比较提交

...

254 次代码提交

作者 SHA1 备注 提交日期
qingxu fu
1335da4f45 Merge branch 'frontier' into master_autogen 2023-11-11 23:24:21 +08:00
qingxu fu
2d91e438d6 修正internlm输入设备bug 2023-11-11 23:22:50 +08:00
qingxu fu
a55bc0c07c AutoGen自动忽略重复的输入 2023-11-11 23:22:09 +08:00
qingxu fu
f7f6db831b 处理模型兼容的一些细节 2023-11-11 22:35:06 +08:00
qingxu fu
a655ce1f00 Merge branch 'frontier' into master_autogen 2023-11-11 22:03:20 +08:00
qingxu fu
28119e343c 将autogen大模型调用底层hook掉 2023-11-11 22:01:19 +08:00
qingxu fu
f75e39dc27 修复本地模型在Windows下的加载BUG 2023-11-11 21:11:55 +08:00
qingxu fu
e4409b94d1 修正拼写 report_execption -> report_exception #1220 2023-11-11 18:30:57 +08:00
qingxu fu
2570e4b997 remove revision 2023-11-11 18:17:58 +08:00
qingxu fu
2b917edf26 修复本地模型在windows上的兼容性 2023-11-11 17:58:17 +08:00
binary-husky
fcf04554c6 Merge pull request #1255 from xiangsam/master
[Feature] 更新精准翻译PDF文档(NOUGAT)插件
2023-11-11 14:07:22 +08:00
qingxu fu
107ea868e1 API2D自动对齐 2023-11-10 23:08:56 +08:00
qingxu fu
da7c03e868 图像修改 2023-11-10 22:54:55 +08:00
qingxu fu
42339a3e6b Merge branch 'master' into frontier 2023-11-10 22:54:24 +08:00
xiangsam
362b545a45 更改import nougat时机 2023-11-10 14:32:07 +00:00
Samrito
84b45dc4fb Merge branch 'binary-husky:master' into master 2023-11-10 22:07:41 +08:00
qingxu fu
f9fc02948a 更新分辨率提示 2023-11-10 21:04:21 +08:00
qingxu fu
0299b0f95f 支持DALLE3 2023-11-10 20:59:08 +08:00
xiangsam
33bf795c66 更新精准翻译PDF文档(NOUGAT)插件 2023-11-10 12:06:39 +00:00
binary-husky
caf45ef740 Merge pull request #1244 from awwaawwa/fix_gpt_35_16k_maxtoken
修改 gpt-3.5-turbo-16k 系列模型 max_token 为 16385
2023-11-10 12:55:02 +08:00
binary-husky
b49b272587 Merge pull request #1241 from Skyzayre/master
新加入1106两个模型的适配
2023-11-10 12:53:42 +08:00
qingxu fu
a1a91c25a5 移除重复项 2023-11-10 12:53:03 +08:00
qingxu fu
2912eaf082 Merge branch 'master' of https://github.com/Skyzayre/gpt_academic into Skyzayre-master2 2023-11-10 12:51:50 +08:00
binary-husky
795de492fe Merge pull request #1238 from samxiaowastaken/master
Add new API support
2023-11-10 12:41:14 +08:00
qingxu fu
0ff750b60a 修改缩进 2023-11-10 12:40:25 +08:00
qingxu fu
8ad2a2bb86 Merge branch 'master' of https://github.com/samxiaowastaken/gpt_academic into samxiaowastaken-master 2023-11-10 12:37:30 +08:00
binary-husky
12df41563a hide audio btn border 2023-11-08 18:40:36 +08:00
awwaawwa
8d94564e67 修改 gpt-3.5-turbo-16k 系列模型 max_token 为 16385
根据 https://platform.openai.com/docs/models/gpt-3-5 ,这个16k的3.5上下文窗口其实是16385
2023-11-07 15:59:07 +08:00
Skyzayre
736f1214ee Update bridge_all.py 2023-11-07 15:55:23 +08:00
binary-husky
e9cf3d3d12 version 3.57 2023-11-07 15:52:08 +08:00
binary-husky
996057e588 support chatglm3 2023-11-07 15:41:04 +08:00
binary-husky
804599bbc3 autogen 2023-11-07 15:36:05 +08:00
Skyzayre
ffe6c1403e Update bridge_chatgpt.py 2023-11-07 14:25:36 +08:00
Skyzayre
3a2466fe4e Update README_RS.md 2023-11-07 14:23:16 +08:00
Skyzayre
6c795809f7 Update README_JP.md 2023-11-07 14:23:01 +08:00
Skyzayre
3141cd392a Update README_FR.md 2023-11-07 14:22:46 +08:00
Skyzayre
77220002e0 Update README_EN.md 2023-11-07 14:22:29 +08:00
Skyzayre
cd40bf9ae2 Update README.md.Portuguese.md 2023-11-07 14:22:12 +08:00
Skyzayre
6c3405ba55 Update README.md.Korean.md 2023-11-07 14:21:52 +08:00
Skyzayre
bba3419ace Update README.md.Italian.md 2023-11-07 14:21:32 +08:00
Skyzayre
61cf2b32eb Update README.md.German.md 2023-11-07 14:21:08 +08:00
Skyzayre
3ed0e8012d Update bridge_all.py 2023-11-07 14:17:01 +08:00
Skyzayre
4d9256296d Update 多智能体.py 2023-11-07 14:13:37 +08:00
Skyzayre
0897057be1 Update README.md 2023-11-07 14:11:52 +08:00
Skyzayre
136e6aaa21 Update config.py 2023-11-07 14:08:24 +08:00
binary-husky
8e375b0ed2 support chatglm3 2023-11-07 14:07:30 +08:00
binary-husky
5192d316f0 Merge branch 'frontier' 2023-11-07 11:40:27 +08:00
binary-husky
245585be81 Update README.md 2023-11-07 10:39:35 +08:00
Yao Xiao
4824905592 Add new API support 2023-11-07 09:48:01 +08:00
binary-husky
5566ba8257 Merge pull request #1215 from ZornWang/ERNIE_Bot_4
[Feature] 添加百度千帆文心4.0大模型支持
2023-11-01 22:29:33 +08:00
binary-husky
8c4a753b65 Merge pull request #1222 from ji-jinlong/master
Update 理解PDF文档内容.py
2023-11-01 22:26:55 +08:00
binary-husky
f016323b8a Update 理解PDF文档内容.py 2023-11-01 22:26:46 +08:00
binary-husky
cd9f2ec402 Update README.md 2023-11-01 22:25:27 +08:00
ji-jinlong
ca7ff47fcb Update 理解PDF文档内容.py 2023-11-01 16:05:57 +08:00
binary-husky
09857ea455 解除本地模型的若干并发问题 2023-10-31 20:37:07 +08:00
binary-husky
17cf47dcd6 防止多线程数据交叉 2023-10-31 18:02:14 +08:00
binary-husky
136162ec0d better local model interaction 2023-10-31 16:18:27 +08:00
binary-husky
08f036aafd 支持chatglm3 2023-10-31 03:08:50 +08:00
Zorn Wang
9fb29f249b Feature: 添加百度千帆文心4.0大模型支持 2023-10-30 19:20:05 +08:00
binary-husky
9a1aff5bb6 修复get_conf接口 2023-10-30 11:10:05 +08:00
binary-husky
f3f90f7b90 Update README.md 2023-10-30 01:10:45 +08:00
binary-husky
527f9d28ad change get_conf 2023-10-29 00:34:40 +08:00
binary-husky
12b2a229b6 移除调试打印 2023-10-28 20:15:59 +08:00
binary-husky
40a065ce04 Merge branch 'master' into frontier 2023-10-28 20:09:49 +08:00
binary-husky
b14d4de0b1 将默认系统提示词转移到Config中 2023-10-28 20:08:50 +08:00
binary-husky
e64c26e617 紧急修复报错异常 2023-10-28 19:53:05 +08:00
binary-husky
0b1e599b01 紧急修复报错异常 2023-10-28 19:43:48 +08:00
binary-husky
127385b846 接入新模型 2023-10-28 19:23:43 +08:00
binary-husky
cf085565a7 rename folder 2023-10-28 17:44:17 +08:00
binary-husky
5a530df4f2 修复autogen接口的问题 2023-10-28 17:41:22 +08:00
binary-husky
b4c7b26f63 Merge branch 'master' into frontier 2023-10-28 14:32:12 +08:00
binary-husky
8bdcc4ff28 修复对一些第三方接口的兼容性 2023-10-28 14:32:03 +08:00
binary-husky
e596bb6fff 修复AZURE_CFG_ARRAY使用时不给定apikey报错的问题 2023-10-28 00:29:49 +08:00
binary-husky
50ecb45d63 Merge pull request #1173 from Kilig947/azure_multiple_models
Azure 支持部署多个模型
2023-10-27 23:36:05 +08:00
binary-husky
349c399967 Merge branch 'frontier' into azure_multiple_models 2023-10-27 23:35:50 +08:00
binary-husky
103d05d242 增加一个Azure配置的Array 2023-10-27 23:29:18 +08:00
binary-husky
d0589209cc Merge branch 'azure_multiple_models' of https://github.com/Kilig947/gpt_academic into Kilig947-azure_multiple_models 2023-10-27 22:41:51 +08:00
binary-husky
8faf69c41e Merge branch 'master' into frontier 2023-10-27 10:25:11 +08:00
binary-husky
f7a332eee7 Merge pull request #1201 from shao0099876/master
修复了一个导致无法加载未量化的ChatGLM2 fine-tuning模型的问题
2023-10-27 10:00:48 +08:00
shao0099876
f6e34d9621 修复了一个导致无法加载未量化的ChatGLM2 fine-tuning模型的问题(quantization_bit=0) 2023-10-26 14:38:58 +00:00
qingxu fu
706a239232 Newbing组件已不再维护 2023-10-25 11:56:20 +08:00
qingxu fu
00076cc6f4 支持讯飞星火v3 (sparkv3) 2023-10-25 11:48:28 +08:00
binary-husky
5dd3f4ad6d rename 2023-10-23 21:50:47 +08:00
binary-husky
65e202881a add option to skip new translation 2023-10-23 21:12:36 +08:00
binary-husky
27c4e3ef4f 优化autogen的使用 2023-10-23 01:56:18 +08:00
binary-husky
e2b3c47186 Version 3.56 - Merge branch 'frontier' 2023-10-22 23:24:41 +08:00
binary-husky
a14ef78d52 容忍tex文件的缺失 2023-10-22 00:05:48 +08:00
binary-husky
b88e577eb5 update translation 2023-10-21 19:15:23 +08:00
binary-husky
991e41b313 change default path to relative 2023-10-21 00:27:55 +08:00
binary-husky
ff2bc64d57 图片交互显示 2023-10-20 23:56:24 +08:00
binary-husky
218f0c445e 微调Autogen代码结构 2023-10-20 23:18:32 +08:00
binary-husky
7ee0c94924 接入autogen 2023-10-20 21:31:50 +08:00
binary-husky
3531e7f23f 修正提示 2023-10-20 15:40:36 +08:00
binary-husky
d99f4681f0 修正提示 2023-10-20 15:39:50 +08:00
binary-husky
f2b2ccd577 Merge branch 'master' into frontier 2023-10-20 10:47:40 +08:00
binary-husky
c18a235d33 微调HTML 2023-10-20 10:43:05 +08:00
binary-husky
6c87c55a8a 微调HTML样式 2023-10-20 10:43:04 +08:00
binary-husky
f925fe7692 添加对NOUGAT的代理设置 2023-10-20 10:43:04 +08:00
qingxu fu
af83c43fb0 补充缺失摘要的措施 2023-10-20 10:43:04 +08:00
qingxu fu
4305ee0313 微调HTML汇报样式 2023-10-20 10:43:04 +08:00
binary-husky
a6e7bbbd22 修改缩进 2023-10-20 10:43:04 +08:00
binary-husky
62c02dfa86 修复warmup模块的延迟问题 2023-10-20 10:43:04 +08:00
binary-husky
a2ebbafb77 微调提示 2023-10-20 10:43:04 +08:00
binary-husky
a915a2ddd1 Grobid负载均衡 2023-10-20 10:43:04 +08:00
Menghuan1918
537c15b354 在proxies返回空时会首先尝试直接连接 2023-10-20 10:43:04 +08:00
binary-husky
73ed92af59 Update GithubAction+NoLocal+Latex 2023-10-20 10:43:04 +08:00
Skyzayre
88303b6f78 Update Dockerfile
gradio已经更新到3.32.6,但是Dockerfile中仍然是3.32.2
2023-10-20 10:42:31 +08:00
binary-husky
120d4ad556 Update README.md 2023-10-20 10:42:31 +08:00
binary-husky
3410bd9b1d Update README.md 2023-10-19 16:05:12 +08:00
binary-husky
20e3eee6e7 Update GithubAction+NoLocal+Latex 2023-10-18 16:23:28 +08:00
binary-husky
775b07dbcc 为Dockerfile添加更多注释 2023-10-18 11:15:35 +08:00
binary-husky
560d4e2cb1 修正Dockerfile中的错误 2023-10-18 11:10:38 +08:00
qingxu fu
4ad432e1da 新版HTML报告页面 2023-10-16 22:13:59 +08:00
binary-husky
32ddcd067a Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-10-16 00:05:53 +08:00
binary-husky
98ef658307 修复warmup模块的延迟问题 2023-10-16 00:05:31 +08:00
w_xiaolizu
1e2bcb8189 Azure 支持部署多个模型 2023-10-15 23:19:07 +08:00
binary-husky
a4de91d000 修改缩进 2023-10-15 22:53:57 +08:00
binary-husky
1bb437a5d0 微调提示 2023-10-15 21:17:00 +08:00
binary-husky
4421219c2b Merge branch 'frontier' 2023-10-15 20:56:49 +08:00
binary-husky
ea28db855d 完善自定义菜单 2023-10-15 20:54:16 +08:00
binary-husky
5aea7b3d09 多线程运行微调 2023-10-15 19:13:25 +08:00
binary-husky
5274117cf1 缺失摘要时,插入伪摘要 2023-10-14 23:48:37 +08:00
binary-husky
673faf8cef Grobid负载均衡 2023-10-14 19:59:35 +08:00
binary-husky
130ae31d55 Merge pull request #1168 from Menghuan1918/master
fix bug  #1167 学术小助手在proxies返回空时会首先尝试直接连接
2023-10-13 17:02:01 +08:00
Menghuan1918
c3abc46d4d 在proxies返回空时会首先尝试直接连接 2023-10-13 15:23:06 +08:00
binary-husky
4df75d49ad 兼容一些第三方代理 2023-10-12 23:42:45 +08:00
binary-husky
9ea0fe4de2 Update GithubAction+NoLocal+Latex 2023-10-12 21:23:15 +08:00
binary-husky
8698c5a80f Merge pull request #1159 from Skyzayre/patch-1
Update Dockerfile
2023-10-11 17:18:28 +08:00
binary-husky
383f7f4f77 add webrtcvad dependency 2023-10-11 15:51:34 +08:00
binary-husky
34d784df79 12 2023-10-11 15:48:25 +08:00
binary-husky
662bebfc02 SSL 2023-10-11 15:34:06 +08:00
binary-husky
0c3b00fc6b cookie space 2023-10-11 12:33:50 +08:00
binary-husky
b6e370e8c9 ymp 2023-10-11 11:30:34 +08:00
binary-husky
71ea8e584a 自定义基础功能区按钮 2023-10-11 11:21:41 +08:00
Skyzayre
a5491b9199 Update Dockerfile
gradio已经更新到3.32.6,但是Dockerfile中仍然是3.32.2
2023-10-11 00:26:16 +08:00
binary-husky
6f383c1dc8 支持自定义基础功能区 2023-10-11 00:14:56 +08:00
binary-husky
500a0cbd16 大幅优化语音助手 2023-10-09 01:18:05 +08:00
binary-husky
1ef6730369 Update README.md 2023-10-08 23:14:07 +08:00
binary-husky
491174095a 更新docker-compose说明 2023-10-07 11:59:06 +08:00
binary-husky
02c270410c 减小Latex容器体积 2023-10-06 11:44:10 +08:00
binary-husky
89eec21f27 随机选择, 绕过openai访问频率限制 2023-10-06 10:50:41 +08:00
binary-husky
49cea97822 启动主题自动转换 2023-10-06 10:36:30 +08:00
binary-husky
6310b65d70 重新编译Gradio优化使用体验 2023-10-06 10:32:03 +08:00
binary-husky
93c76e1809 更新内置gradio版本 2023-10-06 09:54:07 +08:00
binary-husky
f64cf7a3d1 update translation matrix 2023-10-02 14:24:01 +08:00
binary-husky
fdffbee1b0 Update toolbox.py 2023-09-30 09:56:30 +08:00
binary-husky
87ccd1a89a Update crazy_functional.py 2023-09-27 18:35:06 +08:00
binary-husky
87b9734986 修复'copiedIcon'重复定义BUG 2023-09-27 16:35:58 +08:00
binary-husky
d2d5665c37 允许模块预热时使用Proxy 2023-09-27 15:53:45 +08:00
binary-husky
0844b6e9cf GROBID服务代理访问支持 2023-09-27 15:40:55 +08:00
binary-husky
9cb05e5724 修改布局 2023-09-27 15:20:28 +08:00
binary-husky
80b209fa0c Merge branch 'frontier' 2023-09-27 15:19:07 +08:00
binary-husky
8d4cb05738 Matlab项目解析插件的Shortcut 2023-09-26 10:16:38 +08:00
binary-husky
31f4069563 改善润色和校读Prompt 2023-09-25 17:46:28 +08:00
binary-husky
8ba6fc062e Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2023-09-23 23:59:30 +08:00
binary-husky
c0c2d14e3d better scrollbar 2023-09-23 23:58:32 +08:00
binary-husky
f0a5c49a9c Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2023-09-23 23:47:42 +08:00
binary-husky
9333570ab7 减小重置等基础按钮的最小大小 2023-09-23 23:47:25 +08:00
binary-husky
d6eaaad962 禁止gradio显示误导性的share=True 2023-09-23 23:23:23 +08:00
binary-husky
e24f077b68 显式增加azure-gpt-4选项 2023-09-23 23:06:58 +08:00
binary-husky
dc5bb9741a 版本更新 2023-09-23 22:45:07 +08:00
binary-husky
b383b45191 version 3.54 beta 2023-09-23 22:44:18 +08:00
binary-husky
2d8f37baba 细分代理场景 2023-09-23 22:43:15 +08:00
binary-husky
409927ef8e 统一 transformers 版本 2023-09-23 22:26:28 +08:00
binary-husky
5b231e0170 添加整体复制按钮 2023-09-23 22:11:29 +08:00
binary-husky
87f629bb37 添加gpt-4-32k 2023-09-23 20:24:13 +08:00
binary-husky
3672c97a06 动态代码解释器 2023-09-23 01:51:05 +08:00
binary-husky
b6ee3e9807 Merge pull request #1121 from binary-husky/frontier
arxiv翻译插件添加禁用缓存选项
2023-09-21 09:33:19 +08:00
binary-husky
d56bc280e9 添加禁用缓存选项 2023-09-20 22:04:15 +08:00
qingxu fu
d5fd00c15d 微调Dockerfile 2023-09-20 10:02:10 +08:00
binary-husky
5e647ff149 Merge branch 'master' into frontier 2023-09-19 17:21:02 +08:00
binary-husky
868faf00cc 修正docker compose 2023-09-19 17:10:57 +08:00
binary-husky
a0286c39b9 更新README 2023-09-19 17:08:20 +08:00
binary-husky
9cced321f1 修改README 2023-09-19 16:55:39 +08:00
binary-husky
3073935e24 修改readme 推送version 3.53 2023-09-19 16:49:33 +08:00
binary-husky
ef6631b280 TOKEN_LIMIT_PER_FRAGMENT修改为1024 2023-09-19 16:31:36 +08:00
binary-husky
0801e4d881 Merge pull request #1111 from kaixindelele/only_chinese_pdf
提升PDF翻译插件的效果
2023-09-19 15:56:04 +08:00
qingxu fu
ae08cfbcae 修复小Bug 2023-09-19 15:55:27 +08:00
qingxu fu
1c0d5361ea 调整状态栏的最小高度 2023-09-19 15:52:42 +08:00
qingxu fu
278464bfb7 合并重复的函数 2023-09-18 23:03:23 +08:00
qingxu fu
2a6996f5d0 修复Azure的ENDPOINT格式兼容性 2023-09-18 21:19:02 +08:00
qingxu fu
84b11016c6 在nougat处理结束后,同时输出mmd文件 2023-09-18 15:21:30 +08:00
qingxu fu
7e74d3d699 调整按钮位置 2023-09-18 15:19:21 +08:00
qingxu fu
2cad8e2694 支持动态切换主题 2023-09-17 00:15:28 +08:00
qingxu fu
e765ec1223 dynamic theme 2023-09-17 00:02:49 +08:00
kaixindelele
471a369bb8 论文翻译只输出中文 2023-09-16 22:09:44 +08:00
binary-husky
760ff1840c 修复一个循环的Bug 2023-09-15 17:08:23 +08:00
binary-husky
9905122fc2 修复Tex文件匹配BUG 2023-09-15 12:55:41 +08:00
binary-husky
abea0d07ac 修复logging的Bug 2023-09-15 11:00:30 +08:00
binary-husky
16ff5ddcdc 版本3.52 2023-09-14 23:07:12 +08:00
binary-husky
1c4cb340ca 修复滞留文档的提示Bug 2023-09-14 22:45:45 +08:00
binary-husky
5ba8ea27d1 用logging取代print 2023-09-14 22:33:07 +08:00
binary-husky
567c6530d8 增加NOUGAT消息提示和错误操作提示 2023-09-14 21:38:47 +08:00
binary-husky
a3f36668a8 修复latex识别主文件错误的问题 2023-09-14 17:51:41 +08:00
binary-husky
a1cc2f733c 修复nougat线程锁释放Bug 2023-09-14 15:26:03 +08:00
binary-husky
0937f37388 Predict按钮参数修正 2023-09-14 11:02:40 +08:00
binary-husky
74f35e3401 针对虚空终端个别情况下不输出文件的问题进行提示 2023-09-14 01:51:55 +08:00
binary-husky
ab7999c71a 修正本项目源码范围 2023-09-14 01:00:38 +08:00
binary-husky
544771db9a 隐藏历史对话绝对路径 2023-09-14 00:53:15 +08:00
binary-husky
ec9d030457 把上传文件路径和日志路径修改为统一可配置的变量 2023-09-14 00:51:25 +08:00
binary-husky
14de282302 给nougat加线程锁 合并冗余代码 2023-09-13 23:21:00 +08:00
binary-husky
fb5467b85b 更新插件系统提示 2023-09-12 19:13:36 +08:00
binary-husky
c4c6465927 解决issues #1097 2023-09-12 18:57:50 +08:00
qingxu fu
99a1cd6f9f 添加pypinyin依赖 2023-09-12 12:20:05 +08:00
qingxu fu
7e73a255f4 修改知识库插件的提示信息 2023-09-12 11:47:34 +08:00
qingxu fu
4b5f13bff2 修复知识库的依赖问题 2023-09-12 11:35:31 +08:00
qingxu fu
d495b73456 支持更多UI皮肤外观,加入暗色亮色切换键 2023-09-11 22:55:32 +08:00
qingxu fu
e699b6b13f Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-09-11 14:49:37 +08:00
qingxu fu
eb150987f0 兼容一个one-api没有done数据包的第三方Bug情形 2023-09-11 14:49:30 +08:00
binary-husky
34784333dc 融合PDF左右比例调整到95% 2023-09-10 17:22:35 +08:00
binary-husky
28d777a96b 修正报错消息 2023-09-10 16:52:35 +08:00
qingxu fu
c45fa88684 update translation matrix 2023-09-09 21:57:24 +08:00
binary-husky
ad9807dd14 更新虚空终端的提示 2023-09-09 20:32:44 +08:00
binary-husky
2a51715075 修复Dockerfile 2023-09-09 20:15:46 +08:00
binary-husky
7c307d8964 修复源代码解析模块与虚空终端的兼容性 2023-09-09 19:33:05 +08:00
binary-husky
baaacc5a7b Update README.md 2023-09-09 19:11:21 +08:00
binary-husky
6faf5947c9 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-09-09 18:30:59 +08:00
binary-husky
571335cbc4 fix docker file 2023-09-09 18:30:43 +08:00
binary-husky
7d5abb6d69 Merge pull request #1077 from jsz14897502/master
更改谷歌学术搜索助手获取摘要的逻辑
2023-09-09 18:24:30 +08:00
binary-husky
a0f592308a Merge branch 'master' into jsz14897502-master 2023-09-09 18:22:29 +08:00
binary-husky
e512d99879 添加一定的延迟,防止触发反爬虫机制 2023-09-09 18:22:22 +08:00
binary-husky
e70b636513 修复数学公式判定的Bug 2023-09-09 17:50:38 +08:00
binary-husky
408b8403fe Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-09-08 12:10:22 +08:00
binary-husky
74f8cb3511 update dockerfile 2023-09-08 12:10:16 +08:00
qingxu fu
2202cf3701 remove proxy message 2023-09-08 11:11:53 +08:00
qingxu fu
cce69beee9 update error message 2023-09-08 11:08:02 +08:00
qingxu fu
347124c967 update scipdf_parser dep 2023-09-08 10:43:20 +08:00
qingxu fu
77a6105a9a 修改demo案例 2023-09-08 09:52:29 +08:00
qingxu fu
13c9606af7 修正下载PDF失败时产生的错误提示 2023-09-08 09:47:29 +08:00
binary-husky
bac6810e75 修改操作提示 2023-09-08 09:38:16 +08:00
binary-husky
c176187d24 修复因为函数返回值导致的不准确错误提示 2023-09-07 23:46:54 +08:00
binary-husky
31d5ee6ccc Update README.md 2023-09-07 23:05:54 +08:00
binary-husky
5e0dc9b9ad 修复PDF下载路径时间戳的问题 2023-09-07 18:51:09 +08:00
binary-husky
4c6f3aa427 CodeInterpreter 2023-09-07 17:45:44 +08:00
binary-husky
d7331befc1 add note 2023-09-07 17:42:47 +08:00
binary-husky
63219baa21 修正语音对话时 句子末尾显示异常的问题 2023-09-07 17:04:40 +08:00
binary-husky
97cb9a4adc full capacity docker file 2023-09-07 15:09:38 +08:00
binary-husky
24f41b0a75 new docker file 2023-09-07 00:45:03 +08:00
binary-husky
bfec29e9bc new docker file 2023-09-07 00:43:31 +08:00
binary-husky
dd9e624761 add new dockerfile 2023-09-07 00:40:11 +08:00
binary-husky
7855325ff9 update dockerfiles 2023-09-06 23:33:15 +08:00
binary-husky
2c039ff5c9 add session 2023-09-06 22:19:32 +08:00
binary-husky
9a5ee86434 Merge pull request #1084 from eltociear/patch-2
Update README.md
2023-09-06 21:56:39 +08:00
binary-husky
d6698db257 nougat翻译PDF论文 2023-09-06 15:32:11 +08:00
Ikko Eltociear Ashimine
b2d03bf2a3 Update README.md
arbitary -> arbitrary
2023-09-06 15:30:12 +09:00
binary-husky
2f83b60fb3 添加搜索失败时的提示 2023-09-06 12:36:59 +08:00
binary-husky
d183e34461 添加一个全版本搜索的开关 2023-09-06 11:42:29 +08:00
binary-husky
fb78569335 Merge branch 'master' of https://github.com/jsz14897502/gpt_academic into jsz14897502-master 2023-09-06 10:27:52 +08:00
qingxu fu
12c8cd75ee Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-09-06 10:24:14 +08:00
qingxu fu
0e21e3e2e7 修复没填写讯飞APPID无报错提示的问题 2023-09-06 10:24:11 +08:00
binary-husky
fda1e87278 Update stale.yml 2023-09-06 10:19:21 +08:00
binary-husky
1092031d77 Create stale.yml 2023-09-06 10:15:52 +08:00
jsz14
03164bcb6f fix:没有获取到所有版本时的处理 2023-09-02 19:58:24 +08:00
jsz14
d052d425af 更改谷歌学术搜索助手获取摘要的逻辑 2023-08-30 19:14:01 +08:00
共有 137 个文件被更改,包括 5238 次插入1838 次删除

查看文件

@@ -0,0 +1,44 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: build-with-all-capacity
on:
push:
branches:
- 'master'
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}_with_all_capacity
jobs:
build-and-push-image:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- name: Checkout repository
uses: actions/checkout@v3
- name: Log in to the Container registry
uses: docker/login-action@v2
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v4
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
- name: Build and push Docker image
uses: docker/build-push-action@v4
with:
context: .
push: true
file: docs/GithubAction+AllCapacity
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}

25
.github/workflows/stale.yml vendored 普通文件
查看文件

@@ -0,0 +1,25 @@
# This workflow warns and then closes issues and PRs that have had no activity for a specified amount of time.
#
# You can adjust the behavior by modifying this file.
# For more information, see:
# https://github.com/actions/stale
name: 'Close stale issues and PRs'
on:
schedule:
- cron: '*/5 * * * *'
jobs:
stale:
runs-on: ubuntu-latest
permissions:
issues: write
pull-requests: read
steps:
- uses: actions/stale@v8
with:
stale-issue-message: 'This issue is stale because it has been open 100 days with no activity. Remove stale label or comment or this will be closed in 1 days.'
days-before-stale: 100
days-before-close: 1
debug-only: true

6
.gitignore vendored
查看文件

@@ -146,9 +146,9 @@ debug*
private*
crazy_functions/test_project/pdf_and_word
crazy_functions/test_samples
request_llm/jittorllms
request_llms/jittorllms
multi-language
request_llm/moss
request_llms/moss
media
flagged
request_llm/ChatGLM-6b-onnx-u8s8
request_llms/ChatGLM-6b-onnx-u8s8

查看文件

@@ -1,34 +1,35 @@
# 此Dockerfile适用于“无本地模型”的环境构建,如果需要使用chatglm等本地模型或者latex运行依赖,请参考 docker-compose.yml
# 如何构建: 先修改 `config.py`, 然后 `docker build -t gpt-academic . `
# 如何运行(Linux下): `docker run --rm -it --net=host gpt-academic `
# 如何运行(其他操作系统,选择任意一个固定端口50923): `docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic `
# 此Dockerfile适用于“无本地模型”的迷你运行环境构建
# 如果需要使用chatglm等本地模型或者latex运行依赖,请参考 docker-compose.yml
# - 如何构建: 先修改 `config.py`, 然后 `docker build -t gpt-academic . `
# - 如何运行(Linux下): `docker run --rm -it --net=host gpt-academic `
# - 如何运行(其他操作系统,选择任意一个固定端口50923): `docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic `
FROM python:3.11
# 非必要步骤,更换pip源
# 非必要步骤,更换pip源 (以下三行,可以删除)
RUN echo '[global]' > /etc/pip.conf && \
echo 'index-url = https://mirrors.aliyun.com/pypi/simple/' >> /etc/pip.conf && \
echo 'trusted-host = mirrors.aliyun.com' >> /etc/pip.conf
# 进入工作路径
# 进入工作路径(必要)
WORKDIR /gpt
# 安装大部分依赖,利用Docker缓存加速以后的构建
# 安装大部分依赖,利用Docker缓存加速以后的构建 (以下三行,可以删除)
COPY requirements.txt ./
COPY ./docs/gradio-3.32.2-py3-none-any.whl ./docs/gradio-3.32.2-py3-none-any.whl
COPY ./docs/gradio-3.32.6-py3-none-any.whl ./docs/gradio-3.32.6-py3-none-any.whl
RUN pip3 install -r requirements.txt
# 装载项目文件,安装剩余依赖
# 装载项目文件,安装剩余依赖(必要)
COPY . .
RUN pip3 install -r requirements.txt
# 非必要步骤,用于预热模块
# 非必要步骤,用于预热模块(可以删除)
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
# 启动
# 启动(必要)
CMD ["python3", "-u", "main.py"]

