镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-06 14:36:48 +00:00
比较提交
119 次代码提交
version3.7
...
bold_front
| 作者 | SHA1 | 提交日期 | |
|---|---|---|---|
|
|
f945a7bd19 | ||
|
|
379dcb2fa7 | ||
|
|
30c905917a | ||
|
|
0c6c357e9c | ||
|
|
6cd2d80dfd | ||
|
|
18d3245fc9 | ||
|
|
194e665a3b | ||
|
|
7e201c5028 | ||
|
|
00e5a31b50 | ||
|
|
d8b9686eeb | ||
|
|
25e06de1b6 | ||
|
|
0ad571e6b5 | ||
|
|
ddad5247fc | ||
|
|
ececfb9b6e | ||
|
|
9f13c5cedf | ||
|
|
68b36042ce | ||
|
|
cac6c50d2f | ||
|
|
f884eb43cf | ||
|
|
d37383dd4e | ||
|
|
dfae4e8081 | ||
|
|
15cc08505f | ||
|
|
c5a82f6ab7 | ||
|
|
768ed4514a | ||
|
|
9dfbff7fd0 | ||
|
|
47cedde954 | ||
|
|
1e16485087 | ||
|
|
f3660d669f | ||
|
|
e6d1cb09cb | ||
|
|
12aebf9707 | ||
|
|
0b5385e5e5 | ||
|
|
2ff1a1fb0b | ||
|
|
cdadd38cf7 | ||
|
|
48e10fb10a | ||
|
|
ba484c55a0 | ||
|
|
ca64a592f5 | ||
|
|
cb96ca132a | ||
|
|
737101b81d | ||
|
|
612caa2f5f | ||
|
|
85dbe4a4bf | ||
|
|
2262a4d80a | ||
|
|
b456ff02ab | ||
|
|
24a21ae320 | ||
|
|
3d5790cc2c | ||
|
|
7de6015800 | ||
|
|
46428b7c7a | ||
|
|
66a50c8019 | ||
|
|
814dc943ac | ||
|
|
96cd1f0b25 | ||
|
|
4fc17f4add | ||
|
|
b3665d8fec | ||
|
|
80c4281888 | ||
|
|
beda56abb0 | ||
|
|
cb16941d01 | ||
|
|
5cf9ac7849 | ||
|
|
51ddb88ceb | ||
|
|
69dfe5d514 | ||
|
|
6819f87512 | ||
|
|
3d51b9d5bb | ||
|
|
bff87ada92 | ||
|
|
a938412b6f | ||
|
|
a48acf6fec | ||
|
|
c6b9ab5214 | ||
|
|
aa3332de69 | ||
|
|
d43175d46d | ||
|
|
8ca9232db2 | ||
|
|
1339aa0e1a | ||
|
|
f41419e767 | ||
|
|
d88c585305 | ||
|
|
0a88d18c7a | ||
|
|
0d0edc2216 | ||
|
|
5e0875fcf4 | ||
|
|
c508b84db8 | ||
|
|
f2b67602bb | ||
|
|
29daba5d2f | ||
|
|
9477824ac1 | ||
|
|
459c5b2d24 | ||
|
|
abf9b5aee5 | ||
|
|
2ce4482146 | ||
|
|
4282b83035 | ||
|
|
537be57c9b | ||
|
|
3aa92d6c80 | ||
|
|
b7eb9aba49 | ||
|
|
881a596a30 | ||
|
|
1b3c331d01 | ||
|
|
70d5f2a7df | ||
|
|
fd2f8b9090 | ||
|
|
225a2de011 | ||
|
|
6aea6d8e2b | ||
|
|
8d85616c27 | ||
|
|
e4533dd24d | ||
|
|
43ed8cb8a8 | ||
|
|
3eff964424 | ||
|
|
ebde98b34b | ||
|
|
6f883031c0 | ||
|
|
fa15059f07 | ||
|
|
685c573619 | ||
|
|
5fcd02506c | ||
|
|
bd5280df1b | ||
|
|
744759704d | ||
|
|
81df0aa210 | ||
|
|
cadaa81030 | ||
|
|
3b6cbbdcb0 | ||
|
|
52e49c48b8 | ||
|
|
6ad15a6129 | ||
|
|
09990d44d3 | ||
|
|
eac5191815 | ||
|
|
ae4407135d | ||
|
|
f0e15bd710 | ||
|
|
5c5f442649 | ||
|
|
160552cc5f | ||
|
|
c131ec0b20 | ||
|
|
2f3aeb7976 | ||
|
|
eff5b89b98 | ||
|
|
f77ab27bc9 | ||
|
|
ba0a8b7072 | ||
|
|
2406022c2a | ||
|
|
02b6f26b05 | ||
|
|
2a003e8d49 | ||
|
|
21891b0f6d |
3
.gitignore
vendored
3
.gitignore
vendored
@@ -153,3 +153,6 @@ media
|
||||
flagged
|
||||
request_llms/ChatGLM-6b-onnx-u8s8
|
||||
.pre-commit-config.yaml
|
||||
test.html
|
||||
objdump*
|
||||
*.min.*.js
|
||||
@@ -12,11 +12,16 @@ RUN echo '[global]' > /etc/pip.conf && \
|
||||
echo 'trusted-host = mirrors.aliyun.com' >> /etc/pip.conf
|
||||
|
||||
|
||||
# 语音输出功能(以下两行,第一行更换阿里源,第二行安装ffmpeg,都可以删除)
|
||||
RUN UBUNTU_VERSION=$(awk -F= '/^VERSION_CODENAME=/{print $2}' /etc/os-release); echo "deb https://mirrors.aliyun.com/debian/ $UBUNTU_VERSION main non-free contrib" > /etc/apt/sources.list; apt-get update
|
||||
RUN apt-get install ffmpeg -y
|
||||
|
||||
|
||||
# 进入工作路径(必要)
|
||||
WORKDIR /gpt
|
||||
|
||||
|
||||
# 安装大部分依赖,利用Docker缓存加速以后的构建 (以下三行,可以删除)
|
||||
# 安装大部分依赖,利用Docker缓存加速以后的构建 (以下两行,可以删除)
|
||||
COPY requirements.txt ./
|
||||
RUN pip3 install -r requirements.txt
|
||||
|
||||
|
||||
11
README.md
11
README.md
@@ -1,6 +1,7 @@
|
||||
> [!IMPORTANT]
|
||||
> 2024.3.11: 恭迎Claude3和Moonshot,全力支持Qwen、GLM、DeepseekCoder等中文大语言模型!
|
||||
> 2024.1.18: 更新3.70版本,支持Mermaid绘图库(让大模型绘制脑图)
|
||||
> 2024.6.1: 版本3.80加入插件二级菜单功能(详见wiki)
|
||||
> 2024.5.1: 加入Doc2x翻译PDF论文的功能,[查看详情](https://github.com/binary-husky/gpt_academic/wiki/Doc2x)
|
||||
> 2024.3.11: 全力支持Qwen、GLM、DeepseekCoder等中文大语言模型! SoVits语音克隆模块,[查看详情](https://www.bilibili.com/video/BV1Rp421S7tF/)
|
||||
> 2024.1.17: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目完全开源免费,您可通过订阅[在线服务](https://github.com/binary-husky/gpt_academic/wiki/online)的方式鼓励本项目的发展。
|
||||
|
||||
<br>
|
||||
@@ -66,7 +67,7 @@ Read this in [English](docs/README.English.md) | [日本語](docs/README.Japanes
|
||||
读论文、[翻译](https://www.bilibili.com/video/BV1KT411x7Wn)论文 | [插件] 一键解读latex/pdf论文全文并生成摘要
|
||||
Latex全文[翻译](https://www.bilibili.com/video/BV1nk4y1Y7Js/)、[润色](https://www.bilibili.com/video/BV1FT411H7c5/) | [插件] 一键翻译或润色latex论文
|
||||
批量注释生成 | [插件] 一键批量生成函数注释
|
||||
Markdown[中英互译](https://www.bilibili.com/video/BV1yo4y157jV/) | [插件] 看到上面5种语言的[README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md)了吗?就是出自他的手笔
|
||||
Markdown[中英互译](https://www.bilibili.com/video/BV1yo4y157jV/) | [插件] 看到上面5种语言的[README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README.English.md)了吗?就是出自他的手笔
|
||||
[PDF论文全文翻译功能](https://www.bilibili.com/video/BV1KT411x7Wn) | [插件] PDF论文提取题目&摘要+翻译全文(多线程)
|
||||
[Arxiv小助手](https://www.bilibili.com/video/BV1LM4y1279X) | [插件] 输入arxiv文章url即可一键翻译摘要+下载PDF
|
||||
Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼写纠错+输出对照PDF
|
||||
@@ -86,6 +87,10 @@ Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼
|
||||
<img src="https://user-images.githubusercontent.com/96192199/279702205-d81137c3-affd-4cd1-bb5e-b15610389762.gif" width="700" >
|
||||
</div>
|
||||
|
||||
<div align="center">
|
||||
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/70ff1ec5-e589-4561-a29e-b831079b37fb.gif" width="700" >
|
||||
</div>
|
||||
|
||||
|
||||
- 所有按钮都通过读取functional.py动态生成,可随意加自定义功能,解放剪贴板
|
||||
<div align="center">
|
||||
|
||||
@@ -1,33 +1,44 @@
|
||||
|
||||
def check_proxy(proxies):
|
||||
def check_proxy(proxies, return_ip=False):
|
||||
import requests
|
||||
proxies_https = proxies['https'] if proxies is not None else '无'
|
||||
ip = None
|
||||
try:
|
||||
response = requests.get("https://ipapi.co/json/", proxies=proxies, timeout=4)
|
||||
data = response.json()
|
||||
if 'country_name' in data:
|
||||
country = data['country_name']
|
||||
result = f"代理配置 {proxies_https}, 代理所在地:{country}"
|
||||
if 'ip' in data: ip = data['ip']
|
||||
elif 'error' in data:
|
||||
alternative = _check_with_backup_source(proxies)
|
||||
alternative, ip = _check_with_backup_source(proxies)
|
||||
if alternative is None:
|
||||
result = f"代理配置 {proxies_https}, 代理所在地:未知,IP查询频率受限"
|
||||
else:
|
||||
result = f"代理配置 {proxies_https}, 代理所在地:{alternative}"
|
||||
else:
|
||||
result = f"代理配置 {proxies_https}, 代理数据解析失败:{data}"
|
||||
print(result)
|
||||
return result
|
||||
if not return_ip:
|
||||
print(result)
|
||||
return result
|
||||
else:
|
||||
return ip
|
||||
except:
|
||||
result = f"代理配置 {proxies_https}, 代理所在地查询超时,代理可能无效"
|
||||
print(result)
|
||||
return result
|
||||
if not return_ip:
|
||||
print(result)
|
||||
return result
|
||||
else:
|
||||
return ip
|
||||
|
||||
def _check_with_backup_source(proxies):
|
||||
import random, string, requests
|
||||
random_string = ''.join(random.choices(string.ascii_letters + string.digits, k=32))
|
||||
try: return requests.get(f"http://{random_string}.edns.ip-api.com/json", proxies=proxies, timeout=4).json()['dns']['geo']
|
||||
except: return None
|
||||
try:
|
||||
res_json = requests.get(f"http://{random_string}.edns.ip-api.com/json", proxies=proxies, timeout=4).json()
|
||||
return res_json['dns']['geo'], res_json['dns']['ip']
|
||||
except:
|
||||
return None, None
|
||||
|
||||
def backup_and_download(current_version, remote_version):
|
||||
"""
|
||||
@@ -71,7 +82,7 @@ def patch_and_restart(path):
|
||||
import sys
|
||||
import time
|
||||
import glob
|
||||
from colorful import print亮黄, print亮绿, print亮红
|
||||
from shared_utils.colorful import print亮黄, print亮绿, print亮红
|
||||
# if not using config_private, move origin config.py as config_private.py
|
||||
if not os.path.exists('config_private.py'):
|
||||
print亮黄('由于您没有设置config_private.py私密配置,现将您的现有配置移动至config_private.py以防止配置丢失,',
|
||||
@@ -124,7 +135,7 @@ def auto_update(raise_error=False):
|
||||
current_version = f.read()
|
||||
current_version = json.loads(current_version)['version']
|
||||
if (remote_version - current_version) >= 0.01-1e-5:
|
||||
from colorful import print亮黄
|
||||
from shared_utils.colorful import print亮黄
|
||||
print亮黄(f'\n新版本可用。新版本:{remote_version},当前版本:{current_version}。{new_feature}')
|
||||
print('(1)Github更新地址:\nhttps://github.com/binary-husky/chatgpt_academic\n')
|
||||
user_instruction = input('(2)是否一键更新代码(Y+回车=确认,输入其他/无输入+回车=不更新)?')
|
||||
|
||||
64
config.py
64
config.py
@@ -33,26 +33,29 @@ else:
|
||||
# [step 3]>> 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
|
||||
LLM_MODEL = "gpt-3.5-turbo-16k" # 可选 ↓↓↓
|
||||
AVAIL_LLM_MODELS = ["gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
|
||||
"gpt-4o", "gpt-4-turbo", "gpt-4-turbo-2024-04-09",
|
||||
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
|
||||
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-3-turbo",
|
||||
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-4v", "glm-3-turbo",
|
||||
"gemini-pro", "chatglm3"
|
||||
]
|
||||
# --- --- --- ---
|
||||
# P.S. 其他可用的模型还包括
|
||||
# AVAIL_LLM_MODELS = [
|
||||
# "glm-4-0520", "glm-4-air", "glm-4-airx", "glm-4-flash",
|
||||
# "qianfan", "deepseekcoder",
|
||||
# "spark", "sparkv2", "sparkv3", "sparkv3.5",
|
||||
# "spark", "sparkv2", "sparkv3", "sparkv3.5", "sparkv4",
|
||||
# "qwen-turbo", "qwen-plus", "qwen-max", "qwen-local",
|
||||
# "moonshot-v1-128k", "moonshot-v1-32k", "moonshot-v1-8k",
|
||||
# "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125"
|
||||
# "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125", "gpt-4o-2024-05-13"
|
||||
# "claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
|
||||
# "moss", "llama2", "chatglm_onnx", "internlm", "jittorllms_pangualpha", "jittorllms_llama",
|
||||
# "yi-34b-chat-0205", "yi-34b-chat-200k"
|
||||
# "deepseek-chat" ,"deepseek-coder",
|
||||
# "yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview",
|
||||
# ]
|
||||
# --- --- --- ---
|
||||
# 此外,为了更灵活地接入one-api多模型管理界面,您还可以在接入one-api时,
|
||||
# 使用"one-api-*"前缀直接使用非标准方式接入的模型,例如
|
||||
# AVAIL_LLM_MODELS = ["one-api-claude-3-sonnet-20240229(max_token=100000)"]
|
||||
# 此外,您还可以在接入one-api/vllm/ollama时,
|
||||
# 使用"one-api-*","vllm-*","ollama-*"前缀直接使用非标准方式接入的模型,例如
|
||||
# AVAIL_LLM_MODELS = ["one-api-claude-3-sonnet-20240229(max_token=100000)", "ollama-phi3(max_token=4096)"]
|
||||
# --- --- --- ---
|
||||
|
||||
|
||||
@@ -60,7 +63,7 @@ AVAIL_LLM_MODELS = ["gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-p
|
||||
|
||||
# 重新URL重新定向,实现更换API_URL的作用(高危设置! 常规情况下不要修改! 通过修改此设置,您将把您的API-KEY和对话隐私完全暴露给您设定的中间人!)
|
||||
# 格式: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
|
||||
# 举例: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "https://reverse-proxy-url/v1/chat/completions"}
|
||||
# 举例: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "https://reverse-proxy-url/v1/chat/completions", "http://localhost:11434/api/chat": "在这里填写您ollama的URL"}
|
||||
API_URL_REDIRECT = {}
|
||||
|
||||
|
||||
@@ -103,6 +106,10 @@ TIMEOUT_SECONDS = 30
|
||||
WEB_PORT = -1
|
||||
|
||||
|
||||
# 是否自动打开浏览器页面
|
||||
AUTO_OPEN_BROWSER = True
|
||||
|
||||
|
||||
# 如果OpenAI不响应(网络卡顿、代理失败、KEY失效),重试的次数限制
|
||||
MAX_RETRY = 2
|
||||
|
||||
@@ -128,7 +135,7 @@ DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY
|
||||
# 百度千帆(LLM_MODEL="qianfan")
|
||||
BAIDU_CLOUD_API_KEY = ''
|
||||
BAIDU_CLOUD_SECRET_KEY = ''
|
||||
BAIDU_CLOUD_QIANFAN_MODEL = 'ERNIE-Bot' # 可选 "ERNIE-Bot-4"(文心大模型4.0), "ERNIE-Bot"(文心一言), "ERNIE-Bot-turbo", "BLOOMZ-7B", "Llama-2-70B-Chat", "Llama-2-13B-Chat", "Llama-2-7B-Chat"
|
||||
BAIDU_CLOUD_QIANFAN_MODEL = 'ERNIE-Bot' # 可选 "ERNIE-Bot-4"(文心大模型4.0), "ERNIE-Bot"(文心一言), "ERNIE-Bot-turbo", "BLOOMZ-7B", "Llama-2-70B-Chat", "Llama-2-13B-Chat", "Llama-2-7B-Chat", "ERNIE-Speed-128K", "ERNIE-Speed-8K", "ERNIE-Lite-8K"
|
||||
|
||||
|
||||
# 如果使用ChatGLM2微调模型,请把 LLM_MODEL="chatglmft",并在此处指定模型路径
|
||||
@@ -195,6 +202,12 @@ ALIYUN_ACCESSKEY="" # (无需填写)
|
||||
ALIYUN_SECRET="" # (无需填写)
|
||||
|
||||
|
||||
# GPT-SOVITS 文本转语音服务的运行地址(将语言模型的生成文本朗读出来)
|
||||
TTS_TYPE = "EDGE_TTS" # EDGE_TTS / LOCAL_SOVITS_API / DISABLE
|
||||
GPT_SOVITS_URL = ""
|
||||
EDGE_TTS_VOICE = "zh-CN-XiaoxiaoNeural"
|
||||
|
||||
|
||||
# 接入讯飞星火大模型 https://console.xfyun.cn/services/iat
|
||||
XFYUN_APPID = "00000000"
|
||||
XFYUN_API_SECRET = "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
|
||||
@@ -218,11 +231,23 @@ MOONSHOT_API_KEY = ""
|
||||
YIMODEL_API_KEY = ""
|
||||
|
||||
|
||||
# 深度求索(DeepSeek) API KEY,默认请求地址为"https://api.deepseek.com/v1/chat/completions"
|
||||
DEEPSEEK_API_KEY = ""
|
||||
|
||||
|
||||
# 紫东太初大模型 https://ai-maas.wair.ac.cn
|
||||
TAICHU_API_KEY = ""
|
||||
|
||||
|
||||
# Mathpix 拥有执行PDF的OCR功能,但是需要注册账号
|
||||
MATHPIX_APPID = ""
|
||||
MATHPIX_APPKEY = ""
|
||||
|
||||
|
||||
# DOC2X的PDF解析服务,注册账号并获取API KEY: https://doc2x.noedgeai.com/login
|
||||
DOC2X_API_KEY = ""
|
||||
|
||||
|
||||
# 自定义API KEY格式
|
||||
CUSTOM_API_KEY_PATTERN = ""
|
||||
|
||||
@@ -244,6 +269,10 @@ GROBID_URLS = [
|
||||
]
|
||||
|
||||
|
||||
# Searxng互联网检索服务
|
||||
SEARXNG_URL = "https://cloud-1.agent-matrix.com/"
|
||||
|
||||
|
||||
# 是否允许通过自然语言描述修改本页的配置,该功能具有一定的危险性,默认关闭
|
||||
ALLOW_RESET_CONFIG = False
|
||||
|
||||
@@ -252,23 +281,23 @@ ALLOW_RESET_CONFIG = False
|
||||
AUTOGEN_USE_DOCKER = False
|
||||
|
||||
|
||||
# 临时的上传文件夹位置,请勿修改
|
||||
# 临时的上传文件夹位置,请尽量不要修改
|
||||
PATH_PRIVATE_UPLOAD = "private_upload"
|
||||
|
||||
|
||||
# 日志文件夹的位置,请勿修改
|
||||
# 日志文件夹的位置,请尽量不要修改
|
||||
PATH_LOGGING = "gpt_log"
|
||||
|
||||
|
||||
# 除了连接OpenAI之外,还有哪些场合允许使用代理,请勿修改
|
||||
# 存储翻译好的arxiv论文的路径,请尽量不要修改
|
||||
ARXIV_CACHE_DIR = "gpt_log/arxiv_cache"
|
||||
|
||||
|
||||
# 除了连接OpenAI之外,还有哪些场合允许使用代理,请尽量不要修改
|
||||
WHEN_TO_USE_PROXY = ["Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
|
||||
"Warmup_Modules", "Nougat_Download", "AutoGen"]
|
||||
|
||||
|
||||
# *实验性功能*: 自动检测并屏蔽失效的KEY,请勿使用
|
||||
BLOCK_INVALID_APIKEY = False
|
||||
|
||||
|
||||
# 启用插件热加载
|
||||
PLUGIN_HOT_RELOAD = False
|
||||
|
||||
@@ -365,6 +394,9 @@ NUM_CUSTOM_BASIC_BTN = 4
|
||||
|
||||
插件在线服务配置依赖关系示意图
|
||||
│
|
||||
├── 互联网检索
|
||||
│ └── SEARXNG_URL
|
||||
│
|
||||
├── 语音功能
|
||||
│ ├── ENABLE_AUDIO
|
||||
│ ├── ALIYUN_TOKEN
|
||||
|
||||
@@ -33,6 +33,8 @@ def get_core_functions():
|
||||
"AutoClearHistory": False,
|
||||
# [6] 文本预处理 (可选参数,默认 None,举例:写个函数移除所有的换行符)
|
||||
"PreProcess": None,
|
||||
# [7] 模型选择 (可选参数。如不设置,则使用当前全局模型;如设置,则用指定模型覆盖全局模型。)
|
||||
# "ModelOverride": "gpt-3.5-turbo", # 主要用途:强制点击此基础功能按钮时,使用指定的模型。
|
||||
},
|
||||
|
||||
|
||||
|
||||
@@ -15,32 +15,43 @@ def get_crazy_functions():
|
||||
from crazy_functions.解析项目源代码 import 解析一个Java项目
|
||||
from crazy_functions.解析项目源代码 import 解析一个前端项目
|
||||
from crazy_functions.高级功能函数模板 import 高阶功能模板函数
|
||||
from crazy_functions.高级功能函数模板 import Demo_Wrap
|
||||
from crazy_functions.Latex全文润色 import Latex英文润色
|
||||
from crazy_functions.询问多个大语言模型 import 同时问询
|
||||
from crazy_functions.解析项目源代码 import 解析一个Lua项目
|
||||
from crazy_functions.解析项目源代码 import 解析一个CSharp项目
|
||||
from crazy_functions.总结word文档 import 总结word文档
|
||||
from crazy_functions.解析JupyterNotebook import 解析ipynb文件
|
||||
from crazy_functions.对话历史存档 import 对话历史存档
|
||||
from crazy_functions.对话历史存档 import 载入对话历史存档
|
||||
from crazy_functions.对话历史存档 import 删除所有本地对话历史记录
|
||||
from crazy_functions.Conversation_To_File import 载入对话历史存档
|
||||
from crazy_functions.Conversation_To_File import 对话历史存档
|
||||
from crazy_functions.Conversation_To_File import Conversation_To_File_Wrap
|
||||
from crazy_functions.Conversation_To_File import 删除所有本地对话历史记录
|
||||
from crazy_functions.辅助功能 import 清除缓存
|
||||
from crazy_functions.批量Markdown翻译 import Markdown英译中
|
||||
from crazy_functions.Markdown_Translate import Markdown英译中
|
||||
from crazy_functions.批量总结PDF文档 import 批量总结PDF文档
|
||||
from crazy_functions.批量翻译PDF文档_多线程 import 批量翻译PDF文档
|
||||
from crazy_functions.PDF_Translate import 批量翻译PDF文档
|
||||
from crazy_functions.谷歌检索小助手 import 谷歌检索小助手
|
||||
from crazy_functions.理解PDF文档内容 import 理解PDF文档内容标准文件输入
|
||||
from crazy_functions.Latex全文润色 import Latex中文润色
|
||||
from crazy_functions.Latex全文润色 import Latex英文纠错
|
||||
from crazy_functions.批量Markdown翻译 import Markdown中译英
|
||||
from crazy_functions.Markdown_Translate import Markdown中译英
|
||||
from crazy_functions.虚空终端 import 虚空终端
|
||||
from crazy_functions.生成多种Mermaid图表 import 生成多种Mermaid图表
|
||||
from crazy_functions.生成多种Mermaid图表 import Mermaid_Gen
|
||||
from crazy_functions.PDF_Translate_Wrap import PDF_Tran
|
||||
from crazy_functions.Latex_Function import Latex英文纠错加PDF对比
|
||||
from crazy_functions.Latex_Function import Latex翻译中文并重新编译PDF
|
||||
from crazy_functions.Latex_Function import PDF翻译中文并重新编译PDF
|
||||
from crazy_functions.Latex_Function_Wrap import Arxiv_Localize
|
||||
from crazy_functions.Latex_Function_Wrap import PDF_Localize
|
||||
from crazy_functions.Internet_GPT import 连接网络回答问题
|
||||
from crazy_functions.Internet_GPT_Wrap import NetworkGPT_Wrap
|
||||
|
||||
function_plugins = {
|
||||
"虚空终端": {
|
||||
"Group": "对话|编程|学术|智能体",
|
||||
"Color": "stop",
|
||||
"AsButton": True,
|
||||
"Info": "使用自然语言实现您的想法",
|
||||
"Function": HotReload(虚空终端),
|
||||
},
|
||||
"解析整个Python项目": {
|
||||
@@ -75,14 +86,21 @@ def get_crazy_functions():
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"Info" : "基于当前对话或文件生成多种Mermaid图表,图表类型由模型判断",
|
||||
"Function": HotReload(生成多种Mermaid图表),
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": "请输入图类型对应的数字,不输入则为模型自行判断:1-流程图,2-序列图,3-类图,4-饼图,5-甘特图,6-状态图,7-实体关系图,8-象限提示图,9-思维导图",
|
||||
"Function": None,
|
||||
"Class": Mermaid_Gen
|
||||
},
|
||||
"Arxiv论文翻译": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": True,
|
||||
"Info": "Arixv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
|
||||
"Function": HotReload(Latex翻译中文并重新编译PDF), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
|
||||
"Class": Arxiv_Localize, # 新一代插件需要注册Class
|
||||
},
|
||||
"批量总结Word文档": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": True,
|
||||
"AsButton": False,
|
||||
"Info": "批量总结word文档 | 输入参数为路径",
|
||||
"Function": HotReload(总结word文档),
|
||||
},
|
||||
@@ -188,28 +206,42 @@ def get_crazy_functions():
|
||||
},
|
||||
"保存当前的对话": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": True,
|
||||
"Info": "保存当前的对话 | 不需要输入参数",
|
||||
"Function": HotReload(对话历史存档),
|
||||
"Function": HotReload(对话历史存档), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
|
||||
"Class": Conversation_To_File_Wrap # 新一代插件需要注册Class
|
||||
},
|
||||
"[多线程Demo]解析此项目本身(源码自译解)": {
|
||||
"Group": "对话|编程",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Info": "多线程解析并翻译此项目的源码 | 不需要输入参数",
|
||||
"Function": HotReload(解析项目本身),
|
||||
},
|
||||
"查互联网后回答": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": True, # 加入下拉菜单中
|
||||
# "Info": "连接网络回答问题(需要访问谷歌)| 输入参数是一个问题",
|
||||
"Function": HotReload(连接网络回答问题),
|
||||
"Class": NetworkGPT_Wrap # 新一代插件需要注册Class
|
||||
},
|
||||
"历史上的今天": {
|
||||
"Group": "对话",
|
||||
"AsButton": True,
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"Info": "查看历史上的今天事件 (这是一个面向开发者的插件Demo) | 不需要输入参数",
|
||||
"Function": HotReload(高阶功能模板函数),
|
||||
"Function": None,
|
||||
"Class": Demo_Wrap, # 新一代插件需要注册Class
|
||||
},
|
||||
"精准翻译PDF论文": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": True,
|
||||
"Info": "精准翻译PDF论文为中文 | 输入参数为路径",
|
||||
"Function": HotReload(批量翻译PDF文档),
|
||||
"Function": HotReload(批量翻译PDF文档), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
|
||||
"Class": PDF_Tran, # 新一代插件需要注册Class
|
||||
},
|
||||
"询问多个GPT模型": {
|
||||
"Group": "对话",
|
||||
@@ -284,8 +316,52 @@ def get_crazy_functions():
|
||||
"Info": "批量将Markdown文件中文翻译为英文 | 输入参数为路径或上传压缩包",
|
||||
"Function": HotReload(Markdown中译英),
|
||||
},
|
||||
"Latex英文纠错+高亮修正位置 [需Latex]": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": "如果有必要, 请在此处追加更细致的矫错指令(使用英文)。",
|
||||
"Function": HotReload(Latex英文纠错加PDF对比),
|
||||
},
|
||||
"Arxiv论文精细翻译(输入arxivID)[需Latex]": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
||||
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
||||
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||
"Info": "Arixv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
|
||||
"Function": HotReload(Latex翻译中文并重新编译PDF), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
|
||||
"Class": Arxiv_Localize, # 新一代插件需要注册Class
|
||||
},
|
||||
"本地Latex论文精细翻译(上传Latex项目)[需Latex]": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
||||
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
||||
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||
"Info": "本地Latex论文精细翻译 | 输入参数是路径",
|
||||
"Function": HotReload(Latex翻译中文并重新编译PDF),
|
||||
},
|
||||
"PDF翻译中文并重新编译PDF(上传PDF)[需Latex]": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
||||
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
||||
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||
"Info": "PDF翻译中文,并重新编译PDF | 输入参数为路径",
|
||||
"Function": HotReload(PDF翻译中文并重新编译PDF), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
|
||||
"Class": PDF_Localize # 新一代插件需要注册Class
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
# -=--=- 尚未充分测试的实验性插件 & 需要额外依赖的插件 -=--=-
|
||||
try:
|
||||
from crazy_functions.下载arxiv论文翻译摘要 import 下载arxiv论文并翻译摘要
|
||||
@@ -305,36 +381,36 @@ def get_crazy_functions():
|
||||
print(trimmed_format_exc())
|
||||
print("Load function plugin failed")
|
||||
|
||||
try:
|
||||
from crazy_functions.联网的ChatGPT import 连接网络回答问题
|
||||
# try:
|
||||
# from crazy_functions.联网的ChatGPT import 连接网络回答问题
|
||||
|
||||
function_plugins.update(
|
||||
{
|
||||
"连接网络回答问题(输入问题后点击该插件,需要访问谷歌)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
# "Info": "连接网络回答问题(需要访问谷歌)| 输入参数是一个问题",
|
||||
"Function": HotReload(连接网络回答问题),
|
||||
}
|
||||
}
|
||||
)
|
||||
from crazy_functions.联网的ChatGPT_bing版 import 连接bing搜索回答问题
|
||||
# function_plugins.update(
|
||||
# {
|
||||
# "连接网络回答问题(输入问题后点击该插件,需要访问谷歌)": {
|
||||
# "Group": "对话",
|
||||
# "Color": "stop",
|
||||
# "AsButton": False, # 加入下拉菜单中
|
||||
# # "Info": "连接网络回答问题(需要访问谷歌)| 输入参数是一个问题",
|
||||
# "Function": HotReload(连接网络回答问题),
|
||||
# }
|
||||
# }
|
||||
# )
|
||||
# from crazy_functions.联网的ChatGPT_bing版 import 连接bing搜索回答问题
|
||||
|
||||
function_plugins.update(
|
||||
{
|
||||
"连接网络回答问题(中文Bing版,输入问题后点击该插件)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Info": "连接网络回答问题(需要访问中文Bing)| 输入参数是一个问题",
|
||||
"Function": HotReload(连接bing搜索回答问题),
|
||||
}
|
||||
}
|
||||
)
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
print("Load function plugin failed")
|
||||
# function_plugins.update(
|
||||
# {
|
||||
# "连接网络回答问题(中文Bing版,输入问题后点击该插件)": {
|
||||
# "Group": "对话",
|
||||
# "Color": "stop",
|
||||
# "AsButton": False, # 加入下拉菜单中
|
||||
# "Info": "连接网络回答问题(需要访问中文Bing)| 输入参数是一个问题",
|
||||
# "Function": HotReload(连接bing搜索回答问题),
|
||||
# }
|
||||
# }
|
||||
# )
|
||||
# except:
|
||||
# print(trimmed_format_exc())
|
||||
# print("Load function plugin failed")
|
||||
|
||||
try:
|
||||
from crazy_functions.解析项目源代码 import 解析任意code项目
|
||||
@@ -363,7 +439,7 @@ def get_crazy_functions():
|
||||
"询问多个GPT模型(手动指定询问哪些模型)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AsButton": True,
|
||||
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
||||
"ArgsReminder": "支持任意数量的llm接口,用&符号分隔。例如chatglm&gpt-3.5-turbo&gpt-4", # 高级参数输入区的显示提示
|
||||
"Function": HotReload(同时问询_指定模型),
|
||||
@@ -458,7 +534,7 @@ def get_crazy_functions():
|
||||
print("Load function plugin failed")
|
||||
|
||||
try:
|
||||
from crazy_functions.批量Markdown翻译 import Markdown翻译指定语言
|
||||
from crazy_functions.Markdown_Translate import Markdown翻译指定语言
|
||||
|
||||
function_plugins.update(
|
||||
{
|
||||
@@ -531,59 +607,6 @@ def get_crazy_functions():
|
||||
print(trimmed_format_exc())
|
||||
print("Load function plugin failed")
|
||||
|
||||
try:
|
||||
from crazy_functions.Latex输出PDF import Latex英文纠错加PDF对比
|
||||
from crazy_functions.Latex输出PDF import Latex翻译中文并重新编译PDF
|
||||
from crazy_functions.Latex输出PDF import PDF翻译中文并重新编译PDF
|
||||
|
||||
function_plugins.update(
|
||||
{
|
||||
"Latex英文纠错+高亮修正位置 [需Latex]": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": "如果有必要, 请在此处追加更细致的矫错指令(使用英文)。",
|
||||
"Function": HotReload(Latex英文纠错加PDF对比),
|
||||
},
|
||||
"Arxiv论文精细翻译(输入arxivID)[需Latex]": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
||||
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
||||
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||
"Info": "Arixv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
|
||||
"Function": HotReload(Latex翻译中文并重新编译PDF),
|
||||
},
|
||||
"本地Latex论文精细翻译(上传Latex项目)[需Latex]": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
||||
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
||||
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||
"Info": "本地Latex论文精细翻译 | 输入参数是路径",
|
||||
"Function": HotReload(Latex翻译中文并重新编译PDF),
|
||||
},
|
||||
"PDF翻译中文并重新编译PDF(上传PDF)[需Latex]": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
||||
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
||||
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||
"Info": "PDF翻译中文,并重新编译PDF | 输入参数为路径",
|
||||
"Function": HotReload(PDF翻译中文并重新编译PDF)
|
||||
}
|
||||
}
|
||||
)
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
print("Load function plugin failed")
|
||||
|
||||
try:
|
||||
from toolbox import get_conf
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
from toolbox import CatchException, update_ui, promote_file_to_downloadzone, get_log_folder, get_user
|
||||
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
||||
import re
|
||||
|
||||
f_prefix = 'GPT-Academic对话存档'
|
||||
@@ -9,27 +10,61 @@ def write_chat_to_file(chatbot, history=None, file_name=None):
|
||||
"""
|
||||
import os
|
||||
import time
|
||||
from themes.theme import advanced_css
|
||||
|
||||
if file_name is None:
|
||||
file_name = f_prefix + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.html'
|
||||
fp = os.path.join(get_log_folder(get_user(chatbot), plugin_name='chat_history'), file_name)
|
||||
|
||||
with open(fp, 'w', encoding='utf8') as f:
|
||||
from themes.theme import advanced_css
|
||||
f.write(f'<!DOCTYPE html><head><meta charset="utf-8"><title>对话历史</title><style>{advanced_css}</style></head>')
|
||||
from textwrap import dedent
|
||||
form = dedent("""
|
||||
<!DOCTYPE html><head><meta charset="utf-8"><title>对话存档</title><style>{CSS}</style></head>
|
||||
<body>
|
||||
<div class="test_temp1" style="width:10%; height: 500px; float:left;"></div>
|
||||
<div class="test_temp2" style="width:80%;padding: 40px;float:left;padding-left: 20px;padding-right: 20px;box-shadow: rgba(0, 0, 0, 0.2) 0px 0px 8px 8px;border-radius: 10px;">
|
||||
<div class="chat-body" style="display: flex;justify-content: center;flex-direction: column;align-items: center;flex-wrap: nowrap;">
|
||||
{CHAT_PREVIEW}
|
||||
<div></div>
|
||||
<div></div>
|
||||
<div style="text-align: center;width:80%;padding: 0px;float:left;padding-left:20px;padding-right:20px;box-shadow: rgba(0, 0, 0, 0.05) 0px 0px 1px 2px;border-radius: 1px;">对话(原始数据)</div>
|
||||
{HISTORY_PREVIEW}
|
||||
</div>
|
||||
</div>
|
||||
<div class="test_temp3" style="width:10%; height: 500px; float:left;"></div>
|
||||
</body>
|
||||
""")
|
||||
|
||||
qa_from = dedent("""
|
||||
<div class="QaBox" style="width:80%;padding: 20px;margin-bottom: 20px;box-shadow: rgb(0 255 159 / 50%) 0px 0px 1px 2px;border-radius: 4px;">
|
||||
<div class="Question" style="border-radius: 2px;">{QUESTION}</div>
|
||||
<hr color="blue" style="border-top: dotted 2px #ccc;">
|
||||
<div class="Answer" style="border-radius: 2px;">{ANSWER}</div>
|
||||
</div>
|
||||
""")
|
||||
|
||||
history_from = dedent("""
|
||||
<div class="historyBox" style="width:80%;padding: 0px;float:left;padding-left:20px;padding-right:20px;box-shadow: rgba(0, 0, 0, 0.05) 0px 0px 1px 2px;border-radius: 1px;">
|
||||
<div class="entry" style="border-radius: 2px;">{ENTRY}</div>
|
||||
</div>
|
||||
""")
|
||||
CHAT_PREVIEW_BUF = ""
|
||||
for i, contents in enumerate(chatbot):
|
||||
for j, content in enumerate(contents):
|
||||
try: # 这个bug没找到触发条件,暂时先这样顶一下
|
||||
if type(content) != str: content = str(content)
|
||||
except:
|
||||
continue
|
||||
f.write(content)
|
||||
if j == 0:
|
||||
f.write('<hr style="border-top: dotted 3px #ccc;">')
|
||||
f.write('<hr color="red"> \n\n')
|
||||
f.write('<hr color="blue"> \n\n raw chat context:\n')
|
||||
f.write('<code>')
|
||||
question, answer = contents[0], contents[1]
|
||||
if question is None: question = ""
|
||||
try: question = str(question)
|
||||
except: question = ""
|
||||
if answer is None: answer = ""
|
||||
try: answer = str(answer)
|
||||
except: answer = ""
|
||||
CHAT_PREVIEW_BUF += qa_from.format(QUESTION=question, ANSWER=answer)
|
||||
|
||||
HISTORY_PREVIEW_BUF = ""
|
||||
for h in history:
|
||||
f.write("\n>>>" + h)
|
||||
f.write('</code>')
|
||||
HISTORY_PREVIEW_BUF += history_from.format(ENTRY=h)
|
||||
html_content = form.format(CHAT_PREVIEW=CHAT_PREVIEW_BUF, HISTORY_PREVIEW=HISTORY_PREVIEW_BUF, CSS=advanced_css)
|
||||
f.write(html_content)
|
||||
|
||||
promote_file_to_downloadzone(fp, rename_file=file_name, chatbot=chatbot)
|
||||
return '对话历史写入:' + fp
|
||||
|
||||
@@ -40,7 +75,7 @@ def gen_file_preview(file_name):
|
||||
# pattern to match the text between <head> and </head>
|
||||
pattern = re.compile(r'<head>.*?</head>', flags=re.DOTALL)
|
||||
file_content = re.sub(pattern, '', file_content)
|
||||
html, history = file_content.split('<hr color="blue"> \n\n raw chat context:\n')
|
||||
html, history = file_content.split('<hr color="blue"> \n\n 对话数据 (无渲染):\n')
|
||||
history = history.strip('<code>')
|
||||
history = history.strip('</code>')
|
||||
history = history.split("\n>>>")
|
||||
@@ -51,21 +86,25 @@ def gen_file_preview(file_name):
|
||||
def read_file_to_chat(chatbot, history, file_name):
|
||||
with open(file_name, 'r', encoding='utf8') as f:
|
||||
file_content = f.read()
|
||||
# pattern to match the text between <head> and </head>
|
||||
pattern = re.compile(r'<head>.*?</head>', flags=re.DOTALL)
|
||||
file_content = re.sub(pattern, '', file_content)
|
||||
html, history = file_content.split('<hr color="blue"> \n\n raw chat context:\n')
|
||||
history = history.strip('<code>')
|
||||
history = history.strip('</code>')
|
||||
history = history.split("\n>>>")
|
||||
history = list(filter(lambda x:x!="", history))
|
||||
html = html.split('<hr color="red"> \n\n')
|
||||
html = list(filter(lambda x:x!="", html))
|
||||
from bs4 import BeautifulSoup
|
||||
soup = BeautifulSoup(file_content, 'lxml')
|
||||
# 提取QaBox信息
|
||||
chatbot.clear()
|
||||
for i, h in enumerate(html):
|
||||
i_say, gpt_say = h.split('<hr style="border-top: dotted 3px #ccc;">')
|
||||
chatbot.append([i_say, gpt_say])
|
||||
chatbot.append([f"存档文件详情?", f"[Local Message] 载入对话{len(html)}条,上下文{len(history)}条。"])
|
||||
qa_box_list = []
|
||||
qa_boxes = soup.find_all("div", class_="QaBox")
|
||||
for box in qa_boxes:
|
||||
question = box.find("div", class_="Question").get_text(strip=False)
|
||||
answer = box.find("div", class_="Answer").get_text(strip=False)
|
||||
qa_box_list.append({"Question": question, "Answer": answer})
|
||||
chatbot.append([question, answer])
|
||||
# 提取historyBox信息
|
||||
history_box_list = []
|
||||
history_boxes = soup.find_all("div", class_="historyBox")
|
||||
for box in history_boxes:
|
||||
entry = box.find("div", class_="entry").get_text(strip=False)
|
||||
history_box_list.append(entry)
|
||||
history = history_box_list
|
||||
chatbot.append([None, f"[Local Message] 载入对话{len(qa_box_list)}条,上下文{len(history)}条。"])
|
||||
return chatbot, history
|
||||
|
||||
@CatchException
|
||||
@@ -79,11 +118,42 @@ def 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
||||
system_prompt 给gpt的静默提醒
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
file_name = plugin_kwargs.get("file_name", None)
|
||||
if (file_name is not None) and (file_name != "") and (not file_name.endswith('.html')): file_name += '.html'
|
||||
else: file_name = None
|
||||
|
||||
chatbot.append(("保存当前对话",
|
||||
f"[Local Message] {write_chat_to_file(chatbot, history)},您可以调用下拉菜单中的“载入对话历史存档”还原当下的对话。"))
|
||||
chatbot.append((None, f"[Local Message] {write_chat_to_file(chatbot, history, file_name)},您可以调用下拉菜单中的“载入对话历史存档”还原当下的对话。"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
|
||||
|
||||
class Conversation_To_File_Wrap(GptAcademicPluginTemplate):
|
||||
def __init__(self):
|
||||
"""
|
||||
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
||||
"""
|
||||
pass
|
||||
|
||||
def define_arg_selection_menu(self):
|
||||
"""
|
||||
定义插件的二级选项菜单
|
||||
|
||||
第一个参数,名称`file_name`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
||||
"""
|
||||
gui_definition = {
|
||||
"file_name": ArgProperty(title="保存文件名", description="输入对话存档文件名,留空则使用时间作为文件名", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
||||
}
|
||||
return gui_definition
|
||||
|
||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
执行插件
|
||||
"""
|
||||
yield from 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def hide_cwd(str):
|
||||
import os
|
||||
current_path = os.getcwd()
|
||||
@@ -147,6 +217,4 @@ def 删除所有本地对话历史记录(txt, llm_kwargs, plugin_kwargs, chatbot
|
||||
os.remove(f)
|
||||
chatbot.append([f"删除所有历史对话文件", f"已删除<br/>{local_history}"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
return
|
||||
142
crazy_functions/Internet_GPT.py
普通文件
142
crazy_functions/Internet_GPT.py
普通文件
@@ -0,0 +1,142 @@
|
||||
from toolbox import CatchException, update_ui, get_conf
|
||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
from request_llms.bridge_all import model_info
|
||||
import urllib.request
|
||||
import random
|
||||
from functools import lru_cache
|
||||
from check_proxy import check_proxy
|
||||
|
||||
@lru_cache
|
||||
def get_auth_ip():
|
||||
ip = check_proxy(None, return_ip=True)
|
||||
if ip is None:
|
||||
return '114.114.114.' + str(random.randint(1, 10))
|
||||
return ip
|
||||
|
||||
def searxng_request(query, proxies, categories='general', searxng_url=None, engines=None):
|
||||
if searxng_url is None:
|
||||
url = get_conf("SEARXNG_URL")
|
||||
else:
|
||||
url = searxng_url
|
||||
|
||||
if engines is None:
|
||||
engines = 'bing'
|
||||
|
||||
if categories == 'general':
|
||||
params = {
|
||||
'q': query, # 搜索查询
|
||||
'format': 'json', # 输出格式为JSON
|
||||
'language': 'zh', # 搜索语言
|
||||
'engines': engines,
|
||||
}
|
||||
elif categories == 'science':
|
||||
params = {
|
||||
'q': query, # 搜索查询
|
||||
'format': 'json', # 输出格式为JSON
|
||||
'language': 'zh', # 搜索语言
|
||||
'categories': 'science'
|
||||
}
|
||||
else:
|
||||
raise ValueError('不支持的检索类型')
|
||||
|
||||
headers = {
|
||||
'Accept-Language': 'zh-CN,zh;q=0.9',
|
||||
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36',
|
||||
'X-Forwarded-For': get_auth_ip(),
|
||||
'X-Real-IP': get_auth_ip()
|
||||
}
|
||||
results = []
|
||||
response = requests.post(url, params=params, headers=headers, proxies=proxies, timeout=30)
|
||||
if response.status_code == 200:
|
||||
json_result = response.json()
|
||||
for result in json_result['results']:
|
||||
item = {
|
||||
"title": result.get("title", ""),
|
||||
"source": result.get("engines", "unknown"),
|
||||
"content": result.get("content", ""),
|
||||
"link": result["url"],
|
||||
}
|
||||
results.append(item)
|
||||
return results
|
||||
else:
|
||||
if response.status_code == 429:
|
||||
raise ValueError("Searxng(在线搜索服务)当前使用人数太多,请稍后。")
|
||||
else:
|
||||
raise ValueError("在线搜索失败,状态码: " + str(response.status_code) + '\t' + response.content.decode('utf-8'))
|
||||
|
||||
def scrape_text(url, proxies) -> str:
|
||||
"""Scrape text from a webpage
|
||||
|
||||
Args:
|
||||
url (str): The URL to scrape text from
|
||||
|
||||
Returns:
|
||||
str: The scraped text
|
||||
"""
|
||||
headers = {
|
||||
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36',
|
||||
'Content-Type': 'text/plain',
|
||||
}
|
||||
try:
|
||||
response = requests.get(url, headers=headers, proxies=proxies, timeout=8)
|
||||
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding
|
||||
except:
|
||||
return "无法连接到该网页"
|
||||
soup = BeautifulSoup(response.text, "html.parser")
|
||||
for script in soup(["script", "style"]):
|
||||
script.extract()
|
||||
text = soup.get_text()
|
||||
lines = (line.strip() for line in text.splitlines())
|
||||
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
||||
text = "\n".join(chunk for chunk in chunks if chunk)
|
||||
return text
|
||||
|
||||
@CatchException
|
||||
def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
chatbot.append((f"请结合互联网信息回答以下问题:{txt}", "检索中..."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# ------------- < 第1步:爬取搜索引擎的结果 > -------------
|
||||
from toolbox import get_conf
|
||||
proxies = get_conf('proxies')
|
||||
categories = plugin_kwargs.get('categories', 'general')
|
||||
searxng_url = plugin_kwargs.get('searxng_url', None)
|
||||
engines = plugin_kwargs.get('engine', None)
|
||||
urls = searxng_request(txt, proxies, categories, searxng_url, engines=engines)
|
||||
history = []
|
||||
if len(urls) == 0:
|
||||
chatbot.append((f"结论:{txt}",
|
||||
"[Local Message] 受到限制,无法从searxng获取信息!请尝试更换搜索引擎。"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
# ------------- < 第2步:依次访问网页 > -------------
|
||||
max_search_result = 5 # 最多收纳多少个网页的结果
|
||||
chatbot.append([f"联网检索中 ...", None])
|
||||
for index, url in enumerate(urls[:max_search_result]):
|
||||
res = scrape_text(url['link'], proxies)
|
||||
prefix = f"第{index}份搜索结果 [源自{url['source'][0]}搜索] ({url['title'][:25]}):"
|
||||
history.extend([prefix, res])
|
||||
res_squeeze = res.replace('\n', '...')
