "我好!"], sys_prompt=""
|
||||
)
|
||||
print("final result:", result)
|
||||
|
||||
result = predict_no_ui_long_connection(
|
||||
inputs="请问什么是质子?", llm_kwargs=llm_kwargs, history=["你好", "我好!"], sys_prompt=""
|
||||
)
|
||||
print("final result:", result)
|
||||
|
||||
250
themes/common.js
250
themes/common.js
@@ -2,6 +2,76 @@
|
||||
// 第 1 部分: 工具函数
|
||||
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
|
||||
function push_data_to_gradio_component(DAT, ELEM_ID, TYPE) {
|
||||
// type, // type==="str" / type==="float"
|
||||
if (TYPE == "str") {
|
||||
// convert dat to string: do nothing
|
||||
}
|
||||
else if (TYPE == "no_conversion") {
|
||||
// no nothing
|
||||
}
|
||||
else if (TYPE == "float") {
|
||||
// convert dat to float
|
||||
DAT = parseFloat(DAT);
|
||||
}
|
||||
const myEvent = new CustomEvent('gpt_academic_update_gradio_component', {
|
||||
detail: {
|
||||
data: DAT,
|
||||
elem_id: ELEM_ID,
|
||||
}
|
||||
});
|
||||
window.dispatchEvent(myEvent);
|
||||
}
|
||||
|
||||
|
||||
async function get_gradio_component(ELEM_ID) {
|
||||
function waitFor(ELEM_ID) {
|
||||
return new Promise((resolve) => {
|
||||
const myEvent = new CustomEvent('gpt_academic_get_gradio_component_value', {
|
||||
detail: {
|
||||
elem_id: ELEM_ID,
|
||||
resolve,
|
||||
}
|
||||
});
|
||||
window.dispatchEvent(myEvent);
|
||||
});
|
||||
}
|
||||
result = await waitFor(ELEM_ID);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
async function get_data_from_gradio_component(ELEM_ID) {
|
||||
let comp = await get_gradio_component(ELEM_ID);
|
||||
return comp.props.value;
|
||||
}
|
||||
|
||||
|
||||
function update_array(arr, item, mode) {
|
||||
// // Remove "输入清除键"
|
||||
// p = updateArray(p, "输入清除键", "remove");
|
||||
// console.log(p); // Should log: ["基础功能区", "函数插件区"]
|
||||
|
||||
// // Add "输入清除键"
|
||||
// p = updateArray(p, "输入清除键", "add");
|
||||
// console.log(p); // Should log: ["基础功能区", "函数插件区", "输入清除键"]
|
||||
|
||||
const index = arr.indexOf(item);
|
||||
if (mode === "remove") {
|
||||
if (index !== -1) {
|
||||
// Item found, remove it
|
||||
arr.splice(index, 1);
|
||||
}
|
||||
} else if (mode === "add") {
|
||||
if (index === -1) {
|
||||
// Item not found, add it
|
||||
arr.push(item);
|
||||
}
|
||||
}
|
||||
return arr;
|
||||
}
|
||||
|
||||
|
||||
function gradioApp() {
|
||||
// https://github.com/GaiZhenbiao/ChuanhuChatGPT/tree/main/web_assets/javascript
|
||||
const elems = document.getElementsByTagName('gradio-app');
|
||||
@@ -14,6 +84,7 @@ function gradioApp() {
|
||||
return elem.shadowRoot ? elem.shadowRoot : elem;
|
||||
}
|
||||
|
||||
|
||||
function setCookie(name, value, days) {
|
||||
var expires = "";
|
||||
|
||||
@@ -26,6 +97,7 @@ function setCookie(name, value, days) {
|
||||
document.cookie = name + "=" + value + expires + "; path=/";
|
||||
}
|
||||
|
||||
|
||||
function getCookie(name) {
|
||||
var decodedCookie = decodeURIComponent(document.cookie);
|
||||
var cookies = decodedCookie.split(';');
|
||||
@@ -41,6 +113,7 @@ function getCookie(name) {
|
||||
return null;
|
||||
}
|
||||
|
||||
|
||||
let toastCount = 0;
|
||||
function toast_push(msg, duration) {
|
||||
duration = isNaN(duration) ? 3000 : duration;
|
||||
@@ -63,6 +136,7 @@ function toast_push(msg, duration) {
|
||||
toastCount++;
|
||||
}
|
||||
|
||||
|
||||
function toast_up(msg) {
|
||||
var m = document.getElementById('toast_up');
|
||||
if (m) {
|
||||
@@ -75,6 +149,7 @@ function toast_up(msg) {
|
||||
document.body.appendChild(m);
|
||||
}
|
||||
|
||||
|
||||
function toast_down() {
|
||||
var m = document.getElementById('toast_up');
|
||||
if (m) {
|
||||
@@ -82,6 +157,7 @@ function toast_down() {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
function begin_loading_status() {
|
||||
// Create the loader div and add styling
|
||||
var loader = document.createElement('div');
|
||||
@@ -256,6 +332,7 @@ function do_something_but_not_too_frequently(min_interval, func) {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