142
README.md
查看文件

@@ -1,24 +1,27 @@
> **Note**
>
> 2023.7.8: Gradio, Pydantic依赖调整,已修改 `requirements.txt`。请及时**更新代码**,安装依赖时,请严格选择`requirements.txt`中**指定的版本**
>
>
> 2023.10.28: 紧急修复了若干问题,安装依赖时,请选择`requirements.txt`中**指定的版本**
>
> `pip install -r requirements.txt`
>
> 2023.11.7: 本项目开源免费,近期发现有人蔑视开源协议并利用本项目违规圈钱,请提高警惕,谨防上当受骗。
# <div align=center><img src="docs/logo.png" width="40"> GPT 学术优化 (GPT Academic)</div>
**如果喜欢这个项目,请给它一个Star;如果您发明了好用的快捷键或函数插件,欢迎发pull requests**
**如果喜欢这个项目,请给它一个Star;如果您发明了好用的快捷键或插件,欢迎发pull requests**
If you like this project, please give it a Star. If you've come up with more useful academic shortcuts or functional plugins, feel free to open an issue or pull request. We also have a README in [English|](docs/README_EN.md)[日本語|](docs/README_JP.md)[한국어|](https://github.com/mldljyh/ko_gpt_academic)[Русский|](docs/README_RS.md)[Français](docs/README_FR.md) translated by this project itself.
To translate this project to arbitary language with GPT, read and run [`multi_language.py`](multi_language.py) (experimental).
If you like this project, please give it a Star. We also have a README in [English|](docs/README_EN.md)[日本語|](docs/README_JP.md)[한국어|](https://github.com/mldljyh/ko_gpt_academic)[Русский|](docs/README_RS.md)[Français](docs/README_FR.md) translated by this project itself.
To translate this project to arbitrary language with GPT, read and run [`multi_language.py`](multi_language.py) (experimental).
> **Note**
>
> 1.请注意只有 **高亮** 标识的函数插件(按钮)才支持读取文件,部分插件位于插件区的**下拉菜单**中。另外我们以**最高优先级**欢迎和处理任何新插件的PR。
> 1.请注意只有 **高亮** 标识的插件(按钮)才支持读取文件,部分插件位于插件区的**下拉菜单**中。另外我们以**最高优先级**欢迎和处理任何新插件的PR。
>
> 2.本项目中每个文件的功能都在[自译解报告`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/GPTAcademic项目自译解报告)详细说明。随着版本的迭代,您也可以随时自行点击相关函数插件,调用GPT重新生成项目的自我解析报告。常见问题[`wiki`](https://github.com/binary-husky/gpt_academic/wiki)。[安装方法](#installation) | [配置说明](https://github.com/binary-husky/gpt_academic/wiki/%E9%A1%B9%E7%9B%AE%E9%85%8D%E7%BD%AE%E8%AF%B4%E6%98%8E)。
> 2.本项目中每个文件的功能都在[自译解报告`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/GPTAcademic项目自译解报告)详细说明。随着版本的迭代,您也可以随时自行点击相关函数插件,调用GPT重新生成项目的自我解析报告。常见问题[`wiki`](https://github.com/binary-husky/gpt_academic/wiki)。[常规安装方法](#installation) | [一键安装脚本](https://github.com/binary-husky/gpt_academic/releases) | [配置说明](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。
>
> 3.本项目兼容并鼓励尝试国产大语言模型ChatGLM和Moss等等。支持多个api-key共存,可在配置文件中填写如`API_KEY="openai-key1,openai-key2,azure-key3,api2d-key4"`。需要临时更换`API_KEY`时,在输入区输入临时的`API_KEY`然后回车键提交后即可生效。
> 3.本项目兼容并鼓励尝试国产大语言模型ChatGLM等。支持多个api-key共存,可在配置文件中填写如`API_KEY="openai-key1,openai-key2,azure-key3,api2d-key4"`。需要临时更换`API_KEY`时,在输入区输入临时的`API_KEY`然后回车键提交后即可生效。
@@ -54,14 +57,14 @@ Latex论文一键校对 | [函数插件] 仿Grammarly对Latex文章进行语法
⭐ChatGLM2微调模型 | 支持加载ChatGLM2微调模型,提供ChatGLM2微调辅助插件
更多LLM模型接入,支持[huggingface部署](https://huggingface.co/spaces/qingxu98/gpt-academic) | 加入Newbing接口(新必应),引入清华[Jittorllms](https://github.com/Jittor/JittorLLMs)支持[LLaMA](https://github.com/facebookresearch/llama)和[盘古α](https://openi.org.cn/pangu/)
⭐[void-terminal](https://github.com/binary-husky/void-terminal) pip包 | 脱离GUI,在Python中直接调用本项目的所有函数插件开发中
⭐虚空终端插件 | 用自然语言,直接调度本项目其他插件
⭐虚空终端插件 | [函数插件] 用自然语言,直接调度本项目其他插件
更多新功能展示 (图像生成等) …… | 见本文档结尾处 ……
</div>
- 新界面(修改`config.py`中的LAYOUT选项即可实现“左右布局”和“上下布局”的切换
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230361456-61078362-a966-4eb5-b49e-3c62ef18b860.gif" width="700" >
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/d81137c3-affd-4cd1-bb5e-b15610389762" width="700" >
</div>
@@ -101,17 +104,19 @@ cd gpt_academic
2. 配置API_KEY
在`config.py`中,配置API KEY等设置,[点击查看特殊网络环境设置方法](https://github.com/binary-husky/gpt_academic/issues/1) 。
在`config.py`中,配置API KEY等设置,[点击查看特殊网络环境设置方法](https://github.com/binary-husky/gpt_academic/issues/1) 。[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。
(P.S. 程序运行时会优先检查是否存在名为`config_private.py`的私密配置文件,并用其中的配置覆盖`config.py`的同名配置。因此,如果您能理解我们的配置读取逻辑,我们强烈建议您在`config.py`旁边创建一个名为`config_private.py`的新配置文件,并把`config.py`中的配置转移(复制)到`config_private.py`中(仅复制您修改过的配置条目即可)。`config_private.py`不受git管控,可以让您的隐私信息更加安全。P.S.项目同样支持通过`环境变量`配置大多数选项,环境变量的书写格式参考`docker-compose`文件。读取优先级: `环境变量` > `config_private.py` > `config.py`)
「 程序会优先检查是否存在名为`config_private.py`的私密配置文件,并用其中的配置覆盖`config.py`的同名配置。如您能理解该读取逻辑,我们强烈建议您在`config.py`旁边创建一个名为`config_private.py`的新配置文件,并把`config.py`中的配置转移(复制)到`config_private.py`中(仅复制您修改过的配置条目即可)。
「 支持通过`环境变量`配置项目,环境变量的书写格式参考`docker-compose.yml`文件或者我们的[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。配置读取优先级: `环境变量` > `config_private.py` > `config.py`。 」
3. 安装依赖
```sh
# 选择I: 如熟悉pythonpython版本3.9以上,越新越好),备注使用官方pip源或者阿里pip源,临时换源方法python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
# 选择I: 如熟悉python, python>=3.9备注使用官方pip源或者阿里pip源, 临时换源方法python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
python -m pip install -r requirements.txt
# 选择II: 如不熟悉python使用anaconda步骤也是类似的 (https://www.bilibili.com/video/BV1rc411W7Dr)
# 选择II: 使用Anaconda步骤也是类似的 (https://www.bilibili.com/video/BV1rc411W7Dr)
conda create -n gptac_venv python=3.11 # 创建anaconda环境
conda activate gptac_venv # 激活anaconda环境
python -m pip install -r requirements.txt # 这个步骤和pip安装一样的步骤
@@ -124,17 +129,17 @@ python -m pip install -r requirements.txt # 这个步骤和pip安装一样的步
【可选步骤】如果需要支持清华ChatGLM2/复旦MOSS作为后端,需要额外安装更多依赖前提条件熟悉Python + 用过Pytorch + 电脑配置够强):
```sh
# 【可选步骤I】支持清华ChatGLM2。清华ChatGLM备注如果遇到"Call ChatGLM fail 不能正常加载ChatGLM的参数" 错误,参考如下: 1以上默认安装的为torch+cpu版,使用cuda需要卸载torch重新安装torch+cuda; 2如因本机配置不够无法加载模型,可以修改request_llm/bridge_chatglm.py中的模型精度, 将 AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) 都修改为 AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llm/requirements_chatglm.txt
python -m pip install -r request_llms/requirements_chatglm.txt
# 【可选步骤II】支持复旦MOSS
python -m pip install -r request_llm/requirements_moss.txt
git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llm/moss # 注意执行此行代码时,必须处于项目根路径
python -m pip install -r request_llms/requirements_moss.txt
git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss # 注意执行此行代码时,必须处于项目根路径
# 【可选步骤III】支持RWKV Runner
参考wikihttps://github.com/binary-husky/gpt_academic/wiki/%E9%80%82%E9%85%8DRWKV-Runner
# 【可选步骤IV】确保config.py配置文件的AVAIL_LLM_MODELS包含了期望的模型,目前支持的全部模型如下(jittorllms系列目前仅支持docker方案)
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
```
</p>
@@ -149,70 +154,54 @@ python main.py
### 安装方法II使用Docker
1. 仅ChatGPT推荐大多数人选择,等价于docker-compose方案1
0. 部署项目的全部能力这个是包含cuda和latex的大型镜像。但如果您网速慢、硬盘小,则不推荐使用这个
[![fullcapacity](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml)
``` sh
# 修改docker-compose.yml,保留方案0并删除其他方案。然后运行
docker-compose up
```
1. 仅ChatGPT+文心一言+spark等在线模型推荐大多数人选择
[![basic](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml)
[![basiclatex](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml)
[![basicaudio](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
``` sh
git clone --depth=1 https://github.com/binary-husky/gpt_academic.git # 下载项目
cd gpt_academic # 进入路径
nano config.py # 用任意文本编辑器编辑config.py, 配置 “Proxy”, “API_KEY” 以及 “WEB_PORT” (例如50923) 等
docker build -t gpt-academic . # 安装
#(最后一步-Linux操作系统用`--net=host`更方便快捷
docker run --rm -it --net=host gpt-academic
#(最后一步-MacOS/Windows操作系统只能用-p选项将容器上的端口(例如50923)暴露给主机上的端口
docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic
# 修改docker-compose.yml,保留方案1并删除其他方案。然后运行
docker-compose up
```
P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以直接使用docker-compose获取Latex功能修改docker-compose.yml,保留方案4并删除其他方案
P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以直接使用方案4或者方案0获取Latex功能。
2. ChatGPT + ChatGLM2 + MOSS + LLAMA2 + 通义千问(需要熟悉[Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian)运行时)
[![chatglm](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml)
``` sh
# 修改docker-compose.yml,保留方案2并删除其他方案。修改docker-compose.yml中方案2的配置,参考其中注释即可
docker-compose up
```
3. ChatGPT + LLAMA + 盘古 + RWKV需要熟悉[Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian)运行时)
[![jittorllms](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-jittorllms.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-jittorllms.yml)
``` sh
# 修改docker-compose.yml,保留方案3并删除其他方案。修改docker-compose.yml中方案3的配置,参考其中注释即可
# 修改docker-compose.yml,保留方案2并删除其他方案。然后运行:
docker-compose up
```
### 安装方法III其他部署姿势
1. 一键运行脚本。
1. **Windows一键运行脚本**
完全不熟悉python环境的Windows用户可以下载[Release](https://github.com/binary-husky/gpt_academic/releases)中发布的一键运行脚本安装无本地模型的版本。
脚本的贡献来源是[oobabooga](https://github.com/oobabooga/one-click-installers)。
2. 使用docker-compose运行。
请阅读docker-compose.yml后,按照其中的提示操作即可
2. 使用第三方API、Azure等、文心一言、星火等,见[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)
3. 如何使用反代URL
按照`config.py`中的说明配置API_URL_REDIRECT即可。
3. 云服务器远程部署避坑指南。
请访问[云服务器远程部署wiki](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
4. 微软云AzureAPI
按照`config.py`中的说明配置即可AZURE_ENDPOINT等四个配置
5. 远程云服务器部署(需要云服务器知识与经验)。
请访问[部署wiki-1](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
6. 使用Sealos[一键部署](https://github.com/binary-husky/gpt_academic/issues/993)。
7. 使用WSL2Windows Subsystem for Linux 子系统)。
请访问[部署wiki-2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
8. 如何在二级网址(如`http://localhost/subpath`)下运行。
请访问[FastAPI运行说明](docs/WithFastapi.md)
4. 一些新型的部署平台或方法
- 使用Sealos[一键部署](https://github.com/binary-husky/gpt_academic/issues/993)。
- 使用WSL2Windows Subsystem for Linux 子系统)。请访问[部署wiki-2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
- 如何在二级网址(如`http://localhost/subpath`)下运行。请访问[FastAPI运行说明](docs/WithFastapi.md)
# Advanced Usage
### I自定义新的便捷按钮学术快捷键
任意文本编辑器打开`core_functional.py`,添加条目如下,然后重启程序即可。(如按钮已经添加成功并可见,那么前缀、后缀都支持热修改,无需重启程序即可生效。)
任意文本编辑器打开`core_functional.py`,添加条目如下,然后重启程序。(如按钮已存在,那么前缀、后缀都支持热修改,无需重启程序即可生效。)
例如
```
"超级英译中": {
@@ -228,14 +217,13 @@ docker-compose up
</div>
### II自定义函数插件
编写强大的函数插件来执行任何你想得到的和想不到的任务。
本项目的插件编写、调试难度很低,只要您具备一定的python基础知识,就可以仿照我们提供的模板实现自己的插件功能。
详情请参考[函数插件指南](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)。
# Latest Update
### I新功能动态
# Updates
### I动态
1. 对话保存功能。在函数插件区调用 `保存当前的对话` 即可将当前对话保存为可读+可复原的html文件,
另外在函数插件区(下拉菜单)调用 `载入对话历史存档` ,即可还原之前的会话。
@@ -252,7 +240,7 @@ Tip不指定文件直接点击 `载入对话历史存档` 可以查看历史h
3. 虚空终端(从自然语言输入中,理解用户意图+自动调用其他插件)
- 步骤一:输入 “ 请调用插件翻译PDF论文,地址为https://www.nature.com/articles/s41586-019-1724-z.pdf
- 步骤一:输入 “ 请调用插件翻译PDF论文,地址为https://openreview.net/pdf?id=rJl0r3R9KX
- 步骤二:点击“虚空终端”
<div align="center">
@@ -276,28 +264,23 @@ Tip不指定文件直接点击 `载入对话历史存档` 可以查看历史h
<img src="https://user-images.githubusercontent.com/96192199/236432361-67739153-73e8-43fe-8111-b61296edabd9.png" width="500" >
</div>
7. 新增MOSS大语言模型支持
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236639178-92836f37-13af-4fdd-984d-b4450fe30336.png" width="500" >
</div>
8. OpenAI图像生成
7. OpenAI图像生成
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/bc7ab234-ad90-48a0-8d62-f703d9e74665" width="500" >
</div>
9. OpenAI音频解析与总结
8. OpenAI音频解析与总结
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/709ccf95-3aee-498a-934a-e1c22d3d5d5b" width="500" >
</div>
10. Latex全文校对纠错
9. Latex全文校对纠错
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/651ccd98-02c9-4464-91e1-77a6b7d1b033" height="200" > ===>
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/476f66d9-7716-4537-b5c1-735372c25adb" height="200">
</div>
11. 语言、主题切换
10. 语言、主题切换
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/b6799499-b6fb-4f0c-9c8e-1b441872f4e8" width="500" >
</div>
@@ -305,7 +288,12 @@ Tip不指定文件直接点击 `载入对话历史存档` 可以查看历史h
### II版本:
- version 3.60todo: 优化虚空终端,引入code interpreter和更多插件
- version 3.60todo: 优化虚空终端,引入AutoGen作为新一代插件的基石
- version 3.57: 支持GLM3,星火v3,文心一言v4,修复本地模型的并发BUG
- version 3.56: 支持动态追加基础功能按钮,新汇报PDF汇总页面
- version 3.55: 重构前端界面,引入悬浮窗口与菜单栏
- version 3.54: 新增动态代码解释器Code Interpreter待完善
- version 3.53: 支持动态选择不同界面主题,提高稳定性&解决多用户冲突问题
- version 3.50: 使用自然语言调用本项目的所有函数插件虚空终端,支持插件分类,改进UI,设计新主题
- version 3.49: 支持百度千帆平台和文心一言
- version 3.48: 支持阿里达摩院通义千问,上海AI-Lab书生,讯飞星火
@@ -326,7 +314,7 @@ Tip不指定文件直接点击 `载入对话历史存档` 可以查看历史h
- version 2.0: 引入模块化函数插件
- version 1.0: 基础功能
gpt_academic开发者QQ群-2610599535
GPT Academic开发者QQ群`610599535`
- 已知问题
- 某些浏览器翻译插件干扰此软件前端的运行
@@ -337,7 +325,13 @@ gpt_academic开发者QQ群-2610599535
1. `Chuanhu-Small-and-Beautiful` [网址](https://github.com/GaiZhenbiao/ChuanhuChatGPT/)
### IV参考与学习
### IV本项目的开发分支
1. `master` 分支: 主分支,稳定版
2. `frontier` 分支: 开发分支,测试版
### V参考与学习
```
代码中参考了很多其他优秀项目中的设计,顺序不分先后:

查看文件

@@ -5,7 +5,7 @@ def check_proxy(proxies):
try:
response = requests.get("https://ipapi.co/json/", proxies=proxies, timeout=4)
data = response.json()
print(f'查询代理的地理位置,返回的结果是{data}')
# print(f'查询代理的地理位置,返回的结果是{data}')
if 'country_name' in data:
country = data['country_name']
result = f"代理配置 {proxies_https}, 代理所在地:{country}"
@@ -46,7 +46,7 @@ def backup_and_download(current_version, remote_version):
return new_version_dir
os.makedirs(new_version_dir)
shutil.copytree('./', backup_dir, ignore=lambda x, y: ['history'])
proxies, = get_conf('proxies')
proxies = get_conf('proxies')
r = requests.get(
'https://github.com/binary-husky/chatgpt_academic/archive/refs/heads/master.zip', proxies=proxies, stream=True)
zip_file_path = backup_dir+'/master.zip'
@@ -113,7 +113,7 @@ def auto_update(raise_error=False):
import requests
import time
import json
proxies, = get_conf('proxies')
proxies = get_conf('proxies')
response = requests.get(
"https://raw.githubusercontent.com/binary-husky/chatgpt_academic/master/version", proxies=proxies, timeout=5)
remote_json_data = json.loads(response.text)
@@ -155,15 +155,17 @@ def auto_update(raise_error=False):
def warm_up_modules():
print('正在执行一些模块的预热...')
from request_llm.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
enc.encode("模块预热", disallowed_special=())
enc = model_info["gpt-4"]['tokenizer']
enc.encode("模块预热", disallowed_special=())
from toolbox import ProxyNetworkActivate
from request_llms.bridge_all import model_info
with ProxyNetworkActivate("Warmup_Modules"):
enc = model_info["gpt-3.5-turbo"]['tokenizer']
enc.encode("模块预热", disallowed_special=())
enc = model_info["gpt-4"]['tokenizer']
enc.encode("模块预热", disallowed_special=())
if __name__ == '__main__':
import os
os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
from toolbox import get_conf
proxies, = get_conf('proxies')
proxies = get_conf('proxies')
check_proxy(proxies)

查看文件

@@ -43,8 +43,14 @@ API_URL_REDIRECT = {}
DEFAULT_WORKER_NUM = 3
# 色彩主题可选 ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast"]
# 色彩主题, 可选 ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast"]
# 更多主题, 请查阅Gradio主题商店: https://huggingface.co/spaces/gradio/theme-gallery 可选 ["Gstaff/Xkcd", "NoCrypt/Miku", ...]
THEME = "Default"
AVAIL_THEMES = ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast", "Gstaff/Xkcd", "NoCrypt/Miku"]
# 默认的系统提示词system prompt
INIT_SYS_PROMPT = "Serve me as a writing and programming assistant."
# 对话窗的高度 仅在LAYOUT="TOP-DOWN"时生效)
@@ -57,7 +63,10 @@ CODE_HIGHLIGHT = True
# 窗口布局
LAYOUT = "LEFT-RIGHT" # "LEFT-RIGHT"(左右布局) # "TOP-DOWN"(上下布局)
DARK_MODE = True # 暗色模式 / 亮色模式
# 暗色模式 / 亮色模式
DARK_MODE = True
# 发送请求到OpenAI后,等待多久判定为超时
@@ -73,21 +82,28 @@ MAX_RETRY = 2
# 插件分类默认选项
DEFAULT_FN_GROUPS = ['对话', '编程', '学术']
DEFAULT_FN_GROUPS = ['对话', '编程', '学术', '智能体']
# 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
LLM_MODEL = "gpt-3.5-turbo" # 可选 ↓↓↓
AVAIL_LLM_MODELS = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5", "api2d-gpt-3.5-turbo",
"gpt-4", "api2d-gpt-4", "chatglm", "moss", "newbing", "stack-claude"]
# P.S. 其他可用的模型还包括 ["qianfan", "llama2", "qwen", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613",
# "spark", "sparkv2", "chatglm_onnx", "claude-1-100k", "claude-2", "internlm", "jittorllms_pangualpha", "jittorllms_llama"]
AVAIL_LLM_MODELS = ["gpt-3.5-turbo-1106","gpt-4-1106-preview",
"gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
"api2d-gpt-3.5-turbo", 'api2d-gpt-3.5-turbo-16k',
"gpt-4", "gpt-4-32k", "azure-gpt-4", "api2d-gpt-4",
"chatglm3", "moss", "newbing", "claude-2"]
# P.S. 其他可用的模型还包括 ["zhipuai", "qianfan", "llama2", "qwen", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-random"
# "spark", "sparkv2", "sparkv3", "chatglm_onnx", "claude-1-100k", "claude-2", "internlm", "jittorllms_pangualpha", "jittorllms_llama"]
# 定义界面上“询问多个GPT模型”插件应该使用哪些模型,请从AVAIL_LLM_MODELS中选择,并在不同模型之间用`&`间隔,例如"gpt-3.5-turbo&chatglm3&azure-gpt-4"
MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
# 百度千帆LLM_MODEL="qianfan"
BAIDU_CLOUD_API_KEY = ''
BAIDU_CLOUD_SECRET_KEY = ''
BAIDU_CLOUD_QIANFAN_MODEL = 'ERNIE-Bot' # 可选 "ERNIE-Bot"(文心一言), "ERNIE-Bot-turbo", "BLOOMZ-7B", "Llama-2-70B-Chat", "Llama-2-13B-Chat", "Llama-2-7B-Chat"
BAIDU_CLOUD_QIANFAN_MODEL = 'ERNIE-Bot' # 可选 "ERNIE-Bot-4"(文心大模型4.0), "ERNIE-Bot"(文心一言), "ERNIE-Bot-turbo", "BLOOMZ-7B", "Llama-2-70B-Chat", "Llama-2-13B-Chat", "Llama-2-7B-Chat"
# 如果使用ChatGLM2微调模型,请把 LLM_MODEL="chatglmft",并在此处指定模型路径
@@ -120,22 +136,31 @@ AUTHENTICATION = []
CUSTOM_PATH = "/"
# HTTPS 秘钥和证书(不需要修改)
SSL_KEYFILE = ""
SSL_CERTFILE = ""
# 极少数情况下,openai的官方KEY需要伴随组织编码格式如org-xxxxxxxxxxxxxxxxxxxxxxxx使用
API_ORG = ""
# 如果需要使用Slack Claude,使用教程详情见 request_llm/README.md
# 如果需要使用Slack Claude,使用教程详情见 request_llms/README.md
SLACK_CLAUDE_BOT_ID = ''
SLACK_CLAUDE_USER_TOKEN = ''
# 如果需要使用AZURE 详情请见额外文档 docs\use_azure.md
# 如果需要使用AZURE方法一单个azure模型部署详情请见额外文档 docs\use_azure.md
AZURE_ENDPOINT = "https://你亲手写的api名称.openai.azure.com/"
AZURE_API_KEY = "填入azure openai api的密钥" # 建议直接在API_KEY处填写,该选项即将被弃用
AZURE_ENGINE = "填入你亲手写的部署名" # 读 docs\use_azure.md
# 使用Newbing
# 如果需要使用AZURE方法二多个azure模型部署+动态切换)详情请见额外文档 docs\use_azure.md
AZURE_CFG_ARRAY = {}
# 使用Newbing (不推荐使用,未来将删除)
NEWBING_STYLE = "creative" # ["creative", "balanced", "precise"]
NEWBING_COOKIES = """
put your new bing cookies here
@@ -156,6 +181,11 @@ XFYUN_API_SECRET = "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
XFYUN_API_KEY = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
# 接入智谱大模型
ZHIPUAI_API_KEY = ""
ZHIPUAI_MODEL = "chatglm_turbo"
# Claude API KEY
ANTHROPIC_API_KEY = ""
@@ -172,7 +202,8 @@ HUGGINGFACE_ACCESS_TOKEN = "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"
# 获取方法复制以下空间https://huggingface.co/spaces/qingxu98/grobid,设为public,然后GROBID_URL = "https://(你的hf用户名如qingxu98)-(你的填写的空间名如grobid).hf.space"
GROBID_URLS = [
"https://qingxu98-grobid.hf.space","https://qingxu98-grobid2.hf.space","https://qingxu98-grobid3.hf.space",
"https://shaocongma-grobid.hf.space","https://FBR123-grobid.hf.space", "https://yeku-grobid.hf.space",
"https://qingxu98-grobid4.hf.space","https://qingxu98-grobid5.hf.space", "https://qingxu98-grobid6.hf.space",
"https://qingxu98-grobid7.hf.space", "https://qingxu98-grobid8.hf.space",
]
@@ -180,6 +211,30 @@ GROBID_URLS = [
ALLOW_RESET_CONFIG = False
# 在使用AutoGen插件时,是否使用Docker容器运行代码
AUTOGEN_USE_DOCKER = False
# 临时的上传文件夹位置,请勿修改
PATH_PRIVATE_UPLOAD = "private_upload"
# 日志文件夹的位置,请勿修改
PATH_LOGGING = "gpt_log"
# 除了连接OpenAI之外,还有哪些场合允许使用代理,请勿修改
WHEN_TO_USE_PROXY = ["Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
"Warmup_Modules", "Nougat_Download", "AutoGen"]
# *实验性功能*: 自动检测并屏蔽失效的KEY,请勿使用
BLOCK_INVALID_APIKEY = False
# 自定义按钮的最大数量限制
NUM_CUSTOM_BASIC_BTN = 4
"""
在线大模型配置关联关系示意图
@@ -189,13 +244,16 @@ ALLOW_RESET_CONFIG = False
│ ├── API_ORG不常用
│ └── API_URL_REDIRECT不常用
├── "azure-gpt-3.5" 等azure模型
├── "azure-gpt-3.5" 等azure模型单个azure模型,不需要动态切换
│ ├── API_KEY
│ ├── AZURE_ENDPOINT
│ ├── AZURE_API_KEY
│ ├── AZURE_ENGINE
│ └── API_URL_REDIRECT
├── "azure-gpt-3.5" 等azure模型多个azure模型,需要动态切换,高优先级
│ └── AZURE_CFG_ARRAY
├── "spark" 星火认知大模型 spark & sparkv2
│ ├── XFYUN_APPID
│ ├── XFYUN_API_SECRET

查看文件

@@ -11,7 +11,8 @@ def get_core_functions():
# 前缀,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等
"Prefix": r"Below is a paragraph from an academic paper. Polish the writing to meet the academic style, " +
r"improve the spelling, grammar, clarity, concision and overall readability. When necessary, rewrite the whole sentence. " +
r"Furthermore, list all modification and explain the reasons to do so in markdown table." + "\n\n",
r"Firstly, you should provide the polished paragraph. "
r"Secondly, you should list all your modification and explain the reasons to do so in markdown table." + "\n\n",
# 后缀,会被加在你的输入之后。例如,配合前缀可以把你的输入内容用引号圈起来
"Suffix": r"",
# 按钮颜色 (默认 secondary)
@@ -27,17 +28,18 @@ def get_core_functions():
"Suffix": r"",
},
"查找语法错误": {
"Prefix": r"Can you help me ensure that the grammar and the spelling is correct? " +
r"Do not try to polish the text, if no mistake is found, tell me that this paragraph is good." +
r"If you find grammar or spelling mistakes, please list mistakes you find in a two-column markdown table, " +
r"put the original text the first column, " +
r"put the corrected text in the second column and highlight the key words you fixed.""\n"
"Prefix": r"Help me ensure that the grammar and the spelling is correct. "
r"Do not try to polish the text, if no mistake is found, tell me that this paragraph is good. "
r"If you find grammar or spelling mistakes, please list mistakes you find in a two-column markdown table, "
r"put the original text the first column, "
r"put the corrected text in the second column and highlight the key words you fixed. "
r"Finally, please provide the proofreaded text.""\n\n"
r"Example:""\n"
r"Paragraph: How is you? Do you knows what is it?""\n"
r"| Original sentence | Corrected sentence |""\n"
r"| :--- | :--- |""\n"
r"| How **is** you? | How **are** you? |""\n"
r"| Do you **knows** what **is** **it**? | Do you **know** what **it** **is** ? |""\n"
r"| Do you **knows** what **is** **it**? | Do you **know** what **it** **is** ? |""\n\n"
r"Below is a paragraph from an academic paper. "
r"You need to report all grammar and spelling mistakes as the example before."
+ "\n\n",
@@ -89,8 +91,15 @@ def handle_core_functionality(additional_fn, inputs, history, chatbot):
import core_functional
importlib.reload(core_functional) # 热更新prompt
core_functional = core_functional.get_core_functions()
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
if core_functional[additional_fn].get("AutoClearHistory", False):
history = []
return inputs, history
addition = chatbot._cookies['customize_fn_overwrite']
if additional_fn in addition:
# 自定义功能
inputs = addition[additional_fn]["Prefix"] + inputs + addition[additional_fn]["Suffix"]
return inputs, history
else:
# 预制功能
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
if core_functional[additional_fn].get("AutoClearHistory", False):
history = []
return inputs, history

查看文件

@@ -6,6 +6,7 @@ def get_crazy_functions():
from crazy_functions.生成函数注释 import 批量生成函数注释
from crazy_functions.解析项目源代码 import 解析项目本身
from crazy_functions.解析项目源代码 import 解析一个Python项目
from crazy_functions.解析项目源代码 import 解析一个Matlab项目
from crazy_functions.解析项目源代码 import 解析一个C项目的头文件
from crazy_functions.解析项目源代码 import 解析一个C项目
from crazy_functions.解析项目源代码 import 解析一个Golang项目
@@ -13,7 +14,6 @@ def get_crazy_functions():
from crazy_functions.解析项目源代码 import 解析一个Java项目
from crazy_functions.解析项目源代码 import 解析一个前端项目
from crazy_functions.高级功能函数模板 import 高阶功能模板函数
from crazy_functions.代码重写为全英文_多线程 import 全项目切换英文
from crazy_functions.Latex全文润色 import Latex英文润色
from crazy_functions.询问多个大语言模型 import 同时问询
from crazy_functions.解析项目源代码 import 解析一个Lua项目
@@ -39,7 +39,7 @@ def get_crazy_functions():
function_plugins = {
"虚空终端": {
"Group": "对话|编程|学术",
"Group": "对话|编程|学术|智能体",
"Color": "stop",
"AsButton": True,
"Function": HotReload(虚空终端)
@@ -78,6 +78,13 @@ def get_crazy_functions():
"Info": "批量总结word文档 | 输入参数为路径",
"Function": HotReload(总结word文档)
},
"解析整个Matlab项目": {
"Group": "编程",
"Color": "stop",
"AsButton": False,
"Info": "解析一个Matlab项目的所有源文件(.m) | 输入参数为路径",
"Function": HotReload(解析一个Matlab项目)
},
"解析整个C++项目头文件": {
"Group": "编程",
"Color": "stop",
@@ -183,10 +190,10 @@ def get_crazy_functions():
"Info": "多线程解析并翻译此项目的源码 | 不需要输入参数",
"Function": HotReload(解析项目本身)
},
"[插件demo]历史上的今天": {
"历史上的今天": {
"Group": "对话",
"AsButton": True,
"Info": "查看历史上的今天事件 | 不需要输入参数",
"Info": "查看历史上的今天事件 (这是一个面向开发者的插件Demo) | 不需要输入参数",
"Function": HotReload(高阶功能模板函数)
},
"精准翻译PDF论文": {
@@ -244,20 +251,25 @@ def get_crazy_functions():
"Info": "对中文Latex项目全文进行润色处理 | 输入参数为路径或上传压缩包",
"Function": HotReload(Latex中文润色)
},
"Latex项目全文中译英输入路径或上传压缩包": {
"Group": "学术",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "对Latex项目全文进行中译英处理 | 输入参数为路径或上传压缩包",
"Function": HotReload(Latex中译英)
},
"Latex项目全文英译中输入路径或上传压缩包": {
"Group": "学术",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "Latex项目全文进行英译中处理 | 输入参数为路径或上传压缩包",
"Function": HotReload(Latex英译中)
},
# 已经被新插件取代
# "Latex项目全文中译英输入路径或上传压缩包": {
# "Group": "学术",
# "Color": "stop",
# "AsButton": False, # 加入下拉菜单中
# "Info": "对Latex项目全文进行中译英处理 | 输入参数为路径或上传压缩包",
# "Function": HotReload(Latex中译英)
# },
# 已经被新插件取代
# "Latex项目全文英译中(输入路径或上传压缩包": {
# "Group": "学术",
# "Color": "stop",
# "AsButton": False, # 加入下拉菜单中
# "Info": "对Latex项目全文进行英译中处理 | 输入参数为路径或上传压缩包",
# "Function": HotReload(Latex英译中)
# },
"批量Markdown中译英输入路径或上传压缩包": {
"Group": "编程",
"Color": "stop",
@@ -337,18 +349,40 @@ def get_crazy_functions():
print('Load function plugin failed')
try:
from crazy_functions.图片生成 import 图片生成
from crazy_functions.图片生成 import 图片生成_DALLE2, 图片生成_DALLE3, 图片修改_DALLE2
function_plugins.update({
"图片生成先切换模型到openai或api2d": {
"图片生成_DALLE2先切换模型到openai或api2d": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区默认False
"ArgsReminder": "在这里输入分辨率, 如256x256默认", # 高级参数输入区的显示提示
"Info": "图片生成 | 输入参数字符串,提供图像的内容",
"Function": HotReload(图片生成)
"ArgsReminder": "在这里输入分辨率, 如1024x1024默认,支持 256x256, 512x512, 1024x1024", # 高级参数输入区的显示提示
"Info": "使用DALLE2生成图片 | 输入参数字符串,提供图像的内容",
"Function": HotReload(图片生成_DALLE2)
},
})
function_plugins.update({
"图片生成_DALLE3先切换模型到openai或api2d": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区默认False
"ArgsReminder": "在这里输入分辨率, 如1024x1024默认,支持 1024x1024, 1792x1024, 1024x1792", # 高级参数输入区的显示提示
"Info": "使用DALLE3生成图片 | 输入参数字符串,提供图像的内容",
"Function": HotReload(图片生成_DALLE3)
},
})
# function_plugins.update({
# "图片修改_DALLE2启动DALLE2图像修改向导程序": {
# "Group": "对话",
# "Color": "stop",
# "AsButton": False,
# "AdvancedArgs": True, # 调用时,唤起高级参数输入区默认False
# "ArgsReminder": "在这里输入分辨率, 如1024x1024默认,支持 1024x1024, 1792x1024, 1024x1792", # 高级参数输入区的显示提示
# # "Info": "使用DALLE2修改图片 | 输入参数字符串,提供图像的内容",
# "Function": HotReload(图片修改_DALLE2)
# },
# })
except:
print('Load function plugin failed')
@@ -385,7 +419,7 @@ def get_crazy_functions():
try:
from crazy_functions.批量Markdown翻译 import Markdown翻译指定语言
function_plugins.update({
"Markdown翻译手动指定语言)": {
"Markdown翻译指定翻译成何种语言)": {
"Group": "编程",
"Color": "stop",
"AsButton": False,
@@ -400,12 +434,12 @@ def get_crazy_functions():
try:
from crazy_functions.Langchain知识库 import 知识库问答
function_plugins.update({
"构建知识库(先上传文件素材)": {
"构建知识库(先上传文件素材,再运行此插件": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": "待注入的知识库名称id, 默认为default",
"ArgsReminder": "此处待注入的知识库名称id, 默认为default。文件进入知识库后可长期保存。可以通过再次调用本插件的方式,向知识库追加更多文档。",
"Function": HotReload(知识库问答)
}
})
@@ -415,12 +449,12 @@ def get_crazy_functions():
try:
from crazy_functions.Langchain知识库 import 读取知识库作答
function_plugins.update({
"知识库问答": {
"知识库问答(构建知识库后,再运行此插件)": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": "待提取的知识库名称id, 默认为default, 您需要首先调用构建知识库",
"ArgsReminder": "待提取的知识库名称id, 默认为default, 您需要构建知识库后再运行此插件。",
"Function": HotReload(读取知识库作答)
}
})
@@ -430,7 +464,7 @@ def get_crazy_functions():
try:
from crazy_functions.交互功能函数模板 import 交互功能模板函数
function_plugins.update({
"交互功能模板函数": {
"交互功能模板Demo函数查找wallhaven.cc的壁纸": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
@@ -486,21 +520,56 @@ def get_crazy_functions():
try:
from toolbox import get_conf
ENABLE_AUDIO, = get_conf('ENABLE_AUDIO')
ENABLE_AUDIO = get_conf('ENABLE_AUDIO')
if ENABLE_AUDIO:
from crazy_functions.语音助手 import 语音助手
function_plugins.update({
"实时音频采集": {
"实时语音对话": {
"Group": "对话",
"Color": "stop",
"AsButton": True,
"Info": "开始语言对话 | 没有输入参数",
"Info": "这是一个时刻聆听着的语音对话助手 | 没有输入参数",
"Function": HotReload(语音助手)
}
})
except:
print('Load function plugin failed')
try:
from crazy_functions.批量翻译PDF文档_NOUGAT import 批量翻译PDF文档
function_plugins.update({
"精准翻译PDF文档NOUGAT": {
"Group": "学术",
"Color": "stop",
"AsButton": False,
"Function": HotReload(批量翻译PDF文档)
}
})
except:
print('Load function plugin failed')
try:
from crazy_functions.函数动态生成 import 函数动态生成
function_plugins.update({
"动态代码解释器CodeInterpreter": {
"Group": "智能体",
"Color": "stop",
"AsButton": False,
"Function": HotReload(函数动态生成)
}
})
except:
print('Load function plugin failed')
from crazy_functions.多智能体 import 多智能体终端
function_plugins.update({
"多智能体终端微软AutoGen": {
"Group": "智能体",
"Color": "stop",
"AsButton": True,
"Function": HotReload(多智能体终端)
}
})
# try:
# from crazy_functions.chatglm微调工具 import 微调数据集生成

查看文件

@@ -0,0 +1,232 @@
from collections.abc import Callable, Iterable, Mapping
from typing import Any
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc
from toolbox import promote_file_to_downloadzone, get_log_folder
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import input_clipping, try_install_deps
from multiprocessing import Process, Pipe
import os
import time
templete = """
```python
import ... # Put dependencies here, e.g. import numpy as np
class TerminalFunction(object): # Do not change the name of the class, The name of the class must be `TerminalFunction`
def run(self, path): # The name of the function must be `run`, it takes only a positional argument.
# rewrite the function you have just written here
...
return generated_file_path
```
"""
def inspect_dependency(chatbot, history):
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return True
def get_code_block(reply):
import re
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
matches = re.findall(pattern, reply) # find all code blocks in text
if len(matches) == 1:
return matches[0].strip('python') # code block
for match in matches:
if 'class TerminalFunction' in match:
return match.strip('python') # code block
raise RuntimeError("GPT is not generating proper code.")
def gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history):
# 输入
prompt_compose = [
f'Your job:\n'
f'1. write a single Python function, which takes a path of a `{file_type}` file as the only argument and returns a `string` containing the result of analysis or the path of generated files. \n',
f"2. You should write this function to perform following task: " + txt + "\n",
f"3. Wrap the output python function with markdown codeblock."
]
i_say = "".join(prompt_compose)
demo = []
# 第一步
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=i_say,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=demo,
sys_prompt= r"You are a programmer."
)
history.extend([i_say, gpt_say])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
# 第二步
prompt_compose = [
"If previous stage is successful, rewrite the function you have just written to satisfy following templete: \n",
templete
]
i_say = "".join(prompt_compose); inputs_show_user = "If previous stage is successful, rewrite the function you have just written to satisfy executable templete. "
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=inputs_show_user,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
sys_prompt= r"You are a programmer."
)
code_to_return = gpt_say
history.extend([i_say, gpt_say])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
# # 第三步
# i_say = "Please list to packages to install to run the code above. Then show me how to use `try_install_deps` function to install them."
# i_say += 'For instance. `try_install_deps(["opencv-python", "scipy", "numpy"])`'
# installation_advance = yield from request_gpt_model_in_new_thread_with_ui_alive(
# inputs=i_say, inputs_show_user=inputs_show_user,
# llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
# sys_prompt= r"You are a programmer."
# )
# # # 第三步
# i_say = "Show me how to use `pip` to install packages to run the code above. "
# i_say += 'For instance. `pip install -r opencv-python scipy numpy`'
# installation_advance = yield from request_gpt_model_in_new_thread_with_ui_alive(
# inputs=i_say, inputs_show_user=i_say,
# llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
# sys_prompt= r"You are a programmer."
# )
installation_advance = ""
return code_to_return, installation_advance, txt, file_type, llm_kwargs, chatbot, history
def make_module(code):
module_file = 'gpt_fn_' + gen_time_str().replace('-','_')
with open(f'{get_log_folder()}/{module_file}.py', 'w', encoding='utf8') as f:
f.write(code)
def get_class_name(class_string):
import re
# Use regex to extract the class name
class_name = re.search(r'class (\w+)\(', class_string).group(1)
return class_name
class_name = get_class_name(code)
return f"{get_log_folder().replace('/', '.')}.{module_file}->{class_name}"
def init_module_instance(module):
import importlib
module_, class_ = module.split('->')
init_f = getattr(importlib.import_module(module_), class_)
return init_f()
def for_immediate_show_off_when_possible(file_type, fp, chatbot):
if file_type in ['png', 'jpg']:
image_path = os.path.abspath(fp)
chatbot.append(['这是一张图片, 展示如下:',
f'本地文件地址: <br/>`{image_path}`<br/>'+
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
])
return chatbot
def subprocess_worker(instance, file_path, return_dict):
return_dict['result'] = instance.run(file_path)
def have_any_recent_upload_files(chatbot):
_5min = 5 * 60
if not chatbot: return False # chatbot is None
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
if not most_recent_uploaded: return False # most_recent_uploaded is None
if time.time() - most_recent_uploaded["time"] < _5min: return True # most_recent_uploaded is new
else: return False # most_recent_uploaded is too old
def get_recent_file_prompt_support(chatbot):
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
path = most_recent_uploaded['path']
return path
@CatchException
def 虚空终端CodeInterpreter(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数,暂时没有用武之地
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
raise NotImplementedError
# 清空历史,以免输入溢出
history = []; clear_file_downloadzone(chatbot)
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"CodeInterpreter开源版, 此插件处于开发阶段, 建议暂时不要使用, 插件初始化中 ..."
])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if have_any_recent_upload_files(chatbot):
file_path = get_recent_file_prompt_support(chatbot)
else:
chatbot.append(["文件检索", "没有发现任何近期上传的文件。"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 读取文件
if ("recently_uploaded_files" in plugin_kwargs) and (plugin_kwargs["recently_uploaded_files"] == ""): plugin_kwargs.pop("recently_uploaded_files")
recently_uploaded_files = plugin_kwargs.get("recently_uploaded_files", None)
file_path = recently_uploaded_files[-1]
file_type = file_path.split('.')[-1]
# 粗心检查
if is_the_upload_folder(txt):
chatbot.append([
"...",
f"请在输入框内填写需求,然后再次点击该插件(文件路径 {file_path} 已经被记忆)"
])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 开始干正事
for j in range(5): # 最多重试5次
try:
code, installation_advance, txt, file_type, llm_kwargs, chatbot, history = \
yield from gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history)
code = get_code_block(code)
res = make_module(code)
instance = init_module_instance(res)
break
except Exception as e:
chatbot.append([f"{j}次代码生成尝试,失败了", f"错误追踪\n```\n{trimmed_format_exc()}\n```\n"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 代码生成结束, 开始执行
try:
import multiprocessing
manager = multiprocessing.Manager()
return_dict = manager.dict()
p = multiprocessing.Process(target=subprocess_worker, args=(instance, file_path, return_dict))
# only has 10 seconds to run
p.start(); p.join(timeout=10)
if p.is_alive(): p.terminate(); p.join()
p.close()
res = return_dict['result']
# res = instance.run(file_path)
except Exception as e:
chatbot.append(["执行失败了", f"错误追踪\n```\n{trimmed_format_exc()}\n```\n"])
# chatbot.append(["如果是缺乏依赖,请参考以下建议", installation_advance])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 顺利完成,收尾
res = str(res)
if os.path.exists(res):
chatbot.append(["执行成功了,结果是一个有效文件", "结果:" + res])
new_file_path = promote_file_to_downloadzone(res, chatbot=chatbot)
chatbot = for_immediate_show_off_when_possible(file_type, new_file_path, chatbot)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
else:
chatbot.append(["执行成功了,结果是一个字符串", "结果:" + res])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
"""
测试:
裁剪图像,保留下半部分
交换图像的蓝色通道和红色通道
将图像转为灰度图像
将csv文件转excel表格
"""

查看文件

@@ -1,4 +1,4 @@
from toolbox import CatchException, update_ui, ProxyNetworkActivate
from toolbox import CatchException, update_ui, ProxyNetworkActivate, update_ui_lastest_msg
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_files_from_everything
@@ -15,7 +15,12 @@ def 知识库问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
chatbot.append(("这是什么功能?", "[Local Message] 从一批文件(txt, md, tex)中读取数据构建知识库, 然后进行问答。"))
# < --------------------读取参数--------------- >
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
kai_id = plugin_kwargs.get("advanced_arg", 'default')
chatbot.append((f"向`{kai_id}`知识库中添加文件。", "[Local Message] 从一批文件(txt, md, tex)中读取数据构建知识库, 然后进行问答。"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# resolve deps
@@ -24,17 +29,12 @@ def 知识库问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from .crazy_utils import knowledge_archive_interface
except Exception as e:
chatbot.append(
["依赖不足",
"导入依赖失败。正在尝试自动安装,请查看终端的输出或耐心等待..."]
)
chatbot.append(["依赖不足", "导入依赖失败。正在尝试自动安装,请查看终端的输出或耐心等待..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
from .crazy_utils import try_install_deps
try_install_deps(['zh_langchain==0.2.1', 'pypinyin'])
# < --------------------读取参数--------------- >
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
kai_id = plugin_kwargs.get("advanced_arg", 'default')
try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history)
return
# < --------------------读取文件--------------- >
file_manifest = []
@@ -53,14 +53,14 @@ def 知识库问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
print('Checking Text2vec ...')
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
with ProxyNetworkActivate(): # 临时地激活代理网络
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
# < -------------------构建知识库--------------- >
chatbot.append(['<br/>'.join(file_manifest), "正在构建知识库..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
print('Establishing knowledge archive ...')
with ProxyNetworkActivate(): # 临时地激活代理网络
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
kai = knowledge_archive_interface()
kai.feed_archive(file_manifest=file_manifest, id=kai_id)
kai_files = kai.get_loaded_file()
@@ -84,19 +84,18 @@ def 读取知识库作答(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
chatbot.append(["依赖不足", "导入依赖失败。正在尝试自动安装,请查看终端的输出或耐心等待..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
from .crazy_utils import try_install_deps
try_install_deps(['zh_langchain==0.2.1'])
try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history)
return
# < ------------------- --------------- >
kai = knowledge_archive_interface()
if 'langchain_plugin_embedding' in chatbot._cookies:
resp, prompt = kai.answer_with_archive_by_id(txt, chatbot._cookies['langchain_plugin_embedding'])
else:
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
kai_id = plugin_kwargs.get("advanced_arg", 'default')
resp, prompt = kai.answer_with_archive_by_id(txt, kai_id)
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
kai_id = plugin_kwargs.get("advanced_arg", 'default')
resp, prompt = kai.answer_with_archive_by_id(txt, kai_id)
chatbot.append((txt, '[Local Message] ' + prompt))
chatbot.append((txt, f'[知识库 {kai_id}] ' + prompt))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=prompt, inputs_show_user=txt,

查看文件

@@ -1,5 +1,5 @@
from toolbox import update_ui, trimmed_format_exc
from toolbox import CatchException, report_execption, write_results_to_file, zip_folder
from toolbox import update_ui, trimmed_format_exc, promote_file_to_downloadzone, get_log_folder
from toolbox import CatchException, report_exception, write_history_to_file, zip_folder
class PaperFileGroup():
@@ -11,7 +11,7 @@ class PaperFileGroup():
self.sp_file_tag = []
# count_token
from request_llm.bridge_all import model_info
from request_llms.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
self.get_token_num = get_token_num
@@ -51,7 +51,7 @@ class PaperFileGroup():
import os, time
folder = os.path.dirname(self.file_paths[0])
t = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
zip_folder(folder, './gpt_log/', f'{t}-polished.zip')
zip_folder(folder, get_log_folder(), f'{t}-polished.zip')
def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en', mode='polish'):
@@ -126,7 +126,9 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
# <-------- 整理结果,退出 ---------->
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
res = write_results_to_file(gpt_response_collection, file_name=create_report_file_name)
res = write_history_to_file(gpt_response_collection, file_basename=create_report_file_name)
promote_file_to_downloadzone(res, chatbot=chatbot)
history = gpt_response_collection
chatbot.append((f"{fp}完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -137,14 +139,14 @@ def Latex英文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"对整个Latex项目进行润色。函数插件贡献者: Binary-Husky"])
"对整个Latex项目进行润色。函数插件贡献者: Binary-Husky注意,此插件不调用Latex,如果有Latex环境,请使用“Latex英文纠错+高亮”插件)"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -155,12 +157,12 @@ def Latex英文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en')
@@ -182,7 +184,7 @@ def Latex中文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
try:
import tiktoken
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -193,12 +195,12 @@ def Latex中文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh')
@@ -218,7 +220,7 @@ def Latex英文纠错(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
try:
import tiktoken
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -229,12 +231,12 @@ def Latex英文纠错(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en', mode='proofread')

查看文件

@@ -1,5 +1,5 @@
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
from toolbox import update_ui, promote_file_to_downloadzone
from toolbox import CatchException, report_exception, write_history_to_file
fast_debug = False
class PaperFileGroup():
@@ -11,7 +11,7 @@ class PaperFileGroup():
self.sp_file_tag = []
# count_token
from request_llm.bridge_all import model_info
from request_llms.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
self.get_token_num = get_token_num
@@ -95,7 +95,8 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
# <-------- 整理结果,退出 ---------->
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
res = write_results_to_file(gpt_response_collection, file_name=create_report_file_name)
res = write_history_to_file(gpt_response_collection, create_report_file_name)
promote_file_to_downloadzone(res, chatbot=chatbot)
history = gpt_response_collection
chatbot.append((f"{fp}完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -116,7 +117,7 @@ def Latex英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
try:
import tiktoken
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -127,12 +128,12 @@ def Latex英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en->zh')
@@ -153,7 +154,7 @@ def Latex中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
try:
import tiktoken
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -164,12 +165,12 @@ def Latex中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh->en')

查看文件

@@ -1,5 +1,5 @@
from toolbox import update_ui, trimmed_format_exc, get_conf, objdump, objload, promote_file_to_downloadzone
from toolbox import CatchException, report_execption, update_ui_lastest_msg, zip_result, gen_time_str
from toolbox import update_ui, trimmed_format_exc, get_conf, get_log_folder, promote_file_to_downloadzone
from toolbox import CatchException, report_exception, update_ui_lastest_msg, zip_result, gen_time_str
from functools import partial
import glob, os, requests, time
pj = os.path.join
@@ -65,7 +65,7 @@ def move_project(project_folder, arxiv_id=None):
if arxiv_id is not None:
new_workfolder = pj(ARXIV_CACHE_DIR, arxiv_id, 'workfolder')
else:
new_workfolder = f'gpt_log/{gen_time_str()}'
new_workfolder = f'{get_log_folder()}/{gen_time_str()}'
try:
shutil.rmtree(new_workfolder)
except:
@@ -79,7 +79,7 @@ def move_project(project_folder, arxiv_id=None):
shutil.copytree(src=project_folder, dst=new_workfolder)
return new_workfolder
def arxiv_download(chatbot, history, txt):
def arxiv_download(chatbot, history, txt, allow_cache=True):
def check_cached_translation_pdf(arxiv_id):
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'translation')
if not os.path.exists(translation_dir):
@@ -109,14 +109,14 @@ def arxiv_download(chatbot, history, txt):
url_ = txt # https://arxiv.org/abs/1707.06690
if not txt.startswith('https://arxiv.org/abs/'):
msg = f"解析arxiv网址失败, 期望格式例如: https://arxiv.org/abs/1707.06690。实际得到格式: {url_}"
msg = f"解析arxiv网址失败, 期望格式例如: https://arxiv.org/abs/1707.06690。实际得到格式: {url_}"
yield from update_ui_lastest_msg(msg, chatbot=chatbot, history=history) # 刷新界面
return msg, None
# <-------------- set format ------------->
arxiv_id = url_.split('/abs/')[-1]
if 'v' in arxiv_id: arxiv_id = arxiv_id[:10]
cached_translation_pdf = check_cached_translation_pdf(arxiv_id)
if cached_translation_pdf: return cached_translation_pdf, arxiv_id
if cached_translation_pdf and allow_cache: return cached_translation_pdf, arxiv_id
url_tar = url_.replace('/abs/', '/e-print/')
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'e-print')
@@ -129,7 +129,7 @@ def arxiv_download(chatbot, history, txt):
yield from update_ui_lastest_msg("调用缓存", chatbot=chatbot, history=history) # 刷新界面
else:
yield from update_ui_lastest_msg("开始下载", chatbot=chatbot, history=history) # 刷新界面
proxies, = get_conf('proxies')
proxies = get_conf('proxies')
r = requests.get(url_tar, proxies=proxies)
with open(dst, 'wb+') as f:
f.write(r.content)
@@ -171,12 +171,12 @@ def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, histo
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
@@ -228,6 +228,9 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
# <-------------- more requirements ------------->
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
more_req = plugin_kwargs.get("advanced_arg", "")
no_cache = more_req.startswith("--no-cache")
if no_cache: more_req.lstrip("--no-cache")
allow_cache = not no_cache
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
# <-------------- check deps ------------->
@@ -244,9 +247,9 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
# <-------------- clear history and read input ------------->
history = []
txt, arxiv_id = yield from arxiv_download(chatbot, history, txt)
txt, arxiv_id = yield from arxiv_download(chatbot, history, txt, allow_cache)
if txt.endswith('.pdf'):
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"发现已经存在翻译好的PDF文档")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"发现已经存在翻译好的PDF文档")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
@@ -255,13 +258,13 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无法处理: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return

查看文件

@@ -0,0 +1,23 @@
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, ProxyNetworkActivate
from toolbox import report_exception, get_log_folder, update_ui_lastest_msg, Singleton
from crazy_functions.agent_fns.pipe import PluginMultiprocessManager, PipeCom
from crazy_functions.agent_fns.general import AutoGenGeneral
class AutoGenMath(AutoGenGeneral):
def define_agents(self):