|
||||
chatbot[-1] = [prefix + "\n\n" + res_squeeze[:500] + "......", None]
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# ------------- < 第3步:ChatGPT综合 > -------------
|
||||
i_say = f"从以上搜索结果中抽取信息,然后回答问题:{txt}"
|
||||
i_say, history = input_clipping( # 裁剪输入,从最长的条目开始裁剪,防止爆token
|
||||
inputs=i_say,
|
||||
history=history,
|
||||
max_token_limit=min(model_info[llm_kwargs['llm_model']]['max_token']*3//4, 8192)
|
||||
)
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
sys_prompt="请从给定的若干条搜索结果中抽取信息,对最相关的两个搜索结果进行总结,然后回答问题。"
|
||||
)
|
||||
chatbot[-1] = (i_say, gpt_say)
|
||||
history.append(i_say);history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
@@ -0,0 +1,44 @@
|
||||
|
||||
from toolbox import get_conf
|
||||
from crazy_functions.Internet_GPT import 连接网络回答问题
|
||||
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
||||
|
||||
|
||||
class NetworkGPT_Wrap(GptAcademicPluginTemplate):
|
||||
def __init__(self):
|
||||
"""
|
||||
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
||||
"""
|
||||
pass
|
||||
|
||||
def define_arg_selection_menu(self):
|
||||
"""
|
||||
定义插件的二级选项菜单
|
||||
|
||||
第一个参数,名称`main_input`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
||||
第二个参数,名称`advanced_arg`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
||||
第三个参数,名称`allow_cache`,参数`type`声明这是一个下拉菜单,下拉菜单上方显示`title`+`description`,下拉菜单的选项为`options`,`default_value`为下拉菜单默认值;
|
||||
|
||||
"""
|
||||
gui_definition = {
|
||||
"main_input":
|
||||
ArgProperty(title="输入问题", description="待通过互联网检索的问题", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
||||
"categories":
|
||||
ArgProperty(title="搜索分类", options=["网页", "学术论文"], default_value="网页", description="无", type="dropdown").model_dump_json(),
|
||||
"engine":
|
||||
ArgProperty(title="选择搜索引擎", options=["bing", "google", "duckduckgo"], default_value="bing", description="无", type="dropdown").model_dump_json(),
|
||||
"searxng_url":
|
||||
ArgProperty(title="Searxng服务地址", description="输入Searxng的地址", default_value=get_conf("SEARXNG_URL"), type="string").model_dump_json(), # 主输入,自动从输入框同步
|
||||
|
||||
}
|
||||
return gui_definition
|
||||
|
||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
执行插件
|
||||
"""
|
||||
if plugin_kwargs["categories"] == "网页": plugin_kwargs["categories"] = "general"
|
||||
if plugin_kwargs["categories"] == "学术论文": plugin_kwargs["categories"] = "science"
|
||||
|
||||
yield from 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||
|
||||
@@ -4,7 +4,7 @@ from functools import partial
|
||||
import glob, os, requests, time, json, tarfile
|
||||
|
||||
pj = os.path.join
|
||||
ARXIV_CACHE_DIR = os.path.expanduser(f"~/arxiv_cache/")
|
||||
ARXIV_CACHE_DIR = get_conf("ARXIV_CACHE_DIR")
|
||||
|
||||
|
||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- 工具函数 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
@@ -107,6 +107,10 @@ def arxiv_download(chatbot, history, txt, allow_cache=True):
|
||||
except ValueError:
|
||||
return False
|
||||
|
||||
if txt.startswith('https://arxiv.org/pdf/'):
|
||||
arxiv_id = txt.split('/')[-1] # 2402.14207v2.pdf
|
||||
txt = arxiv_id.split('v')[0] # 2402.14207
|
||||
|
||||
if ('.' in txt) and ('/' not in txt) and is_float(txt): # is arxiv ID
|
||||
txt = 'https://arxiv.org/abs/' + txt.strip()
|
||||
if ('.' in txt) and ('/' not in txt) and is_float(txt[:10]): # is arxiv ID
|
||||
@@ -121,6 +125,7 @@ def arxiv_download(chatbot, history, txt, allow_cache=True):
|
||||
time.sleep(1) # 刷新界面
|
||||
|
||||
url_ = txt # https://arxiv.org/abs/1707.06690
|
||||
|
||||
if not txt.startswith('https://arxiv.org/abs/'):
|
||||
msg = f"解析arxiv网址失败, 期望格式例如: https://arxiv.org/abs/1707.06690。实际得到格式: {url_}。"
|
||||
yield from update_ui_lastest_msg(msg, chatbot=chatbot, history=history) # 刷新界面
|
||||
@@ -153,65 +158,72 @@ def arxiv_download(chatbot, history, txt, allow_cache=True):
|
||||
return extract_dst, arxiv_id
|
||||
|
||||
|
||||
def pdf2tex_project(pdf_file_path):
|
||||
# Mathpix API credentials
|
||||
app_id, app_key = get_conf('MATHPIX_APPID', 'MATHPIX_APPKEY')
|
||||
headers = {"app_id": app_id, "app_key": app_key}
|
||||
def pdf2tex_project(pdf_file_path, plugin_kwargs):
|
||||
if plugin_kwargs["method"] == "MATHPIX":
|
||||
# Mathpix API credentials
|
||||
app_id, app_key = get_conf('MATHPIX_APPID', 'MATHPIX_APPKEY')
|
||||
headers = {"app_id": app_id, "app_key": app_key}
|
||||
|
||||
# Step 1: Send PDF file for processing
|
||||
options = {
|
||||
"conversion_formats": {"tex.zip": True},
|
||||
"math_inline_delimiters": ["$", "$"],
|
||||
"rm_spaces": True
|
||||
}
|
||||
# Step 1: Send PDF file for processing
|
||||
options = {
|
||||
"conversion_formats": {"tex.zip": True},
|
||||
"math_inline_delimiters": ["$", "$"],
|
||||
"rm_spaces": True
|
||||
}
|
||||
|
||||
response = requests.post(url="https://api.mathpix.com/v3/pdf",
|
||||
headers=headers,
|
||||
data={"options_json": json.dumps(options)},
|
||||
files={"file": open(pdf_file_path, "rb")})
|
||||
response = requests.post(url="https://api.mathpix.com/v3/pdf",
|
||||
headers=headers,
|
||||
data={"options_json": json.dumps(options)},
|
||||
files={"file": open(pdf_file_path, "rb")})
|
||||
|
||||
if response.ok:
|
||||
pdf_id = response.json()["pdf_id"]
|
||||
print(f"PDF processing initiated. PDF ID: {pdf_id}")
|
||||
if response.ok:
|
||||
pdf_id = response.json()["pdf_id"]
|
||||
print(f"PDF processing initiated. PDF ID: {pdf_id}")
|
||||
|
||||
# Step 2: Check processing status
|
||||
while True:
|
||||
conversion_response = requests.get(f"https://api.mathpix.com/v3/pdf/{pdf_id}", headers=headers)
|
||||
conversion_data = conversion_response.json()
|
||||
# Step 2: Check processing status
|
||||
while True:
|
||||
conversion_response = requests.get(f"https://api.mathpix.com/v3/pdf/{pdf_id}", headers=headers)
|
||||
conversion_data = conversion_response.json()
|
||||
|
||||
if conversion_data["status"] == "completed":
|
||||
print("PDF processing completed.")
|
||||
break
|
||||
elif conversion_data["status"] == "error":
|
||||
print("Error occurred during processing.")
|
||||
else:
|
||||
print(f"Processing status: {conversion_data['status']}")
|
||||
time.sleep(5) # wait for a few seconds before checking again
|
||||
if conversion_data["status"] == "completed":
|
||||
print("PDF processing completed.")
|
||||
break
|
||||
elif conversion_data["status"] == "error":
|
||||
print("Error occurred during processing.")
|
||||
else:
|
||||
print(f"Processing status: {conversion_data['status']}")
|
||||
time.sleep(5) # wait for a few seconds before checking again
|
||||
|
||||
# Step 3: Save results to local files
|
||||
output_dir = os.path.join(os.path.dirname(pdf_file_path), 'mathpix_output')
|
||||
if not os.path.exists(output_dir):
|
||||
os.makedirs(output_dir)
|
||||
# Step 3: Save results to local files
|
||||
output_dir = os.path.join(os.path.dirname(pdf_file_path), 'mathpix_output')
|
||||
if not os.path.exists(output_dir):
|
||||
os.makedirs(output_dir)
|
||||
|
||||
url = f"https://api.mathpix.com/v3/pdf/{pdf_id}.tex"
|
||||
response = requests.get(url, headers=headers)
|
||||
file_name_wo_dot = '_'.join(os.path.basename(pdf_file_path).split('.')[:-1])
|
||||
output_name = f"{file_name_wo_dot}.tex.zip"
|
||||
output_path = os.path.join(output_dir, output_name)
|
||||
with open(output_path, "wb") as output_file:
|
||||
output_file.write(response.content)
|
||||
print(f"tex.zip file saved at: {output_path}")
|
||||
url = f"https://api.mathpix.com/v3/pdf/{pdf_id}.tex"
|
||||
response = requests.get(url, headers=headers)
|
||||
file_name_wo_dot = '_'.join(os.path.basename(pdf_file_path).split('.')[:-1])
|
||||
output_name = f"{file_name_wo_dot}.tex.zip"
|
||||
output_path = os.path.join(output_dir, output_name)
|
||||
with open(output_path, "wb") as output_file:
|
||||
output_file.write(response.content)
|
||||
print(f"tex.zip file saved at: {output_path}")
|
||||
|
||||
import zipfile
|
||||
unzip_dir = os.path.join(output_dir, file_name_wo_dot)
|
||||
with zipfile.ZipFile(output_path, 'r') as zip_ref:
|
||||
zip_ref.extractall(unzip_dir)
|
||||
import zipfile
|
||||
unzip_dir = os.path.join(output_dir, file_name_wo_dot)
|
||||
with zipfile.ZipFile(output_path, 'r') as zip_ref:
|
||||
zip_ref.extractall(unzip_dir)
|
||||
|
||||
return unzip_dir
|
||||
|
||||
else:
|
||||
print(f"Error sending PDF for processing. Status code: {response.status_code}")
|
||||
return None
|
||||
else:
|
||||
from crazy_functions.pdf_fns.parse_pdf_via_doc2x import 解析PDF_DOC2X_转Latex
|
||||
unzip_dir = 解析PDF_DOC2X_转Latex(pdf_file_path)
|
||||
return unzip_dir
|
||||
|
||||
else:
|
||||
print(f"Error sending PDF for processing. Status code: {response.status_code}")
|
||||
return None
|
||||
|
||||
|
||||
|
||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序1 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
@@ -221,7 +233,7 @@ def pdf2tex_project(pdf_file_path):
|
||||
def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# <-------------- information about this plugin ------------->
|
||||
chatbot.append(["函数插件功能?",
|
||||
"对整个Latex项目进行纠错, 用latex编译为PDF对修正处做高亮。函数插件贡献者: Binary-Husky。注意事项: 目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。仅在Windows系统进行了测试,其他操作系统表现未知。"])
|
||||
"对整个Latex项目进行纠错, 用latex编译为PDF对修正处做高亮。函数插件贡献者: Binary-Husky。注意事项: 目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。仅在Windows系统进行了测试,其他操作系统表现未知。"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# <-------------- more requirements ------------->
|
||||
@@ -259,6 +271,8 @@ def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, histo
|
||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
||||
|
||||
# <-------------- move latex project away from temp folder ------------->
|
||||
from shared_utils.fastapi_server import validate_path_safety
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
project_folder = move_project(project_folder, arxiv_id=None)
|
||||
|
||||
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
||||
@@ -282,7 +296,7 @@ def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, histo
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
else:
|
||||
chatbot.append((f"失败了",
|
||||
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 也是可读的, 您可以到Github Issue区, 用该压缩包+对话历史存档进行反馈 ...'))
|
||||
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 也是可读的, 您可以到Github Issue区, 用该压缩包+Conversation_To_File进行反馈 ...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history);
|
||||
time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
@@ -298,7 +312,7 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
||||
# <-------------- information about this plugin ------------->
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"对整个Latex项目进行翻译, 生成中文PDF。函数插件贡献者: Binary-Husky。注意事项: 此插件Windows支持最佳,Linux下必须使用Docker安装,详见项目主README.md。目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。"])
|
||||
"对整个Latex项目进行翻译, 生成中文PDF。函数插件贡献者: Binary-Husky。注意事项: 此插件Windows支持最佳,Linux下必须使用Docker安装,详见项目主README.md。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# <-------------- more requirements ------------->
|
||||
@@ -353,6 +367,8 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
||||
|
||||
# <-------------- move latex project away from temp folder ------------->
|
||||
from shared_utils.fastapi_server import validate_path_safety
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
project_folder = move_project(project_folder, arxiv_id)
|
||||
|
||||
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
||||
@@ -392,7 +408,7 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
|
||||
# <-------------- information about this plugin ------------->
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"将PDF转换为Latex项目,翻译为中文后重新编译为PDF。函数插件贡献者: Marroh。注意事项: 此插件Windows支持最佳,Linux下必须使用Docker安装,详见项目主README.md。目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。"])
|
||||
"将PDF转换为Latex项目,翻译为中文后重新编译为PDF。函数插件贡献者: Marroh。注意事项: 此插件Windows支持最佳,Linux下必须使用Docker安装,详见项目主README.md。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# <-------------- more requirements ------------->
|
||||
@@ -432,107 +448,101 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"不支持同时处理多个pdf文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
app_id, app_key = get_conf('MATHPIX_APPID', 'MATHPIX_APPKEY')
|
||||
if len(app_id) == 0 or len(app_key) == 0:
|
||||
report_exception(chatbot, history, a="缺失 MATHPIX_APPID 和 MATHPIX_APPKEY。", b=f"请配置 MATHPIX_APPID 和 MATHPIX_APPKEY")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
hash_tag = map_file_to_sha256(file_manifest[0])
|
||||
|
||||
# <-------------- check repeated pdf ------------->
|
||||
chatbot.append([f"检查PDF是否被重复上传", "正在检查..."])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
repeat, project_folder = check_repeat_upload(file_manifest[0], hash_tag)
|
||||
|
||||
except_flag = False
|
||||
|
||||
if repeat:
|
||||
yield from update_ui_lastest_msg(f"发现重复上传,请查收结果(压缩包)...", chatbot=chatbot, history=history)
|
||||
|
||||
try:
|
||||
trans_html_file = [f for f in glob.glob(f'{project_folder}/**/*.trans.html', recursive=True)][0]
|
||||
promote_file_to_downloadzone(trans_html_file, rename_file=None, chatbot=chatbot)
|
||||
|
||||
translate_pdf = [f for f in glob.glob(f'{project_folder}/**/merge_translate_zh.pdf', recursive=True)][0]
|
||||
promote_file_to_downloadzone(translate_pdf, rename_file=None, chatbot=chatbot)
|
||||
|
||||
comparison_pdf = [f for f in glob.glob(f'{project_folder}/**/comparison.pdf', recursive=True)][0]
|
||||
promote_file_to_downloadzone(comparison_pdf, rename_file=None, chatbot=chatbot)
|
||||
|
||||
zip_res = zip_result(project_folder)
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
|
||||
return True
|
||||
|
||||
except:
|
||||
report_exception(chatbot, history, b=f"发现重复上传,但是无法找到相关文件")
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
chatbot.append([f"没有相关文件", '尝试重新翻译PDF...'])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
except_flag = True
|
||||
|
||||
|
||||
elif not repeat or except_flag:
|
||||
yield from update_ui_lastest_msg(f"未发现重复上传", chatbot=chatbot, history=history)
|
||||
|
||||
# <-------------- convert pdf into tex ------------->
|
||||
chatbot.append([f"解析项目: {txt}", "正在将PDF转换为tex项目,请耐心等待..."])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
project_folder = pdf2tex_project(file_manifest[0])
|
||||
if project_folder is None:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"PDF转换为tex项目失败")
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
return False
|
||||
|
||||
# <-------------- translate latex file into Chinese ------------->
|
||||
yield from update_ui_lastest_msg("正在tex项目将翻译为中文...", chatbot=chatbot, history=history)
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
|
||||
if plugin_kwargs.get("method", "") == 'MATHPIX':
|
||||
app_id, app_key = get_conf('MATHPIX_APPID', 'MATHPIX_APPKEY')
|
||||
if len(app_id) == 0 or len(app_key) == 0:
|
||||
report_exception(chatbot, history, a="缺失 MATHPIX_APPID 和 MATHPIX_APPKEY。", b=f"请配置 MATHPIX_APPID 和 MATHPIX_APPKEY")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
if plugin_kwargs.get("method", "") == 'DOC2X':
|
||||
app_id, app_key = "", ""
|
||||
DOC2X_API_KEY = get_conf('DOC2X_API_KEY')
|
||||
if len(DOC2X_API_KEY) == 0:
|
||||
report_exception(chatbot, history, a="缺失 DOC2X_API_KEY。", b=f"请配置 DOC2X_API_KEY")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# <-------------- if is a zip/tar file ------------->
|
||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
||||
hash_tag = map_file_to_sha256(file_manifest[0])
|
||||
|
||||
# <-------------- move latex project away from temp folder ------------->
|
||||
project_folder = move_project(project_folder)
|
||||
# # <-------------- check repeated pdf ------------->
|
||||
# chatbot.append([f"检查PDF是否被重复上传", "正在检查..."])
|
||||
# yield from update_ui(chatbot=chatbot, history=history)
|
||||
# repeat, project_folder = check_repeat_upload(file_manifest[0], hash_tag)
|
||||
|
||||
# <-------------- set a hash tag for repeat-checking ------------->
|
||||
with open(pj(project_folder, hash_tag + '.tag'), 'w') as f:
|
||||
f.write(hash_tag)
|
||||
f.close()
|
||||
# if repeat:
|
||||
# yield from update_ui_lastest_msg(f"发现重复上传,请查收结果(压缩包)...", chatbot=chatbot, history=history)
|
||||
# try:
|
||||
# translate_pdf = [f for f in glob.glob(f'{project_folder}/**/merge_translate_zh.pdf', recursive=True)][0]
|
||||
# promote_file_to_downloadzone(translate_pdf, rename_file=None, chatbot=chatbot)
|
||||
# comparison_pdf = [f for f in glob.glob(f'{project_folder}/**/comparison.pdf', recursive=True)][0]
|
||||
# promote_file_to_downloadzone(comparison_pdf, rename_file=None, chatbot=chatbot)
|
||||
# zip_res = zip_result(project_folder)
|
||||
# promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
# return
|
||||
# except:
|
||||
# report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"发现重复上传,但是无法找到相关文件")
|
||||
# yield from update_ui(chatbot=chatbot, history=history)
|
||||
# else:
|
||||
# yield from update_ui_lastest_msg(f"未发现重复上传", chatbot=chatbot, history=history)
|
||||
|
||||
# <-------------- convert pdf into tex ------------->
|
||||
chatbot.append([f"解析项目: {txt}", "正在将PDF转换为tex项目,请耐心等待..."])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
project_folder = pdf2tex_project(file_manifest[0], plugin_kwargs)
|
||||
if project_folder is None:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"PDF转换为tex项目失败")
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
return False
|
||||
|
||||
# <-------------- translate latex file into Chinese ------------->
|
||||
yield from update_ui_lastest_msg("正在tex项目将翻译为中文...", chatbot=chatbot, history=history)
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# <-------------- if is a zip/tar file ------------->
|
||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
||||
|
||||
# <-------------- move latex project away from temp folder ------------->
|
||||
from shared_utils.fastapi_server import validate_path_safety
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
project_folder = move_project(project_folder)
|
||||
|
||||
# <-------------- set a hash tag for repeat-checking ------------->
|
||||
with open(pj(project_folder, hash_tag + '.tag'), 'w') as f:
|
||||
f.write(hash_tag)
|
||||
f.close()
|
||||
|
||||
|
||||
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
||||
if not os.path.exists(project_folder + '/merge_translate_zh.tex'):
|
||||
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
||||
chatbot, history, system_prompt, mode='translate_zh',
|
||||
switch_prompt=_switch_prompt_)
|
||||
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
||||
if not os.path.exists(project_folder + '/merge_translate_zh.tex'):
|
||||
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
||||
chatbot, history, system_prompt, mode='translate_zh',
|
||||
switch_prompt=_switch_prompt_)
|
||||
|
||||
# <-------------- compile PDF ------------->
|
||||
yield from update_ui_lastest_msg("正在将翻译好的项目tex项目编译为PDF...", chatbot=chatbot, history=history)
|
||||
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
|
||||
main_file_modified='merge_translate_zh', mode='translate_zh',
|
||||
work_folder_original=project_folder, work_folder_modified=project_folder,
|
||||
work_folder=project_folder)
|
||||
# <-------------- compile PDF ------------->
|
||||
yield from update_ui_lastest_msg("正在将翻译好的项目tex项目编译为PDF...", chatbot=chatbot, history=history)
|
||||
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
|
||||
main_file_modified='merge_translate_zh', mode='translate_zh',
|
||||
work_folder_original=project_folder, work_folder_modified=project_folder,
|
||||
work_folder=project_folder)
|
||||
|
||||
# <-------------- zip PDF ------------->
|
||||
zip_res = zip_result(project_folder)
|
||||
if success:
|
||||
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history);
|
||||
time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
else:
|
||||
chatbot.append((f"失败了",
|
||||
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体(见Github wiki) ...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history);
|
||||
time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
# <-------------- zip PDF ------------->
|
||||
zip_res = zip_result(project_folder)
|
||||
if success:
|
||||
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history);
|
||||
time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
else:
|
||||
chatbot.append((f"失败了",
|
||||
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体(见Github wiki) ...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history);
|
||||
time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
|
||||
# <-------------- we are done ------------->
|
||||
return success
|
||||
# <-------------- we are done ------------->
|
||||
return success
|
||||
@@ -0,0 +1,78 @@
|
||||
|
||||
from crazy_functions.Latex_Function import Latex翻译中文并重新编译PDF, PDF翻译中文并重新编译PDF
|
||||
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
||||
|
||||
|
||||
class Arxiv_Localize(GptAcademicPluginTemplate):
|
||||
def __init__(self):
|
||||
"""
|
||||
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
||||
"""
|
||||
pass
|
||||
|
||||
def define_arg_selection_menu(self):
|
||||
"""
|
||||
定义插件的二级选项菜单
|
||||
|
||||
第一个参数,名称`main_input`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
||||
第二个参数,名称`advanced_arg`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
||||
第三个参数,名称`allow_cache`,参数`type`声明这是一个下拉菜单,下拉菜单上方显示`title`+`description`,下拉菜单的选项为`options`,`default_value`为下拉菜单默认值;
|
||||
|
||||
"""
|
||||
gui_definition = {
|
||||
"main_input":
|
||||
ArgProperty(title="ArxivID", description="输入Arxiv的ID或者网址", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
||||
"advanced_arg":
|
||||
ArgProperty(title="额外的翻译提示词",
|
||||
description=r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
||||
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
||||
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||
default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步
|
||||
"allow_cache":
|
||||
ArgProperty(title="是否允许从缓存中调取结果", options=["允许缓存", "从头执行"], default_value="允许缓存", description="无", type="dropdown").model_dump_json(),
|
||||
}
|
||||
return gui_definition
|
||||
|
||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
执行插件
|
||||
"""
|
||||
allow_cache = plugin_kwargs["allow_cache"]
|
||||
advanced_arg = plugin_kwargs["advanced_arg"]
|
||||
|
||||
if allow_cache == "从头执行": plugin_kwargs["advanced_arg"] = "--no-cache " + plugin_kwargs["advanced_arg"]
|
||||
yield from Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||
|
||||
|
||||
|
||||
class PDF_Localize(GptAcademicPluginTemplate):
|
||||
def __init__(self):
|
||||
"""
|
||||
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
||||
"""
|
||||
pass
|
||||
|
||||
def define_arg_selection_menu(self):
|
||||
"""
|
||||
定义插件的二级选项菜单
|
||||
"""
|
||||
gui_definition = {
|
||||
"main_input":
|
||||
ArgProperty(title="PDF文件路径", description="未指定路径,请上传文件后,再点击该插件", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
||||
"advanced_arg":
|
||||
ArgProperty(title="额外的翻译提示词",
|
||||
description=r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
||||
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
||||
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||
default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步
|
||||
"method":
|
||||
ArgProperty(title="采用哪种方法执行转换", options=["MATHPIX", "DOC2X"], default_value="DOC2X", description="无", type="dropdown").model_dump_json(),
|
||||
|
||||
}
|
||||
return gui_definition
|
||||
|
||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
执行插件
|
||||
"""
|
||||
yield from PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||
@@ -1,5 +1,5 @@
|
||||
import glob, time, os, re, logging
|
||||
from toolbox import update_ui, trimmed_format_exc, gen_time_str, disable_auto_promotion
|
||||
import glob, shutil, os, re, logging
|
||||
from toolbox import update_ui, trimmed_format_exc, gen_time_str
|
||||
from toolbox import CatchException, report_exception, get_log_folder
|
||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||
fast_debug = False
|
||||
@@ -18,7 +18,7 @@ class PaperFileGroup():
|
||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||
self.get_token_num = get_token_num
|
||||
|
||||
def run_file_split(self, max_token_limit=1900):
|
||||
def run_file_split(self, max_token_limit=2048):
|
||||
"""
|
||||
将长文本分离开来
|
||||
"""
|
||||
@@ -64,25 +64,25 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
||||
pfg.file_contents.append(file_content)
|
||||
|
||||
# <-------- 拆分过长的Markdown文件 ---------->
|
||||
pfg.run_file_split(max_token_limit=1500)
|
||||
pfg.run_file_split(max_token_limit=2048)
|
||||
n_split = len(pfg.sp_file_contents)
|
||||
|
||||
# <-------- 多线程翻译开始 ---------->
|
||||
if language == 'en->zh':
|
||||
inputs_array = ["This is a Markdown file, translate it into Chinese, do not modify any existing Markdown commands:" +
|
||||
inputs_array = ["This is a Markdown file, translate it into Chinese, do NOT modify any existing Markdown commands, do NOT use code wrapper (```), ONLY answer me with translated results:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
||||
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
||||
sys_prompt_array = ["You are a professional academic paper translator." + plugin_kwargs.get("additional_prompt", "") for _ in range(n_split)]
|
||||
elif language == 'zh->en':
|
||||
inputs_array = [f"This is a Markdown file, translate it into English, do not modify any existing Markdown commands:" +
|
||||
inputs_array = [f"This is a Markdown file, translate it into English, do NOT modify any existing Markdown commands, do NOT use code wrapper (```), ONLY answer me with translated results:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
||||
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
||||
sys_prompt_array = ["You are a professional academic paper translator." + plugin_kwargs.get("additional_prompt", "") for _ in range(n_split)]
|
||||
else:
|
||||
inputs_array = [f"This is a Markdown file, translate it into {language}, do not modify any existing Markdown commands, only answer me with translated results:" +
|
||||
inputs_array = [f"This is a Markdown file, translate it into {language}, do NOT modify any existing Markdown commands, do NOT use code wrapper (```), ONLY answer me with translated results:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
||||
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
||||
sys_prompt_array = ["You are a professional academic paper translator." + plugin_kwargs.get("additional_prompt", "") for _ in range(n_split)]
|
||||
|
||||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
inputs_array=inputs_array,
|
||||
@@ -99,7 +99,12 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
||||
for i_say, gpt_say in zip(gpt_response_collection[0::2], gpt_response_collection[1::2]):
|
||||
pfg.sp_file_result.append(gpt_say)
|
||||
pfg.merge_result()
|
||||
pfg.write_result(language)
|
||||
output_file_arr = pfg.write_result(language)
|
||||
for output_file in output_file_arr:
|
||||
promote_file_to_downloadzone(output_file, chatbot=chatbot)
|
||||
if 'markdown_expected_output_path' in plugin_kwargs:
|
||||
expected_f_name = plugin_kwargs['markdown_expected_output_path']
|
||||
shutil.copyfile(output_file, expected_f_name)
|
||||
except:
|
||||
logging.error(trimmed_format_exc())
|
||||
|
||||
@@ -159,7 +164,6 @@ def Markdown英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
|
||||
"函数插件功能?",
|
||||
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
disable_auto_promotion(chatbot)
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
@@ -199,7 +203,6 @@ def Markdown中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
|
||||
"函数插件功能?",
|
||||
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
disable_auto_promotion(chatbot)
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
@@ -232,7 +235,6 @@ def Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history,
|
||||
"函数插件功能?",
|
||||
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
disable_auto_promotion(chatbot)
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
83
crazy_functions/PDF_Translate.py
普通文件
83
crazy_functions/PDF_Translate.py
普通文件
@@ -0,0 +1,83 @@
|
||||
from toolbox import CatchException, check_packages, get_conf
|
||||
from toolbox import update_ui, update_ui_lastest_msg, disable_auto_promotion
|
||||
from toolbox import trimmed_format_exc_markdown
|
||||
from crazy_functions.crazy_utils import get_files_from_everything
|
||||
from crazy_functions.pdf_fns.parse_pdf import get_avail_grobid_url
|
||||
from crazy_functions.pdf_fns.parse_pdf_via_doc2x import 解析PDF_基于DOC2X
|
||||
from crazy_functions.pdf_fns.parse_pdf_legacy import 解析PDF_简单拆解
|
||||
from crazy_functions.pdf_fns.parse_pdf_grobid import 解析PDF_基于GROBID
|
||||
from shared_utils.colorful import *
|
||||
|
||||
@CatchException
|
||||
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
|
||||
disable_auto_promotion(chatbot)
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([None, "插件功能:批量翻译PDF文档。函数插件贡献者: Binary-Husky"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
check_packages(["fitz", "tiktoken", "scipdf"])
|
||||
except:
|
||||
chatbot.append([None, f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf tiktoken scipdf_parser```。"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 清空历史,以免输入溢出
|
||||
history = []
|
||||
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf')
|
||||
|
||||
# 检测输入参数,如没有给定输入参数,直接退出
|
||||
if (not success) and txt == "": txt = '空空如也的输入栏。提示:请先上传文件(把PDF文件拖入对话)。'
|
||||
|
||||
# 如果没找到任何文件
|
||||
if len(file_manifest) == 0:
|
||||
chatbot.append([None, f"找不到任何.pdf拓展名的文件: {txt}"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 开始正式执行任务
|
||||
method = plugin_kwargs.get("pdf_parse_method", None)
|
||||
if method == "DOC2X":
|
||||
# ------- 第一种方法,效果最好,但是需要DOC2X服务 -------
|
||||
DOC2X_API_KEY = get_conf("DOC2X_API_KEY")
|
||||
if len(DOC2X_API_KEY) != 0:
|
||||
try:
|
||||
yield from 解析PDF_基于DOC2X(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, DOC2X_API_KEY, user_request)
|
||||
return
|
||||
except:
|
||||
chatbot.append([None, f"DOC2X服务不可用,现在将执行效果稍差的旧版代码。{trimmed_format_exc_markdown()}"])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
if method == "GROBID":
|
||||
# ------- 第二种方法,效果次优 -------
|
||||
grobid_url = get_avail_grobid_url()
|
||||
if grobid_url is not None:
|
||||
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
|
||||
return
|
||||
|
||||
if method == "ClASSIC":
|
||||
# ------- 第三种方法,早期代码,效果不理想 -------
|
||||
yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
|
||||
yield from 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
return
|
||||
|
||||
if method is None:
|
||||
# ------- 以上三种方法都试一遍 -------
|
||||
DOC2X_API_KEY = get_conf("DOC2X_API_KEY")
|
||||
if len(DOC2X_API_KEY) != 0:
|
||||
try:
|
||||
yield from 解析PDF_基于DOC2X(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, DOC2X_API_KEY, user_request)
|
||||
return
|
||||
except:
|
||||
chatbot.append([None, f"DOC2X服务不可用,正在尝试GROBID。{trimmed_format_exc_markdown()}"])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
grobid_url = get_avail_grobid_url()
|
||||
if grobid_url is not None:
|
||||
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
|
||||
return
|
||||
yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
|
||||
yield from 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
return
|
||||
|
||||
@@ -0,0 +1,33 @@
|
||||
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
||||
from .PDF_Translate import 批量翻译PDF文档
|
||||
|
||||
|
||||
class PDF_Tran(GptAcademicPluginTemplate):
|
||||
def __init__(self):
|
||||
"""
|
||||
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
||||
"""
|
||||
pass
|
||||
|
||||
def define_arg_selection_menu(self):
|
||||
"""
|
||||
定义插件的二级选项菜单
|
||||
"""
|
||||
gui_definition = {
|
||||
"main_input":
|
||||
ArgProperty(title="PDF文件路径", description="未指定路径,请上传文件后,再点击该插件", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
||||
"additional_prompt":
|
||||
ArgProperty(title="额外提示词", description="例如:对专有名词、翻译语气等方面的要求", default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步
|
||||
"pdf_parse_method":
|
||||
ArgProperty(title="PDF解析方法", options=["DOC2X", "GROBID", "ClASSIC"], description="无", default_value="GROBID", type="dropdown").model_dump_json(),
|
||||
}
|
||||
return gui_definition
|
||||
|
||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
执行插件
|
||||
"""
|
||||
main_input = plugin_kwargs["main_input"]
|
||||
additional_prompt = plugin_kwargs["additional_prompt"]
|
||||
pdf_parse_method = plugin_kwargs["pdf_parse_method"]
|
||||
yield from 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||
@@ -1,9 +1,20 @@
|
||||
from toolbox import update_ui, get_conf, trimmed_format_exc, get_max_token, Singleton
|
||||
from shared_utils.char_visual_effect import scolling_visual_effect
|
||||
import threading
|
||||
import os
|
||||
import logging
|
||||
|
||||
def input_clipping(inputs, history, max_token_limit):
|
||||
"""
|
||||
当输入文本 + 历史文本超出最大限制时,采取措施丢弃一部分文本。
|
||||
输入:
|
||||
- inputs 本次请求
|
||||
- history 历史上下文
|
||||
- max_token_limit 最大token限制
|
||||
输出:
|
||||
- inputs 本次请求(经过clip)
|
||||
- history 历史上下文(经过clip)
|
||||
"""
|
||||
import numpy as np
|
||||
from request_llms.bridge_all import model_info
|
||||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||||
@@ -158,7 +169,7 @@ def can_multi_process(llm) -> bool:
|
||||
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
inputs_array, inputs_show_user_array, llm_kwargs,
|
||||
chatbot, history_array, sys_prompt_array,
|
||||
refresh_interval=0.2, max_workers=-1, scroller_max_len=30,
|
||||
refresh_interval=0.2, max_workers=-1, scroller_max_len=75,
|
||||
handle_token_exceed=True, show_user_at_complete=False,
|
||||
retry_times_at_unknown_error=2,
|
||||
):
|
||||
@@ -283,6 +294,8 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(
|
||||
range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
|
||||
cnt = 0
|
||||
|
||||
|
||||
while True:
|
||||
# yield一次以刷新前端页面
|
||||
time.sleep(refresh_interval)
|
||||
@@ -295,8 +308,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
mutable[thread_index][1] = time.time()
|
||||
# 在前端打印些好玩的东西
|
||||
for thread_index, _ in enumerate(worker_done):
|
||||
print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
|
||||
replace('\n', '').replace('`', '.').replace(' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]"
|
||||
print_something_really_funny = f"[ ...`{scolling_visual_effect(mutable[thread_index][0], scroller_max_len)}`... ]"
|
||||
observe_win.append(print_something_really_funny)
|
||||
# 在前端打印些好玩的东西
|
||||
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n'
|
||||
@@ -349,7 +361,7 @@ def read_and_clean_pdf_text(fp):
|
||||
import fitz, copy
|
||||
import re
|
||||
import numpy as np
|
||||
from colorful import print亮黄, print亮绿
|
||||
from shared_utils.colorful import print亮黄, print亮绿
|
||||
fc = 0 # Index 0 文本
|
||||
fs = 1 # Index 1 字体
|
||||
fb = 2 # Index 2 框框
|
||||
@@ -568,7 +580,7 @@ class nougat_interface():
|
||||
from toolbox import ProxyNetworkActivate
|
||||
logging.info(f'正在执行命令 {command}')
|
||||
with ProxyNetworkActivate("Nougat_Download"):
|
||||
process = subprocess.Popen(command, shell=True, cwd=cwd, env=os.environ)
|
||||
process = subprocess.Popen(command, shell=False, cwd=cwd, env=os.environ)
|
||||
try:
|
||||
stdout, stderr = process.communicate(timeout=timeout)
|
||||
except subprocess.TimeoutExpired:
|
||||
@@ -592,7 +604,8 @@ class nougat_interface():
|
||||
|
||||
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度:正在加载NOUGAT... (提示:首次运行需要花费较长时间下载NOUGAT参数)",
|
||||
chatbot=chatbot, history=history, delay=0)
|
||||
self.nougat_with_timeout(f'nougat --out "{os.path.abspath(dst)}" "{os.path.abspath(fp)}"', os.getcwd(), timeout=3600)
|
||||
command = ['nougat', '--out', os.path.abspath(dst), os.path.abspath(fp)]
|
||||
self.nougat_with_timeout(command, cwd=os.getcwd(), timeout=3600)
|
||||
res = glob.glob(os.path.join(dst,'*.mmd'))
|
||||
if len(res) == 0:
|
||||
self.threadLock.release()
|
||||
|
||||
@@ -62,8 +62,8 @@ class GptJsonIO():
|
||||
if "type" in reduced_schema:
|
||||
del reduced_schema["type"]
|
||||
# Ensure json in context is well-formed with double quotes.
|
||||
schema_str = json.dumps(reduced_schema)
|
||||
if self.example_instruction:
|
||||
schema_str = json.dumps(reduced_schema)
|
||||
return PYDANTIC_FORMAT_INSTRUCTIONS.format(schema=schema_str)
|
||||
else:
|
||||
return PYDANTIC_FORMAT_INSTRUCTIONS_SIMPLE.format(schema=schema_str)
|
||||
|
||||
@@ -1,10 +1,11 @@
|
||||
from toolbox import update_ui, update_ui_lastest_msg, get_log_folder
|
||||
from toolbox import get_conf, objdump, objload, promote_file_to_downloadzone
|
||||
from toolbox import get_conf, promote_file_to_downloadzone
|
||||
from .latex_toolbox import PRESERVE, TRANSFORM
|
||||
from .latex_toolbox import set_forbidden_text, set_forbidden_text_begin_end, set_forbidden_text_careful_brace
|
||||
from .latex_toolbox import reverse_forbidden_text_careful_brace, reverse_forbidden_text, convert_to_linklist, post_process
|
||||
from .latex_toolbox import fix_content, find_main_tex_file, merge_tex_files, compile_latex_with_timeout
|
||||
from .latex_toolbox import find_title_and_abs
|
||||
from .latex_pickle_io import objdump, objload
|
||||
|
||||
import os, shutil
|
||||
import re
|
||||
|
||||
@@ -0,0 +1,46 @@
|
||||
import pickle
|
||||
|
||||
|
||||
class SafeUnpickler(pickle.Unpickler):
|
||||
|
||||
def get_safe_classes(self):
|
||||
from crazy_functions.latex_fns.latex_actions import LatexPaperFileGroup, LatexPaperSplit
|
||||
from crazy_functions.latex_fns.latex_toolbox import LinkedListNode
|
||||
# 定义允许的安全类
|
||||
safe_classes = {
|
||||
# 在这里添加其他安全的类
|
||||
'LatexPaperFileGroup': LatexPaperFileGroup,
|
||||
'LatexPaperSplit': LatexPaperSplit,
|
||||
'LinkedListNode': LinkedListNode,
|
||||
}
|
||||
return safe_classes
|
||||
|
||||
def find_class(self, module, name):
|
||||
# 只允许特定的类进行反序列化
|
||||
self.safe_classes = self.get_safe_classes()
|
||||
match_class_name = None
|
||||
for class_name in self.safe_classes.keys():
|
||||
if (class_name in f'{module}.{name}'):
|
||||
match_class_name = class_name
|
||||
if module == 'numpy' or module.startswith('numpy.'):
|
||||
return super().find_class(module, name)
|
||||
if match_class_name is not None:
|
||||
return self.safe_classes[match_class_name]
|
||||
# 如果尝试加载未授权的类,则抛出异常
|
||||
raise pickle.UnpicklingError(f"Attempted to deserialize unauthorized class '{name}' from module '{module}'")
|
||||
|
||||
def objdump(obj, file="objdump.tmp"):
|
||||
|
||||
with open(file, "wb+") as f:
|
||||
pickle.dump(obj, f)
|
||||
return
|
||||
|
||||
|
||||
def objload(file="objdump.tmp"):
|
||||
import os
|
||||
|
||||
if not os.path.exists(file):
|
||||
return
|
||||
with open(file, "rb") as f:
|
||||
unpickler = SafeUnpickler(f)
|
||||
return unpickler.load()
|
||||
@@ -4,7 +4,7 @@ from toolbox import promote_file_to_downloadzone
|
||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||
from toolbox import get_conf
|
||||
from toolbox import ProxyNetworkActivate
|
||||
from colorful import *
|
||||
from shared_utils.colorful import *
|
||||
import requests
|
||||
import random
|
||||
import copy
|
||||
@@ -72,7 +72,7 @@ def produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chat
|
||||
generated_conclusion_files.append(res_path)
|
||||
return res_path
|
||||
|
||||
def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG):
|
||||
def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG, plugin_kwargs={}):
|
||||
from crazy_functions.pdf_fns.report_gen_html import construct_html
|
||||
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
@@ -138,7 +138,7 @@ def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_fi
|
||||
chatbot=chatbot,
|
||||
history_array=[meta for _ in inputs_array],
|
||||
sys_prompt_array=[
|
||||
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
|
||||
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" + plugin_kwargs.get("additional_prompt", "") for _ in inputs_array],
|
||||
)
|
||||
# -=-=-=-=-=-=-=-= 写出Markdown文件 -=-=-=-=-=-=-=-=
|
||||
produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files)
|
||||
|
||||
@@ -0,0 +1,26 @@
|
||||
import os
|
||||
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str, check_packages
|
||||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
||||
from toolbox import write_history_to_file, promote_file_to_downloadzone, get_conf, extract_archive
|
||||
from crazy_functions.pdf_fns.parse_pdf import parse_pdf, translate_pdf
|
||||
|
||||
def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url):
|
||||
import copy, json
|
||||
TOKEN_LIMIT_PER_FRAGMENT = 1024
|
||||
generated_conclusion_files = []
|
||||
generated_html_files = []
|
||||
DST_LANG = "中文"
|
||||
from crazy_functions.pdf_fns.report_gen_html import construct_html
|
||||
for index, fp in enumerate(file_manifest):
|
||||
chatbot.append(["当前进度:", f"正在连接GROBID服务,请稍候: {grobid_url}\n如果等待时间过长,请修改config中的GROBID_URL,可修改成本地GROBID服务。"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
article_dict = parse_pdf(fp, grobid_url)
|
||||
grobid_json_res = os.path.join(get_log_folder(), gen_time_str() + "grobid.json")
|
||||
with open(grobid_json_res, 'w+', encoding='utf8') as f:
|
||||
f.write(json.dumps(article_dict, indent=4, ensure_ascii=False))
|
||||
promote_file_to_downloadzone(grobid_json_res, chatbot=chatbot)
|
||||
if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
|
||||
yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG, plugin_kwargs=plugin_kwargs)
|
||||
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
|
||||
@@ -1,83 +1,15 @@
|
||||
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str, check_packages
|
||||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
||||
from toolbox import get_log_folder
|
||||
from toolbox import update_ui, promote_file_to_downloadzone
|
||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
from .crazy_utils import read_and_clean_pdf_text
|
||||
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
|
||||
from colorful import *
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
from crazy_functions.crazy_utils import read_and_clean_pdf_text
|
||||
from shared_utils.colorful import *
|
||||
import os
|
||||
|
||||
|
||||
@CatchException
|
||||
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
|
||||
disable_auto_promotion(chatbot)
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"批量翻译PDF文档。函数插件贡献者: Binary-Husky"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
check_packages(["fitz", "tiktoken", "scipdf"])
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a=f"解析项目: {txt}",
|
||||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf tiktoken scipdf_parser```。")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 清空历史,以免输入溢出
|
||||
history = []
|
||||
|
||||
from .crazy_utils import get_files_from_everything
|
||||
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf')
|
||||
# 检测输入参数,如没有给定输入参数,直接退出
|
||||
if not success:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
|
||||
# 如果没找到任何文件
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history,
|
||||
a=f"解析项目: {txt}", b=f"找不到任何.pdf拓展名的文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 开始正式执行任务
|
||||
grobid_url = get_avail_grobid_url()
|
||||
if grobid_url is not None:
|
||||
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
|
||||
else:
|
||||
yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
|
||||
yield from 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
|
||||
def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url):
|
||||
import copy, json
|
||||
TOKEN_LIMIT_PER_FRAGMENT = 1024
|
||||
generated_conclusion_files = []
|
||||
generated_html_files = []
|
||||
DST_LANG = "中文"
|
||||
from crazy_functions.pdf_fns.report_gen_html import construct_html
|
||||
for index, fp in enumerate(file_manifest):
|
||||
chatbot.append(["当前进度:", f"正在连接GROBID服务,请稍候: {grobid_url}\n如果等待时间过长,请修改config中的GROBID_URL,可修改成本地GROBID服务。"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
article_dict = parse_pdf(fp, grobid_url)
|
||||
grobid_json_res = os.path.join(get_log_folder(), gen_time_str() + "grobid.json")
|
||||
with open(grobid_json_res, 'w+', encoding='utf8') as f:
|
||||
f.write(json.dumps(article_dict, indent=4, ensure_ascii=False))
|
||||
promote_file_to_downloadzone(grobid_json_res, chatbot=chatbot)
|
||||
|
||||
if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
|
||||
yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG)
|
||||
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
|
||||
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||
def 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||
"""
|
||||
此函数已经弃用
|
||||
注意:此函数已经弃用!!新函数位于:crazy_functions/pdf_fns/parse_pdf.py
|
||||
"""
|
||||
import copy
|
||||
TOKEN_LIMIT_PER_FRAGMENT = 1024
|
||||
@@ -116,7 +48,8 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
||||
chatbot=chatbot,
|
||||
history_array=[[paper_meta] for _ in paper_fragments],
|
||||
sys_prompt_array=[
|
||||
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in paper_fragments],
|
||||
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" + plugin_kwargs.get("additional_prompt", "")
|
||||
for _ in paper_fragments],
|
||||
# max_workers=5 # OpenAI所允许的最大并行过载
|
||||
)
|
||||
gpt_response_collection_md = copy.deepcopy(gpt_response_collection)
|
||||
@@ -0,0 +1,213 @@
|
||||
from toolbox import get_log_folder, gen_time_str, get_conf
|
||||
from toolbox import update_ui, promote_file_to_downloadzone
|
||||
from toolbox import promote_file_to_downloadzone, extract_archive
|
||||
from toolbox import generate_file_link, zip_folder
|
||||
from crazy_functions.crazy_utils import get_files_from_everything
|
||||
from shared_utils.colorful import *
|
||||
import os
|
||||
|
||||
def refresh_key(doc2x_api_key):
|
||||
import requests, json
|
||||
url = "https://api.doc2x.noedgeai.com/api/token/refresh"
|
||||
res = requests.post(
|
||||
url,
|
||||
headers={"Authorization": "Bearer " + doc2x_api_key}
|
||||
)
|
||||
res_json = []
|
||||
if res.status_code == 200:
|
||||
decoded = res.content.decode("utf-8")
|
||||
res_json = json.loads(decoded)
|
||||
doc2x_api_key = res_json['data']['token']
|
||||
else:
|
||||
raise RuntimeError(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
|
||||
return doc2x_api_key
|
||||
|
||||
def 解析PDF_DOC2X_转Latex(pdf_file_path):
|
||||
import requests, json, os
|
||||
DOC2X_API_KEY = get_conf('DOC2X_API_KEY')
|
||||
latex_dir = get_log_folder(plugin_name="pdf_ocr_latex")
|
||||
doc2x_api_key = DOC2X_API_KEY
|
||||
if doc2x_api_key.startswith('sk-'):
|
||||
url = "https://api.doc2x.noedgeai.com/api/v1/pdf"
|
||||
else:
|
||||
doc2x_api_key = refresh_key(doc2x_api_key)
|
||||
url = "https://api.doc2x.noedgeai.com/api/platform/pdf"
|
||||
|
||||
res = requests.post(
|
||||
url,
|
||||
files={"file": open(pdf_file_path, "rb")},
|
||||
data={"ocr": "1"},
|
||||
headers={"Authorization": "Bearer " + doc2x_api_key}
|
||||
)
|
||||
res_json = []
|
||||
if res.status_code == 200:
|
||||
decoded = res.content.decode("utf-8")
|
||||
for z_decoded in decoded.split('\n'):
|
||||
if len(z_decoded) == 0: continue
|
||||
assert z_decoded.startswith("data: ")
|
||||
z_decoded = z_decoded[len("data: "):]
|
||||
decoded_json = json.loads(z_decoded)
|
||||
res_json.append(decoded_json)
|
||||
else:
|
||||
raise RuntimeError(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
|
||||
|
||||
uuid = res_json[0]['uuid']
|
||||
to = "latex" # latex, md, docx
|
||||
url = "https://api.doc2x.noedgeai.com/api/export"+"?request_id="+uuid+"&to="+to
|
||||
|
||||
res = requests.get(url, headers={"Authorization": "Bearer " + doc2x_api_key})
|
||||
latex_zip_path = os.path.join(latex_dir, gen_time_str() + '.zip')
|
||||
latex_unzip_path = os.path.join(latex_dir, gen_time_str())
|
||||
if res.status_code == 200:
|
||||
with open(latex_zip_path, "wb") as f: f.write(res.content)
|
||||
else:
|
||||
raise RuntimeError(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
|
||||
|
||||
import zipfile
|
||||
with zipfile.ZipFile(latex_zip_path, 'r') as zip_ref:
|
||||
zip_ref.extractall(latex_unzip_path)
|
||||
|
||||
|
||||
return latex_unzip_path
|
||||
|
||||
|
||||
|
||||
|
||||
def 解析PDF_DOC2X_单文件(fp, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, DOC2X_API_KEY, user_request):
|
||||
|
||||
|
||||
def pdf2markdown(filepath):
|
||||
import requests, json, os
|
||||
markdown_dir = get_log_folder(plugin_name="pdf_ocr")
|
||||
doc2x_api_key = DOC2X_API_KEY
|
||||
if doc2x_api_key.startswith('sk-'):
|
||||
url = "https://api.doc2x.noedgeai.com/api/v1/pdf"
|
||||
else:
|
||||
doc2x_api_key = refresh_key(doc2x_api_key)
|
||||
url = "https://api.doc2x.noedgeai.com/api/platform/pdf"
|
||||
|
||||
chatbot.append((None, "加载PDF文件,发送至DOC2X解析..."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
res = requests.post(
|
||||
url,
|
||||
files={"file": open(filepath, "rb")},
|
||||
data={"ocr": "1"},
|
||||
headers={"Authorization": "Bearer " + doc2x_api_key}
|
||||
)
|
||||
res_json = []
|
||||
if res.status_code == 200:
|
||||
decoded = res.content.decode("utf-8")
|
||||
for z_decoded in decoded.split('\n'):
|
||||
if len(z_decoded) == 0: continue
|
||||
assert z_decoded.startswith("data: ")
|
||||
z_decoded = z_decoded[len("data: "):]
|
||||
decoded_json = json.loads(z_decoded)
|
||||
res_json.append(decoded_json)
|
||||
if 'limit exceeded' in decoded_json.get('status', ''):
|
||||
raise RuntimeError("Doc2x API 页数受限,请联系 Doc2x 方面,并更换新的 API 秘钥。")
|
||||
else:
|
||||
raise RuntimeError(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
|
||||
uuid = res_json[0]['uuid']
|
||||
to = "md" # latex, md, docx
|
||||
url = "https://api.doc2x.noedgeai.com/api/export"+"?request_id="+uuid+"&to="+to
|
||||
|
||||
chatbot.append((None, f"读取解析: {url} ..."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
res = requests.get(url, headers={"Authorization": "Bearer " + doc2x_api_key})
|
||||
md_zip_path = os.path.join(markdown_dir, gen_time_str() + '.zip')
|
||||
if res.status_code == 200:
|
||||
with open(md_zip_path, "wb") as f: f.write(res.content)
|
||||
else:
|
||||
raise RuntimeError(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
|
||||
promote_file_to_downloadzone(md_zip_path, chatbot=chatbot)
|
||||
chatbot.append((None, f"完成解析 {md_zip_path} ..."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return md_zip_path
|
||||
|
||||
def deliver_to_markdown_plugin(md_zip_path, user_request):
|
||||
from crazy_functions.Markdown_Translate import Markdown英译中
|
||||
import shutil, re
|
||||
|
||||
time_tag = gen_time_str()
|
||||
target_path_base = get_log_folder(chatbot.get_user())
|
||||
file_origin_name = os.path.basename(md_zip_path)
|
||||
this_file_path = os.path.join(target_path_base, file_origin_name)
|
||||
os.makedirs(target_path_base, exist_ok=True)
|
||||
shutil.copyfile(md_zip_path, this_file_path)
|
||||
ex_folder = this_file_path + ".extract"
|
||||
extract_archive(
|
||||
file_path=this_file_path, dest_dir=ex_folder
|
||||
)
|
||||
|
||||
# edit markdown files
|
||||
success, file_manifest, project_folder = get_files_from_everything(ex_folder, type='.md')
|
||||
for generated_fp in file_manifest:
|
||||
# 修正一些公式问题
|
||||
with open(generated_fp, 'r', encoding='utf8') as f:
|
||||
content = f.read()
|
||||
# 将公式中的\[ \]替换成$$
|
||||
content = content.replace(r'\[', r'$$').replace(r'\]', r'$$')
|
||||
# 将公式中的\( \)替换成$
|
||||
content = content.replace(r'\(', r'$').replace(r'\)', r'$')
|
||||
content = content.replace('```markdown', '\n').replace('```', '\n')
|
||||
with open(generated_fp, 'w', encoding='utf8') as f:
|
||||
f.write(content)
|
||||
promote_file_to_downloadzone(generated_fp, chatbot=chatbot)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 生成在线预览html
|
||||
file_name = '在线预览翻译(原文)' + gen_time_str() + '.html'
|
||||
preview_fp = os.path.join(ex_folder, file_name)
|
||||
from shared_utils.advanced_markdown_format import markdown_convertion_for_file
|
||||
with open(generated_fp, "r", encoding="utf-8") as f:
|
||||
md = f.read()
|
||||
# # Markdown中使用不标准的表格,需要在表格前加上一个emoji,以便公式渲染
|
||||
# md = re.sub(r'^<table>', r'.<table>', md, flags=re.MULTILINE)
|
||||
html = markdown_convertion_for_file(md)
|
||||
with open(preview_fp, "w", encoding="utf-8") as f: f.write(html)
|
||||
chatbot.append([None, f"生成在线预览:{generate_file_link([preview_fp])}"])
|
||||
promote_file_to_downloadzone(preview_fp, chatbot=chatbot)
|
||||
|
||||
|
||||
|
||||
chatbot.append((None, f"调用Markdown插件 {ex_folder} ..."))