function chatbotContentChanged(attempt = 1, force = false) {
|
||||
// https://github.com/GaiZhenbiao/ChuanhuChatGPT/tree/main/web_assets/javascript
|
||||
for (var i = 0; i < attempt; i++) {
|
||||
@@ -272,7 +349,6 @@ function chatbotContentChanged(attempt = 1, force = false) {
|
||||
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
// 第 3 部分: chatbot动态高度调整
|
||||
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
|
||||
function chatbotAutoHeight() {
|
||||
// 自动调整高度:立即
|
||||
function update_height() {
|
||||
@@ -304,6 +380,7 @@ function chatbotAutoHeight() {
|
||||
setInterval(function () { update_height_slow() }, 50); // 每50毫秒执行一次
|
||||
}
|
||||
|
||||
|
||||
swapped = false;
|
||||
function swap_input_area() {
|
||||
// Get the elements to be swapped
|
||||
@@ -323,6 +400,7 @@ function swap_input_area() {
|
||||
else { swapped = true; }
|
||||
}
|
||||
|
||||
|
||||
function get_elements(consider_state_panel = false) {
|
||||
var chatbot = document.querySelector('#gpt-chatbot > div.wrap.svelte-18telvq');
|
||||
if (!chatbot) {
|
||||
@@ -420,6 +498,7 @@ async function upload_files(files) {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
function register_func_paste(input) {
|
||||
let paste_files = [];
|
||||
if (input) {
|
||||
@@ -446,6 +525,7 @@ function register_func_paste(input) {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
function register_func_drag(elem) {
|
||||
if (elem) {
|
||||
const dragEvents = ["dragover"];
|
||||
@@ -482,6 +562,7 @@ function register_func_drag(elem) {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
function elem_upload_component_pop_message(elem) {
|
||||
if (elem) {
|
||||
const dragEvents = ["dragover"];
|
||||
@@ -511,6 +592,7 @@ function elem_upload_component_pop_message(elem) {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
function register_upload_event() {
|
||||
locate_upload_elems();
|
||||
if (elem_upload_float) {
|
||||
@@ -533,6 +615,7 @@ function register_upload_event() {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
function monitoring_input_box() {
|
||||
register_upload_event();
|
||||
|
||||
@@ -566,7 +649,6 @@ window.addEventListener("DOMContentLoaded", function () {
|
||||
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
// 第 5 部分: 音频按钮样式变化
|
||||
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
|
||||
function audio_fn_init() {
|
||||
let audio_component = document.getElementById('elem_audio');
|
||||
if (audio_component) {
|
||||
@@ -603,6 +685,7 @@ function audio_fn_init() {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
function minor_ui_adjustment() {
|
||||
let cbsc_area = document.getElementById('cbsc');
|
||||
cbsc_area.style.paddingTop = '15px';
|
||||
@@ -695,21 +778,6 @@ function limit_scroll_position() {
|
||||
// 第 7 部分: JS初始化函数
|
||||
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
|
||||
function GptAcademicJavaScriptInit(LAYOUT = "LEFT-RIGHT") {
|
||||
audio_fn_init();
|
||||
minor_ui_adjustment();
|
||||
chatbotIndicator = gradioApp().querySelector('#gpt-chatbot > div.wrap');
|
||||
var chatbotObserver = new MutationObserver(() => {
|
||||
chatbotContentChanged(1);
|
||||
});
|
||||
chatbotObserver.observe(chatbotIndicator, { attributes: true, childList: true, subtree: true });
|
||||
if (LAYOUT === "LEFT-RIGHT") { chatbotAutoHeight(); }
|
||||
if (LAYOUT === "LEFT-RIGHT") { limit_scroll_position(); }
|
||||
// setInterval(function () { uml("mermaid") }, 5000); // 每50毫秒执行一次
|
||||
|
||||
}
|
||||
|
||||
|
||||
function loadLive2D() {
|
||||
try {
|
||||
$("<link>").attr({ href: "file=themes/waifu_plugin/waifu.css", rel: "stylesheet", type: "text/css" }).appendTo('head');
|
||||
@@ -731,12 +799,12 @@ function loadLive2D() {
|
||||
live2d_settings['canTakeScreenshot'] = false;
|
||||
live2d_settings['canTurnToHomePage'] = false;
|
||||
live2d_settings['canTurnToAboutPage'] = false;
|
||||
live2d_settings['showHitokoto'] = false; // 显示一言
|
||||
live2d_settings['showHitokoto'] = false; // 显示一言