from autogen import AssistantAgent, UserProxyAgent
return [
{
"name": "assistant", # name of the agent.
"cls": AssistantAgent, # class of the agent.
},
{
"name": "user_proxy", # name of the agent.
"cls": UserProxyAgent, # class of the agent.
"human_input_mode": "ALWAYS", # always ask for human input.
"llm_config": False, # disables llm-based auto reply.
},
]

查看文件

@@ -0,0 +1,19 @@
from crazy_functions.agent_fns.pipe import PluginMultiprocessManager, PipeCom
class EchoDemo(PluginMultiprocessManager):
def subprocess_worker(self, child_conn):
# ⭐⭐ 子进程
self.child_conn = child_conn
while True:
msg = self.child_conn.recv() # PipeCom
if msg.cmd == "user_input":
# wait futher user input
self.child_conn.send(PipeCom("show", msg.content))
wait_success = self.subprocess_worker_wait_user_feedback(wait_msg="我准备好处理下一个问题了.")
if not wait_success:
# wait timeout, terminate this subprocess_worker
break
elif msg.cmd == "terminate":
self.child_conn.send(PipeCom("done", ""))
break
print('[debug] subprocess_worker terminated')

查看文件

@@ -0,0 +1,134 @@
from toolbox import trimmed_format_exc, get_conf, ProxyNetworkActivate
from crazy_functions.agent_fns.pipe import PluginMultiprocessManager, PipeCom
from request_llms.bridge_all import predict_no_ui_long_connection
import time
def gpt_academic_generate_oai_reply(
self,
messages,
sender,
config,
):
llm_config = self.llm_config if config is None else config
if llm_config is False:
return False, None
if messages is None:
messages = self._oai_messages[sender]
inputs = messages[-1]['content']
history = []
for message in messages[:-1]:
history.append(message['content'])
context=messages[-1].pop("context", None)
assert context is None, "预留参数 context 未实现"
reply = predict_no_ui_long_connection(
inputs=inputs,
llm_kwargs=llm_config,
history=history,
sys_prompt=self._oai_system_message[0]['content'],
console_slience=True
)
assumed_done = reply.endswith('\nTERMINATE')
return True, reply
class AutoGenGeneral(PluginMultiprocessManager):
def gpt_academic_print_override(self, user_proxy, message, sender):
# ⭐⭐ run in subprocess
self.child_conn.send(PipeCom("show", sender.name + "\n\n---\n\n" + message["content"]))
def gpt_academic_get_human_input(self, user_proxy, message):
# ⭐⭐ run in subprocess
patience = 300
begin_waiting_time = time.time()
self.child_conn.send(PipeCom("interact", message))
while True:
time.sleep(0.5)
if self.child_conn.poll():
wait_success = True
break
if time.time() - begin_waiting_time > patience:
self.child_conn.send(PipeCom("done", ""))
wait_success = False
break
if wait_success:
return self.child_conn.recv().content
else:
raise TimeoutError("等待用户输入超时")
def define_agents(self):
raise NotImplementedError
def exe_autogen(self, input):
# ⭐⭐ run in subprocess
input = input.content
with ProxyNetworkActivate("AutoGen"):
code_execution_config = {"work_dir": self.autogen_work_dir, "use_docker": self.use_docker}
agents = self.define_agents()
user_proxy = None
assistant = None
for agent_kwargs in agents:
agent_cls = agent_kwargs.pop('cls')
kwargs = {
'llm_config':self.llm_kwargs,
'code_execution_config':code_execution_config
}
kwargs.update(agent_kwargs)
agent_handle = agent_cls(**kwargs)
agent_handle._print_received_message = lambda a,b: self.gpt_academic_print_override(agent_kwargs, a, b)
for d in agent_handle._reply_func_list:
if hasattr(d['reply_func'],'__name__') and d['reply_func'].__name__ == 'generate_oai_reply':
d['reply_func'] = gpt_academic_generate_oai_reply
if agent_kwargs['name'] == 'user_proxy':
agent_handle.get_human_input = lambda a: self.gpt_academic_get_human_input(user_proxy, a)
user_proxy = agent_handle
if agent_kwargs['name'] == 'assistant': assistant = agent_handle
try:
if user_proxy is None or assistant is None: raise Exception("用户代理或助理代理未定义")
user_proxy.initiate_chat(assistant, message=input)
except Exception as e:
tb_str = '```\n' + trimmed_format_exc() + '```'
self.child_conn.send(PipeCom("done", "AutoGen 执行失败: \n\n" + tb_str))
def subprocess_worker(self, child_conn):
# ⭐⭐ run in subprocess
self.child_conn = child_conn
while True:
msg = self.child_conn.recv() # PipeCom
self.exe_autogen(msg)
class AutoGenGroupChat(AutoGenGeneral):
def exe_autogen(self, input):
# ⭐⭐ run in subprocess
import autogen
input = input.content
with ProxyNetworkActivate("AutoGen"):
code_execution_config = {"work_dir": self.autogen_work_dir, "use_docker": self.use_docker}
agents = self.define_agents()
agents_instances = []
for agent_kwargs in agents:
agent_cls = agent_kwargs.pop("cls")
kwargs = {"code_execution_config": code_execution_config}
kwargs.update(agent_kwargs)
agent_handle = agent_cls(**kwargs)
agent_handle._print_received_message = lambda a, b: self.gpt_academic_print_override(agent_kwargs, a, b)
agents_instances.append(agent_handle)
if agent_kwargs["name"] == "user_proxy":
user_proxy = agent_handle
user_proxy.get_human_input = lambda a: self.gpt_academic_get_human_input(user_proxy, a)
try:
groupchat = autogen.GroupChat(agents=agents_instances, messages=[], max_round=50)
manager = autogen.GroupChatManager(groupchat=groupchat, **self.define_group_chat_manager_config())
manager._print_received_message = lambda a, b: self.gpt_academic_print_override(agent_kwargs, a, b)
manager.get_human_input = lambda a: self.gpt_academic_get_human_input(manager, a)
if user_proxy is None:
raise Exception("user_proxy is not defined")
user_proxy.initiate_chat(manager, message=input)
except Exception:
tb_str = "```\n" + trimmed_format_exc() + "```"
self.child_conn.send(PipeCom("done", "AutoGen exe failed: \n\n" + tb_str))
def define_group_chat_manager_config(self):
raise NotImplementedError

查看文件

@@ -0,0 +1,16 @@
from toolbox import Singleton
@Singleton
class GradioMultiuserManagerForPersistentClasses():
def __init__(self):
self.mapping = {}
def already_alive(self, key):
return (key in self.mapping) and (self.mapping[key].is_alive())
def set(self, key, x):
self.mapping[key] = x
return self.mapping[key]
def get(self, key):
return self.mapping[key]

查看文件

@@ -0,0 +1,194 @@
from toolbox import get_log_folder, update_ui, gen_time_str, get_conf, promote_file_to_downloadzone
from crazy_functions.agent_fns.watchdog import WatchDog
import time, os
class PipeCom:
def __init__(self, cmd, content) -> None:
self.cmd = cmd
self.content = content
class PluginMultiprocessManager:
def __init__(self, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# ⭐ run in main process
self.autogen_work_dir = os.path.join(get_log_folder("autogen"), gen_time_str())
self.previous_work_dir_files = {}
self.llm_kwargs = llm_kwargs
self.plugin_kwargs = plugin_kwargs
self.chatbot = chatbot
self.history = history
self.system_prompt = system_prompt
# self.web_port = web_port
self.alive = True
self.use_docker = get_conf("AUTOGEN_USE_DOCKER")
self.last_user_input = ""
# create a thread to monitor self.heartbeat, terminate the instance if no heartbeat for a long time
timeout_seconds = 5 * 60
self.heartbeat_watchdog = WatchDog(timeout=timeout_seconds, bark_fn=self.terminate, interval=5)
self.heartbeat_watchdog.begin_watch()
def feed_heartbeat_watchdog(self):
# feed this `dog`, so the dog will not `bark` (bark_fn will terminate the instance)
self.heartbeat_watchdog.feed()
def is_alive(self):
return self.alive
def launch_subprocess_with_pipe(self):
# ⭐ run in main process
from multiprocessing import Process, Pipe
parent_conn, child_conn = Pipe()
self.p = Process(target=self.subprocess_worker, args=(child_conn,))
self.p.daemon = True
self.p.start()
return parent_conn
def terminate(self):
self.p.terminate()
self.alive = False
print("[debug] instance terminated")
def subprocess_worker(self, child_conn):
# ⭐⭐ run in subprocess
raise NotImplementedError
def send_command(self, cmd):
# ⭐ run in main process
repeated = False
if cmd == self.last_user_input:
repeated = True
cmd = ""
else:
self.last_user_input = cmd
self.parent_conn.send(PipeCom("user_input", cmd))
return repeated, cmd
def immediate_showoff_when_possible(self, fp):
# ⭐ 主进程
# 获取fp的拓展名
file_type = fp.split('.')[-1]
# 如果是文本文件, 则直接显示文本内容
if file_type.lower() in ['png', 'jpg']:
image_path = os.path.abspath(fp)
self.chatbot.append([
'检测到新生图像:',
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
])
yield from update_ui(chatbot=self.chatbot, history=self.history)
def overwatch_workdir_file_change(self):
# ⭐ 主进程 Docker 外挂文件夹监控
path_to_overwatch = self.autogen_work_dir
change_list = []
# 扫描路径下的所有文件, 并与self.previous_work_dir_files中所记录的文件进行对比,
# 如果有新文件出现,或者文件的修改时间发生变化,则更新self.previous_work_dir_files中
# 把新文件和发生变化的文件的路径记录到 change_list 中
for root, dirs, files in os.walk(path_to_overwatch):
for file in files:
file_path = os.path.join(root, file)
if file_path not in self.previous_work_dir_files.keys():
last_modified_time = os.stat(file_path).st_mtime
self.previous_work_dir_files.update({file_path: last_modified_time})
change_list.append(file_path)
else:
last_modified_time = os.stat(file_path).st_mtime
if last_modified_time != self.previous_work_dir_files[file_path]:
self.previous_work_dir_files[file_path] = last_modified_time
change_list.append(file_path)
if len(change_list) > 0:
file_links = ""
for f in change_list:
res = promote_file_to_downloadzone(f)
file_links += f'<br/><a href="file={res}" target="_blank">{res}</a>'
yield from self.immediate_showoff_when_possible(f)
self.chatbot.append(['检测到新生文档.', f'文档清单如下: {file_links}'])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return change_list
def main_process_ui_control(self, txt, create_or_resume) -> str:
# ⭐ 主进程
if create_or_resume == 'create':
self.cnt = 1
self.parent_conn = self.launch_subprocess_with_pipe() # ⭐⭐⭐
repeated, cmd_to_autogen = self.send_command(txt)
if txt == 'exit':
self.chatbot.append([f"结束", "结束信号已明确,终止AutoGen程序。"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
self.terminate()
return "terminate"
# patience = 10
while True:
time.sleep(0.5)
if not self.alive:
# the heartbeat watchdog might have it killed
self.terminate()
return "terminate"
if self.parent_conn.poll():
self.feed_heartbeat_watchdog()
if "[GPT-Academic] 等待中" in self.chatbot[-1][-1]:
self.chatbot.pop(-1) # remove the last line
if "等待您的进一步指令" in self.chatbot[-1][-1]:
self.chatbot.pop(-1) # remove the last line
if '[GPT-Academic] 等待中' in self.chatbot[-1][-1]:
self.chatbot.pop(-1) # remove the last line
msg = self.parent_conn.recv() # PipeCom
if msg.cmd == "done":
self.chatbot.append([f"结束", msg.content])
self.cnt += 1
yield from update_ui(chatbot=self.chatbot, history=self.history)
self.terminate()
break
if msg.cmd == "show":
yield from self.overwatch_workdir_file_change()
notice = ""
if repeated: notice = "(自动忽略重复的输入)"
self.chatbot.append([f"运行阶段-{self.cnt}(上次用户反馈输入为: 「{cmd_to_autogen}{notice}", msg.content])
self.cnt += 1
yield from update_ui(chatbot=self.chatbot, history=self.history)
if msg.cmd == "interact":
yield from self.overwatch_workdir_file_change()
self.chatbot.append([f"程序抵达用户反馈节点.", msg.content +
"\n\n等待您的进一步指令." +
"\n\n(1) 一般情况下您不需要说什么, 清空输入区, 然后直接点击“提交”以继续. " +
"\n\n(2) 如果您需要补充些什么, 输入要反馈的内容, 直接点击“提交”以继续. " +
"\n\n(3) 如果您想终止程序, 输入exit, 直接点击“提交”以终止AutoGen并解锁. "
])
yield from update_ui(chatbot=self.chatbot, history=self.history)
# do not terminate here, leave the subprocess_worker instance alive
return "wait_feedback"
else:
self.feed_heartbeat_watchdog()
if '[GPT-Academic] 等待中' not in self.chatbot[-1][-1]:
# begin_waiting_time = time.time()
self.chatbot.append(["[GPT-Academic] 等待AutoGen执行结果 ...", "[GPT-Academic] 等待中"])
self.chatbot[-1] = [self.chatbot[-1][0], self.chatbot[-1][1].replace("[GPT-Academic] 等待中", "[GPT-Academic] 等待中.")]
yield from update_ui(chatbot=self.chatbot, history=self.history)
# if time.time() - begin_waiting_time > patience:
# self.chatbot.append([f"结束", "等待超时, 终止AutoGen程序。"])
# yield from update_ui(chatbot=self.chatbot, history=self.history)
# self.terminate()
# return "terminate"
self.terminate()
return "terminate"
def subprocess_worker_wait_user_feedback(self, wait_msg="wait user feedback"):
# ⭐⭐ run in subprocess
patience = 5 * 60
begin_waiting_time = time.time()
self.child_conn.send(PipeCom("interact", wait_msg))
while True:
time.sleep(0.5)
if self.child_conn.poll():
wait_success = True
break
if time.time() - begin_waiting_time > patience:
self.child_conn.send(PipeCom("done", ""))
wait_success = False
break
return wait_success

查看文件

@@ -0,0 +1,28 @@
import threading, time
class WatchDog():
def __init__(self, timeout, bark_fn, interval=3, msg="") -> None:
self.last_feed = None
self.timeout = timeout
self.bark_fn = bark_fn
self.interval = interval
self.msg = msg
self.kill_dog = False
def watch(self):
while True:
if self.kill_dog: break
if time.time() - self.last_feed > self.timeout:
if len(self.msg) > 0: print(self.msg)
self.bark_fn()
break
time.sleep(self.interval)
def begin_watch(self):
self.last_feed = time.time()
th = threading.Thread(target=self.watch)
th.daemon = True
th.start()
def feed(self):
self.last_feed = time.time()

查看文件

@@ -1,9 +1,11 @@
from toolbox import update_ui, get_conf, trimmed_format_exc
from toolbox import update_ui, get_conf, trimmed_format_exc, get_log_folder
import threading
import os
import logging
def input_clipping(inputs, history, max_token_limit):
import numpy as np
from request_llm.bridge_all import model_info
from request_llms.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
@@ -61,18 +63,21 @@ def request_gpt_model_in_new_thread_with_ui_alive(
"""
import time
from concurrent.futures import ThreadPoolExecutor
from request_llm.bridge_all import predict_no_ui_long_connection
from request_llms.bridge_all import predict_no_ui_long_connection
# 用户反馈
chatbot.append([inputs_show_user, ""])
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
executor = ThreadPoolExecutor(max_workers=16)
mutable = ["", time.time(), ""]
# 看门狗耐心
watch_dog_patience = 5
# 请求任务
def _req_gpt(inputs, history, sys_prompt):
retry_op = retry_times_at_unknown_error
exceeded_cnt = 0
while True:
# watchdog error
if len(mutable) >= 2 and (time.time()-mutable[1]) > 5:
if len(mutable) >= 2 and (time.time()-mutable[1]) > watch_dog_patience:
raise RuntimeError("检测到程序终止。")
try:
# 【第一种情况】:顺利完成
@@ -172,11 +177,11 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
"""
import time, random
from concurrent.futures import ThreadPoolExecutor
from request_llm.bridge_all import predict_no_ui_long_connection
from request_llms.bridge_all import predict_no_ui_long_connection
assert len(inputs_array) == len(history_array)
assert len(inputs_array) == len(sys_prompt_array)
if max_workers == -1: # 读取配置文件
try: max_workers, = get_conf('DEFAULT_WORKER_NUM')
try: max_workers = get_conf('DEFAULT_WORKER_NUM')
except: max_workers = 8
if max_workers <= 0: max_workers = 3
# 屏蔽掉 chatglm的多线程,可能会导致严重卡顿
@@ -191,6 +196,9 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
# 跨线程传递
mutable = [["", time.time(), "等待中"] for _ in range(n_frag)]
# 看门狗耐心
watch_dog_patience = 5
# 子线程任务
def _req_gpt(index, inputs, history, sys_prompt):
gpt_say = ""
@@ -199,7 +207,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
mutable[index][2] = "执行中"
while True:
# watchdog error
if len(mutable[index]) >= 2 and (time.time()-mutable[index][1]) > 5:
if len(mutable[index]) >= 2 and (time.time()-mutable[index][1]) > watch_dog_patience:
raise RuntimeError("检测到程序终止。")
try:
# 【第一种情况】:顺利完成
@@ -273,7 +281,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
# 在前端打印些好玩的东西
for thread_index, _ in enumerate(worker_done):
print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
replace('\n', '').replace('```', '...').replace(
replace('\n', '').replace('`', '.').replace(
' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]"
observe_win.append(print_something_really_funny)
# 在前端打印些好玩的东西
@@ -299,7 +307,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
gpt_res = f.result()
chatbot.append([inputs_show_user, gpt_res])
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
time.sleep(0.3)
time.sleep(0.5)
return gpt_response_collection
@@ -469,14 +477,16 @@ def read_and_clean_pdf_text(fp):
'- ', '') for t in text_areas['blocks'] if 'lines' in t]
############################## <第 2 步,获取正文主字体> ##################################
fsize_statiscs = {}
for span in meta_span:
if span[1] not in fsize_statiscs: fsize_statiscs[span[1]] = 0
fsize_statiscs[span[1]] += span[2]
main_fsize = max(fsize_statiscs, key=fsize_statiscs.get)
if REMOVE_FOOT_NOTE:
give_up_fize_threshold = main_fsize * REMOVE_FOOT_FFSIZE_PERCENT
try:
fsize_statiscs = {}
for span in meta_span:
if span[1] not in fsize_statiscs: fsize_statiscs[span[1]] = 0
fsize_statiscs[span[1]] += span[2]
main_fsize = max(fsize_statiscs, key=fsize_statiscs.get)
if REMOVE_FOOT_NOTE:
give_up_fize_threshold = main_fsize * REMOVE_FOOT_FFSIZE_PERCENT
except:
raise RuntimeError(f'抱歉, 我们暂时无法解析此PDF文档: {fp}')
############################## <第 3 步,切分和重新整合> ##################################
mega_sec = []
sec = []
@@ -591,11 +601,16 @@ def get_files_from_everything(txt, type): # type='.md'
# 网络的远程文件
import requests
from toolbox import get_conf
proxies, = get_conf('proxies')
r = requests.get(txt, proxies=proxies)
with open('./gpt_log/temp'+type, 'wb+') as f: f.write(r.content)
project_folder = './gpt_log/'
file_manifest = ['./gpt_log/temp'+type]
from toolbox import get_log_folder, gen_time_str
proxies = get_conf('proxies')
try:
r = requests.get(txt, proxies=proxies)
except:
raise ConnectionRefusedError(f"无法下载资源{txt},请检查。")
path = os.path.join(get_log_folder(plugin_name='web_download'), gen_time_str()+type)
with open(path, 'wb+') as f: f.write(r.content)
project_folder = get_log_folder(plugin_name='web_download')
file_manifest = [path]
elif txt.endswith(type):
# 直接给定文件
file_manifest = [txt]
@@ -642,7 +657,7 @@ class knowledge_archive_interface():
from toolbox import ProxyNetworkActivate
print('Checking Text2vec ...')
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
with ProxyNetworkActivate(): # 临时地激活代理网络
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
self.text2vec_large_chinese = HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
return self.text2vec_large_chinese
@@ -698,56 +713,64 @@ class knowledge_archive_interface():
)
self.threadLock.release()
return resp, prompt
@Singleton
class nougat_interface():
def __init__(self):
self.threadLock = threading.Lock()
def try_install_deps(deps):
def nougat_with_timeout(self, command, cwd, timeout=3600):
import subprocess
from toolbox import ProxyNetworkActivate
logging.info(f'正在执行命令 {command}')
with ProxyNetworkActivate("Nougat_Download"):
process = subprocess.Popen(command, shell=True, cwd=cwd, env=os.environ)
try:
stdout, stderr = process.communicate(timeout=timeout)
except subprocess.TimeoutExpired:
process.kill()
stdout, stderr = process.communicate()
print("Process timed out!")
return False
return True
def NOUGAT_parse_pdf(self, fp, chatbot, history):
from toolbox import update_ui_lastest_msg
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度:正在排队, 等待线程锁...",
chatbot=chatbot, history=history, delay=0)
self.threadLock.acquire()
import glob, threading, os
from toolbox import get_log_folder, gen_time_str
dst = os.path.join(get_log_folder(plugin_name='nougat'), gen_time_str())
os.makedirs(dst)
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度正在加载NOUGAT... 提示首次运行需要花费较长时间下载NOUGAT参数",
chatbot=chatbot, history=history, delay=0)
self.nougat_with_timeout(f'nougat --out "{os.path.abspath(dst)}" "{os.path.abspath(fp)}" --recompute --no-skipping --markdown --batchsize 8', os.getcwd(), timeout=3600)
res = glob.glob(os.path.join(dst,'*.mmd'))
if len(res) == 0:
self.threadLock.release()
raise RuntimeError("Nougat解析论文失败。")
self.threadLock.release()
return res[0]
def try_install_deps(deps, reload_m=[]):
import subprocess, sys, importlib
for dep in deps:
import subprocess, sys
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '--user', dep])
import site
importlib.reload(site)
for m in reload_m:
importlib.reload(__import__(m))
class construct_html():
def __init__(self) -> None:
self.css = """
.row {
display: flex;
flex-wrap: wrap;
}
.column {
flex: 1;
padding: 10px;
}
.table-header {
font-weight: bold;
border-bottom: 1px solid black;
}
.table-row {
border-bottom: 1px solid lightgray;
}
.table-cell {
padding: 5px;
}
"""
self.html_string = f'<!DOCTYPE html><head><meta charset="utf-8"><title>翻译结果</title><style>{self.css}</style></head>'
def add_row(self, a, b):
tmp = """
<div class="row table-row">
<div class="column table-cell">REPLACE_A</div>
<div class="column table-cell">REPLACE_B</div>
</div>
"""
from toolbox import markdown_convertion
tmp = tmp.replace('REPLACE_A', markdown_convertion(a))
tmp = tmp.replace('REPLACE_B', markdown_convertion(b))
self.html_string += tmp
def save_file(self, file_name):
with open(f'./gpt_log/{file_name}', 'w', encoding='utf8') as f:
f.write(self.html_string.encode('utf-8', 'ignore').decode())
def get_plugin_arg(plugin_kwargs, key, default):
# 如果参数是空的
if (key in plugin_kwargs) and (plugin_kwargs[key] == ""): plugin_kwargs.pop(key)
# 正常情况
return plugin_kwargs.get(key, default)

查看文件

@@ -0,0 +1,70 @@
import time
import importlib
from toolbox import trimmed_format_exc, gen_time_str, get_log_folder
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, is_the_upload_folder
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_lastest_msg
import multiprocessing
def get_class_name(class_string):
import re
# Use regex to extract the class name
class_name = re.search(r'class (\w+)\(', class_string).group(1)
return class_name
def try_make_module(code, chatbot):
module_file = 'gpt_fn_' + gen_time_str().replace('-','_')
fn_path = f'{get_log_folder(plugin_name="gen_plugin_verify")}/{module_file}.py'
with open(fn_path, 'w', encoding='utf8') as f: f.write(code)
promote_file_to_downloadzone(fn_path, chatbot=chatbot)
class_name = get_class_name(code)
manager = multiprocessing.Manager()
return_dict = manager.dict()
p = multiprocessing.Process(target=is_function_successfully_generated, args=(fn_path, class_name, return_dict))
# only has 10 seconds to run
p.start(); p.join(timeout=10)
if p.is_alive(): p.terminate(); p.join()
p.close()
return return_dict["success"], return_dict['traceback']
# check is_function_successfully_generated
def is_function_successfully_generated(fn_path, class_name, return_dict):
return_dict['success'] = False
return_dict['traceback'] = ""
try:
# Create a spec for the module
module_spec = importlib.util.spec_from_file_location('example_module', fn_path)
# Load the module
example_module = importlib.util.module_from_spec(module_spec)
module_spec.loader.exec_module(example_module)
# Now you can use the module
some_class = getattr(example_module, class_name)
# Now you can create an instance of the class
instance = some_class()
return_dict['success'] = True
return
except:
return_dict['traceback'] = trimmed_format_exc()
return
def subprocess_worker(code, file_path, return_dict):
return_dict['result'] = None
return_dict['success'] = False
return_dict['traceback'] = ""
try:
module_file = 'gpt_fn_' + gen_time_str().replace('-','_')
fn_path = f'{get_log_folder(plugin_name="gen_plugin_run")}/{module_file}.py'
with open(fn_path, 'w', encoding='utf8') as f: f.write(code)
class_name = get_class_name(code)
# Create a spec for the module
module_spec = importlib.util.spec_from_file_location('example_module', fn_path)
# Load the module
example_module = importlib.util.module_from_spec(module_spec)
module_spec.loader.exec_module(example_module)
# Now you can use the module
some_class = getattr(example_module, class_name)
# Now you can create an instance of the class
instance = some_class()
return_dict['result'] = instance.run(file_path)
return_dict['success'] = True
except:
return_dict['traceback'] = trimmed_format_exc()

查看文件

@@ -1,4 +1,4 @@
from toolbox import update_ui, update_ui_lastest_msg # 刷新Gradio前端界面
from toolbox import update_ui, update_ui_lastest_msg, get_log_folder
from toolbox import zip_folder, objdump, objload, promote_file_to_downloadzone
from .latex_toolbox import PRESERVE, TRANSFORM
from .latex_toolbox import set_forbidden_text, set_forbidden_text_begin_end, set_forbidden_text_careful_brace
@@ -165,7 +165,7 @@ class LatexPaperFileGroup():
self.sp_file_tag = []
# count_token
from request_llm.bridge_all import model_info
from request_llms.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
self.get_token_num = get_token_num
@@ -363,7 +363,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
if mode!='translate_zh':
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 使用latexdiff生成论文转化前后对比 ...', chatbot, history) # 刷新Gradio前端界面
print( f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex')
ok = compile_latex_with_timeout(f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex')
ok = compile_latex_with_timeout(f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex', os.getcwd())
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 正在编译对比PDF ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
@@ -423,7 +423,7 @@ def write_html(sp_file_contents, sp_file_result, chatbot, project_folder):
# write html
try:
import shutil
from ..crazy_utils import construct_html
from crazy_functions.pdf_fns.report_gen_html import construct_html
from toolbox import gen_time_str
ch = construct_html()
orig = ""
@@ -439,9 +439,9 @@ def write_html(sp_file_contents, sp_file_result, chatbot, project_folder):
trans = k
ch.add_row(a=orig, b=trans)
create_report_file_name = f"{gen_time_str()}.trans.html"
ch.save_file(create_report_file_name)
shutil.copyfile(pj('./gpt_log/', create_report_file_name), pj(project_folder, create_report_file_name))
promote_file_to_downloadzone(file=f'./gpt_log/{create_report_file_name}', chatbot=chatbot)
res = ch.save_file(create_report_file_name)
shutil.copyfile(res, pj(project_folder, create_report_file_name))
promote_file_to_downloadzone(file=res, chatbot=chatbot)
except:
from toolbox import trimmed_format_exc
print('writing html result failed:', trimmed_format_exc())

查看文件

@@ -256,6 +256,7 @@ def find_main_tex_file(file_manifest, mode):
canidates_score.append(0)
with open(texf, 'r', encoding='utf8', errors='ignore') as f:
file_content = f.read()
file_content = rm_comments(file_content)
for uw in unexpected_words:
if uw in file_content:
canidates_score[-1] -= 1
@@ -290,7 +291,11 @@ def find_tex_file_ignore_case(fp):
import glob
for f in glob.glob(dir_name+'/*.tex'):
base_name_s = os.path.basename(fp)
if base_name_s.lower() == base_name.lower(): return f
base_name_f = os.path.basename(f)
if base_name_s.lower() == base_name_f.lower(): return f
# 试着加上.tex后缀试试
if not base_name_s.endswith('.tex'): base_name_s+='.tex'
if base_name_s.lower() == base_name_f.lower(): return f
return None
def merge_tex_files_(project_foler, main_file, mode):
@@ -301,9 +306,12 @@ def merge_tex_files_(project_foler, main_file, mode):
for s in reversed([q for q in re.finditer(r"\\input\{(.*?)\}", main_file, re.M)]):
f = s.group(1)
fp = os.path.join(project_foler, f)
fp = find_tex_file_ignore_case(fp)
if fp:
with open(fp, 'r', encoding='utf-8', errors='replace') as fx: c = fx.read()
fp_ = find_tex_file_ignore_case(fp)
if fp_:
try:
with open(fp_, 'r', encoding='utf-8', errors='replace') as fx: c = fx.read()
except:
c = f"\n\nWarning from GPT-Academic: LaTex source file is missing!\n\n"
else:
raise RuntimeError(f'找不到{fp},Tex源文件缺失')
c = merge_tex_files_(project_foler, c, mode)
@@ -337,10 +345,41 @@ def merge_tex_files(project_foler, main_file, mode):
pattern_opt2 = re.compile(r"\\abstract\{(.*?)\}", flags=re.DOTALL)
match_opt1 = pattern_opt1.search(main_file)
match_opt2 = pattern_opt2.search(main_file)
if (match_opt1 is None) and (match_opt2 is None):
# "Cannot find paper abstract section!"
main_file = insert_abstract(main_file)
match_opt1 = pattern_opt1.search(main_file)
match_opt2 = pattern_opt2.search(main_file)
assert (match_opt1 is not None) or (match_opt2 is not None), "Cannot find paper abstract section!"
return main_file
insert_missing_abs_str = r"""
\begin{abstract}
The GPT-Academic program cannot find abstract section in this paper.
\end{abstract}
"""
def insert_abstract(tex_content):
if "\\maketitle" in tex_content:
# find the position of "\maketitle"
find_index = tex_content.index("\\maketitle")
# find the nearest ending line
end_line_index = tex_content.find("\n", find_index)
# insert "abs_str" on the next line
modified_tex = tex_content[:end_line_index+1] + '\n\n' + insert_missing_abs_str + '\n\n' + tex_content[end_line_index+1:]
return modified_tex
elif r"\begin{document}" in tex_content:
# find the position of "\maketitle"
find_index = tex_content.index(r"\begin{document}")
# find the nearest ending line
end_line_index = tex_content.find("\n", find_index)
# insert "abs_str" on the next line
modified_tex = tex_content[:end_line_index+1] + '\n\n' + insert_missing_abs_str + '\n\n' + tex_content[end_line_index+1:]
return modified_tex
else:
return tex_content
"""
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Post process
@@ -423,7 +462,7 @@ def compile_latex_with_timeout(command, cwd, timeout=60):
def merge_pdfs(pdf1_path, pdf2_path, output_path):
import PyPDF2
Percent = 0.8
Percent = 0.95
# Open the first PDF file
with open(pdf1_path, 'rb') as pdf1_file:
pdf1_reader = PyPDF2.PdfFileReader(pdf1_file)

查看文件

@@ -1,4 +1,106 @@
import time, threading, json
import time, logging, json, sys, struct
import numpy as np
from scipy.io.wavfile import WAVE_FORMAT
def write_numpy_to_wave(filename, rate, data, add_header=False):
"""
Write a NumPy array as a WAV file.
"""
def _array_tofile(fid, data):
# ravel gives a c-contiguous buffer
fid.write(data.ravel().view('b').data)
if hasattr(filename, 'write'):
fid = filename
else:
fid = open(filename, 'wb')
fs = rate
try:
dkind = data.dtype.kind
if not (dkind == 'i' or dkind == 'f' or (dkind == 'u' and
data.dtype.itemsize == 1)):
raise ValueError("Unsupported data type '%s'" % data.dtype)
header_data = b''
header_data += b'RIFF'
header_data += b'\x00\x00\x00\x00'
header_data += b'WAVE'
# fmt chunk
header_data += b'fmt '
if dkind == 'f':
format_tag = WAVE_FORMAT.IEEE_FLOAT
else:
format_tag = WAVE_FORMAT.PCM
if data.ndim == 1:
channels = 1
else:
channels = data.shape[1]
bit_depth = data.dtype.itemsize * 8
bytes_per_second = fs*(bit_depth // 8)*channels
block_align = channels * (bit_depth // 8)
fmt_chunk_data = struct.pack('<HHIIHH', format_tag, channels, fs,
bytes_per_second, block_align, bit_depth)
if not (dkind == 'i' or dkind == 'u'):
# add cbSize field for non-PCM files
fmt_chunk_data += b'\x00\x00'
header_data += struct.pack('<I', len(fmt_chunk_data))
header_data += fmt_chunk_data
# fact chunk (non-PCM files)
if not (dkind == 'i' or dkind == 'u'):
header_data += b'fact'
header_data += struct.pack('<II', 4, data.shape[0])
# check data size (needs to be immediately before the data chunk)
if ((len(header_data)-4-4) + (4+4+data.nbytes)) > 0xFFFFFFFF:
raise ValueError("Data exceeds wave file size limit")
if add_header:
fid.write(header_data)
# data chunk
fid.write(b'data')
fid.write(struct.pack('<I', data.nbytes))
if data.dtype.byteorder == '>' or (data.dtype.byteorder == '=' and
sys.byteorder == 'big'):
data = data.byteswap()
_array_tofile(fid, data)
if add_header:
# Determine file size and place it in correct
# position at start of the file.
size = fid.tell()
fid.seek(4)
fid.write(struct.pack('<I', size-8))
finally:
if not hasattr(filename, 'write'):
fid.close()
else:
fid.seek(0)
def is_speaker_speaking(vad, data, sample_rate):
# Function to detect if the speaker is speaking
# The WebRTC VAD only accepts 16-bit mono PCM audio,
# sampled at 8000, 16000, 32000 or 48000 Hz.
# A frame must be either 10, 20, or 30 ms in duration:
frame_duration = 30
n_bit_each = int(sample_rate * frame_duration / 1000)*2 # x2 because audio is 16 bit (2 bytes)
res_list = []
for t in range(len(data)):
if t!=0 and t % n_bit_each == 0:
res_list.append(vad.is_speech(data[t-n_bit_each:t], sample_rate))
info = ''.join(['^' if r else '.' for r in res_list])
info = info[:10]
if any(res_list):
return True, info
else:
return False, info
class AliyunASR():
@@ -12,14 +114,14 @@ class AliyunASR():
message = json.loads(message)
self.parsed_sentence = message['payload']['result']
self.event_on_entence_end.set()
print(self.parsed_sentence)
# print(self.parsed_sentence)
def test_on_start(self, message, *args):
# print("test_on_start:{}".format(message))
pass
def test_on_error(self, message, *args):
print("on_error args=>{}".format(args))
logging.error("on_error args=>{}".format(args))
pass
def test_on_close(self, *args):
@@ -36,7 +138,6 @@ class AliyunASR():
# print("on_completed:args=>{} message=>{}".format(args, message))
pass
def audio_convertion_thread(self, uuid):
# 在一个异步线程中采集音频
import nls # pip install git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
@@ -67,12 +168,22 @@ class AliyunASR():
on_close=self.test_on_close,
callback_args=[uuid.hex]
)
timeout_limit_second = 20
r = sr.start(aformat="pcm",
timeout=timeout_limit_second,
enable_intermediate_result=True,
enable_punctuation_prediction=True,
enable_inverse_text_normalization=True)
import webrtcvad
vad = webrtcvad.Vad()
vad.set_mode(1)
is_previous_frame_transmitted = False # 上一帧是否有人说话
previous_frame_data = None
echo_cnt = 0 # 在没有声音之后,继续向服务器发送n次音频数据
echo_cnt_max = 4 # 在没有声音之后,继续向服务器发送n次音频数据
keep_alive_last_send_time = time.time()
while not self.stop:
# time.sleep(self.capture_interval)
audio = rad.read(uuid.hex)
@@ -80,12 +191,32 @@ class AliyunASR():
# convert to pcm file
temp_file = f'{temp_folder}/{uuid.hex}.pcm' #
dsdata = change_sample_rate(audio, rad.rate, NEW_SAMPLERATE) # 48000 --> 16000
io.wavfile.write(temp_file, NEW_SAMPLERATE, dsdata)
write_numpy_to_wave(temp_file, NEW_SAMPLERATE, dsdata)
# read pcm binary
with open(temp_file, "rb") as f: data = f.read()
# print('audio len:', len(audio), '\t ds len:', len(dsdata), '\t need n send:', len(data)//640)
slices = zip(*(iter(data),) * 640) # 640个字节为一组
for i in slices: sr.send_audio(bytes(i))
is_speaking, info = is_speaker_speaking(vad, data, NEW_SAMPLERATE)
if is_speaking or echo_cnt > 0:
# 如果话筒激活 / 如果处于回声收尾阶段
echo_cnt -= 1
if not is_previous_frame_transmitted: # 上一帧没有人声,但是我们把上一帧同样加上
if previous_frame_data is not None: data = previous_frame_data + data
if is_speaking:
echo_cnt = echo_cnt_max
slices = zip(*(iter(data),) * 640) # 640个字节为一组
for i in slices: sr.send_audio(bytes(i))
keep_alive_last_send_time = time.time()
is_previous_frame_transmitted = True
else:
is_previous_frame_transmitted = False
echo_cnt = 0
# 保持链接激活,即使没有声音,也根据时间间隔,发送一些音频片段给服务器
if time.time() - keep_alive_last_send_time > timeout_limit_second/2:
slices = zip(*(iter(data),) * 640) # 640个字节为一组
for i in slices: sr.send_audio(bytes(i))
keep_alive_last_send_time = time.time()
is_previous_frame_transmitted = True
self.audio_shape = info
else:
time.sleep(0.1)

查看文件

@@ -35,7 +35,7 @@ class RealtimeAudioDistribution():
def read(self, uuid):
if uuid in self.data:
res = self.data.pop(uuid)
print('\r read-', len(res), '-', max(res), end='', flush=True)
# print('\r read-', len(res), '-', max(res), end='', flush=True)
else:
res = None
return res

查看文件

@@ -0,0 +1,45 @@
from pydantic import BaseModel, Field
from typing import List
from toolbox import update_ui_lastest_msg, disable_auto_promotion
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
import time
import pickle
def have_any_recent_upload_files(chatbot):
_5min = 5 * 60
if not chatbot: return False # chatbot is None
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
if not most_recent_uploaded: return False # most_recent_uploaded is None
if time.time() - most_recent_uploaded["time"] < _5min: return True # most_recent_uploaded is new
else: return False # most_recent_uploaded is too old
class GptAcademicState():
def __init__(self):
self.reset()
def reset(self):
pass
def lock_plugin(self, chatbot):
chatbot._cookies['plugin_state'] = pickle.dumps(self)
def unlock_plugin(self, chatbot):
self.reset()
chatbot._cookies['plugin_state'] = pickle.dumps(self)
def set_state(self, chatbot, key, value):
setattr(self, key, value)
chatbot._cookies['plugin_state'] = pickle.dumps(self)
def get_state(chatbot, cls=None):
state = chatbot._cookies.get('plugin_state', None)
if state is not None: state = pickle.loads(state)
elif cls is not None: state = cls()
else: state = GptAcademicState()
state.chatbot = chatbot
return state
class GatherMaterials():
def __init__(self, materials) -> None:
materials = ['image', 'prompt']

查看文件

@@ -1,16 +1,26 @@
from functools import lru_cache
from toolbox import gen_time_str
from toolbox import promote_file_to_downloadzone
from toolbox import write_history_to_file, promote_file_to_downloadzone
from toolbox import get_conf
from toolbox import ProxyNetworkActivate
from colorful import *
import requests
import random
from functools import lru_cache
import copy
import os
import math
class GROBID_OFFLINE_EXCEPTION(Exception): pass
def get_avail_grobid_url():
from toolbox import get_conf
GROBID_URLS, = get_conf('GROBID_URLS')
GROBID_URLS = get_conf('GROBID_URLS')
if len(GROBID_URLS) == 0: return None
try:
_grobid_url = random.choice(GROBID_URLS) # 随机负载均衡
if _grobid_url.endswith('/'): _grobid_url = _grobid_url.rstrip('/')
res = requests.get(_grobid_url+'/api/isalive')
with ProxyNetworkActivate('Connect_Grobid'):
res = requests.get(_grobid_url+'/api/isalive')
if res.text=='true': return _grobid_url
else: return None
except:
@@ -20,6 +30,142 @@ def get_avail_grobid_url():
def parse_pdf(pdf_path, grobid_url):
import scipdf # pip install scipdf_parser
if grobid_url.endswith('/'): grobid_url = grobid_url.rstrip('/')
article_dict = scipdf.parse_pdf_to_dict(pdf_path, grobid_url=grobid_url)
try:
with ProxyNetworkActivate('Connect_Grobid'):
article_dict = scipdf.parse_pdf_to_dict(pdf_path, grobid_url=grobid_url)
except GROBID_OFFLINE_EXCEPTION:
raise GROBID_OFFLINE_EXCEPTION("GROBID服务不可用,请修改config中的GROBID_URL,可修改成本地GROBID服务。")
except:
raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
return article_dict
def produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files):
# -=-=-=-=-=-=-=-= 写出第1个文件翻译前后混合 -=-=-=-=-=-=-=-=
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=f"{gen_time_str()}translated_and_original.md", file_fullname=None)
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(res_path)+'.md', chatbot=chatbot)
generated_conclusion_files.append(res_path)
# -=-=-=-=-=-=-=-= 写出第2个文件仅翻译后的文本 -=-=-=-=-=-=-=-=
translated_res_array = []
# 记录当前的大章节标题:
last_section_name = ""
for index, value in enumerate(gpt_response_collection):
# 先挑选偶数序列号:
if index % 2 != 0:
# 先提取当前英文标题:
cur_section_name = gpt_response_collection[index-1].split('\n')[0].split(" Part")[0]
# 如果index是1的话,则直接使用first section name
if cur_section_name != last_section_name:
cur_value = cur_section_name + '\n'
last_section_name = copy.deepcopy(cur_section_name)
else:
cur_value = ""
# 再做一个小修改重新修改当前part的标题,默认用英文的
cur_value += value
translated_res_array.append(cur_value)
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + translated_res_array,
file_basename = f"{gen_time_str()}-translated_only.md",
file_fullname = None,
auto_caption = False)
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(res_path)+'.md', chatbot=chatbot)
generated_conclusion_files.append(res_path)
return res_path
def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG):
from crazy_functions.pdf_fns.report_gen_html import construct_html
from crazy_functions.crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
prompt = "以下是一篇学术论文的基本信息:\n"
# title
title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
# authors
authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
# abstract
abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
# command
prompt += f"请将题目和摘要翻译为{DST_LANG}"
meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ]
# 单线,获取文章meta信息
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=prompt,
inputs_show_user=prompt,
llm_kwargs=llm_kwargs,
chatbot=chatbot, history=[],
sys_prompt="You are an academic paper reader。",
)
# 多线,翻译
inputs_array = []
inputs_show_user_array = []
# get_token_num
from request_llms.bridge_all import model_info
enc = model_info[llm_kwargs['llm_model']]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
def break_down(txt):
raw_token_num = get_token_num(txt)
if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT:
return [txt]
else:
# raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
# find a smooth token limit to achieve even seperation
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
token_limit_smooth = raw_token_num // count + count
return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)
for section in article_dict.get('sections'):
if len(section['text']) == 0: continue
section_frags = break_down(section['text'])
for i, fragment in enumerate(section_frags):
heading = section['heading']
if len(section_frags) > 1: heading += f' Part-{i+1}'
inputs_array.append(
f"你需要翻译{heading}章节,内容如下: \n\n{fragment}"
)
inputs_show_user_array.append(
f"# {heading}\n\n{fragment}"
)
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[meta for _ in inputs_array],
sys_prompt_array=[
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
)
# -=-=-=-=-=-=-=-= 写出Markdown文件 -=-=-=-=-=-=-=-=
produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files)
# -=-=-=-=-=-=-=-= 写出HTML文件 -=-=-=-=-=-=-=-=
ch = construct_html()
orig = ""
trans = ""
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
for i,k in enumerate(gpt_response_collection_html):
if i%2==0:
gpt_response_collection_html[i] = inputs_show_user_array[i//2]
else:
# 先提取当前英文标题:
cur_section_name = gpt_response_collection[i-1].split('\n')[0].split(" Part")[0]
cur_value = cur_section_name + "\n" + gpt_response_collection_html[i]
gpt_response_collection_html[i] = cur_value
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""]
final.extend(gpt_response_collection_html)
for i, k in enumerate(final):
if i%2==0:
orig = k
if i%2==1:
trans = k
ch.add_row(a=orig, b=trans)
create_report_file_name = f"{os.path.basename(fp)}.trans.html"
html_file = ch.save_file(create_report_file_name)
generated_conclusion_files.append(html_file)
promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot)

查看文件

@@ -0,0 +1,58 @@
from toolbox import update_ui, get_conf, trimmed_format_exc, get_log_folder
import os
class construct_html():
def __init__(self) -> None:
self.html_string = ""
def add_row(self, a, b):
from toolbox import markdown_convertion
template = """
{
primary_col: {
header: String.raw`__PRIMARY_HEADER__`,
msg: String.raw`__PRIMARY_MSG__`,
},
secondary_rol: {
header: String.raw`__SECONDARY_HEADER__`,
msg: String.raw`__SECONDARY_MSG__`,
}
},
"""
def std(str):
str = str.replace(r'`',r'&#96;')
if str.endswith("\\"): str += ' '
if str.endswith("}"): str += ' '
if str.endswith("$"): str += ' '
return str
template_ = template
a_lines = a.split('\n')
b_lines = b.split('\n')
if len(a_lines) == 1 or len(a_lines[0]) > 50:
template_ = template_.replace("__PRIMARY_HEADER__", std(a[:20]))
template_ = template_.replace("__PRIMARY_MSG__", std(markdown_convertion(a)))
else:
template_ = template_.replace("__PRIMARY_HEADER__", std(a_lines[0]))
template_ = template_.replace("__PRIMARY_MSG__", std(markdown_convertion('\n'.join(a_lines[1:]))))
if len(b_lines) == 1 or len(b_lines[0]) > 50:
template_ = template_.replace("__SECONDARY_HEADER__", std(b[:20]))
template_ = template_.replace("__SECONDARY_MSG__", std(markdown_convertion(b)))
else:
template_ = template_.replace("__SECONDARY_HEADER__", std(b_lines[0]))
template_ = template_.replace("__SECONDARY_MSG__", std(markdown_convertion('\n'.join(b_lines[1:]))))
self.html_string += template_
def save_file(self, file_name):
from toolbox import get_log_folder
with open('crazy_functions/pdf_fns/report_template.html', 'r', encoding='utf8') as f:
html_template = f.read()
html_template = html_template.replace("__TF_ARR__", self.html_string)
with open(os.path.join(get_log_folder(), file_name), 'w', encoding='utf8') as f:
f.write(html_template.encode('utf-8', 'ignore').decode())
return os.path.join(get_log_folder(), file_name)

文件差异因一行或多行过长而隐藏

查看文件

@@ -1,7 +1,7 @@
from pydantic import BaseModel, Field
from typing import List
from toolbox import update_ui_lastest_msg, disable_auto_promotion
from request_llm.bridge_all import predict_no_ui_long_connection
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
import copy, json, pickle, os, sys, time

查看文件

@@ -1,13 +1,13 @@
from pydantic import BaseModel, Field
from typing import List
from toolbox import update_ui_lastest_msg, get_conf
from request_llm.bridge_all import predict_no_ui_long_connection
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.json_fns.pydantic_io import GptJsonIO
import copy, json, pickle, os, sys
def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention):
ALLOW_RESET_CONFIG, = get_conf('ALLOW_RESET_CONFIG')
ALLOW_RESET_CONFIG = get_conf('ALLOW_RESET_CONFIG')
if not ALLOW_RESET_CONFIG:
yield from update_ui_lastest_msg(
lastmsg=f"当前配置不允许被修改如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
@@ -66,7 +66,7 @@ def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
)
def modify_configuration_reboot(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention):
ALLOW_RESET_CONFIG, = get_conf('ALLOW_RESET_CONFIG')
ALLOW_RESET_CONFIG = get_conf('ALLOW_RESET_CONFIG')
if not ALLOW_RESET_CONFIG:
yield from update_ui_lastest_msg(
lastmsg=f"当前配置不允许被修改如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",

查看文件

@@ -1,5 +1,6 @@
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file, get_conf
from toolbox import update_ui, get_log_folder
from toolbox import write_history_to_file, promote_file_to_downloadzone
from toolbox import CatchException, report_exception, get_conf
import re, requests, unicodedata, os
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
def download_arxiv_(url_pdf):
@@ -28,7 +29,7 @@ def download_arxiv_(url_pdf):
if k in other_info['comment']:
title = k + ' ' + title
download_dir = './gpt_log/arxiv/'
download_dir = get_log_folder(plugin_name='arxiv')
os.makedirs(download_dir, exist_ok=True)
title_str = title.replace('?', '')\
@@ -40,12 +41,9 @@ def download_arxiv_(url_pdf):
requests_pdf_url = url_pdf
file_path = download_dir+title_str
# if os.path.exists(file_path):
# print('返回缓存文件')
# return './gpt_log/arxiv/'+title_str
print('下载中')
proxies, = get_conf('proxies')
proxies = get_conf('proxies')
r = requests.get(requests_pdf_url, proxies=proxies)
with open(file_path, 'wb+') as f:
f.write(r.content)
@@ -61,7 +59,7 @@ def download_arxiv_(url_pdf):
.replace('\n', '')\
.replace(' ', ' ')\
.replace(' ', ' ')
return './gpt_log/arxiv/'+title_str, other_info
return file_path, other_info
def get_name(_url_):
@@ -79,7 +77,7 @@ def get_name(_url_):
# print('在缓存中')
# return arxiv_recall[_url_]
proxies, = get_conf('proxies')
proxies = get_conf('proxies')
res = requests.get(_url_, proxies=proxies)
bs = BeautifulSoup(res.text, 'html.parser')
@@ -146,7 +144,7 @@ def 下载arxiv论文并翻译摘要(txt, llm_kwargs, plugin_kwargs, chatbot, hi
try:
import bs4
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade beautifulsoup4```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -159,7 +157,7 @@ def 下载arxiv论文并翻译摘要(txt, llm_kwargs, plugin_kwargs, chatbot, hi
try:
pdf_path, info = download_arxiv_(txt)
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a = f"解析项目: {txt}",