|
||||
plugin_kwargs['markdown_expected_output_dir'] = ex_folder
|
||||
|
||||
translated_f_name = 'translated_markdown.md'
|
||||
generated_fp = plugin_kwargs['markdown_expected_output_path'] = os.path.join(ex_folder, translated_f_name)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
yield from Markdown英译中(ex_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||
if os.path.exists(generated_fp):
|
||||
# 修正一些公式问题
|
||||
with open(generated_fp, 'r', encoding='utf8') as f: content = f.read()
|
||||
content = content.replace('```markdown', '\n').replace('```', '\n')
|
||||
# Markdown中使用不标准的表格,需要在表格前加上一个emoji,以便公式渲染
|
||||
# content = re.sub(r'^<table>', r'.<table>', content, flags=re.MULTILINE)
|
||||
with open(generated_fp, 'w', encoding='utf8') as f: f.write(content)
|
||||
# 生成在线预览html
|
||||
file_name = '在线预览翻译' + gen_time_str() + '.html'
|
||||
preview_fp = os.path.join(ex_folder, file_name)
|
||||
from shared_utils.advanced_markdown_format import markdown_convertion_for_file
|
||||
with open(generated_fp, "r", encoding="utf-8") as f:
|
||||
md = f.read()
|
||||
html = markdown_convertion_for_file(md)
|
||||
with open(preview_fp, "w", encoding="utf-8") as f: f.write(html)
|
||||
promote_file_to_downloadzone(preview_fp, chatbot=chatbot)
|
||||
# 生成包含图片的压缩包
|
||||
dest_folder = get_log_folder(chatbot.get_user())
|
||||
zip_name = '翻译后的带图文档.zip'
|
||||
zip_folder(source_folder=ex_folder, dest_folder=dest_folder, zip_name=zip_name)
|
||||
zip_fp = os.path.join(dest_folder, zip_name)
|
||||
promote_file_to_downloadzone(zip_fp, chatbot=chatbot)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
md_zip_path = yield from pdf2markdown(fp)
|
||||
yield from deliver_to_markdown_plugin(md_zip_path, user_request)
|
||||
|
||||
def 解析PDF_基于DOC2X(file_manifest, *args):
|
||||
for index, fp in enumerate(file_manifest):
|
||||
yield from 解析PDF_DOC2X_单文件(fp, *args)
|
||||
return
|
||||
|
||||
|
||||
@@ -0,0 +1,73 @@
|
||||
<!DOCTYPE html>
|
||||
<html xmlns="http://www.w3.org/1999/xhtml">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
|
||||
<title>GPT-Academic 翻译报告书</title>
|
||||
<style>
|
||||
.centered-a {
|
||||
color: red;
|
||||
text-align: center;
|
||||
margin-bottom: 2%;
|
||||
font-size: 1.5em;
|
||||
}
|
||||
.centered-b {
|
||||
color: red;
|
||||
text-align: center;
|
||||
margin-top: 10%;
|
||||
margin-bottom: 20%;
|
||||
font-size: 1.5em;
|
||||
}
|
||||
.centered-c {
|
||||
color: rgba(255, 0, 0, 0);
|
||||
text-align: center;
|
||||
margin-top: 2%;
|
||||
margin-bottom: 20%;
|
||||
font-size: 7em;
|
||||
}
|
||||
</style>
|
||||
<script>
|
||||
// Configure MathJax settings
|
||||
MathJax = {
|
||||
tex: {
|
||||
inlineMath: [
|
||||
['$', '$'],
|
||||
['\(', '\)']
|
||||
]
|
||||
}
|
||||
}
|
||||
addEventListener('zero-md-rendered', () => {MathJax.typeset(); console.log('MathJax typeset!');})
|
||||
</script>
|
||||
<!-- Load MathJax library -->
|
||||
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script>
|
||||
<script
|
||||
type="module"
|
||||
src="https://cdn.jsdelivr.net/gh/zerodevx/zero-md@2/dist/zero-md.min.js"
|
||||
></script>
|
||||
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<div class="test_temp1" style="width:10%; height: 500px; float:left;">
|
||||
|
||||
</div>
|
||||
<div class="test_temp2" style="width:80%; height: 500px; float:left;">
|
||||
<!-- Simply set the `src` attribute to your MD file and win -->
|
||||
<div class="centered-a">
|
||||
请按Ctrl+S保存此页面,否则该页面可能在几分钟后失效。
|
||||
</div>
|
||||
<zero-md src="translated_markdown.md" no-shadow>
|
||||
</zero-md>
|
||||
<div class="centered-b">
|
||||
本报告由GPT-Academic开源项目生成,地址:https://github.com/binary-husky/gpt_academic。
|
||||
</div>
|
||||
<div class="centered-c">
|
||||
本报告由GPT-Academic开源项目生成,地址:https://github.com/binary-husky/gpt_academic。
|
||||
</div>
|
||||
</div>
|
||||
<div class="test_temp3" style="width:10%; height: 500px; float:left;">
|
||||
</div>
|
||||
|
||||
</body>
|
||||
|
||||
</html>
|
||||
@@ -0,0 +1,52 @@
|
||||
import os, json, base64
|
||||
from pydantic import BaseModel, Field
|
||||
from textwrap import dedent
|
||||
from typing import List
|
||||
|
||||
class ArgProperty(BaseModel): # PLUGIN_ARG_MENU
|
||||
title: str = Field(description="The title", default="")
|
||||
description: str = Field(description="The description", default="")
|
||||
default_value: str = Field(description="The default value", default="")
|
||||
type: str = Field(description="The type", default="") # currently we support ['string', 'dropdown']
|
||||
options: List[str] = Field(default=[], description="List of options available for the argument") # only used when type is 'dropdown'
|
||||
|
||||
class GptAcademicPluginTemplate():
|
||||
def __init__(self):
|
||||
# please note that `execute` method may run in different threads,
|
||||
# thus you should not store any state in the plugin instance,
|
||||
# which may be accessed by multiple threads
|
||||
pass
|
||||
|
||||
|
||||
def define_arg_selection_menu(self):
|
||||
"""
|
||||
An example as below:
|
||||
```
|
||||
def define_arg_selection_menu(self):
|
||||
gui_definition = {
|
||||
"main_input":
|
||||
ArgProperty(title="main input", description="description", default_value="default_value", type="string").model_dump_json(),
|
||||
"advanced_arg":
|
||||
ArgProperty(title="advanced arguments", description="description", default_value="default_value", type="string").model_dump_json(),
|
||||
"additional_arg_01":
|
||||
ArgProperty(title="additional", description="description", default_value="default_value", type="string").model_dump_json(),
|
||||
}
|
||||
return gui_definition
|
||||
```
|
||||
"""
|
||||
raise NotImplementedError("You need to implement this method in your plugin class")
|
||||
|
||||
|
||||
def get_js_code_for_generating_menu(self, btnName):
|
||||
define_arg_selection = self.define_arg_selection_menu()
|
||||
|
||||
if len(define_arg_selection.keys()) > 8:
|
||||
raise ValueError("You can only have up to 8 arguments in the define_arg_selection")
|
||||
# if "main_input" not in define_arg_selection:
|
||||
# raise ValueError("You must have a 'main_input' in the define_arg_selection")
|
||||
|
||||
DEFINE_ARG_INPUT_INTERFACE = json.dumps(define_arg_selection)
|
||||
return base64.b64encode(DEFINE_ARG_INPUT_INTERFACE.encode('utf-8')).decode('utf-8')
|
||||
|
||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
raise NotImplementedError("You need to implement this method in your plugin class")
|
||||
@@ -10,7 +10,7 @@ def read_avail_plugin_enum():
|
||||
from crazy_functional import get_crazy_functions
|
||||
plugin_arr = get_crazy_functions()
|
||||
# remove plugins with out explaination
|
||||
plugin_arr = {k:v for k, v in plugin_arr.items() if 'Info' in v}
|
||||
plugin_arr = {k:v for k, v in plugin_arr.items() if ('Info' in v) and ('Function' in v)}
|
||||
plugin_arr_info = {"F_{:04d}".format(i):v["Info"] for i, v in enumerate(plugin_arr.values(), start=1)}
|
||||
plugin_arr_dict = {"F_{:04d}".format(i):v for i, v in enumerate(plugin_arr.values(), start=1)}
|
||||
plugin_arr_dict_parse = {"F_{:04d}".format(i):v for i, v in enumerate(plugin_arr.values(), start=1)}
|
||||
|
||||
@@ -5,7 +5,7 @@ from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
from .crazy_utils import read_and_clean_pdf_text
|
||||
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
|
||||
from colorful import *
|
||||
from shared_utils.colorful import *
|
||||
import copy
|
||||
import os
|
||||
import math
|
||||
|
||||
@@ -1,8 +1,11 @@
|
||||
from toolbox import CatchException, update_ui, report_exception
|
||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
import datetime
|
||||
from crazy_functions.plugin_template.plugin_class_template import (
|
||||
GptAcademicPluginTemplate,
|
||||
)
|
||||
from crazy_functions.plugin_template.plugin_class_template import ArgProperty
|
||||
|
||||
#以下是每类图表的PROMPT
|
||||
# 以下是每类图表的PROMPT
|
||||
SELECT_PROMPT = """
|
||||
“{subject}”
|
||||
=============
|
||||
@@ -17,22 +20,24 @@ SELECT_PROMPT = """
|
||||
8 象限提示图
|
||||
不需要解释原因,仅需要输出单个不带任何标点符号的数字。
|
||||
"""
|
||||
#没有思维导图!!!测试发现模型始终会优先选择思维导图
|
||||
#流程图
|
||||
# 没有思维导图!!!测试发现模型始终会优先选择思维导图
|
||||
# 流程图
|
||||
PROMPT_1 = """
|
||||
请你给出围绕“{subject}”的逻辑关系图,使用mermaid语法,mermaid语法举例:
|
||||
请你给出围绕“{subject}”的逻辑关系图,使用mermaid语法,注意需要使用双引号将内容括起来。
|
||||
mermaid语法举例:
|
||||
```mermaid
|
||||
graph TD
|
||||
P(编程) --> L1(Python)
|
||||
P(编程) --> L2(C)
|
||||
P(编程) --> L3(C++)
|
||||
P(编程) --> L4(Javascipt)
|
||||
P(编程) --> L5(PHP)
|
||||
P("编程") --> L1("Python")
|
||||
P("编程") --> L2("C")
|
||||
P("编程") --> L3("C++")
|
||||
P("编程") --> L4("Javascipt")
|
||||
P("编程") --> L5("PHP")
|
||||
```
|
||||
"""
|
||||
#序列图
|
||||
# 序列图
|
||||
PROMPT_2 = """
|
||||
请你给出围绕“{subject}”的序列图,使用mermaid语法,mermaid语法举例:
|
||||
请你给出围绕“{subject}”的序列图,使用mermaid语法。
|
||||
mermaid语法举例:
|
||||
```mermaid
|
||||
sequenceDiagram
|
||||
participant A as 用户
|
||||
@@ -43,9 +48,10 @@ sequenceDiagram
|
||||
B->>A: 返回数据
|
||||
```
|
||||
"""
|
||||
#类图
|
||||
# 类图
|
||||
PROMPT_3 = """
|
||||
请你给出围绕“{subject}”的类图,使用mermaid语法,mermaid语法举例:
|
||||
请你给出围绕“{subject}”的类图,使用mermaid语法。
|
||||
mermaid语法举例:
|
||||
```mermaid
|
||||
classDiagram
|
||||
Class01 <|-- AveryLongClass : Cool
|
||||
@@ -63,9 +69,10 @@ classDiagram
|
||||
Class08 <--> C2: Cool label
|
||||
```
|
||||
"""
|
||||
#饼图
|
||||
# 饼图
|
||||
PROMPT_4 = """
|
||||
请你给出围绕“{subject}”的饼图,使用mermaid语法,mermaid语法举例:
|
||||
请你给出围绕“{subject}”的饼图,使用mermaid语法,注意需要使用双引号将内容括起来。
|
||||
mermaid语法举例:
|
||||
```mermaid
|
||||
pie title Pets adopted by volunteers
|
||||
"狗" : 386
|
||||
@@ -73,38 +80,41 @@ pie title Pets adopted by volunteers
|
||||
"兔子" : 15
|
||||
```
|
||||
"""
|
||||
#甘特图
|
||||
# 甘特图
|
||||
PROMPT_5 = """
|
||||
请你给出围绕“{subject}”的甘特图,使用mermaid语法,mermaid语法举例:
|
||||
请你给出围绕“{subject}”的甘特图,使用mermaid语法,注意需要使用双引号将内容括起来。
|
||||
mermaid语法举例:
|
||||
```mermaid
|
||||
gantt
|
||||
title 项目开发流程
|
||||
title "项目开发流程"
|
||||
dateFormat YYYY-MM-DD
|
||||
section 设计
|
||||
需求分析 :done, des1, 2024-01-06,2024-01-08
|
||||
原型设计 :active, des2, 2024-01-09, 3d
|
||||
UI设计 : des3, after des2, 5d
|
||||
section 开发
|
||||
前端开发 :2024-01-20, 10d
|
||||
后端开发 :2024-01-20, 10d
|
||||
section "设计"
|
||||
"需求分析" :done, des1, 2024-01-06,2024-01-08
|
||||
"原型设计" :active, des2, 2024-01-09, 3d
|
||||
"UI设计" : des3, after des2, 5d
|
||||
section "开发"
|
||||
"前端开发" :2024-01-20, 10d
|
||||
"后端开发" :2024-01-20, 10d
|
||||
```
|
||||
"""
|
||||
#状态图
|
||||
# 状态图
|
||||
PROMPT_6 = """
|
||||
请你给出围绕“{subject}”的状态图,使用mermaid语法,mermaid语法举例:
|
||||
请你给出围绕“{subject}”的状态图,使用mermaid语法,注意需要使用双引号将内容括起来。
|
||||
mermaid语法举例:
|
||||
```mermaid
|
||||
stateDiagram-v2
|
||||
[*] --> Still
|
||||
Still --> [*]
|
||||
Still --> Moving
|
||||
Moving --> Still
|
||||
Moving --> Crash
|
||||
Crash --> [*]
|
||||
[*] --> "Still"
|
||||
"Still" --> [*]
|
||||
"Still" --> "Moving"
|
||||
"Moving" --> "Still"
|
||||
"Moving" --> "Crash"
|
||||
"Crash" --> [*]
|
||||
```
|
||||
"""
|
||||
#实体关系图
|
||||
# 实体关系图
|
||||
PROMPT_7 = """
|
||||
请你给出围绕“{subject}”的实体关系图,使用mermaid语法,mermaid语法举例:
|
||||
请你给出围绕“{subject}”的实体关系图,使用mermaid语法。
|
||||
mermaid语法举例:
|
||||
```mermaid
|
||||
erDiagram
|
||||
CUSTOMER ||--o{ ORDER : places
|
||||
@@ -124,118 +134,173 @@ erDiagram
|
||||
}
|
||||
```
|
||||
"""
|
||||
#象限提示图
|
||||
# 象限提示图
|
||||
PROMPT_8 = """
|
||||
请你给出围绕“{subject}”的象限图,使用mermaid语法,mermaid语法举例:
|
||||
请你给出围绕“{subject}”的象限图,使用mermaid语法,注意需要使用双引号将内容括起来。
|
||||
mermaid语法举例:
|
||||
```mermaid
|
||||
graph LR
|
||||
A[Hard skill] --> B(Programming)
|
||||
A[Hard skill] --> C(Design)
|
||||
D[Soft skill] --> E(Coordination)
|
||||
D[Soft skill] --> F(Communication)
|
||||
A["Hard skill"] --> B("Programming")
|
||||
A["Hard skill"] --> C("Design")
|
||||
D["Soft skill"] --> E("Coordination")
|
||||
D["Soft skill"] --> F("Communication")
|
||||
```
|
||||
"""
|
||||
#思维导图
|
||||
# 思维导图
|
||||
PROMPT_9 = """
|
||||
{subject}
|
||||
==========
|
||||
请给出上方内容的思维导图,充分考虑其之间的逻辑,使用mermaid语法,mermaid语法举例:
|
||||
请给出上方内容的思维导图,充分考虑其之间的逻辑,使用mermaid语法,注意需要使用双引号将内容括起来。
|
||||
mermaid语法举例:
|
||||
```mermaid
|
||||
mindmap
|
||||
root((mindmap))
|
||||
Origins
|
||||
Long history
|
||||
("Origins")
|
||||
("Long history")
|
||||
::icon(fa fa-book)
|
||||
Popularisation
|
||||
British popular psychology author Tony Buzan
|
||||
Research
|
||||
On effectiveness<br/>and features
|
||||
On Automatic creation
|
||||
Uses
|
||||
Creative techniques
|
||||
Strategic planning
|
||||
Argument mapping
|
||||
Tools
|
||||
Pen and paper
|
||||
Mermaid
|
||||
("Popularisation")
|
||||
("British popular psychology author Tony Buzan")
|
||||
::icon(fa fa-user)
|
||||
("Research")
|
||||
("On effectiveness<br/>and features")
|
||||
::icon(fa fa-search)
|
||||
("On Automatic creation")
|
||||
::icon(fa fa-robot)
|
||||
("Uses")
|
||||
("Creative techniques")
|
||||
::icon(fa fa-lightbulb-o)
|
||||
("Strategic planning")
|
||||
::icon(fa fa-flag)
|
||||
("Argument mapping")
|
||||
::icon(fa fa-comments)
|
||||
("Tools")
|
||||
("Pen and paper")
|
||||
::icon(fa fa-pencil)
|
||||
("Mermaid")
|
||||
::icon(fa fa-code)
|
||||
```
|
||||
"""
|
||||
|
||||
def 解析历史输入(history,llm_kwargs,file_manifest,chatbot,plugin_kwargs):
|
||||
|
||||
def 解析历史输入(history, llm_kwargs, file_manifest, chatbot, plugin_kwargs):
|
||||
############################## <第 0 步,切割输入> ##################################
|
||||
# 借用PDF切割中的函数对文本进行切割
|
||||
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
||||
txt = str(history).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
||||
txt = breakdown_text_to_satisfy_token_limit(txt=txt, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
|
||||
txt = (
|
||||
str(history).encode("utf-8", "ignore").decode()
|
||||
) # avoid reading non-utf8 chars
|
||||
from crazy_functions.pdf_fns.breakdown_txt import (
|
||||
breakdown_text_to_satisfy_token_limit,
|
||||
)
|
||||
|
||||
txt = breakdown_text_to_satisfy_token_limit(
|
||||
txt=txt, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs["llm_model"]
|
||||
)
|
||||
############################## <第 1 步,迭代地历遍整个文章,提取精炼信息> ##################################
|
||||
results = []
|
||||
MAX_WORD_TOTAL = 4096
|
||||
n_txt = len(txt)
|
||||
last_iteration_result = "从以下文本中提取摘要。"
|
||||
if n_txt >= 20: print('文章极长,不能达到预期效果')
|
||||
if n_txt >= 20:
|
||||
print("文章极长,不能达到预期效果")
|
||||
for i in range(n_txt):
|
||||
NUM_OF_WORD = MAX_WORD_TOTAL // n_txt
|
||||
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words in Chinese: {txt[i]}"
|
||||
i_say_show_user = f"[{i+1}/{n_txt}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {txt[i][:200]} ...."
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
|
||||
llm_kwargs, chatbot,
|
||||
history=["The main content of the previous section is?", last_iteration_result], # 迭代上一次的结果
|
||||
sys_prompt="Extracts the main content from the text section where it is located for graphing purposes, answer me with Chinese." # 提示
|
||||
)
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
i_say,
|
||||
i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
|
||||
llm_kwargs,
|
||||
chatbot,
|
||||
history=[
|
||||
"The main content of the previous section is?",
|
||||
last_iteration_result,
|
||||
], # 迭代上一次的结果
|
||||
sys_prompt="Extracts the main content from the text section where it is located for graphing purposes, answer me with Chinese.", # 提示
|
||||
)
|
||||
results.append(gpt_say)
|
||||
last_iteration_result = gpt_say
|
||||
############################## <第 2 步,根据整理的摘要选择图表类型> ##################################
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
gpt_say = plugin_kwargs.get("advanced_arg", "") #将图表类型参数赋值为插件参数
|
||||
results_txt = '\n'.join(results) #合并摘要
|
||||
if gpt_say not in ['1','2','3','4','5','6','7','8','9']: #如插件参数不正确则使用对话模型判断
|
||||
i_say_show_user = f'接下来将判断适合的图表类型,如连续3次判断失败将会使用流程图进行绘制'; gpt_say = "[Local Message] 收到。" # 用户提示
|
||||
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=[]) # 更新UI
|
||||
gpt_say = str(plugin_kwargs) # 将图表类型参数赋值为插件参数
|
||||
results_txt = "\n".join(results) # 合并摘要
|
||||
if gpt_say not in [
|
||||
"1",
|
||||
"2",
|
||||
"3",
|
||||
"4",
|
||||
"5",
|
||||
"6",
|
||||
"7",
|
||||
"8",
|
||||
"9",
|
||||
]: # 如插件参数不正确则使用对话模型判断
|
||||
i_say_show_user = (
|
||||
f"接下来将判断适合的图表类型,如连续3次判断失败将会使用流程图进行绘制"
|
||||
)
|
||||
gpt_say = "[Local Message] 收到。" # 用户提示
|
||||
chatbot.append([i_say_show_user, gpt_say])
|
||||
yield from update_ui(chatbot=chatbot, history=[]) # 更新UI
|
||||
i_say = SELECT_PROMPT.format(subject=results_txt)
|
||||
i_say_show_user = f'请判断适合使用的流程图类型,其中数字对应关系为:1-流程图,2-序列图,3-类图,4-饼图,5-甘特图,6-状态图,7-实体关系图,8-象限提示图。由于不管提供文本是什么,模型大概率认为"思维导图"最合适,因此思维导图仅能通过参数调用。'
|
||||
for i in range(3):
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say_show_user,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
sys_prompt=""
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history=[],
|
||||
sys_prompt="",
|
||||
)
|
||||
if gpt_say in ['1','2','3','4','5','6','7','8','9']: #判断返回是否正确
|
||||
if gpt_say in [
|
||||
"1",
|
||||
"2",
|
||||
"3",
|
||||
"4",
|
||||
"5",
|
||||
"6",
|
||||
"7",
|
||||
"8",
|
||||
"9",
|
||||
]: # 判断返回是否正确
|
||||
break
|
||||
if gpt_say not in ['1','2','3','4','5','6','7','8','9']:
|
||||
gpt_say = '1'
|
||||
if gpt_say not in ["1", "2", "3", "4", "5", "6", "7", "8", "9"]:
|
||||
gpt_say = "1"
|
||||
############################## <第 3 步,根据选择的图表类型绘制图表> ##################################
|
||||
if gpt_say == '1':
|
||||
if gpt_say == "1":
|
||||
i_say = PROMPT_1.format(subject=results_txt)
|
||||
elif gpt_say == '2':
|
||||
elif gpt_say == "2":
|
||||
i_say = PROMPT_2.format(subject=results_txt)
|
||||
elif gpt_say == '3':
|
||||
elif gpt_say == "3":
|
||||
i_say = PROMPT_3.format(subject=results_txt)
|
||||
elif gpt_say == '4':
|
||||
elif gpt_say == "4":
|
||||
i_say = PROMPT_4.format(subject=results_txt)
|
||||
elif gpt_say == '5':
|
||||
elif gpt_say == "5":
|
||||
i_say = PROMPT_5.format(subject=results_txt)
|
||||
elif gpt_say == '6':
|
||||
elif gpt_say == "6":
|
||||
i_say = PROMPT_6.format(subject=results_txt)
|
||||
elif gpt_say == '7':
|
||||
i_say = PROMPT_7.replace("{subject}", results_txt) #由于实体关系图用到了{}符号
|
||||
elif gpt_say == '8':
|
||||
elif gpt_say == "7":
|
||||
i_say = PROMPT_7.replace("{subject}", results_txt) # 由于实体关系图用到了{}符号
|
||||
elif gpt_say == "8":
|
||||
i_say = PROMPT_8.format(subject=results_txt)
|
||||
elif gpt_say == '9':
|
||||
elif gpt_say == "9":
|
||||
i_say = PROMPT_9.format(subject=results_txt)
|
||||
i_say_show_user = f'请根据判断结果绘制相应的图表。如需绘制思维导图请使用参数调用,同时过大的图表可能需要复制到在线编辑器中进行渲染。'
|
||||
i_say_show_user = f"请根据判断结果绘制相应的图表。如需绘制思维导图请使用参数调用,同时过大的图表可能需要复制到在线编辑器中进行渲染。"
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say_show_user,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
sys_prompt=""
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history=[],
|
||||
sys_prompt="",
|
||||
)
|
||||
history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
|
||||
@CatchException
|
||||
def 生成多种Mermaid图表(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
def 生成多种Mermaid图表(
|
||||
txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port
|
||||
):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
@@ -248,15 +313,21 @@ def 生成多种Mermaid图表(txt, llm_kwargs, plugin_kwargs, chatbot, history,
|
||||
import os
|
||||
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"根据当前聊天历史或指定的路径文件(文件内容优先)绘制多种mermaid图表,将会由对话模型首先判断适合的图表类型,随后绘制图表。\
|
||||
\n您也可以使用插件参数指定绘制的图表类型,函数插件贡献者: Menghuan1918"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
chatbot.append(
|
||||
[
|
||||
"函数插件功能?",
|
||||
"根据当前聊天历史或指定的路径文件(文件内容优先)绘制多种mermaid图表,将会由对话模型首先判断适合的图表类型,随后绘制图表。\
|
||||
\n您也可以使用插件参数指定绘制的图表类型,函数插件贡献者: Menghuan1918",
|
||||
]
|
||||
)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
if os.path.exists(txt): #如输入区无内容则直接解析历史记录
|
||||
if os.path.exists(txt): # 如输入区无内容则直接解析历史记录
|
||||
from crazy_functions.pdf_fns.parse_word import extract_text_from_files
|
||||
file_exist, final_result, page_one, file_manifest, excption = extract_text_from_files(txt, chatbot, history)
|
||||
|
||||
file_exist, final_result, page_one, file_manifest, excption = (
|
||||
extract_text_from_files(txt, chatbot, history)
|
||||
)
|
||||
else:
|
||||
file_exist = False
|
||||
excption = ""
|
||||
@@ -264,33 +335,104 @@ def 生成多种Mermaid图表(txt, llm_kwargs, plugin_kwargs, chatbot, history,
|
||||
|
||||
if excption != "":
|
||||
if excption == "word":
|
||||
report_exception(chatbot, history,
|
||||
a = f"解析项目: {txt}",
|
||||
b = f"找到了.doc文件,但是该文件格式不被支持,请先转化为.docx格式。")
|
||||
report_exception(
|
||||
chatbot,
|
||||
history,
|
||||
a=f"解析项目: {txt}",
|
||||
b=f"找到了.doc文件,但是该文件格式不被支持,请先转化为.docx格式。",
|
||||
)
|
||||
|
||||
elif excption == "pdf":
|
||||
report_exception(chatbot, history,
|
||||
a = f"解析项目: {txt}",
|
||||
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
|
||||
report_exception(
|
||||
chatbot,
|
||||
history,
|
||||
a=f"解析项目: {txt}",
|
||||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。",
|
||||
)
|
||||
|
||||
elif excption == "word_pip":
|
||||
report_exception(chatbot, history,
|
||||
a=f"解析项目: {txt}",
|
||||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade python-docx pywin32```。")
|
||||
report_exception(
|
||||
chatbot,
|
||||
history,
|
||||
a=f"解析项目: {txt}",
|
||||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade python-docx pywin32```。",
|
||||
)
|
||||
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
else:
|
||||
if not file_exist:
|
||||
history.append(txt) #如输入区不是文件则将输入区内容加入历史记录
|
||||
i_say_show_user = f'首先你从历史记录中提取摘要。'; gpt_say = "[Local Message] 收到。" # 用户提示
|
||||
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=history) # 更新UI
|
||||
yield from 解析历史输入(history,llm_kwargs,file_manifest,chatbot,plugin_kwargs)
|
||||
history.append(txt) # 如输入区不是文件则将输入区内容加入历史记录
|
||||
i_say_show_user = f"首先你从历史记录中提取摘要。"
|
||||
gpt_say = "[Local Message] 收到。" # 用户提示
|
||||
chatbot.append([i_say_show_user, gpt_say])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 更新UI
|
||||
yield from 解析历史输入(
|
||||
history, llm_kwargs, file_manifest, chatbot, plugin_kwargs
|
||||
)
|
||||
else:
|
||||
file_num = len(file_manifest)
|
||||
for i in range(file_num): #依次处理文件
|
||||
i_say_show_user = f"[{i+1}/{file_num}]处理文件{file_manifest[i]}"; gpt_say = "[Local Message] 收到。" # 用户提示
|
||||
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=history) # 更新UI
|
||||
history = [] #如输入区内容为文件则清空历史记录
|
||||
for i in range(file_num): # 依次处理文件
|
||||
i_say_show_user = f"[{i+1}/{file_num}]处理文件{file_manifest[i]}"
|
||||
gpt_say = "[Local Message] 收到。" # 用户提示
|
||||
chatbot.append([i_say_show_user, gpt_say])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 更新UI
|
||||
history = [] # 如输入区内容为文件则清空历史记录
|
||||
history.append(final_result[i])
|
||||
yield from 解析历史输入(history,llm_kwargs,file_manifest,chatbot,plugin_kwargs)
|
||||
yield from 解析历史输入(
|
||||
history, llm_kwargs, file_manifest, chatbot, plugin_kwargs
|
||||
)
|
||||
|
||||
|
||||
class Mermaid_Gen(GptAcademicPluginTemplate):
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def define_arg_selection_menu(self):
|
||||
gui_definition = {
|
||||
"Type_of_Mermaid": ArgProperty(
|
||||
title="绘制的Mermaid图表类型",
|
||||
options=[
|
||||
"由LLM决定",
|
||||
"流程图",
|
||||
"序列图",
|
||||
"类图",
|
||||
"饼图",
|
||||
"甘特图",
|
||||
"状态图",
|
||||
"实体关系图",
|
||||
"象限提示图",
|
||||
"思维导图",
|
||||
],
|
||||
default_value="由LLM决定",
|
||||
description="选择'由LLM决定'时将由对话模型判断适合的图表类型(不包括思维导图),选择其他类型时将直接绘制指定的图表类型。",
|
||||
type="dropdown",
|
||||
).model_dump_json(),
|
||||
}
|
||||
return gui_definition
|
||||
|
||||
def execute(
|
||||
txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request
|
||||
):
|
||||
options = [
|
||||
"由LLM决定",
|
||||
"流程图",
|
||||
"序列图",
|
||||
"类图",
|
||||
"饼图",
|
||||
"甘特图",
|
||||
"状态图",
|
||||
"实体关系图",
|
||||
"象限提示图",
|
||||
"思维导图",
|
||||
]
|
||||
plugin_kwargs = options.index(plugin_kwargs['Type_of_Mermaid'])
|
||||
yield from 生成多种Mermaid图表(
|
||||
txt,
|
||||
llm_kwargs,
|
||||
plugin_kwargs,
|
||||
chatbot,
|
||||
history,
|
||||
system_prompt,
|
||||
user_request,
|
||||
)
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
from toolbox import update_ui, promote_file_to_downloadzone, disable_auto_promotion
|
||||
from toolbox import CatchException, report_exception, write_history_to_file
|
||||
from .crazy_utils import input_clipping
|
||||
from shared_utils.fastapi_server import validate_path_safety
|
||||
from crazy_functions.crazy_utils import input_clipping
|
||||
|
||||
def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||
import os, copy
|
||||
@@ -128,6 +129,7 @@ def 解析一个Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
@@ -146,6 +148,7 @@ def 解析一个Matlab项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析Matlab项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
@@ -164,6 +167,7 @@ def 解析一个C项目的头文件(txt, llm_kwargs, plugin_kwargs, chatbot, his
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
@@ -184,6 +188,7 @@ def 解析一个C项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
@@ -206,6 +211,7 @@ def 解析一个Java项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||
@@ -228,6 +234,7 @@ def 解析一个前端项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||
@@ -257,6 +264,7 @@ def 解析一个Golang项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||
@@ -278,6 +286,7 @@ def 解析一个Rust项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||
@@ -298,6 +307,7 @@ def 解析一个Lua项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
@@ -320,6 +330,7 @@ def 解析一个CSharp项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
@@ -357,6 +368,7 @@ def 解析任意code项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
||||
import glob, os, re
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
|
||||
@@ -2,6 +2,10 @@ from toolbox import CatchException, update_ui
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
import datetime
|
||||
|
||||
####################################################################################################################
|
||||
# Demo 1: 一个非常简单的插件 #########################################################################################
|
||||
####################################################################################################################
|
||||
|
||||
高阶功能模板函数示意图 = f"""
|
||||
```mermaid
|
||||
flowchart TD
|
||||
@@ -26,7 +30,7 @@ flowchart TD
|
||||
"""
|
||||
|
||||
@CatchException
|
||||
def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request, num_day=5):
|
||||
"""
|
||||
# 高阶功能模板函数示意图:https://mermaid.live/edit#pako:eNptk1tvEkEYhv8KmattQpvlvOyFCcdeeaVXuoYssBwie8gyhCIlqVoLhrbbtAWNUpEGUkyMEDW2Fmn_DDOL_8LZHdOwxrnamX3f7_3mmZk6yKhZCfAgV1KrmYKoQ9fDuKC4yChX0nld1Aou1JzjznQ5fWmejh8LYHW6vG2a47YAnlCLNSIRolnenKBXI_zRIBrcuqRT890u7jZx7zMDt-AaMbnW1--5olGiz2sQjwfoQxsZL0hxplSSU0-rop4vrzmKR6O2JxYjHmwcL2Y_HDatVMkXlf86YzHbGY9bO5j8XE7O8Nsbc3iNB3ukL2SMcH-XIQBgWoVOZzxuOxOJOyc63EPGV6ZQLENVrznViYStTiaJ2vw2M2d9bByRnOXkgCnXylCSU5quyto_IcmkbdvctELmJ-j1ASW3uB3g5xOmKqVTmqr_Na3AtuS_dtBFm8H90XJyHkDDT7S9xXWb4HGmRChx64AOL5HRpUm411rM5uh4H78Z4V7fCZzytjZz2seto9XaNPFue07clLaVZF8UNLygJ-VES8lah_n-O-5Ozc7-77NzJ0-K0yr0ZYrmHdqAk50t2RbA4qq9uNohBASw7YpSgaRkLWCCAtxAlnRZLGbJba9bPwUAC5IsCYAnn1kpJ1ZKUACC0iBSsQLVBzUlA3ioVyQ3qGhZEUrxokiehAz4nFgqk1VNVABfB1uAD_g2_AGPl-W8nMcbCvsDblADfNCz4feyobDPy3rYEMtxwYYbPFNVUoHdCPmDHBv2cP4AMfrCbiBli-Q-3afv0X6WdsIjW2-10fgDy1SAig
|
||||
|
||||
@@ -43,7 +47,7 @@ def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
"您正在调用插件:历史上的今天",
|
||||
"[Local Message] 请注意,您正在调用一个[函数插件]的模板,该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板(该函数只有20多行代码)。此外我们也提供可同步处理大量文件的多线程Demo供您参考。您若希望分享新的功能模组,请不吝PR!" + 高阶功能模板函数示意图))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
for i in range(5):
|
||||
for i in range(int(num_day)):
|
||||
currentMonth = (datetime.date.today() + datetime.timedelta(days=i)).month
|
||||
currentDay = (datetime.date.today() + datetime.timedelta(days=i)).day
|
||||
i_say = f'历史中哪些事件发生在{currentMonth}月{currentDay}日?列举两条并发送相关图片。发送图片时,请使用Markdown,将Unsplash API中的PUT_YOUR_QUERY_HERE替换成描述该事件的一个最重要的单词。'
|
||||
@@ -59,6 +63,56 @@ def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
####################################################################################################################
|
||||
# Demo 2: 一个带二级菜单的插件 #######################################################################################
|
||||
####################################################################################################################
|
||||
|
||||
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
||||
class Demo_Wrap(GptAcademicPluginTemplate):
|
||||
def __init__(self):
|
||||
"""
|
||||
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
||||
"""
|
||||
pass
|
||||
|
||||
def define_arg_selection_menu(self):
|
||||
"""
|
||||
定义插件的二级选项菜单
|
||||
"""
|
||||
gui_definition = {
|
||||
"num_day":
|
||||
ArgProperty(title="日期选择", options=["仅今天", "未来3天", "未来5天"], default_value="未来3天", description="无", type="dropdown").model_dump_json(),
|
||||
}
|
||||
return gui_definition
|
||||
|
||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
执行插件
|
||||
"""
|
||||
num_day = plugin_kwargs["num_day"]
|
||||
if num_day == "仅今天": num_day = 1
|
||||
if num_day == "未来3天": num_day = 3
|
||||
if num_day == "未来5天": num_day = 5
|
||||
yield from 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request, num_day=num_day)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
####################################################################################################################
|
||||
# Demo 3: 绘制脑图的Demo ############################################################################################
|
||||
####################################################################################################################
|
||||
|
||||
PROMPT = """
|
||||
请你给出围绕“{subject}”的逻辑关系图,使用mermaid语法,mermaid语法举例:
|
||||
```mermaid
|
||||
|
||||
@@ -3,6 +3,9 @@
|
||||
# 从NVIDIA源,从而支持显卡(检查宿主的nvidia-smi中的cuda版本必须>=11.3)
|
||||
FROM fuqingxu/11.3.1-runtime-ubuntu20.04-with-texlive:latest
|
||||
|
||||
# edge-tts需要的依赖,某些pip包所需的依赖
|
||||
RUN apt update && apt install ffmpeg build-essential -y
|
||||
|
||||
# use python3 as the system default python
|
||||
WORKDIR /gpt
|
||||
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
|
||||
|
||||
@@ -5,6 +5,9 @@
|
||||
# 从NVIDIA源,从而支持显卡(检查宿主的nvidia-smi中的cuda版本必须>=11.3)
|
||||
FROM fuqingxu/11.3.1-runtime-ubuntu20.04-with-texlive:latest
|
||||
|
||||
# edge-tts需要的依赖,某些pip包所需的依赖
|
||||
RUN apt update && apt install ffmpeg build-essential -y
|
||||
|
||||
# use python3 as the system default python
|
||||
WORKDIR /gpt
|
||||
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
|
||||
@@ -36,6 +39,7 @@ RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
|
||||
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
|
||||
RUN python3 -m pip install nougat-ocr
|
||||
|
||||
|
||||
# 预热Tiktoken模块
|
||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||
|
||||
|
||||
@@ -5,6 +5,8 @@ RUN apt-get update
|
||||
RUN apt-get install -y curl proxychains curl gcc
|
||||
RUN apt-get install -y git python python3 python-dev python3-dev --fix-missing
|
||||
|
||||
# edge-tts需要的依赖,某些pip包所需的依赖
|
||||
RUN apt update && apt install ffmpeg build-essential -y
|
||||
|
||||
# use python3 as the system default python
|
||||
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
|
||||
@@ -22,7 +24,6 @@ RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
|
||||
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
|
||||
|
||||
|
||||
|
||||
# 预热Tiktoken模块
|
||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||
|
||||
|
||||
@@ -23,6 +23,9 @@ RUN python3 -m pip install -r request_llms/requirements_jittorllms.txt -i https:
|
||||
# 下载JittorLLMs
|
||||
RUN git clone https://github.com/binary-husky/JittorLLMs.git --depth 1 request_llms/jittorllms
|
||||
|
||||
# edge-tts需要的依赖
|
||||
RUN apt update && apt install ffmpeg -y
|
||||
|
||||
# 禁用缓存,确保更新代码
|
||||
ADD "https://www.random.org/cgi-bin/randbyte?nbytes=10&format=h" skipcache
|
||||
RUN git pull
|
||||
|
||||
@@ -12,6 +12,8 @@ COPY . .
|
||||
# 安装依赖
|
||||
RUN pip3 install -r requirements.txt
|
||||
|
||||
# edge-tts需要的依赖
|
||||
RUN apt update && apt install ffmpeg -y
|
||||
|
||||
# 可选步骤,用于预热模块
|
||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||
|
||||
@@ -15,6 +15,9 @@ RUN pip3 install -r requirements.txt
|
||||
# 安装语音插件的额外依赖
|
||||
RUN pip3 install aliyun-python-sdk-core==2.13.3 pyOpenSSL webrtcvad scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
|
||||
|
||||
# edge-tts需要的依赖
|
||||
RUN apt update && apt install ffmpeg -y
|
||||
|
||||
# 可选步骤,用于预热模块
|
||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||
|
||||
|
||||
@@ -25,6 +25,9 @@ COPY . .
|
||||
# 安装依赖
|
||||
RUN pip3 install -r requirements.txt
|
||||
|
||||
# edge-tts需要的依赖
|
||||
RUN apt update && apt install ffmpeg -y
|
||||
|
||||
# 可选步骤,用于预热模块
|
||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||
|
||||
|
||||
@@ -19,6 +19,9 @@ RUN pip3 install transformers protobuf langchain sentence-transformers faiss-cp
|
||||
RUN pip3 install unstructured[all-docs] --upgrade
|
||||
RUN python3 -c 'from check_proxy import warm_up_vectordb; warm_up_vectordb()'
|
||||
|
||||
# edge-tts需要的依赖
|
||||
RUN apt update && apt install ffmpeg -y
|
||||
|
||||
# 可选步骤,用于预热模块
|
||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||
|
||||
|
||||
189
docs/plugin_with_secondary_menu.md
普通文件
189
docs/plugin_with_secondary_menu.md
普通文件
@@ -0,0 +1,189 @@
|
||||
# 实现带二级菜单的插件
|
||||
|
||||
## 一、如何写带有二级菜单的插件
|
||||
|
||||
1. 声明一个 `Class`,继承父类 `GptAcademicPluginTemplate`
|
||||
|
||||
```python
|
||||
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate
|
||||
from crazy_functions.plugin_template.plugin_class_template import ArgProperty
|
||||
|
||||
class Demo_Wrap(GptAcademicPluginTemplate):
|
||||
def __init__(self): ...
|
||||
```
|
||||
|
||||
2. 声明二级菜单中需要的变量,覆盖父类的`define_arg_selection_menu`函数。
|
||||
|
||||
```python
|
||||
class Demo_Wrap(GptAcademicPluginTemplate):
|
||||
...
|
||||
|
||||
def define_arg_selection_menu(self):
|
||||
"""
|
||||
定义插件的二级选项菜单
|
||||
|
||||
第一个参数,名称`main_input`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
||||
第二个参数,名称`advanced_arg`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
||||
第三个参数,名称`allow_cache`,参数`type`声明这是一个下拉菜单,下拉菜单上方显示`title`+`description`,下拉菜单的选项为`options`,`default_value`为下拉菜单默认值;
|
||||
"""
|
||||
gui_definition = {
|
||||
"main_input":
|
||||
ArgProperty(title="ArxivID", description="输入Arxiv的ID或者网址", default_value="", type="string").model_dump_json(),
|
||||
"advanced_arg":
|
||||
ArgProperty(title="额外的翻译提示词",
|
||||
description=r"如果有必要, 请在此处给出自定义翻译命令",
|
||||
default_value="", type="string").model_dump_json(),
|
||||
"allow_cache":
|
||||
ArgProperty(title="是否允许从缓存中调取结果", options=["允许缓存", "从头执行"], default_value="允许缓存", description="无", type="dropdown").model_dump_json(),
|
||||
}
|
||||
return gui_definition
|
||||
...