|
||||
live2d_settings['showF12Status'] = false; // 显示加载状态
|
||||
live2d_settings['showF12Message'] = false; // 显示看板娘消息
|
||||
live2d_settings['showF12OpenMsg'] = false; // 显示控制台打开提示
|
||||
live2d_settings['showCopyMessage'] = false; // 显示 复制内容 提示
|
||||
live2d_settings['showWelcomeMessage'] = true; // 显示进入面页欢迎词
|
||||
live2d_settings['showF12OpenMsg'] = false; // 显示控制台打开提示
|
||||
live2d_settings['showCopyMessage'] = false; // 显示 复制内容 提示
|
||||
live2d_settings['showWelcomeMessage'] = true; // 显示进入面页欢迎词
|
||||
/* 在 initModel 前添加 */
|
||||
initModel("file=themes/waifu_plugin/waifu-tips.json");
|
||||
}
|
||||
@@ -746,7 +814,8 @@ function loadLive2D() {
|
||||
} catch (err) { console.log("[Error] JQuery is not defined.") }
|
||||
}
|
||||
|
||||
function get_checkbox_selected_items(elem_id){
|
||||
|
||||
function get_checkbox_selected_items(elem_id) {
|
||||
display_panel_arr = [];
|
||||
document.getElementById(elem_id).querySelector('[data-testid="checkbox-group"]').querySelectorAll('label').forEach(label => {
|
||||
// Get the span text
|
||||
@@ -760,51 +829,52 @@ function get_checkbox_selected_items(elem_id){
|
||||
return display_panel_arr;
|
||||
}
|
||||
|
||||
function set_checkbox(key, bool, set_twice=false) {
|
||||
set_success = false;
|
||||
elem_ids = ["cbsc", "cbs"]
|
||||
elem_ids.forEach(id => {
|
||||
document.getElementById(id).querySelector('[data-testid="checkbox-group"]').querySelectorAll('label').forEach(label => {
|
||||
// Get the span text
|
||||
const spanText = label.querySelector('span').textContent;
|
||||
if (spanText === key) {
|
||||
if (bool){
|
||||
label.classList.add('selected');
|
||||
} else {
|
||||
if (label.classList.contains('selected')) {
|
||||
label.classList.remove('selected');
|
||||
}
|
||||
}
|
||||
if (set_twice){
|
||||
setTimeout(() => {
|
||||
if (bool){
|
||||
label.classList.add('selected');
|
||||
} else {
|
||||
if (label.classList.contains('selected')) {
|
||||
label.classList.remove('selected');
|
||||
}
|
||||
}
|
||||
}, 5000);
|
||||
}
|
||||
|
||||
label.querySelector('input').checked = bool;
|
||||
set_success = true;
|
||||
return
|
||||
function gpt_academic_gradio_saveload(
|
||||
save_or_load, // save_or_load==="save" / save_or_load==="load"
|
||||
elem_id, // element id
|
||||
cookie_key, // cookie key
|
||||
save_value = "", // save value
|
||||
load_type = "str", // type==="str" / type==="float"
|
||||
load_default = false, // load default value
|
||||
load_default_value = ""
|
||||
) {
|
||||
if (save_or_load === "load") {
|
||||
let value = getCookie(cookie_key);
|
||||
if (value) {
|
||||
console.log('加载cookie', elem_id, value)
|
||||
push_data_to_gradio_component(value, elem_id, load_type);
|
||||
}
|
||||
else {
|
||||
if (load_default) {
|
||||
console.log('加载cookie的默认值', elem_id, load_default_value)
|
||||
push_data_to_gradio_component(load_default_value, elem_id, load_type);
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
if (!set_success){
|
||||
console.log("设置checkbox失败,没有找到对应的key")
|
||||
}
|
||||
}
|
||||
if (save_or_load === "save") {
|
||||
setCookie(cookie_key, save_value, 365);
|
||||
}
|
||||
}
|
||||
|
||||
function apply_cookie_for_checkbox(dark) {
|
||||
// console.log("apply_cookie_for_checkboxes")
|
||||
let searchString = "输入清除键";
|
||||
let bool_value = "False";
|
||||
|
||||
////////////////// darkmode ///////////////////
|
||||
async function GptAcademicJavaScriptInit(dark, prompt, live2d, layout) {
|
||||
// 第一部分,布局初始化
|
||||
audio_fn_init();
|
||||
minor_ui_adjustment();
|
||||
chatbotIndicator = gradioApp().querySelector('#gpt-chatbot > div.wrap');
|
||||
var chatbotObserver = new MutationObserver(() => {
|
||||
chatbotContentChanged(1);
|
||||
});
|
||||
chatbotObserver.observe(chatbotIndicator, { attributes: true, childList: true, subtree: true });
|
||||
if (layout === "LEFT-RIGHT") { chatbotAutoHeight(); }
|
||||
if (layout === "LEFT-RIGHT") { limit_scroll_position(); }
|
||||
|
||||
// 第二部分,读取Cookie,初始话界面
|
||||
let searchString = "";