b = f"下载pdf文件未成功")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -184,11 +182,10 @@ def 下载arxiv论文并翻译摘要(txt, llm_kwargs, plugin_kwargs, chatbot, hi
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
# 写入文件
import shutil
# 重置文件的创建时间
shutil.copyfile(pdf_path, f'./gpt_log/{os.path.basename(pdf_path)}'); os.remove(pdf_path)
res = write_results_to_file(history)
res = write_history_to_file(history)
promote_file_to_downloadzone(res, chatbot=chatbot)
promote_file_to_downloadzone(pdf_path, chatbot=chatbot)
chatbot.append(("完成了吗?", res + "\n\nPDF文件也已经下载"))
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面

查看文件

@@ -1,138 +0,0 @@
import threading
from request_llm.bridge_all import predict_no_ui_long_connection
from toolbox import update_ui
from toolbox import CatchException, write_results_to_file, report_execption
from .crazy_utils import breakdown_txt_to_satisfy_token_limit
def extract_code_block_carefully(txt):
splitted = txt.split('```')
n_code_block_seg = len(splitted) - 1
if n_code_block_seg <= 1: return txt
# 剩下的情况都开头除去 ``` 结尾除去一次 ```
txt_out = '```'.join(splitted[1:-1])
return txt_out
def break_txt_into_half_at_some_linebreak(txt):
lines = txt.split('\n')
n_lines = len(lines)
pre = lines[:(n_lines//2)]
post = lines[(n_lines//2):]
return "\n".join(pre), "\n".join(post)
@CatchException
def 全项目切换英文(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys_prompt, web_port):
# 第1步清空历史,以免输入溢出
history = []
# 第2步尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
except:
report_execption(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 第3步集合文件
import time, glob, os, shutil, re
os.makedirs('gpt_log/generated_english_version', exist_ok=True)
os.makedirs('gpt_log/generated_english_version/crazy_functions', exist_ok=True)
file_manifest = [f for f in glob.glob('./*.py') if ('test_project' not in f) and ('gpt_log' not in f)] + \
[f for f in glob.glob('./crazy_functions/*.py') if ('test_project' not in f) and ('gpt_log' not in f)]
# file_manifest = ['./toolbox.py']
i_say_show_user_buffer = []
# 第4步随便显示点什么防止卡顿的感觉
for index, fp in enumerate(file_manifest):
# if 'test_project' in fp: continue
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
i_say_show_user =f'[{index}/{len(file_manifest)}] 接下来请将以下代码中包含的所有中文转化为英文,只输出转化后的英文代码,请用代码块输出代码: {os.path.abspath(fp)}'
i_say_show_user_buffer.append(i_say_show_user)
chatbot.append((i_say_show_user, "[Local Message] 等待多线程操作,中间过程不予显示."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 第5步Token限制下的截断与处理
MAX_TOKEN = 3000
from request_llm.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_fn(txt): return len(enc.encode(txt, disallowed_special=()))
# 第6步任务函数
mutable_return = [None for _ in file_manifest]
observe_window = [[""] for _ in file_manifest]
def thread_worker(fp,index):
if index > 10:
time.sleep(60)
print('Openai 限制免费用户每分钟20次请求,降低请求频率中。')
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
i_say_template = lambda fp, file_content: f'接下来请将以下代码中包含的所有中文转化为英文,只输出代码,文件名是{fp},文件代码是 ```{file_content}```'
try:
gpt_say = ""
# 分解代码文件
file_content_breakdown = breakdown_txt_to_satisfy_token_limit(file_content, get_token_fn, MAX_TOKEN)
for file_content_partial in file_content_breakdown:
i_say = i_say_template(fp, file_content_partial)
# # ** gpt request **
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=observe_window[index])
gpt_say_partial = extract_code_block_carefully(gpt_say_partial)
gpt_say += gpt_say_partial
mutable_return[index] = gpt_say
except ConnectionAbortedError as token_exceed_err:
print('至少一个线程任务Token溢出而失败', e)
except Exception as e:
print('至少一个线程任务意外失败', e)
# 第7步所有线程同时开始执行任务函数
handles = [threading.Thread(target=thread_worker, args=(fp,index)) for index, fp in enumerate(file_manifest)]
for h in handles:
h.daemon = True
h.start()
chatbot.append(('开始了吗?', f'多线程操作已经开始'))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 第8步循环轮询各个线程是否执行完毕
cnt = 0
while True:
cnt += 1
time.sleep(0.2)
th_alive = [h.is_alive() for h in handles]
if not any(th_alive): break
# 更好的UI视觉效果
observe_win = []
for thread_index, alive in enumerate(th_alive):
observe_win.append("[ ..."+observe_window[thread_index][0][-60:].replace('\n','').replace('```','...').replace(' ','.').replace('<br/>','.....').replace('$','.')+"... ]")
stat = [f'执行中: {obs}\n\n' if alive else '已完成\n\n' for alive, obs in zip(th_alive, observe_win)]
stat_str = ''.join(stat)
chatbot[-1] = (chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt%10+1)))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 第9步把结果写入文件
for index, h in enumerate(handles):
h.join() # 这里其实不需要join了,肯定已经都结束了
fp = file_manifest[index]
gpt_say = mutable_return[index]
i_say_show_user = i_say_show_user_buffer[index]
where_to_relocate = f'gpt_log/generated_english_version/{fp}'
if gpt_say is not None:
with open(where_to_relocate, 'w+', encoding='utf-8') as f:
f.write(gpt_say)
else: # 失败
shutil.copyfile(file_manifest[index], where_to_relocate)
chatbot.append((i_say_show_user, f'[Local Message] 已完成{os.path.abspath(fp)}的转化,\n\n存入{os.path.abspath(where_to_relocate)}'))
history.append(i_say_show_user); history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
time.sleep(1)
# 第10步备份一个文件
res = write_results_to_file(history)
chatbot.append(("生成一份任务执行报告", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

查看文件

@@ -0,0 +1,252 @@
# 本源代码中, ⭐ = 关键步骤
"""
测试:
- 裁剪图像,保留下半部分
- 交换图像的蓝色通道和红色通道
- 将图像转为灰度图像
- 将csv文件转excel表格
Testing:
- Crop the image, keeping the bottom half.
- Swap the blue channel and red channel of the image.
- Convert the image to grayscale.
- Convert the CSV file to an Excel spreadsheet.
"""
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, is_the_upload_folder
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_lastest_msg
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_plugin_arg
from .crazy_utils import input_clipping, try_install_deps
from crazy_functions.gen_fns.gen_fns_shared import is_function_successfully_generated
from crazy_functions.gen_fns.gen_fns_shared import get_class_name
from crazy_functions.gen_fns.gen_fns_shared import subprocess_worker
from crazy_functions.gen_fns.gen_fns_shared import try_make_module
import os
import time
import glob
import multiprocessing
templete = """
```python
import ... # Put dependencies here, e.g. import numpy as np.
class TerminalFunction(object): # Do not change the name of the class, The name of the class must be `TerminalFunction`
def run(self, path): # The name of the function must be `run`, it takes only a positional argument.
# rewrite the function you have just written here
...
return generated_file_path
```
"""
def inspect_dependency(chatbot, history):
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return True
def get_code_block(reply):
import re
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
matches = re.findall(pattern, reply) # find all code blocks in text
if len(matches) == 1:
return matches[0].strip('python') # code block
for match in matches:
if 'class TerminalFunction' in match:
return match.strip('python') # code block
raise RuntimeError("GPT is not generating proper code.")
def gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history):
# 输入
prompt_compose = [
f'Your job:\n'
f'1. write a single Python function, which takes a path of a `{file_type}` file as the only argument and returns a `string` containing the result of analysis or the path of generated files. \n',
f"2. You should write this function to perform following task: " + txt + "\n",
f"3. Wrap the output python function with markdown codeblock."
]
i_say = "".join(prompt_compose)
demo = []
# 第一步
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=i_say,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=demo,
sys_prompt= r"You are a world-class programmer."
)
history.extend([i_say, gpt_say])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
# 第二步
prompt_compose = [
"If previous stage is successful, rewrite the function you have just written to satisfy following templete: \n",
templete
]
i_say = "".join(prompt_compose); inputs_show_user = "If previous stage is successful, rewrite the function you have just written to satisfy executable templete. "
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=inputs_show_user,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
sys_prompt= r"You are a programmer. You need to replace `...` with valid packages, do not give `...` in your answer!"
)
code_to_return = gpt_say
history.extend([i_say, gpt_say])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
# # 第三步
# i_say = "Please list to packages to install to run the code above. Then show me how to use `try_install_deps` function to install them."
# i_say += 'For instance. `try_install_deps(["opencv-python", "scipy", "numpy"])`'
# installation_advance = yield from request_gpt_model_in_new_thread_with_ui_alive(
# inputs=i_say, inputs_show_user=inputs_show_user,
# llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
# sys_prompt= r"You are a programmer."
# )
# # # 第三步
# i_say = "Show me how to use `pip` to install packages to run the code above. "
# i_say += 'For instance. `pip install -r opencv-python scipy numpy`'
# installation_advance = yield from request_gpt_model_in_new_thread_with_ui_alive(
# inputs=i_say, inputs_show_user=i_say,
# llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
# sys_prompt= r"You are a programmer."
# )
installation_advance = ""
return code_to_return, installation_advance, txt, file_type, llm_kwargs, chatbot, history
def for_immediate_show_off_when_possible(file_type, fp, chatbot):
if file_type in ['png', 'jpg']:
image_path = os.path.abspath(fp)
chatbot.append(['这是一张图片, 展示如下:',
f'本地文件地址: <br/>`{image_path}`<br/>'+
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
])
return chatbot
def have_any_recent_upload_files(chatbot):
_5min = 5 * 60
if not chatbot: return False # chatbot is None
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
if not most_recent_uploaded: return False # most_recent_uploaded is None
if time.time() - most_recent_uploaded["time"] < _5min: return True # most_recent_uploaded is new
else: return False # most_recent_uploaded is too old
def get_recent_file_prompt_support(chatbot):
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
path = most_recent_uploaded['path']
return path
@CatchException
def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数,暂时没有用武之地
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
# 清空历史
history = []
# 基本信息:功能、贡献者
chatbot.append(["正在启动: 插件动态生成插件", "插件动态生成, 执行开始, 作者Binary-Husky."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# ⭐ 文件上传区是否有东西
# 1. 如果有文件: 作为函数参数
# 2. 如果没有文件需要用GPT提取参数 (太懒了,以后再写,虚空终端已经实现了类似的代码)
file_list = []
if get_plugin_arg(plugin_kwargs, key="file_path_arg", default=False):
file_path = get_plugin_arg(plugin_kwargs, key="file_path_arg", default=None)
file_list.append(file_path)
yield from update_ui_lastest_msg(f"当前文件: {file_path}", chatbot, history, 1)
elif have_any_recent_upload_files(chatbot):
file_dir = get_recent_file_prompt_support(chatbot)
file_list = glob.glob(os.path.join(file_dir, '**/*'), recursive=True)
yield from update_ui_lastest_msg(f"当前文件处理列表: {file_list}", chatbot, history, 1)
else:
chatbot.append(["文件检索", "没有发现任何近期上传的文件。"])
yield from update_ui_lastest_msg("没有发现任何近期上传的文件。", chatbot, history, 1)
return # 2. 如果没有文件
if len(file_list) == 0:
chatbot.append(["文件检索", "没有发现任何近期上传的文件。"])
yield from update_ui_lastest_msg("没有发现任何近期上传的文件。", chatbot, history, 1)
return # 2. 如果没有文件
# 读取文件
file_type = file_list[0].split('.')[-1]
# 粗心检查
if is_the_upload_folder(txt):
yield from update_ui_lastest_msg(f"请在输入框内填写需求, 然后再次点击该插件! 至于您的文件,不用担心, 文件路径 {txt} 已经被记忆. ", chatbot, history, 1)
return
# 开始干正事
MAX_TRY = 3
for j in range(MAX_TRY): # 最多重试5次
traceback = ""
try:
# ⭐ 开始啦
code, installation_advance, txt, file_type, llm_kwargs, chatbot, history = \
yield from gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history)
chatbot.append(["代码生成阶段结束", ""])
yield from update_ui_lastest_msg(f"正在验证上述代码的有效性 ...", chatbot, history, 1)
# ⭐ 分离代码块
code = get_code_block(code)
# ⭐ 检查模块
ok, traceback = try_make_module(code, chatbot)
# 搞定代码生成
if ok: break
except Exception as e:
if not traceback: traceback = trimmed_format_exc()
# 处理异常
if not traceback: traceback = trimmed_format_exc()
yield from update_ui_lastest_msg(f"{j+1}/{MAX_TRY} 次代码生成尝试, 失败了~ 别担心, 我们5秒后再试一次... \n\n此次我们的错误追踪是\n```\n{traceback}\n```\n", chatbot, history, 5)
# 代码生成结束, 开始执行
TIME_LIMIT = 15
yield from update_ui_lastest_msg(f"开始创建新进程并执行代码! 时间限制 {TIME_LIMIT} 秒. 请等待任务完成... ", chatbot, history, 1)
manager = multiprocessing.Manager()
return_dict = manager.dict()
# ⭐ 到最后一步了,开始逐个文件进行处理
for file_path in file_list:
if os.path.exists(file_path):
chatbot.append([f"正在处理文件: {file_path}", f"请稍等..."])
chatbot = for_immediate_show_off_when_possible(file_type, file_path, chatbot)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
else:
continue
# ⭐⭐⭐ subprocess_worker ⭐⭐⭐
p = multiprocessing.Process(target=subprocess_worker, args=(code, file_path, return_dict))
# ⭐ 开始执行,时间限制TIME_LIMIT
p.start(); p.join(timeout=TIME_LIMIT)
if p.is_alive(): p.terminate(); p.join()
p.close()
res = return_dict['result']
success = return_dict['success']
traceback = return_dict['traceback']
if not success:
if not traceback: traceback = trimmed_format_exc()
chatbot.append(["执行失败了", f"错误追踪\n```\n{trimmed_format_exc()}\n```\n"])
# chatbot.append(["如果是缺乏依赖,请参考以下建议", installation_advance])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 顺利完成,收尾
res = str(res)
if os.path.exists(res):
chatbot.append(["执行成功了,结果是一个有效文件", "结果:" + res])
new_file_path = promote_file_to_downloadzone(res, chatbot=chatbot)
chatbot = for_immediate_show_off_when_possible(file_type, new_file_path, chatbot)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
else:
chatbot.append(["执行成功了,结果是一个字符串", "结果:" + res])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新

查看文件

@@ -1,13 +1,12 @@
from toolbox import CatchException, update_ui, get_conf, select_api_key
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
import datetime
from toolbox import CatchException, update_ui, get_conf, select_api_key, get_log_folder
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicState
def gen_image(llm_kwargs, prompt, resolution="256x256"):
def gen_image(llm_kwargs, prompt, resolution="1024x1024", model="dall-e-2"):
import requests, json, time, os
from request_llm.bridge_all import model_info
from request_llms.bridge_all import model_info
proxies, = get_conf('proxies')
proxies = get_conf('proxies')
# Set up OpenAI API key and model
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
chat_endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
@@ -23,6 +22,7 @@ def gen_image(llm_kwargs, prompt, resolution="256x256"):
'prompt': prompt,
'n': 1,
'size': resolution,
'model': model,
'response_format': 'url'
}
response = requests.post(url, headers=headers, json=data, proxies=proxies)
@@ -33,7 +33,7 @@ def gen_image(llm_kwargs, prompt, resolution="256x256"):
raise RuntimeError(response.content.decode())
# 文件保存到本地
r = requests.get(image_url, proxies=proxies)
file_path = 'gpt_log/image_gen/'
file_path = f'{get_log_folder()}/image_gen/'
os.makedirs(file_path, exist_ok=True)
file_name = 'Image' + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.png'
with open(file_path+file_name, 'wb+') as f: f.write(r.content)
@@ -42,9 +42,48 @@ def gen_image(llm_kwargs, prompt, resolution="256x256"):
return image_url, file_path+file_name
def edit_image(llm_kwargs, prompt, image_path, resolution="1024x1024", model="dall-e-2"):
import requests, json, time, os
from request_llms.bridge_all import model_info
proxies = get_conf('proxies')
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
chat_endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
# 'https://api.openai.com/v1/chat/completions'
img_endpoint = chat_endpoint.replace('chat/completions','images/edits')
# # Generate the image
url = img_endpoint
headers = {
'Authorization': f"Bearer {api_key}",
'Content-Type': 'application/json'
}
data = {
'image': open(image_path, 'rb'),
'prompt': prompt,
'n': 1,
'size': resolution,
'model': model,
'response_format': 'url'
}
response = requests.post(url, headers=headers, json=data, proxies=proxies)
print(response.content)
try:
image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
except:
raise RuntimeError(response.content.decode())
# 文件保存到本地
r = requests.get(image_url, proxies=proxies)
file_path = f'{get_log_folder()}/image_gen/'
os.makedirs(file_path, exist_ok=True)
file_name = 'Image' + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.png'
with open(file_path+file_name, 'wb+') as f: f.write(r.content)
return image_url, file_path+file_name
@CatchException
def 图片生成(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
def 图片生成_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
@@ -58,7 +97,7 @@ def 图片生成(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
chatbot.append(("这是什么功能?", "[Local Message] 生成图像, 请先把模型切换至gpt-*或者api2d-*。如果中文效果不理想, 请尝试英文Prompt。正在处理中 ....."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
resolution = plugin_kwargs.get("advanced_arg", '256x256')
resolution = plugin_kwargs.get("advanced_arg", '1024x1024')
image_url, image_path = gen_image(llm_kwargs, prompt, resolution)
chatbot.append([prompt,
f'图像中转网址: <br/>`{image_url}`<br/>'+
@@ -67,3 +106,92 @@ def 图片生成(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
@CatchException
def 图片生成_DALLE3(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
chatbot.append(("这是什么功能?", "[Local Message] 生成图像, 请先把模型切换至gpt-*或者api2d-*。如果中文效果不理想, 请尝试英文Prompt。正在处理中 ....."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
resolution = plugin_kwargs.get("advanced_arg", '1024x1024')
image_url, image_path = gen_image(llm_kwargs, prompt, resolution)
chatbot.append([prompt,
f'图像中转网址: <br/>`{image_url}`<br/>'+
f'中转网址预览: <br/><div align="center"><img src="{image_url}"></div>'
f'本地文件地址: <br/>`{image_path}`<br/>'+
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
class ImageEditState(GptAcademicState):
def get_image_file(self, x):
import os, glob
if len(x) == 0: return False, None
if not os.path.exists(x): return False, None
if x.endswith('.png'): return True, x
file_manifest = [f for f in glob.glob(f'{x}/**/*.png', recursive=True)]
confirm = (len(file_manifest) >= 1 and file_manifest[0].endswith('.png') and os.path.exists(file_manifest[0]))
file = None if not confirm else file_manifest[0]
return confirm, file
def get_resolution(self, x):
return (x in ['256x256', '512x512', '1024x1024']), x
def get_prompt(self, x):
confirm = (len(x)>=5) and (not self.get_resolution(x)[0]) and (not self.get_image_file(x)[0])
return confirm, x
def reset(self):
self.req = [
{'value':None, 'description': '请先上传图像(必须是.png格式, 然后再次点击本插件', 'verify_fn': self.get_image_file},
{'value':None, 'description': '请输入分辨率,可选256x256, 512x512 或 1024x1024', 'verify_fn': self.get_resolution},
{'value':None, 'description': '请输入修改需求,建议您使用英文提示词', 'verify_fn': self.get_prompt},
]
self.info = ""
def feed(self, prompt, chatbot):
for r in self.req:
if r['value'] is None:
confirm, res = r['verify_fn'](prompt)
if confirm:
r['value'] = res
self.set_state(chatbot, 'dummy_key', 'dummy_value')
break
return self
def next_req(self):
for r in self.req:
if r['value'] is None:
return r['description']
return "已经收集到所有信息"
def already_obtained_all_materials(self):
return all([x['value'] is not None for x in self.req])
@CatchException
def 图片修改_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史
state = ImageEditState.get_state(chatbot, ImageEditState)
state = state.feed(prompt, chatbot)
if not state.already_obtained_all_materials():
chatbot.append(["图片修改(先上传图片,再输入修改需求,最后输入分辨率)", state.next_req()])
yield from update_ui(chatbot=chatbot, history=history)
return
image_path = state.req[0]
resolution = state.req[1]
prompt = state.req[2]
chatbot.append(["图片修改, 执行中", f"图片:`{image_path}`<br/>分辨率:`{resolution}`<br/>修改需求:`{prompt}`"])
yield from update_ui(chatbot=chatbot, history=history)
image_url, image_path = edit_image(llm_kwargs, prompt, image_path, resolution)
chatbot.append([state.prompt,
f'图像中转网址: <br/>`{image_url}`<br/>'+
f'中转网址预览: <br/><div align="center"><img src="{image_url}"></div>'
f'本地文件地址: <br/>`{image_path}`<br/>'+
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新

查看文件

@@ -0,0 +1,108 @@
# 本源代码中, ⭐ = 关键步骤
"""
测试:
- show me the solution of $x^2=cos(x)$, solve this problem with figure, and plot and save image to t.jpg
"""
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, ProxyNetworkActivate
from toolbox import get_conf, select_api_key, update_ui_lastest_msg, Singleton
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_plugin_arg
from crazy_functions.crazy_utils import input_clipping, try_install_deps
from crazy_functions.agent_fns.persistent import GradioMultiuserManagerForPersistentClasses
from crazy_functions.agent_fns.auto_agent import AutoGenMath
import time
def remove_model_prefix(llm):
if llm.startswith('api2d-'): llm = llm.replace('api2d-', '')
if llm.startswith('azure-'): llm = llm.replace('azure-', '')
return llm
@CatchException
def 多智能体终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
# 检查当前的模型是否符合要求
supported_llms = [
"gpt-3.5-turbo-16k",
'gpt-3.5-turbo-1106',
"gpt-4",
"gpt-4-32k",
'gpt-4-1106-preview',
"azure-gpt-3.5-turbo-16k",
"azure-gpt-3.5-16k",
"azure-gpt-4",
"azure-gpt-4-32k",
]
from request_llms.bridge_all import model_info
if model_info[llm_kwargs['llm_model']]["max_token"] < 8000: # 至少是8k上下文的模型
chatbot.append([f"处理任务: {txt}", f"当前插件只支持{str(supported_llms)}, 当前模型{llm_kwargs['llm_model']}的最大上下文长度太短, 不能支撑AutoGen运行。"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
if model_info[llm_kwargs['llm_model']]["endpoint"] is not None: # 如果不是本地模型,加载API_KEY
llm_kwargs['api_key'] = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
# 检查当前的模型是否符合要求
API_URL_REDIRECT = get_conf('API_URL_REDIRECT')
if len(API_URL_REDIRECT) > 0:
chatbot.append([f"处理任务: {txt}", f"暂不支持中转."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import autogen
if get_conf("AUTOGEN_USE_DOCKER"):
import docker
except:
chatbot.append([ f"处理任务: {txt}",
f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pyautogen docker```。"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import autogen
import glob, os, time, subprocess
if get_conf("AUTOGEN_USE_DOCKER"):
subprocess.Popen(["docker", "--version"])
except:
chatbot.append([f"处理任务: {txt}", f"缺少docker运行环境"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 解锁插件
chatbot.get_cookies()['lock_plugin'] = None
persistent_class_multi_user_manager = GradioMultiuserManagerForPersistentClasses()
user_uuid = chatbot.get_cookies().get('uuid')
persistent_key = f"{user_uuid}->多智能体终端"
if persistent_class_multi_user_manager.already_alive(persistent_key):
# 当已经存在一个正在运行的多智能体终端时,直接将用户输入传递给它,而不是再次启动一个新的多智能体终端
print('[debug] feed new user input')
executor = persistent_class_multi_user_manager.get(persistent_key)
exit_reason = yield from executor.main_process_ui_control(txt, create_or_resume="resume")
else:
# 运行多智能体终端 (首次)
print('[debug] create new executor instance')
history = []
chatbot.append(["正在启动: 多智能体终端", "插件动态生成, 执行开始, 作者 Microsoft & Binary-Husky."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
executor = AutoGenMath(llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port)
persistent_class_multi_user_manager.set(persistent_key, executor)
exit_reason = yield from executor.main_process_ui_control(txt, create_or_resume="create")
if exit_reason == "wait_feedback":
# 当用户点击了“等待反馈”按钮时,将executor存储到cookie中,等待用户的再次调用
executor.chatbot.get_cookies()['lock_plugin'] = 'crazy_functions.多智能体->多智能体终端'
else:
executor.chatbot.get_cookies()['lock_plugin'] = None
yield from update_ui(chatbot=executor.chatbot, history=executor.history) # 更新状态

查看文件

@@ -1,4 +1,4 @@
from toolbox import CatchException, update_ui, promote_file_to_downloadzone
from toolbox import CatchException, update_ui, promote_file_to_downloadzone, get_log_folder
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
import re
@@ -10,8 +10,8 @@ def write_chat_to_file(chatbot, history=None, file_name=None):
import time
if file_name is None:
file_name = 'chatGPT对话历史' + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.html'
os.makedirs('./gpt_log/', exist_ok=True)
with open(f'./gpt_log/{file_name}', 'w', encoding='utf8') as f:
fp = os.path.join(get_log_folder(), file_name)
with open(fp, 'w', encoding='utf8') as f:
from themes.theme import advanced_css
f.write(f'<!DOCTYPE html><head><meta charset="utf-8"><title>对话历史</title><style>{advanced_css}</style></head>')
for i, contents in enumerate(chatbot):
@@ -29,8 +29,8 @@ def write_chat_to_file(chatbot, history=None, file_name=None):
for h in history:
f.write("\n>>>" + h)
f.write('</code>')
promote_file_to_downloadzone(f'./gpt_log/{file_name}', rename_file=file_name, chatbot=chatbot)
return '对话历史写入:' + os.path.abspath(f'./gpt_log/{file_name}')
promote_file_to_downloadzone(fp, rename_file=file_name, chatbot=chatbot)
return '对话历史写入:' + fp
def gen_file_preview(file_name):
try:
@@ -106,7 +106,7 @@ def 载入对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
if not success:
if txt == "": txt = '空空如也的输入栏'
import glob
local_history = "<br/>".join(["`"+hide_cwd(f)+f" ({gen_file_preview(f)})"+"`" for f in glob.glob(f'gpt_log/**/chatGPT对话历史*.html', recursive=True)])
local_history = "<br/>".join(["`"+hide_cwd(f)+f" ({gen_file_preview(f)})"+"`" for f in glob.glob(f'{get_log_folder()}/**/chatGPT对话历史*.html', recursive=True)])
chatbot.append([f"正在查找对话历史文件html格式: {txt}", f"找不到任何html文件: {txt}。但本地存储了以下历史文件,您可以将任意一个文件路径粘贴到输入区,然后重试:<br/>{local_history}"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
@@ -132,8 +132,8 @@ def 删除所有本地对话历史记录(txt, llm_kwargs, plugin_kwargs, chatbot
"""
import glob, os
local_history = "<br/>".join(["`"+hide_cwd(f)+"`" for f in glob.glob(f'gpt_log/**/chatGPT对话历史*.html', recursive=True)])
for f in glob.glob(f'gpt_log/**/chatGPT对话历史*.html', recursive=True):
local_history = "<br/>".join(["`"+hide_cwd(f)+"`" for f in glob.glob(f'{get_log_folder()}/**/chatGPT对话历史*.html', recursive=True)])
for f in glob.glob(f'{get_log_folder()}/**/chatGPT对话历史*.html', recursive=True):
os.remove(f)
chatbot.append([f"删除所有历史对话文件", f"已删除<br/>{local_history}"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

查看文件

@@ -1,5 +1,6 @@
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
from toolbox import CatchException, report_exception
from toolbox import write_history_to_file, promote_file_to_downloadzone
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
fast_debug = False
@@ -31,7 +32,7 @@ def 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot
print(file_content)
# private_upload里面的文件名在解压zip后容易出现乱码rar和7z格式正常,故可以只分析文章内容,不输入文件名
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
from request_llm.bridge_all import model_info
from request_llms.bridge_all import model_info
max_token = model_info[llm_kwargs['llm_model']]['max_token']
TOKEN_LIMIT_PER_FRAGMENT = max_token * 3 // 4
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
@@ -71,11 +72,13 @@ def 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot
history.extend([i_say,gpt_say])
this_paper_history.extend([i_say,gpt_say])
res = write_results_to_file(history)
res = write_history_to_file(history)
promote_file_to_downloadzone(res, chatbot=chatbot)
chatbot.append(("完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
res = write_results_to_file(history)
res = write_history_to_file(history)
promote_file_to_downloadzone(res, chatbot=chatbot)
chatbot.append(("所有文件都总结完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -94,7 +97,7 @@ def 总结word文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pr
try:
from docx import Document
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade python-docx pywin32```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -108,7 +111,7 @@ def 总结word文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pr
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
@@ -121,7 +124,7 @@ def 总结word文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pr
# 如果没找到任何文件
if len(file_manifest) == 0:
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.docx或doc文件: {txt}")
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.docx或doc文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return

查看文件

@@ -1,5 +1,6 @@
from toolbox import CatchException, report_execption, select_api_key, update_ui, write_results_to_file, get_conf
from toolbox import CatchException, report_exception, select_api_key, update_ui, get_conf
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from toolbox import write_history_to_file, promote_file_to_downloadzone, get_log_folder
def split_audio_file(filename, split_duration=1000):
"""
@@ -15,7 +16,7 @@ def split_audio_file(filename, split_duration=1000):
"""
from moviepy.editor import AudioFileClip
import os
os.makedirs('gpt_log/mp3/cut/', exist_ok=True) # 创建存储切割音频的文件夹
os.makedirs(f"{get_log_folder(plugin_name='audio')}/mp3/cut/", exist_ok=True) # 创建存储切割音频的文件夹
# 读取音频文件
audio = AudioFileClip(filename)
@@ -31,8 +32,8 @@ def split_audio_file(filename, split_duration=1000):
start_time = split_points[i]
end_time = split_points[i + 1]
split_audio = audio.subclip(start_time, end_time)
split_audio.write_audiofile(f"gpt_log/mp3/cut/{filename[0]}_{i}.mp3")
filelist.append(f"gpt_log/mp3/cut/{filename[0]}_{i}.mp3")
split_audio.write_audiofile(f"{get_log_folder(plugin_name='audio')}/mp3/cut/{filename[0]}_{i}.mp3")
filelist.append(f"{get_log_folder(plugin_name='audio')}/mp3/cut/{filename[0]}_{i}.mp3")
audio.close()
return filelist
@@ -40,7 +41,7 @@ def split_audio_file(filename, split_duration=1000):
def AnalyAudio(parse_prompt, file_manifest, llm_kwargs, chatbot, history):
import os, requests
from moviepy.editor import AudioFileClip
from request_llm.bridge_all import model_info
from request_llms.bridge_all import model_info
# 设置OpenAI密钥和模型
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
@@ -52,7 +53,7 @@ def AnalyAudio(parse_prompt, file_manifest, llm_kwargs, chatbot, history):
'Authorization': f"Bearer {api_key}"
}
os.makedirs('gpt_log/mp3/', exist_ok=True)
os.makedirs(f"{get_log_folder(plugin_name='audio')}/mp3/", exist_ok=True)
for index, fp in enumerate(file_manifest):
audio_history = []
# 提取文件扩展名
@@ -60,8 +61,8 @@ def AnalyAudio(parse_prompt, file_manifest, llm_kwargs, chatbot, history):
# 提取视频中的音频
if ext not in [".mp3", ".wav", ".m4a", ".mpga"]:
audio_clip = AudioFileClip(fp)
audio_clip.write_audiofile(f'gpt_log/mp3/output{index}.mp3')
fp = f'gpt_log/mp3/output{index}.mp3'
audio_clip.write_audiofile(f"{get_log_folder(plugin_name='audio')}/mp3/output{index}.mp3")
fp = f"{get_log_folder(plugin_name='audio')}/mp3/output{index}.mp3"
# 调用whisper模型音频转文字
voice = split_audio_file(fp)
for j, i in enumerate(voice):
@@ -78,7 +79,7 @@ def AnalyAudio(parse_prompt, file_manifest, llm_kwargs, chatbot, history):
chatbot.append([f"{i} 发送到openai音频解析终端 (whisper),当前参数:{parse_prompt}", "正在处理 ..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
proxies, = get_conf('proxies')
proxies = get_conf('proxies')
response = requests.post(url, headers=headers, files=files, data=data, proxies=proxies).text
chatbot.append(["音频解析结果", response])
@@ -113,18 +114,19 @@ def AnalyAudio(parse_prompt, file_manifest, llm_kwargs, chatbot, history):
history=audio_history,
sys_prompt="总结文章。"
)
history.extend([i_say, gpt_say])
audio_history.extend([i_say, gpt_say])
res = write_results_to_file(history)
res = write_history_to_file(history)
promote_file_to_downloadzone(res, chatbot=chatbot)
chatbot.append((f"{index + 1}段音频完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 删除中间文件夹
import shutil
shutil.rmtree('gpt_log/mp3')
res = write_results_to_file(history)
shutil.rmtree(f"{get_log_folder(plugin_name='audio')}/mp3")
res = write_history_to_file(history)
promote_file_to_downloadzone(res, chatbot=chatbot)
chatbot.append(("所有音频都总结完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history)
@@ -142,7 +144,7 @@ def 总结音视频(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
try:
from moviepy.editor import AudioFileClip
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade moviepy```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -156,7 +158,7 @@ def 总结音视频(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
@@ -172,7 +174,7 @@ def 总结音视频(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
# 如果没找到任何文件
if len(file_manifest) == 0:
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何音频或视频文件: {txt}")
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何音频或视频文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return

查看文件

@@ -1,7 +1,7 @@
import glob, time, os, re
import glob, time, os, re, logging
from toolbox import update_ui, trimmed_format_exc, gen_time_str, disable_auto_promotion
from toolbox import CatchException, report_execption, write_history_to_file
from toolbox import promote_file_to_downloadzone, get_log_folder
from toolbox import CatchException, report_exception, get_log_folder
from toolbox import write_history_to_file, promote_file_to_downloadzone
fast_debug = False
class PaperFileGroup():
@@ -13,7 +13,7 @@ class PaperFileGroup():
self.sp_file_tag = []
# count_token
from request_llm.bridge_all import model_info
from request_llms.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
self.get_token_num = get_token_num
@@ -34,7 +34,7 @@ class PaperFileGroup():
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.md")
print('Segmentation: done')
logging.info('Segmentation: done')
def merge_result(self):
self.file_result = ["" for _ in range(len(self.file_paths))]
@@ -101,7 +101,7 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
pfg.merge_result()
pfg.write_result(language)
except:
print(trimmed_format_exc())
logging.error(trimmed_format_exc())
# <-------- 整理结果,退出 ---------->
create_report_file_name = gen_time_str() + f"-chatgpt.md"
@@ -118,10 +118,10 @@ def get_files_from_everything(txt, preference=''):
if txt.startswith('http'):
import requests
from toolbox import get_conf
proxies, = get_conf('proxies')
proxies = get_conf('proxies')
# 网络的远程文件
if preference == 'Github':
print('正在从github下载资源 ...')
logging.info('正在从github下载资源 ...')
if not txt.endswith('.md'):
# Make a request to the GitHub API to retrieve the repository information
url = txt.replace("https://github.com/", "https://api.github.com/repos/") + '/readme'
@@ -165,7 +165,7 @@ def Markdown英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
try:
import tiktoken
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -177,12 +177,12 @@ def Markdown英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
if not success:
# 什么都没有
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
@@ -205,7 +205,7 @@ def Markdown中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
try:
import tiktoken
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -215,11 +215,11 @@ def Markdown中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
if not success:
# 什么都没有
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh->en')
@@ -238,7 +238,7 @@ def Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history,
try:
import tiktoken
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -248,11 +248,11 @@ def Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history,
if not success:
# 什么都没有
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return

查看文件

@@ -1,5 +1,6 @@
from toolbox import update_ui, promote_file_to_downloadzone, gen_time_str
from toolbox import CatchException, report_execption, write_results_to_file
from toolbox import CatchException, report_exception
from toolbox import write_history_to_file, promote_file_to_downloadzone
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import read_and_clean_pdf_text
from .crazy_utils import input_clipping
@@ -20,7 +21,7 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
TOKEN_LIMIT_PER_FRAGMENT = 2500
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
from request_llm.bridge_all import model_info
from request_llms.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
@@ -99,8 +100,8 @@ do not have too much repetitive information, numerical values using the original
_, final_results = input_clipping("", final_results, max_token_limit=3200)
yield from update_ui(chatbot=chatbot, history=final_results) # 注意这里的历史记录被替代了
res = write_results_to_file(file_write_buffer, file_name=gen_time_str())
promote_file_to_downloadzone(res.split('\t')[-1], chatbot=chatbot)
res = write_history_to_file(file_write_buffer)
promote_file_to_downloadzone(res, chatbot=chatbot)
yield from update_ui(chatbot=chatbot, history=final_results) # 刷新界面
@@ -118,7 +119,7 @@ def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
try:
import fitz
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -132,7 +133,7 @@ def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
@@ -141,7 +142,7 @@ def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
# 如果没找到任何文件
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex或.pdf文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex或.pdf文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return

查看文件

@@ -1,6 +1,7 @@
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
from toolbox import CatchException, report_exception
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from toolbox import write_history_to_file, promote_file_to_downloadzone
fast_debug = False
@@ -115,7 +116,8 @@ def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbo
chatbot[-1] = (i_say, gpt_say)
history.append(i_say); history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
res = write_results_to_file(history)
res = write_history_to_file(history)
promote_file_to_downloadzone(res, chatbot=chatbot)
chatbot.append(("完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
@@ -136,7 +138,7 @@ def 批量总结PDF文档pdfminer(txt, llm_kwargs, plugin_kwargs, chatbot, histo
try:
import pdfminer, bs4
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pdfminer beautifulsoup4```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -145,7 +147,7 @@ def 批量总结PDF文档pdfminer(txt, llm_kwargs, plugin_kwargs, chatbot, histo
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] + \
@@ -153,7 +155,7 @@ def 批量总结PDF文档pdfminer(txt, llm_kwargs, plugin_kwargs, chatbot, histo
# [f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)] + \
# [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex或pdf文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex或pdf文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

查看文件

@@ -0,0 +1,125 @@
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
from toolbox import write_history_to_file, promote_file_to_downloadzone
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from .crazy_utils import read_and_clean_pdf_text
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
from colorful import *
import copy
import os
import math
import logging
def markdown_to_dict(article_content):
import markdown
from bs4 import BeautifulSoup
cur_t = ""
cur_c = ""
results = {}
for line in article_content:
if line.startswith('#'):
if cur_t!="":
if cur_t not in results:
results.update({cur_t:cur_c.lstrip('\n')})
else:
# 处理重名的章节
results.update({cur_t + " " + gen_time_str():cur_c.lstrip('\n')})
cur_t = line.rstrip('\n')
cur_c = ""
else:
cur_c += line
results_final = {}
for k in list(results.keys()):
if k.startswith('# '):
results_final['title'] = k.split('# ')[-1]
results_final['authors'] = results.pop(k).lstrip('\n')
if k.startswith('###### Abstract'):
results_final['abstract'] = results.pop(k).lstrip('\n')
results_final_sections = []
for k,v in results.items():
results_final_sections.append({
'heading':k.lstrip("# "),
'text':v if len(v) > 0 else f"The beginning of {k.lstrip('# ')} section."
})
results_final['sections'] = results_final_sections
return results_final
@CatchException
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
disable_auto_promotion(chatbot)
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"批量翻译PDF文档。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 清空历史,以免输入溢出
history = []
from .crazy_utils import get_files_from_everything
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf')
if len(file_manifest) > 0:
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import nougat
import tiktoken
except:
report_exception(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade nougat-ocr tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
success_mmd, file_manifest_mmd, _ = get_files_from_everything(txt, type='.mmd')
success = success or success_mmd
file_manifest += file_manifest_mmd
chatbot.append(["文件列表:", ", ".join([e.split('/')[-1] for e in file_manifest])]);
yield from update_ui( chatbot=chatbot, history=history)
# 检测输入参数,如没有给定输入参数,直接退出
if not success:
if txt == "": txt = '空空如也的输入栏'
# 如果没找到任何文件
if len(file_manifest) == 0:
report_exception(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到任何.pdf拓展名的文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 开始正式执行任务
yield from 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
def 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
import copy
import tiktoken
TOKEN_LIMIT_PER_FRAGMENT = 1024
generated_conclusion_files = []
generated_html_files = []
DST_LANG = "中文"
from crazy_functions.crazy_utils import nougat_interface
from crazy_functions.pdf_fns.report_gen_html import construct_html
nougat_handle = nougat_interface()
for index, fp in enumerate(file_manifest):
if fp.endswith('pdf'):
chatbot.append(["当前进度:", f"正在解析论文,请稍候。第一次运行时,需要花费较长时间下载NOUGAT参数"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
fpp = yield from nougat_handle.NOUGAT_parse_pdf(fp, chatbot, history)
promote_file_to_downloadzone(fpp, rename_file=os.path.basename(fpp)+'.nougat.mmd', chatbot=chatbot)
else:
chatbot.append(["当前论文无需解析:", fp]); yield from update_ui( chatbot=chatbot, history=history)
fpp = fp
with open(fpp, 'r', encoding='utf8') as f:
article_content = f.readlines()
article_dict = markdown_to_dict(article_content)
logging.info(article_dict)
yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG)
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

查看文件

@@ -1,12 +1,12 @@
from toolbox import CatchException, report_execption, write_results_to_file
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
from toolbox import write_history_to_file, get_log_folder
from toolbox import write_history_to_file, promote_file_to_downloadzone
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from .crazy_utils import read_and_clean_pdf_text
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
from colorful import *
import glob
import copy
import os
import math
@@ -24,10 +24,11 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
try:
import fitz
import tiktoken
import scipdf
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf tiktoken```。")
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf tiktoken scipdf_parser```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
@@ -42,8 +43,8 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
# 如果没找到任何文件
if len(file_manifest) == 0:
report_execption(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}")
report_exception(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到任何.pdf拓展名的文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
@@ -57,115 +58,35 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url):
import copy
import tiktoken
TOKEN_LIMIT_PER_FRAGMENT = 1280
import copy, json
TOKEN_LIMIT_PER_FRAGMENT = 1024
generated_conclusion_files = []
generated_html_files = []
DST_LANG = "中文"
from crazy_functions.pdf_fns.report_gen_html import construct_html
for index, fp in enumerate(file_manifest):
chatbot.append(["当前进度:", f"正在连接GROBID服务,请稍候: {grobid_url}\n如果等待时间过长,请修改config中的GROBID_URL,可修改成本地GROBID服务。"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
article_dict = parse_pdf(fp, grobid_url)
print(article_dict)
prompt = "以下是一篇学术论文的基本信息:\n"
# title
title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
# authors
authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
# abstract
abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
# command
prompt += f"请将题目和摘要翻译为{DST_LANG}"
meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ]
# 单线,获取文章meta信息
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=prompt,
inputs_show_user=prompt,
llm_kwargs=llm_kwargs,
chatbot=chatbot, history=[],
sys_prompt="You are an academic paper reader。",
)
# 多线,翻译
inputs_array = []
inputs_show_user_array = []
# get_token_num
from request_llm.bridge_all import model_info
enc = model_info[llm_kwargs['llm_model']]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
def break_down(txt):
raw_token_num = get_token_num(txt)
if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT:
return [txt]
else:
# raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
# find a smooth token limit to achieve even seperation
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
token_limit_smooth = raw_token_num // count + count
return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)
for section in article_dict.get('sections'):
if len(section['text']) == 0: continue
section_frags = break_down(section['text'])
for i, fragment in enumerate(section_frags):
heading = section['heading']
if len(section_frags) > 1: heading += f' Part-{i+1}'
inputs_array.append(
f"你需要翻译{heading}章节,内容如下: \n\n{fragment}"
)
inputs_show_user_array.append(
f"# {heading}\n\n{fragment}"
)
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[meta for _ in inputs_array],
sys_prompt_array=[
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
)
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=None, file_fullname=None)
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(fp)+'.md', chatbot=chatbot)
generated_conclusion_files.append(res_path)
ch = construct_html()
orig = ""
trans = ""
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
for i,k in enumerate(gpt_response_collection_html):
if i%2==0:
gpt_response_collection_html[i] = inputs_show_user_array[i//2]
else:
gpt_response_collection_html[i] = gpt_response_collection_html[i]
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""]
final.extend(gpt_response_collection_html)
for i, k in enumerate(final):
if i%2==0:
orig = k
if i%2==1:
trans = k
ch.add_row(a=orig, b=trans)
create_report_file_name = f"{os.path.basename(fp)}.trans.html"
html_file = ch.save_file(create_report_file_name)
generated_html_files.append(html_file)
promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot)
grobid_json_res = os.path.join(get_log_folder(), gen_time_str() + "grobid.json")
with open(grobid_json_res, 'w+', encoding='utf8') as f:
f.write(json.dumps(article_dict, indent=4, ensure_ascii=False))
promote_file_to_downloadzone(grobid_json_res, chatbot=chatbot)
if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG)
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
"""
此函数已经弃用
"""
import copy
TOKEN_LIMIT_PER_FRAGMENT = 1280
TOKEN_LIMIT_PER_FRAGMENT = 1024
generated_conclusion_files = []
generated_html_files = []
from crazy_functions.pdf_fns.report_gen_html import construct_html
for index, fp in enumerate(file_manifest):
# 读取PDF文件
file_content, page_one = read_and_clean_pdf_text(fp)
@@ -174,7 +95,7 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