|
||||
```
|
||||
|
||||
|
||||
> [!IMPORTANT]
|
||||
>
|
||||
> ArgProperty 中每个条目对应一个参数,`type == "string"`时,使用文本块,`type == dropdown`时,使用下拉菜单。
|
||||
>
|
||||
> 注意:`main_input` 和 `advanced_arg`是两个特殊的参数。`main_input`会自动与界面右上角的`输入区`进行同步,而`advanced_arg`会自动与界面右下角的`高级参数输入区`同步。除此之外,参数名称可以任意选取。其他细节详见`crazy_functions/plugin_template/plugin_class_template.py`。
|
||||
|
||||
|
||||
|
||||
|
||||
3. 编写插件程序,覆盖父类的`execute`函数。
|
||||
|
||||
例如:
|
||||
|
||||
```python
|
||||
class Demo_Wrap(GptAcademicPluginTemplate):
|
||||
...
|
||||
...
|
||||
|
||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
执行插件
|
||||
|
||||
plugin_kwargs字典中会包含用户的选择,与上述 `define_arg_selection_menu` 一一对应
|
||||
"""
|
||||
allow_cache = plugin_kwargs["allow_cache"]
|
||||
advanced_arg = plugin_kwargs["advanced_arg"]
|
||||
|
||||
if allow_cache == "从头执行": plugin_kwargs["advanced_arg"] = "--no-cache " + plugin_kwargs["advanced_arg"]
|
||||
yield from Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||
|
||||
```
|
||||
|
||||
|
||||
|
||||
4. 注册插件
|
||||
|
||||
将以下条目插入`crazy_functional.py`即可。注意,与旧插件不同的是,`Function`键值应该为None,而`Class`键值为上述插件的类名称(`Demo_Wrap`)。
|
||||
```
|
||||
"新插件": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": True,
|
||||
"Info": "插件说明",
|
||||
"Function": None,
|
||||
"Class": Demo_Wrap,
|
||||
},
|
||||
```
|
||||
|
||||
5. 已经结束了,启动程序测试吧~!
|
||||
|
||||
|
||||
|
||||
## 二、背后的原理(需要JavaScript的前置知识)
|
||||
|
||||
|
||||
### (I) 首先介绍三个Gradio官方没有的重要前端函数
|
||||
|
||||
主javascript程序`common.js`中有三个Gradio官方没有的重要API
|
||||
|
||||
1. `get_data_from_gradio_component`
|
||||
这个函数可以获取任意gradio组件的当前值,例如textbox中的字符,dropdown中的当前选项,chatbot当前的对话等等。调用方法举例:
|
||||
```javascript
|
||||
// 获取当前的对话
|
||||
let chatbot = await get_data_from_gradio_component('gpt-chatbot');
|
||||
```
|
||||
|
||||
2. `get_gradio_component`
|
||||
有时候我们不仅需要gradio组件的当前值,还需要它的label值、是否隐藏、下拉菜单其他可选选项等等,而通过这个函数可以直接获取这个组件的句柄。举例:
|
||||
```javascript
|
||||
// 获取下拉菜单组件的句柄
|
||||
var model_sel = await get_gradio_component("elem_model_sel");
|
||||
// 获取它的所有属性,包括其所有可选选项
|
||||
console.log(model_sel.props)
|
||||
```
|
||||
|
||||
|
||||
3. `push_data_to_gradio_component`
|
||||
这个函数可以将数据推回gradio组件,例如textbox中的字符,dropdown中的当前选项等等。调用方法举例:
|
||||
|
||||
```javascript
|
||||
// 修改一个按钮上面的文本
|
||||
push_data_to_gradio_component("btnName", "gradio_element_id", "string");
|
||||
|
||||
// 隐藏一个组件
|
||||
push_data_to_gradio_component({ visible: false, __type__: 'update' }, "plugin_arg_menu", "obj");
|
||||
|
||||
// 修改组件label
|
||||
push_data_to_gradio_component({ label: '新label的值', __type__: 'update' }, "gpt-chatbot", "obj")
|
||||
|
||||
// 第一个参数是value,
|
||||
// - 可以是字符串(调整textbox的文本,按钮的文本);
|
||||
// - 还可以是 { visible: false, __type__: 'update' } 这样的字典(调整visible, label, choices)
|
||||
// 第二个参数是elem_id
|
||||
// 第三个参数是"string" 或者 "obj"
|
||||
```
|
||||
|
||||
|
||||
### (II) 从点击插件到执行插件的逻辑过程
|
||||
|
||||
简述:程序启动时把每个插件的二级菜单编码为BASE64,存储在用户的浏览器前端,用户调用对应功能时,会按照插件的BASE64编码,将平时隐藏的菜单(有选择性地)显示出来。
|
||||
|
||||
1. 启动阶段(主函数 `main.py` 中),遍历每个插件,生成二级菜单的BASE64编码,存入变量`register_advanced_plugin_init_code_arr`。
|
||||
```python
|
||||
def get_js_code_for_generating_menu(self, btnName):
|
||||
define_arg_selection = self.define_arg_selection_menu()
|
||||
DEFINE_ARG_INPUT_INTERFACE = json.dumps(define_arg_selection)
|
||||
return base64.b64encode(DEFINE_ARG_INPUT_INTERFACE.encode('utf-8')).decode('utf-8')
|
||||
```
|
||||
|
||||
|
||||
2. 用户加载阶段(主javascript程序`common.js`中),浏览器加载`register_advanced_plugin_init_code_arr`,存入本地的字典`advanced_plugin_init_code_lib`:
|
||||
|
||||
```javascript
|
||||
advanced_plugin_init_code_lib = {}
|
||||
function register_advanced_plugin_init_code(key, code){
|
||||
advanced_plugin_init_code_lib[key] = code;
|
||||
}
|
||||
```
|
||||
|
||||
3. 用户点击插件按钮(主函数 `main.py` 中)时,仅执行以下javascript代码,唤醒隐藏的二级菜单(生成菜单的代码在`common.js`中的`generate_menu`函数上):
|
||||
|
||||
|
||||
```javascript
|
||||
// 生成高级插件的选择菜单
|
||||
function run_advanced_plugin_launch_code(key){
|
||||
generate_menu(advanced_plugin_init_code_lib[key], key);
|
||||
}
|
||||
function on_flex_button_click(key){
|
||||
run_advanced_plugin_launch_code(key);
|
||||
}
|
||||
```
|
||||
|
||||
```python
|
||||
click_handle = plugins[k]["Button"].click(None, inputs=[], outputs=None, _js=f"""()=>run_advanced_plugin_launch_code("{k}")""")
|
||||
```
|
||||
|
||||
4. 当用户点击二级菜单的执行键时,通过javascript脚本模拟点击一个隐藏按钮,触发后续程序(`common.js`中的`execute_current_pop_up_plugin`,会把二级菜单中的参数缓存到`invisible_current_pop_up_plugin_arg_final`,然后模拟点击`invisible_callback_btn_for_plugin_exe`按钮)。隐藏按钮的定义在(主函数 `main.py` ),该隐藏按钮会最终触发`route_switchy_bt_with_arg`函数(定义于`themes/gui_advanced_plugin_class.py`):
|
||||
|
||||
```python
|
||||
click_handle_ng = new_plugin_callback.click(route_switchy_bt_with_arg, [
|
||||
gr.State(["new_plugin_callback", "usr_confirmed_arg"] + input_combo_order),
|
||||
new_plugin_callback, usr_confirmed_arg, *input_combo
|
||||
], output_combo)
|
||||
```
|
||||
|
||||
5. 最后,`route_switchy_bt_with_arg`中,会搜集所有用户参数,统一集中到`plugin_kwargs`参数中,并执行对应插件的`execute`函数。
|
||||
@@ -22,13 +22,13 @@
|
||||
| crazy_functions\下载arxiv论文翻译摘要.py | 下载 `arxiv` 论文的 PDF 文件,并提取摘要和翻译 |
|
||||
| crazy_functions\代码重写为全英文_多线程.py | 将Python源代码文件中的中文内容转化为英文 |
|
||||
| crazy_functions\图片生成.py | 根据激励文本使用GPT模型生成相应的图像 |
|
||||
| crazy_functions\对话历史存档.py | 将每次对话记录写入Markdown格式的文件中 |
|
||||
| crazy_functions\Conversation_To_File.py | 将每次对话记录写入Markdown格式的文件中 |
|
||||
| crazy_functions\总结word文档.py | 对输入的word文档进行摘要生成 |
|
||||
| crazy_functions\总结音视频.py | 对输入的音视频文件进行摘要生成 |
|
||||
| crazy_functions\批量Markdown翻译.py | 将指定目录下的Markdown文件进行中英文翻译 |
|
||||
| crazy_functions\Markdown_Translate.py | 将指定目录下的Markdown文件进行中英文翻译 |
|
||||
| crazy_functions\批量总结PDF文档.py | 对PDF文件进行切割和摘要生成 |
|
||||
| crazy_functions\批量总结PDF文档pdfminer.py | 对PDF文件进行文本内容的提取和摘要生成 |
|
||||
| crazy_functions\批量翻译PDF文档_多线程.py | 将指定目录下的PDF文件进行中英文翻译 |
|
||||
| crazy_functions\PDF_Translate.py | 将指定目录下的PDF文件进行中英文翻译 |
|
||||
| crazy_functions\理解PDF文档内容.py | 对PDF文件进行摘要生成和问题解答 |
|
||||
| crazy_functions\生成函数注释.py | 自动生成Python函数的注释 |
|
||||
| crazy_functions\联网的ChatGPT.py | 使用网络爬虫和ChatGPT模型进行聊天回答 |
|
||||
@@ -155,9 +155,9 @@ toolbox.py是一个工具类库,其中主要包含了一些函数装饰器和
|
||||
|
||||
该程序文件提供了一个用于生成图像的函数`图片生成`。函数实现的过程中,会调用`gen_image`函数来生成图像,并返回图像生成的网址和本地文件地址。函数有多个参数,包括`prompt`(激励文本)、`llm_kwargs`(GPT模型的参数)、`plugin_kwargs`(插件模型的参数)等。函数核心代码使用了`requests`库向OpenAI API请求图像,并做了简单的处理和保存。函数还更新了交互界面,清空聊天历史并显示正在生成图像的消息和最终的图像网址和预览。
|
||||
|
||||
## [18/48] 请对下面的程序文件做一个概述: crazy_functions\对话历史存档.py
|
||||
## [18/48] 请对下面的程序文件做一个概述: crazy_functions\Conversation_To_File.py
|
||||
|
||||
这个文件是名为crazy_functions\对话历史存档.py的Python程序文件,包含了4个函数:
|
||||
这个文件是名为crazy_functions\Conversation_To_File.py的Python程序文件,包含了4个函数:
|
||||
|
||||
1. write_chat_to_file(chatbot, history=None, file_name=None):用来将对话记录以Markdown格式写入文件中,并且生成文件名,如果没指定文件名则用当前时间。写入完成后将文件路径打印出来。
|
||||
|
||||
@@ -165,7 +165,7 @@ toolbox.py是一个工具类库,其中主要包含了一些函数装饰器和
|
||||
|
||||
3. read_file_to_chat(chatbot, history, file_name):从传入的文件中读取内容,解析出对话历史记录并更新聊天显示框。
|
||||
|
||||
4. 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):一个主要函数,用于保存当前对话记录并提醒用户。如果用户希望加载历史记录,则调用read_file_to_chat()来更新聊天显示框。如果用户希望删除历史记录,调用删除所有本地对话历史记录()函数完成删除操作。
|
||||
4. Conversation_To_File(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):一个主要函数,用于保存当前对话记录并提醒用户。如果用户希望加载历史记录,则调用read_file_to_chat()来更新聊天显示框。如果用户希望删除历史记录,调用删除所有本地对话历史记录()函数完成删除操作。
|
||||
|
||||
## [19/48] 请对下面的程序文件做一个概述: crazy_functions\总结word文档.py
|
||||
|
||||
@@ -175,9 +175,9 @@ toolbox.py是一个工具类库,其中主要包含了一些函数装饰器和
|
||||
|
||||
该程序文件包括两个函数:split_audio_file()和AnalyAudio(),并且导入了一些必要的库并定义了一些工具函数。split_audio_file用于将音频文件分割成多个时长相等的片段,返回一个包含所有切割音频片段文件路径的列表,而AnalyAudio用来分析音频文件,通过调用whisper模型进行音频转文字并使用GPT模型对音频内容进行概述,最终将所有总结结果写入结果文件中。
|
||||
|
||||
## [21/48] 请对下面的程序文件做一个概述: crazy_functions\批量Markdown翻译.py
|
||||
## [21/48] 请对下面的程序文件做一个概述: crazy_functions\Markdown_Translate.py
|
||||
|
||||
该程序文件名为`批量Markdown翻译.py`,包含了以下功能:读取Markdown文件,将长文本分离开来,将Markdown文件进行翻译(英译中和中译英),整理结果并退出。程序使用了多线程以提高效率。程序使用了`tiktoken`依赖库,可能需要额外安装。文件中还有一些其他的函数和类,但与文件名所描述的功能无关。
|
||||
该程序文件名为`Markdown_Translate.py`,包含了以下功能:读取Markdown文件,将长文本分离开来,将Markdown文件进行翻译(英译中和中译英),整理结果并退出。程序使用了多线程以提高效率。程序使用了`tiktoken`依赖库,可能需要额外安装。文件中还有一些其他的函数和类,但与文件名所描述的功能无关。
|
||||
|
||||
## [22/48] 请对下面的程序文件做一个概述: crazy_functions\批量总结PDF文档.py
|
||||
|
||||
@@ -187,9 +187,9 @@ toolbox.py是一个工具类库,其中主要包含了一些函数装饰器和
|
||||
|
||||
该程序文件是一个用于批量总结PDF文档的函数插件,使用了pdfminer插件和BeautifulSoup库来提取PDF文档的文本内容,对每个PDF文件分别进行处理并生成中英文摘要。同时,该程序文件还包括一些辅助工具函数和处理异常的装饰器。
|
||||
|
||||
## [24/48] 请对下面的程序文件做一个概述: crazy_functions\批量翻译PDF文档_多线程.py
|
||||
## [24/48] 请对下面的程序文件做一个概述: crazy_functions\PDF_Translate.py
|
||||
|
||||
这个程序文件是一个Python脚本,文件名为“批量翻译PDF文档_多线程.py”。它主要使用了“toolbox”、“request_gpt_model_in_new_thread_with_ui_alive”、“request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency”、“colorful”等Python库和自定义的模块“crazy_utils”的一些函数。程序实现了一个批量翻译PDF文档的功能,可以自动解析PDF文件中的基础信息,递归地切割PDF文件,翻译和处理PDF论文中的所有内容,并生成相应的翻译结果文件(包括md文件和html文件)。功能比较复杂,其中需要调用多个函数和依赖库,涉及到多线程操作和UI更新。文件中有详细的注释和变量命名,代码比较清晰易读。
|
||||
这个程序文件是一个Python脚本,文件名为“PDF_Translate.py”。它主要使用了“toolbox”、“request_gpt_model_in_new_thread_with_ui_alive”、“request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency”、“colorful”等Python库和自定义的模块“crazy_utils”的一些函数。程序实现了一个批量翻译PDF文档的功能,可以自动解析PDF文件中的基础信息,递归地切割PDF文件,翻译和处理PDF论文中的所有内容,并生成相应的翻译结果文件(包括md文件和html文件)。功能比较复杂,其中需要调用多个函数和依赖库,涉及到多线程操作和UI更新。文件中有详细的注释和变量命名,代码比较清晰易读。
|
||||
|
||||
## [25/48] 请对下面的程序文件做一个概述: crazy_functions\理解PDF文档内容.py
|
||||
|
||||
@@ -331,19 +331,19 @@ check_proxy.py, colorful.py, config.py, config_private.py, core_functional.py, c
|
||||
这些程序源文件提供了基础的文本和语言处理功能、工具函数和高级插件,使 Chatbot 能够处理各种复杂的学术文本问题,包括润色、翻译、搜索、下载、解析等。
|
||||
|
||||
## 用一张Markdown表格简要描述以下文件的功能:
|
||||
crazy_functions\代码重写为全英文_多线程.py, crazy_functions\图片生成.py, crazy_functions\对话历史存档.py, crazy_functions\总结word文档.py, crazy_functions\总结音视频.py, crazy_functions\批量Markdown翻译.py, crazy_functions\批量总结PDF文档.py, crazy_functions\批量总结PDF文档pdfminer.py, crazy_functions\批量翻译PDF文档_多线程.py, crazy_functions\理解PDF文档内容.py, crazy_functions\生成函数注释.py, crazy_functions\联网的ChatGPT.py, crazy_functions\解析JupyterNotebook.py, crazy_functions\解析项目源代码.py, crazy_functions\询问多个大语言模型.py, crazy_functions\读文章写摘要.py。根据以上分析,用一句话概括程序的整体功能。
|
||||
crazy_functions\代码重写为全英文_多线程.py, crazy_functions\图片生成.py, crazy_functions\Conversation_To_File.py, crazy_functions\总结word文档.py, crazy_functions\总结音视频.py, crazy_functions\Markdown_Translate.py, crazy_functions\批量总结PDF文档.py, crazy_functions\批量总结PDF文档pdfminer.py, crazy_functions\PDF_Translate.py, crazy_functions\理解PDF文档内容.py, crazy_functions\生成函数注释.py, crazy_functions\联网的ChatGPT.py, crazy_functions\解析JupyterNotebook.py, crazy_functions\解析项目源代码.py, crazy_functions\询问多个大语言模型.py, crazy_functions\读文章写摘要.py。根据以上分析,用一句话概括程序的整体功能。
|
||||
|
||||
| 文件名 | 功能简述 |
|
||||
| --- | --- |
|
||||
| 代码重写为全英文_多线程.py | 将Python源代码文件中的中文内容转化为英文 |
|
||||
| 图片生成.py | 根据激励文本使用GPT模型生成相应的图像 |
|
||||
| 对话历史存档.py | 将每次对话记录写入Markdown格式的文件中 |
|
||||
| Conversation_To_File.py | 将每次对话记录写入Markdown格式的文件中 |
|
||||
| 总结word文档.py | 对输入的word文档进行摘要生成 |
|
||||
| 总结音视频.py | 对输入的音视频文件进行摘要生成 |
|
||||
| 批量Markdown翻译.py | 将指定目录下的Markdown文件进行中英文翻译 |
|
||||
| Markdown_Translate.py | 将指定目录下的Markdown文件进行中英文翻译 |
|
||||
| 批量总结PDF文档.py | 对PDF文件进行切割和摘要生成 |
|
||||
| 批量总结PDF文档pdfminer.py | 对PDF文件进行文本内容的提取和摘要生成 |
|
||||
| 批量翻译PDF文档_多线程.py | 将指定目录下的PDF文件进行中英文翻译 |
|
||||
| PDF_Translate.py | 将指定目录下的PDF文件进行中英文翻译 |
|
||||
| 理解PDF文档内容.py | 对PDF文件进行摘要生成和问题解答 |
|
||||
| 生成函数注释.py | 自动生成Python函数的注释 |
|
||||
| 联网的ChatGPT.py | 使用网络爬虫和ChatGPT模型进行聊天回答 |
|
||||
|
||||
文件差异内容过多而无法显示
加载差异
@@ -36,15 +36,15 @@
|
||||
"总结word文档": "SummarizeWordDocument",
|
||||
"解析ipynb文件": "ParseIpynbFile",
|
||||
"解析JupyterNotebook": "ParseJupyterNotebook",
|
||||
"对话历史存档": "ConversationHistoryArchive",
|
||||
"载入对话历史存档": "LoadConversationHistoryArchive",
|
||||
"Conversation_To_File": "ConversationHistoryArchive",
|
||||
"载入Conversation_To_File": "LoadConversationHistoryArchive",
|
||||
"删除所有本地对话历史记录": "DeleteAllLocalChatHistory",
|
||||
"Markdown英译中": "MarkdownTranslateFromEngToChi",
|
||||
"批量Markdown翻译": "BatchTranslateMarkdown",
|
||||
"Markdown_Translate": "BatchTranslateMarkdown",
|
||||
"批量总结PDF文档": "BatchSummarizePDFDocuments",
|
||||
"批量总结PDF文档pdfminer": "BatchSummarizePDFDocumentsUsingPDFMiner",
|
||||
"批量翻译PDF文档": "BatchTranslatePDFDocuments",
|
||||
"批量翻译PDF文档_多线程": "BatchTranslatePDFDocumentsUsingMultiThreading",
|
||||
"PDF_Translate": "BatchTranslatePDFDocumentsUsingMultiThreading",
|
||||
"谷歌检索小助手": "GoogleSearchAssistant",
|
||||
"理解PDF文档内容标准文件输入": "StandardFileInputForUnderstandingPDFDocumentContent",
|
||||
"理解PDF文档内容": "UnderstandingPDFDocumentContent",
|
||||
@@ -1492,7 +1492,7 @@
|
||||
"交互功能模板函数": "InteractiveFunctionTemplateFunction",
|
||||
"交互功能函数模板": "InteractiveFunctionFunctionTemplate",
|
||||
"Latex英文纠错加PDF对比": "LatexEnglishErrorCorrectionWithPDFComparison",
|
||||
"Latex输出PDF": "LatexOutputPDFResult",
|
||||
"Latex_Function": "LatexOutputPDFResult",
|
||||
"Latex翻译中文并重新编译PDF": "TranslateChineseAndRecompilePDF",
|
||||
"语音助手": "VoiceAssistant",
|
||||
"微调数据集生成": "FineTuneDatasetGeneration",
|
||||
|
||||
@@ -6,17 +6,14 @@
|
||||
"Latex英文纠错加PDF对比": "CorrectEnglishInLatexWithPDFComparison",
|
||||
"下载arxiv论文并翻译摘要": "DownloadArxivPaperAndTranslateAbstract",
|
||||
"Markdown翻译指定语言": "TranslateMarkdownToSpecifiedLanguage",
|
||||
"批量翻译PDF文档_多线程": "BatchTranslatePDFDocuments_MultiThreaded",
|
||||
"下载arxiv论文翻译摘要": "DownloadArxivPaperTranslateAbstract",
|
||||
"解析一个Python项目": "ParsePythonProject",
|
||||
"解析一个Golang项目": "ParseGolangProject",
|
||||
"代码重写为全英文_多线程": "RewriteCodeToEnglish_MultiThreaded",
|
||||
"解析一个CSharp项目": "ParsingCSharpProject",
|
||||
"删除所有本地对话历史记录": "DeleteAllLocalConversationHistoryRecords",
|
||||
"批量Markdown翻译": "BatchTranslateMarkdown",
|
||||
"连接bing搜索回答问题": "ConnectBingSearchAnswerQuestion",
|
||||
"Langchain知识库": "LangchainKnowledgeBase",
|
||||
"Latex输出PDF": "OutputPDFFromLatex",
|
||||
"把字符太少的块清除为回车": "ClearBlocksWithTooFewCharactersToNewline",
|
||||
"Latex精细分解与转化": "DecomposeAndConvertLatex",
|
||||
"解析一个C项目的头文件": "ParseCProjectHeaderFiles",
|
||||
@@ -46,7 +43,7 @@
|
||||
"高阶功能模板函数": "HighOrderFunctionTemplateFunctions",
|
||||
"高级功能函数模板": "AdvancedFunctionTemplate",
|
||||
"总结word文档": "SummarizingWordDocuments",
|
||||
"载入对话历史存档": "LoadConversationHistoryArchive",
|
||||
"载入Conversation_To_File": "LoadConversationHistoryArchive",
|
||||
"Latex中译英": "LatexChineseToEnglish",
|
||||
"Latex英译中": "LatexEnglishToChinese",
|
||||
"连接网络回答问题": "ConnectToNetworkToAnswerQuestions",
|
||||
@@ -70,7 +67,6 @@
|
||||
"读文章写摘要": "ReadArticleWriteSummary",
|
||||
"生成函数注释": "GenerateFunctionComments",
|
||||
"解析项目本身": "ParseProjectItself",
|
||||
"对话历史存档": "ConversationHistoryArchive",
|
||||
"专业词汇声明": "ProfessionalTerminologyDeclaration",
|
||||
"解析docx": "ParseDocx",
|
||||
"解析源代码新": "ParsingSourceCodeNew",
|
||||
@@ -104,5 +100,11 @@
|
||||
"随机小游戏": "RandomMiniGame",
|
||||
"互动小游戏": "InteractiveMiniGame",
|
||||
"解析历史输入": "ParseHistoricalInput",
|
||||
"高阶功能模板函数示意图": "HighOrderFunctionTemplateDiagram"
|
||||
"高阶功能模板函数示意图": "HighOrderFunctionTemplateDiagram",
|
||||
"载入对话历史存档": "LoadChatHistoryArchive",
|
||||
"对话历史存档": "ChatHistoryArchive",
|
||||
"解析PDF_DOC2X_转Latex": "ParsePDF_DOC2X_toLatex",
|
||||
"解析PDF_基于DOC2X": "ParsePDF_basedDOC2X",
|
||||
"解析PDF_简单拆解": "ParsePDF_simpleDecomposition",
|
||||
"解析PDF_DOC2X_单文件": "ParsePDF_DOC2X_singleFile"
|
||||
}
|
||||
@@ -35,15 +35,15 @@
|
||||
"总结word文档": "SummarizeWordDocument",
|
||||
"解析ipynb文件": "ParseIpynbFile",
|
||||
"解析JupyterNotebook": "ParseJupyterNotebook",
|
||||
"对话历史存档": "ConversationHistoryArchive",
|
||||
"载入对话历史存档": "LoadConversationHistoryArchive",
|
||||
"Conversation_To_File": "ConversationHistoryArchive",
|
||||
"载入Conversation_To_File": "LoadConversationHistoryArchive",
|
||||
"删除所有本地对话历史记录": "DeleteAllLocalConversationHistoryRecords",
|
||||
"Markdown英译中": "MarkdownEnglishToChinese",
|
||||
"批量Markdown翻译": "BatchMarkdownTranslation",
|
||||
"Markdown_Translate": "BatchMarkdownTranslation",
|
||||
"批量总结PDF文档": "BatchSummarizePDFDocuments",
|
||||
"批量总结PDF文档pdfminer": "BatchSummarizePDFDocumentsPdfminer",
|
||||
"批量翻译PDF文档": "BatchTranslatePDFDocuments",
|
||||
"批量翻译PDF文档_多线程": "BatchTranslatePdfDocumentsMultithreaded",
|
||||
"PDF_Translate": "BatchTranslatePdfDocumentsMultithreaded",
|
||||
"谷歌检索小助手": "GoogleSearchAssistant",
|
||||
"理解PDF文档内容标准文件输入": "StandardFileInputForUnderstandingPdfDocumentContent",
|
||||
"理解PDF文档内容": "UnderstandingPdfDocumentContent",
|
||||
@@ -1468,7 +1468,7 @@
|
||||
"交互功能模板函数": "InteractiveFunctionTemplateFunctions",
|
||||
"交互功能函数模板": "InteractiveFunctionFunctionTemplates",
|
||||
"Latex英文纠错加PDF对比": "LatexEnglishCorrectionWithPDFComparison",
|
||||
"Latex输出PDF": "OutputPDFFromLatex",
|
||||
"Latex_Function": "OutputPDFFromLatex",
|
||||
"Latex翻译中文并重新编译PDF": "TranslateLatexToChineseAndRecompilePDF",
|
||||
"语音助手": "VoiceAssistant",
|
||||
"微调数据集生成": "FineTuneDatasetGeneration",
|
||||
|
||||
58
docs/use_tts.md
普通文件
58
docs/use_tts.md
普通文件
@@ -0,0 +1,58 @@
|
||||
# 使用TTS文字转语音
|
||||
|
||||
|
||||
## 1. 使用EDGE-TTS(简单)
|
||||
|
||||
将本项目配置项修改如下即可
|
||||
|
||||
```
|
||||
TTS_TYPE = "EDGE_TTS"
|
||||
EDGE_TTS_VOICE = "zh-CN-XiaoxiaoNeural"
|
||||
```
|
||||
|
||||
## 2. 使用SoVITS(需要有显卡)
|
||||
|
||||
使用以下docker-compose.yml文件,先启动SoVITS服务API
|
||||
|
||||
1. 创建以下文件夹结构
|
||||
```shell
|
||||
.
|
||||
├── docker-compose.yml
|
||||
└── reference
|
||||
├── clone_target_txt.txt
|
||||
└── clone_target_wave.mp3
|
||||
```
|
||||
2. 其中`docker-compose.yml`为
|
||||
```yaml
|
||||
version: '3.8'
|
||||
services:
|
||||
gpt-sovits:
|
||||
image: fuqingxu/sovits_gptac_trim:latest
|
||||
container_name: sovits_gptac_container
|
||||
working_dir: /workspace/gpt_sovits_demo
|
||||
environment:
|
||||
- is_half=False
|
||||
- is_share=False
|
||||
volumes:
|
||||
- ./reference:/reference
|
||||
ports:
|
||||
- "19880:9880" # 19880 为 sovits api 的暴露端口,记住它
|
||||
shm_size: 16G
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
count: "all"
|
||||
capabilities: [gpu]
|
||||
command: bash -c "python3 api.py"
|
||||
```
|
||||
3. 其中`clone_target_wave.mp3`为需要克隆的角色音频,`clone_target_txt.txt`为该音频对应的文字文本( https://wiki.biligame.com/ys/%E8%A7%92%E8%89%B2%E8%AF%AD%E9%9F%B3 )
|
||||
4. 运行`docker-compose up`
|
||||
5. 将本项目配置项修改如下即可
|
||||
(19880 为 sovits api 的暴露端口,与docker-compose.yml中的端口对应)
|
||||
```
|
||||
TTS_TYPE = "LOCAL_SOVITS_API"
|
||||
GPT_SOVITS_URL = "http://127.0.0.1:19880"
|
||||
```
|
||||
6. 启动本项目
|
||||
46
docs/use_vllm.md
普通文件
46
docs/use_vllm.md
普通文件
@@ -0,0 +1,46 @@
|
||||
# 使用VLLM
|
||||
|
||||
|
||||
## 1. 首先启动 VLLM,自行选择模型
|
||||
|
||||
```
|
||||
python -m vllm.entrypoints.openai.api_server --model /home/hmp/llm/cache/Qwen1___5-32B-Chat --tensor-parallel-size 2 --dtype=half
|
||||
```
|
||||
|
||||
这里使用了存储在 `/home/hmp/llm/cache/Qwen1___5-32B-Chat` 的本地模型,可以根据自己的需求更改。
|
||||
|
||||
## 2. 测试 VLLM
|
||||
|
||||
```
|
||||
curl http://localhost:8000/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "/home/hmp/llm/cache/Qwen1___5-32B-Chat",
|
||||
"messages": [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "怎么实现一个去中心化的控制器?"}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
## 3. 配置本项目
|
||||
|
||||
```
|
||||
API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"
|
||||
LLM_MODEL = "vllm-/home/hmp/llm/cache/Qwen1___5-32B-Chat(max_token=4096)"
|
||||
API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "http://localhost:8000/v1/chat/completions"}
|
||||
```
|
||||
|
||||
```
|
||||
"vllm-/home/hmp/llm/cache/Qwen1___5-32B-Chat(max_token=4096)"
|
||||
其中
|
||||
"vllm-" 是前缀(必要)
|
||||
"/home/hmp/llm/cache/Qwen1___5-32B-Chat" 是模型名(必要)
|
||||
"(max_token=6666)" 是配置(非必要)
|
||||
```
|
||||
|
||||
## 4. 启动!
|
||||
|
||||
```
|
||||
python main.py
|
||||
```
|
||||
725
main.py
725
main.py
@@ -1,371 +1,354 @@
|
||||
import os; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
|
||||
|
||||
help_menu_description = \
|
||||
"""Github源代码开源和更新[地址🚀](https://github.com/binary-husky/gpt_academic),
|
||||
感谢热情的[开发者们❤️](https://github.com/binary-husky/gpt_academic/graphs/contributors).
|
||||
</br></br>常见问题请查阅[项目Wiki](https://github.com/binary-husky/gpt_academic/wiki),
|
||||
如遇到Bug请前往[Bug反馈](https://github.com/binary-husky/gpt_academic/issues).
|
||||
</br></br>普通对话使用说明: 1. 输入问题; 2. 点击提交
|
||||
</br></br>基础功能区使用说明: 1. 输入文本; 2. 点击任意基础功能区按钮
|
||||
</br></br>函数插件区使用说明: 1. 输入路径/问题, 或者上传文件; 2. 点击任意函数插件区按钮
|
||||
</br></br>虚空终端使用说明: 点击虚空终端, 然后根据提示输入指令, 再次点击虚空终端
|
||||
</br></br>如何保存对话: 点击保存当前的对话按钮
|
||||
</br></br>如何语音对话: 请阅读Wiki
|
||||
</br></br>如何临时更换API_KEY: 在输入区输入临时API_KEY后提交(网页刷新后失效)"""
|
||||
|
||||
def enable_log(PATH_LOGGING):
|
||||
import logging, uuid
|
||||
admin_log_path = os.path.join(PATH_LOGGING, "admin")
|
||||
os.makedirs(admin_log_path, exist_ok=True)
|
||||
log_dir = os.path.join(admin_log_path, "chat_secrets.log")
|
||||
try:logging.basicConfig(filename=log_dir, level=logging.INFO, encoding="utf-8", format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
||||
except:logging.basicConfig(filename=log_dir, level=logging.INFO, format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
||||
# Disable logging output from the 'httpx' logger
|
||||
logging.getLogger("httpx").setLevel(logging.WARNING)
|
||||
print(f"所有对话记录将自动保存在本地目录{log_dir}, 请注意自我隐私保护哦!")
|
||||
|
||||
def main():
|
||||
import gradio as gr
|
||||
if gr.__version__ not in ['3.32.9']:
|
||||
raise ModuleNotFoundError("使用项目内置Gradio获取最优体验! 请运行 `pip install -r requirements.txt` 指令安装内置Gradio及其他依赖, 详情信息见requirements.txt.")
|
||||
from request_llms.bridge_all import predict
|
||||
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, load_chat_cookies, DummyWith
|
||||
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址
|
||||
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION = get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION')
|
||||
CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = get_conf('CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
||||
ENABLE_AUDIO, AUTO_CLEAR_TXT, PATH_LOGGING, AVAIL_THEMES, THEME, ADD_WAIFU = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'PATH_LOGGING', 'AVAIL_THEMES', 'THEME', 'ADD_WAIFU')
|
||||
NUM_CUSTOM_BASIC_BTN, SSL_KEYFILE, SSL_CERTFILE = get_conf('NUM_CUSTOM_BASIC_BTN', 'SSL_KEYFILE', 'SSL_CERTFILE')
|
||||
DARK_MODE, INIT_SYS_PROMPT, ADD_WAIFU = get_conf('DARK_MODE', 'INIT_SYS_PROMPT', 'ADD_WAIFU')
|
||||
|
||||
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
||||
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
||||
from check_proxy import get_current_version
|
||||
from themes.theme import adjust_theme, advanced_css, theme_declaration, js_code_clear, js_code_reset, js_code_show_or_hide, js_code_show_or_hide_group2
|
||||
from themes.theme import js_code_for_css_changing, js_code_for_toggle_darkmode, js_code_for_persistent_cookie_init
|
||||
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
|
||||
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
|
||||
|
||||
# 对话、日志记录
|
||||
enable_log(PATH_LOGGING)
|
||||
|
||||
# 一些普通功能模块
|
||||
from core_functional import get_core_functions
|
||||
functional = get_core_functions()
|
||||
|
||||
# 高级函数插件
|
||||
from crazy_functional import get_crazy_functions
|
||||
DEFAULT_FN_GROUPS = get_conf('DEFAULT_FN_GROUPS')
|
||||
plugins = get_crazy_functions()
|
||||
all_plugin_groups = list(set([g for _, plugin in plugins.items() for g in plugin['Group'].split('|')]))
|
||||
match_group = lambda tags, groups: any([g in groups for g in tags.split('|')])
|
||||
|
||||
# 处理markdown文本格式的转变
|
||||
gr.Chatbot.postprocess = format_io
|
||||
|
||||
# 做一些外观色彩上的调整
|
||||
set_theme = adjust_theme()
|
||||
|
||||
# 代理与自动更新
|
||||
from check_proxy import check_proxy, auto_update, warm_up_modules
|
||||
proxy_info = check_proxy(proxies)
|
||||
|
||||
gr_L1 = lambda: gr.Row().style()
|
||||
gr_L2 = lambda scale, elem_id: gr.Column(scale=scale, elem_id=elem_id, min_width=400)
|
||||
if LAYOUT == "TOP-DOWN":
|
||||
gr_L1 = lambda: DummyWith()
|
||||
gr_L2 = lambda scale, elem_id: gr.Row()
|
||||
CHATBOT_HEIGHT /= 2
|
||||
|
||||
cancel_handles = []
|
||||
customize_btns = {}
|
||||
predefined_btns = {}
|
||||
with gr.Blocks(title="GPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as app_block:
|
||||
gr.HTML(title_html)
|
||||
secret_css, web_cookie_cache = gr.Textbox(visible=False), gr.Textbox(visible=False)
|
||||
cookies = gr.State(load_chat_cookies())
|
||||
with gr_L1():
|
||||
with gr_L2(scale=2, elem_id="gpt-chat"):
|
||||
chatbot = gr.Chatbot(label=f"当前模型:{LLM_MODEL}", elem_id="gpt-chatbot")
|
||||
if LAYOUT == "TOP-DOWN": chatbot.style(height=CHATBOT_HEIGHT)
|
||||
history = gr.State([])
|
||||
with gr_L2(scale=1, elem_id="gpt-panel"):
|
||||
with gr.Accordion("输入区", open=True, elem_id="input-panel") as area_input_primary:
|
||||
with gr.Row():
|
||||
txt = gr.Textbox(show_label=False, placeholder="Input question here.", elem_id='user_input_main').style(container=False)
|
||||
with gr.Row():
|
||||
submitBtn = gr.Button("提交", elem_id="elem_submit", variant="primary")
|
||||
with gr.Row():
|
||||
resetBtn = gr.Button("重置", elem_id="elem_reset", variant="secondary"); resetBtn.style(size="sm")
|
||||
stopBtn = gr.Button("停止", elem_id="elem_stop", variant="secondary"); stopBtn.style(size="sm")
|
||||
clearBtn = gr.Button("清除", elem_id="elem_clear", variant="secondary", visible=False); clearBtn.style(size="sm")
|
||||
if ENABLE_AUDIO:
|
||||
with gr.Row():
|
||||
audio_mic = gr.Audio(source="microphone", type="numpy", elem_id="elem_audio", streaming=True, show_label=False).style(container=False)
|
||||
with gr.Row():
|
||||
status = gr.Markdown(f"Tip: 按Enter提交, 按Shift+Enter换行。当前模型: {LLM_MODEL} \n {proxy_info}", elem_id="state-panel")
|
||||
|
||||
with gr.Accordion("基础功能区", open=True, elem_id="basic-panel") as area_basic_fn:
|
||||
with gr.Row():
|
||||
for k in range(NUM_CUSTOM_BASIC_BTN):
|
||||
customize_btn = gr.Button("自定义按钮" + str(k+1), visible=False, variant="secondary", info_str=f'基础功能区: 自定义按钮')
|
||||
customize_btn.style(size="sm")
|
||||
customize_btns.update({"自定义按钮" + str(k+1): customize_btn})
|
||||
for k in functional:
|
||||
if ("Visible" in functional[k]) and (not functional[k]["Visible"]): continue
|
||||
variant = functional[k]["Color"] if "Color" in functional[k] else "secondary"
|
||||
functional[k]["Button"] = gr.Button(k, variant=variant, info_str=f'基础功能区: {k}')
|
||||
functional[k]["Button"].style(size="sm")
|
||||
predefined_btns.update({k: functional[k]["Button"]})
|
||||
with gr.Accordion("函数插件区", open=True, elem_id="plugin-panel") as area_crazy_fn:
|
||||
with gr.Row():
|
||||
gr.Markdown("插件可读取“输入区”文本/路径作为参数(上传文件自动修正路径)")
|
||||
with gr.Row(elem_id="input-plugin-group"):
|
||||
plugin_group_sel = gr.Dropdown(choices=all_plugin_groups, label='', show_label=False, value=DEFAULT_FN_GROUPS,
|
||||
multiselect=True, interactive=True, elem_classes='normal_mut_select').style(container=False)
|
||||
with gr.Row():
|
||||
for k, plugin in plugins.items():
|
||||
if not plugin.get("AsButton", True): continue
|
||||
visible = True if match_group(plugin['Group'], DEFAULT_FN_GROUPS) else False
|
||||
variant = plugins[k]["Color"] if "Color" in plugin else "secondary"
|
||||
info = plugins[k].get("Info", k)
|
||||
plugin['Button'] = plugins[k]['Button'] = gr.Button(k, variant=variant,
|
||||
visible=visible, info_str=f'函数插件区: {info}').style(size="sm")
|
||||
with gr.Row():
|
||||
with gr.Accordion("更多函数插件", open=True):
|
||||
dropdown_fn_list = []
|
||||
for k, plugin in plugins.items():
|
||||
if not match_group(plugin['Group'], DEFAULT_FN_GROUPS): continue
|
||||
if not plugin.get("AsButton", True): dropdown_fn_list.append(k) # 排除已经是按钮的插件
|
||||
elif plugin.get('AdvancedArgs', False): dropdown_fn_list.append(k) # 对于需要高级参数的插件,亦在下拉菜单中显示
|
||||
with gr.Row():
|
||||
dropdown = gr.Dropdown(dropdown_fn_list, value=r"打开插件列表", label="", show_label=False).style(container=False)
|
||||
with gr.Row():
|
||||
plugin_advanced_arg = gr.Textbox(show_label=True, label="高级参数输入区", visible=False,
|
||||
placeholder="这里是特殊函数插件的高级参数输入区").style(container=False)
|
||||
with gr.Row():
|
||||
switchy_bt = gr.Button(r"请先从插件列表中选择", variant="secondary").style(size="sm")
|
||||
with gr.Row():
|
||||
with gr.Accordion("点击展开“文件下载区”。", open=False) as area_file_up:
|
||||
file_upload = gr.Files(label="任何文件, 推荐上传压缩文件(zip, tar)", file_count="multiple", elem_id="elem_upload")
|
||||
|
||||
with gr.Floating(init_x="0%", init_y="0%", visible=True, width=None, drag="forbidden", elem_id="tooltip"):
|
||||
with gr.Row():
|
||||
with gr.Tab("上传文件", elem_id="interact-panel"):
|
||||
gr.Markdown("请上传本地文件/压缩包供“函数插件区”功能调用。请注意: 上传文件后会自动把输入区修改为相应路径。")
|
||||
file_upload_2 = gr.Files(label="任何文件, 推荐上传压缩文件(zip, tar)", file_count="multiple", elem_id="elem_upload_float")
|
||||
|
||||
with gr.Tab("更换模型", elem_id="interact-panel"):
|
||||
md_dropdown = gr.Dropdown(AVAIL_LLM_MODELS, value=LLM_MODEL, label="更换LLM模型/请求源").style(container=False)
|
||||
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.01,interactive=True, label="Top-p (nucleus sampling)",)
|
||||
temperature = gr.Slider(minimum=-0, maximum=2.0, value=1.0, step=0.01, interactive=True, label="Temperature", elem_id="elem_temperature")
|
||||
max_length_sl = gr.Slider(minimum=256, maximum=1024*32, value=4096, step=128, interactive=True, label="Local LLM MaxLength",)
|
||||
system_prompt = gr.Textbox(show_label=True, lines=2, placeholder=f"System Prompt", label="System prompt", value=INIT_SYS_PROMPT, elem_id="elem_prompt")
|
||||
temperature.change(None, inputs=[temperature], outputs=None,
|
||||
_js="""(temperature)=>gpt_academic_gradio_saveload("save", "elem_prompt", "js_temperature_cookie", temperature)""")
|
||||
system_prompt.change(None, inputs=[system_prompt], outputs=None,
|
||||
_js="""(system_prompt)=>gpt_academic_gradio_saveload("save", "elem_prompt", "js_system_prompt_cookie", system_prompt)""")
|
||||
|
||||
with gr.Tab("界面外观", elem_id="interact-panel"):
|
||||
theme_dropdown = gr.Dropdown(AVAIL_THEMES, value=THEME, label="更换UI主题").style(container=False)
|
||||
checkboxes = gr.CheckboxGroup(["基础功能区", "函数插件区", "浮动输入区", "输入清除键", "插件参数区"], value=["基础功能区", "函数插件区"], label="显示/隐藏功能区", elem_id='cbs').style(container=False)
|
||||
opt = ["自定义菜单"]
|
||||
value=[]
|
||||
if ADD_WAIFU: opt += ["添加Live2D形象"]; value += ["添加Live2D形象"]
|
||||
checkboxes_2 = gr.CheckboxGroup(opt, value=value, label="显示/隐藏自定义菜单", elem_id='cbsc').style(container=False)
|
||||
dark_mode_btn = gr.Button("切换界面明暗 ☀", variant="secondary").style(size="sm")
|
||||
dark_mode_btn.click(None, None, None, _js=js_code_for_toggle_darkmode)
|
||||
with gr.Tab("帮助", elem_id="interact-panel"):
|
||||
gr.Markdown(help_menu_description)
|
||||
|
||||
with gr.Floating(init_x="20%", init_y="50%", visible=False, width="40%", drag="top") as area_input_secondary:
|
||||
with gr.Accordion("浮动输入区", open=True, elem_id="input-panel2"):
|
||||
with gr.Row() as row:
|
||||
row.style(equal_height=True)
|
||||
with gr.Column(scale=10):
|
||||
txt2 = gr.Textbox(show_label=False, placeholder="Input question here.",
|
||||
elem_id='user_input_float', lines=8, label="输入区2").style(container=False)
|
||||
with gr.Column(scale=1, min_width=40):
|
||||
submitBtn2 = gr.Button("提交", variant="primary"); submitBtn2.style(size="sm")
|
||||
resetBtn2 = gr.Button("重置", variant="secondary"); resetBtn2.style(size="sm")
|
||||
stopBtn2 = gr.Button("停止", variant="secondary"); stopBtn2.style(size="sm")
|
||||
clearBtn2 = gr.Button("清除", elem_id="elem_clear2", variant="secondary", visible=False); clearBtn2.style(size="sm")
|
||||
|
||||
|
||||
with gr.Floating(init_x="20%", init_y="50%", visible=False, width="40%", drag="top") as area_customize:
|
||||
with gr.Accordion("自定义菜单", open=True, elem_id="edit-panel"):
|
||||
with gr.Row() as row:
|
||||
with gr.Column(scale=10):
|
||||
AVAIL_BTN = [btn for btn in customize_btns.keys()] + [k for k in functional]
|
||||
basic_btn_dropdown = gr.Dropdown(AVAIL_BTN, value="自定义按钮1", label="选择一个需要自定义基础功能区按钮").style(container=False)
|
||||
basic_fn_title = gr.Textbox(show_label=False, placeholder="输入新按钮名称", lines=1).style(container=False)
|
||||
basic_fn_prefix = gr.Textbox(show_label=False, placeholder="输入新提示前缀", lines=4).style(container=False)
|
||||
basic_fn_suffix = gr.Textbox(show_label=False, placeholder="输入新提示后缀", lines=4).style(container=False)
|
||||
with gr.Column(scale=1, min_width=70):
|
||||
basic_fn_confirm = gr.Button("确认并保存", variant="primary"); basic_fn_confirm.style(size="sm")
|
||||
basic_fn_clean = gr.Button("恢复默认", variant="primary"); basic_fn_clean.style(size="sm")
|
||||
|
||||
from shared_utils.cookie_manager import assign_btn__fn_builder
|
||||
assign_btn = assign_btn__fn_builder(customize_btns, predefined_btns, cookies, web_cookie_cache)
|
||||
# update btn
|
||||
h = basic_fn_confirm.click(assign_btn, [web_cookie_cache, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix],
|
||||
[web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()])
|
||||
h.then(None, [web_cookie_cache], None, _js="""(web_cookie_cache)=>{setCookie("web_cookie_cache", web_cookie_cache, 365);}""")
|
||||
# clean up btn
|
||||
h2 = basic_fn_clean.click(assign_btn, [web_cookie_cache, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix, gr.State(True)],
|
||||
[web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()])
|
||||
h2.then(None, [web_cookie_cache], None, _js="""(web_cookie_cache)=>{setCookie("web_cookie_cache", web_cookie_cache, 365);}""")
|
||||
|
||||
|
||||
|
||||
# 功能区显示开关与功能区的互动
|
||||
def fn_area_visibility(a):
|
||||
ret = {}
|
||||
ret.update({area_input_primary: gr.update(visible=("浮动输入区" not in a))})
|
||||
ret.update({area_input_secondary: gr.update(visible=("浮动输入区" in a))})
|
||||
ret.update({plugin_advanced_arg: gr.update(visible=("插件参数区" in a))})
|
||||
if "浮动输入区" in a: ret.update({txt: gr.update(value="")})
|
||||
return ret
|
||||
checkboxes.select(fn_area_visibility, [checkboxes], [area_basic_fn, area_crazy_fn, area_input_primary, area_input_secondary, txt, txt2, plugin_advanced_arg] )
|
||||
checkboxes.select(None, [checkboxes], None, _js=js_code_show_or_hide)
|
||||
|
||||
# 功能区显示开关与功能区的互动
|
||||
def fn_area_visibility_2(a):
|
||||
ret = {}
|
||||
ret.update({area_customize: gr.update(visible=("自定义菜单" in a))})
|
||||
return ret
|
||||
checkboxes_2.select(fn_area_visibility_2, [checkboxes_2], [area_customize] )
|
||||
checkboxes_2.select(None, [checkboxes_2], None, _js=js_code_show_or_hide_group2)
|
||||
|
||||
# 整理反复出现的控件句柄组合
|
||||
input_combo = [cookies, max_length_sl, md_dropdown, txt, txt2, top_p, temperature, chatbot, history, system_prompt, plugin_advanced_arg]
|
||||
output_combo = [cookies, chatbot, history, status]
|
||||
predict_args = dict(fn=ArgsGeneralWrapper(predict), inputs=[*input_combo, gr.State(True)], outputs=output_combo)
|
||||
# 提交按钮、重置按钮
|
||||
cancel_handles.append(txt.submit(**predict_args))
|
||||
cancel_handles.append(txt2.submit(**predict_args))
|
||||
cancel_handles.append(submitBtn.click(**predict_args))
|
||||
cancel_handles.append(submitBtn2.click(**predict_args))
|
||||
resetBtn.click(None, None, [chatbot, history, status], _js=js_code_reset) # 先在前端快速清除chatbot&status
|
||||
resetBtn2.click(None, None, [chatbot, history, status], _js=js_code_reset) # 先在前端快速清除chatbot&status
|
||||
resetBtn.click(lambda: ([], [], "已重置"), None, [chatbot, history, status]) # 再在后端清除history
|
||||
resetBtn2.click(lambda: ([], [], "已重置"), None, [chatbot, history, status]) # 再在后端清除history
|
||||
clearBtn.click(None, None, [txt, txt2], _js=js_code_clear)
|
||||
clearBtn2.click(None, None, [txt, txt2], _js=js_code_clear)
|
||||
if AUTO_CLEAR_TXT:
|
||||
submitBtn.click(None, None, [txt, txt2], _js=js_code_clear)
|
||||
submitBtn2.click(None, None, [txt, txt2], _js=js_code_clear)
|
||||
txt.submit(None, None, [txt, txt2], _js=js_code_clear)
|
||||
txt2.submit(None, None, [txt, txt2], _js=js_code_clear)
|
||||
# 基础功能区的回调函数注册
|
||||
for k in functional:
|
||||
if ("Visible" in functional[k]) and (not functional[k]["Visible"]): continue
|
||||
click_handle = functional[k]["Button"].click(fn=ArgsGeneralWrapper(predict), inputs=[*input_combo, gr.State(True), gr.State(k)], outputs=output_combo)
|
||||
cancel_handles.append(click_handle)
|
||||
for btn in customize_btns.values():
|
||||
click_handle = btn.click(fn=ArgsGeneralWrapper(predict), inputs=[*input_combo, gr.State(True), gr.State(btn.value)], outputs=output_combo)
|
||||
cancel_handles.append(click_handle)
|
||||
# 文件上传区,接收文件后与chatbot的互动
|
||||
file_upload.upload(on_file_uploaded, [file_upload, chatbot, txt, txt2, checkboxes, cookies], [chatbot, txt, txt2, cookies]).then(None, None, None, _js=r"()=>{toast_push('上传完毕 ...'); cancel_loading_status();}")
|
||||
file_upload_2.upload(on_file_uploaded, [file_upload_2, chatbot, txt, txt2, checkboxes, cookies], [chatbot, txt, txt2, cookies]).then(None, None, None, _js=r"()=>{toast_push('上传完毕 ...'); cancel_loading_status();}")
|
||||
# 函数插件-固定按钮区
|
||||
for k in plugins:
|
||||
if not plugins[k].get("AsButton", True): continue
|
||||
click_handle = plugins[k]["Button"].click(ArgsGeneralWrapper(plugins[k]["Function"]), [*input_combo], output_combo)
|
||||
click_handle.then(on_report_generated, [cookies, file_upload, chatbot], [cookies, file_upload, chatbot])
|
||||
cancel_handles.append(click_handle)
|
||||
# 函数插件-下拉菜单与随变按钮的互动
|
||||
def on_dropdown_changed(k):
|
||||
variant = plugins[k]["Color"] if "Color" in plugins[k] else "secondary"
|
||||
info = plugins[k].get("Info", k)
|
||||
ret = {switchy_bt: gr.update(value=k, variant=variant, info_str=f'函数插件区: {info}')}
|
||||
if plugins[k].get("AdvancedArgs", False): # 是否唤起高级插件参数区
|
||||
ret.update({plugin_advanced_arg: gr.update(visible=True, label=f"插件[{k}]的高级参数说明:" + plugins[k].get("ArgsReminder", [f"没有提供高级参数功能说明"]))})
|
||||
else:
|
||||
ret.update({plugin_advanced_arg: gr.update(visible=False, label=f"插件[{k}]不需要高级参数。")})
|
||||
return ret
|
||||
dropdown.select(on_dropdown_changed, [dropdown], [switchy_bt, plugin_advanced_arg] )
|
||||
|
||||
def on_md_dropdown_changed(k):
|
||||
return {chatbot: gr.update(label="当前模型:"+k)}
|
||||
md_dropdown.select(on_md_dropdown_changed, [md_dropdown], [chatbot] )
|
||||
|
||||
def on_theme_dropdown_changed(theme, secret_css):
|
||||
adjust_theme, css_part1, _, adjust_dynamic_theme = load_dynamic_theme(theme)
|
||||
if adjust_dynamic_theme:
|
||||
css_part2 = adjust_dynamic_theme._get_theme_css()
|
||||
else:
|
||||
css_part2 = adjust_theme()._get_theme_css()
|
||||
return css_part2 + css_part1
|
||||
|
||||
theme_handle = theme_dropdown.select(on_theme_dropdown_changed, [theme_dropdown, secret_css], [secret_css])
|
||||
theme_handle.then(
|
||||
None,
|
||||
[secret_css],
|
||||
None,
|
||||
_js=js_code_for_css_changing
|
||||
)
|
||||
# 随变按钮的回调函数注册
|
||||
def route(request: gr.Request, k, *args, **kwargs):
|
||||
if k in [r"打开插件列表", r"请先从插件列表中选择"]: return
|
||||
yield from ArgsGeneralWrapper(plugins[k]["Function"])(request, *args, **kwargs)
|
||||
click_handle = switchy_bt.click(route,[switchy_bt, *input_combo], output_combo)
|
||||
click_handle.then(on_report_generated, [cookies, file_upload, chatbot], [cookies, file_upload, chatbot])
|
||||
cancel_handles.append(click_handle)
|
||||
# 终止按钮的回调函数注册
|
||||
stopBtn.click(fn=None, inputs=None, outputs=None, cancels=cancel_handles)
|
||||
stopBtn2.click(fn=None, inputs=None, outputs=None, cancels=cancel_handles)
|
||||
plugins_as_btn = {name:plugin for name, plugin in plugins.items() if plugin.get('Button', None)}
|
||||
def on_group_change(group_list):
|
||||
btn_list = []
|
||||
fns_list = []
|
||||
if not group_list: # 处理特殊情况:没有选择任何插件组
|
||||
return [*[plugin['Button'].update(visible=False) for _, plugin in plugins_as_btn.items()], gr.Dropdown.update(choices=[])]
|
||||
for k, plugin in plugins.items():
|
||||
if plugin.get("AsButton", True):
|
||||
btn_list.append(plugin['Button'].update(visible=match_group(plugin['Group'], group_list))) # 刷新按钮
|
||||
if plugin.get('AdvancedArgs', False): dropdown_fn_list.append(k) # 对于需要高级参数的插件,亦在下拉菜单中显示
|
||||
elif match_group(plugin['Group'], group_list): fns_list.append(k) # 刷新下拉列表
|
||||
return [*btn_list, gr.Dropdown.update(choices=fns_list)]
|
||||
plugin_group_sel.select(fn=on_group_change, inputs=[plugin_group_sel], outputs=[*[plugin['Button'] for name, plugin in plugins_as_btn.items()], dropdown])
|
||||
if ENABLE_AUDIO:
|
||||
from crazy_functions.live_audio.audio_io import RealtimeAudioDistribution
|
||||
rad = RealtimeAudioDistribution()
|
||||
def deal_audio(audio, cookies):
|
||||
rad.feed(cookies['uuid'].hex, audio)
|
||||
audio_mic.stream(deal_audio, inputs=[audio_mic, cookies])
|
||||
|
||||
|
||||
app_block.load(assign_user_uuid, inputs=[cookies], outputs=[cookies])
|
||||
|
||||
from shared_utils.cookie_manager import load_web_cookie_cache__fn_builder
|
||||
load_web_cookie_cache = load_web_cookie_cache__fn_builder(customize_btns, cookies, predefined_btns)
|
||||
app_block.load(load_web_cookie_cache, inputs = [web_cookie_cache, cookies],
|
||||
outputs = [web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()], _js=js_code_for_persistent_cookie_init)
|
||||
|
||||
app_block.load(None, inputs=[], outputs=None, _js=f"""()=>GptAcademicJavaScriptInit("{DARK_MODE}","{INIT_SYS_PROMPT}","{ADD_WAIFU}","{LAYOUT}")""") # 配置暗色主题或亮色主题
|
||||
|
||||
# gradio的inbrowser触发不太稳定,回滚代码到原始的浏览器打开函数
|
||||
def run_delayed_tasks():
|
||||
import threading, webbrowser, time
|
||||
print(f"如果浏览器没有自动打开,请复制并转到以下URL:")
|
||||
if DARK_MODE: print(f"\t「暗色主题已启用(支持动态切换主题)」: http://localhost:{PORT}")
|
||||
else: print(f"\t「亮色主题已启用(支持动态切换主题)」: http://localhost:{PORT}")
|
||||
|
||||
def auto_updates(): time.sleep(0); auto_update()
|
||||
def open_browser(): time.sleep(2); webbrowser.open_new_tab(f"http://localhost:{PORT}")
|
||||
def warm_up_mods(): time.sleep(6); warm_up_modules()
|
||||
|
||||
threading.Thread(target=auto_updates, name="self-upgrade", daemon=True).start() # 查看自动更新
|
||||
threading.Thread(target=open_browser, name="open-browser", daemon=True).start() # 打开浏览器页面
|
||||
threading.Thread(target=warm_up_mods, name="warm-up", daemon=True).start() # 预热tiktoken模块
|
||||
|
||||
# 运行一些异步任务:自动更新、打开浏览器页面、预热tiktoken模块
|
||||
run_delayed_tasks()
|
||||
|
||||
# 最后,正式开始服务
|
||||
from shared_utils.fastapi_server import start_app
|
||||
start_app(app_block, CONCURRENT_COUNT, AUTHENTICATION, PORT, SSL_KEYFILE, SSL_CERTFILE)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
import os, json; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
|
||||
|
||||
help_menu_description = \
|
||||
"""Github源代码开源和更新[地址🚀](https://github.com/binary-husky/gpt_academic),
|
||||
感谢热情的[开发者们❤️](https://github.com/binary-husky/gpt_academic/graphs/contributors).