|
||||
let bool_value = "";
|
||||
|
||||
// darkmode 深色模式
|
||||
if (getCookie("js_darkmode_cookie")) {
|
||||
dark = getCookie("js_darkmode_cookie")
|
||||
}
|
||||
@@ -819,29 +889,41 @@ function apply_cookie_for_checkbox(dark) {
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////// clearButton ///////////////////////////
|
||||
// SysPrompt 系统静默提示词
|
||||
gpt_academic_gradio_saveload("load", "elem_prompt", "js_system_prompt_cookie", null, "str");
|
||||
|
||||
// Temperature 大模型温度参数
|
||||
gpt_academic_gradio_saveload("load", "elem_temperature", "js_temperature_cookie", null, "float");
|
||||
|
||||
// clearButton 自动清除按钮
|
||||
if (getCookie("js_clearbtn_show_cookie")) {
|
||||
// have cookie
|
||||
bool_value = getCookie("js_clearbtn_show_cookie")
|
||||
bool_value = bool_value == "True";
|
||||
searchString = "输入清除键";
|
||||
|
||||
if (bool_value) {
|
||||
let clearButton = document.getElementById("elem_clear");
|
||||
let clearButton2 = document.getElementById("elem_clear2");
|
||||
clearButton.style.display = "block";
|
||||
clearButton2.style.display = "block";
|
||||
set_checkbox(searchString, true);
|
||||
// make btns appear
|
||||
let clearButton = document.getElementById("elem_clear"); clearButton.style.display = "block";
|
||||
let clearButton2 = document.getElementById("elem_clear2"); clearButton2.style.display = "block";
|
||||
// deal with checkboxes
|
||||
let arr_with_clear_btn = update_array(
|
||||
await get_data_from_gradio_component('cbs'), "输入清除键", "add"
|
||||
)
|
||||
push_data_to_gradio_component(arr_with_clear_btn, "cbs", "no_conversion");
|
||||
} else {
|
||||
let clearButton = document.getElementById("elem_clear");
|
||||
let clearButton2 = document.getElementById("elem_clear2");
|
||||
clearButton.style.display = "none";
|
||||
clearButton2.style.display = "none";
|
||||
set_checkbox(searchString, false);
|
||||
// make btns disappear
|
||||
let clearButton = document.getElementById("elem_clear"); clearButton.style.display = "none";
|
||||
let clearButton2 = document.getElementById("elem_clear2"); clearButton2.style.display = "none";
|
||||
// deal with checkboxes
|
||||
let arr_without_clear_btn = update_array(
|
||||
await get_data_from_gradio_component('cbs'), "输入清除键", "remove"
|
||||
)
|
||||
push_data_to_gradio_component(arr_without_clear_btn, "cbs", "no_conversion");
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////// live2d ///////////////////////////
|
||||
|
||||
// live2d 显示
|
||||
if (getCookie("js_live2d_show_cookie")) {
|
||||
// have cookie
|
||||
searchString = "添加Live2D形象";
|
||||
@@ -849,17 +931,23 @@ function apply_cookie_for_checkbox(dark) {
|
||||
bool_value = bool_value == "True";
|
||||
if (bool_value) {
|
||||
loadLive2D();
|
||||
set_checkbox(searchString, true);
|
||||
let arr_with_live2d = update_array(
|
||||
await get_data_from_gradio_component('cbsc'), "添加Live2D形象", "add"
|
||||
)
|
||||
push_data_to_gradio_component(arr_with_live2d, "cbsc", "no_conversion");
|
||||
} else {
|
||||
$('.waifu').hide();
|
||||
set_checkbox(searchString, false);
|
||||
try {
|
||||
$('.waifu').hide();
|
||||
let arr_without_live2d = update_array(
|
||||
await get_data_from_gradio_component('cbsc'), "添加Live2D形象", "remove"
|
||||
)
|
||||
push_data_to_gradio_component(arr_without_live2d, "cbsc", "no_conversion");
|
||||
} catch (error) {
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// do not have cookie
|
||||
// get conf
|
||||
display_panel_arr = get_checkbox_selected_items("cbsc");
|
||||
searchString = "添加Live2D形象";
|
||||
if (display_panel_arr.includes(searchString)) {
|
||||
if (live2d) {
|
||||
loadLive2D();
|
||||
} else {
|
||||
}
|
||||
|
||||
@@ -1,7 +1,10 @@
|
||||
import pickle
|
||||
import base64
|
||||
import uuid
|
||||
import json
|
||||
from toolbox import get_conf
|
||||
import json
|
||||
|
||||
|
||||
"""
|
||||
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
@@ -45,24 +48,24 @@ adjust_theme, advanced_css, theme_declaration, _ = load_dynamic_theme(get_conf("