# 递归地切割PDF文件
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
from request_llm.bridge_all import model_info
from request_llms.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
@@ -216,10 +137,11 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
final = ["一、论文概况\n\n---\n\n", paper_meta_info.replace('# ', '### ') + '\n\n---\n\n', "二、论文翻译", ""]
final.extend(gpt_response_collection_md)
create_report_file_name = f"{os.path.basename(fp)}.trans.md"
res = write_results_to_file(final, file_name=create_report_file_name)
res = write_history_to_file(final, create_report_file_name)
promote_file_to_downloadzone(res, chatbot=chatbot)
# 更新UI
generated_conclusion_files.append(f'./gpt_log/{create_report_file_name}')
generated_conclusion_files.append(f'{get_log_folder()}/{create_report_file_name}')
chatbot.append((f"{fp}完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -261,49 +183,3 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
class construct_html():
def __init__(self) -> None:
self.css = """
.row {
display: flex;
flex-wrap: wrap;
}
.column {
flex: 1;
padding: 10px;
}
.table-header {
font-weight: bold;
border-bottom: 1px solid black;
}
.table-row {
border-bottom: 1px solid lightgray;
}
.table-cell {
padding: 5px;
}
"""
self.html_string = f'<!DOCTYPE html><head><meta charset="utf-8"><title>翻译结果</title><style>{self.css}</style></head>'
def add_row(self, a, b):
tmp = """
<div class="row table-row">
<div class="column table-cell">REPLACE_A</div>
<div class="column table-cell">REPLACE_B</div>
</div>
"""
from toolbox import markdown_convertion
tmp = tmp.replace('REPLACE_A', markdown_convertion(a))
tmp = tmp.replace('REPLACE_B', markdown_convertion(b))
self.html_string += tmp
def save_file(self, file_name):
with open(os.path.join(get_log_folder(), file_name), 'w', encoding='utf8') as f:
f.write(self.html_string.encode('utf-8', 'ignore').decode())
return os.path.join(get_log_folder(), file_name)

查看文件

@@ -1,5 +1,5 @@
from toolbox import update_ui
from toolbox import CatchException, report_execption
from toolbox import CatchException, report_exception
from .crazy_utils import read_and_clean_pdf_text
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
fast_debug = False
@@ -19,7 +19,7 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
TOKEN_LIMIT_PER_FRAGMENT = 2500
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
from request_llm.bridge_all import model_info
from request_llms.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
@@ -49,7 +49,7 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
llm_kwargs, chatbot,
history=["The main idea of the previous section is?", last_iteration_result], # 迭代上一次的结果
sys_prompt="Extract the main idea of this section." # 提示
sys_prompt="Extract the main idea of this section, answer me with Chinese." # 提示
)
iteration_results.append(gpt_say)
last_iteration_result = gpt_say
@@ -81,7 +81,7 @@ def 理解PDF文档内容标准文件输入(txt, llm_kwargs, plugin_kwargs, chat
try:
import fitz
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -96,7 +96,7 @@ def 理解PDF文档内容标准文件输入(txt, llm_kwargs, plugin_kwargs, chat
else:
if txt == "":
txt = '空空如也的输入栏'
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
@@ -105,7 +105,7 @@ def 理解PDF文档内容标准文件输入(txt, llm_kwargs, plugin_kwargs, chat
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)]
# 如果没找到任何文件
if len(file_manifest) == 0:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return

查看文件

@@ -1,5 +1,6 @@
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
from toolbox import CatchException, report_exception
from toolbox import write_history_to_file, promote_file_to_downloadzone
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
fast_debug = False
@@ -27,7 +28,8 @@ def 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
if not fast_debug: time.sleep(2)
if not fast_debug:
res = write_results_to_file(history)
res = write_history_to_file(history)
promote_file_to_downloadzone(res, chatbot=chatbot)
chatbot.append(("完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
@@ -41,14 +43,14 @@ def 批量生成函数注释(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.py', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

查看文件

@@ -2,7 +2,7 @@ from toolbox import CatchException, update_ui
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
import requests
from bs4 import BeautifulSoup
from request_llm.bridge_all import model_info
from request_llms.bridge_all import model_info
def google(query, proxies):
query = query # 在此处替换您要搜索的关键词
@@ -72,10 +72,14 @@ def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
# ------------- < 第1步爬取搜索引擎的结果 > -------------
from toolbox import get_conf
proxies, = get_conf('proxies')
proxies = get_conf('proxies')
urls = google(txt, proxies)
history = []
if len(urls) == 0:
chatbot.append((f"结论:{txt}",
"[Local Message] 受到google限制,无法从google获取信息"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
return
# ------------- < 第2步依次访问网页 > -------------
max_search_result = 5 # 最多收纳多少个网页的结果
for index, url in enumerate(urls[:max_search_result]):

查看文件

@@ -2,7 +2,7 @@ from toolbox import CatchException, update_ui
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
import requests
from bs4 import BeautifulSoup
from request_llm.bridge_all import model_info
from request_llms.bridge_all import model_info
def bing_search(query, proxies=None):
@@ -72,10 +72,14 @@ def 连接bing搜索回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, histor
# ------------- < 第1步爬取搜索引擎的结果 > -------------
from toolbox import get_conf
proxies, = get_conf('proxies')
proxies = get_conf('proxies')
urls = bing_search(txt, proxies)
history = []
if len(urls) == 0:
chatbot.append((f"结论:{txt}",
"[Local Message] 受到bing限制,无法从bing获取信息"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
return
# ------------- < 第2步依次访问网页 > -------------
max_search_result = 8 # 最多收纳多少个网页的结果
for index, url in enumerate(urls[:max_search_result]):

查看文件

@@ -24,12 +24,13 @@ explain_msg = """
## 虚空终端插件说明:
1. 请用**自然语言**描述您需要做什么。例如:
- 「请调用插件,为我翻译PDF论文,论文我刚刚放到上传区了
- 「请调用插件翻译PDF论文,地址为https://www.nature.com/articles/s41586-019-1724-z.pdf
- 「生成一张图片,图中鲜花怒放,绿草如茵,用插件实现。
- 「请调用插件,为我翻译PDF论文,论文我刚刚放到上传区了」
- 「请调用插件翻译PDF论文,地址为https://openreview.net/pdf?id=rJl0r3R9KX
- 「把Arxiv论文翻译成中文PDF,arxiv论文的ID是1812.10695,记得用插件!
- 「生成一张图片,图中鲜花怒放,绿草如茵,用插件实现」
- 「用插件翻译README,Github网址是https://github.com/facebookresearch/co-tracker」
- 「给爷翻译Arxiv论文,arxiv论文的ID是1812.10695,记得用插件,不要自己瞎搞!
- 「我不喜欢当前的界面颜色,修改配置,把主题THEME更换为THEME="High-Contrast"
- 「我不喜欢当前的界面颜色,修改配置,把主题THEME更换为THEME="High-Contrast"
- 「请调用插件,解析python源代码项目,代码我刚刚打包拖到上传区了
- 「请问Transformer网络的结构是怎样的?」
2. 您可以打开插件下拉菜单以了解本项目的各种能力。
@@ -45,9 +46,9 @@ explain_msg = """
from pydantic import BaseModel, Field
from typing import List
from toolbox import CatchException, update_ui, gen_time_str
from toolbox import CatchException, update_ui, is_the_upload_folder
from toolbox import update_ui_lastest_msg, disable_auto_promotion
from request_llm.bridge_all import predict_no_ui_long_connection
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from crazy_functions.crazy_utils import input_clipping
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
@@ -111,7 +112,7 @@ def 虚空终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
# 用简单的关键词检测用户意图
is_certain, _ = analyze_intention_with_simple_rules(txt)
if txt.startswith('private_upload/') and len(txt) == 34:
if is_the_upload_folder(txt):
state.set_state(chatbot=chatbot, key='has_provided_explaination', value=False)
appendix_msg = "\n\n**很好,您已经上传了文件**,现在请您描述您的需求。"

查看文件

@@ -1,5 +1,6 @@
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
from toolbox import CatchException, report_exception
from toolbox import write_history_to_file, promote_file_to_downloadzone
fast_debug = True
@@ -12,7 +13,7 @@ class PaperFileGroup():
self.sp_file_tag = []
# count_token
from request_llm.bridge_all import model_info
from request_llms.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(
enc.encode(txt, disallowed_special=()))
@@ -110,7 +111,8 @@ def ipynb解释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbo
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# <-------- 写入文件,退出 ---------->
res = write_results_to_file(history)
res = write_history_to_file(history)
promote_file_to_downloadzone(res, chatbot=chatbot)
chatbot.append(("完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -129,7 +131,7 @@ def 解析ipynb文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
else:
if txt == "":
txt = '空空如也的输入栏'
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
@@ -139,7 +141,7 @@ def 解析ipynb文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
file_manifest = [f for f in glob.glob(
f'{project_folder}/**/*.ipynb', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history,
report_exception(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到任何.ipynb文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return

查看文件

@@ -1,12 +1,13 @@
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
from toolbox import update_ui, promote_file_to_downloadzone, disable_auto_promotion
from toolbox import CatchException, report_exception, write_history_to_file
from .crazy_utils import input_clipping
def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
import os, copy
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
msg = '正常'
disable_auto_promotion(chatbot=chatbot)
summary_batch_isolation = True
inputs_array = []
inputs_show_user_array = []
@@ -22,7 +23,7 @@ def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
file_content = f.read()
prefix = "接下来请你逐文件分析下面的工程" if index==0 else ""
i_say = prefix + f'请对下面的程序文件做一个概述文件名是{os.path.relpath(fp, project_folder)},文件代码是 ```{file_content}```'
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的程序文件做一个概述: {os.path.abspath(fp)}'
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的程序文件做一个概述: {fp}'
# 装载请求内容
inputs_array.append(i_say)
inputs_show_user_array.append(i_say_show_user)
@@ -43,7 +44,8 @@ def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
# 全部文件解析完成,结果写入文件,准备对工程源代码进行汇总分析
report_part_1 = copy.deepcopy(gpt_response_collection)
history_to_return = report_part_1
res = write_results_to_file(report_part_1)
res = write_history_to_file(report_part_1)
promote_file_to_downloadzone(res, chatbot=chatbot)
chatbot.append(("完成?", "逐个文件分析已完成。" + res + "\n\n正在开始汇总。"))
yield from update_ui(chatbot=chatbot, history=history_to_return) # 刷新界面
@@ -97,7 +99,8 @@ def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
############################## <END> ##################################
history_to_return.extend(report_part_2)
res = write_results_to_file(history_to_return)
res = write_history_to_file(history_to_return)
promote_file_to_downloadzone(res, chatbot=chatbot)
chatbot.append(("完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history_to_return) # 刷新界面
@@ -106,12 +109,11 @@ def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
def 解析项目本身(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob
file_manifest = [f for f in glob.glob('./*.py') if ('test_project' not in f) and ('gpt_log' not in f)] + \
[f for f in glob.glob('./crazy_functions/*.py') if ('test_project' not in f) and ('gpt_log' not in f)]+ \
[f for f in glob.glob('./request_llm/*.py') if ('test_project' not in f) and ('gpt_log' not in f)]
file_manifest = [f for f in glob.glob('./*.py')] + \
[f for f in glob.glob('./*/*.py')]
project_folder = './'
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何python文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何python文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@@ -124,16 +126,33 @@ def 解析一个Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.py', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何python文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何python文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个Matlab项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_exception(chatbot, history, a = f"解析Matlab项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.m', recursive=True)]
if len(file_manifest) == 0:
report_exception(chatbot, history, a = f"解析Matlab项目: {txt}", b = f"找不到任何`.m`源文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个C项目的头文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
@@ -143,14 +162,14 @@ def 解析一个C项目的头文件(txt, llm_kwargs, plugin_kwargs, chatbot, his
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.h', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.hpp', recursive=True)] #+ \
# [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.h头文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.h头文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@@ -163,7 +182,7 @@ def 解析一个C项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.h', recursive=True)] + \
@@ -171,7 +190,7 @@ def 解析一个C项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system
[f for f in glob.glob(f'{project_folder}/**/*.hpp', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.h头文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.h头文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@@ -185,7 +204,7 @@ def 解析一个Java项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.java', recursive=True)] + \
@@ -193,7 +212,7 @@ def 解析一个Java项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys
[f for f in glob.glob(f'{project_folder}/**/*.xml', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.sh', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何java文件: {txt}")
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何java文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@@ -207,7 +226,7 @@ def 解析一个前端项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.ts', recursive=True)] + \
@@ -222,7 +241,7 @@ def 解析一个前端项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
[f for f in glob.glob(f'{project_folder}/**/*.css', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.jsx', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何前端相关文件: {txt}")
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何前端相关文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@@ -236,7 +255,7 @@ def 解析一个Golang项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.go', recursive=True)] + \
@@ -244,7 +263,7 @@ def 解析一个Golang项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
[f for f in glob.glob(f'{project_folder}/**/go.sum', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/go.work', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何golang文件: {txt}")
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何golang文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@@ -257,14 +276,14 @@ def 解析一个Rust项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.rs', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.toml', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.lock', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何golang文件: {txt}")
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何golang文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@@ -277,7 +296,7 @@ def 解析一个Lua项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.lua', recursive=True)] + \
@@ -285,7 +304,7 @@ def 解析一个Lua项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
[f for f in glob.glob(f'{project_folder}/**/*.json', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.toml', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何lua文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何lua文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@@ -299,13 +318,13 @@ def 解析一个CSharp项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.cs', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.csproj', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何CSharp文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何CSharp文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@@ -333,7 +352,7 @@ def 解析任意code项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 若上传压缩文件, 先寻找到解压的文件夹路径, 从而避免解析压缩文件
@@ -346,7 +365,7 @@ def 解析任意code项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys
file_manifest = [f for pattern in pattern_include for f in glob.glob(f'{extract_folder_path}/**/{pattern}', recursive=True) if "" != extract_folder_path and \
os.path.isfile(f) and (not re.search(pattern_except, f) or pattern.endswith('.' + re.search(pattern_except, f).group().split('.')[-1]))]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

查看文件

@@ -1,4 +1,4 @@
from toolbox import CatchException, update_ui
from toolbox import CatchException, update_ui, get_conf
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
import datetime
@CatchException
@@ -13,11 +13,12 @@ def 同时问询(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
chatbot.append((txt, "正在同时咨询ChatGPT和ChatGLM……"))
MULTI_QUERY_LLM_MODELS = get_conf('MULTI_QUERY_LLM_MODELS')
chatbot.append((txt, "正在同时咨询" + MULTI_QUERY_LLM_MODELS))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
# llm_kwargs['llm_model'] = 'chatglm&gpt-3.5-turbo&api2d-gpt-3.5-turbo' # 支持任意数量的llm接口,用&符号分隔
llm_kwargs['llm_model'] = 'chatglm&gpt-3.5-turbo' # 支持任意数量的llm接口,用&符号分隔
llm_kwargs['llm_model'] = MULTI_QUERY_LLM_MODELS # 支持任意数量的llm接口,用&符号分隔
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=txt, inputs_show_user=txt,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,

查看文件

@@ -1,47 +1,35 @@
from toolbox import update_ui
from toolbox import CatchException, get_conf, markdown_convertion
from crazy_functions.crazy_utils import input_clipping
from request_llm.bridge_all import predict_no_ui_long_connection
from crazy_functions.agent_fns.watchdog import WatchDog
from request_llms.bridge_all import predict_no_ui_long_connection
import threading, time
import numpy as np
from .live_audio.aliyunASR import AliyunASR
import json
import re
class WatchDog():
def __init__(self, timeout, bark_fn, interval=3, msg="") -> None:
self.last_feed = None
self.timeout = timeout
self.bark_fn = bark_fn
self.interval = interval
self.msg = msg
self.kill_dog = False
def watch(self):
while True:
if self.kill_dog: break
if time.time() - self.last_feed > self.timeout:
if len(self.msg) > 0: print(self.msg)
self.bark_fn()
break
time.sleep(self.interval)
def begin_watch(self):
self.last_feed = time.time()
th = threading.Thread(target=self.watch)
th.daemon = True
th.start()
def feed(self):
self.last_feed = time.time()
def chatbot2history(chatbot):
history = []
for c in chatbot:
for q in c:
if q not in ["[请讲话]", "[等待GPT响应]", "[正在等您说完问题]"]:
if q in ["[ 请讲话 ]", "[ 等待GPT响应 ]", "[ 正在等您说完问题 ]"]:
continue
elif q.startswith("[ 正在等您说完问题 ]"):
continue
else:
history.append(q.strip('<div class="markdown-body">').strip('</div>').strip('<p>').strip('</p>'))
return history
def visualize_audio(chatbot, audio_shape):
if len(chatbot) == 0: chatbot.append(["[ 请讲话 ]", "[ 正在等您说完问题 ]"])
chatbot[-1] = list(chatbot[-1])
p1 = ''
p2 = ''
chatbot[-1][-1] = re.sub(p1+r'(.*)'+p2, '', chatbot[-1][-1])
chatbot[-1][-1] += (p1+f"`{audio_shape}`"+p2)
class AsyncGptTask():
def __init__(self) -> None:
self.observe_future = []
@@ -80,9 +68,10 @@ class InterviewAssistant(AliyunASR):
def __init__(self):
self.capture_interval = 0.5 # second
self.stop = False
self.parsed_text = ""
self.parsed_sentence = ""
self.buffered_sentence = ""
self.parsed_text = "" # 下个句子中已经说完的部分, 由 test_on_result_chg() 写入
self.parsed_sentence = "" # 某段话的整个句子, 由 test_on_sentence_end() 写入
self.buffered_sentence = "" #
self.audio_shape = "" # 音频的可视化表现, 由 audio_convertion_thread() 写入
self.event_on_result_chg = threading.Event()
self.event_on_entence_end = threading.Event()
self.event_on_commit_question = threading.Event()
@@ -117,7 +106,7 @@ class InterviewAssistant(AliyunASR):
def begin(self, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
# main plugin function
self.init(chatbot)
chatbot.append(["[请讲话]", "[正在等您说完问题]"])
chatbot.append(["[ 请讲话 ]", "[ 正在等您说完问题 ]"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
self.plugin_wd.begin_watch()
self.agt = AsyncGptTask()
@@ -132,7 +121,7 @@ class InterviewAssistant(AliyunASR):
self.plugin_wd.feed()
if self.event_on_result_chg.is_set():
# update audio decode result
# called when some words have finished
self.event_on_result_chg.clear()
chatbot[-1] = list(chatbot[-1])
chatbot[-1][0] = self.buffered_sentence + self.parsed_text
@@ -144,7 +133,11 @@ class InterviewAssistant(AliyunASR):
# called when a sentence has ended
self.event_on_entence_end.clear()
self.parsed_text = self.parsed_sentence
self.buffered_sentence += self.parsed_sentence
self.buffered_sentence += self.parsed_text
chatbot[-1] = list(chatbot[-1])
chatbot[-1][0] = self.buffered_sentence
history = chatbot2history(chatbot)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if self.event_on_commit_question.is_set():
# called when a question should be commited
@@ -153,14 +146,18 @@ class InterviewAssistant(AliyunASR):
self.commit_wd.begin_watch()
chatbot[-1] = list(chatbot[-1])
chatbot[-1] = [self.buffered_sentence, "[等待GPT响应]"]
chatbot[-1] = [self.buffered_sentence, "[ 等待GPT响应 ]"]
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# add gpt task 创建子线程请求gpt,避免线程阻塞
history = chatbot2history(chatbot)
self.agt.add_async_gpt_task(self.buffered_sentence, len(chatbot)-1, llm_kwargs, history, system_prompt)
self.buffered_sentence = ""
chatbot.append(["[请讲话]", "[正在等您说完问题]"])
chatbot.append(["[ 请讲话 ]", "[ 正在等您说完问题 ]"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not self.event_on_result_chg.is_set() and not self.event_on_entence_end.is_set() and not self.event_on_commit_question.is_set():
visualize_audio(chatbot, self.audio_shape)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if len(self.stop_msg) != 0:
@@ -179,7 +176,7 @@ def 语音助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
import nls
from scipy import io
except:
chatbot.append(["导入依赖失败", "使用该模块需要额外依赖, 安装方法:```pip install --upgrade aliyun-python-sdk-core==2.13.3 pyOpenSSL scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git```"])
chatbot.append(["导入依赖失败", "使用该模块需要额外依赖, 安装方法:```pip install --upgrade aliyun-python-sdk-core==2.13.3 pyOpenSSL webrtcvad scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git```"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return

查看文件

@@ -1,7 +1,7 @@
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
from toolbox import CatchException, report_exception
from toolbox import write_history_to_file, promote_file_to_downloadzone
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
fast_debug = False
def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
@@ -17,32 +17,29 @@ def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbo
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, llm_kwargs, chatbot, history=[], sys_prompt=system_prompt) # 带超时倒计时
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
if not fast_debug: time.sleep(2)
msg = '正常'
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, llm_kwargs, chatbot, history=[], sys_prompt=system_prompt) # 带超时倒计时
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
time.sleep(2)
all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)])
i_say = f'根据以上你自己的分析,对全文进行概括,用学术性语言写一段中文摘要,然后再写一段英文摘要(包括{all_file})。'
chatbot.append((i_say, "[Local Message] waiting gpt response."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say, llm_kwargs, chatbot, history=history, sys_prompt=system_prompt) # 带超时倒计时
msg = '正常'
# ** gpt request **
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say, llm_kwargs, chatbot, history=history, sys_prompt=system_prompt) # 带超时倒计时
chatbot[-1] = (i_say, gpt_say)
history.append(i_say); history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
chatbot[-1] = (i_say, gpt_say)
history.append(i_say); history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
res = write_history_to_file(history)
promote_file_to_downloadzone(res, chatbot=chatbot)
chatbot.append(("完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
@@ -54,14 +51,14 @@ def 读文章写摘要(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] # + \
# [f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)] + \
# [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

查看文件

@@ -1,26 +1,81 @@
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from toolbox import CatchException, report_execption, write_results_to_file
from toolbox import update_ui
from toolbox import CatchException, report_exception, promote_file_to_downloadzone
from toolbox import update_ui, update_ui_lastest_msg, disable_auto_promotion, write_history_to_file
import logging
import requests
import time
import random
ENABLE_ALL_VERSION_SEARCH = True
def get_meta_information(url, chatbot, history):
import requests
import arxiv
import difflib
import re
from bs4 import BeautifulSoup
from toolbox import get_conf
proxies, = get_conf('proxies')
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36',
}
# 发送 GET 请求
response = requests.get(url, proxies=proxies, headers=headers)
from urllib.parse import urlparse
session = requests.session()
proxies = get_conf('proxies')
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36',
'Accept-Encoding': 'gzip, deflate, br',
'Accept-Language': 'en-US,en;q=0.9,zh-CN;q=0.8,zh;q=0.7',
'Cache-Control':'max-age=0',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
'Connection': 'keep-alive'
}
try:
session.proxies.update(proxies)
except:
report_exception(chatbot, history,
a=f"获取代理失败 无代理状态下很可能无法访问OpenAI家族的模型及谷歌学术 建议检查USE_PROXY选项是否修改。",
b=f"尝试直接连接")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
session.headers.update(headers)
response = session.get(url)
# 解析网页内容
soup = BeautifulSoup(response.text, "html.parser")
def string_similar(s1, s2):
return difflib.SequenceMatcher(None, s1, s2).quick_ratio()
if ENABLE_ALL_VERSION_SEARCH:
def search_all_version(url):
time.sleep(random.randint(1,5)) # 睡一会防止触发google反爬虫
response = session.get(url)
soup = BeautifulSoup(response.text, "html.parser")
for result in soup.select(".gs_ri"):
try:
url = result.select_one(".gs_rt").a['href']
except:
continue
arxiv_id = extract_arxiv_id(url)
if not arxiv_id:
continue
search = arxiv.Search(
id_list=[arxiv_id],
max_results=1,
sort_by=arxiv.SortCriterion.Relevance,
)
try: paper = next(search.results())
except: paper = None
return paper
return None
def extract_arxiv_id(url):
# 返回给定的url解析出的arxiv_id,如url未成功匹配返回None
pattern = r'arxiv.org/abs/([^/]+)'
match = re.search(pattern, url)
if match:
return match.group(1)
else:
return None
profile = []
# 获取所有文章的标题和作者
for result in soup.select(".gs_ri"):
@@ -31,32 +86,45 @@ def get_meta_information(url, chatbot, history):
except:
citation = 'cited by 0'
abstract = result.select_one(".gs_rs").text.strip() # 摘要在 .gs_rs 中的文本,需要清除首尾空格
# 首先在arxiv上搜索,获取文章摘要
search = arxiv.Search(
query = title,
max_results = 1,
sort_by = arxiv.SortCriterion.Relevance,
)
try:
paper = next(search.results())
if string_similar(title, paper.title) > 0.90: # same paper
abstract = paper.summary.replace('\n', ' ')
is_paper_in_arxiv = True
else: # different paper
abstract = abstract
is_paper_in_arxiv = False
paper = next(search.results())
except:
try: paper = next(search.results())
except: paper = None
is_match = paper is not None and string_similar(title, paper.title) > 0.90
# 如果在Arxiv上匹配失败,检索文章的历史版本的题目
if not is_match and ENABLE_ALL_VERSION_SEARCH:
other_versions_page_url = [tag['href'] for tag in result.select_one('.gs_flb').select('.gs_nph') if 'cluster' in tag['href']]
if len(other_versions_page_url) > 0:
other_versions_page_url = other_versions_page_url[0]
paper = search_all_version('http://' + urlparse(url).netloc + other_versions_page_url)
is_match = paper is not None and string_similar(title, paper.title) > 0.90
if is_match:
# same paper
abstract = paper.summary.replace('\n', ' ')
is_paper_in_arxiv = True
else:
# different paper
abstract = abstract
is_paper_in_arxiv = False
print(title)
print(author)
print(citation)
logging.info('[title]:' + title)
logging.info('[author]:' + author)
logging.info('[citation]:' + citation)
profile.append({
'title':title,
'author':author,
'citation':citation,
'abstract':abstract,
'is_paper_in_arxiv':is_paper_in_arxiv,
'title': title,
'author': author,
'citation': citation,
'abstract': abstract,
'is_paper_in_arxiv': is_paper_in_arxiv,
})
chatbot[-1] = [chatbot[-1][0], title + f'\n\n是否在arxiv中不在arxiv中无法获取完整摘要:{is_paper_in_arxiv}\n\n' + abstract]
@@ -65,6 +133,7 @@ def get_meta_information(url, chatbot, history):
@CatchException
def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
disable_auto_promotion(chatbot=chatbot)
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
@@ -77,7 +146,7 @@ def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
import math
from bs4 import BeautifulSoup
except:
report_execption(chatbot, history,
report_exception(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade beautifulsoup4 arxiv```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -86,6 +155,9 @@ def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
# 清空历史,以免输入溢出
history = []
meta_paper_info_list = yield from get_meta_information(txt, chatbot, history)
if len(meta_paper_info_list) == 0:
yield from update_ui_lastest_msg(lastmsg='获取文献失败,可能触发了google反爬虫机制。',chatbot=chatbot, history=history, delay=0)
return
batchsize = 5
for batch in range(math.ceil(len(meta_paper_info_list)/batchsize)):
if len(meta_paper_info_list[:batchsize]) > 0:
@@ -107,6 +179,7 @@ def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
"已经全部完成,您可以试试让AI写一个Related Works,例如您可以继续输入Write a \"Related Works\" section about \"你搜索的研究领域\" for me."])
msg = '正常'
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res));
path = write_history_to_file(history)
promote_file_to_downloadzone(path, chatbot=chatbot)
chatbot.append(("完成了吗?", path));
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面

查看文件

@@ -2,8 +2,8 @@
# @Time : 2023/4/19
# @Author : Spike
# @Descr :
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file, get_log_folder
from toolbox import update_ui, get_conf
from toolbox import CatchException
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
@@ -30,14 +30,13 @@ def 猜你想问(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
@CatchException
def 清除缓存(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
chatbot.append(['清除本地缓存数据', '执行中. 删除 gpt_log & private_upload'])
chatbot.append(['清除本地缓存数据', '执行中. 删除数据'])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
import shutil, os
gpt_log_dir = os.path.join(os.path.dirname(__file__), '..', 'gpt_log')
private_upload_dir = os.path.join(os.path.dirname(__file__), '..', 'private_upload')
shutil.rmtree(gpt_log_dir, ignore_errors=True)
shutil.rmtree(private_upload_dir, ignore_errors=True)
PATH_PRIVATE_UPLOAD, PATH_LOGGING = get_conf('PATH_PRIVATE_UPLOAD', 'PATH_LOGGING')
shutil.rmtree(PATH_LOGGING, ignore_errors=True)
shutil.rmtree(PATH_PRIVATE_UPLOAD, ignore_errors=True)
chatbot.append(['清除本地缓存数据', '执行完成'])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

查看文件

@@ -1,4 +1,81 @@
#【请修改完参数后,删除此行】请在以下方案中选择一种,然后删除其他的方案,最后docker-compose up运行 | Please choose from one of these options below, delete other options as well as This Line
## ===================================================
# docker-compose.yml
## ===================================================
# 1. 请在以下方案中选择任意一种,然后删除其他的方案
# 2. 修改你选择的方案中的environment环境变量,详情请见github wiki或者config.py
# 3. 选择一种暴露服务端口的方法,并对相应的配置做出修改:
# 【方法1: 适用于Linux,很方便,可惜windows不支持】与宿主的网络融合为一体,这个是默认配置
# network_mode: "host"
# 【方法2: 适用于所有系统包括Windows和MacOS】端口映射,把容器的端口映射到宿主的端口注意您需要先删除network_mode: "host",再追加以下内容)
# ports:
# - "12345:12345" # 注意12345必须与WEB_PORT环境变量相互对应
# 4. 最后`docker-compose up`运行
# 5. 如果希望使用显卡,请关注 LOCAL_MODEL_DEVICE 和 英伟达显卡运行时 选项
## ===================================================
# 1. Please choose one of the following options and delete the others.
# 2. Modify the environment variables in the selected option, see GitHub wiki or config.py for more details.
# 3. Choose a method to expose the server port and make the corresponding configuration changes:
# [Method 1: Suitable for Linux, convenient, but not supported for Windows] Fusion with the host network, this is the default configuration
# network_mode: "host"
# [Method 2: Suitable for all systems including Windows and MacOS] Port mapping, mapping the container port to the host port (note that you need to delete network_mode: "host" first, and then add the following content)
# ports:
# - "12345: 12345" # Note! 12345 must correspond to the WEB_PORT environment variable.
# 4. Finally, run `docker-compose up`.
# 5. If you want to use a graphics card, pay attention to the LOCAL_MODEL_DEVICE and Nvidia GPU runtime options.
## ===================================================
## ===================================================
## 【方案零】 部署项目的全部能力这个是包含cuda和latex的大型镜像。如果您网速慢、硬盘小或没有显卡,则不推荐使用这个
## ===================================================
version: '3'
services:
gpt_academic_full_capability:
image: ghcr.io/binary-husky/gpt_academic_with_all_capacity:master
environment:
# 请查阅 `config.py`或者 github wiki 以查看所有的配置信息
API_KEY: ' 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 '
# USE_PROXY: ' True '
# proxies: ' { "http": "http://localhost:10881", "https": "http://localhost:10881", } '
LLM_MODEL: ' gpt-3.5-turbo '
AVAIL_LLM_MODELS: ' ["gpt-3.5-turbo", "gpt-4", "qianfan", "sparkv2", "spark", "chatglm"] '
BAIDU_CLOUD_API_KEY : ' bTUtwEAveBrQipEowUvDwYWq '
BAIDU_CLOUD_SECRET_KEY : ' jqXtLvXiVw6UNdjliATTS61rllG8Iuni '
XFYUN_APPID: ' 53a8d816 '
XFYUN_API_SECRET: ' MjMxNDQ4NDE4MzM0OSNlNjQ2NTlhMTkx '
XFYUN_API_KEY: ' 95ccdec285364869d17b33e75ee96447 '
ENABLE_AUDIO: ' False '
DEFAULT_WORKER_NUM: ' 20 '
WEB_PORT: ' 12345 '
ADD_WAIFU: ' False '
ALIYUN_APPKEY: ' RxPlZrM88DnAFkZK '
THEME: ' Chuanhu-Small-and-Beautiful '
ALIYUN_ACCESSKEY: ' LTAI5t6BrFUzxRXVGUWnekh1 '
ALIYUN_SECRET: ' eHmI20SVWIwQZxCiTD2bGQVspP9i68 '
# LOCAL_MODEL_DEVICE: ' cuda '
# 加载英伟达显卡运行时
# runtime: nvidia
# deploy:
# resources:
# reservations:
# devices:
# - driver: nvidia
# count: 1
# capabilities: [gpu]
# 【WEB_PORT暴露方法1: 适用于Linux】与宿主的网络融合
network_mode: "host"
# 【WEB_PORT暴露方法2: 适用于所有系统】端口映射
# ports:
# - "12345:12345" # 12345必须与WEB_PORT相互对应
# 启动容器后,运行main.py主程序
command: >
bash -c "python3 -u main.py"
## ===================================================
## 【方案一】 如果不需要运行本地模型(仅 chatgpt, azure, 星火, 千帆, claude 等在线大模型服务)
@@ -60,7 +137,7 @@ services:
# P.S. 通过对 command 进行微调,可以便捷地安装额外的依赖
# command: >
# bash -c "pip install -r request_llm/requirements_qwen.txt && python3 -u main.py"
# bash -c "pip install -r request_llms/requirements_qwen.txt && python3 -u main.py"
### ===================================================
### 【方案三】 如果需要运行ChatGPT + LLAMA + 盘古 + RWKV本地模型

查看文件

@@ -1,62 +1,2 @@
# How to build | 如何构建: docker build -t gpt-academic --network=host -f Dockerfile+ChatGLM .
# How to run | (1) 我想直接一键运行选择0号GPU: docker run --rm -it --net=host --gpus \"device=0\" gpt-academic
# How to run | (2) 我想运行之前进容器做一些调整选择1号GPU: docker run --rm -it --net=host --gpus \"device=1\" gpt-academic bash
# 从NVIDIA源,从而支持显卡运损检查宿主的nvidia-smi中的cuda版本必须>=11.3
FROM nvidia/cuda:11.3.1-runtime-ubuntu20.04
ARG useProxyNetwork=''
RUN apt-get update
RUN apt-get install -y curl proxychains curl
RUN apt-get install -y git python python3 python-dev python3-dev --fix-missing
# 此Dockerfile不再维护,请前往docs/GithubAction+ChatGLM+Moss
# 配置代理网络构建Docker镜像时使用
# # comment out below if you do not need proxy network | 如果不需要翻墙 - 从此行向下删除
RUN $useProxyNetwork curl cip.cc
RUN sed -i '$ d' /etc/proxychains.conf
RUN sed -i '$ d' /etc/proxychains.conf
# 在这里填写主机的代理协议用于从github拉取代码
RUN echo "socks5 127.0.0.1 10880" >> /etc/proxychains.conf
ARG useProxyNetwork=proxychains
# # comment out above if you do not need proxy network | 如果不需要翻墙 - 从此行向上删除
# use python3 as the system default python
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
# 下载pytorch
RUN $useProxyNetwork python3 -m pip install torch --extra-index-url https://download.pytorch.org/whl/cu113
# 下载分支
WORKDIR /gpt
RUN $useProxyNetwork git clone https://github.com/binary-husky/gpt_academic.git
WORKDIR /gpt/gpt_academic
RUN $useProxyNetwork python3 -m pip install -r requirements.txt
RUN $useProxyNetwork python3 -m pip install -r request_llm/requirements_chatglm.txt
RUN $useProxyNetwork python3 -m pip install -r request_llm/requirements_newbing.txt
# 预热CHATGLM参数非必要 可选步骤)
RUN echo ' \n\
from transformers import AutoModel, AutoTokenizer \n\
chatglm_tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) \n\
chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float() ' >> warm_up_chatglm.py
RUN python3 -u warm_up_chatglm.py
# 禁用缓存,确保更新代码
ADD "https://www.random.org/cgi-bin/randbyte?nbytes=10&format=h" skipcache
RUN $useProxyNetwork git pull
# 预热Tiktoken模块
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
# 为chatgpt-academic配置代理和API-KEY (非必要 可选步骤)
# 可同时填写多个API-KEY,支持openai的key和api2d的key共存,用英文逗号分割,例如API_KEY = "sk-openaikey1,fkxxxx-api2dkey2,........"
# LLM_MODEL 是选择初始的模型
# LOCAL_MODEL_DEVICE 是选择chatglm等本地模型运行的设备,可选 cpu 和 cuda
# [说明: 以下内容与`config.py`一一对应,请查阅config.py来完成一下配置的填写]
RUN echo ' \n\
API_KEY = "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx,fkxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" \n\
USE_PROXY = True \n\
LLM_MODEL = "chatglm" \n\
LOCAL_MODEL_DEVICE = "cuda" \n\
proxies = { "http": "socks5h://localhost:10880", "https": "socks5h://localhost:10880", } ' >> config_private.py
# 启动
CMD ["python3", "-u", "main.py"]

查看文件

@@ -1,59 +1 @@
# How to build | 如何构建: docker build -t gpt-academic-jittor --network=host -f Dockerfile+ChatGLM .
# How to run | (1) 我想直接一键运行选择0号GPU: docker run --rm -it --net=host --gpus \"device=0\" gpt-academic-jittor bash
# How to run | (2) 我想运行之前进容器做一些调整选择1号GPU: docker run --rm -it --net=host --gpus \"device=1\" gpt-academic-jittor bash
# 从NVIDIA源,从而支持显卡运损检查宿主的nvidia-smi中的cuda版本必须>=11.3
FROM nvidia/cuda:11.3.1-runtime-ubuntu20.04
ARG useProxyNetwork=''
RUN apt-get update
RUN apt-get install -y curl proxychains curl g++
RUN apt-get install -y git python python3 python-dev python3-dev --fix-missing
# 配置代理网络构建Docker镜像时使用
# # comment out below if you do not need proxy network | 如果不需要翻墙 - 从此行向下删除
RUN $useProxyNetwork curl cip.cc
RUN sed -i '$ d' /etc/proxychains.conf
RUN sed -i '$ d' /etc/proxychains.conf
# 在这里填写主机的代理协议用于从github拉取代码
RUN echo "socks5 127.0.0.1 10880" >> /etc/proxychains.conf
ARG useProxyNetwork=proxychains
# # comment out above if you do not need proxy network | 如果不需要翻墙 - 从此行向上删除
# use python3 as the system default python
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
# 下载pytorch
RUN $useProxyNetwork python3 -m pip install torch --extra-index-url https://download.pytorch.org/whl/cu113
# 下载分支
WORKDIR /gpt
RUN $useProxyNetwork git clone https://github.com/binary-husky/gpt_academic.git
WORKDIR /gpt/gpt_academic
RUN $useProxyNetwork python3 -m pip install -r requirements.txt
RUN $useProxyNetwork python3 -m pip install -r request_llm/requirements_chatglm.txt
RUN $useProxyNetwork python3 -m pip install -r request_llm/requirements_newbing.txt
RUN $useProxyNetwork python3 -m pip install -r request_llm/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I
# 下载JittorLLMs
RUN $useProxyNetwork git clone https://github.com/binary-husky/JittorLLMs.git --depth 1 request_llm/jittorllms
# 禁用缓存,确保更新代码
ADD "https://www.random.org/cgi-bin/randbyte?nbytes=10&format=h" skipcache
RUN $useProxyNetwork git pull
# 预热Tiktoken模块
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
# 为chatgpt-academic配置代理和API-KEY (非必要 可选步骤)
# 可同时填写多个API-KEY,支持openai的key和api2d的key共存,用英文逗号分割,例如API_KEY = "sk-openaikey1,fkxxxx-api2dkey2,........"
# LLM_MODEL 是选择初始的模型
# LOCAL_MODEL_DEVICE 是选择chatglm等本地模型运行的设备,可选 cpu 和 cuda
# [说明: 以下内容与`config.py`一一对应,请查阅config.py来完成一下配置的填写]
RUN echo ' \n\
API_KEY = "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx,fkxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" \n\
USE_PROXY = True \n\
LLM_MODEL = "chatglm" \n\
LOCAL_MODEL_DEVICE = "cuda" \n\
proxies = { "http": "socks5h://localhost:10880", "https": "socks5h://localhost:10880", } ' >> config_private.py
# 启动
CMD ["python3", "-u", "main.py"]
# 此Dockerfile不再维护,请前往docs/GithubAction+JittorLLMs

查看文件

@@ -1,27 +1 @@
# 此Dockerfile适用于“无本地模型”的环境构建,如果需要使用chatglm等本地模型,请参考 docs/Dockerfile+ChatGLM
# - 1 修改 `config.py`
# - 2 构建 docker build -t gpt-academic-nolocal-latex -f docs/Dockerfile+NoLocal+Latex .
# - 3 运行 docker run -v /home/fuqingxu/arxiv_cache:/root/arxiv_cache --rm -it --net=host gpt-academic-nolocal-latex
FROM fuqingxu/python311_texlive_ctex:latest
# 指定路径
WORKDIR /gpt
ARG useProxyNetwork=''
RUN $useProxyNetwork pip3 install gradio openai numpy arxiv rich -i https://pypi.douban.com/simple/
RUN $useProxyNetwork pip3 install colorama Markdown pygments pymupdf -i https://pypi.douban.com/simple/
# 装载项目文件
COPY . .
# 安装依赖
RUN $useProxyNetwork pip3 install -r requirements.txt -i https://pypi.douban.com/simple/
# 可选步骤,用于预热模块
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
# 启动
CMD ["python3", "-u", "main.py"]
# 此Dockerfile不再维护,请前往docs/GithubAction+NoLocal+Latex

查看文件

@@ -0,0 +1,36 @@
# docker build -t gpt-academic-all-capacity -f docs/GithubAction+AllCapacity --network=host --build-arg http_proxy=http://localhost:10881 --build-arg https_proxy=http://localhost:10881 .
# 从NVIDIA源,从而支持显卡检查宿主的nvidia-smi中的cuda版本必须>=11.3
FROM fuqingxu/11.3.1-runtime-ubuntu20.04-with-texlive:latest
# use python3 as the system default python
WORKDIR /gpt
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
# 下载pytorch
RUN python3 -m pip install torch --extra-index-url https://download.pytorch.org/whl/cu113
# 准备pip依赖
RUN python3 -m pip install openai numpy arxiv rich
RUN python3 -m pip install colorama Markdown pygments pymupdf
RUN python3 -m pip install python-docx moviepy pdfminer
RUN python3 -m pip install zh_langchain==0.2.1 pypinyin
RUN python3 -m pip install rarfile py7zr
RUN python3 -m pip install aliyun-python-sdk-core==2.13.3 pyOpenSSL webrtcvad scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
# 下载分支
WORKDIR /gpt
RUN git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
WORKDIR /gpt/gpt_academic
RUN git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss
RUN python3 -m pip install -r requirements.txt
RUN python3 -m pip install -r request_llms/requirements_moss.txt
RUN python3 -m pip install -r request_llms/requirements_qwen.txt
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
RUN python3 -m pip install nougat-ocr
# 预热Tiktoken模块
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
# 启动
CMD ["python3", "-u", "main.py"]

查看文件

@@ -1,7 +1,6 @@
# 从NVIDIA源,从而支持显卡运损检查宿主的nvidia-smi中的cuda版本必须>=11.3
FROM nvidia/cuda:11.3.1-runtime-ubuntu20.04
ARG useProxyNetwork=''
RUN apt-get update
RUN apt-get install -y curl proxychains curl gcc
RUN apt-get install -y git python python3 python-dev python3-dev --fix-missing
@@ -15,12 +14,12 @@ RUN python3 -m pip install torch --extra-index-url https://download.pytorch.org/
WORKDIR /gpt
RUN git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
WORKDIR /gpt/gpt_academic
RUN git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss
RUN git clone https://github.com/OpenLMLab/MOSS.git request_llms/moss
RUN python3 -m pip install -r requirements.txt
RUN python3 -m pip install -r request_llm/requirements_moss.txt
RUN python3 -m pip install -r request_llm/requirements_qwen.txt
RUN python3 -m pip install -r request_llm/requirements_chatglm.txt
RUN python3 -m pip install -r request_llm/requirements_newbing.txt
RUN python3 -m pip install -r request_llms/requirements_moss.txt
RUN python3 -m pip install -r request_llms/requirements_qwen.txt
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
RUN python3 -m pip install -r request_llms/requirements_newbing.txt

查看文件

@@ -16,12 +16,12 @@ WORKDIR /gpt
RUN git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
WORKDIR /gpt/gpt_academic
RUN python3 -m pip install -r requirements.txt
RUN python3 -m pip install -r request_llm/requirements_chatglm.txt
RUN python3 -m pip install -r request_llm/requirements_newbing.txt
RUN python3 -m pip install -r request_llm/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
RUN python3 -m pip install -r request_llms/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I
# 下载JittorLLMs
RUN git clone https://github.com/binary-husky/JittorLLMs.git --depth 1 request_llm/jittorllms
RUN git clone https://github.com/binary-husky/JittorLLMs.git --depth 1 request_llms/jittorllms
# 禁用缓存,确保更新代码
ADD "https://www.random.org/cgi-bin/randbyte?nbytes=10&format=h" skipcache

查看文件

@@ -1,15 +1,22 @@
# 此Dockerfile适用于“无本地模型”的环境构建,如果需要使用chatglm等本地模型,请参考 docs/Dockerfile+ChatGLM
# - 1 修改 `config.py`
# - 2 构建 docker build -t gpt-academic-nolocal-latex -f docs/Dockerfile+NoLocal+Latex .
# - 2 构建 docker build -t gpt-academic-nolocal-latex -f docs/GithubAction+NoLocal+Latex .
# - 3 运行 docker run -v /home/fuqingxu/arxiv_cache:/root/arxiv_cache --rm -it --net=host gpt-academic-nolocal-latex
FROM fuqingxu/python311_texlive_ctex:latest
ENV PATH "$PATH:/usr/local/texlive/2022/bin/x86_64-linux"
ENV PATH "$PATH:/usr/local/texlive/2023/bin/x86_64-linux"
ENV PATH "$PATH:/usr/local/texlive/2024/bin/x86_64-linux"
ENV PATH "$PATH:/usr/local/texlive/2025/bin/x86_64-linux"
ENV PATH "$PATH:/usr/local/texlive/2026/bin/x86_64-linux"
# 指定路径
WORKDIR /gpt
RUN pip3 install gradio openai numpy arxiv rich
RUN pip3 install openai numpy arxiv rich
RUN pip3 install colorama Markdown pygments pymupdf
RUN pip3 install python-docx pdfminer
RUN pip3 install nougat-ocr
# 装载项目文件
COPY . .

查看文件

@@ -103,12 +103,12 @@ python -m pip install -r requirements.txt # Same step as pip installation
[Optional Step] If supporting Tsinghua ChatGLM/Fudan MOSS as backend, additional dependencies need to be installed (Prerequisites: Familiar with Python + Used Pytorch + Sufficient computer configuration):
```sh
# [Optional Step I] Support Tsinghua ChatGLM. Remark: If encountering "Call ChatGLM fail Cannot load ChatGLM parameters", please refer to the following: 1: The above default installation is torch+cpu version. To use cuda, uninstall torch and reinstall torch+cuda; 2: If the model cannot be loaded due to insufficient machine configuration, you can modify the model precision in `request_llm/bridge_chatglm.py`, and modify all AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llm/requirements_chatglm.txt
# [Optional Step I] Support Tsinghua ChatGLM. Remark: If encountering "Call ChatGLM fail Cannot load ChatGLM parameters", please refer to the following: 1: The above default installation is torch+cpu version. To use cuda, uninstall torch and reinstall torch+cuda; 2: If the model cannot be loaded due to insufficient machine configuration, you can modify the model precision in `request_llms/bridge_chatglm.py`, and modify all AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llms/requirements_chatglm.txt
# [Optional Step II] Support Fudan MOSS
python -m pip install -r request_llm/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # When executing this line of code, you must be in the project root path
python -m pip install -r request_llms/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llms/moss # When executing this line of code, you must be in the project root path
# [Optional Step III] Make sure the AVAIL_LLM_MODELS in the config.py configuration file contains the expected models. Currently supported models are as follows (jittorllms series currently only supports docker solutions):
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]