|
||||
</br></br>常见问题请查阅[项目Wiki](https://github.com/binary-husky/gpt_academic/wiki),
|
||||
如遇到Bug请前往[Bug反馈](https://github.com/binary-husky/gpt_academic/issues).
|
||||
</br></br>普通对话使用说明: 1. 输入问题; 2. 点击提交
|
||||
</br></br>基础功能区使用说明: 1. 输入文本; 2. 点击任意基础功能区按钮
|
||||
</br></br>函数插件区使用说明: 1. 输入路径/问题, 或者上传文件; 2. 点击任意函数插件区按钮
|
||||
</br></br>虚空终端使用说明: 点击虚空终端, 然后根据提示输入指令, 再次点击虚空终端
|
||||
</br></br>如何保存对话: 点击保存当前的对话按钮
|
||||
</br></br>如何语音对话: 请阅读Wiki
|
||||
</br></br>如何临时更换API_KEY: 在输入区输入临时API_KEY后提交(网页刷新后失效)"""
|
||||
|
||||
def enable_log(PATH_LOGGING):
|
||||
import logging
|
||||
admin_log_path = os.path.join(PATH_LOGGING, "admin")
|
||||
os.makedirs(admin_log_path, exist_ok=True)
|
||||
log_dir = os.path.join(admin_log_path, "chat_secrets.log")
|
||||
try:logging.basicConfig(filename=log_dir, level=logging.INFO, encoding="utf-8", format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
||||
except:logging.basicConfig(filename=log_dir, level=logging.INFO, format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
||||
# Disable logging output from the 'httpx' logger
|
||||
logging.getLogger("httpx").setLevel(logging.WARNING)
|
||||
print(f"所有对话记录将自动保存在本地目录{log_dir}, 请注意自我隐私保护哦!")
|
||||
|
||||
def main():
|
||||
import gradio as gr
|
||||
if gr.__version__ not in ['3.32.9', '3.32.10', '3.32.11']:
|
||||
raise ModuleNotFoundError("使用项目内置Gradio获取最优体验! 请运行 `pip install -r requirements.txt` 指令安装内置Gradio及其他依赖, 详情信息见requirements.txt.")
|
||||
from request_llms.bridge_all import predict
|
||||
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, DummyWith
|
||||
|
||||
# 读取配置
|
||||
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION = get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION')
|
||||
CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = get_conf('CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
||||
ENABLE_AUDIO, AUTO_CLEAR_TXT, PATH_LOGGING, AVAIL_THEMES, THEME, ADD_WAIFU = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'PATH_LOGGING', 'AVAIL_THEMES', 'THEME', 'ADD_WAIFU')
|
||||
NUM_CUSTOM_BASIC_BTN, SSL_KEYFILE, SSL_CERTFILE = get_conf('NUM_CUSTOM_BASIC_BTN', 'SSL_KEYFILE', 'SSL_CERTFILE')
|
||||
DARK_MODE, INIT_SYS_PROMPT, ADD_WAIFU, TTS_TYPE = get_conf('DARK_MODE', 'INIT_SYS_PROMPT', 'ADD_WAIFU', 'TTS_TYPE')
|
||||
if LLM_MODEL not in AVAIL_LLM_MODELS: AVAIL_LLM_MODELS += [LLM_MODEL]
|
||||
|
||||
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
||||
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
||||
from check_proxy import get_current_version
|
||||
from themes.theme import adjust_theme, advanced_css, theme_declaration, js_code_clear, js_code_reset, js_code_show_or_hide, js_code_show_or_hide_group2
|
||||
from themes.theme import js_code_for_toggle_darkmode, js_code_for_persistent_cookie_init
|
||||
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
|
||||
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
|
||||
|
||||
# 对话、日志记录
|
||||
enable_log(PATH_LOGGING)
|
||||
|
||||
# 一些普通功能模块
|
||||
from core_functional import get_core_functions
|
||||
functional = get_core_functions()
|
||||
|
||||
# 高级函数插件
|
||||
from crazy_functional import get_crazy_functions
|
||||
DEFAULT_FN_GROUPS = get_conf('DEFAULT_FN_GROUPS')
|
||||
plugins = get_crazy_functions()
|
||||
all_plugin_groups = list(set([g for _, plugin in plugins.items() for g in plugin['Group'].split('|')]))
|
||||
match_group = lambda tags, groups: any([g in groups for g in tags.split('|')])
|
||||
|
||||
# 处理markdown文本格式的转变
|
||||
gr.Chatbot.postprocess = format_io
|
||||
|
||||
# 做一些外观色彩上的调整
|
||||
set_theme = adjust_theme()
|
||||
|
||||
# 代理与自动更新
|
||||
from check_proxy import check_proxy, auto_update, warm_up_modules
|
||||
proxy_info = check_proxy(proxies)
|
||||
|
||||
# 切换布局
|
||||
gr_L1 = lambda: gr.Row().style()
|
||||
gr_L2 = lambda scale, elem_id: gr.Column(scale=scale, elem_id=elem_id, min_width=400)
|
||||
if LAYOUT == "TOP-DOWN":
|
||||
gr_L1 = lambda: DummyWith()
|
||||
gr_L2 = lambda scale, elem_id: gr.Row()
|
||||
CHATBOT_HEIGHT /= 2
|
||||
|
||||
cancel_handles = []
|
||||
customize_btns = {}
|
||||
predefined_btns = {}
|
||||
from shared_utils.cookie_manager import make_cookie_cache, make_history_cache
|
||||
with gr.Blocks(title="GPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as app_block:
|
||||
gr.HTML(title_html)
|
||||
secret_css = gr.Textbox(visible=False, elem_id="secret_css")
|
||||
register_advanced_plugin_init_arr = ""
|
||||
|
||||
cookies, web_cookie_cache = make_cookie_cache() # 定义 后端state(cookies)、前端(web_cookie_cache)两兄弟
|
||||
with gr_L1():
|
||||
with gr_L2(scale=2, elem_id="gpt-chat"):
|
||||
chatbot = gr.Chatbot(label=f"当前模型:{LLM_MODEL}", elem_id="gpt-chatbot")
|
||||
if LAYOUT == "TOP-DOWN": chatbot.style(height=CHATBOT_HEIGHT)
|
||||
history, history_cache, history_cache_update = make_history_cache() # 定义 后端state(history)、前端(history_cache)、后端setter(history_cache_update)三兄弟
|
||||
with gr_L2(scale=1, elem_id="gpt-panel"):
|
||||
with gr.Accordion("输入区", open=True, elem_id="input-panel") as area_input_primary:
|
||||
with gr.Row():
|
||||
txt = gr.Textbox(show_label=False, placeholder="Input question here.", elem_id='user_input_main').style(container=False)
|
||||
with gr.Row():
|
||||
submitBtn = gr.Button("提交", elem_id="elem_submit", variant="primary")
|
||||
with gr.Row():
|
||||
resetBtn = gr.Button("重置", elem_id="elem_reset", variant="secondary"); resetBtn.style(size="sm")
|
||||
stopBtn = gr.Button("停止", elem_id="elem_stop", variant="secondary"); stopBtn.style(size="sm")
|
||||
clearBtn = gr.Button("清除", elem_id="elem_clear", variant="secondary", visible=False); clearBtn.style(size="sm")
|
||||
if ENABLE_AUDIO:
|
||||
with gr.Row():
|
||||
audio_mic = gr.Audio(source="microphone", type="numpy", elem_id="elem_audio", streaming=True, show_label=False).style(container=False)
|
||||
with gr.Row():
|
||||
status = gr.Markdown(f"Tip: 按Enter提交, 按Shift+Enter换行。支持将文件直接粘贴到输入区。", elem_id="state-panel")
|
||||
|
||||
with gr.Accordion("基础功能区", open=True, elem_id="basic-panel") as area_basic_fn:
|
||||
with gr.Row():
|
||||
for k in range(NUM_CUSTOM_BASIC_BTN):
|
||||
customize_btn = gr.Button("自定义按钮" + str(k+1), visible=False, variant="secondary", info_str=f'基础功能区: 自定义按钮')
|
||||
customize_btn.style(size="sm")
|
||||
customize_btns.update({"自定义按钮" + str(k+1): customize_btn})
|
||||
for k in functional:
|
||||
if ("Visible" in functional[k]) and (not functional[k]["Visible"]): continue
|
||||
variant = functional[k]["Color"] if "Color" in functional[k] else "secondary"
|
||||
functional[k]["Button"] = gr.Button(k, variant=variant, info_str=f'基础功能区: {k}')
|
||||
functional[k]["Button"].style(size="sm")
|
||||
predefined_btns.update({k: functional[k]["Button"]})
|
||||
with gr.Accordion("函数插件区", open=True, elem_id="plugin-panel") as area_crazy_fn:
|
||||
with gr.Row():
|
||||
gr.Markdown("<small>插件可读取“输入区”文本/路径作为参数(上传文件自动修正路径)</small>")
|
||||
with gr.Row(elem_id="input-plugin-group"):
|
||||
plugin_group_sel = gr.Dropdown(choices=all_plugin_groups, label='', show_label=False, value=DEFAULT_FN_GROUPS,
|
||||
multiselect=True, interactive=True, elem_classes='normal_mut_select').style(container=False)
|
||||
with gr.Row():
|
||||
for index, (k, plugin) in enumerate(plugins.items()):
|
||||
if not plugin.get("AsButton", True): continue
|
||||
visible = True if match_group(plugin['Group'], DEFAULT_FN_GROUPS) else False
|
||||
variant = plugins[k]["Color"] if "Color" in plugin else "secondary"
|
||||
info = plugins[k].get("Info", k)
|
||||
btn_elem_id = f"plugin_btn_{index}"
|
||||
plugin['Button'] = plugins[k]['Button'] = gr.Button(k, variant=variant,
|
||||
visible=visible, info_str=f'函数插件区: {info}', elem_id=btn_elem_id).style(size="sm")
|
||||
plugin['ButtonElemId'] = btn_elem_id
|
||||
with gr.Row():
|
||||
with gr.Accordion("更多函数插件", open=True):
|
||||
dropdown_fn_list = []
|
||||
for k, plugin in plugins.items():
|
||||
if not match_group(plugin['Group'], DEFAULT_FN_GROUPS): continue
|
||||
if not plugin.get("AsButton", True): dropdown_fn_list.append(k) # 排除已经是按钮的插件
|
||||
elif plugin.get('AdvancedArgs', False): dropdown_fn_list.append(k) # 对于需要高级参数的插件,亦在下拉菜单中显示
|
||||
with gr.Row():
|
||||
dropdown = gr.Dropdown(dropdown_fn_list, value=r"点击这里搜索插件列表", label="", show_label=False).style(container=False)
|
||||
with gr.Row():
|
||||
plugin_advanced_arg = gr.Textbox(show_label=True, label="高级参数输入区", visible=False, elem_id="advance_arg_input_legacy",
|
||||
placeholder="这里是特殊函数插件的高级参数输入区").style(container=False)
|
||||
with gr.Row():
|
||||
switchy_bt = gr.Button(r"请先从插件列表中选择", variant="secondary", elem_id="elem_switchy_bt").style(size="sm")
|
||||
with gr.Row():
|
||||
with gr.Accordion("点击展开“文件下载区”。", open=False) as area_file_up:
|
||||
file_upload = gr.Files(label="任何文件, 推荐上传压缩文件(zip, tar)", file_count="multiple", elem_id="elem_upload")
|
||||
|
||||
# 左上角工具栏定义
|
||||
from themes.gui_toolbar import define_gui_toolbar
|
||||
checkboxes, checkboxes_2, max_length_sl, theme_dropdown, system_prompt, file_upload_2, md_dropdown, top_p, temperature = \
|
||||
define_gui_toolbar(AVAIL_LLM_MODELS, LLM_MODEL, INIT_SYS_PROMPT, THEME, AVAIL_THEMES, ADD_WAIFU, help_menu_description, js_code_for_toggle_darkmode)
|
||||
|
||||
# 浮动菜单定义
|
||||
from themes.gui_floating_menu import define_gui_floating_menu
|
||||
area_input_secondary, txt2, area_customize, submitBtn2, resetBtn2, clearBtn2, stopBtn2 = \
|
||||
define_gui_floating_menu(customize_btns, functional, predefined_btns, cookies, web_cookie_cache)
|
||||
|
||||
# 插件二级菜单的实现
|
||||
from themes.gui_advanced_plugin_class import define_gui_advanced_plugin_class
|
||||
new_plugin_callback, route_switchy_bt_with_arg, usr_confirmed_arg = \
|
||||
define_gui_advanced_plugin_class(plugins)
|
||||
|
||||
# 功能区显示开关与功能区的互动
|
||||
def fn_area_visibility(a):
|
||||
ret = {}
|
||||
ret.update({area_input_primary: gr.update(visible=("浮动输入区" not in a))})
|
||||
ret.update({area_input_secondary: gr.update(visible=("浮动输入区" in a))})
|
||||
ret.update({plugin_advanced_arg: gr.update(visible=("插件参数区" in a))})
|
||||
if "浮动输入区" in a: ret.update({txt: gr.update(value="")})
|
||||
return ret
|
||||
checkboxes.select(fn_area_visibility, [checkboxes], [area_basic_fn, area_crazy_fn, area_input_primary, area_input_secondary, txt, txt2, plugin_advanced_arg] )
|
||||
checkboxes.select(None, [checkboxes], None, _js=js_code_show_or_hide)
|
||||
|
||||
# 功能区显示开关与功能区的互动
|
||||
def fn_area_visibility_2(a):
|
||||
ret = {}
|
||||
ret.update({area_customize: gr.update(visible=("自定义菜单" in a))})
|
||||
return ret
|
||||
checkboxes_2.select(fn_area_visibility_2, [checkboxes_2], [area_customize] )
|
||||
checkboxes_2.select(None, [checkboxes_2], None, _js=js_code_show_or_hide_group2)
|
||||
|
||||
# 整理反复出现的控件句柄组合
|
||||
input_combo = [cookies, max_length_sl, md_dropdown, txt, txt2, top_p, temperature, chatbot, history, system_prompt, plugin_advanced_arg]
|
||||
input_combo_order = ["cookies", "max_length_sl", "md_dropdown", "txt", "txt2", "top_p", "temperature", "chatbot", "history", "system_prompt", "plugin_advanced_arg"]
|
||||
output_combo = [cookies, chatbot, history, status]
|
||||
predict_args = dict(fn=ArgsGeneralWrapper(predict), inputs=[*input_combo, gr.State(True)], outputs=output_combo)
|
||||
# 提交按钮、重置按钮
|
||||
cancel_handles.append(txt.submit(**predict_args))
|
||||
cancel_handles.append(txt2.submit(**predict_args))
|
||||
cancel_handles.append(submitBtn.click(**predict_args))
|
||||
cancel_handles.append(submitBtn2.click(**predict_args))
|
||||
resetBtn.click(None, None, [chatbot, history, status], _js=js_code_reset) # 先在前端快速清除chatbot&status
|
||||
resetBtn2.click(None, None, [chatbot, history, status], _js=js_code_reset) # 先在前端快速清除chatbot&status
|
||||
reset_server_side_args = (lambda history: ([], [], "已重置", json.dumps(history)), [history], [chatbot, history, status, history_cache])
|
||||
resetBtn.click(*reset_server_side_args) # 再在后端清除history,把history转存history_cache备用
|
||||
resetBtn2.click(*reset_server_side_args) # 再在后端清除history,把history转存history_cache备用
|
||||
clearBtn.click(None, None, [txt, txt2], _js=js_code_clear)
|
||||
clearBtn2.click(None, None, [txt, txt2], _js=js_code_clear)
|
||||
if AUTO_CLEAR_TXT:
|
||||
submitBtn.click(None, None, [txt, txt2], _js=js_code_clear)
|
||||
submitBtn2.click(None, None, [txt, txt2], _js=js_code_clear)
|
||||
txt.submit(None, None, [txt, txt2], _js=js_code_clear)
|
||||
txt2.submit(None, None, [txt, txt2], _js=js_code_clear)
|
||||
# 基础功能区的回调函数注册
|
||||
for k in functional:
|
||||
if ("Visible" in functional[k]) and (not functional[k]["Visible"]): continue
|
||||
click_handle = functional[k]["Button"].click(fn=ArgsGeneralWrapper(predict), inputs=[*input_combo, gr.State(True), gr.State(k)], outputs=output_combo)
|
||||
cancel_handles.append(click_handle)
|
||||
for btn in customize_btns.values():
|
||||
click_handle = btn.click(fn=ArgsGeneralWrapper(predict), inputs=[*input_combo, gr.State(True), gr.State(btn.value)], outputs=output_combo)
|
||||
cancel_handles.append(click_handle)
|
||||
# 文件上传区,接收文件后与chatbot的互动
|
||||
file_upload.upload(on_file_uploaded, [file_upload, chatbot, txt, txt2, checkboxes, cookies], [chatbot, txt, txt2, cookies]).then(None, None, None, _js=r"()=>{toast_push('上传完毕 ...'); cancel_loading_status();}")
|
||||
file_upload_2.upload(on_file_uploaded, [file_upload_2, chatbot, txt, txt2, checkboxes, cookies], [chatbot, txt, txt2, cookies]).then(None, None, None, _js=r"()=>{toast_push('上传完毕 ...'); cancel_loading_status();}")
|
||||
# 函数插件-固定按钮区
|
||||
def encode_plugin_info(k, plugin)->str:
|
||||
import copy
|
||||
from themes.theme import to_cookie_str
|
||||
plugin_ = copy.copy(plugin)
|
||||
plugin_.pop("Function", None)
|
||||
plugin_.pop("Class", None)
|
||||
plugin_.pop("Button", None)
|
||||
plugin_["Info"] = plugin.get("Info", k)
|
||||
if plugin.get("AdvancedArgs", False):
|
||||
plugin_["Label"] = f"插件[{k}]的高级参数说明:" + plugin.get("ArgsReminder", f"没有提供高级参数功能说明")
|
||||
else:
|
||||
plugin_["Label"] = f"插件[{k}]不需要高级参数。"
|
||||
return to_cookie_str(plugin_)
|
||||
|
||||
# 插件的注册(前端代码注册)
|
||||
for k in plugins:
|
||||
register_advanced_plugin_init_arr += f"""register_plugin_init("{k}","{encode_plugin_info(k, plugins[k])}");"""
|
||||
if plugins[k].get("Class", None):
|
||||
plugins[k]["JsMenu"] = plugins[k]["Class"]().get_js_code_for_generating_menu(k)
|
||||
register_advanced_plugin_init_arr += """register_advanced_plugin_init_code("{k}","{gui_js}");""".format(k=k, gui_js=plugins[k]["JsMenu"])
|
||||
if not plugins[k].get("AsButton", True): continue
|
||||
if plugins[k].get("Class", None) is None:
|
||||
assert plugins[k].get("Function", None) is not None
|
||||
click_handle = plugins[k]["Button"].click(None, inputs=[], outputs=None, _js=f"""()=>run_classic_plugin_via_id("{plugins[k]["ButtonElemId"]}")""")
|
||||
else:
|
||||
click_handle = plugins[k]["Button"].click(None, inputs=[], outputs=None, _js=f"""()=>run_advanced_plugin_launch_code("{k}")""")
|
||||
|
||||
# 函数插件-下拉菜单与随变按钮的互动(新版-更流畅)
|
||||
dropdown.select(None, [dropdown], None, _js=f"""(dropdown)=>run_dropdown_shift(dropdown)""")
|
||||
|
||||
# 模型切换时的回调
|
||||
def on_md_dropdown_changed(k):
|
||||
return {chatbot: gr.update(label="当前模型:"+k)}
|
||||
md_dropdown.select(on_md_dropdown_changed, [md_dropdown], [chatbot])
|
||||
|
||||
# 主题修改
|
||||
def on_theme_dropdown_changed(theme, secret_css):
|
||||
adjust_theme, css_part1, _, adjust_dynamic_theme = load_dynamic_theme(theme)
|
||||
if adjust_dynamic_theme:
|
||||
css_part2 = adjust_dynamic_theme._get_theme_css()
|
||||
else:
|
||||
css_part2 = adjust_theme()._get_theme_css()
|
||||
return css_part2 + css_part1
|
||||
theme_handle = theme_dropdown.select(on_theme_dropdown_changed, [theme_dropdown, secret_css], [secret_css]) # , _js="""change_theme_prepare""")
|
||||
theme_handle.then(None, [theme_dropdown, secret_css], None, _js="""change_theme""")
|
||||
|
||||
switchy_bt.click(None, [switchy_bt], None, _js="(switchy_bt)=>on_flex_button_click(switchy_bt)")
|
||||
# 随变按钮的回调函数注册
|
||||
def route(request: gr.Request, k, *args, **kwargs):
|
||||
if k not in [r"点击这里搜索插件列表", r"请先从插件列表中选择"]:
|
||||
if plugins[k].get("Class", None) is None:
|
||||
assert plugins[k].get("Function", None) is not None
|
||||
yield from ArgsGeneralWrapper(plugins[k]["Function"])(request, *args, **kwargs)
|
||||
# 旧插件的高级参数区确认按钮(隐藏)
|
||||
old_plugin_callback = gr.Button(r"未选定任何插件", variant="secondary", visible=False, elem_id="old_callback_btn_for_plugin_exe")
|
||||
click_handle_ng = old_plugin_callback.click(route, [switchy_bt, *input_combo], output_combo)
|
||||
click_handle_ng.then(on_report_generated, [cookies, file_upload, chatbot], [cookies, file_upload, chatbot]).then(None, [switchy_bt], None, _js=r"(fn)=>on_plugin_exe_complete(fn)")
|
||||
cancel_handles.append(click_handle_ng)
|
||||
# 新一代插件的高级参数区确认按钮(隐藏)
|
||||
click_handle_ng = new_plugin_callback.click(route_switchy_bt_with_arg,
|
||||
[
|
||||
gr.State(["new_plugin_callback", "usr_confirmed_arg"] + input_combo_order), # 第一个参数: 指定了后续参数的名称
|
||||
new_plugin_callback, usr_confirmed_arg, *input_combo # 后续参数: 真正的参数
|
||||
], output_combo)
|
||||
click_handle_ng.then(on_report_generated, [cookies, file_upload, chatbot], [cookies, file_upload, chatbot]).then(None, [switchy_bt], None, _js=r"(fn)=>on_plugin_exe_complete(fn)")
|
||||
cancel_handles.append(click_handle_ng)
|
||||
# 终止按钮的回调函数注册
|
||||
stopBtn.click(fn=None, inputs=None, outputs=None, cancels=cancel_handles)
|
||||
stopBtn2.click(fn=None, inputs=None, outputs=None, cancels=cancel_handles)
|
||||
plugins_as_btn = {name:plugin for name, plugin in plugins.items() if plugin.get('Button', None)}
|
||||
def on_group_change(group_list):
|
||||
btn_list = []
|
||||
fns_list = []
|
||||
if not group_list: # 处理特殊情况:没有选择任何插件组
|
||||
return [*[plugin['Button'].update(visible=False) for _, plugin in plugins_as_btn.items()], gr.Dropdown.update(choices=[])]
|
||||
for k, plugin in plugins.items():
|
||||
if plugin.get("AsButton", True):
|
||||
btn_list.append(plugin['Button'].update(visible=match_group(plugin['Group'], group_list))) # 刷新按钮
|
||||
if plugin.get('AdvancedArgs', False): dropdown_fn_list.append(k) # 对于需要高级参数的插件,亦在下拉菜单中显示
|
||||
elif match_group(plugin['Group'], group_list): fns_list.append(k) # 刷新下拉列表
|
||||
return [*btn_list, gr.Dropdown.update(choices=fns_list)]
|
||||
plugin_group_sel.select(fn=on_group_change, inputs=[plugin_group_sel], outputs=[*[plugin['Button'] for name, plugin in plugins_as_btn.items()], dropdown])
|
||||
|
||||
# 是否启动语音输入功能
|
||||
if ENABLE_AUDIO:
|
||||
from crazy_functions.live_audio.audio_io import RealtimeAudioDistribution
|
||||
rad = RealtimeAudioDistribution()
|
||||
def deal_audio(audio, cookies):
|
||||
rad.feed(cookies['uuid'].hex, audio)
|
||||
audio_mic.stream(deal_audio, inputs=[audio_mic, cookies])
|
||||
|
||||
# 生成当前浏览器窗口的uuid(刷新失效)
|
||||
app_block.load(assign_user_uuid, inputs=[cookies], outputs=[cookies])
|
||||
|
||||
# 初始化(前端)
|
||||
from shared_utils.cookie_manager import load_web_cookie_cache__fn_builder
|
||||
load_web_cookie_cache = load_web_cookie_cache__fn_builder(customize_btns, cookies, predefined_btns)
|
||||
app_block.load(load_web_cookie_cache, inputs = [web_cookie_cache, cookies],
|
||||
outputs = [web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()], _js=js_code_for_persistent_cookie_init)
|
||||
app_block.load(None, inputs=[], outputs=None, _js=f"""()=>GptAcademicJavaScriptInit("{DARK_MODE}","{INIT_SYS_PROMPT}","{ADD_WAIFU}","{LAYOUT}","{TTS_TYPE}")""") # 配置暗色主题或亮色主题
|
||||
app_block.load(None, inputs=[], outputs=None, _js="""()=>{REP}""".replace("REP", register_advanced_plugin_init_arr))
|
||||
|
||||
# Gradio的inbrowser触发不太稳定,回滚代码到原始的浏览器打开函数
|
||||
def run_delayed_tasks():
|
||||
import threading, webbrowser, time
|
||||
print(f"如果浏览器没有自动打开,请复制并转到以下URL:")
|
||||
if DARK_MODE: print(f"\t「暗色主题已启用(支持动态切换主题)」: http://localhost:{PORT}")
|
||||
else: print(f"\t「亮色主题已启用(支持动态切换主题)」: http://localhost:{PORT}")
|
||||
|
||||
def auto_updates(): time.sleep(0); auto_update()
|
||||
def open_browser(): time.sleep(2); webbrowser.open_new_tab(f"http://localhost:{PORT}")
|
||||
def warm_up_mods(): time.sleep(6); warm_up_modules()
|
||||
|
||||
threading.Thread(target=auto_updates, name="self-upgrade", daemon=True).start() # 查看自动更新
|
||||
threading.Thread(target=warm_up_mods, name="warm-up", daemon=True).start() # 预热tiktoken模块
|
||||
if get_conf('AUTO_OPEN_BROWSER'):
|
||||
threading.Thread(target=open_browser, name="open-browser", daemon=True).start() # 打开浏览器页面
|
||||
|
||||
# 运行一些异步任务:自动更新、打开浏览器页面、预热tiktoken模块
|
||||
run_delayed_tasks()
|
||||
|
||||
# 最后,正式开始服务
|
||||
from shared_utils.fastapi_server import start_app
|
||||
start_app(app_block, CONCURRENT_COUNT, AUTHENTICATION, PORT, SSL_KEYFILE, SSL_CERTFILE)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
@@ -34,9 +34,14 @@ from .bridge_google_gemini import predict_no_ui_long_connection as genai_noui
|
||||
from .bridge_zhipu import predict_no_ui_long_connection as zhipu_noui
|
||||
from .bridge_zhipu import predict as zhipu_ui
|
||||
|
||||
from .bridge_taichu import predict_no_ui_long_connection as taichu_noui
|
||||
from .bridge_taichu import predict as taichu_ui
|
||||
|
||||
from .bridge_cohere import predict as cohere_ui
|
||||
from .bridge_cohere import predict_no_ui_long_connection as cohere_noui
|
||||
|
||||
from .oai_std_model_template import get_predict_function
|
||||
|
||||
colors = ['#FF00FF', '#00FFFF', '#FF0000', '#990099', '#009999', '#990044']
|
||||
|
||||
class LazyloadTiktoken(object):
|
||||
@@ -66,8 +71,10 @@ api2d_endpoint = "https://openai.api2d.net/v1/chat/completions"
|
||||
newbing_endpoint = "wss://sydney.bing.com/sydney/ChatHub"
|
||||
gemini_endpoint = "https://generativelanguage.googleapis.com/v1beta/models"
|
||||
claude_endpoint = "https://api.anthropic.com/v1/messages"
|
||||
cohere_endpoint = "https://api.cohere.ai/v1/chat"
|
||||
ollama_endpoint = "http://localhost:11434/api/chat"
|
||||
yimodel_endpoint = "https://api.lingyiwanwu.com/v1/chat/completions"
|
||||
cohere_endpoint = 'https://api.cohere.ai/v1/chat'
|
||||
deepseekapi_endpoint = "https://api.deepseek.com/v1/chat/completions"
|
||||
|
||||
if not AZURE_ENDPOINT.endswith('/'): AZURE_ENDPOINT += '/'
|
||||
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
|
||||
@@ -85,8 +92,10 @@ if api2d_endpoint in API_URL_REDIRECT: api2d_endpoint = API_URL_REDIRECT[api2d_e
|
||||
if newbing_endpoint in API_URL_REDIRECT: newbing_endpoint = API_URL_REDIRECT[newbing_endpoint]
|
||||
if gemini_endpoint in API_URL_REDIRECT: gemini_endpoint = API_URL_REDIRECT[gemini_endpoint]
|
||||
if claude_endpoint in API_URL_REDIRECT: claude_endpoint = API_URL_REDIRECT[claude_endpoint]
|
||||
if yimodel_endpoint in API_URL_REDIRECT: yimodel_endpoint = API_URL_REDIRECT[yimodel_endpoint]
|
||||
if cohere_endpoint in API_URL_REDIRECT: cohere_endpoint = API_URL_REDIRECT[cohere_endpoint]
|
||||
if ollama_endpoint in API_URL_REDIRECT: ollama_endpoint = API_URL_REDIRECT[ollama_endpoint]
|
||||
if yimodel_endpoint in API_URL_REDIRECT: yimodel_endpoint = API_URL_REDIRECT[yimodel_endpoint]
|
||||
if deepseekapi_endpoint in API_URL_REDIRECT: deepseekapi_endpoint = API_URL_REDIRECT[deepseekapi_endpoint]
|
||||
|
||||
# 获取tokenizer
|
||||
tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo")
|
||||
@@ -110,6 +119,15 @@ model_info = {
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
"taichu": {
|
||||
"fn_with_ui": taichu_ui,
|
||||
"fn_without_ui": taichu_noui,
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
"gpt-3.5-turbo-16k": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
@@ -173,6 +191,26 @@ model_info = {
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
},
|
||||
|
||||
"gpt-4o": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": openai_endpoint,
|
||||
"has_multimodal_capacity": True,
|
||||
"max_token": 128000,
|
||||
"tokenizer": tokenizer_gpt4,
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
},
|
||||
|
||||
"gpt-4o-2024-05-13": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"has_multimodal_capacity": True,
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": 128000,
|
||||
"tokenizer": tokenizer_gpt4,
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
},
|
||||
|
||||
"gpt-4-turbo-preview": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
@@ -200,6 +238,27 @@ model_info = {
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
},
|
||||
|
||||
"gpt-4-turbo": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"has_multimodal_capacity": True,
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": 128000,
|
||||
"tokenizer": tokenizer_gpt4,
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
},
|
||||
|
||||
"gpt-4-turbo-2024-04-09": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"has_multimodal_capacity": True,
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": 128000,
|
||||
"tokenizer": tokenizer_gpt4,
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
},
|
||||
|
||||
|
||||
"gpt-3.5-random": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
@@ -247,6 +306,46 @@ model_info = {
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"glm-4-0520": {
|
||||
"fn_with_ui": zhipu_ui,
|
||||
"fn_without_ui": zhipu_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 10124 * 8,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"glm-4-air": {
|
||||
"fn_with_ui": zhipu_ui,
|
||||
"fn_without_ui": zhipu_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 10124 * 8,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"glm-4-airx": {
|
||||
"fn_with_ui": zhipu_ui,
|
||||
"fn_without_ui": zhipu_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 10124 * 8,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"glm-4-flash": {
|
||||
"fn_with_ui": zhipu_ui,
|
||||
"fn_without_ui": zhipu_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 10124 * 8,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"glm-4v": {
|
||||
"fn_with_ui": zhipu_ui,
|
||||
"fn_without_ui": zhipu_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 1000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"glm-3-turbo": {
|
||||
"fn_with_ui": zhipu_ui,
|
||||
"fn_without_ui": zhipu_noui,
|
||||
@@ -625,14 +724,22 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
# -=-=-=-=-=-=- 零一万物模型 -=-=-=-=-=-=-
|
||||
if "yi-34b-chat-0205" in AVAIL_LLM_MODELS or "yi-34b-chat-200k" in AVAIL_LLM_MODELS: # zhipuai
|
||||
yi_models = ["yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview"]
|
||||
if any(item in yi_models for item in AVAIL_LLM_MODELS):
|
||||
try:
|
||||
from .bridge_yimodel import predict_no_ui_long_connection as yimodel_noui
|
||||
from .bridge_yimodel import predict as yimodel_ui
|
||||
yimodel_4k_noui, yimodel_4k_ui = get_predict_function(
|
||||
api_key_conf_name="YIMODEL_API_KEY", max_output_token=600, disable_proxy=False
|
||||
)
|
||||
yimodel_16k_noui, yimodel_16k_ui = get_predict_function(
|
||||
api_key_conf_name="YIMODEL_API_KEY", max_output_token=4000, disable_proxy=False
|
||||
)
|
||||
yimodel_200k_noui, yimodel_200k_ui = get_predict_function(
|
||||
api_key_conf_name="YIMODEL_API_KEY", max_output_token=4096, disable_proxy=False
|
||||
)
|
||||
model_info.update({
|
||||
"yi-34b-chat-0205": {
|
||||
"fn_with_ui": yimodel_ui,
|
||||
"fn_without_ui": yimodel_noui,
|
||||
"fn_with_ui": yimodel_4k_ui,
|
||||
"fn_without_ui": yimodel_4k_noui,
|
||||
"can_multi_thread": False, # 目前来说,默认情况下并发量极低,因此禁用
|
||||
"endpoint": yimodel_endpoint,
|
||||
"max_token": 4000,
|
||||
@@ -640,14 +747,59 @@ if "yi-34b-chat-0205" in AVAIL_LLM_MODELS or "yi-34b-chat-200k" in AVAIL_LLM_MOD
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"yi-34b-chat-200k": {
|
||||
"fn_with_ui": yimodel_ui,
|
||||
"fn_without_ui": yimodel_noui,
|
||||
"fn_with_ui": yimodel_200k_ui,
|
||||
"fn_without_ui": yimodel_200k_noui,
|
||||
"can_multi_thread": False, # 目前来说,默认情况下并发量极低,因此禁用
|
||||
"endpoint": yimodel_endpoint,
|
||||
"max_token": 200000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"yi-large": {
|
||||
"fn_with_ui": yimodel_16k_ui,
|
||||
"fn_without_ui": yimodel_16k_noui,
|
||||
"can_multi_thread": False, # 目前来说,默认情况下并发量极低,因此禁用
|
||||
"endpoint": yimodel_endpoint,
|
||||
"max_token": 16000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"yi-medium": {
|
||||
"fn_with_ui": yimodel_16k_ui,
|
||||
"fn_without_ui": yimodel_16k_noui,
|
||||
"can_multi_thread": True, # 这个并发量稍微大一点
|
||||
"endpoint": yimodel_endpoint,
|
||||
"max_token": 16000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"yi-spark": {
|
||||
"fn_with_ui": yimodel_16k_ui,
|
||||
"fn_without_ui": yimodel_16k_noui,
|
||||
"can_multi_thread": True, # 这个并发量稍微大一点
|
||||
"endpoint": yimodel_endpoint,
|
||||
"max_token": 16000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"yi-large-turbo": {
|
||||
"fn_with_ui": yimodel_16k_ui,
|
||||
"fn_without_ui": yimodel_16k_noui,
|
||||
"can_multi_thread": False, # 目前来说,默认情况下并发量极低,因此禁用
|
||||
"endpoint": yimodel_endpoint,
|
||||
"max_token": 16000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"yi-large-preview": {
|
||||
"fn_with_ui": yimodel_16k_ui,
|
||||
"fn_without_ui": yimodel_16k_noui,
|
||||
"can_multi_thread": False, # 目前来说,默认情况下并发量极低,因此禁用
|
||||
"endpoint": yimodel_endpoint,
|
||||
"max_token": 16000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
@@ -708,6 +860,15 @@ if "sparkv3" in AVAIL_LLM_MODELS or "sparkv3.5" in AVAIL_LLM_MODELS: # 讯飞
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"sparkv4":{
|
||||
"fn_with_ui": spark_ui,
|
||||
"fn_without_ui": spark_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
}
|
||||
})
|
||||
except:
|
||||
@@ -760,8 +921,34 @@ if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
|
||||
|
||||
# -=-=-=-=-=-=- 幻方-深度求索大模型在线API -=-=-=-=-=-=-
|
||||
if "deepseek-chat" in AVAIL_LLM_MODELS or "deepseek-coder" in AVAIL_LLM_MODELS:
|
||||
try:
|
||||
deepseekapi_noui, deepseekapi_ui = get_predict_function(
|
||||
api_key_conf_name="DEEPSEEK_API_KEY", max_output_token=4096, disable_proxy=False
|
||||
)
|
||||
model_info.update({
|
||||
"deepseek-chat":{
|
||||
"fn_with_ui": deepseekapi_ui,
|
||||
"fn_without_ui": deepseekapi_noui,
|
||||
"endpoint": deepseekapi_endpoint,
|
||||
"can_multi_thread": True,
|
||||
"max_token": 32000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"deepseek-coder":{
|
||||
"fn_with_ui": deepseekapi_ui,
|
||||
"fn_without_ui": deepseekapi_noui,
|
||||
"endpoint": deepseekapi_endpoint,
|
||||
"can_multi_thread": True,
|
||||
"max_token": 16000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
# -=-=-=-=-=-=- one-api 对齐支持 -=-=-=-=-=-=-
|
||||
for model in [m for m in AVAIL_LLM_MODELS if m.startswith("one-api-")]:
|
||||
# 为了更灵活地接入one-api多模型管理界面,设计了此接口,例子:AVAIL_LLM_MODELS = ["one-api-mixtral-8x7b(max_token=6666)"]
|
||||
@@ -770,21 +957,80 @@ for model in [m for m in AVAIL_LLM_MODELS if m.startswith("one-api-")]:
|
||||
# "mixtral-8x7b" 是模型名(必要)
|
||||
# "(max_token=6666)" 是配置(非必要)
|
||||
try:
|
||||
_, max_token_tmp = read_one_api_model_name(model)
|
||||
origin_model_name, max_token_tmp = read_one_api_model_name(model)
|
||||
# 如果是已知模型,则尝试获取其信息
|
||||
original_model_info = model_info.get(origin_model_name.replace("one-api-", "", 1), None)
|
||||
except:
|
||||
print(f"one-api模型 {model} 的 max_token 配置不是整数,请检查配置文件。")
|
||||
continue
|
||||
this_model_info = {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": max_token_tmp,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
}
|
||||
|
||||
# 同步已知模型的其他信息
|
||||
attribute = "has_multimodal_capacity"
|
||||
if original_model_info is not None and original_model_info.get(attribute, None) is not None: this_model_info.update({attribute: original_model_info.get(attribute, None)})
|
||||
# attribute = "attribute2"
|
||||
# if original_model_info is not None and original_model_info.get(attribute, None) is not None: this_model_info.update({attribute: original_model_info.get(attribute, None)})
|
||||
# attribute = "attribute3"
|
||||
# if original_model_info is not None and original_model_info.get(attribute, None) is not None: this_model_info.update({attribute: original_model_info.get(attribute, None)})
|
||||
model_info.update({model: this_model_info})
|
||||
|
||||
# -=-=-=-=-=-=- vllm 对齐支持 -=-=-=-=-=-=-
|
||||
for model in [m for m in AVAIL_LLM_MODELS if m.startswith("vllm-")]:
|
||||
# 为了更灵活地接入vllm多模型管理界面,设计了此接口,例子:AVAIL_LLM_MODELS = ["vllm-/home/hmp/llm/cache/Qwen1___5-32B-Chat(max_token=6666)"]
|
||||
# 其中
|
||||
# "vllm-" 是前缀(必要)
|
||||
# "mixtral-8x7b" 是模型名(必要)
|
||||
# "(max_token=6666)" 是配置(非必要)
|
||||
try:
|
||||
_, max_token_tmp = read_one_api_model_name(model)
|
||||
except:
|
||||
print(f"vllm模型 {model} 的 max_token 配置不是整数,请检查配置文件。")
|
||||
continue
|
||||
model_info.update({
|
||||
model: {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": max_token_tmp,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
})
|
||||
|
||||
# -=-=-=-=-=-=- ollama 对齐支持 -=-=-=-=-=-=-
|
||||
for model in [m for m in AVAIL_LLM_MODELS if m.startswith("ollama-")]:
|
||||
from .bridge_ollama import predict_no_ui_long_connection as ollama_noui
|
||||
from .bridge_ollama import predict as ollama_ui
|
||||
break
|
||||
for model in [m for m in AVAIL_LLM_MODELS if m.startswith("ollama-")]:
|
||||
# 为了更灵活地接入ollama多模型管理界面,设计了此接口,例子:AVAIL_LLM_MODELS = ["ollama-phi3(max_token=6666)"]
|
||||
# 其中
|
||||
# "ollama-" 是前缀(必要)
|
||||
# "phi3" 是模型名(必要)
|
||||
# "(max_token=6666)" 是配置(非必要)
|
||||
try:
|
||||
_, max_token_tmp = read_one_api_model_name(model)
|
||||
except:
|
||||
print(f"ollama模型 {model} 的 max_token 配置不是整数,请检查配置文件。")
|
||||
continue
|
||||
model_info.update({
|
||||
model: {
|
||||
"fn_with_ui": ollama_ui,
|
||||
"fn_without_ui": ollama_noui,
|
||||
"endpoint": ollama_endpoint,
|
||||
"max_token": max_token_tmp,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
})
|
||||
|
||||
# -=-=-=-=-=-=- azure模型对齐支持 -=-=-=-=-=-=-
|
||||
AZURE_CFG_ARRAY = get_conf("AZURE_CFG_ARRAY") # <-- 用于定义和切换多个azure模型 -->
|
||||
@@ -810,6 +1056,13 @@ if len(AZURE_CFG_ARRAY) > 0:
|
||||
AVAIL_LLM_MODELS += [azure_model_name]
|
||||
|
||||
|
||||
# -=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=-=-=
|
||||
# -=-=-=-=-=-=-=-=-=- ☝️ 以上是模型路由 -=-=-=-=-=-=-=-=-=
|
||||
# -=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=-=-=
|
||||
|
||||
# -=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=-=-=
|
||||
# -=-=-=-=-=-=-= 👇 以下是多模型路由切换函数 -=-=-=-=-=-=-=
|
||||
# -=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=-=-=
|
||||
|
||||
|
||||
def LLM_CATCH_EXCEPTION(f):
|
||||
@@ -846,13 +1099,11 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list, sys
|
||||
model = llm_kwargs['llm_model']
|
||||
n_model = 1
|
||||
if '&' not in model:
|
||||
|
||||
# 如果只询问1个大语言模型:
|
||||
# 如果只询问“一个”大语言模型(多数情况):
|
||||
method = model_info[model]["fn_without_ui"]
|
||||
return method(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
|
||||
else:
|
||||
|
||||
# 如果同时询问多个大语言模型,这个稍微啰嗦一点,但思路相同,您不必读这个else分支
|
||||
# 如果同时询问“多个”大语言模型,这个稍微啰嗦一点,但思路相同,您不必读这个else分支
|
||||
executor = ThreadPoolExecutor(max_workers=4)
|
||||
models = model.split('&')
|
||||
n_model = len(models)
|
||||
@@ -905,8 +1156,26 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list, sys
|
||||
res = '<br/><br/>\n\n---\n\n'.join(return_string_collect)
|
||||
return res
|
||||
|
||||
# 根据基础功能区 ModelOverride 参数调整模型类型,用于 `predict` 中
|
||||
import importlib
|
||||
import core_functional
|
||||
def execute_model_override(llm_kwargs, additional_fn, method):
|
||||
functional = core_functional.get_core_functions()
|
||||
if (additional_fn in functional) and 'ModelOverride' in functional[additional_fn]:
|
||||
# 热更新Prompt & ModelOverride
|
||||
importlib.reload(core_functional)
|
||||
functional = core_functional.get_core_functions()
|
||||
model_override = functional[additional_fn]['ModelOverride']
|
||||
if model_override not in model_info:
|
||||
raise ValueError(f"模型覆盖参数 '{model_override}' 指向一个暂不支持的模型,请检查配置文件。")
|
||||
method = model_info[model_override]["fn_with_ui"]
|
||||
llm_kwargs['llm_model'] = model_override
|
||||
return llm_kwargs, additional_fn, method
|
||||
# 默认返回原参数
|
||||
return llm_kwargs, additional_fn, method
|
||||
|
||||
def predict(inputs:str, llm_kwargs:dict, *args, **kwargs):
|
||||
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot,
|
||||
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||
"""
|
||||
发送至LLM,流式获取输出。
|
||||
用于基础的对话功能。
|
||||
@@ -925,6 +1194,11 @@ def predict(inputs:str, llm_kwargs:dict, *args, **kwargs):
|
||||
"""
|
||||
|
||||
inputs = apply_gpt_academic_string_mask(inputs, mode="show_llm")
|
||||
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"] # 如果这里报错,检查config中的AVAIL_LLM_MODELS选项
|
||||
yield from method(inputs, llm_kwargs, *args, **kwargs)
|
||||
|
||||
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"] # 如果这里报错,检查config中的AVAIL_LLM_MODELS选项
|
||||
|
||||
if additional_fn: # 根据基础功能区 ModelOverride 参数调整模型类型
|
||||
llm_kwargs, additional_fn, method = execute_model_override(llm_kwargs, additional_fn, method)
|
||||
|
||||
yield from method(inputs, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, stream, additional_fn)
|
||||
|
||||
|
||||
@@ -6,7 +6,6 @@ from toolbox import get_conf, ProxyNetworkActivate
|
||||
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
|
||||
|
||||
|
||||
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
# 🔌💻 Local Model
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
@@ -23,20 +22,45 @@ class GetGLM3Handle(LocalLLMHandle):
|
||||
import os, glob
|
||||
import os
|
||||
import platform
|
||||
LOCAL_MODEL_QUANT, device = get_conf('LOCAL_MODEL_QUANT', 'LOCAL_MODEL_DEVICE')
|
||||
|
||||
if LOCAL_MODEL_QUANT == "INT4": # INT4
|
||||
_model_name_ = "THUDM/chatglm3-6b-int4"
|
||||
elif LOCAL_MODEL_QUANT == "INT8": # INT8
|
||||
_model_name_ = "THUDM/chatglm3-6b-int8"
|
||||
else:
|