|
||||
cookie相关工具函数
|
||||
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
"""
|
||||
|
||||
def init_cookie(cookies):
|
||||
def assign_user_uuid(cookies):
|
||||
# 为每一位访问的用户赋予一个独一无二的uuid编码
|
||||
cookies.update({"uuid": uuid.uuid4()})
|
||||
return cookies
|
||||
|
||||
|
||||
def to_cookie_str(d):
|
||||
# Pickle the dictionary and encode it as a string
|
||||
pickled_dict = pickle.dumps(d)
|
||||
cookie_value = base64.b64encode(pickled_dict).decode("utf-8")
|
||||
# serialize the dictionary and encode it as a string
|
||||
serialized_dict = json.dumps(d)
|
||||
cookie_value = base64.b64encode(serialized_dict.encode('utf8')).decode("utf-8")
|
||||
return cookie_value
|
||||
|
||||
|
||||
def from_cookie_str(c):
|
||||
# Decode the base64-encoded string and unpickle it into a dictionary
|
||||
pickled_dict = base64.b64decode(c.encode("utf-8"))
|
||||
return pickle.loads(pickled_dict)
|
||||
# Decode the base64-encoded string and unserialize it into a dictionary
|
||||
serialized_dict = base64.b64decode(c.encode("utf-8"))
|
||||
serialized_dict.decode("utf-8")
|
||||
return json.loads(serialized_dict)
|
||||
|
||||
|
||||
"""
|
||||
@@ -103,8 +106,8 @@ js_code_for_toggle_darkmode = """() => {
|
||||
}"""
|
||||
|
||||
|
||||
js_code_for_persistent_cookie_init = """(py_pickle_cookie, cookie) => {
|
||||
return [getCookie("py_pickle_cookie"), cookie];
|
||||
js_code_for_persistent_cookie_init = """(web_cookie_cache, cookie) => {
|
||||
return [getCookie("web_cookie_cache"), cookie];
|
||||
}
|
||||
"""
|
||||
|
||||
@@ -175,11 +178,8 @@ setTimeout(() => {
|
||||
js_code_show_or_hide_group2 = """
|
||||
(display_panel_arr)=>{
|
||||
setTimeout(() => {
|
||||
// console.log("display_panel_arr");
|
||||
// get conf
|
||||
display_panel_arr = get_checkbox_selected_items("cbsc");
|
||||
|
||||
////////////////////// 添加Live2D形象 ///////////////////////////
|
||||
let searchString = "添加Live2D形象";
|
||||
let ele = "none";
|
||||
if (display_panel_arr.includes(searchString)) {
|
||||
@@ -190,7 +190,6 @@ setTimeout(() => {
|
||||
$('.waifu').hide();
|
||||
}
|
||||
|
||||
|
||||
}, 50);
|
||||
}
|
||||
"""
|
||||
|
||||
130
toolbox.py
130
toolbox.py
@@ -7,6 +7,8 @@ import base64
|
||||
import gradio
|
||||
import shutil
|
||||
import glob
|
||||
import logging
|
||||
import uuid
|
||||
from functools import wraps
|
||||
from shared_utils.config_loader import get_conf
|
||||
from shared_utils.config_loader import set_conf
|
||||
@@ -25,11 +27,14 @@ from shared_utils.text_mask import apply_gpt_academic_string_mask
|
||||
from shared_utils.text_mask import build_gpt_academic_masked_string
|
||||
from shared_utils.text_mask import apply_gpt_academic_string_mask_langbased
|
||||
from shared_utils.text_mask import build_gpt_academic_masked_string_langbased
|
||||
from shared_utils.map_names import map_friendly_names_to_model
|
||||
from shared_utils.map_names import map_model_to_friendly_names
|
||||
from shared_utils.map_names import read_one_api_model_name
|
||||
from shared_utils.handle_upload import html_local_file
|
||||
from shared_utils.handle_upload import html_local_img
|
||||
from shared_utils.handle_upload import file_manifest_filter_type
|
||||
from shared_utils.handle_upload import extract_archive
|
||||
|
||||
from typing import List
|
||||
pj = os.path.join
|
||||
default_user_name = "default_user"
|
||||
|
||||
@@ -81,7 +86,9 @@ def ArgsGeneralWrapper(f):
|
||||
该装饰器是大多数功能调用的入口。
|
||||
函数示意图:https://mermaid.live/edit#pako:eNqNVFtPGkEY_StkntoEDQtLoTw0sWqapjQxVWPabmOm7AiEZZcsQ9QiiW012qixqdeqqIn10geBh6ZR8PJnmAWe-hc6l3VhrWnLEzNzzvnO953ZyYOYoSIQAWOaMR5LQBN7hvoU3UN_g5iu7imAXEyT4wUF3Pd0dT3y9KGYYUJsmK8V0GPGs0-QjkyojZgwk0Fm82C2dVghX08U8EaoOHjOfoEMU0XmADRhOksVWnNLjdpM82qFzB6S5Q_WWsUhuqCc3JtAsVR_OoMnhyZwXgHWwbS1d4gnsLVZJp-P6mfVxveqAgqC70Jz_pQCOGDKM5xFdNNPDdilF6uSU_hOYqu4a3MHYDZLDzq5fodrC3PWcEaFGPUaRiqJWK_W9g9rvRITa4dhy_0nw67SiePMp3oSR6PPn41DGgllkvkizYwsrmtaejTFd8V4yekGmT1zqrt4XGlAy8WTuiPULF01LksZvukSajfQQRAxmYi5S0D81sDcyzapVdn6sYFHkjhhGyel3frVQnvsnbR23lEjlhIlaOJiFPWzU5G4tfNJo8ejwp47-TbvJkKKZvmxA6SKo16oaazJysfG6klr9T0pbTW2ZqzlL_XaT8fYbQLXe4mSmvoCZXMaa7FePW6s7jVqK9bujvse3WFjY5_Z4KfsA4oiPY4T7Drvn1tLJTbG1to1qR79ulgk89-oJbvZzbIwJty6u20LOReWa9BvwserUd9s9MIKc3x5TUWEoAhUyJK5y85w_yG-dFu_R9waoU7K581y8W_qLle35-rG9Nxcrz8QHRsc0K-r9NViYRT36KsFvCCNzDRMqvSVyzOKAnACpZECIvSvCs2UAhS9QHEwh43BST0GItjMIS_I8e-sLwnj9A262cxA_ZVh0OUY1LJiDSJ5MAEiUijYLUtBORR6KElyQPaCSRDpksNSd8AfluSgHPaFC17wjrOlbgbzyyFf4IFPDvoD_sJvnkdK-g