查看文件

@@ -109,12 +109,12 @@ python -m pip install -r requirements.txt # questo passaggio funziona allo stess
【Passaggio facoltativo】 Se si desidera supportare ChatGLM di Tsinghua/MOSS di Fudan come backend, è necessario installare ulteriori dipendenze (prerequisiti: conoscenza di Python, esperienza con Pytorch e computer sufficientemente potente):
```sh
# 【Passaggio facoltativo I】 Supporto a ChatGLM di Tsinghua. Note su ChatGLM di Tsinghua: in caso di errore "Call ChatGLM fail 不能正常加载ChatGLM的参数" , fare quanto segue: 1. Per impostazione predefinita, viene installata la versione di torch + cpu; per usare CUDA, è necessario disinstallare torch e installare nuovamente torch + cuda; 2. Se non è possibile caricare il modello a causa di una configurazione insufficiente del computer, è possibile modificare la precisione del modello in request_llm/bridge_chatglm.py, cambiando AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) in AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llm/requirements_chatglm.txt
# 【Passaggio facoltativo I】 Supporto a ChatGLM di Tsinghua. Note su ChatGLM di Tsinghua: in caso di errore "Call ChatGLM fail 不能正常加载ChatGLM的参数" , fare quanto segue: 1. Per impostazione predefinita, viene installata la versione di torch + cpu; per usare CUDA, è necessario disinstallare torch e installare nuovamente torch + cuda; 2. Se non è possibile caricare il modello a causa di una configurazione insufficiente del computer, è possibile modificare la precisione del modello in request_llms/bridge_chatglm.py, cambiando AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) in AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llms/requirements_chatglm.txt
# 【Passaggio facoltativo II】 Supporto a MOSS di Fudan
python -m pip install -r request_llm/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # Si prega di notare che quando si esegue questa riga di codice, si deve essere nella directory radice del progetto
python -m pip install -r request_llms/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llms/moss # Si prega di notare che quando si esegue questa riga di codice, si deve essere nella directory radice del progetto
# 【Passaggio facoltativo III】 Assicurati che il file di configurazione config.py includa tutti i modelli desiderati, al momento tutti i modelli supportati sono i seguenti (i modelli della serie jittorllms attualmente supportano solo la soluzione docker):
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]

查看文件

@@ -104,11 +104,11 @@ python -m pip install -r requirements.txt # 이 단계도 pip install의 단계
# 1 : 기본 설치된 것들은 torch + cpu 버전입니다. cuda를 사용하려면 torch를 제거한 다음 torch + cuda를 다시 설치해야합니다.
# 2 : 모델을 로드할 수 없는 기계 구성 때문에, AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)를
# AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)로 변경합니다.
python -m pip install -r request_llm/requirements_chatglm.txt
python -m pip install -r request_llms/requirements_chatglm.txt
# [선택 사항 II] Fudan MOSS 지원
python -m pip install -r request_llm/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # 다음 코드 줄을 실행할 때 프로젝트 루트 경로에 있어야합니다.
python -m pip install -r request_llms/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llms/moss # 다음 코드 줄을 실행할 때 프로젝트 루트 경로에 있어야합니다.
# [선택 사항III] AVAIL_LLM_MODELS config.py 구성 파일에 기대하는 모델이 포함되어 있는지 확인하십시오.
# 현재 지원되는 전체 모델 :

查看文件

@@ -119,12 +119,12 @@ python -m pip install -r requirements.txt # This step is the same as the pip ins
[Optional Step] If you need to support Tsinghua ChatGLM / Fudan MOSS as the backend, you need to install more dependencies (prerequisite: familiar with Python + used Pytorch + computer configuration is strong):
```sh
# 【Optional Step I】support Tsinghua ChatGLM。Tsinghua ChatGLM Note: If you encounter a "Call ChatGLM fails cannot load ChatGLM parameters normally" error, refer to the following: 1: The default installed is torch+cpu version, and using cuda requires uninstalling torch and reinstalling torch+cuda; 2: If the model cannot be loaded due to insufficient computer configuration, you can modify the model accuracy in request_llm/bridge_chatglm.py and change AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llm/requirements_chatglm.txt
# 【Optional Step I】support Tsinghua ChatGLM。Tsinghua ChatGLM Note: If you encounter a "Call ChatGLM fails cannot load ChatGLM parameters normally" error, refer to the following: 1: The default installed is torch+cpu version, and using cuda requires uninstalling torch and reinstalling torch+cuda; 2: If the model cannot be loaded due to insufficient computer configuration, you can modify the model accuracy in request_llms/bridge_chatglm.py and change AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llms/requirements_chatglm.txt
# 【Optional Step II】support Fudan MOSS
python -m pip install -r request_llm/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # Note: When executing this line of code, you must be in the project root path
python -m pip install -r request_llms/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llms/moss # Note: When executing this line of code, you must be in the project root path
# 【Optional Step III】Make sure that the AVAIL_LLM_MODELS in the config.py configuration file contains the expected model. Currently, all supported models are as follows (jittorllms series currently only supports docker solutions):
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]

查看文件

@@ -106,12 +106,12 @@ python -m pip install -r requirements.txt # this step is the same as pip install
[Optional step] If you need to support Tsinghua ChatGLM/Fudan MOSS as a backend, you need to install more dependencies (prerequisites: familiar with Python + used Pytorch + computer configuration is strong enough):
```sh
# [Optional Step I] Support Tsinghua ChatGLM. Tsinghua ChatGLM remarks: if you encounter the "Call ChatGLM fail cannot load ChatGLM parameters" error, refer to this: 1: The default installation above is torch + cpu version, to use cuda, you need to uninstall torch and reinstall torch + cuda; 2: If the model cannot be loaded due to insufficient local configuration, you can modify the model accuracy in request_llm/bridge_chatglm.py, and change AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code = True)
python -m pip install -r request_llm/requirements_chatglm.txt
# [Optional Step I] Support Tsinghua ChatGLM. Tsinghua ChatGLM remarks: if you encounter the "Call ChatGLM fail cannot load ChatGLM parameters" error, refer to this: 1: The default installation above is torch + cpu version, to use cuda, you need to uninstall torch and reinstall torch + cuda; 2: If the model cannot be loaded due to insufficient local configuration, you can modify the model accuracy in request_llms/bridge_chatglm.py, and change AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code = True)
python -m pip install -r request_llms/requirements_chatglm.txt
# [Optional Step II] Support Fudan MOSS
python -m pip install -r request_llm/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # When executing this line of code, you must be in the root directory of the project
python -m pip install -r request_llms/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llms/moss # When executing this line of code, you must be in the root directory of the project
# [Optional Step III] Make sure the AVAIL_LLM_MODELS in the config.py configuration file includes the expected models. Currently supported models are as follows (the jittorllms series only supports the docker solution for the time being):
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]

查看文件

@@ -111,12 +111,12 @@ python -m pip install -r requirements.txt # Same step as pip instalation
【Optional】 Si vous souhaitez prendre en charge THU ChatGLM/FDU MOSS en tant que backend, des dépendances supplémentaires doivent être installées (prérequis: compétent en Python + utilisez Pytorch + configuration suffisante de l'ordinateur):
```sh
# 【Optional Step I】 Support THU ChatGLM. Remarque sur THU ChatGLM: Si vous rencontrez l'erreur "Appel à ChatGLM échoué, les paramètres ChatGLM ne peuvent pas être chargés normalement", reportez-vous à ce qui suit: 1: La version par défaut installée est torch+cpu, si vous souhaitez utiliser cuda, vous devez désinstaller torch et réinstaller torch+cuda; 2: Si le modèle ne peut pas être chargé en raison d'une configuration insuffisante de l'ordinateur local, vous pouvez modifier la précision du modèle dans request_llm/bridge_chatglm.py, modifier AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) par AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llm/requirements_chatglm.txt
# 【Optional Step I】 Support THU ChatGLM. Remarque sur THU ChatGLM: Si vous rencontrez l'erreur "Appel à ChatGLM échoué, les paramètres ChatGLM ne peuvent pas être chargés normalement", reportez-vous à ce qui suit: 1: La version par défaut installée est torch+cpu, si vous souhaitez utiliser cuda, vous devez désinstaller torch et réinstaller torch+cuda; 2: Si le modèle ne peut pas être chargé en raison d'une configuration insuffisante de l'ordinateur local, vous pouvez modifier la précision du modèle dans request_llms/bridge_chatglm.py, modifier AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) par AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llms/requirements_chatglm.txt
# 【Optional Step II】 Support FDU MOSS
python -m pip install -r request_llm/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # Note: When running this line of code, you must be in the project root path.
python -m pip install -r request_llms/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llms/moss # Note: When running this line of code, you must be in the project root path.
# 【Optional Step III】Make sure the AVAIL_LLM_MODELS in the config.py configuration file contains the desired model. Currently, all models supported are as follows (the jittorllms series currently only supports the docker scheme):
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]

查看文件

@@ -120,12 +120,12 @@ python -m pip install -r requirements.txt # This step is the same as the pip ins
[Optional Steps] If you need to support Tsinghua ChatGLM/Fudan MOSS as a backend, you need to install more dependencies (precondition: familiar with Python + used Pytorch + computer configuration). Strong enough):
```sh
# Optional step I: support Tsinghua ChatGLM. Tsinghua ChatGLM remarks: If you encounter the error "Call ChatGLM fail cannot load ChatGLM parameters normally", refer to the following: 1: The version installed above is torch+cpu version, using cuda requires uninstalling torch and reinstalling torch+cuda; 2: If the model cannot be loaded due to insufficient local configuration, you can modify the model accuracy in request_llm/bridge_chatglm.py, and change AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True).
python -m pip install -r request_llm/requirements_chatglm.txt
# Optional step I: support Tsinghua ChatGLM. Tsinghua ChatGLM remarks: If you encounter the error "Call ChatGLM fail cannot load ChatGLM parameters normally", refer to the following: 1: The version installed above is torch+cpu version, using cuda requires uninstalling torch and reinstalling torch+cuda; 2: If the model cannot be loaded due to insufficient local configuration, you can modify the model accuracy in request_llms/bridge_chatglm.py, and change AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True).
python -m pip install -r request_llms/requirements_chatglm.txt
# Optional Step II: Support Fudan MOSS.
python -m pip install -r request_llm/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # Note that when executing this line of code, it must be in the project root.
python -m pip install -r request_llms/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llms/moss # Note that when executing this line of code, it must be in the project root.
# 【Optional Step III】Ensure that the AVAIL_LLM_MODELS in the config.py configuration file contains the expected model. Currently, all supported models are as follows (jittorllms series currently only supports the docker solution):
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]

查看文件

@@ -108,12 +108,12 @@ python -m pip install -r requirements.txt # This step is the same as the pip ins
[Optional step] If you need to support Tsinghua ChatGLM/Fudan MOSS as backend, you need to install more dependencies (prerequisites: familiar with Python + have used Pytorch + computer configuration is strong):
```sh
# [Optional step I] Support Tsinghua ChatGLM. Tsinghua ChatGLM note: If you encounter the "Call ChatGLM fail cannot load ChatGLM parameters normally" error, refer to the following: 1: The default installation above is torch+cpu version, and cuda is used Need to uninstall torch and reinstall torch+cuda; 2: If you cannot load the model due to insufficient local configuration, you can modify the model accuracy in request_llm/bridge_chatglm.py, AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) Modify to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llm/requirements_chatglm.txt
# [Optional step I] Support Tsinghua ChatGLM. Tsinghua ChatGLM note: If you encounter the "Call ChatGLM fail cannot load ChatGLM parameters normally" error, refer to the following: 1: The default installation above is torch+cpu version, and cuda is used Need to uninstall torch and reinstall torch+cuda; 2: If you cannot load the model due to insufficient local configuration, you can modify the model accuracy in request_llms/bridge_chatglm.py, AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) Modify to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llms/requirements_chatglm.txt
# [Optional step II] Support Fudan MOSS
python -m pip install -r request_llm/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # Note that when executing this line of code, you must be in the project root path
python -m pip install -r request_llms/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llms/moss # Note that when executing this line of code, you must be in the project root path
# [Optional step III] Make sure the AVAIL_LLM_MODELS in the config.py configuration file contains the expected models. Currently, all supported models are as follows (the jittorllms series currently only supports the docker solution):
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]

查看文件

@@ -16,7 +16,7 @@ nano config.py
+ demo.queue(concurrency_count=CONCURRENT_COUNT)
- # 如果需要在二级路径下运行
- # CUSTOM_PATH, = get_conf('CUSTOM_PATH')
- # CUSTOM_PATH = get_conf('CUSTOM_PATH')
- # if CUSTOM_PATH != "/":
- # from toolbox import run_gradio_in_subpath
- # run_gradio_in_subpath(demo, auth=AUTHENTICATION, port=PORT, custom_path=CUSTOM_PATH)
@@ -24,7 +24,7 @@ nano config.py
- # demo.launch(server_name="0.0.0.0", server_port=PORT, auth=AUTHENTICATION, favicon_path="docs/logo.png")
+ 如果需要在二级路径下运行
+ CUSTOM_PATH, = get_conf('CUSTOM_PATH')
+ CUSTOM_PATH = get_conf('CUSTOM_PATH')
+ if CUSTOM_PATH != "/":
+ from toolbox import run_gradio_in_subpath
+ run_gradio_in_subpath(demo, auth=AUTHENTICATION, port=PORT, custom_path=CUSTOM_PATH)

查看文件

@@ -38,20 +38,20 @@
| crazy_functions\读文章写摘要.py | 对论文进行解析和全文摘要生成 |
| crazy_functions\谷歌检索小助手.py | 提供谷歌学术搜索页面中相关文章的元数据信息。 |
| crazy_functions\高级功能函数模板.py | 使用Unsplash API发送相关图片以回复用户的输入。 |
| request_llm\bridge_all.py | 基于不同LLM模型进行对话。 |
| request_llm\bridge_chatglm.py | 使用ChatGLM模型生成回复,支持单线程和多线程方式。 |
| request_llm\bridge_chatgpt.py | 基于GPT模型完成对话。 |
| request_llm\bridge_jittorllms_llama.py | 使用JittorLLMs模型完成对话,支持单线程和多线程方式。 |
| request_llm\bridge_jittorllms_pangualpha.py | 使用JittorLLMs模型完成对话,基于多进程和多线程方式。 |
| request_llm\bridge_jittorllms_rwkv.py | 使用JittorLLMs模型完成聊天功能,提供包括历史信息、参数调节等在内的多个功能选项。 |
| request_llm\bridge_moss.py | 加载Moss模型完成对话功能。 |
| request_llm\bridge_newbing.py | 使用Newbing聊天机器人进行对话,支持单线程和多线程方式。 |
| request_llm\bridge_newbingfree.py | 基于Bing chatbot API实现聊天机器人的文本生成功能。 |
| request_llm\bridge_stackclaude.py | 基于Slack API实现Claude与用户的交互。 |
| request_llm\bridge_tgui.py | 通过websocket实现聊天机器人与UI界面交互。 |
| request_llm\edge_gpt.py | 调用Bing chatbot API提供聊天机器人服务。 |
| request_llm\edge_gpt_free.py | 实现聊天机器人API,采用aiohttp和httpx工具库。 |
| request_llm\test_llms.py | 对llm模型进行单元测试。 |
| request_llms\bridge_all.py | 基于不同LLM模型进行对话。 |
| request_llms\bridge_chatglm.py | 使用ChatGLM模型生成回复,支持单线程和多线程方式。 |
| request_llms\bridge_chatgpt.py | 基于GPT模型完成对话。 |
| request_llms\bridge_jittorllms_llama.py | 使用JittorLLMs模型完成对话,支持单线程和多线程方式。 |
| request_llms\bridge_jittorllms_pangualpha.py | 使用JittorLLMs模型完成对话,基于多进程和多线程方式。 |
| request_llms\bridge_jittorllms_rwkv.py | 使用JittorLLMs模型完成聊天功能,提供包括历史信息、参数调节等在内的多个功能选项。 |
| request_llms\bridge_moss.py | 加载Moss模型完成对话功能。 |
| request_llms\bridge_newbing.py | 使用Newbing聊天机器人进行对话,支持单线程和多线程方式。 |
| request_llms\bridge_newbingfree.py | 基于Bing chatbot API实现聊天机器人的文本生成功能。 |
| request_llms\bridge_stackclaude.py | 基于Slack API实现Claude与用户的交互。 |
| request_llms\bridge_tgui.py | 通过websocket实现聊天机器人与UI界面交互。 |
| request_llms\edge_gpt.py | 调用Bing chatbot API提供聊天机器人服务。 |
| request_llms\edge_gpt_free.py | 实现聊天机器人API,采用aiohttp和httpx工具库。 |
| request_llms\test_llms.py | 对llm模型进行单元测试。 |
## 接下来请你逐文件分析下面的工程[0/48] 请对下面的程序文件做一个概述: check_proxy.py
@@ -129,7 +129,7 @@ toolbox.py是一个工具类库,其中主要包含了一些函数装饰器和
1. `input_clipping`: 该函数用于裁剪输入文本长度,使其不超过一定的限制。
2. `request_gpt_model_in_new_thread_with_ui_alive`: 该函数用于请求 GPT 模型并保持用户界面的响应,支持多线程和实时更新用户界面。
这两个函数都依赖于从 `toolbox``request_llm` 中导入的一些工具函数。函数的输入和输出有详细的描述文档。
这两个函数都依赖于从 `toolbox``request_llms` 中导入的一些工具函数。函数的输入和输出有详细的描述文档。
## [12/48] 请对下面的程序文件做一个概述: crazy_functions\Latex全文润色.py
@@ -137,7 +137,7 @@ toolbox.py是一个工具类库,其中主要包含了一些函数装饰器和
## [13/48] 请对下面的程序文件做一个概述: crazy_functions\Latex全文翻译.py
这个文件包含两个函数 `Latex英译中``Latex中译英`,它们都会对整个Latex项目进行翻译。这个文件还包含一个类 `PaperFileGroup`,它拥有一个方法 `run_file_split`,用于把长文本文件分成多个短文件。其中使用了工具库 `toolbox` 中的一些函数和从 `request_llm` 中导入了 `model_info`。接下来的函数把文件读取进来,把它们的注释删除,进行分割,并进行翻译。这个文件还包括了一些异常处理和界面更新的操作。
这个文件包含两个函数 `Latex英译中``Latex中译英`,它们都会对整个Latex项目进行翻译。这个文件还包含一个类 `PaperFileGroup`,它拥有一个方法 `run_file_split`,用于把长文本文件分成多个短文件。其中使用了工具库 `toolbox` 中的一些函数和从 `request_llms` 中导入了 `model_info`。接下来的函数把文件读取进来,把它们的注释删除,进行分割,并进行翻译。这个文件还包括了一些异常处理和界面更新的操作。
## [14/48] 请对下面的程序文件做一个概述: crazy_functions\__init__.py
@@ -217,7 +217,7 @@ toolbox.py是一个工具类库,其中主要包含了一些函数装饰器和
## [31/48] 请对下面的程序文件做一个概述: crazy_functions\读文章写摘要.py
这个程序文件是一个Python模块,文件名为crazy_functions\读文章写摘要.py。该模块包含了两个函数,其中主要函数是"读文章写摘要"函数,其实现了解析给定文件夹中的tex文件,对其中每个文件的内容进行摘要生成,并根据各论文片段的摘要,最终生成全文摘要。第二个函数是"解析Paper"函数,用于解析单篇论文文件。其中用到了一些工具函数和库,如update_ui、CatchException、report_execption、write_results_to_file等。
这个程序文件是一个Python模块,文件名为crazy_functions\读文章写摘要.py。该模块包含了两个函数,其中主要函数是"读文章写摘要"函数,其实现了解析给定文件夹中的tex文件,对其中每个文件的内容进行摘要生成,并根据各论文片段的摘要,最终生成全文摘要。第二个函数是"解析Paper"函数,用于解析单篇论文文件。其中用到了一些工具函数和库,如update_ui、CatchException、report_exception、write_results_to_file等。
## [32/48] 请对下面的程序文件做一个概述: crazy_functions\谷歌检索小助手.py
@@ -227,19 +227,19 @@ toolbox.py是一个工具类库,其中主要包含了一些函数装饰器和
该程序文件定义了一个名为高阶功能模板函数的函数,该函数接受多个参数,包括输入的文本、gpt模型参数、插件模型参数、聊天显示框的句柄、聊天历史等,并利用送出请求,使用 Unsplash API 发送相关图片。其中,为了避免输入溢出,函数会在开始时清空历史。函数也有一些 UI 更新的语句。该程序文件还依赖于其他两个模块CatchException 和 update_ui,以及一个名为 request_gpt_model_in_new_thread_with_ui_alive 的来自 crazy_utils 模块(应该是自定义的工具包)的函数。
## [34/48] 请对下面的程序文件做一个概述: request_llm\bridge_all.py
## [34/48] 请对下面的程序文件做一个概述: request_llms\bridge_all.py
该文件包含两个函数predict和predict_no_ui_long_connection,用于基于不同的LLM模型进行对话。该文件还包含一个lazyloadTiktoken类和一个LLM_CATCH_EXCEPTION修饰器函数。其中lazyloadTiktoken类用于懒加载模型的tokenizer,LLM_CATCH_EXCEPTION用于错误处理。整个文件还定义了一些全局变量和模型信息字典,用于引用和配置LLM模型。
## [35/48] 请对下面的程序文件做一个概述: request_llm\bridge_chatglm.py
## [35/48] 请对下面的程序文件做一个概述: request_llms\bridge_chatglm.py
这是一个Python程序文件,名为`bridge_chatglm.py`,其中定义了一个名为`GetGLMHandle`的类和三个方法:`predict_no_ui_long_connection``predict``stream_chat`。该文件依赖于多个Python库,如`transformers``sentencepiece`。该文件实现了一个聊天机器人,使用ChatGLM模型来生成回复,支持单线程和多线程方式。程序启动时需要加载ChatGLM的模型和tokenizer,需要一段时间。在配置文件`config.py`中设置参数会影响模型的内存和显存使用,因此程序可能会导致低配计算机卡死。
## [36/48] 请对下面的程序文件做一个概述: request_llm\bridge_chatgpt.py
## [36/48] 请对下面的程序文件做一个概述: request_llms\bridge_chatgpt.py
该文件为 Python 代码文件,文件名为 request_llm\bridge_chatgpt.py。该代码文件主要提供三个函数predict、predict_no_ui和 predict_no_ui_long_connection,用于发送至 chatGPT 并等待回复,获取输出。该代码文件还包含一些辅助函数,用于处理连接异常、生成 HTTP 请求等。该文件的代码架构清晰,使用了多个自定义函数和模块。
该文件为 Python 代码文件,文件名为 request_llms\bridge_chatgpt.py。该代码文件主要提供三个函数predict、predict_no_ui和 predict_no_ui_long_connection,用于发送至 chatGPT 并等待回复,获取输出。该代码文件还包含一些辅助函数,用于处理连接异常、生成 HTTP 请求等。该文件的代码架构清晰,使用了多个自定义函数和模块。
## [37/48] 请对下面的程序文件做一个概述: request_llm\bridge_jittorllms_llama.py
## [37/48] 请对下面的程序文件做一个概述: request_llms\bridge_jittorllms_llama.py
该代码文件实现了一个聊天机器人,其中使用了 JittorLLMs 模型。主要包括以下几个部分:
1. GetGLMHandle 类:一个进程类,用于加载 JittorLLMs 模型并接收并处理请求。
@@ -248,17 +248,17 @@ toolbox.py是一个工具类库,其中主要包含了一些函数装饰器和
这个文件中还有一些辅助函数和全局变量,例如 importlib、time、threading 等。
## [38/48] 请对下面的程序文件做一个概述: request_llm\bridge_jittorllms_pangualpha.py
## [38/48] 请对下面的程序文件做一个概述: request_llms\bridge_jittorllms_pangualpha.py
这个文件是为了实现使用jittorllms一种机器学习模型来进行聊天功能的代码。其中包括了模型加载、模型的参数加载、消息的收发等相关操作。其中使用了多进程和多线程来提高性能和效率。代码中还包括了处理依赖关系的函数和预处理函数等。
## [39/48] 请对下面的程序文件做一个概述: request_llm\bridge_jittorllms_rwkv.py
## [39/48] 请对下面的程序文件做一个概述: request_llms\bridge_jittorllms_rwkv.py
这个文件是一个Python程序,文件名为request_llm\bridge_jittorllms_rwkv.py。它依赖transformers、time、threading、importlib、multiprocessing等库。在文件中,通过定义GetGLMHandle类加载jittorllms模型参数和定义stream_chat方法来实现与jittorllms模型的交互。同时,该文件还定义了predict_no_ui_long_connection和predict方法来处理历史信息、调用jittorllms模型、接收回复信息并输出结果。
## [40/48] 请对下面的程序文件做一个概述: request_llm\bridge_moss.py
## [40/48] 请对下面的程序文件做一个概述: request_llms\bridge_moss.py
该文件为一个Python源代码文件,文件名为 request_llm\bridge_moss.py。代码定义了一个 GetGLMHandle 类和两个函数 predict_no_ui_long_connection 和 predict。
该文件为一个Python源代码文件,文件名为 request_llms\bridge_moss.py。代码定义了一个 GetGLMHandle 类和两个函数 predict_no_ui_long_connection 和 predict。
GetGLMHandle 类继承自Process类多进程,主要功能是启动一个子进程并加载 MOSS 模型参数,通过 Pipe 进行主子进程的通信。该类还定义了 check_dependency、moss_init、run 和 stream_chat 等方法,其中 check_dependency 和 moss_init 是子进程的初始化方法,run 是子进程运行方法,stream_chat 实现了主进程和子进程的交互过程。
@@ -266,7 +266,7 @@ GetGLMHandle 类继承自Process类多进程,主要功能是启动一个
函数 predict 是单线程方法,通过调用 update_ui 将交互过程中 MOSS 的回复实时更新到UIUser Interface中,并执行一个 named functionadditional_fn指定的函数对输入进行预处理。
## [41/48] 请对下面的程序文件做一个概述: request_llm\bridge_newbing.py
## [41/48] 请对下面的程序文件做一个概述: request_llms\bridge_newbing.py
这是一个名为`bridge_newbing.py`的程序文件,包含三个部分:
@@ -276,11 +276,11 @@ GetGLMHandle 类继承自Process类多进程,主要功能是启动一个
第三部分定义了一个名为`newbing_handle`的全局变量,并导出了`predict_no_ui_long_connection``predict`这两个方法,以供其他程序可以调用。
## [42/48] 请对下面的程序文件做一个概述: request_llm\bridge_newbingfree.py
## [42/48] 请对下面的程序文件做一个概述: request_llms\bridge_newbingfree.py
这个Python文件包含了三部分内容。第一部分是来自edge_gpt_free.py文件的聊天机器人程序。第二部分是子进程Worker,用于调用主体。第三部分提供了两个函数predict_no_ui_long_connection和predict用于调用NewBing聊天机器人和返回响应。其中predict函数还提供了一些参数用于控制聊天机器人的回复和更新UI界面。
## [43/48] 请对下面的程序文件做一个概述: request_llm\bridge_stackclaude.py
## [43/48] 请对下面的程序文件做一个概述: request_llms\bridge_stackclaude.py
这是一个Python源代码文件,文件名为request_llm\bridge_stackclaude.py。代码分为三个主要部分
@@ -290,21 +290,21 @@ GetGLMHandle 类继承自Process类多进程,主要功能是启动一个
第三部分定义了predict_no_ui_long_connection和predict两个函数,主要用于通过调用ClaudeHandle对象的stream_chat方法来获取Claude的回复,并更新ui以显示相关信息。其中predict函数采用单线程方法,而predict_no_ui_long_connection函数使用多线程方法。
## [44/48] 请对下面的程序文件做一个概述: request_llm\bridge_tgui.py
## [44/48] 请对下面的程序文件做一个概述: request_llms\bridge_tgui.py
该文件是一个Python代码文件,名为request_llm\bridge_tgui.py。它包含了一些函数用于与chatbot UI交互,并通过WebSocket协议与远程LLM模型通信完成文本生成任务,其中最重要的函数是predict()和predict_no_ui_long_connection()。这个程序还有其他的辅助函数,如random_hash()。整个代码文件在协作的基础上完成了一次修改。
## [45/48] 请对下面的程序文件做一个概述: request_llm\edge_gpt.py
## [45/48] 请对下面的程序文件做一个概述: request_llms\edge_gpt.py
该文件是一个用于调用Bing chatbot API的Python程序,它由多个类和辅助函数构成,可以根据给定的对话连接在对话中提出问题,使用websocket与远程服务通信。程序实现了一个聊天机器人,可以为用户提供人工智能聊天。
## [46/48] 请对下面的程序文件做一个概述: request_llm\edge_gpt_free.py
## [46/48] 请对下面的程序文件做一个概述: request_llms\edge_gpt_free.py
该代码文件为一个会话API,可通过Chathub发送消息以返回响应。其中使用了 aiohttp 和 httpx 库进行网络请求并发送。代码中包含了一些函数和常量,多数用于生成请求数据或是请求头信息等。同时该代码文件还包含了一个 Conversation 类,调用该类可实现对话交互。
## [47/48] 请对下面的程序文件做一个概述: request_llm\test_llms.py
## [47/48] 请对下面的程序文件做一个概述: request_llms\test_llms.py
这个文件是用于对llm模型进行单元测试的Python程序。程序导入一个名为"request_llm.bridge_newbingfree"的模块,然后三次使用该模块中的predict_no_ui_long_connection()函数进行预测,并输出结果。此外,还有一些注释掉的代码段,这些代码段也是关于模型预测的。
这个文件是用于对llm模型进行单元测试的Python程序。程序导入一个名为"request_llms.bridge_newbingfree"的模块,然后三次使用该模块中的predict_no_ui_long_connection()函数进行预测,并输出结果。此外,还有一些注释掉的代码段,这些代码段也是关于模型预测的。
## 用一张Markdown表格简要描述以下文件的功能
check_proxy.py, colorful.py, config.py, config_private.py, core_functional.py, crazy_functional.py, main.py, multi_language.py, theme.py, toolbox.py, crazy_functions\crazy_functions_test.py, crazy_functions\crazy_utils.py, crazy_functions\Latex全文润色.py, crazy_functions\Latex全文翻译.py, crazy_functions\__init__.py, crazy_functions\下载arxiv论文翻译摘要.py。根据以上分析,用一句话概括程序的整体功能。
@@ -355,24 +355,24 @@ crazy_functions\代码重写为全英文_多线程.py, crazy_functions\图片生
概括程序的整体功能:提供了一系列处理文本、文件和代码的功能,使用了各类语言模型、多线程、网络请求和数据解析技术来提高效率和精度。
## 用一张Markdown表格简要描述以下文件的功能
crazy_functions\谷歌检索小助手.py, crazy_functions\高级功能函数模板.py, request_llm\bridge_all.py, request_llm\bridge_chatglm.py, request_llm\bridge_chatgpt.py, request_llm\bridge_jittorllms_llama.py, request_llm\bridge_jittorllms_pangualpha.py, request_llm\bridge_jittorllms_rwkv.py, request_llm\bridge_moss.py, request_llm\bridge_newbing.py, request_llm\bridge_newbingfree.py, request_llm\bridge_stackclaude.py, request_llm\bridge_tgui.py, request_llm\edge_gpt.py, request_llm\edge_gpt_free.py, request_llm\test_llms.py。根据以上分析,用一句话概括程序的整体功能。
crazy_functions\谷歌检索小助手.py, crazy_functions\高级功能函数模板.py, request_llms\bridge_all.py, request_llms\bridge_chatglm.py, request_llms\bridge_chatgpt.py, request_llms\bridge_jittorllms_llama.py, request_llms\bridge_jittorllms_pangualpha.py, request_llms\bridge_jittorllms_rwkv.py, request_llms\bridge_moss.py, request_llms\bridge_newbing.py, request_llms\bridge_newbingfree.py, request_llms\bridge_stackclaude.py, request_llms\bridge_tgui.py, request_llms\edge_gpt.py, request_llms\edge_gpt_free.py, request_llms\test_llms.py。根据以上分析,用一句话概括程序的整体功能。
| 文件名 | 功能描述 |
| --- | --- |
| crazy_functions\谷歌检索小助手.py | 提供谷歌学术搜索页面中相关文章的元数据信息。 |
| crazy_functions\高级功能函数模板.py | 使用Unsplash API发送相关图片以回复用户的输入。 |
| request_llm\bridge_all.py | 基于不同LLM模型进行对话。 |
| request_llm\bridge_chatglm.py | 使用ChatGLM模型生成回复,支持单线程和多线程方式。 |
| request_llm\bridge_chatgpt.py | 基于GPT模型完成对话。 |
| request_llm\bridge_jittorllms_llama.py | 使用JittorLLMs模型完成对话,支持单线程和多线程方式。 |
| request_llm\bridge_jittorllms_pangualpha.py | 使用JittorLLMs模型完成对话,基于多进程和多线程方式。 |
| request_llm\bridge_jittorllms_rwkv.py | 使用JittorLLMs模型完成聊天功能,提供包括历史信息、参数调节等在内的多个功能选项。 |
| request_llm\bridge_moss.py | 加载Moss模型完成对话功能。 |
| request_llm\bridge_newbing.py | 使用Newbing聊天机器人进行对话,支持单线程和多线程方式。 |
| request_llm\bridge_newbingfree.py | 基于Bing chatbot API实现聊天机器人的文本生成功能。 |
| request_llm\bridge_stackclaude.py | 基于Slack API实现Claude与用户的交互。 |
| request_llm\bridge_tgui.py | 通过websocket实现聊天机器人与UI界面交互。 |
| request_llm\edge_gpt.py | 调用Bing chatbot API提供聊天机器人服务。 |
| request_llm\edge_gpt_free.py | 实现聊天机器人API,采用aiohttp和httpx工具库。 |
| request_llm\test_llms.py | 对llm模型进行单元测试。 |
| request_llms\bridge_all.py | 基于不同LLM模型进行对话。 |
| request_llms\bridge_chatglm.py | 使用ChatGLM模型生成回复,支持单线程和多线程方式。 |
| request_llms\bridge_chatgpt.py | 基于GPT模型完成对话。 |
| request_llms\bridge_jittorllms_llama.py | 使用JittorLLMs模型完成对话,支持单线程和多线程方式。 |
| request_llms\bridge_jittorllms_pangualpha.py | 使用JittorLLMs模型完成对话,基于多进程和多线程方式。 |
| request_llms\bridge_jittorllms_rwkv.py | 使用JittorLLMs模型完成聊天功能,提供包括历史信息、参数调节等在内的多个功能选项。 |
| request_llms\bridge_moss.py | 加载Moss模型完成对话功能。 |
| request_llms\bridge_newbing.py | 使用Newbing聊天机器人进行对话,支持单线程和多线程方式。 |
| request_llms\bridge_newbingfree.py | 基于Bing chatbot API实现聊天机器人的文本生成功能。 |
| request_llms\bridge_stackclaude.py | 基于Slack API实现Claude与用户的交互。 |
| request_llms\bridge_tgui.py | 通过websocket实现聊天机器人与UI界面交互。 |
| request_llms\edge_gpt.py | 调用Bing chatbot API提供聊天机器人服务。 |
| request_llms\edge_gpt_free.py | 实现聊天机器人API,采用aiohttp和httpx工具库。 |
| request_llms\test_llms.py | 对llm模型进行单元测试。 |
| 程序整体功能 | 实现不同种类的聊天机器人,可以根据输入进行文本生成。 |