||||
_model_name_ = "THUDM/chatglm3-6b" # FP16
|
||||
with ProxyNetworkActivate('Download_LLM'):
|
||||
chatglm_tokenizer = AutoTokenizer.from_pretrained(_model_name_, trust_remote_code=True)
|
||||
if device=='cpu':
|
||||
chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True, device='cpu').float()
|
||||
LOCAL_MODEL_QUANT, device = get_conf("LOCAL_MODEL_QUANT", "LOCAL_MODEL_DEVICE")
|
||||
_model_name_ = "THUDM/chatglm3-6b"
|
||||
# if LOCAL_MODEL_QUANT == "INT4": # INT4
|
||||
# _model_name_ = "THUDM/chatglm3-6b-int4"
|
||||
# elif LOCAL_MODEL_QUANT == "INT8": # INT8
|
||||
# _model_name_ = "THUDM/chatglm3-6b-int8"
|
||||
# else:
|
||||
# _model_name_ = "THUDM/chatglm3-6b" # FP16
|
||||
with ProxyNetworkActivate("Download_LLM"):
|
||||
chatglm_tokenizer = AutoTokenizer.from_pretrained(
|
||||
_model_name_, trust_remote_code=True
|
||||
)
|
||||
if device == "cpu":
|
||||
chatglm_model = AutoModel.from_pretrained(
|
||||
_model_name_,
|
||||
trust_remote_code=True,
|
||||
device="cpu",
|
||||
).float()
|
||||
elif LOCAL_MODEL_QUANT == "INT4": # INT4
|
||||
chatglm_model = AutoModel.from_pretrained(
|
||||
pretrained_model_name_or_path=_model_name_,
|
||||
trust_remote_code=True,
|
||||
device="cuda",
|
||||
load_in_4bit=True,
|
||||
)
|
||||
elif LOCAL_MODEL_QUANT == "INT8": # INT8
|
||||
chatglm_model = AutoModel.from_pretrained(
|
||||
pretrained_model_name_or_path=_model_name_,
|
||||
trust_remote_code=True,
|
||||
device="cuda",
|
||||
load_in_8bit=True,
|
||||
)
|
||||
else:
|
||||
chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True, device='cuda')
|
||||
chatglm_model = AutoModel.from_pretrained(
|
||||
pretrained_model_name_or_path=_model_name_,
|
||||
trust_remote_code=True,
|
||||
device="cuda",
|
||||
)
|
||||
chatglm_model = chatglm_model.eval()
|
||||
|
||||
self._model = chatglm_model
|
||||
@@ -46,32 +70,36 @@ class GetGLM3Handle(LocalLLMHandle):
|
||||
def llm_stream_generator(self, **kwargs):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
def adaptor(kwargs):
|
||||
query = kwargs['query']
|
||||
max_length = kwargs['max_length']
|
||||
top_p = kwargs['top_p']
|
||||
temperature = kwargs['temperature']
|
||||
history = kwargs['history']
|
||||
query = kwargs["query"]
|
||||
max_length = kwargs["max_length"]
|
||||
top_p = kwargs["top_p"]
|
||||
temperature = kwargs["temperature"]
|
||||
history = kwargs["history"]
|
||||
return query, max_length, top_p, temperature, history
|
||||
|
||||
query, max_length, top_p, temperature, history = adaptor(kwargs)
|
||||
|
||||
for response, history in self._model.stream_chat(self._tokenizer,
|
||||
query,
|
||||
history,
|
||||
max_length=max_length,
|
||||
top_p=top_p,
|
||||
temperature=temperature,
|
||||
):
|
||||
for response, history in self._model.stream_chat(
|
||||
self._tokenizer,
|
||||
query,
|
||||
history,
|
||||
max_length=max_length,
|
||||
top_p=top_p,
|
||||
temperature=temperature,
|
||||
):
|
||||
yield response
|
||||
|
||||
def try_to_import_special_deps(self, **kwargs):
|
||||
# import something that will raise error if the user does not install requirement_*.txt
|
||||
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
||||
import importlib
|
||||
|
||||
# importlib.import_module('modelscope')
|
||||
|
||||
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
# 🔌💻 GPT-Academic Interface
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetGLM3Handle, model_name, history_format='chatglm3')
|
||||
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(
|
||||
GetGLM3Handle, model_name, history_format="chatglm3"
|
||||
)
|
||||
|
||||
@@ -1,5 +1,3 @@
|
||||
# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目
|
||||
|
||||
"""
|
||||
该文件中主要包含三个函数
|
||||
|
||||
@@ -11,19 +9,19 @@
|
||||
"""
|
||||
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import time
|
||||
import gradio as gr
|
||||
import logging
|
||||
import traceback
|
||||
import requests
|
||||
import importlib
|
||||
import random
|
||||
|
||||
# config_private.py放自己的秘密如API和代理网址
|
||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
|
||||
from toolbox import trimmed_format_exc, is_the_upload_folder, read_one_api_model_name, log_chat
|
||||
from toolbox import ChatBotWithCookies
|
||||
from toolbox import ChatBotWithCookies, have_any_recent_upload_image_files, encode_image
|
||||
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
||||
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
|
||||
|
||||
@@ -41,6 +39,57 @@ def get_full_error(chunk, stream_response):
|
||||
break
|
||||
return chunk
|
||||
|
||||
def make_multimodal_input(inputs, image_paths):
|
||||
image_base64_array = []
|
||||
for image_path in image_paths:
|
||||
path = os.path.abspath(image_path)
|
||||
base64 = encode_image(path)
|
||||
inputs = inputs + f'<br/><br/><div align="center"><img src="file={path}" base64="{base64}"></div>'
|
||||
image_base64_array.append(base64)
|
||||
return inputs, image_base64_array
|
||||
|
||||
def reverse_base64_from_input(inputs):
|
||||
# 定义一个正则表达式来匹配 Base64 字符串(假设格式为 base64="<Base64编码>")
|
||||
# pattern = re.compile(r'base64="([^"]+)"></div>')
|
||||
pattern = re.compile(r'<br/><br/><div align="center"><img[^<>]+base64="([^"]+)"></div>')
|
||||
# 使用 findall 方法查找所有匹配的 Base64 字符串
|
||||
base64_strings = pattern.findall(inputs)
|
||||
# 返回反转后的 Base64 字符串列表
|
||||
return base64_strings
|
||||
|
||||
def contain_base64(inputs):
|
||||
base64_strings = reverse_base64_from_input(inputs)
|
||||
return len(base64_strings) > 0
|
||||
|
||||
def append_image_if_contain_base64(inputs):
|
||||
if not contain_base64(inputs):
|
||||
return inputs
|
||||
else:
|
||||
image_base64_array = reverse_base64_from_input(inputs)
|
||||
pattern = re.compile(r'<br/><br/><div align="center"><img[^><]+></div>')
|
||||
inputs = re.sub(pattern, '', inputs)
|
||||
res = []
|
||||
res.append({
|
||||
"type": "text",
|
||||
"text": inputs
|
||||
})
|
||||
for image_base64 in image_base64_array:
|
||||
res.append({
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/jpeg;base64,{image_base64}"
|
||||
}
|
||||
})
|
||||
return res
|
||||
|
||||
def remove_image_if_contain_base64(inputs):
|
||||
if not contain_base64(inputs):
|
||||
return inputs
|
||||
else:
|
||||
pattern = re.compile(r'<br/><br/><div align="center"><img[^><]+></div>')
|
||||
inputs = re.sub(pattern, '', inputs)
|
||||
return inputs
|
||||
|
||||
def decode_chunk(chunk):
|
||||
# 提前读取一些信息 (用于判断异常)
|
||||
chunk_decoded = chunk.decode()
|
||||
@@ -159,6 +208,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
from .bridge_all import model_info
|
||||
if is_any_api_key(inputs):
|
||||
chatbot._cookies['api_key'] = inputs
|
||||
chatbot.append(("输入已识别为openai的api_key", what_keys(inputs)))
|
||||
@@ -174,9 +224,17 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
|
||||
raw_input = inputs
|
||||
# logging.info(f'[raw_input] {raw_input}')
|
||||
chatbot.append((inputs, ""))
|
||||
# 多模态模型
|
||||
has_multimodal_capacity = model_info[llm_kwargs['llm_model']].get('has_multimodal_capacity', False)
|
||||
if has_multimodal_capacity:
|
||||
has_recent_image_upload, image_paths = have_any_recent_upload_image_files(chatbot, pop=True)
|
||||
else:
|
||||
has_recent_image_upload, image_paths = False, []
|
||||
if has_recent_image_upload:
|
||||
_inputs, image_base64_array = make_multimodal_input(inputs, image_paths)
|
||||
else:
|
||||
_inputs, image_base64_array = inputs, []
|
||||
chatbot.append((_inputs, ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||
|
||||
# check mis-behavior
|
||||
@@ -186,7 +244,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
||||
time.sleep(2)
|
||||
|
||||
try:
|
||||
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||||
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, image_base64_array, has_multimodal_capacity, stream)
|
||||
except RuntimeError as e:
|
||||
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
||||
@@ -194,7 +252,6 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
||||
|
||||
# 检查endpoint是否合法
|
||||
try:
|
||||
from .bridge_all import model_info
|
||||
endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
|
||||
except:
|
||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
@@ -202,7 +259,11 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Endpoint不满足要求") # 刷新界面
|
||||
return
|
||||
|
||||
history.append(inputs); history.append("")
|
||||
# 加入历史
|
||||
if has_recent_image_upload:
|
||||
history.extend([_inputs, ""])
|
||||
else:
|
||||
history.extend([inputs, ""])
|
||||
|
||||
retry = 0
|
||||
while True:
|
||||
@@ -316,14 +377,17 @@ def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
|
||||
return chatbot, history
|
||||
|
||||
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:str, image_base64_array:list=[], has_multimodal_capacity:bool=False, stream:bool=True):
|
||||
"""
|
||||
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||||
"""
|
||||
if not is_any_api_key(llm_kwargs['api_key']):
|
||||
raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。")
|
||||
|
||||
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
||||
if llm_kwargs['llm_model'].startswith('vllm-'):
|
||||
api_key = 'no-api-key'
|
||||
else:
|
||||
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
||||
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
@@ -336,36 +400,83 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
azure_api_key_unshared = AZURE_CFG_ARRAY[llm_kwargs['llm_model']]["AZURE_API_KEY"]
|
||||
headers.update({"api-key": azure_api_key_unshared})
|
||||
|
||||
conversation_cnt = len(history) // 2
|
||||
if has_multimodal_capacity:
|
||||
# 当以下条件满足时,启用多模态能力:
|
||||
# 1. 模型本身是多模态模型(has_multimodal_capacity)
|
||||
# 2. 输入包含图像(len(image_base64_array) > 0)
|
||||
# 3. 历史输入包含图像( any([contain_base64(h) for h in history]) )
|
||||
enable_multimodal_capacity = (len(image_base64_array) > 0) or any([contain_base64(h) for h in history])
|
||||
else:
|
||||
enable_multimodal_capacity = False
|
||||
|
||||
if not enable_multimodal_capacity:
|
||||
# 不使用多模态能力
|
||||
conversation_cnt = len(history) // 2
|
||||
messages = [{"role": "system", "content": system_prompt}]
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2*conversation_cnt, 2):
|
||||
what_i_have_asked = {}
|
||||
what_i_have_asked["role"] = "user"
|
||||
what_i_have_asked["content"] = remove_image_if_contain_base64(history[index])
|
||||
what_gpt_answer = {}
|
||||
what_gpt_answer["role"] = "assistant"
|
||||
what_gpt_answer["content"] = remove_image_if_contain_base64(history[index+1])
|
||||
if what_i_have_asked["content"] != "":
|
||||
if what_gpt_answer["content"] == "": continue
|
||||
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
else:
|
||||
messages[-1]['content'] = what_gpt_answer['content']
|
||||
what_i_ask_now = {}
|
||||
what_i_ask_now["role"] = "user"
|
||||
what_i_ask_now["content"] = inputs
|
||||
messages.append(what_i_ask_now)
|
||||
else:
|
||||
# 多模态能力
|
||||
conversation_cnt = len(history) // 2
|
||||
messages = [{"role": "system", "content": system_prompt}]
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2*conversation_cnt, 2):
|
||||
what_i_have_asked = {}
|
||||
what_i_have_asked["role"] = "user"
|
||||
what_i_have_asked["content"] = append_image_if_contain_base64(history[index])
|
||||
what_gpt_answer = {}
|
||||
what_gpt_answer["role"] = "assistant"
|
||||
what_gpt_answer["content"] = append_image_if_contain_base64(history[index+1])
|
||||
if what_i_have_asked["content"] != "":
|
||||
if what_gpt_answer["content"] == "": continue
|
||||
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
else:
|
||||
messages[-1]['content'] = what_gpt_answer['content']
|
||||
what_i_ask_now = {}
|
||||
what_i_ask_now["role"] = "user"
|
||||
what_i_ask_now["content"] = []
|
||||
what_i_ask_now["content"].append({
|
||||
"type": "text",
|
||||
"text": inputs
|
||||
})
|
||||
for image_base64 in image_base64_array:
|
||||
what_i_ask_now["content"].append({
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/jpeg;base64,{image_base64}"
|
||||
}
|
||||
})
|
||||
messages.append(what_i_ask_now)
|
||||
|
||||
messages = [{"role": "system", "content": system_prompt}]
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2*conversation_cnt, 2):
|
||||
what_i_have_asked = {}
|
||||
what_i_have_asked["role"] = "user"
|
||||
what_i_have_asked["content"] = history[index]
|
||||
what_gpt_answer = {}
|
||||
what_gpt_answer["role"] = "assistant"
|
||||
what_gpt_answer["content"] = history[index+1]
|
||||
if what_i_have_asked["content"] != "":
|
||||
if what_gpt_answer["content"] == "": continue
|
||||
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
else:
|
||||
messages[-1]['content'] = what_gpt_answer['content']
|
||||
|
||||
what_i_ask_now = {}
|
||||
what_i_ask_now["role"] = "user"
|
||||
what_i_ask_now["content"] = inputs
|
||||
messages.append(what_i_ask_now)
|
||||
model = llm_kwargs['llm_model']
|
||||
if llm_kwargs['llm_model'].startswith('api2d-'):
|
||||
model = llm_kwargs['llm_model'][len('api2d-'):]
|
||||
if llm_kwargs['llm_model'].startswith('one-api-'):
|
||||
model = llm_kwargs['llm_model'][len('one-api-'):]
|
||||
model, _ = read_one_api_model_name(model)
|
||||
|
||||
if llm_kwargs['llm_model'].startswith('vllm-'):
|
||||
model = llm_kwargs['llm_model'][len('vllm-'):]
|
||||
model, _ = read_one_api_model_name(model)
|
||||
if model == "gpt-3.5-random": # 随机选择, 绕过openai访问频率限制
|
||||
model = random.choice([
|
||||
"gpt-3.5-turbo",
|
||||
@@ -384,8 +495,6 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
"top_p": llm_kwargs['top_p'], # 1.0,
|
||||
"n": 1,
|
||||
"stream": stream,
|
||||
"presence_penalty": 0,
|
||||
"frequency_penalty": 0,
|
||||
}
|
||||
try:
|
||||
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
|
||||
|
||||
@@ -27,10 +27,8 @@ timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check
|
||||
|
||||
|
||||
def report_invalid_key(key):
|
||||
if get_conf("BLOCK_INVALID_APIKEY"):
|
||||
# 实验性功能,自动检测并屏蔽失效的KEY,请勿使用
|
||||
from request_llms.key_manager import ApiKeyManager
|
||||
api_key = ApiKeyManager().add_key_to_blacklist(key)
|
||||
# 弃用功能
|
||||
return
|
||||
|
||||
def get_full_error(chunk, stream_response):
|
||||
"""
|
||||
|
||||
@@ -8,7 +8,7 @@ import os
|
||||
import time
|
||||
from request_llms.com_google import GoogleChatInit
|
||||
from toolbox import ChatBotWithCookies
|
||||
from toolbox import get_conf, update_ui, update_ui_lastest_msg, have_any_recent_upload_image_files, trimmed_format_exc
|
||||
from toolbox import get_conf, update_ui, update_ui_lastest_msg, have_any_recent_upload_image_files, trimmed_format_exc, log_chat
|
||||
|
||||
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY')
|
||||
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||
@@ -99,6 +99,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
||||
gpt_replying_buffer += paraphrase['text'] # 使用 json 解析库进行处理
|
||||
chatbot[-1] = (inputs, gpt_replying_buffer)
|
||||
history[-1] = gpt_replying_buffer
|
||||
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
if error_match:
|
||||
history = history[-2] # 错误的不纳入对话
|
||||
|
||||
@@ -22,8 +22,9 @@ import random
|
||||
# config_private.py放自己的秘密如API和代理网址
|
||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||
from toolbox import get_conf, update_ui, trimmed_format_exc, is_the_upload_folder, read_one_api_model_name
|
||||
proxies, TIMEOUT_SECONDS, MAX_RETRY, YIMODEL_API_KEY = \
|
||||
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'YIMODEL_API_KEY')
|
||||
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf(
|
||||
"proxies", "TIMEOUT_SECONDS", "MAX_RETRY"
|
||||
)
|
||||
|
||||
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||||
@@ -45,8 +46,8 @@ def decode_chunk(chunk):
|
||||
chunkjson = None
|
||||
is_last_chunk = False
|
||||
try:
|
||||
chunkjson = json.loads(chunk_decoded[6:])
|
||||
is_last_chunk = chunkjson.get("lastOne", False)
|
||||
chunkjson = json.loads(chunk_decoded)
|
||||
is_last_chunk = chunkjson.get("done", False)
|
||||
except:
|
||||
pass
|
||||
return chunk_decoded, chunkjson, is_last_chunk
|
||||
@@ -84,7 +85,6 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
|
||||
stream_response = response.iter_lines()
|
||||
result = ''
|
||||
is_head_of_the_stream = True
|
||||
while True:
|
||||
try: chunk = next(stream_response)
|
||||
except StopIteration:
|
||||
@@ -92,21 +92,18 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
except requests.exceptions.ConnectionError:
|
||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||
chunk_decoded, chunkjson, is_last_chunk = decode_chunk(chunk)
|
||||
if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r'"role":"assistant"' in chunk_decoded):
|
||||
# 数据流的第一帧不携带content
|
||||
is_head_of_the_stream = False; continue
|
||||
if chunk:
|
||||
try:
|
||||
if is_last_chunk:
|
||||
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||
logging.info(f'[response] {result}')
|
||||
break
|
||||
result += chunkjson['choices'][0]["delta"]["content"]
|
||||
if not console_slience: print(chunkjson['choices'][0]["delta"]["content"], end='')
|
||||
result += chunkjson['message']["content"]
|
||||
if not console_slience: print(chunkjson['message']["content"], end='')
|
||||
if observe_window is not None:
|
||||
# 观测窗,把已经获取的数据显示出去
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] += chunkjson['choices'][0]["delta"]["content"]
|
||||
observe_window[0] += chunkjson['message']["content"]
|
||||
# 看门狗,如果超过期限没有喂狗,则终止
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
@@ -130,8 +127,6 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
if len(YIMODEL_API_KEY) == 0:
|
||||
raise RuntimeError("没有设置YIMODEL_API_KEY选项")
|
||||
if inputs == "": inputs = "空空如也的输入栏"
|
||||
user_input = inputs
|
||||
if additional_fn is not None:
|
||||
@@ -171,7 +166,6 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
|
||||
gpt_replying_buffer = ""
|
||||
|
||||
is_head_of_the_stream = True
|
||||
if stream:
|
||||
stream_response = response.iter_lines()
|
||||
while True:
|
||||
@@ -185,10 +179,6 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
# 提前读取一些信息 (用于判断异常)
|
||||
chunk_decoded, chunkjson, is_last_chunk = decode_chunk(chunk)
|
||||
|
||||
if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r'"role":"assistant"' in chunk_decoded):
|
||||
# 数据流的第一帧不携带content
|
||||
is_head_of_the_stream = False; continue
|
||||
|
||||
if chunk:
|
||||
try:
|
||||
if is_last_chunk:
|
||||
@@ -196,8 +186,11 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
logging.info(f'[response] {gpt_replying_buffer}')
|
||||
break
|
||||
# 处理数据流的主体
|
||||
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
|
||||
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
|
||||
try:
|
||||
status_text = f"finish_reason: {chunkjson['error'].get('message', 'null')}"
|
||||
except:
|
||||
status_text = "finish_reason: null"
|
||||
gpt_replying_buffer = gpt_replying_buffer + chunkjson['message']["content"]
|
||||
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
|
||||
history[-1] = gpt_replying_buffer
|
||||
chatbot[-1] = (history[-2], history[-1])
|
||||
@@ -234,11 +227,9 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
"""
|
||||
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||||
"""
|
||||
api_key = f"Bearer {YIMODEL_API_KEY}"
|
||||
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": api_key
|
||||
}
|
||||
|
||||
conversation_cnt = len(history) // 2
|
||||
@@ -265,19 +256,17 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
what_i_ask_now["content"] = inputs
|
||||
messages.append(what_i_ask_now)
|
||||
model = llm_kwargs['llm_model']
|
||||
if llm_kwargs['llm_model'].startswith('one-api-'):
|
||||
model = llm_kwargs['llm_model'][len('one-api-'):]
|
||||
if llm_kwargs['llm_model'].startswith('ollama-'):
|
||||
model = llm_kwargs['llm_model'][len('ollama-'):]
|
||||
model, _ = read_one_api_model_name(model)
|
||||
tokens = 600 if llm_kwargs['llm_model'] == 'yi-34b-chat-0205' else 4096 #yi-34b-chat-0205只有4k上下文...
|
||||
options = {"temperature": llm_kwargs['temperature']}
|
||||
payload = {
|
||||
"model": model,
|
||||
"messages": messages,
|
||||
"temperature": llm_kwargs['temperature'], # 1.0,
|
||||
"stream": stream,
|
||||
"max_tokens": tokens
|
||||
"options": options,
|
||||
}
|
||||
try:
|
||||
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
|
||||
except:
|
||||
print('输入中可能存在乱码。')
|
||||
return headers,payload
|
||||
return headers,payload
|
||||
@@ -82,6 +82,9 @@ def generate_from_baidu_qianfan(inputs, llm_kwargs, history, system_prompt):
|
||||
"ERNIE-Bot": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions",
|
||||
"ERNIE-Bot-turbo": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/eb-instant",
|
||||
"BLOOMZ-7B": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/bloomz_7b1",
|
||||
"ERNIE-Speed-128K": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-speed-128k",
|
||||
"ERNIE-Speed-8K": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie_speed",
|
||||
"ERNIE-Lite-8K": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-lite-8k",
|
||||
|
||||
"Llama-2-70B-Chat": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/llama_2_70b",
|
||||
"Llama-2-13B-Chat": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/llama_2_13b",
|
||||
@@ -165,4 +168,4 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
chatbot[-1] = (chatbot[-1][0], tb_str)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="异常") # 刷新界面
|
||||
return
|
||||
return
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import time
|
||||
import os
|
||||
from toolbox import update_ui, get_conf, update_ui_lastest_msg
|
||||
from toolbox import check_packages, report_exception
|
||||
from toolbox import check_packages, report_exception, log_chat
|
||||
|
||||
model_name = 'Qwen'
|
||||
|
||||
@@ -59,6 +59,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=response)
|
||||
# 总结输出
|
||||
if response == f"[Local Message] 等待{model_name}响应中 ...":
|
||||
response = f"[Local Message] {model_name}响应异常 ..."
|
||||
|
||||
@@ -1,69 +1,69 @@
|
||||
import time
|
||||
from toolbox import update_ui, get_conf, update_ui_lastest_msg
|
||||
from toolbox import check_packages, report_exception
|
||||
|
||||
model_name = '云雀大模型'
|
||||
|
||||
def validate_key():
|
||||
YUNQUE_SECRET_KEY = get_conf("YUNQUE_SECRET_KEY")
|
||||
if YUNQUE_SECRET_KEY == '': return False
|
||||
return True
|
||||
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
"""
|
||||
⭐ 多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
watch_dog_patience = 5
|
||||
response = ""
|
||||
|
||||
if validate_key() is False:
|
||||
raise RuntimeError('请配置YUNQUE_SECRET_KEY')
|
||||
|
||||
from .com_skylark2api import YUNQUERequestInstance
|
||||
sri = YUNQUERequestInstance()
|
||||
for response in sri.generate(inputs, llm_kwargs, history, sys_prompt):
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] = response
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。")
|
||||
return response
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
⭐ 单线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
check_packages(["zhipuai"])
|
||||
except:
|
||||
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade zhipuai```。",
|
||||
chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
|
||||
if validate_key() is False:
|
||||
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置HUOSHAN_API_KEY", chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
|
||||
# 开始接收回复
|
||||
from .com_skylark2api import YUNQUERequestInstance
|
||||
sri = YUNQUERequestInstance()
|
||||
response = f"[Local Message] 等待{model_name}响应中 ..."
|
||||
for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 总结输出
|
||||
if response == f"[Local Message] 等待{model_name}响应中 ...":
|
||||
response = f"[Local Message] {model_name}响应异常 ..."
|
||||
history.extend([inputs, response])
|
||||
import time
|
||||
from toolbox import update_ui, get_conf, update_ui_lastest_msg
|
||||
from toolbox import check_packages, report_exception
|
||||
|
||||
model_name = '云雀大模型'
|
||||
|
||||
def validate_key():
|
||||
YUNQUE_SECRET_KEY = get_conf("YUNQUE_SECRET_KEY")
|
||||
if YUNQUE_SECRET_KEY == '': return False
|
||||
return True
|
||||
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
"""
|
||||
⭐ 多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
watch_dog_patience = 5
|
||||
response = ""
|
||||
|
||||
if validate_key() is False:
|
||||
raise RuntimeError('请配置YUNQUE_SECRET_KEY')
|
||||
|
||||
from .com_skylark2api import YUNQUERequestInstance
|
||||
sri = YUNQUERequestInstance()
|
||||
for response in sri.generate(inputs, llm_kwargs, history, sys_prompt):
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] = response
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。")
|
||||
return response
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
⭐ 单线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
check_packages(["zhipuai"])
|
||||
except:
|
||||
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade zhipuai```。",
|
||||
chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
|
||||
if validate_key() is False:
|
||||
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置HUOSHAN_API_KEY", chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
|
||||
# 开始接收回复
|
||||
from .com_skylark2api import YUNQUERequestInstance
|
||||
sri = YUNQUERequestInstance()
|
||||
response = f"[Local Message] 等待{model_name}响应中 ..."
|
||||
for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 总结输出
|
||||
if response == f"[Local Message] 等待{model_name}响应中 ...":
|
||||
response = f"[Local Message] {model_name}响应异常 ..."
|
||||
history.extend([inputs, response])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
72
request_llms/bridge_taichu.py
普通文件
72
request_llms/bridge_taichu.py
普通文件
@@ -0,0 +1,72 @@
|
||||
import time
|
||||
import os
|
||||
from toolbox import update_ui, get_conf, update_ui_lastest_msg, log_chat
|
||||
from toolbox import check_packages, report_exception, have_any_recent_upload_image_files
|
||||
from toolbox import ChatBotWithCookies
|
||||
|
||||
# model_name = 'Taichu-2.0'
|
||||
# taichu_default_model = 'taichu_llm'
|
||||
|
||||
def validate_key():
|
||||
TAICHU_API_KEY = get_conf("TAICHU_API_KEY")
|
||||
if TAICHU_API_KEY == '': return False
|
||||
return True
|
||||
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
"""
|
||||
⭐多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
watch_dog_patience = 5
|
||||
response = ""
|
||||
|
||||
# if llm_kwargs["llm_model"] == "taichu":
|
||||
# llm_kwargs["llm_model"] = "taichu"
|
||||
|
||||
if validate_key() is False:
|
||||
raise RuntimeError('请配置 TAICHU_API_KEY')
|
||||
|
||||
# 开始接收回复
|
||||
from .com_taichu import TaichuChatInit
|
||||
zhipu_bro_init = TaichuChatInit()
|
||||
for chunk, response in zhipu_bro_init.generate_chat(inputs, llm_kwargs, history, sys_prompt):
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] = response
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time() - observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("程序终止。")
|
||||
return response
|
||||
|
||||
|
||||
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||
"""
|
||||
⭐单线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
chatbot.append([inputs, ""])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
if validate_key() is False:
|
||||
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置ZHIPUAI_API_KEY", chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
chatbot[-1] = [inputs, ""]
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# if llm_kwargs["llm_model"] == "taichu":
|
||||
# llm_kwargs["llm_model"] = taichu_default_model
|
||||
|
||||
# 开始接收回复
|
||||
from .com_taichu import TaichuChatInit
|
||||
zhipu_bro_init = TaichuChatInit()
|
||||
for chunk, response in zhipu_bro_init.generate_chat(inputs, llm_kwargs, history, system_prompt):
|
||||
chatbot[-1] = [inputs, response]
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
history.extend([inputs, response])
|
||||
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
@@ -75,6 +75,10 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
||||
llm_kwargs["llm_model"] = zhipuai_default_model
|
||||
|
||||
if llm_kwargs["llm_model"] in ["glm-4v"]:
|
||||
if (len(inputs) + sum(len(temp) for temp in history) + 1047) > 2000:
|
||||
chatbot.append((inputs, "上下文长度超过glm-4v上限2000tokens,注意图片大约占用1,047个tokens"))
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
return
|
||||
have_recent_file, image_paths = have_any_recent_upload_image_files(chatbot)
|
||||
if not have_recent_file:
|
||||
chatbot.append((inputs, "没有检测到任何近期上传的图像文件,请上传jpg格式的图片,此外,请注意拓展名需要小写"))
|
||||
|
||||
@@ -65,8 +65,12 @@ class QwenRequestInstance():
|
||||
self.result_buf += f"[Local Message] 请求错误:状态码:{response.status_code},错误码:{response.code},消息:{response.message}"
|
||||
yield self.result_buf
|
||||
break
|
||||
logging.info(f'[raw_input] {inputs}')
|
||||
logging.info(f'[response] {self.result_buf}')
|
||||
|
||||
# 耗尽generator避免报错
|
||||
while True:
|
||||
try: next(responses)
|
||||
except: break
|
||||
|
||||
return self.result_buf
|
||||
|
||||
|
||||
|
||||
@@ -1,95 +1,95 @@
|
||||
from toolbox import get_conf
|
||||
import threading
|
||||
import logging
|
||||
import os
|
||||
|
||||
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
|
||||
#os.environ['VOLC_ACCESSKEY'] = ''
|
||||
#os.environ['VOLC_SECRETKEY'] = ''
|
||||
|
||||
class YUNQUERequestInstance():
|
||||
def __init__(self):
|
||||
|
||||
self.time_to_yield_event = threading.Event()
|
||||
self.time_to_exit_event = threading.Event()
|
||||
|
||||
self.result_buf = ""
|
||||
|
||||
def generate(self, inputs, llm_kwargs, history, system_prompt):
|
||||
# import _thread as thread
|
||||
from volcengine.maas import MaasService, MaasException
|
||||
|
||||
maas = MaasService('maas-api.ml-platform-cn-beijing.volces.com', 'cn-beijing')
|
||||
|
||||
YUNQUE_SECRET_KEY, YUNQUE_ACCESS_KEY,YUNQUE_MODEL = get_conf("YUNQUE_SECRET_KEY", "YUNQUE_ACCESS_KEY","YUNQUE_MODEL")
|
||||
maas.set_ak(YUNQUE_ACCESS_KEY) #填写 VOLC_ACCESSKEY
|
||||
maas.set_sk(YUNQUE_SECRET_KEY) #填写 'VOLC_SECRETKEY'
|
||||
|
||||
self.result_buf = ""
|
||||
|
||||
req = {
|
||||
"model": {
|
||||
"name": YUNQUE_MODEL,
|
||||
"version": "1.0", # use default version if not specified.
|
||||
},
|
||||
"parameters": {
|
||||
"max_new_tokens": 4000, # 输出文本的最大tokens限制
|
||||
"min_new_tokens": 1, # 输出文本的最小tokens限制
|
||||
"temperature": llm_kwargs['temperature'], # 用于控制生成文本的随机性和创造性,Temperature值越大随机性越大,取值范围0~1
|
||||
"top_p": llm_kwargs['top_p'], # 用于控制输出tokens的多样性,TopP值越大输出的tokens类型越丰富,取值范围0~1
|
||||
"top_k": 0, # 选择预测值最大的k个token进行采样,取值范围0-1000,0表示不生效
|
||||
"max_prompt_tokens": 4000, # 最大输入 token 数,如果给出的 prompt 的 token 长度超过此限制,取最后 max_prompt_tokens 个 token 输入模型。
|
||||
},
|
||||
"messages": self.generate_message_payload(inputs, llm_kwargs, history, system_prompt)
|
||||
}
|
||||
|
||||
response = maas.stream_chat(req)
|
||||
|
||||
for resp in response:
|
||||
self.result_buf += resp.choice.message.content
|
||||
yield self.result_buf
|
||||
'''
|
||||
for event in response.events():
|
||||
if event.event == "add":
|
||||
self.result_buf += event.data
|
||||
yield self.result_buf
|
||||
elif event.event == "error" or event.event == "interrupted":
|
||||
raise RuntimeError("Unknown error:" + event.data)
|
||||
elif event.event == "finish":
|
||||
yield self.result_buf
|
||||
break
|
||||
else:
|
||||
raise RuntimeError("Unknown error:" + str(event))
|
||||
|
||||
logging.info(f'[raw_input] {inputs}')
|
||||
logging.info(f'[response] {self.result_buf}')
|
||||
'''
|
||||
return self.result_buf
|
||||
|
||||
def generate_message_payload(inputs, llm_kwargs, history, system_prompt):
|
||||
from volcengine.maas import ChatRole
|
||||
conversation_cnt = len(history) // 2
|
||||
messages = [{"role": ChatRole.USER, "content": system_prompt},
|
||||
{"role": ChatRole.ASSISTANT, "content": "Certainly!"}]
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2 * conversation_cnt, 2):
|
||||
what_i_have_asked = {}
|
||||
what_i_have_asked["role"] = ChatRole.USER
|
||||
what_i_have_asked["content"] = history[index]
|
||||
what_gpt_answer = {}
|
||||
what_gpt_answer["role"] = ChatRole.ASSISTANT
|
||||
what_gpt_answer["content"] = history[index + 1]
|
||||
if what_i_have_asked["content"] != "":
|
||||
if what_gpt_answer["content"] == "":
|
||||
continue
|
||||
if what_gpt_answer["content"] == timeout_bot_msg:
|
||||
continue
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
else:
|
||||
messages[-1]['content'] = what_gpt_answer['content']
|
||||
what_i_ask_now = {}
|
||||
what_i_ask_now["role"] = ChatRole.USER
|
||||
what_i_ask_now["content"] = inputs
|
||||
messages.append(what_i_ask_now)
|
||||
from toolbox import get_conf
|
||||
import threading
|
||||
import logging
|
||||
import os
|
||||
|
||||
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
|
||||
#os.environ['VOLC_ACCESSKEY'] = ''
|
||||
#os.environ['VOLC_SECRETKEY'] = ''
|
||||
|
||||
class YUNQUERequestInstance():
|
||||
def __init__(self):
|
||||
|
||||
self.time_to_yield_event = threading.Event()
|
||||
self.time_to_exit_event = threading.Event()
|
||||
|
||||
self.result_buf = ""
|
||||
|
||||
def generate(self, inputs, llm_kwargs, history, system_prompt):
|
||||
# import _thread as thread
|
||||
from volcengine.maas import MaasService, MaasException
|
||||
|
||||
maas = MaasService('maas-api.ml-platform-cn-beijing.volces.com', 'cn-beijing')
|
||||
|
||||
YUNQUE_SECRET_KEY, YUNQUE_ACCESS_KEY,YUNQUE_MODEL = get_conf("YUNQUE_SECRET_KEY", "YUNQUE_ACCESS_KEY","YUNQUE_MODEL")
|
||||
maas.set_ak(YUNQUE_ACCESS_KEY) #填写 VOLC_ACCESSKEY
|
||||
maas.set_sk(YUNQUE_SECRET_KEY) #填写 'VOLC_SECRETKEY'
|
||||
|
||||
self.result_buf = ""
|
||||
|
||||
req = {
|
||||
"model": {
|
||||
"name": YUNQUE_MODEL,
|
||||
"version": "1.0", # use default version if not specified.
|
||||
},
|
||||
"parameters": {
|
||||
"max_new_tokens": 4000, # 输出文本的最大tokens限制
|
||||
"min_new_tokens": 1, # 输出文本的最小tokens限制
|
||||
"temperature": llm_kwargs['temperature'], # 用于控制生成文本的随机性和创造性,Temperature值越大随机性越大,取值范围0~1
|
||||
"top_p": llm_kwargs['top_p'], # 用于控制输出tokens的多样性,TopP值越大输出的tokens类型越丰富,取值范围0~1
|
||||
"top_k": 0, # 选择预测值最大的k个token进行采样,取值范围0-1000,0表示不生效
|
||||
"max_prompt_tokens": 4000, # 最大输入 token 数,如果给出的 prompt 的 token 长度超过此限制,取最后 max_prompt_tokens 个 token 输入模型。
|
||||
},
|
||||
"messages": self.generate_message_payload(inputs, llm_kwargs, history, system_prompt)
|
||||
}
|
||||
|
||||
response = maas.stream_chat(req)
|
||||
|
||||
for resp in response:
|
||||
self.result_buf += resp.choice.message.content
|
||||
yield self.result_buf
|
||||
'''
|
||||
for event in response.events():
|
||||
if event.event == "add":
|
||||
self.result_buf += event.data
|
||||
yield self.result_buf
|
||||
elif event.event == "error" or event.event == "interrupted":
|
||||
raise RuntimeError("Unknown error:" + event.data)
|
||||
elif event.event == "finish":
|
||||
yield self.result_buf
|
||||
break
|
||||
else:
|
||||
raise RuntimeError("Unknown error:" + str(event))
|
||||
|
||||
logging.info(f'[raw_input] {inputs}')
|
||||
logging.info(f'[response] {self.result_buf}')
|
||||
'''
|
||||
return self.result_buf
|
||||
|
||||
def generate_message_payload(inputs, llm_kwargs, history, system_prompt):
|
||||
from volcengine.maas import ChatRole
|
||||
conversation_cnt = len(history) // 2
|
||||
messages = [{"role": ChatRole.USER, "content": system_prompt},
|
||||
{"role": ChatRole.ASSISTANT, "content": "Certainly!"}]
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2 * conversation_cnt, 2):
|
||||
what_i_have_asked = {}
|
||||
what_i_have_asked["role"] = ChatRole.USER
|
||||
what_i_have_asked["content"] = history[index]
|
||||
what_gpt_answer = {}
|
||||
what_gpt_answer["role"] = ChatRole.ASSISTANT
|
||||
what_gpt_answer["content"] = history[index + 1]
|
||||
if what_i_have_asked["content"] != "":
|
||||
if what_gpt_answer["content"] == "":
|
||||
continue
|
||||
if what_gpt_answer["content"] == timeout_bot_msg:
|
||||
continue
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
else:
|
||||
messages[-1]['content'] = what_gpt_answer['content']
|
||||
what_i_ask_now = {}
|
||||
what_i_ask_now["role"] = ChatRole.USER
|
||||
what_i_ask_now["content"] = inputs
|
||||
messages.append(what_i_ask_now)
|
||||
return messages
|
||||
@@ -67,6 +67,7 @@ class SparkRequestInstance():
|
||||
self.gpt_url_v3 = "ws://spark-api.xf-yun.com/v3.1/chat"
|
||||
self.gpt_url_v35 = "wss://spark-api.xf-yun.com/v3.5/chat"
|
||||
self.gpt_url_img = "wss://spark-api.cn-huabei-1.xf-yun.com/v2.1/image"
|
||||
self.gpt_url_v4 = "wss://spark-api.xf-yun.com/v4.0/chat"
|
||||
|
||||
self.time_to_yield_event = threading.Event()
|
||||
self.time_to_exit_event = threading.Event()
|
||||
@@ -94,6 +95,8 @@ class SparkRequestInstance():
|
||||
gpt_url = self.gpt_url_v3
|
||||
elif llm_kwargs['llm_model'] == 'sparkv3.5':
|
||||
gpt_url = self.gpt_url_v35
|
||||
elif llm_kwargs['llm_model'] == 'sparkv4':
|
||||
gpt_url = self.gpt_url_v4
|
||||
else:
|
||||
gpt_url = self.gpt_url
|
||||
file_manifest = []
|
||||
@@ -194,6 +197,7 @@ def gen_params(appid, inputs, llm_kwargs, history, system_prompt, file_manifest)
|
||||
"sparkv2": "generalv2",
|
||||
"sparkv3": "generalv3",
|
||||
"sparkv3.5": "generalv3.5",
|
||||
"sparkv4": "4.0Ultra"
|
||||
}
|
||||
domains_select = domains[llm_kwargs['llm_model']]
|
||||
if file_manifest: domains_select = 'image'
|
||||
|
||||
55
request_llms/com_taichu.py
普通文件
55
request_llms/com_taichu.py
普通文件
@@ -0,0 +1,55 @@
|
||||
# encoding: utf-8
|
||||
# @Time : 2024/1/22
|
||||
# @Author : Kilig947 & binary husky
|
||||
# @Descr : 兼容最新的智谱Ai
|
||||
from toolbox import get_conf
|
||||
from toolbox import get_conf, encode_image, get_pictures_list
|
||||
import logging, os, requests
|
||||
import json
|
||||
class TaichuChatInit:
|
||||
def __init__(self): ...