|
||||
"""
|
||||
def decorated(request: gradio.Request, cookies, max_length, llm_model, txt, txt2, top_p, temperature, chatbot, history, system_prompt, plugin_advanced_arg, *args):
|
||||
def decorated(request: gradio.Request, cookies:dict, max_length:int, llm_model:str,
|
||||
txt:str, txt2:str, top_p:float, temperature:float, chatbot:list,
|
||||
history:list, system_prompt:str, plugin_advanced_arg:str, *args):
|
||||
txt_passon = txt
|
||||
if txt == "" and txt2 != "": txt_passon = txt2
|
||||
# 引入一个有cookie的chatbot
|
||||
@@ -133,7 +140,7 @@ def ArgsGeneralWrapper(f):
|
||||
return decorated
|
||||
|
||||
|
||||
def update_ui(chatbot, history, msg="正常", **kwargs): # 刷新界面
|
||||
def update_ui(chatbot:ChatBotWithCookies, history, msg="正常", **kwargs): # 刷新界面
|
||||
"""
|
||||
刷新用户界面
|
||||
"""
|
||||
@@ -163,7 +170,7 @@ def update_ui(chatbot, history, msg="正常", **kwargs): # 刷新界面
|
||||
yield cookies, chatbot_gr, history, msg
|
||||
|
||||
|
||||
def update_ui_lastest_msg(lastmsg, chatbot, history, delay=1): # 刷新界面
|
||||
def update_ui_lastest_msg(lastmsg:str, chatbot:ChatBotWithCookies, history:list, delay=1): # 刷新界面
|
||||
"""
|
||||
刷新用户界面
|
||||
"""
|
||||
@@ -190,13 +197,12 @@ def CatchException(f):
|
||||
"""
|
||||
|
||||
@wraps(f)
|
||||
def decorated(main_input, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, *args, **kwargs):
|
||||
def decorated(main_input:str, llm_kwargs:dict, plugin_kwargs:dict,
|
||||
chatbot_with_cookie:ChatBotWithCookies, history:list, *args, **kwargs):
|
||||
try:
|
||||
yield from f(main_input, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, *args, **kwargs)
|
||||
except Exception as e:
|
||||
from check_proxy import check_proxy
|
||||
from toolbox import get_conf
|
||||
proxies = get_conf('proxies')
|
||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
if len(chatbot_with_cookie) == 0:
|
||||
chatbot_with_cookie.clear()
|
||||
@@ -249,7 +255,7 @@ def HotReload(f):
|
||||
"""
|
||||
|
||||
|
||||
def get_reduce_token_percent(text):
|
||||
def get_reduce_token_percent(text:str):
|
||||
"""
|
||||
* 此函数未来将被弃用
|
||||
"""
|
||||
@@ -268,7 +274,7 @@ def get_reduce_token_percent(text):
|
||||
|
||||
|
||||
def write_history_to_file(
|
||||
history, file_basename=None, file_fullname=None, auto_caption=True
|
||||
history:list, file_basename:str=None, file_fullname:str=None, auto_caption:bool=True
|
||||
):
|
||||
"""
|
||||
将对话记录history以Markdown格式写入文件中。如果没有指定文件名,则使用当前时间生成文件名。
|
||||
@@ -302,7 +308,7 @@ def write_history_to_file(
|
||||
return res
|
||||
|
||||
|
||||
def regular_txt_to_markdown(text):
|
||||
def regular_txt_to_markdown(text:str):
|
||||
"""
|
||||
将普通文本转换为Markdown格式的文本。
|
||||
"""
|
||||
@@ -312,7 +318,7 @@ def regular_txt_to_markdown(text):
|
||||
return text
|
||||
|
||||
|
||||
def report_exception(chatbot, history, a, b):
|
||||
def report_exception(chatbot:ChatBotWithCookies, history:list, a:str, b:str):
|
||||
"""
|
||||
向chatbot中添加错误信息
|
||||
"""
|
||||
@@ -320,7 +326,7 @@ def report_exception(chatbot, history, a, b):
|
||||
history.extend([a, b])
|
||||
|
||||
|
||||
def find_free_port():
|
||||
def find_free_port()->int:
|
||||
"""
|
||||
返回当前系统中可用的未使用端口。
|
||||
"""
|
||||
@@ -333,10 +339,9 @@ def find_free_port():
|
||||
return s.getsockname()[1]
|
||||
|
||||
|
||||
def find_recent_files(directory):
|
||||
def find_recent_files(directory:str)->List[str]:
|
||||
"""
|
||||
me: find files that is created with in one minutes under a directory with python, write a function
|
||||
gpt: here it is!