查看文件

@@ -265,7 +265,7 @@
"例如chatglm&gpt-3.5-turbo&api2d-gpt-4": "e.g. chatglm&gpt-3.5-turbo&api2d-gpt-4",
"先切换模型到openai或api2d": "Switch the model to openai or api2d first",
"在这里输入分辨率": "Enter the resolution here",
"如256x256": "e.g. 256x256",
"如1024x1024": "e.g. 1024x1024",
"默认": "Default",
"建议您复制一个config_private.py放自己的秘密": "We suggest you to copy a config_private.py file to keep your secrets, such as API and proxy URLs, from being accidentally uploaded to Github and seen by others.",
"如API和代理网址": "Such as API and proxy URLs",
@@ -299,7 +299,6 @@
"地址🚀": "Address 🚀",
"感谢热情的": "Thanks to the enthusiastic",
"开发者们❤️": "Developers ❤️",
"所有问询记录将自动保存在本地目录./gpt_log/chat_secrets.log": "All inquiry records will be automatically saved in the local directory ./gpt_log/chat_secrets.log",
"请注意自我隐私保护哦!": "Please pay attention to self-privacy protection!",
"当前模型": "Current model",
"输入区": "Input area",
@@ -323,7 +322,7 @@
"任何文件": "Any file",
"但推荐上传压缩文件": "But it is recommended to upload compressed files",
"更换模型 & SysPrompt & 交互界面布局": "Change model & SysPrompt & interactive interface layout",
"底部输入区": "Bottom input area",
"浮动输入区": "Floating input area",
"输入清除键": "Input clear key",
"插件参数区": "Plugin parameter area",
"显示/隐藏功能区": "Show/hide function area",
@@ -892,7 +891,6 @@
"保存当前对话": "Save current conversation",
"您可以调用“LoadConversationHistoryArchive”还原当下的对话": "You can call 'LoadConversationHistoryArchive' to restore the current conversation",
"警告!被保存的对话历史可以被使用该系统的任何人查阅": "Warning! The saved conversation history can be viewed by anyone using this system",
"gpt_log/**/chatGPT对话历史*.html": "gpt_log/**/chatGPT conversation history *.html",
"正在查找对话历史文件": "Looking for conversation history file",
"html格式": "HTML format",
"找不到任何html文件": "No HTML files found",
@@ -908,7 +906,6 @@
"pip install pywin32 用于doc格式": "pip install pywin32 for doc format",
"仅支持Win平台": "Only supports Win platform",
"打开文件": "Open file",
"private_upload里面的文件名在解压zip后容易出现乱码": "The file name in private_upload is prone to garbled characters after unzipping",
"rar和7z格式正常": "RAR and 7z formats are normal",
"故可以只分析文章内容": "So you can only analyze the content of the article",
"不输入文件名": "Do not enter the file name",
@@ -1187,7 +1184,7 @@
"Call ChatGLM fail 不能正常加载ChatGLM的参数": "Call ChatGLM fail, unable to load parameters for ChatGLM",
"不能正常加载ChatGLM的参数": "Unable to load parameters for ChatGLM!",
"多线程方法": "Multithreading method",
"函数的说明请见 request_llm/bridge_all.py": "For function details, please see request_llm/bridge_all.py",
"函数的说明请见 request_llms/bridge_all.py": "For function details, please see request_llms/bridge_all.py",
"程序终止": "Program terminated",
"单线程方法": "Single-threaded method",
"等待ChatGLM响应中": "Waiting for response from ChatGLM",
@@ -1364,7 +1361,6 @@
"注意文章中的每一句话都要翻译": "Please translate every sentence in the article",
"一、论文概况": "I. Overview of the paper",
"二、论文翻译": "II. Translation of the paper",
"/gpt_log/总结论文-": "/gpt_log/Summary of the paper-",
"给出输出文件清单": "Provide a list of output files",
"第 0 步": "Step 0",
"切割PDF": "Split PDF",
@@ -1547,7 +1543,7 @@
"str类型": "str type",
"所有音频都总结完成了吗": "Are all audio summaries completed?",
"SummaryAudioVideo内容": "SummaryAudioVideo content",
"使用教程详情见 request_llm/README.md": "See request_llm/README.md for detailed usage instructions",
"使用教程详情见 request_llms/README.md": "See request_llms/README.md for detailed usage instructions",
"删除中间文件夹": "Delete intermediate folder",
"Claude组件初始化成功": "Claude component initialized successfully",
"$c$ 是光速": "$c$ is the speed of light",
@@ -1564,7 +1560,6 @@
"广义速度": "Generalized velocity",
"粒子的固有": "Intrinsic of particle",
"一个包含所有切割音频片段文件路径的列表": "A list containing the file paths of all segmented audio clips",
"/gpt_log/翻译-": "Translation log-",
"计算文件总时长和切割点": "Calculate total duration and cutting points of the file",
"总结音频": "Summarize audio",
"作者": "Author",
@@ -2339,7 +2334,6 @@
"将文件拖动到文件上传区": "Drag and drop the file to the file upload area",
"如果意图模糊": "If the intent is ambiguous",
"星火认知大模型": "Spark Cognitive Big Model",
"执行中. 删除 gpt_log & private_upload": "Executing. Delete gpt_log & private_upload",
"默认 Color = secondary": "Default Color = secondary",
"此处也不需要修改": "No modification is needed here",
"⭐ ⭐ ⭐ 分析用户意图": "⭐ ⭐ ⭐ Analyze user intent",
@@ -2448,5 +2442,351 @@
"插件说明": "Plugin description",
"├── CODE_HIGHLIGHT 代码高亮": "├── CODE_HIGHLIGHT Code highlighting",
"记得用插件": "Remember to use the plugin",
"谨慎操作": "Handle with caution"
"谨慎操作": "Handle with caution",
"private_upload里面的文件名在解压zip后容易出现乱码": "The file name inside private_upload is prone to garbled characters after unzipping",
"直接返回报错": "Direct return error",
"临时的上传文件夹位置": "Temporary upload folder location",
"使用latex格式 测试3 写出麦克斯韦方程组": "Write Maxwell's equations using latex format for test 3",
"这是一张图片": "This is an image",
"没有发现任何近期上传的文件": "No recent uploaded files found",
"如url未成功匹配返回None": "Return None if the URL does not match successfully",
"如果有Latex环境": "If there is a Latex environment",
"第一次运行时": "When running for the first time",
"创建工作路径": "Create a working directory",
"向": "To",
"执行中. 删除数据": "Executing. Deleting data",
"CodeInterpreter开源版": "CodeInterpreter open source version",
"建议选择更稳定的接口": "It is recommended to choose a more stable interface",
"现在您点击任意函数插件时": "Now when you click on any function plugin",
"请使用“LatexEnglishCorrection+高亮”插件": "Please use the 'LatexEnglishCorrection+Highlight' plugin",
"安装完成": "Installation completed",
"记得用插件!」": "Remember to use the plugin!",
"结论": "Conclusion",
"无法下载资源": "Unable to download resources",
"首先排除一个one-api没有done数据包的第三方Bug情形": "First exclude a third-party bug where one-api does not have a done data package",
"知识库中添加文件": "Add files to the knowledge base",
"处理重名的章节": "Handling duplicate chapter names",
"先上传文件素材": "Upload file materials first",
"无法从google获取信息": "Unable to retrieve information from Google!",
"展示如下": "Display as follows",
"「把Arxiv论文翻译成中文PDF": "Translate Arxiv papers into Chinese PDF",
"论文我刚刚放到上传区了」": "I just put the paper in the upload area",
"正在下载Gradio主题": "Downloading Gradio themes",
"再运行此插件": "Run this plugin again",
"记录近期文件": "Record recent files",
"粗心检查": "Careful check",
"更多主题": "More themes",
"//huggingface.co/spaces/gradio/theme-gallery 可选": "//huggingface.co/spaces/gradio/theme-gallery optional",
"由 test_on_result_chg": "By test_on_result_chg",
"所有问询记录将自动保存在本地目录./": "All inquiry records will be automatically saved in the local directory ./",
"正在解析论文": "Analyzing the paper",
"逐个文件转移到目标路径": "Move each file to the target path",
"最多重试5次": "Retry up to 5 times",
"日志文件夹的位置": "Location of the log folder",
"我们暂时无法解析此PDF文档": "We are temporarily unable to parse this PDF document",
"文件检索": "File retrieval",
"/**/chatGPT对话历史*.html": "/**/chatGPT conversation history*.html",
"非OpenAI官方接口返回了错误": "Non-OpenAI official interface returned an error",
"如果在Arxiv上匹配失败": "If the match fails on Arxiv",
"文件进入知识库后可长期保存": "Files can be saved for a long time after entering the knowledge base",
"您可以再次重试": "You can try again",
"整理文件集合": "Organize file collection",
"检测到有缺陷的非OpenAI官方接口": "Detected defective non-OpenAI official interface",
"此插件不调用Latex": "This plugin does not call Latex",
"移除过时的旧文件从而节省空间&保护隐私": "Remove outdated old files to save space & protect privacy",
"代码我刚刚打包拖到上传区了」": "I just packed the code and dragged it to the upload area",
"将图像转为灰度图像": "Convert the image to grayscale",
"待排除": "To be excluded",
"请勿修改": "Please do not modify",
"crazy_functions/代码重写为全英文_多线程.py": "crazy_functions/code rewritten to all English_multi-threading.py",
"开发中": "Under development",
"请查阅Gradio主题商店": "Please refer to the Gradio theme store",
"输出消息": "Output message",
"其他情况": "Other situations",
"获取文献失败": "Failed to retrieve literature",
"可以通过再次调用本插件的方式": "You can use this plugin again by calling it",
"保留下半部分": "Keep the lower half",
"排除问题": "Exclude the problem",
"知识库": "Knowledge base",
"ParsePDF失败": "ParsePDF failed",
"向知识库追加更多文档": "Append more documents to the knowledge base",
"此处待注入的知识库名称id": "The knowledge base name ID to be injected here",
"您需要构建知识库后再运行此插件": "You need to build the knowledge base before running this plugin",
"判定是否为公式 | 测试1 写出洛伦兹定律": "Determine whether it is a formula | Test 1 write out the Lorentz law",
"构建知识库后": "After building the knowledge base",
"找不到本地项目或无法处理": "Unable to find local project or unable to process",
"再做一个小修改": "Make another small modification",
"解析整个Matlab项目": "Parse the entire Matlab project",
"需要用GPT提取参数": "Need to extract parameters using GPT",
"文件路径": "File path",
"正在排队": "In queue",
"-=-=-=-=-=-=-=-= 写出第1个文件": "-=-=-=-=-=-=-=-= Write the first file",
"仅翻译后的文本 -=-=-=-=-=-=-=-=": "Translated text only -=-=-=-=-=-=-=-=",
"对话通道": "Conversation channel",
"找不到任何": "Unable to find any",
"正在启动": "Starting",
"开始创建新进程并执行代码! 时间限制": "Start creating a new process and executing the code! Time limit",
"解析Matlab项目": "Parse Matlab project",
"更换UI主题": "Change UI theme",
"⭐ 开始啦 ": "⭐ Let's start!",
"先提取当前英文标题": "First extract the current English title",
"睡一会防止触发google反爬虫": "Sleep for a while to prevent triggering Google anti-crawler",
"测试": "Test",
"-=-=-=-=-=-=-=-= 写出Markdown文件 -=-=-=-=-=-=-=-=": "-=-=-=-=-=-=-=-= Write out Markdown file",
"如果index是1的话": "If the index is 1",
"VoidTerminal已经实现了类似的代码": "VoidTerminal has already implemented similar code",
"等待线程锁": "Waiting for thread lock",
"那么我们默认代理生效": "Then we default to proxy",
"结果是一个有效文件": "The result is a valid file",
"⭐ 检查模块": "⭐ Check module",
"备份一份History作为记录": "Backup a copy of History as a record",
"作者Binary-Husky": "Author Binary-Husky",
"将csv文件转excel表格": "Convert CSV file to Excel table",
"获取文章摘要": "Get article summary",
"次代码生成尝试": "Attempt to generate code",
"如果参数是空的": "If the parameter is empty",
"请配置讯飞星火大模型的XFYUN_APPID": "Please configure XFYUN_APPID for the Xunfei Starfire model",
"-=-=-=-=-=-=-=-= 写出第2个文件": "Write the second file",
"代码生成阶段结束": "Code generation phase completed",
"则进行提醒": "Then remind",
"处理异常": "Handle exception",
"可能触发了google反爬虫机制": "May have triggered Google anti-crawler mechanism",
"AnalyzeAMatlabProject的所有源文件": "All source files of AnalyzeAMatlabProject",
"写入": "Write",
"我们5秒后再试一次...": "Let's try again in 5 seconds...",
"判断一下用户是否错误地通过对话通道进入": "Check if the user entered through the dialogue channel by mistake",
"结果": "Result",
"2. 如果没有文件": "2. If there is no file",
"由 test_on_sentence_end": "By test_on_sentence_end",
"则直接使用first section name": "Then directly use the first section name",
"太懒了": "Too lazy",
"记录当前的大章节标题": "Record the current chapter title",
"然后再次点击该插件! 至于您的文件": "Then click the plugin again! As for your file",
"此次我们的错误追踪是": "This time our error tracking is",
"首先在arxiv上搜索": "First search on arxiv",
"被新插件取代": "Replaced by a new plugin",
"正在处理文件": "Processing file",
"除了连接OpenAI之外": "In addition to connecting OpenAI",
"我们检查一下": "Let's check",
"进度": "Progress",
"处理少数情况下的特殊插件的锁定状态": "Handle the locked state of special plugins in a few cases",
"⭐ 开始执行": "⭐ Start execution",
"正常情况": "Normal situation",
"下个句子中已经说完的部分": "The part that has already been said in the next sentence",
"首次运行需要花费较长时间下载NOUGAT参数": "The first run takes a long time to download NOUGAT parameters",
"使用tex格式公式 测试2 给出柯西不等式": "Use the tex format formula to test 2 and give the Cauchy inequality",
"无法从bing获取信息": "Unable to retrieve information from Bing!",
"秒. 请等待任务完成": "Wait for the task to complete",
"开始干正事": "Start doing real work",
"需要花费较长时间下载NOUGAT参数": "It takes a long time to download NOUGAT parameters",
"然后再次点击该插件": "Then click the plugin again",
"受到bing限制": "Restricted by Bing",
"检索文章的历史版本的题目": "Retrieve the titles of historical versions of the article",
"收尾": "Wrap up",
"给定了task": "Given a task",
"某段话的整个句子": "The whole sentence of a paragraph",
"-=-=-=-=-=-=-=-= 写出HTML文件 -=-=-=-=-=-=-=-=": "-=-=-=-=-=-=-=-= Write out HTML file -=-=-=-=-=-=-=-=",
"当前文件": "Current file",
"请在输入框内填写需求": "Please fill in the requirements in the input box",
"结果是一个字符串": "The result is a string",
"用插件实现」": "Implemented with a plugin",
"⭐ 到最后一步了": "⭐ Reached the final step",
"重新修改当前part的标题": "Modify the title of the current part again",
"请勿点击“提交”按钮或者“基础功能区”按钮": "Do not click the 'Submit' button or the 'Basic Function Area' button",
"正在执行命令": "Executing command",
"检测到**滞留的缓存文档**": "Detected **stuck cache document**",
"第三步": "Step three",
"失败了~ 别担心": "Failed~ Don't worry",
"动态代码解释器": "Dynamic code interpreter",
"开始执行": "Start executing",
"不给定task": "No task given",
"正在加载NOUGAT...": "Loading NOUGAT...",
"精准翻译PDF文档": "Accurate translation of PDF documents",
"时间限制TIME_LIMIT": "Time limit TIME_LIMIT",
"翻译前后混合 -=-=-=-=-=-=-=-=": "Mixed translation before and after -=-=-=-=-=-=-=-=",
"搞定代码生成": "Code generation is done",
"插件通道": "Plugin channel",
"智能体": "Intelligent agent",
"切换界面明暗 ☀": "Switch interface brightness ☀",
"交换图像的蓝色通道和红色通道": "Swap blue channel and red channel of the image",
"作为函数参数": "As a function parameter",
"先挑选偶数序列号": "First select even serial numbers",
"仅供测试": "For testing only",
"执行成功了": "Execution succeeded",
"开始逐个文件进行处理": "Start processing files one by one",
"当前文件处理列表": "Current file processing list",
"执行失败了": "Execution failed",
"请及时处理": "Please handle it in time",
"源文件": "Source file",
"裁剪图像": "Crop image",
"插件动态生成插件": "Dynamic generation of plugins",
"正在验证上述代码的有效性": "Validating the above code",
"⭐ = 关键步骤": "⭐ = Key step",
"!= 0 代表“提交”键对话通道": "!= 0 represents the 'Submit' key dialogue channel",
"解析python源代码项目": "Parsing Python source code project",
"请检查PDF是否损坏": "Please check if the PDF is damaged",
"插件动态生成": "Dynamic generation of plugins",
"⭐ 分离代码块": "⭐ Separating code blocks",
"已经被记忆": "Already memorized",
"默认用英文的": "Default to English",
"错误追踪": "Error tracking",
"对话|编程|学术|智能体": "Dialogue|Programming|Academic|Intelligent agent",
"请检查": "Please check",
"检测到被滞留的缓存文档": "Detected cached documents being left behind",
"还有哪些场合允许使用代理": "What other occasions allow the use of proxies",
"1. 如果有文件": "1. If there is a file",
"执行开始": "Execution starts",
"代码生成结束": "Code generation ends",
"请及时点击“**保存当前对话**”获取所有滞留文档": "Please click '**Save Current Dialogue**' in time to obtain all cached documents",
"需点击“**函数插件区**”按钮进行处理": "Click the '**Function Plugin Area**' button for processing",
"此函数已经弃用": "This function has been deprecated",
"以后再写": "Write it later",
"返回给定的url解析出的arxiv_id": "Return the arxiv_id parsed from the given URL",
"⭐ 文件上传区是否有东西": "⭐ Is there anything in the file upload area",
"Nougat解析论文失败": "Nougat failed to parse the paper",
"本源代码中": "In this source code",
"或者基础功能通道": "Or the basic function channel",
"使用zip压缩格式": "Using zip compression format",
"受到google限制": "Restricted by Google",
"如果是": "If it is",
"不用担心": "don't worry",
"显示/隐藏自定义菜单": "Show/Hide Custom Menu",
"1. 输入文本": "1. Enter Text",
"微软AutoGen": "Microsoft AutoGen",
"在没有声音之后": "After No Sound",
"⭐ 主进程 Docker 外挂文件夹监控": "⭐ Main Process Docker External Folder Monitoring",
"请求任务": "Request Task",
"推荐上传压缩文件": "Recommend Uploading Compressed File",
"我准备好处理下一个问题了": "I'm ready to handle the next question",
"输入要反馈的内容": "Enter the content to be feedbacked",
"当已经存在一个正在运行的MultiAgentTerminal时": "When there is already a running MultiAgentTerminal",
"也根据时间间隔": "Also according to the time interval",
"自定义功能": "Custom Function",
"上传文件后会自动把输入区修改为相应路径": "After uploading the file, the input area will be automatically modified to the corresponding path",
"缺少docker运行环境": "Missing docker runtime environment!",
"暂不支持中转": "Transit is not supported temporarily",
"一些第三方接口的出现这样的错误": "Some third-party interfaces encounter such errors",
"项目Wiki": "Project Wiki",
"但是我们把上一帧同样加上": "But we also add the previous frame",
"AutoGen 执行失败": "AutoGen execution failed",
"程序抵达用户反馈节点": "The program reaches the user feedback node",
"预制功能": "Prefabricated Function",
"输入新按钮名称": "Enter the new button name",
"| 不需要输入参数": "| No input parameters required",
"如果有新文件出现": "If there is a new file",
"Bug反馈": "Bug Feedback",
"指定翻译成何种语言": "Specify the language to translate into",
"点击保存当前的对话按钮": "Click the save current conversation button",
"如果您需要补充些什么": "If you need to add something",
"HTTPS 秘钥和证书": "HTTPS Key and Certificate",
"输入exit": "Enter exit",
"输入新提示后缀": "Enter a new prompt suffix",
"如果是文本文件": "If it is a text file",
"支持动态切换主题": "Support dynamic theme switching",
"并与self.previous_work_dir_files中所记录的文件进行对比": "And compare with the files recorded in self.previous_work_dir_files",
"作者 Microsoft & Binary-Husky": "Author Microsoft & Binary-Husky",
"请在自定义菜单中定义提示词前缀": "Please define the prefix of the prompt word in the custom menu",
"一般情况下您不需要说什么": "In general, you don't need to say anything",
"「暗色主题已启用": "Dark theme enabled",
"继续向服务器发送n次音频数据": "Continue to send audio data to the server n times",
"获取fp的拓展名": "Get the extension name of fp",
"指令安装内置Gradio及其他依赖": "Command to install built-in Gradio and other dependencies",
"查看自动更新": "Check for automatic updates",
"则更新self.previous_work_dir_files中": "Then update in self.previous_work_dir_files",
"看门狗耐心": "Watchdog patience",
"检测到新生图像": "Detected new image",
"等待AutoGen执行结果": "Waiting for AutoGen execution result",
"自定义菜单": "Custom menu",
"保持链接激活": "Keep the link active",
"已经被新插件取代": "Has been replaced by a new plugin",
"检查当前的模型是否符合要求": "Check if the current model meets the requirements",
"交互功能模板Demo函数": "Interactive function template Demo function",
"上一帧没有人声": "No human voice in the previous frame",
"用于判断异常": "Used to judge exceptions",
"请阅读Wiki": "Please read the Wiki",
"查找wallhaven.cc的壁纸": "Search for wallpapers on wallhaven.cc",
"2. 点击任意基础功能区按钮": "2. Click any button in the basic function area",
"一些垃圾第三方接口的出现这样的错误": "Some errors caused by garbage third-party interfaces",
"再次点击VoidTerminal": "Click VoidTerminal again",
"结束信号已明确": "The end signal is clear",
"获取代理失败 无代理状态下很可能无法访问OpenAI家族的模型及谷歌学术 建议": "Failed to get proxy. It is very likely that you will not be able to access OpenAI family models and Google Scholar without a proxy. It is recommended",
"界面外观": "Interface appearance",
"如果您想终止程序": "If you want to terminate the program",
"2. 点击任意函数插件区按钮": "Click any function plugin area button",
"绕过openai访问频率限制": "Bypass openai access frequency limit",
"配置暗色主题或亮色主题": "Configure dark theme or light theme",
"自定义按钮的最大数量限制": "Maximum number limit for custom buttons",
"函数插件区使用说明": "Instructions for function plugin area",
"如何语音对话": "How to have a voice conversation",
"清空输入区": "Clear input area",
"文档清单如下": "The document list is as follows",
"由 audio_convertion_thread": "By audio_convertion_thread",
"音频的可视化表现": "Visual representation of audio",
"然后直接点击“提交”以继续": "Then click 'Submit' to continue",
"运行MultiAgentTerminal": "Run MultiAgentTerminal",
"自定义按钮1": "Custom button 1",
"查看历史上的今天事件": "View events from history",
"如遇到Bug请前往": "If you encounter a bug, please go to",
"当前插件只支持": "The current plugin only supports",
"而不是再次启动一个新的MultiAgentTerminal": "Instead of starting a new MultiAgentTerminal again",
"用户代理或助理代理未定义": "User agent or assistant agent is not defined",
"运行阶段-": "Running phase-",
"随机选择": "Random selection",
"直接点击“提交”以继续": "Click 'Submit' to continue",
"使用项目内置Gradio获取最优体验! 请运行": "Use the built-in Gradio for the best experience! Please run",
"直接点击“提交”以终止AutoGen并解锁": "Click 'Submit' to terminate AutoGen and unlock",
"Github源代码开源和更新": "Github source code is open source and updated",
"直接将用户输入传递给它": "Pass user input directly to it",
"这是一个面向开发者的插件Demo": "This is a plugin demo for developers",
"帮助": "Help",
"普通对话使用说明": "Instructions for normal conversation",
"自定义按钮": "Custom button",
"即使没有声音": "Even without sound",
"⭐ 主进程": "⭐ Main process",
"基础功能区使用说明": "Basic Function Area Usage Instructions",
"提前读取一些信息": "Read some information in advance",
"当用户点击了“等待反馈”按钮时": "When the user clicks the 'Wait for Feedback' button",
"选择一个需要自定义基础功能区按钮": "Select a button in the Basic Function Area that needs to be customized",
"VoidTerminal使用说明": "VoidTerminal Usage Instructions",
"兼容一下吧": "Let's make it compatible",
"⭐⭐ 子进程执行": "⭐⭐ Subprocess execution",
"首次": "For the first time",
"则直接显示文本内容": "Then display the text content directly",
"更新状态": "Update status",
"2. 点击提交": "2. Click Submit",
"⭐⭐ 子进程": "⭐⭐ Subprocess",
"输入新提示前缀": "Enter a new prompt prefix",
"等待用户输入超时": "Wait for user input timeout",
"把新文件和发生变化的文件的路径记录到 change_list 中": "Record the paths of new files and files that have changed in change_list",
"或者上传文件": "Or upload a file",
"或者文件的修改时间发生变化": "Or the modification time of the file has changed",
"1. 输入路径/问题": "1. Enter path/question",
"尝试直接连接": "Try to connect directly",
"未来将删除": "Will be deleted in the future",
"请在自定义菜单中定义提示词后缀": "Please define the suffix of the prompt word in the custom menu",
"将executor存储到cookie中": "Store the executor in the cookie",
"1. 输入问题": "1. Enter question",
"发送一些音频片段给服务器": "Send some audio clips to the server",
"点击VoidTerminal": "Click VoidTerminal",
"扫描路径下的所有文件": "Scan all files under the path",
"检测到新生文档": "Detect new documents",
"预热tiktoken模块": "Preheat the tiktoken module",
"等待您的进一步指令": "Waiting for your further instructions",
"实时语音对话": "Real-time voice conversation",
"确认并保存": "Confirm and save",
"「亮色主题已启用": "Light theme enabled",
"终止AutoGen程序": "Terminate AutoGen program",
"然后根据提示输入指令": "Then enter the command as prompted",
"请上传本地文件/压缩包供“函数插件区”功能调用": "Please upload local files/zip packages for 'Function Plugin Area' function call",
"上传文件": "Upload file",
"上一帧是否有人说话": "Was there anyone speaking in the previous frame",
"这是一个时刻聆听着的语音对话助手 | 没有输入参数": "This is a voice conversation assistant that is always listening | No input parameters",
"常见问题请查阅": "Please refer to the FAQ for common questions",
"更换模型 & Prompt": "Change model & Prompt",
"如何保存对话": "How to save the conversation",
"处理任务": "Process task",
"加载已保存": "Load saved",
"打开浏览器页面": "Open browser page",
"解锁插件": "Unlock plugin",
"如果话筒激活 / 如果处于回声收尾阶段": "If the microphone is active / If it is in the echo tail stage"
}

查看文件

@@ -301,7 +301,6 @@
"缺少的依赖": "不足している依存関係",
"紫色": "紫色",
"唤起高级参数输入区": "高度なパラメータ入力エリアを呼び出す",
"所有问询记录将自动保存在本地目录./gpt_log/chat_secrets.log": "すべての問い合わせ記録は自動的にローカルディレクトリ./gpt_log/chat_secrets.logに保存されます",
"则换行符更有可能表示段落分隔": "したがって、改行記号は段落の区切りを表す可能性がより高いです",
";4、引用数量": ";4、引用数量",
"中转网址预览": "中継ウェブサイトのプレビュー",
@@ -448,7 +447,6 @@
"表示函数是否成功执行": "関数が正常に実行されたかどうかを示す",
"一般原样传递下去就行": "通常はそのまま渡すだけでよい",
"琥珀色": "琥珀色",
"gpt_log/**/chatGPT对话历史*.html": "gpt_log/**/chatGPT対話履歴*.html",
"jittorllms 没有 sys_prompt 接口": "jittorllmsにはsys_promptインターフェースがありません",
"清除": "クリア",
"小于正文的": "本文より小さい",
@@ -784,7 +782,7 @@
"主进程统一调用函数接口": "メインプロセスが関数インターフェースを統一的に呼び出します",
"再例如一个包含了待处理文件的路径": "処理待ちのファイルを含むパスの例",
"负责把学术论文准确翻译成中文": "学術論文を正確に中国語に翻訳する責任があります",
"函数的说明请见 request_llm/bridge_all.py": "関数の説明については、request_llm/bridge_all.pyを参照してください",
"函数的说明请见 request_llms/bridge_all.py": "関数の説明については、request_llms/bridge_all.pyを参照してください",
"然后回车提交": "そしてEnterを押して提出してください",
"防止爆token": "トークンの爆発を防止する",
"Latex项目全文中译英": "LaTeXプロジェクト全文の中国語から英語への翻訳",
@@ -856,7 +854,7 @@
"查询版本和用户意见": "バージョンとユーザーの意見を検索する",
"提取摘要": "要約を抽出する",
"在gpt输出代码的中途": "GPTがコードを出力する途中で",
"如256x256": "256x256のように",
"如1024x1024": "1024x1024のように",
"概括其内容": "内容を要約する",
"剩下的情况都开头除去": "残りの場合はすべて先頭を除去する",
"至少一个线程任务意外失败": "少なくとも1つのスレッドタスクが予期しない失敗をした",
@@ -1009,7 +1007,6 @@
"第一部分": "第1部分",
"的分析如下": "の分析は以下の通りです",
"解决一个mdx_math的bug": "mdx_mathのバグを解決する",
"底部输入区": "下部の入力エリア",
"函数插件输入输出接驳区": "関数プラグインの入出力接続エリア",
"打开浏览器": "ブラウザを開く",
"免费用户填3": "無料ユーザーは3を入力してください",
@@ -1234,7 +1231,6 @@
"找不到任何前端相关文件": "No frontend-related files can be found",
"Not enough point. API2D账户点数不足": "Not enough points. API2D account points are insufficient",
"当前版本": "Current version",
"/gpt_log/总结论文-": "/gpt_log/Summary paper-",
"1. 临时解决方案": "1. Temporary solution",
"第8步": "Step 8",
"历史": "History",
@@ -1620,7 +1616,7 @@
"正在重试": "再試行中",
"从而更全面地理解项目的整体功能": "プロジェクトの全体的な機能をより理解するために",
"正在等您说完问题": "質問が完了するのをお待ちしています",
"使用教程详情见 request_llm/README.md": "使用方法の詳細については、request_llm/README.mdを参照してください",
"使用教程详情见 request_llms/README.md": "使用方法の詳細については、request_llms/README.mdを参照してください",
"6.25 加入判定latex模板的代码": "6.25 テンプレートの判定コードを追加",
"找不到任何音频或视频文件": "音声またはビデオファイルが見つかりません",
"请求GPT模型的": "GPTモデルのリクエスト",

查看文件

@@ -88,5 +88,11 @@
"辅助功能": "Accessibility",
"虚空终端": "VoidTerminal",
"解析PDF_基于GROBID": "ParsePDF_BasedOnGROBID",
"虚空终端主路由": "VoidTerminalMainRoute"
"虚空终端主路由": "VoidTerminalMainRoute",
"批量翻译PDF文档_NOUGAT": "BatchTranslatePDFDocuments_NOUGAT",
"解析PDF_基于NOUGAT": "ParsePDF_NOUGAT",
"解析一个Matlab项目": "AnalyzeAMatlabProject",
"函数动态生成": "DynamicFunctionGeneration",
"多智能体终端": "MultiAgentTerminal",
"多智能体": "MultiAgent"
}

查看文件

@@ -123,7 +123,7 @@
"的第": "的第",
"减少重复": "減少重複",
"如果超过期限没有喂狗": "如果超過期限沒有餵狗",
"函数的说明请见 request_llm/bridge_all.py": "函數的說明請見 request_llm/bridge_all.py",
"函数的说明请见 request_llms/bridge_all.py": "函數的說明請見 request_llms/bridge_all.py",
"第7步": "第7步",
"说": "說",
"中途接收可能的终止指令": "中途接收可能的終止指令",
@@ -314,7 +314,6 @@
"请用markdown格式输出": "請用 Markdown 格式輸出",
"模仿ChatPDF": "模仿 ChatPDF",
"等待多久判定为超时": "等待多久判定為超時",
"/gpt_log/总结论文-": "/gpt_log/總結論文-",
"请结合互联网信息回答以下问题": "請結合互聯網信息回答以下問題",
"IP查询频率受限": "IP查詢頻率受限",
"高级参数输入区的显示提示": "高級參數輸入區的顯示提示",
@@ -347,7 +346,6 @@
"情况会好转": "情況會好轉",
"超过512个": "超過512個",
"多线": "多線",
"底部输入区": "底部輸入區",
"合并小写字母开头的段落块并替换为空格": "合併小寫字母開頭的段落塊並替換為空格",
"暗色主题": "暗色主題",
"提高限制请查询": "提高限制請查詢",
@@ -511,7 +509,6 @@
"將生成的報告自動投射到文件上傳區": "將生成的報告自動上傳到文件區",
"函數插件作者": "函數插件作者",
"將要匹配的模式": "將要匹配的模式",
"所有问询记录将自动保存在本地目录./gpt_log/chat_secrets.log": "所有詢問記錄將自動保存在本地目錄./gpt_log/chat_secrets.log",
"正在分析一个项目的源代码": "正在分析一個專案的源代碼",
"使每个段落之间有两个换行符分隔": "使每個段落之間有兩個換行符分隔",
"并在被装饰的函数上执行": "並在被裝飾的函數上執行",
@@ -1059,7 +1056,6 @@
"重试中": "重試中",
"月": "月份",
"localhost意思是代理软件安装在本机上": "localhost意思是代理軟體安裝在本機上",
"gpt_log/**/chatGPT对话历史*.html": "gpt_log/**/chatGPT對話歷史*.html",
"的长度必须小于 2500 个 Token": "長度必須小於 2500 個 Token",
"抽取可用的api-key": "提取可用的api-key",
"增强报告的可读性": "增強報告的可讀性",
@@ -1151,7 +1147,7 @@
"Y+回车=确认": "Y+回車=確認",
"正在同时咨询ChatGPT和ChatGLM……": "正在同時諮詢ChatGPT和ChatGLM……",
"根据 heuristic 规则": "根據heuristic規則",
"如256x256": "如256x256",
"如1024x1024": "如1024x1024",
"函数插件区": "函數插件區",
"*** API_KEY 导入成功": "*** API_KEY 導入成功",
"请对下面的程序文件做一个概述文件名是": "請對下面的程序文件做一個概述文件名是",
@@ -1891,7 +1887,7 @@
"请继续分析其他源代码": "請繼續分析其他源代碼",
"质能方程式": "質能方程式",
"功能尚不稳定": "功能尚不穩定",
"使用教程详情见 request_llm/README.md": "使用教程詳情見 request_llm/README.md",
"使用教程详情见 request_llms/README.md": "使用教程詳情見 request_llms/README.md",
"从以上搜索结果中抽取信息": "從以上搜索結果中抽取信息",
"虽然PDF生成失败了": "雖然PDF生成失敗了",
"找图片": "尋找圖片",