|
||||
|
||||
def __conversation_user(self, user_input: str, llm_kwargs:dict):
|
||||
return {"role": "user", "content": user_input}
|
||||
|
||||
def __conversation_history(self, history:list, llm_kwargs:dict):
|
||||
messages = []
|
||||
conversation_cnt = len(history) // 2
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2 * conversation_cnt, 2):
|
||||
what_i_have_asked = self.__conversation_user(history[index], llm_kwargs)
|
||||
what_gpt_answer = {
|
||||
"role": "assistant",
|
||||
"content": history[index + 1]
|
||||
}
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
return messages
|
||||
|
||||
def generate_chat(self, inputs:str, llm_kwargs:dict, history:list, system_prompt:str):
|
||||
TAICHU_API_KEY = get_conf("TAICHU_API_KEY")
|
||||
params = {
|
||||
'api_key': TAICHU_API_KEY,
|
||||
'model_code': 'taichu_llm',
|
||||
'question': '\n\n'.join(history) + inputs,
|
||||
'prefix': system_prompt,
|
||||
'temperature': llm_kwargs.get('temperature', 0.95),
|
||||
'stream_format': 'json'
|
||||
}
|
||||
|
||||
api = 'https://ai-maas.wair.ac.cn/maas/v1/model_api/invoke'
|
||||
response = requests.post(api, json=params, stream=True)
|
||||
results = ""
|
||||
if response.status_code == 200:
|
||||
response.encoding = 'utf-8'
|
||||
for line in response.iter_lines(decode_unicode=True):
|
||||
delta = json.loads(line)['choices'][0]['text']
|
||||
results += delta
|
||||
yield delta, results
|
||||
else:
|
||||
raise ValueError
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
zhipu = TaichuChatInit()
|
||||
zhipu.generate_chat('你好', {'llm_model': 'glm-4'}, [], '你是WPSAi')
|
||||
@@ -36,8 +36,14 @@ class ZhipuChatInit:
|
||||
what_i_have_asked = {"role": "user", "content": []}
|
||||
what_i_have_asked['content'].append({"type": 'text', "text": user_input})
|
||||
if encode_img:
|
||||
if len(encode_img) > 1:
|
||||
logging.warning("glm-4v只支持一张图片,将只取第一张图片进行处理")
|
||||
print("glm-4v只支持一张图片,将只取第一张图片进行处理")
|
||||
img_d = {"type": "image_url",
|
||||
"image_url": {'url': encode_img}}
|
||||
"image_url": {
|
||||
"url": encode_img[0]['data']
|
||||
}
|
||||
}
|
||||
what_i_have_asked['content'].append(img_d)
|
||||
return what_i_have_asked
|
||||
|
||||
|
||||
@@ -0,0 +1,402 @@
|
||||
import json
|
||||
import time
|
||||
import logging
|
||||
import traceback
|
||||
import requests
|
||||
|
||||
# config_private.py放自己的秘密如API和代理网址
|
||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||
from toolbox import (
|
||||
get_conf,
|
||||
update_ui,
|
||||
is_the_upload_folder,
|
||||
)
|
||||
|
||||
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf(
|
||||
"proxies", "TIMEOUT_SECONDS", "MAX_RETRY"
|
||||
)
|
||||
|
||||
timeout_bot_msg = (
|
||||
"[Local Message] Request timeout. Network error. Please check proxy settings in config.py."
|
||||
+ "网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。"
|
||||
)
|
||||
|
||||
|
||||
def get_full_error(chunk, stream_response):
|
||||
"""
|
||||
尝试获取完整的错误信息
|
||||
"""
|
||||
while True:
|
||||
try:
|
||||
chunk += next(stream_response)
|
||||
except:
|
||||
break
|
||||
return chunk
|
||||
|
||||
|
||||
def decode_chunk(chunk):
|
||||
"""
|
||||
用于解读"content"和"finish_reason"的内容
|
||||
"""
|
||||
chunk = chunk.decode()
|
||||
respose = ""
|
||||
finish_reason = "False"
|
||||
try:
|
||||
chunk = json.loads(chunk[6:])
|
||||
except:
|
||||
respose = "API_ERROR"
|
||||
finish_reason = chunk
|
||||
# 错误处理部分
|
||||
if "error" in chunk:
|
||||
respose = "API_ERROR"
|
||||
try:
|
||||
chunk = json.loads(chunk)
|
||||
finish_reason = chunk["error"]["code"]
|
||||
except:
|
||||
finish_reason = "API_ERROR"
|
||||
return respose, finish_reason
|
||||
|
||||
try:
|
||||
respose = chunk["choices"][0]["delta"]["content"]
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
finish_reason = chunk["choices"][0]["finish_reason"]
|
||||
except:
|
||||
pass
|
||||
return respose, finish_reason
|
||||
|
||||
|
||||
def generate_message(input, model, key, history, max_output_token, system_prompt, temperature):
|
||||
"""
|
||||
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||||
"""
|
||||
api_key = f"Bearer {key}"
|
||||
|
||||
headers = {"Content-Type": "application/json", "Authorization": api_key}
|
||||
|
||||
conversation_cnt = len(history) // 2
|
||||
|
||||
messages = [{"role": "system", "content": system_prompt}]
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2 * conversation_cnt, 2):
|
||||
what_i_have_asked = {}
|
||||
what_i_have_asked["role"] = "user"
|
||||
what_i_have_asked["content"] = history[index]
|
||||
what_gpt_answer = {}
|
||||
what_gpt_answer["role"] = "assistant"
|
||||
what_gpt_answer["content"] = history[index + 1]
|
||||
if what_i_have_asked["content"] != "":
|
||||
if what_gpt_answer["content"] == "":
|
||||
continue
|
||||
if what_gpt_answer["content"] == timeout_bot_msg:
|
||||
continue
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
else:
|
||||
messages[-1]["content"] = what_gpt_answer["content"]
|
||||
what_i_ask_now = {}
|
||||
what_i_ask_now["role"] = "user"
|
||||
what_i_ask_now["content"] = input
|
||||
messages.append(what_i_ask_now)
|
||||
playload = {
|
||||
"model": model,
|
||||
"messages": messages,
|
||||
"temperature": temperature,
|
||||
"stream": True,
|
||||
"max_tokens": max_output_token,
|
||||
}
|
||||
try:
|
||||
print(f" {model} : {conversation_cnt} : {input[:100]} ..........")
|
||||
except:
|
||||
print("输入中可能存在乱码。")
|
||||
return headers, playload
|
||||
|
||||
|
||||
def get_predict_function(
|
||||
api_key_conf_name,
|
||||
max_output_token,
|
||||
disable_proxy = False
|
||||
):
|
||||
"""
|
||||
为openai格式的API生成响应函数,其中传入参数:
|
||||
api_key_conf_name:
|
||||
`config.py`中此模型的APIKEY的名字,例如"YIMODEL_API_KEY"
|
||||
max_output_token:
|
||||
每次请求的最大token数量,例如对于01万物的yi-34b-chat-200k,其最大请求数为4096
|
||||
⚠️请不要与模型的最大token数量相混淆。
|
||||
disable_proxy:
|
||||
是否使用代理,True为不使用,False为使用。
|
||||
"""
|
||||
|
||||
APIKEY = get_conf(api_key_conf_name)
|
||||
|
||||
def predict_no_ui_long_connection(
|
||||
inputs,
|
||||
llm_kwargs,
|
||||
history=[],
|
||||
sys_prompt="",
|
||||
observe_window=None,
|
||||
console_slience=False,
|
||||
):
|
||||
"""
|
||||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||
inputs:
|
||||
是本次问询的输入
|
||||
sys_prompt:
|
||||
系统静默prompt
|
||||
llm_kwargs:
|
||||
chatGPT的内部调优参数
|
||||
history:
|
||||
是之前的对话列表
|
||||
observe_window = None:
|
||||
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||
"""
|
||||
watch_dog_patience = 5 # 看门狗的耐心,设置5秒不准咬人(咬的也不是人
|
||||
if len(APIKEY) == 0:
|
||||
raise RuntimeError(f"APIKEY为空,请检查配置文件的{APIKEY}")
|
||||
if inputs == "":
|
||||
inputs = "你好👋"
|
||||
headers, playload = generate_message(
|
||||
input=inputs,
|
||||
model=llm_kwargs["llm_model"],
|
||||
key=APIKEY,
|
||||
history=history,
|
||||
max_output_token=max_output_token,
|
||||
system_prompt=sys_prompt,
|
||||
temperature=llm_kwargs["temperature"],
|
||||
)
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
from .bridge_all import model_info
|
||||
|
||||
endpoint = model_info[llm_kwargs["llm_model"]]["endpoint"]
|
||||
if not disable_proxy:
|
||||
response = requests.post(
|
||||
endpoint,
|
||||
headers=headers,
|
||||
proxies=proxies,
|
||||
json=playload,
|
||||
stream=True,
|
||||
timeout=TIMEOUT_SECONDS,
|
||||
)
|
||||
else:
|
||||
response = requests.post(
|
||||
endpoint,
|
||||
headers=headers,
|
||||
json=playload,
|
||||
stream=True,
|
||||
timeout=TIMEOUT_SECONDS,
|
||||
)
|
||||
break
|
||||
except:
|
||||
retry += 1
|
||||
traceback.print_exc()
|
||||
if retry > MAX_RETRY:
|
||||
raise TimeoutError
|
||||
if MAX_RETRY != 0:
|
||||
print(f"请求超时,正在重试 ({retry}/{MAX_RETRY}) ……")
|
||||
|
||||
stream_response = response.iter_lines()
|
||||
result = ""
|
||||
while True:
|
||||
try:
|
||||
chunk = next(stream_response)
|
||||
except StopIteration:
|
||||
break
|
||||
except requests.exceptions.ConnectionError:
|
||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||
response_text, finish_reason = decode_chunk(chunk)
|
||||
# 返回的数据流第一次为空,继续等待
|
||||
if response_text == "" and finish_reason != "False":
|
||||
continue
|
||||
if response_text == "API_ERROR" and (
|
||||
finish_reason != "False" or finish_reason != "stop"
|
||||
):
|
||||
chunk = get_full_error(chunk, stream_response)
|
||||
chunk_decoded = chunk.decode()
|
||||
print(chunk_decoded)
|
||||
raise RuntimeError(
|
||||
f"API异常,请检测终端输出。可能的原因是:{finish_reason}"
|
||||
)
|
||||
if chunk:
|
||||
try:
|
||||
if finish_reason == "stop":
|
||||
logging.info(f"[response] {result}")
|
||||
break
|
||||
result += response_text
|
||||
if not console_slience:
|
||||
print(response_text, end="")
|
||||
if observe_window is not None:
|
||||
# 观测窗,把已经获取的数据显示出去
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] += response_text
|
||||
# 看门狗,如果超过期限没有喂狗,则终止
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time() - observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("用户取消了程序。")
|
||||
except Exception as e:
|
||||
chunk = get_full_error(chunk, stream_response)
|
||||
chunk_decoded = chunk.decode()
|
||||
error_msg = chunk_decoded
|
||||
print(error_msg)
|
||||
raise RuntimeError("Json解析不合常规")
|
||||
return result
|
||||
|
||||
def predict(
|
||||
inputs,
|
||||
llm_kwargs,
|
||||
plugin_kwargs,
|
||||
chatbot,
|
||||
history=[],
|
||||
system_prompt="",
|
||||
stream=True,
|
||||
additional_fn=None,
|
||||
):
|
||||
"""
|
||||
发送至chatGPT,流式获取输出。
|
||||
用于基础的对话功能。
|
||||
inputs 是本次问询的输入
|
||||
top_p, temperature是chatGPT的内部调优参数
|
||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
if len(APIKEY) == 0:
|
||||
raise RuntimeError(f"APIKEY为空,请检查配置文件的{APIKEY}")
|
||||
if inputs == "":
|
||||
inputs = "你好👋"
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
|
||||
inputs, history = handle_core_functionality(
|
||||
additional_fn, inputs, history, chatbot
|
||||
)
|
||||
logging.info(f"[raw_input] {inputs}")
|
||||
chatbot.append((inputs, ""))
|
||||
yield from update_ui(
|
||||
chatbot=chatbot, history=history, msg="等待响应"
|
||||
) # 刷新界面
|
||||
|
||||
# check mis-behavior
|
||||
if is_the_upload_folder(inputs):
|
||||
chatbot[-1] = (
|
||||
inputs,
|
||||
f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。",
|
||||
)
|
||||
yield from update_ui(
|
||||
chatbot=chatbot, history=history, msg="正常"
|
||||
) # 刷新界面
|
||||
time.sleep(2)
|
||||
|
||||
headers, playload = generate_message(
|
||||
input=inputs,
|
||||
model=llm_kwargs["llm_model"],
|
||||
key=APIKEY,
|
||||
history=history,
|
||||
max_output_token=max_output_token,
|
||||
system_prompt=system_prompt,
|
||||
temperature=llm_kwargs["temperature"],
|
||||
)
|
||||
|
||||
history.append(inputs)
|
||||
history.append("")
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
from .bridge_all import model_info
|
||||
|
||||
endpoint = model_info[llm_kwargs["llm_model"]]["endpoint"]
|
||||
if not disable_proxy:
|
||||
response = requests.post(
|
||||
endpoint,
|
||||
headers=headers,
|
||||
proxies=proxies,
|
||||
json=playload,
|
||||
stream=True,
|
||||
timeout=TIMEOUT_SECONDS,
|
||||
)
|
||||
else:
|
||||
response = requests.post(
|
||||
endpoint,
|
||||
headers=headers,
|
||||
json=playload,
|
||||
stream=True,
|
||||
timeout=TIMEOUT_SECONDS,
|
||||
)
|
||||
break
|
||||
except:
|
||||
retry += 1
|
||||
chatbot[-1] = (chatbot[-1][0], timeout_bot_msg)
|
||||
retry_msg = (
|
||||
f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
||||
)
|
||||
yield from update_ui(
|
||||
chatbot=chatbot, history=history, msg="请求超时" + retry_msg
|
||||
) # 刷新界面
|
||||
if retry > MAX_RETRY:
|
||||
raise TimeoutError
|
||||
|
||||
gpt_replying_buffer = ""
|
||||
|
||||
stream_response = response.iter_lines()
|
||||
while True:
|
||||
try:
|
||||
chunk = next(stream_response)
|
||||
except StopIteration:
|
||||
break
|
||||
except requests.exceptions.ConnectionError:
|
||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||
response_text, finish_reason = decode_chunk(chunk)
|
||||
# 返回的数据流第一次为空,继续等待
|
||||
if response_text == "" and finish_reason != "False":
|
||||
continue
|
||||
if chunk:
|
||||
try:
|
||||
if response_text == "API_ERROR" and (
|
||||
finish_reason != "False" or finish_reason != "stop"
|
||||
):
|
||||
chunk = get_full_error(chunk, stream_response)
|
||||
chunk_decoded = chunk.decode()
|
||||
chatbot[-1] = (
|
||||
chatbot[-1][0],
|
||||
"[Local Message] {finish_reason},获得以下报错信息:\n"
|
||||
+ chunk_decoded,
|
||||
)
|
||||
yield from update_ui(
|
||||
chatbot=chatbot,
|
||||
history=history,
|
||||
msg="API异常:" + chunk_decoded,
|
||||
) # 刷新界面
|
||||
print(chunk_decoded)
|
||||
return
|
||||
|
||||
if finish_reason == "stop":
|
||||
logging.info(f"[response] {gpt_replying_buffer}")
|
||||
break
|
||||
status_text = f"finish_reason: {finish_reason}"
|
||||
gpt_replying_buffer += response_text
|
||||
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
|
||||
history[-1] = gpt_replying_buffer
|
||||
chatbot[-1] = (history[-2], history[-1])
|
||||
yield from update_ui(
|
||||
chatbot=chatbot, history=history, msg=status_text
|
||||
) # 刷新界面
|
||||
except Exception as e:
|
||||
yield from update_ui(
|
||||
chatbot=chatbot, history=history, msg="Json解析不合常规"
|
||||
) # 刷新界面
|
||||
chunk = get_full_error(chunk, stream_response)
|
||||
chunk_decoded = chunk.decode()
|
||||
chatbot[-1] = (
|
||||
chatbot[-1][0],
|
||||
"[Local Message] 解析错误,获得以下报错信息:\n" + chunk_decoded,
|
||||
)
|
||||
yield from update_ui(
|
||||
chatbot=chatbot, history=history, msg="Json异常" + chunk_decoded
|
||||
) # 刷新界面
|
||||
print(chunk_decoded)
|
||||
return
|
||||
|
||||
return predict_no_ui_long_connection, predict
|
||||
@@ -1,7 +1,8 @@
|
||||
https://public.agent-matrix.com/publish/gradio-3.32.9-py3-none-any.whl
|
||||
https://public.agent-matrix.com/publish/gradio-3.32.10-py3-none-any.whl
|
||||
fastapi==0.110
|
||||
gradio-client==0.8
|
||||
pypdf2==2.12.1
|
||||
zhipuai>=2
|
||||
zhipuai==2.0.1
|
||||
tiktoken>=0.3.3
|
||||
requests[socks]
|
||||
pydantic==2.5.2
|
||||
@@ -22,8 +23,10 @@ pyautogen
|
||||
colorama
|
||||
Markdown
|
||||
pygments
|
||||
edge-tts
|
||||
pymupdf
|
||||
openai
|
||||
rjsmin
|
||||
arxiv
|
||||
numpy
|
||||
rich
|
||||
rich
|
||||
|
||||
@@ -46,6 +46,16 @@ code_highlight_configs_block_mermaid = {
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
mathpatterns = {
|
||||
r"(?<!\\|\$)(\$)([^\$]+)(\$)": {"allow_multi_lines": False}, # $...$
|
||||
r"(?<!\\)(\$\$)([^\$]+)(\$\$)": {"allow_multi_lines": True}, # $$...$$
|
||||
r"(?<!\\)(\\\[)(.+?)(\\\])": {"allow_multi_lines": False}, # \[...\]
|
||||
r'(?<!\\)(\\\()(.+?)(\\\))': {'allow_multi_lines': False}, # \(...\)
|
||||
# r'(?<!\\)(\\begin{([a-z]+?\*?)})(.+?)(\\end{\2})': {'allow_multi_lines': True}, # \begin...\end
|
||||
# r'(?<!\\)(\$`)([^`]+)(`\$)': {'allow_multi_lines': False}, # $`...`$
|
||||
}
|
||||
|
||||
def tex2mathml_catch_exception(content, *args, **kwargs):
|
||||
try:
|
||||
content = tex2mathml(content, *args, **kwargs)
|
||||
@@ -96,14 +106,7 @@ def is_equation(txt):
|
||||
return False
|
||||
if "$" not in txt and "\\[" not in txt:
|
||||
return False
|
||||
mathpatterns = {
|
||||
r"(?<!\\|\$)(\$)([^\$]+)(\$)": {"allow_multi_lines": False}, # $...$
|
||||
r"(?<!\\)(\$\$)([^\$]+)(\$\$)": {"allow_multi_lines": True}, # $$...$$
|
||||
r"(?<!\\)(\\\[)(.+?)(\\\])": {"allow_multi_lines": False}, # \[...\]
|
||||
# r'(?<!\\)(\\\()(.+?)(\\\))': {'allow_multi_lines': False}, # \(...\)
|
||||
# r'(?<!\\)(\\begin{([a-z]+?\*?)})(.+?)(\\end{\2})': {'allow_multi_lines': True}, # \begin...\end
|
||||
# r'(?<!\\)(\$`)([^`]+)(`\$)': {'allow_multi_lines': False}, # $`...`$
|
||||
}
|
||||
|
||||
matches = []
|
||||
for pattern, property in mathpatterns.items():
|
||||
flags = re.ASCII | re.DOTALL if property["allow_multi_lines"] else re.ASCII
|
||||
@@ -207,6 +210,118 @@ def fix_code_segment_indent(txt):
|
||||
return txt
|
||||
|
||||
|
||||
def fix_dollar_sticking_bug(txt):
|
||||
"""
|
||||
修复不标准的dollar公式符号的问题
|
||||
"""
|
||||
txt_result = ""
|
||||
single_stack_height = 0
|
||||
double_stack_height = 0
|
||||
while True:
|
||||
while True:
|
||||
index = txt.find('$')
|
||||
|
||||
if index == -1:
|
||||
txt_result += txt
|
||||
return txt_result
|
||||
|
||||
if single_stack_height > 0:
|
||||
if txt[:(index+1)].find('\n') > 0 or txt[:(index+1)].find('<td>') > 0 or txt[:(index+1)].find('</td>') > 0:
|
||||
print('公式之中出现了异常 (Unexpect element in equation)')
|
||||
single_stack_height = 0
|
||||
txt_result += ' $'
|
||||
continue
|
||||
|
||||
if double_stack_height > 0:
|
||||
if txt[:(index+1)].find('\n\n') > 0:
|
||||
print('公式之中出现了异常 (Unexpect element in equation)')
|
||||
double_stack_height = 0
|
||||
txt_result += '$$'
|
||||
continue
|
||||
|
||||
is_double = (txt[index+1] == '$')
|
||||
if is_double:
|
||||
if single_stack_height != 0:
|
||||
# add a padding
|
||||
txt = txt[:(index+1)] + " " + txt[(index+1):]
|
||||
continue
|
||||
if double_stack_height == 0:
|
||||
double_stack_height = 1
|
||||
else:
|
||||
double_stack_height = 0
|
||||
txt_result += txt[:(index+2)]
|
||||
txt = txt[(index+2):]
|
||||
else:
|
||||
if double_stack_height != 0:
|
||||
# print(txt[:(index)])
|
||||
print('发现异常嵌套公式')
|
||||
if single_stack_height == 0:
|
||||
single_stack_height = 1
|
||||
else:
|
||||
single_stack_height = 0
|
||||
# print(txt[:(index)])
|
||||
txt_result += txt[:(index+1)]
|
||||
txt = txt[(index+1):]
|
||||
break
|
||||
|
||||
|
||||
def markdown_convertion_for_file(txt):
|
||||
"""
|
||||
将Markdown格式的文本转换为HTML格式。如果包含数学公式,则先将公式转换为HTML格式。
|
||||
"""
|
||||
from themes.theme import advanced_css
|
||||
pre = f"""
|
||||
<!DOCTYPE html><head><meta charset="utf-8"><title>PDF文档翻译</title><style>{advanced_css}</style></head>
|
||||
<body>
|
||||
<div class="test_temp1" style="width:10%; height: 500px; float:left;"></div>
|
||||
<div class="test_temp2" style="width:80%;padding: 40px;float:left;padding-left: 20px;padding-right: 20px;box-shadow: rgba(0, 0, 0, 0.2) 0px 0px 8px 8px;border-radius: 10px;">
|
||||
<div class="markdown-body">
|
||||
"""
|
||||
suf = """
|
||||
</div>
|
||||
</div>
|
||||
<div class="test_temp3" style="width:10%; height: 500px; float:left;"></div>
|
||||
</body>
|
||||
"""
|
||||
|
||||
if txt.startswith(pre) and txt.endswith(suf):
|
||||
# print('警告,输入了已经经过转化的字符串,二次转化可能出问题')
|
||||
return txt # 已经被转化过,不需要再次转化
|
||||
|
||||
find_equation_pattern = r'<script type="math/tex(?:.*?)>(.*?)</script>'
|
||||
txt = fix_markdown_indent(txt)
|
||||
convert_stage_1 = fix_dollar_sticking_bug(txt)
|
||||
# convert everything to html format
|
||||
convert_stage_2 = markdown.markdown(
|
||||
text=convert_stage_1,
|
||||
extensions=[
|
||||
"sane_lists",
|
||||
"tables",
|
||||
"mdx_math",
|
||||
"pymdownx.superfences",
|
||||
"pymdownx.highlight",
|
||||
],
|
||||
extension_configs={**markdown_extension_configs, **code_highlight_configs},
|
||||
)
|
||||
|
||||
|
||||
def repl_fn(match):
|
||||
content = match.group(2)
|
||||
return f'<script type="math/tex">{content}</script>'
|
||||
|
||||
pattern = "|".join([pattern for pattern, property in mathpatterns.items() if not property["allow_multi_lines"]])
|
||||
pattern = re.compile(pattern, flags=re.ASCII)
|
||||
convert_stage_3 = pattern.sub(repl_fn, convert_stage_2)
|
||||
|
||||
convert_stage_4 = markdown_bug_hunt(convert_stage_3)
|
||||
|
||||
# 2. convert to rendered equation
|
||||
convert_stage_5, n = re.subn(
|
||||
find_equation_pattern, replace_math_render, convert_stage_4, flags=re.DOTALL
|
||||
)
|
||||
# cat them together
|
||||
return pre + convert_stage_5 + suf
|
||||
|
||||
@lru_cache(maxsize=128) # 使用 lru缓存 加快转换速度
|
||||
def markdown_convertion(txt):
|
||||
"""
|
||||
@@ -358,4 +473,4 @@ def format_io(self, y):
|
||||
# 输出部分
|
||||
None if gpt_reply is None else markdown_convertion(gpt_reply),
|
||||
)
|
||||
return y
|
||||
return y
|
||||
@@ -0,0 +1,25 @@
|
||||
def is_full_width_char(ch):
|
||||
"""判断给定的单个字符是否是全角字符"""
|
||||
if '\u4e00' <= ch <= '\u9fff':
|
||||
return True # 中文字符
|
||||
if '\uff01' <= ch <= '\uff5e':
|
||||
return True # 全角符号
|
||||
if '\u3000' <= ch <= '\u303f':
|
||||
return True # CJK标点符号
|
||||
return False
|
||||
|
||||
def scolling_visual_effect(text, scroller_max_len):
|
||||
text = text.\
|
||||
replace('\n', '').replace('`', '.').replace(' ', '.').replace('<br/>', '.....').replace('$', '.')
|
||||
place_take_cnt = 0
|
||||
pointer = len(text) - 1
|
||||
|
||||
if len(text) < scroller_max_len:
|
||||
return text
|
||||
|
||||
while place_take_cnt < scroller_max_len and pointer > 0:
|
||||
if is_full_width_char(text[pointer]): place_take_cnt += 2
|
||||
else: place_take_cnt += 1
|
||||
pointer -= 1
|
||||
|
||||
return text[pointer:]
|
||||
@@ -2,7 +2,7 @@ import importlib
|
||||
import time
|
||||
import os
|
||||
from functools import lru_cache
|
||||
from colorful import print亮红, print亮绿, print亮蓝
|
||||
from shared_utils.colorful import print亮红, print亮绿, print亮蓝
|
||||
|
||||
pj = os.path.join
|
||||
default_user_name = 'default_user'
|
||||
|
||||
@@ -15,13 +15,13 @@ import os
|
||||
|
||||
def get_plugin_handle(plugin_name):
|
||||
"""
|
||||
e.g. plugin_name = 'crazy_functions.批量Markdown翻译->Markdown翻译指定语言'
|
||||
e.g. plugin_name = 'crazy_functions.Markdown_Translate->Markdown翻译指定语言'
|
||||
"""
|
||||
import importlib
|
||||
|
||||
assert (
|
||||
"->" in plugin_name
|
||||
), "Example of plugin_name: crazy_functions.批量Markdown翻译->Markdown翻译指定语言"
|
||||
), "Example of plugin_name: crazy_functions.Markdown_Translate->Markdown翻译指定语言"
|
||||
module, fn_name = plugin_name.split("->")
|
||||
f_hot_reload = getattr(importlib.import_module(module, fn_name), fn_name)
|
||||
return f_hot_reload
|
||||
|
||||
@@ -1,4 +1,7 @@
|
||||
import json
|
||||
import base64
|
||||
from typing import Callable
|
||||
|
||||
def load_web_cookie_cache__fn_builder(customize_btns, cookies, predefined_btns)->Callable:
|
||||
def load_web_cookie_cache(persistent_cookie_, cookies_):
|
||||
import gradio as gr
|
||||
@@ -22,7 +25,6 @@ def load_web_cookie_cache__fn_builder(customize_btns, cookies, predefined_btns)-
|
||||
return ret
|
||||
return load_web_cookie_cache
|
||||
|
||||
|
||||
def assign_btn__fn_builder(customize_btns, predefined_btns, cookies, web_cookie_cache)->Callable:
|
||||
def assign_btn(persistent_cookie_, cookies_, basic_btn_dropdown_, basic_fn_title, basic_fn_prefix, basic_fn_suffix, clean_up=False):
|
||||
import gradio as gr
|
||||
@@ -59,3 +61,84 @@ def assign_btn__fn_builder(customize_btns, predefined_btns, cookies, web_cookie_
|
||||
return ret
|
||||
return assign_btn
|
||||
|
||||
# cookies, web_cookie_cache = make_cookie_cache()
|
||||
def make_cookie_cache():
|
||||
# 定义 后端state(cookies)、前端(web_cookie_cache)两兄弟
|
||||
import gradio as gr
|
||||
from toolbox import load_chat_cookies
|
||||
# 定义cookies的后端state
|
||||
cookies = gr.State(load_chat_cookies())
|
||||
# 定义cookies的一个孪生的前端存储区(隐藏)
|
||||
web_cookie_cache = gr.Textbox(visible=False, elem_id="web_cookie_cache")
|
||||
return cookies, web_cookie_cache
|
||||
|
||||
# history, history_cache, history_cache_update = make_history_cache()
|
||||
def make_history_cache():
|
||||
# 定义 后端state(history)、前端(history_cache)、后端setter(history_cache_update)三兄弟
|
||||
import gradio as gr
|
||||
# 定义history的后端state
|
||||
history = gr.State([])
|
||||
# 定义history的一个孪生的前端存储区(隐藏)
|
||||
history_cache = gr.Textbox(visible=False, elem_id="history_cache")
|
||||
# 定义history_cache->history的更新方法(隐藏)。在触发这个按钮时,会先执行js代码更新history_cache,然后再执行python代码更新history
|
||||
def process_history_cache(history_cache):
|
||||
return json.loads(history_cache)
|
||||
# 另一种更简单的setter方法
|
||||
history_cache_update = gr.Button("", elem_id="elem_update_history", visible=False).click(
|
||||
process_history_cache, inputs=[history_cache], outputs=[history])
|
||||
return history, history_cache, history_cache_update
|
||||
|
||||
|
||||
|
||||
# """
|
||||
# with gr.Row():
|
||||
# txt = gr.Textbox(show_label=False, placeholder="Input question here.", elem_id='user_input_main').style(container=False)
|
||||
# txtx = gr.Textbox(show_label=False, placeholder="Input question here.", elem_id='user_input_main').style(container=False)
|
||||
# with gr.Row():
|
||||
# btn_value = "Test"
|
||||
# elem_id = "TestCase"
|
||||
# variant = "primary"
|
||||
# input_list = [txt, txtx]
|
||||
# output_list = [txt, txtx]
|
||||
# input_name_list = ["txt(input)", "txtx(input)"]
|
||||
# output_name_list = ["txt", "txtx"]
|
||||
# js_callback = """(txt, txtx)=>{console.log(txt); console.log(txtx);}"""
|
||||
# def function(txt, txtx):
|
||||
# return "booo", "goooo"
|
||||
# create_button_with_javascript_callback(btn_value, elem_id, variant, js_callback, input_list, output_list, function, input_name_list, output_name_list)
|
||||
# """
|
||||
def create_button_with_javascript_callback(btn_value, elem_id, variant, js_callback, input_list, output_list, function, input_name_list, output_name_list):
|
||||
import gradio as gr
|
||||
middle_ware_component = gr.Textbox(visible=False, elem_id=elem_id+'_buffer')
|
||||
def get_fn_wrap():
|
||||
def fn_wrap(*args):
|
||||
summary_dict = {}
|
||||
for name, value in zip(input_name_list, args):
|
||||
summary_dict.update({name: value})
|
||||
|
||||
res = function(*args)
|
||||
|
||||
for name, value in zip(output_name_list, res):
|
||||
summary_dict.update({name: value})
|
||||
|
||||
summary = base64.b64encode(json.dumps(summary_dict).encode('utf8')).decode("utf-8")
|
||||
return (*res, summary)
|
||||
return fn_wrap
|
||||
|
||||
btn = gr.Button(btn_value, elem_id=elem_id, variant=variant)
|
||||
call_args = ""
|
||||
for name in output_name_list:
|
||||
call_args += f"""Data["{name}"],"""
|
||||
call_args = call_args.rstrip(",")
|
||||
_js_callback = """
|
||||
(base64MiddleString)=>{
|
||||
console.log('hello')
|
||||
const stringData = atob(base64MiddleString);
|
||||
let Data = JSON.parse(stringData);
|
||||
call = JS_CALLBACK_GEN;
|
||||
call(CALL_ARGS);
|
||||
}
|
||||
""".replace("JS_CALLBACK_GEN", js_callback).replace("CALL_ARGS", call_args)
|
||||
|
||||
btn.click(get_fn_wrap(), input_list, output_list+[middle_ware_component]).then(None, [middle_ware_component], None, _js=_js_callback)
|
||||
return btn
|
||||
@@ -47,6 +47,28 @@ queue cocurrent effectiveness
|
||||
import os, requests, threading, time
|
||||
import uvicorn
|
||||
|
||||
def validate_path_safety(path_or_url, user):
|
||||
from toolbox import get_conf, default_user_name
|
||||
from toolbox import FriendlyException
|
||||
PATH_PRIVATE_UPLOAD, PATH_LOGGING = get_conf('PATH_PRIVATE_UPLOAD', 'PATH_LOGGING')
|
||||
sensitive_path = None
|
||||
path_or_url = os.path.relpath(path_or_url)
|
||||
if path_or_url.startswith(PATH_LOGGING): # 日志文件(按用户划分)
|
||||
sensitive_path = PATH_LOGGING
|
||||
elif path_or_url.startswith(PATH_PRIVATE_UPLOAD): # 用户的上传目录(按用户划分)
|
||||
sensitive_path = PATH_PRIVATE_UPLOAD
|
||||
elif path_or_url.startswith('tests'): # 一个常用的测试目录
|
||||
return True
|
||||
else:
|
||||
raise FriendlyException(f"输入文件的路径 ({path_or_url}) 存在,但位置非法。请将文件上传后再执行该任务。") # return False
|
||||
if sensitive_path:
|
||||
allowed_users = [user, 'autogen', 'arxiv_cache', default_user_name] # three user path that can be accessed
|
||||
for user_allowed in allowed_users:
|
||||
if f"{os.sep}".join(path_or_url.split(os.sep)[:2]) == os.path.join(sensitive_path, user_allowed):
|
||||
return True
|
||||
raise FriendlyException(f"输入文件的路径 ({path_or_url}) 存在,但属于其他用户。请将文件上传后再执行该任务。") # return False
|
||||
return True
|
||||
|
||||
def _authorize_user(path_or_url, request, gradio_app):
|
||||
from toolbox import get_conf, default_user_name
|
||||
PATH_PRIVATE_UPLOAD, PATH_LOGGING = get_conf('PATH_PRIVATE_UPLOAD', 'PATH_LOGGING')
|
||||
@@ -59,7 +81,7 @@ def _authorize_user(path_or_url, request, gradio_app):
|
||||
if sensitive_path:
|
||||
token = request.cookies.get("access-token") or request.cookies.get("access-token-unsecure")
|
||||
user = gradio_app.tokens.get(token) # get user
|
||||
allowed_users = [user, 'autogen', default_user_name] # three user path that can be accessed
|
||||
allowed_users = [user, 'autogen', 'arxiv_cache', default_user_name] # three user path that can be accessed
|
||||
for user_allowed in allowed_users:
|
||||
# exact match
|
||||
if f"{os.sep}".join(path_or_url.split(os.sep)[:2]) == os.path.join(sensitive_path, user_allowed):
|
||||
@@ -77,7 +99,7 @@ class Server(uvicorn.Server):
|
||||
self.thread = threading.Thread(target=self.run, daemon=True)
|
||||
self.thread.start()
|
||||
while not self.started:
|
||||
time.sleep(1e-3)
|
||||
time.sleep(5e-2)
|
||||
|
||||
def close(self):
|
||||
self.should_exit = True
|
||||
@@ -137,6 +159,60 @@ def start_app(app_block, CONCURRENT_COUNT, AUTHENTICATION, PORT, SSL_KEYFILE, SS
|
||||
return "越权访问!"
|
||||
return await endpoint(path_or_url, request)
|
||||
|
||||
from fastapi import Request, status
|
||||
from fastapi.responses import FileResponse, RedirectResponse
|
||||
@gradio_app.get("/academic_logout")
|
||||
async def logout():
|
||||
response = RedirectResponse(url=CUSTOM_PATH, status_code=status.HTTP_302_FOUND)
|
||||
response.delete_cookie('access-token')
|
||||
response.delete_cookie('access-token-unsecure')
|
||||
return response
|
||||
|
||||
# --- --- enable TTS (text-to-speech) functionality --- ---
|
||||
TTS_TYPE = get_conf("TTS_TYPE")
|
||||
if TTS_TYPE != "DISABLE":
|
||||
# audio generation functionality
|
||||
import httpx
|
||||
from fastapi import FastAPI, Request, HTTPException
|
||||
from starlette.responses import Response
|
||||
async def forward_request(request: Request, method: str) -> Response:
|
||||
async with httpx.AsyncClient() as client:
|
||||
try:
|
||||
# Forward the request to the target service
|
||||
if TTS_TYPE == "EDGE_TTS":
|
||||
import tempfile
|
||||
import edge_tts
|
||||
import wave
|
||||
import uuid
|
||||
from pydub import AudioSegment
|
||||
json = await request.json()
|
||||
voice = get_conf("EDGE_TTS_VOICE")
|
||||
tts = edge_tts.Communicate(text=json['text'], voice=voice)
|
||||
temp_folder = tempfile.gettempdir()
|
||||
temp_file_name = str(uuid.uuid4().hex)
|
||||
temp_file = os.path.join(temp_folder, f'{temp_file_name}.mp3')
|
||||
await tts.save(temp_file)
|
||||
try:
|
||||
mp3_audio = AudioSegment.from_file(temp_file, format="mp3")
|
||||
mp3_audio.export(temp_file, format="wav")
|
||||
with open(temp_file, 'rb') as wav_file: t = wav_file.read()
|
||||
os.remove(temp_file)
|
||||
return Response(content=t)
|
||||
except:
|
||||
raise RuntimeError("ffmpeg未安装,无法处理EdgeTTS音频。安装方法见`https://github.com/jiaaro/pydub#getting-ffmpeg-set-up`")
|
||||
if TTS_TYPE == "LOCAL_SOVITS_API":
|
||||
# Forward the request to the target service
|
||||
TARGET_URL = get_conf("GPT_SOVITS_URL")
|
||||
body = await request.body()
|
||||
resp = await client.post(TARGET_URL, content=body, timeout=60)
|
||||
# Return the response from the target service
|
||||
return Response(content=resp.content, status_code=resp.status_code, headers=dict(resp.headers))
|
||||
except httpx.RequestError as e:
|
||||
raise HTTPException(status_code=400, detail=f"Request to the target service failed: {str(e)}")
|
||||
@gradio_app.post("/vits")
|
||||
async def forward_post_request(request: Request):
|
||||
return await forward_request(request, "POST")
|
||||
|
||||
# --- --- app_lifespan --- ---
|
||||
from contextlib import asynccontextmanager
|
||||
@asynccontextmanager
|
||||
@@ -154,13 +230,22 @@ def start_app(app_block, CONCURRENT_COUNT, AUTHENTICATION, PORT, SSL_KEYFILE, SS
|
||||
fastapi_app = FastAPI(lifespan=app_lifespan)
|
||||
fastapi_app.mount(CUSTOM_PATH, gradio_app)
|
||||
|
||||
# --- --- favicon --- ---
|
||||
# --- --- favicon and block fastapi api reference routes --- ---
|
||||
from starlette.responses import JSONResponse
|
||||
if CUSTOM_PATH != '/':
|
||||
from fastapi.responses import FileResponse
|
||||
@fastapi_app.get("/favicon.ico")
|
||||
async def favicon():
|
||||
return FileResponse(app_block.favicon_path)
|
||||
|
||||
@fastapi_app.middleware("http")
|
||||
async def middleware(request: Request, call_next):
|
||||
if request.scope['path'] in ["/docs", "/redoc", "/openapi.json"]:
|
||||
return JSONResponse(status_code=404, content={"message": "Not Found"})
|
||||
response = await call_next(request)
|
||||
return response
|
||||
|
||||
|
||||
# --- --- uvicorn.Config --- ---
|
||||
ssl_keyfile = None if SSL_KEYFILE == "" else SSL_KEYFILE
|
||||
ssl_certfile = None if SSL_CERTFILE == "" else SSL_CERTFILE
|
||||
@@ -208,4 +293,4 @@ def start_app(app_block, CONCURRENT_COUNT, AUTHENTICATION, PORT, SSL_KEYFILE, SS
|
||||
}
|
||||
requests.get(f"{app_block.local_url}startup-events", verify=app_block.ssl_verify, proxies=forbid_proxies)
|
||||
app_block.is_running = True
|
||||
app_block.block_thread()
|
||||
app_block.block_thread()
|
||||
@@ -104,6 +104,14 @@ def extract_archive(file_path, dest_dir):
|
||||
|
||||
elif file_extension in [".tar", ".gz", ".bz2"]:
|
||||
with tarfile.open(file_path, "r:*") as tarobj:
|
||||
# 清理提取路径,移除任何不安全的元素
|
||||
for member in tarobj.getmembers():
|
||||
member_path = os.path.normpath(member.name)
|
||||
full_path = os.path.join(dest_dir, member_path)
|
||||
full_path = os.path.abspath(full_path)
|
||||
if not full_path.startswith(os.path.abspath(dest_dir) + os.sep):
|
||||
raise Exception(f"Attempted Path Traversal in {member.name}")
|
||||
|
||||
tarobj.extractall(path=dest_dir)
|
||||
print("Successfully extracted tar archive to {}".format(dest_dir))
|
||||
|
||||
|
||||
@@ -14,7 +14,7 @@ def is_openai_api_key(key):
|
||||
if len(CUSTOM_API_KEY_PATTERN) != 0:
|
||||
API_MATCH_ORIGINAL = re.match(CUSTOM_API_KEY_PATTERN, key)
|
||||
else:
|
||||
API_MATCH_ORIGINAL = re.match(r"sk-[a-zA-Z0-9]{48}$|sess-[a-zA-Z0-9]{40}$", key)
|
||||
API_MATCH_ORIGINAL = re.match(r"sk-[a-zA-Z0-9]{48}$|sk-proj-[a-zA-Z0-9]{48}$|sess-[a-zA-Z0-9]{40}$", key)
|
||||
return bool(API_MATCH_ORIGINAL)
|
||||
|
||||
|
||||
|
||||
@@ -26,6 +26,8 @@ def apply_gpt_academic_string_mask(string, mode="show_all"):
|
||||
当字符串中有掩码tag时(<gpt_academic_string_mask><show_...>),根据字符串要给谁看(大模型,还是web渲染),对字符串进行处理,返回处理后的字符串
|
||||
示意图:https://mermaid.live/edit#pako:eNqlkUtLw0AUhf9KuOta0iaTplkIPlpduFJwoZEwJGNbzItpita2O6tF8QGKogXFtwu7cSHiq3-mk_oznFR8IYLgrGbuOd9hDrcCpmcR0GDW9ubNPKaBMDauuwI_A9M6YN-3y0bODwxsYos4BdMoBrTg5gwHF-d0mBH6-vqFQe58ed5m9XPW2uteX3Tubrj0ljLYcwxxR3h1zB43WeMs3G19yEM9uapDMe_NG9i2dagKw1Fee4c1D9nGEbtc-5n6HbNtJ8IyHOs8tbs7V2HrlDX2w2Y7XD_5haHEtQiNsOwfMVa_7TzsvrWIuJGo02qTrdwLk9gukQylHv3Afv1ML270s-HZUndrmW1tdA-WfvbM_jMFYuAQ6uCCxVdciTJ1CPLEITpo_GphypeouzXuw6XAmyi7JmgBLZEYlHwLB2S4gHMUO-9DH7tTnvf1CVoFFkBLSOk4QmlRTqpIlaWUHINyNFXjaQWpCYRURUKiWovBYo8X4ymEJFlECQUpqaQkJmuvWygPpg
|
||||
"""
|
||||
if not string:
|
||||
return string
|
||||
if "<gpt_academic_string_mask>" not in string: # No need to process
|
||||
return string
|
||||
|
||||
|
||||
22
tests/test_latex_auto_correct.py
普通文件
22
tests/test_latex_auto_correct.py
普通文件
@@ -0,0 +1,22 @@
|
||||
"""
|
||||
对项目中的各个插件进行测试。运行方法:直接运行 python tests/test_plugins.py
|
||||
"""
|
||||
|
||||
|
||||
import os, sys, importlib
|
||||
|
||||
|
||||
def validate_path():
|
||||
dir_name = os.path.dirname(__file__)
|
||||
root_dir_assume = os.path.abspath(dir_name + "/..")
|
||||
os.chdir(root_dir_assume)
|
||||
sys.path.append(root_dir_assume)
|
||||
|
||||
|
||||
validate_path() # 返回项目根路径
|
||||
|
||||
if __name__ == "__main__":
|
||||
plugin_test = importlib.import_module('test_utils').plugin_test
|
||||
|
||||
|
||||
plugin_test(plugin='crazy_functions.Latex_Function->Latex翻译中文并重新编译PDF', main_input="2203.01927")
|
||||
@@ -14,12 +14,13 @@ validate_path() # validate path so you can run from base directory
|
||||
|
||||
if "在线模型":
|
||||
if __name__ == "__main__":
|
||||
from request_llms.bridge_cohere import predict_no_ui_long_connection
|
||||
from request_llms.bridge_taichu import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_cohere import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_spark import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_zhipu import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_chatglm3 import predict_no_ui_long_connection
|
||||
llm_kwargs = {
|
||||
"llm_model": "command-r-plus",
|
||||
"llm_model": "taichu",
|
||||
"max_length": 4096,
|
||||
"top_p": 1,
|
||||
"temperature": 1,
|
||||
|
||||
@@ -43,8 +43,10 @@ def validate_path():
|
||||
|
||||
validate_path() # validate path so you can run from base directory
|
||||
from toolbox import markdown_convertion
|
||||
|
||||
html = markdown_convertion(md)
|
||||
from shared_utils.advanced_markdown_format import markdown_convertion_for_file
|
||||
with open("gpt_log/default_user/shared/2024-04-22-01-27-43.zip.extract/translated_markdown.md", "r", encoding="utf-8") as f:
|
||||
md = f.read()
|
||||
html = markdown_convertion_for_file(md)
|
||||
# print(html)
|
||||
with open("test.html", "w", encoding="utf-8") as f:
|
||||
f.write(html)
|
||||
|
||||
@@ -18,14 +18,18 @@ validate_path() # 返回项目根路径
|
||||
if __name__ == "__main__":
|
||||
from tests.test_utils import plugin_test
|
||||
|
||||
plugin_test(plugin='crazy_functions.Internet_GPT->连接网络回答问题', main_input="谁是应急食品?")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.函数动态生成->函数动态生成', main_input='交换图像的蓝色通道和红色通道', advanced_arg={"file_path_arg": "./build/ants.jpg"})
|
||||
|
||||
# plugin_test(plugin='crazy_functions.Latex输出PDF->Latex翻译中文并重新编译PDF', main_input="2307.07522")
|
||||
# plugin_test(plugin='crazy_functions.Latex_Function->Latex翻译中文并重新编译PDF', main_input="2307.07522")
|
||||
|
||||
plugin_test(
|
||||
plugin="crazy_functions.Latex输出PDF->Latex翻译中文并重新编译PDF",
|
||||
main_input="G:/SEAFILE_LOCAL/50503047/我的资料库/学位/paperlatex/aaai/Fu_8368_with_appendix",
|
||||
)
|
||||
# plugin_test(plugin='crazy_functions.PDF_Translate->批量翻译PDF文档', main_input='build/pdf/t1.pdf')
|
||||
|
||||
# plugin_test(
|
||||
# plugin="crazy_functions.Latex_Function->Latex翻译中文并重新编译PDF",
|
||||
# main_input="G:/SEAFILE_LOCAL/50503047/我的资料库/学位/paperlatex/aaai/Fu_8368_with_appendix",
|
||||
# )
|
||||
|
||||
# plugin_test(plugin='crazy_functions.虚空终端->虚空终端', main_input='修改api-key为sk-jhoejriotherjep')
|
||||
|
||||
@@ -41,9 +45,9 @@ if __name__ == "__main__":
|
||||
|
||||
# plugin_test(plugin='crazy_functions.Latex全文润色->Latex英文润色', main_input="crazy_functions/test_project/latex/attention")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.批量Markdown翻译->Markdown中译英', main_input="README.md")
|
||||
# plugin_test(plugin='crazy_functions.Markdown_Translate->Markdown中译英', main_input="README.md")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.批量翻译PDF文档_多线程->批量翻译PDF文档', main_input='crazy_functions/test_project/pdf_and_word/aaai.pdf')
|
||||
# plugin_test(plugin='crazy_functions.PDF_Translate->批量翻译PDF文档', main_input='crazy_functions/test_project/pdf_and_word/aaai.pdf')
|
||||
|
||||
# plugin_test(plugin='crazy_functions.谷歌检索小助手->谷歌检索小助手', main_input="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=auto+reinforcement+learning&btnG=")
|
||||
|
||||
@@ -58,7 +62,7 @@ if __name__ == "__main__":
|
||||
# plugin_test(plugin='crazy_functions.数学动画生成manim->动画生成', main_input="A ball split into 2, and then split into 4, and finally split into 8.")