|
||||
Find files that is created with in one minutes under a directory with python, write a function
|
||||
"""
|
||||
import os
|
||||
import time
|
||||
@@ -359,7 +364,7 @@ def find_recent_files(directory):
|
||||
return recent_files
|
||||
|
||||
|
||||
def file_already_in_downloadzone(file, user_path):
|
||||
def file_already_in_downloadzone(file:str, user_path:str):
|
||||
try:
|
||||
parent_path = os.path.abspath(user_path)
|
||||
child_path = os.path.abspath(file)
|
||||
@@ -371,7 +376,7 @@ def file_already_in_downloadzone(file, user_path):
|
||||
return False
|
||||
|
||||
|
||||
def promote_file_to_downloadzone(file, rename_file=None, chatbot=None):
|
||||
def promote_file_to_downloadzone(file:str, rename_file:str=None, chatbot:ChatBotWithCookies=None):
|
||||
# 将文件复制一份到下载区
|
||||
import shutil
|
||||
|
||||
@@ -406,12 +411,12 @@ def promote_file_to_downloadzone(file, rename_file=None, chatbot=None):
|
||||
return new_path
|
||||
|
||||
|
||||
def disable_auto_promotion(chatbot):
|
||||
def disable_auto_promotion(chatbot:ChatBotWithCookies):
|
||||
chatbot._cookies.update({"files_to_promote": []})
|
||||
return
|
||||
|
||||
|
||||
def del_outdated_uploads(outdate_time_seconds, target_path_base=None):
|
||||
def del_outdated_uploads(outdate_time_seconds:float, target_path_base:str=None):
|
||||
if target_path_base is None:
|
||||
user_upload_dir = get_conf("PATH_PRIVATE_UPLOAD")
|
||||
else:
|
||||
@@ -464,7 +469,8 @@ def to_markdown_tabs(head: list, tabs: list, alignment=":---:", column=False, om
|
||||
|
||||
|
||||
def on_file_uploaded(
|
||||
request: gradio.Request, files, chatbot, txt, txt2, checkboxes, cookies
|
||||
request: gradio.Request, files:List[str], chatbot:ChatBotWithCookies,
|
||||
txt:str, txt2:str, checkboxes:List[str], cookies:dict
|
||||
):
|
||||
"""
|
||||
当文件被上传时的回调函数
|
||||
@@ -528,18 +534,14 @@ def on_file_uploaded(
|
||||
return chatbot, txt, txt2, cookies
|
||||
|
||||
|
||||
def on_report_generated(cookies, files, chatbot):
|
||||
# from toolbox import find_recent_files
|
||||
# PATH_LOGGING = get_conf('PATH_LOGGING')
|
||||
def on_report_generated(cookies:dict, files:List[str], chatbot:ChatBotWithCookies):
|
||||
if "files_to_promote" in cookies:
|
||||
report_files = cookies["files_to_promote"]
|
||||
cookies.pop("files_to_promote")
|
||||
else:
|
||||
report_files = []
|
||||
# report_files = find_recent_files(PATH_LOGGING)
|
||||
if len(report_files) == 0:
|
||||
return cookies, None, chatbot
|
||||
# files.extend(report_files)
|
||||
file_links = ""
|
||||
for f in report_files:
|
||||
file_links += (
|
||||
@@ -819,7 +821,7 @@ def is_the_upload_folder(string):
|
||||
return False
|
||||
|
||||
|
||||
def get_user(chatbotwithcookies):
|
||||
def get_user(chatbotwithcookies:ChatBotWithCookies):
|
||||
return chatbotwithcookies._cookies.get("user_name", default_user_name)
|
||||
|
||||
|
||||
@@ -902,7 +904,7 @@ def get_pictures_list(path):
|
||||
return file_manifest
|
||||
|
||||
|
||||
def have_any_recent_upload_image_files(chatbot):
|
||||
def have_any_recent_upload_image_files(chatbot:ChatBotWithCookies):
|
||||
_5min = 5 * 60
|
||||
if chatbot is None:
|
||||
return False, None # chatbot is None
|
||||
@@ -919,6 +921,18 @@ def have_any_recent_upload_image_files(chatbot):
|
||||
else:
|
||||
return False, None # most_recent_uploaded is too old
|
||||
|
||||
# Claude3 model supports graphic context dialogue, reads all images
|
||||
def every_image_file_in_path(chatbot:ChatBotWithCookies):
|
||||
if chatbot is None:
|
||||
return False, [] # chatbot is None
|
||||
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
|
||||
if not most_recent_uploaded:
|
||||
return False, [] # most_recent_uploaded is None
|
||||
path = most_recent_uploaded["path"]
|
||||
file_manifest = get_pictures_list(path)
|
||||
if len(file_manifest) == 0:
|
||||
return False, []
|
||||
return True, file_manifest
|
||||
|
||||
# Function to encode the image
|
||||
def encode_image(image_path):
|
||||
@@ -939,3 +953,65 @@ def check_packages(packages=[]):
|
||||
spam_spec = importlib.util.find_spec(p)
|
||||
if spam_spec is None:
|
||||
raise ModuleNotFoundError
|
||||
|
||||
|
||||
def map_file_to_sha256(file_path):
|
||||
import hashlib
|
||||
|
||||
with open(file_path, 'rb') as file:
|
||||
content = file.read()
|
||||
|
||||
# Calculate the SHA-256 hash of the file contents
|
||||
sha_hash = hashlib.sha256(content).hexdigest()
|
||||
|
||||
return sha_hash
|
||||
|
||||
|
||||
def check_repeat_upload(new_pdf_path, pdf_hash):
|
||||
'''
|
||||
检查历史上传的文件是否与新上传的文件相同,如果相同则返回(True, 重复文件路径),否则返回(False,None)
|
||||
'''
|
||||
from toolbox import get_conf
|
||||
import PyPDF2
|
||||
|
||||
user_upload_dir = os.path.dirname(os.path.dirname(new_pdf_path))
|
||||
file_name = os.path.basename(new_pdf_path)
|
||||
|
||||
file_manifest = [f for f in glob.glob(f'{user_upload_dir}/**/{file_name}', recursive=True)]
|
||||
|
||||
for saved_file in file_manifest:
|
||||
with open(new_pdf_path, 'rb') as file1, open(saved_file, 'rb') as file2:
|
||||
reader1 = PyPDF2.PdfFileReader(file1)
|
||||
reader2 = PyPDF2.PdfFileReader(file2)
|
||||
|
||||
# 比较页数是否相同
|
||||
if reader1.getNumPages() != reader2.getNumPages():
|
||||
continue
|
||||
|
||||
# 比较每一页的内容是否相同
|
||||
for page_num in range(reader1.getNumPages()):
|
||||
page1 = reader1.getPage(page_num).extractText()
|
||||
page2 = reader2.getPage(page_num).extractText()
|
||||
if page1 != page2:
|
||||
continue
|
||||
|
||||
maybe_project_dir = glob.glob('{}/**/{}'.format(get_log_folder(), pdf_hash + ".tag"), recursive=True)
|
||||
|
||||
|
||||
if len(maybe_project_dir) > 0:
|
||||
return True, os.path.dirname(maybe_project_dir[0])
|
||||
|
||||
# 如果所有页的内容都相同,返回 True
|
||||
return False, None
|
||||
|
||||
def log_chat(llm_model: str, input_str: str, output_str: str):
|
||||
try:
|
||||
if output_str and input_str and llm_model:
|
||||
uid = str(uuid.uuid4().hex)
|
||||
logging.info(f"[Model({uid})] {llm_model}")
|
||||
input_str = input_str.rstrip('\n')
|
||||
logging.info(f"[Query({uid})]\n{input_str}")
|
||||
output_str = output_str.rstrip('\n')
|
||||
logging.info(f"[Response({uid})]\n{output_str}\n\n")
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
|
||||
4
version
4
version
@@ -1,5 +1,5 @@
|
||||
{
|
||||
"version": 3.72,
|
||||
"version": 3.74,
|
||||
"show_feature": true,
|
||||
"new_feature": "支持切换多个智谱ai模型 <-> 用绘图功能增强部分插件 <-> 基础功能区支持自动切换中英提示词 <-> 支持Mermaid绘图库(让大模型绘制脑图) <-> 支持Gemini-pro <-> 支持直接拖拽文件到上传区 <-> 支持将图片粘贴到输入区"
|
||||
"new_feature": "增加多用户文件鉴权验证提高安全性 <-> 优化oneapi接入方法 <-> 接入Cohere和月之暗面模型 <-> 简化挂载二级目录的步骤 <-> 支持Mermaid绘图库(让大模型绘制脑图)"
|
||||
}
|
||||
|
||||
在新工单中引用
屏蔽一个用户