|
||||
|
||||
# for lang in ["English", "French", "Japanese", "Korean", "Russian", "Italian", "German", "Portuguese", "Arabic"]:
|
||||
# plugin_test(plugin='crazy_functions.批量Markdown翻译->Markdown翻译指定语言', main_input="README.md", advanced_arg={"advanced_arg": lang})
|
||||
# plugin_test(plugin='crazy_functions.Markdown_Translate->Markdown翻译指定语言', main_input="README.md", advanced_arg={"advanced_arg": lang})
|
||||
|
||||
# plugin_test(plugin='crazy_functions.知识库文件注入->知识库文件注入', main_input="./")
|
||||
|
||||
@@ -66,7 +70,7 @@ if __name__ == "__main__":
|
||||
|
||||
# plugin_test(plugin='crazy_functions.知识库文件注入->读取知识库作答', main_input="远程云服务器部署?")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.Latex输出PDF->Latex翻译中文并重新编译PDF', main_input="2210.03629")
|
||||
# plugin_test(plugin='crazy_functions.Latex_Function->Latex翻译中文并重新编译PDF', main_input="2210.03629")
|
||||
|
||||
# advanced_arg = {"advanced_arg":"--llm_to_learn=gpt-3.5-turbo --prompt_prefix='根据下面的服装类型提示,想象一个穿着者,对这个人外貌、身处的环境、内心世界、人设进行描写。要求:100字以内,用第二人称。' --system_prompt=''" }
|
||||
# plugin_test(plugin='crazy_functions.chatglm微调工具->微调数据集生成', main_input='build/dev.json', advanced_arg=advanced_arg)
|
||||
|
||||
17
tests/test_safe_pickle.py
普通文件
17
tests/test_safe_pickle.py
普通文件
@@ -0,0 +1,17 @@
|
||||
def validate_path():
|
||||
import os, sys
|
||||
os.path.dirname(__file__)
|
||||
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + "/..")
|
||||
os.chdir(root_dir_assume)
|
||||
sys.path.append(root_dir_assume)
|
||||
validate_path() # validate path so you can run from base directory
|
||||
|
||||
from crazy_functions.latex_fns.latex_pickle_io import objdump, objload
|
||||
from crazy_functions.latex_fns.latex_actions import LatexPaperFileGroup, LatexPaperSplit
|
||||
pfg = LatexPaperFileGroup()
|
||||
pfg.get_token_num = None
|
||||
pfg.target = "target_elem"
|
||||
x = objdump(pfg)
|
||||
t = objload()
|
||||
|
||||
print(t.target)
|
||||
102
tests/test_save_chat_to_html.py
普通文件
102
tests/test_save_chat_to_html.py
普通文件
@@ -0,0 +1,102 @@
|
||||
def validate_path():
|
||||
import os, sys
|
||||
os.path.dirname(__file__)
|
||||
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + "/..")
|
||||
os.chdir(root_dir_assume)
|
||||
sys.path.append(root_dir_assume)
|
||||
validate_path() # validate path so you can run from base directory
|
||||
|
||||
def write_chat_to_file(chatbot, history=None, file_name=None):
|
||||
"""
|
||||
将对话记录history以Markdown格式写入文件中。如果没有指定文件名,则使用当前时间生成文件名。
|
||||
"""
|
||||
import os
|
||||
import time
|
||||
from themes.theme import advanced_css
|
||||
# debug
|
||||
import pickle
|
||||
# def objdump(obj, file="objdump.tmp"):
|
||||
# with open(file, "wb+") as f:
|
||||
# pickle.dump(obj, f)
|
||||
# return
|
||||
|
||||
def objload(file="objdump.tmp"):
|
||||
import os
|
||||
if not os.path.exists(file):
|
||||
return
|
||||
with open(file, "rb") as f:
|
||||
return pickle.load(f)
|
||||
# objdump((chatbot, history))
|
||||
chatbot, history = objload()
|
||||
|
||||
with open("test.html", 'w', encoding='utf8') as f:
|
||||
from textwrap import dedent
|
||||
form = dedent("""
|
||||
<!DOCTYPE html><head><meta charset="utf-8"><title>对话存档</title><style>{CSS}</style></head>
|
||||
<body>
|
||||
<div class="test_temp1" style="width:10%; height: 500px; float:left;"></div>
|
||||
<div class="test_temp2" style="width:80%;padding: 40px;float:left;padding-left: 20px;padding-right: 20px;box-shadow: rgba(0, 0, 0, 0.2) 0px 0px 8px 8px;border-radius: 10px;">
|
||||
<div class="chat-body" style="display: flex;justify-content: center;flex-direction: column;align-items: center;flex-wrap: nowrap;">
|
||||
{CHAT_PREVIEW}
|
||||
<div></div>
|
||||
<div></div>
|
||||
<div style="text-align: center;width:80%;padding: 0px;float:left;padding-left:20px;padding-right:20px;box-shadow: rgba(0, 0, 0, 0.05) 0px 0px 1px 2px;border-radius: 1px;">对话(原始数据)</div>
|
||||
{HISTORY_PREVIEW}
|
||||
</div>
|
||||
</div>
|
||||
<div class="test_temp3" style="width:10%; height: 500px; float:left;"></div>
|
||||
</body>
|
||||
""")
|
||||
|
||||
qa_from = dedent("""
|
||||
<div class="QaBox" style="width:80%;padding: 20px;margin-bottom: 20px;box-shadow: rgb(0 255 159 / 50%) 0px 0px 1px 2px;border-radius: 4px;">
|
||||
<div class="Question" style="border-radius: 2px;">{QUESTION}</div>
|
||||
<hr color="blue" style="border-top: dotted 2px #ccc;">
|
||||
<div class="Answer" style="border-radius: 2px;">{ANSWER}</div>
|
||||
</div>
|
||||
""")
|
||||
|
||||
history_from = dedent("""
|
||||
<div class="historyBox" style="width:80%;padding: 0px;float:left;padding-left:20px;padding-right:20px;box-shadow: rgba(0, 0, 0, 0.05) 0px 0px 1px 2px;border-radius: 1px;">
|
||||
<div class="entry" style="border-radius: 2px;">{ENTRY}</div>
|
||||
</div>
|
||||
""")
|
||||
CHAT_PREVIEW_BUF = ""
|
||||
for i, contents in enumerate(chatbot):
|
||||
question, answer = contents[0], contents[1]
|
||||
if question is None: question = ""
|
||||
try: question = str(question)
|
||||
except: question = ""
|
||||
if answer is None: answer = ""
|
||||
try: answer = str(answer)
|
||||
except: answer = ""
|
||||
CHAT_PREVIEW_BUF += qa_from.format(QUESTION=question, ANSWER=answer)
|
||||
|
||||
HISTORY_PREVIEW_BUF = ""
|
||||
for h in history:
|
||||
HISTORY_PREVIEW_BUF += history_from.format(ENTRY=h)
|
||||
html_content = form.format(CHAT_PREVIEW=CHAT_PREVIEW_BUF, HISTORY_PREVIEW=HISTORY_PREVIEW_BUF, CSS=advanced_css)
|
||||
|
||||
|
||||
from bs4 import BeautifulSoup
|
||||
soup = BeautifulSoup(html_content, 'lxml')
|
||||
|
||||
# 提取QaBox信息
|
||||
qa_box_list = []
|
||||
qa_boxes = soup.find_all("div", class_="QaBox")
|
||||
for box in qa_boxes:
|
||||
question = box.find("div", class_="Question").get_text(strip=False)
|
||||
answer = box.find("div", class_="Answer").get_text(strip=False)
|
||||
qa_box_list.append({"Question": question, "Answer": answer})
|
||||
|
||||
# 提取historyBox信息
|
||||
history_box_list = []
|
||||
history_boxes = soup.find_all("div", class_="historyBox")
|
||||
for box in history_boxes:
|
||||
entry = box.find("div", class_="entry").get_text(strip=False)
|
||||
history_box_list.append(entry)
|
||||
|
||||
print('')
|
||||
|
||||
|
||||
write_chat_to_file(None, None, None)
|
||||
58
tests/test_searxng.py
普通文件
58
tests/test_searxng.py
普通文件
@@ -0,0 +1,58 @@
|
||||
def validate_path():
|
||||
import os, sys
|
||||
os.path.dirname(__file__)
|
||||
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + "/..")
|
||||
os.chdir(root_dir_assume)
|
||||
sys.path.append(root_dir_assume)
|
||||
validate_path() # validate path so you can run from base directory
|
||||
|
||||
from toolbox import get_conf
|
||||
import requests
|
||||
|
||||
def searxng_request(query, proxies, categories='general', searxng_url=None, engines=None):
|
||||
url = 'http://localhost:50001/'
|
||||
|
||||
if engines is None:
|
||||
engine = 'bing,'
|
||||
if categories == 'general':
|
||||
params = {
|
||||
'q': query, # 搜索查询
|
||||
'format': 'json', # 输出格式为JSON
|
||||
'language': 'zh', # 搜索语言
|
||||
'engines': engine,
|
||||
}
|
||||
elif categories == 'science':
|
||||
params = {
|
||||
'q': query, # 搜索查询
|
||||
'format': 'json', # 输出格式为JSON
|
||||
'language': 'zh', # 搜索语言
|
||||
'categories': 'science'
|
||||
}
|
||||
else:
|
||||
raise ValueError('不支持的检索类型')
|
||||
headers = {
|
||||
'Accept-Language': 'zh-CN,zh;q=0.9',
|
||||
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36',
|
||||
'X-Forwarded-For': '112.112.112.112',
|
||||
'X-Real-IP': '112.112.112.112'
|
||||
}
|
||||
results = []
|
||||
response = requests.post(url, params=params, headers=headers, proxies=proxies, timeout=30)
|
||||
if response.status_code == 200:
|
||||
json_result = response.json()
|
||||
for result in json_result['results']:
|
||||
item = {
|
||||
"title": result.get("title", ""),
|
||||
"content": result.get("content", ""),
|
||||
"link": result["url"],
|
||||
}
|
||||
print(result['engines'])
|
||||
results.append(item)
|
||||
return results
|
||||
else:
|
||||
if response.status_code == 429:
|
||||
raise ValueError("Searxng(在线搜索服务)当前使用人数太多,请稍后。")
|
||||
else:
|
||||
raise ValueError("在线搜索失败,状态码: " + str(response.status_code) + '\t' + response.content.decode('utf-8'))
|
||||
res = searxng_request("vr environment", None, categories='science', searxng_url=None, engines=None)
|
||||
print(res)
|
||||
@@ -1,3 +1,9 @@
|
||||
#plugin_arg_menu {
|
||||
transform: translate(-50%, -50%);
|
||||
border: dashed;
|
||||
}
|
||||
|
||||
|
||||
/* hide remove all button */
|
||||
.remove-all.svelte-aqlk7e.svelte-aqlk7e.svelte-aqlk7e {
|
||||
visibility: hidden;
|
||||
@@ -38,6 +44,7 @@
|
||||
left: calc(100% + 3px);
|
||||
top: 0;
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
justify-content: space-between;
|
||||
}
|
||||
/* .message-btn-row-leading, .message-btn-row-trailing {
|
||||
@@ -108,6 +115,7 @@
|
||||
border-width: thin;
|
||||
user-select: none;
|
||||
padding-left: 2%;
|
||||
text-align: center;
|
||||
}
|
||||
|
||||
.floating-component #input-panel2 {
|
||||
@@ -117,3 +125,20 @@
|
||||
border-width: thin;
|
||||
border-top-width: 0;
|
||||
}
|
||||
|
||||
.floating-component #plugin_arg_panel {
|
||||
border-top-left-radius: 0px;
|
||||
border-top-right-radius: 0px;
|
||||
border: solid;
|
||||
border-width: thin;
|
||||
border-top-width: 0;
|
||||
}
|
||||
|
||||
.floating-component #edit-panel {
|
||||
border-top-left-radius: 0px;
|
||||
border-top-right-radius: 0px;
|
||||
border: solid;
|
||||
border-width: thin;
|
||||
border-top-width: 0;
|
||||
}
|
||||
|
||||
|
||||
952
themes/common.js
952
themes/common.js
文件差异内容过多而无法显示
加载差异
@@ -1,18 +1,53 @@
|
||||
from functools import cache
|
||||
from toolbox import get_conf
|
||||
CODE_HIGHLIGHT, ADD_WAIFU, LAYOUT = get_conf("CODE_HIGHLIGHT", "ADD_WAIFU", "LAYOUT")
|
||||
|
||||
def minimize_js(common_js_path):
|
||||
try:
|
||||
import rjsmin, hashlib, glob, os
|
||||
# clean up old minimized js files, matching `common_js_path + '.min.*'`
|
||||
for old_min_js in glob.glob(common_js_path + '.min.*.js'):
|
||||
os.remove(old_min_js)
|
||||
# use rjsmin to minimize `common_js_path`
|
||||
c_jsmin = rjsmin.jsmin
|
||||
with open(common_js_path, "r") as f:
|
||||
js_content = f.read()
|
||||
minimized_js_content = c_jsmin(js_content)
|
||||
# compute sha256 hash of minimized js content
|
||||
sha_hash = hashlib.sha256(minimized_js_content.encode()).hexdigest()[:8]
|
||||
minimized_js_path = common_js_path + '.min.' + sha_hash + '.js'
|
||||
# save to minimized js file
|
||||
with open(minimized_js_path, "w") as f:
|
||||
f.write(minimized_js_content)
|
||||
# return minimized js file path
|
||||
return minimized_js_path
|
||||
except:
|
||||
return common_js_path
|
||||
|
||||
@cache
|
||||
def get_common_html_javascript_code():
|
||||
js = "\n"
|
||||
for jsf in [
|
||||
"file=themes/common.js",
|
||||
]:
|
||||
js += f"""<script src="{jsf}"></script>\n"""
|
||||
common_js_path_list = [
|
||||
"themes/common.js",
|
||||
"themes/theme.js",
|
||||
"themes/init.js",
|
||||
]
|
||||
|
||||
# 添加Live2D
|
||||
if ADD_WAIFU:
|
||||
if ADD_WAIFU: # 添加Live2D
|
||||
common_js_path_list += [
|
||||
"themes/waifu_plugin/jquery.min.js",
|
||||
"themes/waifu_plugin/jquery-ui.min.js",
|
||||
]
|
||||
|
||||
for common_js_path in common_js_path_list:
|
||||
if '.min.' not in common_js_path:
|
||||
minimized_js_path = minimize_js(common_js_path)
|
||||
for jsf in [
|
||||
"file=themes/waifu_plugin/jquery.min.js",
|
||||
"file=themes/waifu_plugin/jquery-ui.min.js",
|
||||
f"file={minimized_js_path}",
|
||||
]:
|
||||
js += f"""<script src="{jsf}"></script>\n"""
|
||||
return js
|
||||
|
||||
if not ADD_WAIFU:
|
||||
js += """<script>window.loadLive2D = function(){};</script>\n"""
|
||||
|
||||
return js
|
||||
|
||||
@@ -24,8 +24,8 @@
|
||||
/* 小按钮 */
|
||||
#basic-panel .sm {
|
||||
font-family: "Microsoft YaHei UI", "Helvetica", "Microsoft YaHei", "ui-sans-serif", "sans-serif", "system-ui";
|
||||
--button-small-text-weight: 600;
|
||||
--button-small-text-size: 16px;
|
||||
--button-small-text-weight: 400;
|
||||
--button-small-text-size: 14px;
|
||||
border-bottom-right-radius: 6px;
|
||||
border-bottom-left-radius: 6px;
|
||||
border-top-right-radius: 6px;
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
import logging
|
||||
import os
|
||||
import gradio as gr
|
||||
from toolbox import get_conf, ProxyNetworkActivate
|
||||
@@ -10,12 +9,15 @@ theme_dir = os.path.dirname(__file__)
|
||||
def dynamic_set_theme(THEME):
|
||||
set_theme = gr.themes.ThemeClass()
|
||||
with ProxyNetworkActivate("Download_Gradio_Theme"):
|
||||
logging.info("正在下载Gradio主题,请稍等。")
|
||||
if THEME.startswith("Huggingface-"):
|
||||
THEME = THEME.lstrip("Huggingface-")
|
||||
if THEME.startswith("huggingface-"):
|
||||
THEME = THEME.lstrip("huggingface-")
|
||||
set_theme = set_theme.from_hub(THEME.lower())
|
||||
print("正在下载Gradio主题,请稍等。")
|
||||
try:
|
||||
if THEME.startswith("Huggingface-"):
|
||||
THEME = THEME.lstrip("Huggingface-")
|
||||
if THEME.startswith("huggingface-"):
|
||||
THEME = THEME.lstrip("huggingface-")
|
||||
set_theme = set_theme.from_hub(THEME.lower())
|
||||
except:
|
||||
print("下载Gradio主题时出现异常。")
|
||||
return set_theme
|
||||
|
||||
|
||||
@@ -23,13 +25,16 @@ def adjust_theme():
|
||||
try:
|
||||
set_theme = gr.themes.ThemeClass()
|
||||
with ProxyNetworkActivate("Download_Gradio_Theme"):
|
||||
logging.info("正在下载Gradio主题,请稍等。")
|
||||
THEME = get_conf("THEME")
|
||||
if THEME.startswith("Huggingface-"):
|
||||
THEME = THEME.lstrip("Huggingface-")
|
||||
if THEME.startswith("huggingface-"):
|
||||
THEME = THEME.lstrip("huggingface-")
|
||||
set_theme = set_theme.from_hub(THEME.lower())
|
||||
print("正在下载Gradio主题,请稍等。")
|
||||
try:
|
||||
THEME = get_conf("THEME")
|
||||
if THEME.startswith("Huggingface-"):
|
||||
THEME = THEME.lstrip("Huggingface-")
|
||||
if THEME.startswith("huggingface-"):
|
||||
THEME = THEME.lstrip("huggingface-")
|
||||
set_theme = set_theme.from_hub(THEME.lower())
|
||||
except:
|
||||
print("下载Gradio主题时出现异常。")
|
||||
|
||||
from themes.common import get_common_html_javascript_code
|
||||
js = get_common_html_javascript_code()
|
||||
@@ -49,9 +54,7 @@ def adjust_theme():
|
||||
)
|
||||
except Exception:
|
||||
set_theme = None
|
||||
from toolbox import trimmed_format_exc
|
||||
|
||||
logging.error("gradio版本较旧, 不能自定义字体和颜色:", trimmed_format_exc())
|
||||
print("gradio版本较旧, 不能自定义字体和颜色。")
|
||||
return set_theme
|
||||
|
||||
|
||||
|
||||
@@ -0,0 +1,57 @@
|
||||
import gradio as gr
|
||||
import json
|
||||
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, DummyWith
|
||||
|
||||
def define_gui_advanced_plugin_class(plugins):
|
||||
# 定义新一代插件的高级参数区
|
||||
with gr.Floating(init_x="50%", init_y="50%", visible=False, width="30%", drag="top", elem_id="plugin_arg_menu"):
|
||||
with gr.Accordion("选择插件参数", open=True, elem_id="plugin_arg_panel"):
|
||||
for u in range(8):
|
||||
with gr.Row():
|
||||
gr.Textbox(show_label=True, label="T1", placeholder="请输入", lines=1, visible=False, elem_id=f"plugin_arg_txt_{u}").style(container=False)
|
||||
for u in range(8):
|
||||
with gr.Row(): # PLUGIN_ARG_MENU
|
||||
gr.Dropdown(label="T1", value="请选择", choices=[], visible=True, elem_id=f"plugin_arg_drop_{u}", interactive=True)
|
||||
|
||||
with gr.Row():
|
||||
# 这个隐藏textbox负责装入当前弹出插件的属性
|
||||
gr.Textbox(show_label=False, placeholder="请输入", lines=1, visible=False,
|
||||
elem_id=f"invisible_current_pop_up_plugin_arg").style(container=False)
|
||||
usr_confirmed_arg = gr.Textbox(show_label=False, placeholder="请输入", lines=1, visible=False,
|
||||
elem_id=f"invisible_current_pop_up_plugin_arg_final").style(container=False)
|
||||
|
||||
arg_confirm_btn = gr.Button("确认参数并执行", variant="stop")
|
||||
arg_confirm_btn.style(size="sm")
|
||||
|
||||
arg_cancel_btn = gr.Button("取消", variant="stop")
|
||||
arg_cancel_btn.click(None, None, None, _js="""()=>close_current_pop_up_plugin()""")
|
||||
arg_cancel_btn.style(size="sm")
|
||||
|
||||
arg_confirm_btn.click(None, None, None, _js="""()=>execute_current_pop_up_plugin()""")
|
||||
invisible_callback_btn_for_plugin_exe = gr.Button(r"未选定任何插件", variant="secondary", visible=False, elem_id="invisible_callback_btn_for_plugin_exe").style(size="sm")
|
||||
# 随变按钮的回调函数注册
|
||||
def route_switchy_bt_with_arg(request: gr.Request, input_order, *arg):
|
||||
arguments = {k:v for k,v in zip(input_order, arg)} # 重新梳理输入参数,转化为kwargs字典
|
||||
which_plugin = arguments.pop('new_plugin_callback') # 获取需要执行的插件名称
|
||||
if which_plugin in [r"未选定任何插件"]: return
|
||||
usr_confirmed_arg = arguments.pop('usr_confirmed_arg') # 获取插件参数
|
||||
arg_confirm: dict = {}
|
||||
usr_confirmed_arg_dict = json.loads(usr_confirmed_arg) # 读取插件参数
|
||||
for arg_name in usr_confirmed_arg_dict:
|
||||
arg_confirm.update({arg_name: str(usr_confirmed_arg_dict[arg_name]['user_confirmed_value'])})
|
||||
|
||||
if plugins[which_plugin].get("Class", None) is not None: # 获取插件执行函数
|
||||
plugin_obj = plugins[which_plugin]["Class"]
|
||||
plugin_exe = plugin_obj.execute
|
||||
else:
|
||||
plugin_exe = plugins[which_plugin]["Function"]
|
||||
|
||||
arguments['plugin_advanced_arg'] = arg_confirm # 更新高级参数输入区的参数
|
||||
if arg_confirm.get('main_input', None) is not None: # 更新主输入区的参数
|
||||
arguments['txt'] = arg_confirm['main_input']
|
||||
|
||||
# 万事俱备,开始执行
|
||||
yield from ArgsGeneralWrapper(plugin_exe)(request, *arguments.values())
|
||||
|
||||
return invisible_callback_btn_for_plugin_exe, route_switchy_bt_with_arg, usr_confirmed_arg
|
||||
|
||||
41
themes/gui_floating_menu.py
普通文件
41
themes/gui_floating_menu.py
普通文件
@@ -0,0 +1,41 @@
|
||||
import gradio as gr
|
||||
|
||||
def define_gui_floating_menu(customize_btns, functional, predefined_btns, cookies, web_cookie_cache):
|
||||
with gr.Floating(init_x="20%", init_y="50%", visible=False, width="40%", drag="top") as area_input_secondary:
|
||||
with gr.Accordion("浮动输入区", open=True, elem_id="input-panel2"):
|
||||
with gr.Row() as row:
|
||||
row.style(equal_height=True)
|
||||
with gr.Column(scale=10):
|
||||
txt2 = gr.Textbox(show_label=False, placeholder="Input question here.",
|
||||
elem_id='user_input_float', lines=8, label="输入区2").style(container=False)
|
||||
with gr.Column(scale=1, min_width=40):
|
||||
submitBtn2 = gr.Button("提交", variant="primary"); submitBtn2.style(size="sm")
|
||||
resetBtn2 = gr.Button("重置", variant="secondary"); resetBtn2.style(size="sm")
|
||||
stopBtn2 = gr.Button("停止", variant="secondary"); stopBtn2.style(size="sm")
|
||||
clearBtn2 = gr.Button("清除", elem_id="elem_clear2", variant="secondary", visible=False); clearBtn2.style(size="sm")
|
||||
|
||||
|
||||
with gr.Floating(init_x="20%", init_y="50%", visible=False, width="40%", drag="top") as area_customize:
|
||||
with gr.Accordion("自定义菜单", open=True, elem_id="edit-panel"):
|
||||
with gr.Row() as row:
|
||||
with gr.Column(scale=10):
|
||||
AVAIL_BTN = [btn for btn in customize_btns.keys()] + [k for k in functional]
|
||||
basic_btn_dropdown = gr.Dropdown(AVAIL_BTN, value="自定义按钮1", label="选择一个需要自定义基础功能区按钮").style(container=False)
|
||||
basic_fn_title = gr.Textbox(show_label=False, placeholder="输入新按钮名称", lines=1).style(container=False)
|
||||
basic_fn_prefix = gr.Textbox(show_label=False, placeholder="输入新提示前缀", lines=4).style(container=False)
|
||||
basic_fn_suffix = gr.Textbox(show_label=False, placeholder="输入新提示后缀", lines=4).style(container=False)
|
||||
with gr.Column(scale=1, min_width=70):
|
||||
basic_fn_confirm = gr.Button("确认并保存", variant="primary"); basic_fn_confirm.style(size="sm")
|
||||
basic_fn_clean = gr.Button("恢复默认", variant="primary"); basic_fn_clean.style(size="sm")
|
||||
|
||||
from shared_utils.cookie_manager import assign_btn__fn_builder
|
||||
assign_btn = assign_btn__fn_builder(customize_btns, predefined_btns, cookies, web_cookie_cache)
|
||||
# update btn
|
||||
h = basic_fn_confirm.click(assign_btn, [web_cookie_cache, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix],
|
||||
[web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()])
|
||||
h.then(None, [web_cookie_cache], None, _js="""(web_cookie_cache)=>{setCookie("web_cookie_cache", web_cookie_cache, 365);}""")
|
||||
# clean up btn
|
||||
h2 = basic_fn_clean.click(assign_btn, [web_cookie_cache, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix, gr.State(True)],
|
||||
[web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()])
|
||||
h2.then(None, [web_cookie_cache], None, _js="""(web_cookie_cache)=>{setCookie("web_cookie_cache", web_cookie_cache, 365);}""")
|
||||
return area_input_secondary, txt2, area_customize, submitBtn2, resetBtn2, clearBtn2, stopBtn2
|
||||
34
themes/gui_toolbar.py
普通文件
34
themes/gui_toolbar.py
普通文件
@@ -0,0 +1,34 @@
|
||||
import gradio as gr
|
||||
|
||||
def define_gui_toolbar(AVAIL_LLM_MODELS, LLM_MODEL, INIT_SYS_PROMPT, THEME, AVAIL_THEMES, ADD_WAIFU, help_menu_description, js_code_for_toggle_darkmode):
|
||||
with gr.Floating(init_x="0%", init_y="0%", visible=True, width=None, drag="forbidden", elem_id="tooltip"):
|
||||
with gr.Row():
|
||||
with gr.Tab("上传文件", elem_id="interact-panel"):
|
||||
gr.Markdown("请上传本地文件/压缩包供“函数插件区”功能调用。请注意: 上传文件后会自动把输入区修改为相应路径。")
|
||||
file_upload_2 = gr.Files(label="任何文件, 推荐上传压缩文件(zip, tar)", file_count="multiple", elem_id="elem_upload_float")
|
||||
|
||||
with gr.Tab("更换模型", elem_id="interact-panel"):
|
||||
md_dropdown = gr.Dropdown(AVAIL_LLM_MODELS, value=LLM_MODEL, elem_id="elem_model_sel", label="更换LLM模型/请求源").style(container=False)
|
||||
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.01,interactive=True, label="Top-p (nucleus sampling)",)
|
||||
temperature = gr.Slider(minimum=-0, maximum=2.0, value=1.0, step=0.01, interactive=True, label="Temperature", elem_id="elem_temperature")
|
||||
max_length_sl = gr.Slider(minimum=256, maximum=1024*32, value=4096, step=128, interactive=True, label="Local LLM MaxLength",)
|
||||
system_prompt = gr.Textbox(show_label=True, lines=2, placeholder=f"System Prompt", label="System prompt", value=INIT_SYS_PROMPT, elem_id="elem_prompt")
|
||||
temperature.change(None, inputs=[temperature], outputs=None,
|
||||
_js="""(temperature)=>gpt_academic_gradio_saveload("save", "elem_prompt", "js_temperature_cookie", temperature)""")
|
||||
system_prompt.change(None, inputs=[system_prompt], outputs=None,
|
||||
_js="""(system_prompt)=>gpt_academic_gradio_saveload("save", "elem_prompt", "js_system_prompt_cookie", system_prompt)""")
|
||||
md_dropdown.change(None, inputs=[md_dropdown], outputs=None,
|
||||
_js="""(md_dropdown)=>gpt_academic_gradio_saveload("save", "elem_model_sel", "js_md_dropdown_cookie", md_dropdown)""")
|
||||
|
||||
with gr.Tab("界面外观", elem_id="interact-panel"):
|
||||
theme_dropdown = gr.Dropdown(AVAIL_THEMES, value=THEME, label="更换UI主题").style(container=False)
|
||||
checkboxes = gr.CheckboxGroup(["基础功能区", "函数插件区", "浮动输入区", "输入清除键", "插件参数区"], value=["基础功能区", "函数插件区"], label="显示/隐藏功能区", elem_id='cbs').style(container=False)
|
||||
opt = ["自定义菜单"]
|
||||
value=[]
|
||||
if ADD_WAIFU: opt += ["添加Live2D形象"]; value += ["添加Live2D形象"]
|
||||
checkboxes_2 = gr.CheckboxGroup(opt, value=value, label="显示/隐藏自定义菜单", elem_id='cbsc').style(container=False)
|
||||
dark_mode_btn = gr.Button("切换界面明暗 ☀", variant="secondary").style(size="sm")
|
||||
dark_mode_btn.click(None, None, None, _js=js_code_for_toggle_darkmode)
|
||||
with gr.Tab("帮助", elem_id="interact-panel"):
|
||||
gr.Markdown(help_menu_description)
|
||||
return checkboxes, checkboxes_2, max_length_sl, theme_dropdown, system_prompt, file_upload_2, md_dropdown, top_p, temperature
|
||||
125
themes/init.js
普通文件
125
themes/init.js
普通文件
@@ -0,0 +1,125 @@
|
||||
async function GptAcademicJavaScriptInit(dark, prompt, live2d, layout, tts) {
|
||||
// 第一部分,布局初始化
|
||||
audio_fn_init();
|
||||
minor_ui_adjustment();
|
||||
chatbotIndicator = gradioApp().querySelector('#gpt-chatbot > div.wrap');
|
||||
var chatbotObserver = new MutationObserver(() => {
|
||||
chatbotContentChanged(1);
|
||||
});
|
||||
chatbotObserver.observe(chatbotIndicator, { attributes: true, childList: true, subtree: true });
|
||||
if (layout === "LEFT-RIGHT") { chatbotAutoHeight(); }
|
||||
if (layout === "LEFT-RIGHT") { limit_scroll_position(); }
|
||||
|
||||
// 第二部分,读取Cookie,初始话界面
|
||||
let searchString = "";
|
||||
let bool_value = "";
|
||||
// darkmode 深色模式
|
||||
if (getCookie("js_darkmode_cookie")) {
|
||||
dark = getCookie("js_darkmode_cookie")
|
||||
}
|
||||
dark = dark == "True";
|
||||
if (document.querySelectorAll('.dark').length) {
|
||||
if (!dark) {
|
||||
document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
|
||||
}
|
||||
} else {
|
||||
if (dark) {
|
||||
document.querySelector('body').classList.add('dark');
|
||||
}
|
||||
}
|
||||
|
||||
// 自动朗读
|
||||
if (tts != "DISABLE"){
|
||||
enable_tts = true;
|
||||
if (getCookie("js_auto_read_cookie")) {
|
||||
auto_read_tts = getCookie("js_auto_read_cookie")
|
||||
auto_read_tts = auto_read_tts == "True";
|
||||
if (auto_read_tts) {
|
||||
allow_auto_read_tts_flag = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// SysPrompt 系统静默提示词
|
||||
gpt_academic_gradio_saveload("load", "elem_prompt", "js_system_prompt_cookie", null, "str");
|
||||
// Temperature 大模型温度参数
|
||||
gpt_academic_gradio_saveload("load", "elem_temperature", "js_temperature_cookie", null, "float");
|
||||
// md_dropdown 大模型类型选择
|
||||
if (getCookie("js_md_dropdown_cookie")) {
|
||||
const cached_model = getCookie("js_md_dropdown_cookie");
|
||||
var model_sel = await get_gradio_component("elem_model_sel");
|
||||
// determine whether the cached model is in the choices
|
||||
if (model_sel.props.choices.includes(cached_model)){
|
||||
// change dropdown
|
||||
gpt_academic_gradio_saveload("load", "elem_model_sel", "js_md_dropdown_cookie", null, "str");
|
||||
// 连锁修改chatbot的label
|
||||
push_data_to_gradio_component({
|
||||
label: '当前模型:' + getCookie("js_md_dropdown_cookie"),
|
||||
__type__: 'update'
|
||||
}, "gpt-chatbot", "obj")
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
// clearButton 自动清除按钮
|
||||
if (getCookie("js_clearbtn_show_cookie")) {
|
||||
// have cookie
|
||||
bool_value = getCookie("js_clearbtn_show_cookie")
|
||||
bool_value = bool_value == "True";
|
||||
searchString = "输入清除键";
|
||||
|
||||
if (bool_value) {
|
||||
// make btns appear
|
||||
let clearButton = document.getElementById("elem_clear"); clearButton.style.display = "block";
|
||||
let clearButton2 = document.getElementById("elem_clear2"); clearButton2.style.display = "block";
|
||||
// deal with checkboxes
|
||||
let arr_with_clear_btn = update_array(
|
||||
await get_data_from_gradio_component('cbs'), "输入清除键", "add"
|
||||
)
|
||||
push_data_to_gradio_component(arr_with_clear_btn, "cbs", "no_conversion");
|
||||
} else {
|
||||
// make btns disappear
|
||||
let clearButton = document.getElementById("elem_clear"); clearButton.style.display = "none";
|
||||
let clearButton2 = document.getElementById("elem_clear2"); clearButton2.style.display = "none";
|
||||
// deal with checkboxes
|
||||
let arr_without_clear_btn = update_array(
|
||||
await get_data_from_gradio_component('cbs'), "输入清除键", "remove"
|
||||
)
|
||||
push_data_to_gradio_component(arr_without_clear_btn, "cbs", "no_conversion");
|
||||
}
|
||||
}
|
||||
|
||||
// live2d 显示
|
||||
if (getCookie("js_live2d_show_cookie")) {
|
||||
// have cookie
|
||||
searchString = "添加Live2D形象";
|
||||
bool_value = getCookie("js_live2d_show_cookie");
|
||||
bool_value = bool_value == "True";
|
||||
if (bool_value) {
|
||||
loadLive2D();
|
||||
let arr_with_live2d = update_array(
|
||||
await get_data_from_gradio_component('cbsc'), "添加Live2D形象", "add"
|
||||
)
|
||||
push_data_to_gradio_component(arr_with_live2d, "cbsc", "no_conversion");
|
||||
} else {
|
||||
try {
|
||||
$('.waifu').hide();
|
||||
let arr_without_live2d = update_array(
|
||||
await get_data_from_gradio_component('cbsc'), "添加Live2D形象", "remove"
|
||||
)
|
||||
push_data_to_gradio_component(arr_without_live2d, "cbsc", "no_conversion");
|
||||
} catch (error) {
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// do not have cookie
|
||||
if (live2d) {
|
||||
loadLive2D();
|
||||
} else {
|
||||
}
|
||||
}
|
||||
|
||||
// 主题加载(恢复到上次)
|
||||
change_theme("", "")
|
||||
}
|
||||
0
themes/sovits_audio.js
普通文件
0
themes/sovits_audio.js
普通文件
41
themes/theme.js
普通文件
41
themes/theme.js
普通文件
@@ -0,0 +1,41 @@
|
||||
async function try_load_previous_theme(){
|
||||
if (getCookie("js_theme_selection_cookie")) {
|
||||
theme_selection = getCookie("js_theme_selection_cookie");
|
||||
let css = localStorage.getItem('theme-' + theme_selection);
|
||||
if (css) {
|
||||
change_theme(theme_selection, css);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
async function change_theme(theme_selection, css) {
|
||||
if (theme_selection.length==0) {
|
||||
try_load_previous_theme();
|
||||
return;
|
||||
}
|
||||
|
||||
var existingStyles = document.querySelectorAll("body > gradio-app > div > style")
|
||||
for (var i = 0; i < existingStyles.length; i++) {
|
||||
var style = existingStyles[i];
|
||||
style.parentNode.removeChild(style);
|
||||
}
|
||||
var existingStyles = document.querySelectorAll("style[data-loaded-css]");
|
||||
for (var i = 0; i < existingStyles.length; i++) {
|
||||
var style = existingStyles[i];
|
||||
style.parentNode.removeChild(style);
|
||||
}
|
||||
|
||||
setCookie("js_theme_selection_cookie", theme_selection, 3);
|
||||
localStorage.setItem('theme-' + theme_selection, css);
|
||||
|
||||
var styleElement = document.createElement('style');
|
||||
styleElement.setAttribute('data-loaded-css', 'placeholder');
|
||||
styleElement.innerHTML = css;
|
||||
document.body.appendChild(styleElement);
|
||||
}
|
||||
|
||||
|
||||
// // 记录本次的主题切换
|
||||
// async function change_theme_prepare(theme_selection, secret_css) {
|
||||
// setCookie("js_theme_selection_cookie", theme_selection, 3);
|
||||
// }
|
||||
@@ -71,29 +71,10 @@ def from_cookie_str(c):
|
||||
"""
|
||||
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
第 3 部分
|
||||
内嵌的javascript代码
|
||||
内嵌的javascript代码(这部分代码会逐渐移动到common.js中)
|
||||
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
"""
|
||||
|
||||
js_code_for_css_changing = """(css) => {
|
||||
var existingStyles = document.querySelectorAll("body > gradio-app > div > style")
|
||||
for (var i = 0; i < existingStyles.length; i++) {
|
||||
var style = existingStyles[i];
|
||||
style.parentNode.removeChild(style);
|
||||
}
|
||||
var existingStyles = document.querySelectorAll("style[data-loaded-css]");
|
||||
for (var i = 0; i < existingStyles.length; i++) {
|
||||
var style = existingStyles[i];
|
||||
style.parentNode.removeChild(style);
|
||||
}
|
||||
var styleElement = document.createElement('style');
|
||||
styleElement.setAttribute('data-loaded-css', 'placeholder');
|
||||
styleElement.innerHTML = css;
|
||||
document.body.appendChild(styleElement);
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
js_code_for_toggle_darkmode = """() => {
|
||||
if (document.querySelectorAll('.dark').length) {
|
||||
setCookie("js_darkmode_cookie", "False", 365);
|
||||
@@ -111,10 +92,12 @@ js_code_for_persistent_cookie_init = """(web_cookie_cache, cookie) => {
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
# 详见 themes/common.js
|
||||
js_code_reset = """
|
||||
(a,b,c)=>{
|
||||
return [[], [], "已重置"];
|
||||
let stopButton = document.getElementById("elem_stop");
|
||||
stopButton.click();
|
||||
return reset_conversation(a,b);
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
@@ -142,7 +142,13 @@ function initModel(waifuPath, type) {
|
||||
if (live2d_settings.waifuEdgeSide[0] == 'left') $(".waifu").css("left",live2d_settings.waifuEdgeSide[1]+'px');
|
||||
else if (live2d_settings.waifuEdgeSide[0] == 'right') $(".waifu").css("right",live2d_settings.waifuEdgeSide[1]+'px');
|
||||
|
||||
window.waifuResize = function() { $(window).width() <= Number(live2d_settings.waifuMinWidth.replace('px','')) ? $(".waifu").hide() : $(".waifu").show(); };
|
||||
window.waifuResize = function() {
|
||||
console.log('resize');
|
||||
if ($('.waifu')[0].style.display === "none" ){
|
||||
} else{
|
||||
$(window).width() <= Number(live2d_settings.waifuMinWidth.replace('px','')) ? $(".waifu").hide() : $(".waifu").show();
|
||||
}
|
||||
};
|
||||
if (live2d_settings.waifuMinWidth != 'disable') { waifuResize(); $(window).resize(function() {waifuResize()}); }
|
||||
|
||||
try {
|
||||
|
||||
74
toolbox.py
74
toolbox.py
@@ -1,3 +1,4 @@
|
||||
|
||||
import importlib
|
||||
import time
|
||||
import inspect
|
||||
@@ -10,6 +11,7 @@ import glob
|
||||
import logging
|
||||
import uuid
|
||||
from functools import wraps
|
||||
from textwrap import dedent
|
||||
from shared_utils.config_loader import get_conf
|
||||
from shared_utils.config_loader import set_conf
|
||||
from shared_utils.config_loader import set_multi_conf
|
||||
@@ -79,6 +81,8 @@ class ChatBotWithCookies(list):
|
||||
def get_cookies(self):
|
||||
return self._cookies
|
||||
|
||||
def get_user(self):
|
||||
return self._cookies.get("user_name", default_user_name)
|
||||
|
||||
def ArgsGeneralWrapper(f):
|
||||
"""
|
||||
@@ -88,7 +92,7 @@ def ArgsGeneralWrapper(f):
|
||||
"""
|
||||
def decorated(request: gradio.Request, cookies:dict, max_length:int, llm_model:str,
|
||||
txt:str, txt2:str, top_p:float, temperature:float, chatbot:list,
|
||||
history:list, system_prompt:str, plugin_advanced_arg:str, *args):
|
||||
history:list, system_prompt:str, plugin_advanced_arg:dict, *args):
|
||||
txt_passon = txt
|
||||
if txt == "" and txt2 != "": txt_passon = txt2
|
||||
# 引入一个有cookie的chatbot
|
||||
@@ -112,9 +116,10 @@ def ArgsGeneralWrapper(f):
|
||||
'client_ip': request.client.host,
|
||||
'most_recent_uploaded': cookies.get('most_recent_uploaded')
|
||||
}
|
||||
plugin_kwargs = {
|
||||
"advanced_arg": plugin_advanced_arg,
|
||||
}
|
||||
if isinstance(plugin_advanced_arg, str):
|
||||
plugin_kwargs = {"advanced_arg": plugin_advanced_arg}
|
||||
else:
|
||||
plugin_kwargs = plugin_advanced_arg
|
||||
chatbot_with_cookie = ChatBotWithCookies(cookies)
|
||||
chatbot_with_cookie.write_list(chatbot)
|
||||
|
||||
@@ -191,6 +196,19 @@ def trimmed_format_exc():
|
||||
return str.replace(current_path, replace_path)
|
||||
|
||||
|
||||
def trimmed_format_exc_markdown():
|
||||
return '\n\n```\n' + trimmed_format_exc() + '```'
|
||||
|
||||
|
||||
class FriendlyException(Exception):
|
||||
def generate_error_html(self):
|
||||
return dedent(f"""
|
||||
<div class="center-div" style="color: crimson;text-align: center;">
|
||||
{"<br>".join(self.args)}
|
||||
</div>
|
||||
""")
|
||||
|
||||
|
||||
def CatchException(f):
|
||||
"""
|
||||
装饰器函数,捕捉函数f中的异常并封装到一个生成器中返回,并显示到聊天当中。
|
||||
@@ -201,13 +219,18 @@ def CatchException(f):
|
||||
chatbot_with_cookie:ChatBotWithCookies, history:list, *args, **kwargs):
|
||||
try:
|
||||
yield from f(main_input, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, *args, **kwargs)
|
||||
except FriendlyException as e:
|
||||
if len(chatbot_with_cookie) == 0:
|
||||
chatbot_with_cookie.clear()
|
||||
chatbot_with_cookie.append(["插件调度异常", None])
|
||||
chatbot_with_cookie[-1] = [chatbot_with_cookie[-1][0], e.generate_error_html()]
|
||||
yield from update_ui(chatbot=chatbot_with_cookie, history=history, msg=f'异常') # 刷新界面
|
||||
except Exception as e:
|
||||
from toolbox import get_conf
|
||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
if len(chatbot_with_cookie) == 0:
|
||||
chatbot_with_cookie.clear()
|
||||
chatbot_with_cookie.append(["插件调度异常", "异常原因"])
|
||||
chatbot_with_cookie[-1] = (chatbot_with_cookie[-1][0], f"[Local Message] 插件调用出错: \n\n{tb_str} \n")
|
||||
chatbot_with_cookie[-1] = [chatbot_with_cookie[-1][0], f"[Local Message] 插件调用出错: \n\n{tb_str} \n"]
|
||||
yield from update_ui(chatbot=chatbot_with_cookie, history=history, msg=f'异常 {e}') # 刷新界面
|
||||
|
||||
return decorated
|
||||
@@ -534,6 +557,17 @@ def on_file_uploaded(
|
||||
return chatbot, txt, txt2, cookies
|
||||
|
||||
|
||||
def generate_file_link(report_files:List[str]):
|
||||
file_links = ""
|
||||
for f in report_files:
|
||||
file_links += (
|
||||
f'<br/><a href="file={os.path.abspath(f)}" target="_blank">{f}</a>'
|
||||
)
|
||||
return file_links
|
||||
|
||||
|
||||
|
||||
|
||||
def on_report_generated(cookies:dict, files:List[str], chatbot:ChatBotWithCookies):
|
||||
if "files_to_promote" in cookies:
|
||||
report_files = cookies["files_to_promote"]
|
||||
@@ -547,7 +581,7 @@ def on_report_generated(cookies:dict, files:List[str], chatbot:ChatBotWithCookie
|
||||
file_links += (
|
||||
f'<br/><a href="file={os.path.abspath(f)}" target="_blank">{f}</a>'
|
||||
)
|
||||
chatbot.append(["报告如何远程获取?", f"报告已经添加到右侧“文件上传区”(可能处于折叠状态),请查收。{file_links}"])
|
||||
chatbot.append(["报告如何远程获取?", f"报告已经添加到右侧“文件下载区”(可能处于折叠状态),请查收。{file_links}"])
|
||||
return cookies, report_files, chatbot
|
||||
|
||||
|
||||
@@ -866,23 +900,6 @@ class ProxyNetworkActivate:
|
||||
return
|
||||
|
||||
|
||||
def objdump(obj, file="objdump.tmp"):
|
||||
import pickle
|
||||
|
||||
with open(file, "wb+") as f:
|
||||
pickle.dump(obj, f)
|
||||
return
|
||||
|
||||
|
||||
def objload(file="objdump.tmp"):
|
||||
import pickle, os
|
||||
|
||||
if not os.path.exists(file):
|
||||
return
|
||||
with open(file, "rb") as f:
|
||||
return pickle.load(f)
|
||||
|
||||
|
||||
def Singleton(cls):
|
||||
"""
|
||||
一个单实例装饰器
|
||||
@@ -904,15 +921,18 @@ def get_pictures_list(path):
|
||||
return file_manifest
|
||||
|
||||
|
||||
def have_any_recent_upload_image_files(chatbot:ChatBotWithCookies):
|
||||
def have_any_recent_upload_image_files(chatbot:ChatBotWithCookies, pop:bool=False):
|
||||
_5min = 5 * 60
|
||||
if chatbot is None:
|
||||
return False, None # chatbot is None
|
||||
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
|
||||
if pop:
|
||||
most_recent_uploaded = chatbot._cookies.pop("most_recent_uploaded", None)
|
||||
else:
|
||||
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
|
||||
# most_recent_uploaded 是一个放置最新上传图像的路径
|
||||
if not most_recent_uploaded:
|
||||
return False, None # most_recent_uploaded is None
|
||||
if time.time() - most_recent_uploaded["time"] < _5min:
|
||||
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
|
||||
path = most_recent_uploaded["path"]
|
||||
file_manifest = get_pictures_list(path)
|
||||
if len(file_manifest) == 0:
|
||||
|
||||
4
version
4
version
@@ -1,5 +1,5 @@
|
||||
{
|
||||
"version": 3.74,
|
||||
"version": 3.81,
|
||||
"show_feature": true,
|
||||
"new_feature": "增加多用户文件鉴权验证提高安全性 <-> 优化oneapi接入方法 <-> 接入Cohere和月之暗面模型 <-> 简化挂载二级目录的步骤 <-> 支持Mermaid绘图库(让大模型绘制脑图)"
|
||||
"new_feature": "支持更复杂的插件框架 <-> 上传文件时显示进度条 <-> 添加TTS语音输出(EdgeTTS和SoVits语音克隆) <-> Doc2x PDF翻译 <-> 添加回溯对话按钮"
|
||||
}
|
||||
|
||||
在新工单中引用
屏蔽一个用户