查看文件

@@ -1,3 +1,42 @@
# 微软Azure云接入指南
## 方法一旧方法,只能接入一个Azure模型
- 通过以下教程,获取AZURE_ENDPOINT,AZURE_API_KEY,AZURE_ENGINE,直接修改 config 配置即可。配置的修改方法见本项目wiki。
## 方法二新方法,接入多个Azure模型,并支持动态切换
- 在方法一的基础上,注册并获取多组 AZURE_ENDPOINT,AZURE_API_KEY,AZURE_ENGINE
- 修改config中的AZURE_CFG_ARRAY和AVAIL_LLM_MODELS配置项,按照格式填入多个Azure模型的配置,如下所示
```
AZURE_CFG_ARRAY = {
"azure-gpt-3.5": # 第一个模型,azure模型必须以"azure-"开头,注意您还需要将"azure-gpt-3.5"加入AVAIL_LLM_MODELS模型下拉菜单
{
"AZURE_ENDPOINT": "https://你亲手写的api名称.openai.azure.com/",
"AZURE_API_KEY": "cccccccccccccccccccccccccccccccc",
"AZURE_ENGINE": "填入你亲手写的部署名1",
"AZURE_MODEL_MAX_TOKEN": 4096,
},
"azure-gpt-4": # 第二个模型,azure模型必须以"azure-"开头,注意您还需要将"azure-gpt-4"加入AVAIL_LLM_MODELS模型下拉菜单
{
"AZURE_ENDPOINT": "https://你亲手写的api名称.openai.azure.com/",
"AZURE_API_KEY": "dddddddddddddddddddddddddddddddd",
"AZURE_ENGINE": "填入你亲手写的部署名2",
"AZURE_MODEL_MAX_TOKEN": 8192,
},
"azure-gpt-3.5-16k": # 第三个模型,azure模型必须以"azure-"开头,注意您还需要将"azure-gpt-3.5-16k"加入AVAIL_LLM_MODELS模型下拉菜单
{
"AZURE_ENDPOINT": "https://你亲手写的api名称.openai.azure.com/",
"AZURE_API_KEY": "eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee",
"AZURE_ENGINE": "填入你亲手写的部署名3",
"AZURE_MODEL_MAX_TOKEN": 16384,
},
}
```
# 通过微软Azure云服务申请 Openai API
由于Openai和微软的关系,现在是可以通过微软的Azure云计算服务直接访问openai的api,免去了注册和网络的问题。
@@ -107,6 +146,12 @@ AZURE_API_KEY = "填入azure openai api的密钥"
AZURE_API_VERSION = "2023-05-15" # 默认使用 2023-05-15 版本,无需修改
AZURE_ENGINE = "填入部署名" # 见上述图片
# 例如
API_KEY = '6424e9d19e674092815cea1cb35e67a5'
AZURE_ENDPOINT = 'https://rhtjjjjjj.openai.azure.com/'
AZURE_ENGINE = 'qqwe'
LLM_MODEL = "azure-gpt-3.5" # 可选 ↓↓↓
```

293
main.py
查看文件

@@ -1,32 +1,45 @@
import os; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
import pickle
import base64
def main():
import gradio as gr
if gr.__version__ not in ['3.28.3','3.32.2']: assert False, "需要特殊依赖,请务必用 pip install -r requirements.txt 指令安装依赖,详情信息见requirements.txt"
from request_llm.bridge_all import predict
if gr.__version__ not in ['3.32.6']:
raise ModuleNotFoundError("使用项目内置Gradio获取最优体验! 请运行 `pip install -r requirements.txt` 指令安装内置Gradio及其他依赖, 详情信息见requirements.txt.")
from request_llms.bridge_all import predict
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, load_chat_cookies, DummyWith
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION = get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION')
CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = get_conf('CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
ENABLE_AUDIO, AUTO_CLEAR_TXT = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT')
ENABLE_AUDIO, AUTO_CLEAR_TXT, PATH_LOGGING, AVAIL_THEMES, THEME = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'PATH_LOGGING', 'AVAIL_THEMES', 'THEME')
DARK_MODE, NUM_CUSTOM_BASIC_BTN, SSL_KEYFILE, SSL_CERTFILE = get_conf('DARK_MODE', 'NUM_CUSTOM_BASIC_BTN', 'SSL_KEYFILE', 'SSL_CERTFILE')
INIT_SYS_PROMPT = get_conf('INIT_SYS_PROMPT')
# 如果WEB_PORT是-1, 则随机选取WEB端口
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
from check_proxy import get_current_version
from themes.theme import adjust_theme, advanced_css, theme_declaration
initial_prompt = "Serve me as a writing and programming assistant."
from themes.theme import adjust_theme, advanced_css, theme_declaration, load_dynamic_theme
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
description = "代码开源和更新[地址🚀](https://github.com/binary-husky/gpt_academic)"
description += "感谢热情的[开发者们❤️](https://github.com/binary-husky/gpt_academic/graphs/contributors)"
description = "Github源代码开源和更新[地址🚀](https://github.com/binary-husky/gpt_academic), "
description += "感谢热情的[开发者们❤️](https://github.com/binary-husky/gpt_academic/graphs/contributors)."
description += "</br></br>常见问题请查阅[项目Wiki](https://github.com/binary-husky/gpt_academic/wiki), "
description += "如遇到Bug请前往[Bug反馈](https://github.com/binary-husky/gpt_academic/issues)."
description += "</br></br>普通对话使用说明: 1. 输入问题; 2. 点击提交"
description += "</br></br>基础功能区使用说明: 1. 输入文本; 2. 点击任意基础功能区按钮"
description += "</br></br>函数插件区使用说明: 1. 输入路径/问题, 或者上传文件; 2. 点击任意函数插件区按钮"
description += "</br></br>虚空终端使用说明: 点击虚空终端, 然后根据提示输入指令, 再次点击虚空终端"
description += "</br></br>如何保存对话: 点击保存当前的对话按钮"
description += "</br></br>如何语音对话: 请阅读Wiki"
# 问询记录, python 版本建议3.9+(越新越好)
import logging, uuid
os.makedirs("gpt_log", exist_ok=True)
try:logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.INFO, encoding="utf-8", format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
except:logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.INFO, format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
os.makedirs(PATH_LOGGING, exist_ok=True)
try:logging.basicConfig(filename=f"{PATH_LOGGING}/chat_secrets.log", level=logging.INFO, encoding="utf-8", format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
except:logging.basicConfig(filename=f"{PATH_LOGGING}/chat_secrets.log", level=logging.INFO, format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
# Disable logging output from the 'httpx' logger
logging.getLogger("httpx").setLevel(logging.WARNING)
print("所有问询记录将自动保存在本地目录./gpt_log/chat_secrets.log, 请注意自我隐私保护哦!")
print(f"所有问询记录将自动保存在本地目录./{PATH_LOGGING}/chat_secrets.log, 请注意自我隐私保护哦!")
# 一些普通功能模块
from core_functional import get_core_functions
@@ -34,7 +47,7 @@ def main():
# 高级函数插件
from crazy_functional import get_crazy_functions
DEFAULT_FN_GROUPS, = get_conf('DEFAULT_FN_GROUPS')
DEFAULT_FN_GROUPS = get_conf('DEFAULT_FN_GROUPS')
plugins = get_crazy_functions()
all_plugin_groups = list(set([g for _, plugin in plugins.items() for g in plugin['Group'].split('|')]))
match_group = lambda tags, groups: any([g in groups for g in tags.split('|')])
@@ -57,8 +70,11 @@ def main():
CHATBOT_HEIGHT /= 2
cancel_handles = []
customize_btns = {}
predefined_btns = {}
with gr.Blocks(title="GPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
gr.HTML(title_html)
secret_css, dark_mode, persistent_cookie = gr.Textbox(visible=False), gr.Textbox(DARK_MODE, visible=False), gr.Textbox(visible=False)
cookies = gr.State(load_chat_cookies())
with gr_L1():
with gr_L2(scale=2, elem_id="gpt-chat"):
@@ -70,23 +86,28 @@ def main():
with gr.Row():
txt = gr.Textbox(show_label=False, placeholder="Input question here.").style(container=False)
with gr.Row():
submitBtn = gr.Button("提交", variant="primary")
submitBtn = gr.Button("提交", elem_id="elem_submit", variant="primary")
with gr.Row():
resetBtn = gr.Button("重置", variant="secondary"); resetBtn.style(size="sm")
stopBtn = gr.Button("停止", variant="secondary"); stopBtn.style(size="sm")
clearBtn = gr.Button("清除", variant="secondary", visible=False); clearBtn.style(size="sm")
resetBtn = gr.Button("重置", elem_id="elem_reset", variant="secondary"); resetBtn.style(size="sm")
stopBtn = gr.Button("停止", elem_id="elem_stop", variant="secondary"); stopBtn.style(size="sm")
clearBtn = gr.Button("清除", elem_id="elem_clear", variant="secondary", visible=False); clearBtn.style(size="sm")
if ENABLE_AUDIO:
with gr.Row():
audio_mic = gr.Audio(source="microphone", type="numpy", streaming=True, show_label=False).style(container=False)
audio_mic = gr.Audio(source="microphone", type="numpy", elem_id="elem_audio", streaming=True, show_label=False).style(container=False)
with gr.Row():
status = gr.Markdown(f"Tip: 按Enter提交, 按Shift+Enter换行。当前模型: {LLM_MODEL} \n {proxy_info}", elem_id="state-panel")
with gr.Accordion("基础功能区", open=True, elem_id="basic-panel") as area_basic_fn:
with gr.Row():
for k in range(NUM_CUSTOM_BASIC_BTN):
customize_btn = gr.Button("自定义按钮" + str(k+1), visible=False, variant="secondary", info_str=f'基础功能区: 自定义按钮')
customize_btn.style(size="sm")
customize_btns.update({"自定义按钮" + str(k+1): customize_btn})
for k in functional:
if ("Visible" in functional[k]) and (not functional[k]["Visible"]): continue
variant = functional[k]["Color"] if "Color" in functional[k] else "secondary"
functional[k]["Button"] = gr.Button(k, variant=variant)
functional[k]["Button"] = gr.Button(k, variant=variant, info_str=f'基础功能区: {k}')
functional[k]["Button"].style(size="sm")
predefined_btns.update({k: functional[k]["Button"]})
with gr.Accordion("函数插件区", open=True, elem_id="plugin-panel") as area_crazy_fn:
with gr.Row():
gr.Markdown("插件可读取“输入区”文本/路径作为参数(上传文件自动修正路径)")
@@ -98,7 +119,9 @@ def main():
if not plugin.get("AsButton", True): continue
visible = True if match_group(plugin['Group'], DEFAULT_FN_GROUPS) else False
variant = plugins[k]["Color"] if "Color" in plugin else "secondary"
plugin['Button'] = plugins[k]['Button'] = gr.Button(k, variant=variant, visible=visible).style(size="sm")
info = plugins[k].get("Info", k)
plugin['Button'] = plugins[k]['Button'] = gr.Button(k, variant=variant,
visible=visible, info_str=f'函数插件区: {info}').style(size="sm")
with gr.Row():
with gr.Accordion("更多函数插件", open=True):
dropdown_fn_list = []
@@ -115,42 +138,148 @@ def main():
switchy_bt = gr.Button(r"请先从插件列表中选择", variant="secondary").style(size="sm")
with gr.Row():
with gr.Accordion("点击展开“文件上传区”。上传本地文件/压缩包供函数插件调用。", open=False) as area_file_up:
file_upload = gr.Files(label="任何文件, 推荐上传压缩文件(zip, tar)", file_count="multiple")
with gr.Accordion("更换模型 & SysPrompt & 交互界面布局", open=(LAYOUT == "TOP-DOWN"), elem_id="interact-panel"):
system_prompt = gr.Textbox(show_label=True, placeholder=f"System Prompt", label="System prompt", value=initial_prompt)
file_upload = gr.Files(label="任何文件, 推荐上传压缩文件(zip, tar)", file_count="multiple", elem_id="elem_upload")
with gr.Floating(init_x="0%", init_y="0%", visible=True, width=None, drag="forbidden"):
with gr.Row():
with gr.Tab("上传文件", elem_id="interact-panel"):
gr.Markdown("请上传本地文件/压缩包供“函数插件区”功能调用。请注意: 上传文件后会自动把输入区修改为相应路径。")
file_upload_2 = gr.Files(label="任何文件, 推荐上传压缩文件(zip, tar)", file_count="multiple")
with gr.Tab("更换模型 & Prompt", elem_id="interact-panel"):
md_dropdown = gr.Dropdown(AVAIL_LLM_MODELS, value=LLM_MODEL, label="更换LLM模型/请求源").style(container=False)
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.01,interactive=True, label="Top-p (nucleus sampling)",)
temperature = gr.Slider(minimum=-0, maximum=2.0, value=1.0, step=0.01, interactive=True, label="Temperature",)
max_length_sl = gr.Slider(minimum=256, maximum=8192, value=4096, step=1, interactive=True, label="Local LLM MaxLength",)
checkboxes = gr.CheckboxGroup(["基础功能区", "函数插件区", "底部输入区", "输入清除键", "插件参数区"], value=["基础功能区", "函数插件区"], label="显示/隐藏功能区")
md_dropdown = gr.Dropdown(AVAIL_LLM_MODELS, value=LLM_MODEL, label="更换LLM模型/请求源").style(container=False)
max_length_sl = gr.Slider(minimum=256, maximum=1024*32, value=4096, step=128, interactive=True, label="Local LLM MaxLength",)
system_prompt = gr.Textbox(show_label=True, lines=2, placeholder=f"System Prompt", label="System prompt", value=INIT_SYS_PROMPT)
with gr.Tab("界面外观", elem_id="interact-panel"):
theme_dropdown = gr.Dropdown(AVAIL_THEMES, value=THEME, label="更换UI主题").style(container=False)
checkboxes = gr.CheckboxGroup(["基础功能区", "函数插件区", "浮动输入区", "输入清除键", "插件参数区"],
value=["基础功能区", "函数插件区"], label="显示/隐藏功能区", elem_id='cbs').style(container=False)
checkboxes_2 = gr.CheckboxGroup(["自定义菜单"],
value=[], label="显示/隐藏自定义菜单", elem_id='cbs').style(container=False)
dark_mode_btn = gr.Button("切换界面明暗 ☀", variant="secondary").style(size="sm")
dark_mode_btn.click(None, None, None, _js="""() => {
if (document.querySelectorAll('.dark').length) {
document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
} else {
document.querySelector('body').classList.add('dark');
}
}""",
)
with gr.Tab("帮助", elem_id="interact-panel"):
gr.Markdown(description)
with gr.Accordion("备选输入区", open=True, visible=False, elem_id="input-panel2") as area_input_secondary:
with gr.Row():
txt2 = gr.Textbox(show_label=False, placeholder="Input question here.", label="输入区2").style(container=False)
with gr.Row():
submitBtn2 = gr.Button("提交", variant="primary")
with gr.Row():
with gr.Floating(init_x="20%", init_y="50%", visible=False, width="40%", drag="top") as area_input_secondary:
with gr.Accordion("浮动输入区", open=True, elem_id="input-panel2"):
with gr.Row() as row:
row.style(equal_height=True)
with gr.Column(scale=10):
txt2 = gr.Textbox(show_label=False, placeholder="Input question here.", lines=8, label="输入区2").style(container=False)
with gr.Column(scale=1, min_width=40):
submitBtn2 = gr.Button("提交", variant="primary"); submitBtn2.style(size="sm")
resetBtn2 = gr.Button("重置", variant="secondary"); resetBtn2.style(size="sm")
stopBtn2 = gr.Button("停止", variant="secondary"); stopBtn2.style(size="sm")
clearBtn2 = gr.Button("清除", variant="secondary", visible=False); clearBtn2.style(size="sm")
def to_cookie_str(d):
# Pickle the dictionary and encode it as a string
pickled_dict = pickle.dumps(d)
cookie_value = base64.b64encode(pickled_dict).decode('utf-8')
return cookie_value
def from_cookie_str(c):
# Decode the base64-encoded string and unpickle it into a dictionary
pickled_dict = base64.b64decode(c.encode('utf-8'))
return pickle.loads(pickled_dict)
with gr.Floating(init_x="20%", init_y="50%", visible=False, width="40%", drag="top") as area_customize:
with gr.Accordion("自定义菜单", open=True, elem_id="edit-panel"):
with gr.Row() as row:
with gr.Column(scale=10):
AVAIL_BTN = [btn for btn in customize_btns.keys()] + [k for k in functional]
basic_btn_dropdown = gr.Dropdown(AVAIL_BTN, value="自定义按钮1", label="选择一个需要自定义基础功能区按钮").style(container=False)
basic_fn_title = gr.Textbox(show_label=False, placeholder="输入新按钮名称", lines=1).style(container=False)
basic_fn_prefix = gr.Textbox(show_label=False, placeholder="输入新提示前缀", lines=4).style(container=False)
basic_fn_suffix = gr.Textbox(show_label=False, placeholder="输入新提示后缀", lines=4).style(container=False)
with gr.Column(scale=1, min_width=70):
basic_fn_confirm = gr.Button("确认并保存", variant="primary"); basic_fn_confirm.style(size="sm")
basic_fn_load = gr.Button("加载已保存", variant="primary"); basic_fn_load.style(size="sm")
def assign_btn(persistent_cookie_, cookies_, basic_btn_dropdown_, basic_fn_title, basic_fn_prefix, basic_fn_suffix):
ret = {}
customize_fn_overwrite_ = cookies_['customize_fn_overwrite']
customize_fn_overwrite_.update({
basic_btn_dropdown_:
{
"Title":basic_fn_title,
"Prefix":basic_fn_prefix,
"Suffix":basic_fn_suffix,
}
}
)
cookies_.update(customize_fn_overwrite_)
if basic_btn_dropdown_ in customize_btns:
ret.update({customize_btns[basic_btn_dropdown_]: gr.update(visible=True, value=basic_fn_title)})
else:
ret.update({predefined_btns[basic_btn_dropdown_]: gr.update(visible=True, value=basic_fn_title)})
ret.update({cookies: cookies_})
try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
except: persistent_cookie_ = {}
persistent_cookie_["custom_bnt"] = customize_fn_overwrite_ # dict update new value
persistent_cookie_ = to_cookie_str(persistent_cookie_) # persistent cookie to dict
ret.update({persistent_cookie: persistent_cookie_}) # write persistent cookie
return ret
def reflesh_btn(persistent_cookie_, cookies_):
ret = {}
for k in customize_btns:
ret.update({customize_btns[k]: gr.update(visible=False, value="")})
try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
except: return ret
customize_fn_overwrite_ = persistent_cookie_.get("custom_bnt", {})
cookies_['customize_fn_overwrite'] = customize_fn_overwrite_
ret.update({cookies: cookies_})
for k,v in persistent_cookie_["custom_bnt"].items():
if v['Title'] == "": continue
if k in customize_btns: ret.update({customize_btns[k]: gr.update(visible=True, value=v['Title'])})
else: ret.update({predefined_btns[k]: gr.update(visible=True, value=v['Title'])})
return ret
basic_fn_load.click(reflesh_btn, [persistent_cookie, cookies],[cookies, *customize_btns.values(), *predefined_btns.values()])
h = basic_fn_confirm.click(assign_btn, [persistent_cookie, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix],
[persistent_cookie, cookies, *customize_btns.values(), *predefined_btns.values()])
h.then(None, [persistent_cookie], None, _js="""(persistent_cookie)=>{setCookie("persistent_cookie", persistent_cookie, 5);}""") # save persistent cookie
# 功能区显示开关与功能区的互动
def fn_area_visibility(a):
ret = {}
ret.update({area_basic_fn: gr.update(visible=("基础功能区" in a))})
ret.update({area_crazy_fn: gr.update(visible=("函数插件区" in a))})
ret.update({area_input_primary: gr.update(visible=("底部输入区" not in a))})
ret.update({area_input_secondary: gr.update(visible=("底部输入区" in a))})
ret.update({area_input_primary: gr.update(visible=("浮动输入区" not in a))})
ret.update({area_input_secondary: gr.update(visible=("浮动输入区" in a))})
ret.update({clearBtn: gr.update(visible=("输入清除键" in a))})
ret.update({clearBtn2: gr.update(visible=("输入清除键" in a))})
ret.update({plugin_advanced_arg: gr.update(visible=("插件参数区" in a))})
if "底部输入区" in a: ret.update({txt: gr.update(value="")})
if "浮动输入区" in a: ret.update({txt: gr.update(value="")})
return ret
checkboxes.select(fn_area_visibility, [checkboxes], [area_basic_fn, area_crazy_fn, area_input_primary, area_input_secondary, txt, txt2, clearBtn, clearBtn2, plugin_advanced_arg] )
# 功能区显示开关与功能区的互动
def fn_area_visibility_2(a):
ret = {}
ret.update({area_customize: gr.update(visible=("自定义菜单" in a))})
return ret
checkboxes_2.select(fn_area_visibility_2, [checkboxes_2], [area_customize] )
# 整理反复出现的控件句柄组合
input_combo = [cookies, max_length_sl, md_dropdown, txt, txt2, top_p, temperature, chatbot, history, system_prompt, plugin_advanced_arg]
output_combo = [cookies, chatbot, history, status]
predict_args = dict(fn=ArgsGeneralWrapper(predict), inputs=input_combo, outputs=output_combo)
predict_args = dict(fn=ArgsGeneralWrapper(predict), inputs=[*input_combo, gr.State(True)], outputs=output_combo)
# 提交按钮、重置按钮
cancel_handles.append(txt.submit(**predict_args))
cancel_handles.append(txt2.submit(**predict_args))
@@ -170,32 +299,65 @@ def main():
if ("Visible" in functional[k]) and (not functional[k]["Visible"]): continue
click_handle = functional[k]["Button"].click(fn=ArgsGeneralWrapper(predict), inputs=[*input_combo, gr.State(True), gr.State(k)], outputs=output_combo)
cancel_handles.append(click_handle)
for btn in customize_btns.values():
click_handle = btn.click(fn=ArgsGeneralWrapper(predict), inputs=[*input_combo, gr.State(True), gr.State(btn.value)], outputs=output_combo)
cancel_handles.append(click_handle)
# 文件上传区,接收文件后与chatbot的互动
file_upload.upload(on_file_uploaded, [file_upload, chatbot, txt, txt2, checkboxes, cookies], [chatbot, txt, txt2, cookies])
file_upload_2.upload(on_file_uploaded, [file_upload_2, chatbot, txt, txt2, checkboxes, cookies], [chatbot, txt, txt2, cookies])
# 函数插件-固定按钮区
for k in plugins:
if not plugins[k].get("AsButton", True): continue
click_handle = plugins[k]["Button"].click(ArgsGeneralWrapper(plugins[k]["Function"]), [*input_combo, gr.State(PORT)], output_combo)
click_handle = plugins[k]["Button"].click(ArgsGeneralWrapper(plugins[k]["Function"]), [*input_combo], output_combo)
click_handle.then(on_report_generated, [cookies, file_upload, chatbot], [cookies, file_upload, chatbot])
cancel_handles.append(click_handle)
# 函数插件-下拉菜单与随变按钮的互动
def on_dropdown_changed(k):
variant = plugins[k]["Color"] if "Color" in plugins[k] else "secondary"
ret = {switchy_bt: gr.update(value=k, variant=variant)}
info = plugins[k].get("Info", k)
ret = {switchy_bt: gr.update(value=k, variant=variant, info_str=f'函数插件区: {info}')}
if plugins[k].get("AdvancedArgs", False): # 是否唤起高级插件参数区
ret.update({plugin_advanced_arg: gr.update(visible=True, label=f"插件[{k}]的高级参数说明:" + plugins[k].get("ArgsReminder", [f"没有提供高级参数功能说明"]))})
else:
ret.update({plugin_advanced_arg: gr.update(visible=False, label=f"插件[{k}]不需要高级参数。")})
return ret
dropdown.select(on_dropdown_changed, [dropdown], [switchy_bt, plugin_advanced_arg] )
def on_md_dropdown_changed(k):
return {chatbot: gr.update(label="当前模型:"+k)}
md_dropdown.select(on_md_dropdown_changed, [md_dropdown], [chatbot] )
def on_theme_dropdown_changed(theme, secret_css):
adjust_theme, css_part1, _, adjust_dynamic_theme = load_dynamic_theme(theme)
if adjust_dynamic_theme:
css_part2 = adjust_dynamic_theme._get_theme_css()
else:
css_part2 = adjust_theme()._get_theme_css()
return css_part2 + css_part1
theme_handle = theme_dropdown.select(on_theme_dropdown_changed, [theme_dropdown, secret_css], [secret_css])
theme_handle.then(
None,
[secret_css],
None,
_js="""(css) => {
var existingStyles = document.querySelectorAll("style[data-loaded-css]");
for (var i = 0; i < existingStyles.length; i++) {
var style = existingStyles[i];
style.parentNode.removeChild(style);
}
var styleElement = document.createElement('style');
styleElement.setAttribute('data-loaded-css', css);
styleElement.innerHTML = css;
document.head.appendChild(styleElement);
}
"""
)
# 随变按钮的回调函数注册
def route(request: gr.Request, k, *args, **kwargs):
if k in [r"打开插件列表", r"请先从插件列表中选择"]: return
yield from ArgsGeneralWrapper(plugins[k]["Function"])(request, *args, **kwargs)
click_handle = switchy_bt.click(route,[switchy_bt, *input_combo, gr.State(PORT)], output_combo)
click_handle = switchy_bt.click(route,[switchy_bt, *input_combo], output_combo)
click_handle.then(on_report_generated, [cookies, file_upload, chatbot], [cookies, file_upload, chatbot])
cancel_handles.append(click_handle)
# 终止按钮的回调函数注册
@@ -226,39 +388,60 @@ def main():
cookies.update({'uuid': uuid.uuid4()})
return cookies
demo.load(init_cookie, inputs=[cookies, chatbot], outputs=[cookies])
demo.load(lambda: 0, inputs=None, outputs=None, _js='()=>{ChatBotHeight();}')
darkmode_js = """(dark) => {
dark = dark == "True";
if (document.querySelectorAll('.dark').length) {
if (!dark){
document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
}
} else {
if (dark){
document.querySelector('body').classList.add('dark');
}
}
}"""
load_cookie_js = """(persistent_cookie) => {
return getCookie("persistent_cookie");
}"""
demo.load(None, inputs=None, outputs=[persistent_cookie], _js=load_cookie_js)
demo.load(None, inputs=[dark_mode], outputs=None, _js=darkmode_js) # 配置暗色主题或亮色主题
demo.load(None, inputs=[gr.Textbox(LAYOUT, visible=False)], outputs=None, _js='(LAYOUT)=>{GptAcademicJavaScriptInit(LAYOUT);}')
# gradio的inbrowser触发不太稳定,回滚代码到原始的浏览器打开函数
def auto_opentab_delay():
def run_delayed_tasks():
import threading, webbrowser, time
print(f"如果浏览器没有自动打开,请复制并转到以下URL")
print(f"\t(亮色主题): http://localhost:{PORT}")
print(f"\t(暗色主题): http://localhost:{PORT}/?__theme=dark")
def open():
time.sleep(2) # 打开浏览器
DARK_MODE, = get_conf('DARK_MODE')
if DARK_MODE: webbrowser.open_new_tab(f"http://localhost:{PORT}/?__theme=dark")
else: webbrowser.open_new_tab(f"http://localhost:{PORT}")
threading.Thread(target=open, name="open-browser", daemon=True).start()
threading.Thread(target=auto_update, name="self-upgrade", daemon=True).start()
threading.Thread(target=warm_up_modules, name="warm-up", daemon=True).start()
if DARK_MODE: print(f"\t「暗色主题已启用(支持动态切换主题): http://localhost:{PORT}")
else: print(f"\t「亮色主题已启用(支持动态切换主题): http://localhost:{PORT}")
auto_opentab_delay()
def auto_updates(): time.sleep(0); auto_update()
def open_browser(): time.sleep(2); webbrowser.open_new_tab(f"http://localhost:{PORT}")
def warm_up_mods(): time.sleep(4); warm_up_modules()
threading.Thread(target=auto_updates, name="self-upgrade", daemon=True).start() # 查看自动更新
threading.Thread(target=open_browser, name="open-browser", daemon=True).start() # 打开浏览器页面
threading.Thread(target=warm_up_mods, name="warm-up", daemon=True).start() # 预热tiktoken模块
run_delayed_tasks()
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(
quiet=True,
server_name="0.0.0.0",
ssl_keyfile=None if SSL_KEYFILE == "" else SSL_KEYFILE,
ssl_certfile=None if SSL_CERTFILE == "" else SSL_CERTFILE,
ssl_verify=False,
server_port=PORT,
favicon_path="docs/logo.png",
favicon_path=os.path.join(os.path.dirname(__file__), "docs/logo.png"),
auth=AUTHENTICATION if len(AUTHENTICATION) != 0 else None,
blocked_paths=["config.py","config_private.py","docker-compose.yml","Dockerfile"])
blocked_paths=["config.py","config_private.py","docker-compose.yml","Dockerfile",f"{PATH_LOGGING}/admin"])
# 如果需要在二级路径下运行
# CUSTOM_PATH, = get_conf('CUSTOM_PATH')
# CUSTOM_PATH = get_conf('CUSTOM_PATH')
# if CUSTOM_PATH != "/":
# from toolbox import run_gradio_in_subpath
# run_gradio_in_subpath(demo, auth=AUTHENTICATION, port=PORT, custom_path=CUSTOM_PATH)
# else:
# demo.launch(server_name="0.0.0.0", server_port=PORT, auth=AUTHENTICATION, favicon_path="docs/logo.png",
# blocked_paths=["config.py","config_private.py","docker-compose.yml","Dockerfile"])
# blocked_paths=["config.py","config_private.py","docker-compose.yml","Dockerfile",f"{PATH_LOGGING}/admin"])
if __name__ == "__main__":
main()

查看文件

@@ -13,6 +13,7 @@
4. Run `python multi_language.py`.
Note: You need to run it multiple times to increase translation coverage because GPT makes mistakes sometimes.
(You can also run `CACHE_ONLY=True python multi_language.py` to use cached translation mapping)
5. Find the translated program in `multi-language\English\*`
@@ -33,9 +34,13 @@ import functools
import re
import pickle
import time
from toolbox import get_conf
CACHE_FOLDER = "gpt_log"
blacklist = ['multi-language', 'gpt_log', '.git', 'private_upload', 'multi_language.py', 'build', '.github', '.vscode', '__pycache__', 'venv']
CACHE_ONLY = os.environ.get('CACHE_ONLY', False)
CACHE_FOLDER = get_conf('PATH_LOGGING')
blacklist = ['multi-language', CACHE_FOLDER, '.git', 'private_upload', 'multi_language.py', 'build', '.github', '.vscode', '__pycache__', 'venv']
# LANG = "TraditionalChinese"
# TransPrompt = f"Replace each json value `#` with translated results in Traditional Chinese, e.g., \"原始文本\":\"翻譯後文字\". Keep Json format. Do not answer #."
@@ -334,7 +339,10 @@ def step_1_core_key_translate():
if d not in cached_translation_keys:
need_translate.append(d)
need_translate_mapping = trans(need_translate, language=LANG_STD, special=True)
if CACHE_ONLY:
need_translate_mapping = {}
else:
need_translate_mapping = trans(need_translate, language=LANG_STD, special=True)
map_to_json(need_translate_mapping, language=LANG_STD)
cached_translation = read_map_from_json(language=LANG_STD)
cached_translation = dict(sorted(cached_translation.items(), key=lambda x: -len(x[0])))
@@ -474,8 +482,10 @@ def step_2_core_key_translate():
if d not in cached_translation_keys:
need_translate.append(d)
up = trans_json(need_translate, language=LANG, special=False)
if CACHE_ONLY:
up = {}
else:
up = trans_json(need_translate, language=LANG, special=False)
map_to_json(up, language=LANG)
cached_translation = read_map_from_json(language=LANG)
LANG_STD = 'std'

查看文件

@@ -1,166 +0,0 @@
from transformers import AutoModel, AutoTokenizer
import time
import threading
import importlib
from toolbox import update_ui, get_conf
from multiprocessing import Process, Pipe
load_message = "ChatGLM尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLM消耗大量的内存CPU或显存GPU,也许会导致低配计算机卡死 ……"
#################################################################################
class GetGLMHandle(Process):
def __init__(self):
super().__init__(daemon=True)
self.parent, self.child = Pipe()
self.chatglm_model = None
self.chatglm_tokenizer = None
self.info = ""
self.success = True
self.check_dependency()
self.start()
self.threadLock = threading.Lock()
def check_dependency(self):
try:
import sentencepiece
self.info = "依赖检测通过"
self.success = True
except:
self.info = "缺少ChatGLM的依赖,如果要使用ChatGLM,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_chatglm.txt`安装ChatGLM的依赖。"
self.success = False
def ready(self):
return self.chatglm_model is not None
def run(self):
# 子进程执行
# 第一次运行,加载参数
retry = 0
LOCAL_MODEL_QUANT, device = get_conf('LOCAL_MODEL_QUANT', 'LOCAL_MODEL_DEVICE')
if LOCAL_MODEL_QUANT == "INT4": # INT4
_model_name_ = "THUDM/chatglm2-6b-int4"
elif LOCAL_MODEL_QUANT == "INT8": # INT8
_model_name_ = "THUDM/chatglm2-6b-int8"
else:
_model_name_ = "THUDM/chatglm2-6b" # FP16
while True:
try:
if self.chatglm_model is None:
self.chatglm_tokenizer = AutoTokenizer.from_pretrained(_model_name_, trust_remote_code=True)
if device=='cpu':
self.chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).float()
else:
self.chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).half().cuda()
self.chatglm_model = self.chatglm_model.eval()
break
else:
break
except:
retry += 1
if retry > 3:
self.child.send('[Local Message] Call ChatGLM fail 不能正常加载ChatGLM的参数。')
raise RuntimeError("不能正常加载ChatGLM的参数")
while True:
# 进入任务等待状态
kwargs = self.child.recv()
# 收到消息,开始请求
try:
for response, history in self.chatglm_model.stream_chat(self.chatglm_tokenizer, **kwargs):
self.child.send(response)
# # 中途接收可能的终止指令(如果有的话)
# if self.child.poll():
# command = self.child.recv()
# if command == '[Terminate]': break
except:
from toolbox import trimmed_format_exc
self.child.send('[Local Message] Call ChatGLM fail.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
# 请求处理结束,开始下一个循环
self.child.send('[Finish]')
def stream_chat(self, **kwargs):
# 主进程执行
self.threadLock.acquire()
self.parent.send(kwargs)
while True:
res = self.parent.recv()
if res != '[Finish]':
yield res
else:
break
self.threadLock.release()
global glm_handle
glm_handle = None
#################################################################################
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
"""
多线程方法
函数的说明请见 request_llm/bridge_all.py
"""
global glm_handle
if glm_handle is None:
glm_handle = GetGLMHandle()
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + glm_handle.info
if not glm_handle.success:
error = glm_handle.info
glm_handle = None
raise RuntimeError(error)
# chatglm 没有 sys_prompt 接口,因此把prompt加入 history
history_feedin = []
history_feedin.append(["What can I do?", sys_prompt])
for i in range(len(history)//2):
history_feedin.append([history[2*i], history[2*i+1]] )
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
response = ""
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
if len(observe_window) >= 1: observe_window[0] = response
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("程序终止。")
return response
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
单线程方法
函数的说明请见 request_llm/bridge_all.py
"""
chatbot.append((inputs, ""))
global glm_handle
if glm_handle is None:
glm_handle = GetGLMHandle()
chatbot[-1] = (inputs, load_message + "\n\n" + glm_handle.info)
yield from update_ui(chatbot=chatbot, history=[])
if not glm_handle.success:
glm_handle = None
return
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
# 处理历史信息
history_feedin = []
history_feedin.append(["What can I do?", system_prompt] )
for i in range(len(history)//2):
history_feedin.append([history[2*i], history[2*i+1]] )
# 开始接收chatglm的回复
response = "[Local Message]: 等待ChatGLM响应中 ..."
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)
# 总结输出
if response == "[Local Message]: 等待ChatGLM响应中 ...":
response = "[Local Message]: ChatGLM响应异常 ..."
history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history)

查看文件

@@ -1,180 +0,0 @@
from transformers import AutoModel, AutoTokenizer
import time
import threading
import importlib
from toolbox import update_ui, get_conf, Singleton
from multiprocessing import Process, Pipe
def SingletonLocalLLM(cls):
"""
一个单实例装饰器
"""
_instance = {}
def _singleton(*args, **kargs):
if cls not in _instance:
_instance[cls] = cls(*args, **kargs)
return _instance[cls]
elif _instance[cls].corrupted:
_instance[cls] = cls(*args, **kargs)
return _instance[cls]
else:
return _instance[cls]
return _singleton
class LocalLLMHandle(Process):
def __init__(self):
# ⭐主进程执行
super().__init__(daemon=True)
self.corrupted = False
self.load_model_info()
self.parent, self.child = Pipe()
self.running = True
self._model = None
self._tokenizer = None
self.info = ""
self.check_dependency()
self.start()
self.threadLock = threading.Lock()
def load_model_info(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
raise NotImplementedError("Method not implemented yet")
self.model_name = ""
self.cmd_to_install = ""
def load_model_and_tokenizer(self):
"""
This function should return the model and the tokenizer
"""
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
raise NotImplementedError("Method not implemented yet")
def llm_stream_generator(self, **kwargs):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
raise NotImplementedError("Method not implemented yet")
def try_to_import_special_deps(self, **kwargs):
"""
import something that will raise error if the user does not install requirement_*.txt
"""
# ⭐主进程执行
raise NotImplementedError("Method not implemented yet")
def check_dependency(self):
# ⭐主进程执行
try:
self.try_to_import_special_deps()
self.info = "依赖检测通过"
self.running = True
except:
self.info = f"缺少{self.model_name}的依赖,如果要使用{self.model_name},除了基础的pip依赖以外,您还需要运行{self.cmd_to_install}安装{self.model_name}的依赖。"
self.running = False
def run(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
# 第一次运行,加载参数
try:
self._model, self._tokenizer = self.load_model_and_tokenizer()
except:
self.running = False
from toolbox import trimmed_format_exc
self.child.send(f'[Local Message] 不能正常加载{self.model_name}的参数.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
self.child.send('[FinishBad]')
raise RuntimeError(f"不能正常加载{self.model_name}的参数!")
while True:
# 进入任务等待状态
kwargs = self.child.recv()
# 收到消息,开始请求
try:
for response_full in self.llm_stream_generator(**kwargs):
self.child.send(response_full)
self.child.send('[Finish]')
# 请求处理结束,开始下一个循环
except:
from toolbox import trimmed_format_exc
self.child.send(f'[Local Message] 调用{self.model_name}失败.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
self.child.send('[Finish]')
def stream_chat(self, **kwargs):
# ⭐主进程执行
self.threadLock.acquire()
self.parent.send(kwargs)
while True:
res = self.parent.recv()
if res == '[Finish]':
break
if res == '[FinishBad]':
self.running = False
self.corrupted = True
break
else:
yield res
self.threadLock.release()
def get_local_llm_predict_fns(LLMSingletonClass, model_name):
load_message = f"{model_name}尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,{model_name}消耗大量的内存CPU或显存GPU,也许会导致低配计算机卡死 ……"
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
"""
⭐多线程方法
函数的说明请见 request_llm/bridge_all.py
"""
_llm_handle = LLMSingletonClass()
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + _llm_handle.info
if not _llm_handle.running: raise RuntimeError(_llm_handle.info)
# chatglm 没有 sys_prompt 接口,因此把prompt加入 history
history_feedin = []
history_feedin.append([sys_prompt, "Certainly!"])
for i in range(len(history)//2):
history_feedin.append([history[2*i], history[2*i+1]] )
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
response = ""
for response in _llm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
if len(observe_window) >= 1:
observe_window[0] = response
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。")
return response
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
⭐单线程方法
函数的说明请见 request_llm/bridge_all.py
"""
chatbot.append((inputs, ""))
_llm_handle = LLMSingletonClass()
chatbot[-1] = (inputs, load_message + "\n\n" + _llm_handle.info)
yield from update_ui(chatbot=chatbot, history=[])
if not _llm_handle.running: raise RuntimeError(_llm_handle.info)
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
# 处理历史信息
history_feedin = []
history_feedin.append([system_prompt, "Certainly!"])
for i in range(len(history)//2):
history_feedin.append([history[2*i], history[2*i+1]] )
# 开始接收回复
response = f"[Local Message]: 等待{model_name}响应中 ..."
for response in _llm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)
# 总结输出
if response == f"[Local Message]: 等待{model_name}响应中 ...":
response = f"[Local Message]: {model_name}响应异常 ..."
history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history)
return predict_no_ui_long_connection, predict

查看文件

@@ -2,7 +2,7 @@
## ChatGLM
- 安装依赖 `pip install -r request_llm/requirements_chatglm.txt`
- 安装依赖 `pip install -r request_llms/requirements_chatglm.txt`
- 修改配置,在config.py中将LLM_MODEL的值改为"chatglm"
``` sh

查看文件

@@ -19,8 +19,8 @@ from .bridge_chatgpt import predict as chatgpt_ui
from .bridge_chatglm import predict_no_ui_long_connection as chatglm_noui
from .bridge_chatglm import predict as chatglm_ui
from .bridge_chatglm import predict_no_ui_long_connection as chatglm_noui
from .bridge_chatglm import predict as chatglm_ui
from .bridge_chatglm3 import predict_no_ui_long_connection as chatglm3_noui
from .bridge_chatglm3 import predict as chatglm3_ui
from .bridge_qianfan import predict_no_ui_long_connection as qianfan_noui
from .bridge_qianfan import predict as qianfan_ui
@@ -52,10 +52,11 @@ API_URL_REDIRECT, AZURE_ENDPOINT, AZURE_ENGINE = get_conf("API_URL_REDIRECT", "A
openai_endpoint = "https://api.openai.com/v1/chat/completions"
api2d_endpoint = "https://openai.api2d.net/v1/chat/completions"
newbing_endpoint = "wss://sydney.bing.com/sydney/ChatHub"
if not AZURE_ENDPOINT.endswith('/'): AZURE_ENDPOINT += '/'
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
# 兼容旧版的配置
try:
API_URL, = get_conf("API_URL")
API_URL = get_conf("API_URL")
if API_URL != "https://api.openai.com/v1/chat/completions":
openai_endpoint = API_URL
print("警告API_URL配置选项将被弃用,请更换为API_URL_REDIRECT配置")
@@ -93,7 +94,7 @@ model_info = {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": openai_endpoint,
"max_token": 1024*16,
"max_token": 16385,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
@@ -111,7 +112,16 @@ model_info = {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": openai_endpoint,
"max_token": 1024 * 16,
"max_token": 16385,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"gpt-3.5-turbo-1106": {#16k
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": openai_endpoint,
"max_token": 16385,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
@@ -125,6 +135,33 @@ model_info = {
"token_cnt": get_token_num_gpt4,
},
"gpt-4-32k": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": openai_endpoint,
"max_token": 32768,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
},
"gpt-4-1106-preview": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": openai_endpoint,
"max_token": 128000,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
},
"gpt-3.5-random": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": openai_endpoint,
"max_token": 4096,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
},
# azure openai
"azure-gpt-3.5":{
"fn_with_ui": chatgpt_ui,
@@ -135,7 +172,16 @@ model_info = {
"token_cnt": get_token_num_gpt35,
},
# api_2d
"azure-gpt-4":{
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": azure_endpoint,
"max_token": 8192,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
},
# api_2d (此后不需要在此处添加api2d的接口了,因为下面的代码会自动添加)
"api2d-gpt-3.5-turbo": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
@@ -171,6 +217,14 @@ model_info = {
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"chatglm3": {
"fn_with_ui": chatglm3_ui,
"fn_without_ui": chatglm3_noui,
"endpoint": None,
"max_token": 8192,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"qianfan": {
"fn_with_ui": qianfan_ui,
"fn_without_ui": qianfan_noui,
@@ -181,6 +235,20 @@ model_info = {
},
}
# -=-=-=-=-=-=- api2d 对齐支持 -=-=-=-=-=-=-
for model in AVAIL_LLM_MODELS:
if model.startswith('api2d-') and (model.replace('api2d-','') in model_info.keys()):
mi = model_info[model.replace('api2d-','')]
mi.update({"endpoint": api2d_endpoint})
model_info.update({model: mi})
# -=-=-=-=-=-=- azure 对齐支持 -=-=-=-=-=-=-
for model in AVAIL_LLM_MODELS:
if model.startswith('azure-') and (model.replace('azure-','') in model_info.keys()):
mi = model_info[model.replace('azure-','')]
mi.update({"endpoint": azure_endpoint})
model_info.update({model: mi})
# -=-=-=-=-=-=- 以下部分是新加入的模型,可能附带额外依赖 -=-=-=-=-=-=-
if "claude-1-100k" in AVAIL_LLM_MODELS or "claude-2" in AVAIL_LLM_MODELS:
from .bridge_claude import predict_no_ui_long_connection as claude_noui
@@ -414,6 +482,22 @@ if "sparkv2" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
})
except:
print(trimmed_format_exc())
if "sparkv3" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
try:
from .bridge_spark import predict_no_ui_long_connection as spark_noui
from .bridge_spark import predict as spark_ui
model_info.update({
"sparkv3": {
"fn_with_ui": spark_ui,
"fn_without_ui": spark_noui,
"endpoint": None,
"max_token": 4096,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}
})
except:
print(trimmed_format_exc())
if "llama2" in AVAIL_LLM_MODELS: # llama2
try:
from .bridge_llama2 import predict_no_ui_long_connection as llama2_noui
@@ -430,6 +514,46 @@ if "llama2" in AVAIL_LLM_MODELS: # llama2
})
except:
print(trimmed_format_exc())
if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai
try:
from .bridge_zhipu import predict_no_ui_long_connection as zhipu_noui
from .bridge_zhipu import predict as zhipu_ui
model_info.update({
"zhipuai": {
"fn_with_ui": zhipu_ui,
"fn_without_ui": zhipu_noui,
"endpoint": None,
"max_token": 4096,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}
})
except:
print(trimmed_format_exc())
# <-- 用于定义和切换多个azure模型 -->
AZURE_CFG_ARRAY = get_conf("AZURE_CFG_ARRAY")
if len(AZURE_CFG_ARRAY) > 0:
for azure_model_name, azure_cfg_dict in AZURE_CFG_ARRAY.items():
# 可能会覆盖之前的配置,但这是意料之中的
if not azure_model_name.startswith('azure'):
raise ValueError("AZURE_CFG_ARRAY中配置的模型必须以azure开头")
endpoint_ = azure_cfg_dict["AZURE_ENDPOINT"] + \
f'openai/deployments/{azure_cfg_dict["AZURE_ENGINE"]}/chat/completions?api-version=2023-05-15'
model_info.update({
azure_model_name: {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": endpoint_,
"azure_api_key": azure_cfg_dict["AZURE_API_KEY"],
"max_token": azure_cfg_dict["AZURE_MODEL_MAX_TOKEN"],
"tokenizer": tokenizer_gpt35, # tokenizer只用于粗估token数量
"token_cnt": get_token_num_gpt35,
}
})
if azure_model_name not in AVAIL_LLM_MODELS:
AVAIL_LLM_MODELS += [azure_model_name]
@@ -447,7 +571,7 @@ def LLM_CATCH_EXCEPTION(f):
return decorated
def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience=False):
def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window=[], console_slience=False):
"""
发送至LLM等待回复一次性完成不显示中间过程但内部用stream的方法避免中途网线被掐
inputs

查看文件

@@ -0,0 +1,78 @@
model_name = "ChatGLM"
cmd_to_install = "`pip install -r request_llms/requirements_chatglm.txt`"
from transformers import AutoModel, AutoTokenizer
from toolbox import get_conf, ProxyNetworkActivate
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 Local Model
# ------------------------------------------------------------------------------------------------------------------------
class GetGLM2Handle(LocalLLMHandle):
def load_model_info(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
self.model_name = model_name
self.cmd_to_install = cmd_to_install
def load_model_and_tokenizer(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
import os, glob
import os
import platform
LOCAL_MODEL_QUANT, device = get_conf('LOCAL_MODEL_QUANT', 'LOCAL_MODEL_DEVICE')
if LOCAL_MODEL_QUANT == "INT4": # INT4
_model_name_ = "THUDM/chatglm2-6b-int4"
elif LOCAL_MODEL_QUANT == "INT8": # INT8
_model_name_ = "THUDM/chatglm2-6b-int8"
else:
_model_name_ = "THUDM/chatglm2-6b" # FP16
with ProxyNetworkActivate('Download_LLM'):
chatglm_tokenizer = AutoTokenizer.from_pretrained(_model_name_, trust_remote_code=True)
if device=='cpu':
chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).float()
else:
chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).half().cuda()
chatglm_model = chatglm_model.eval()
self._model = chatglm_model
self._tokenizer = chatglm_tokenizer
return self._model, self._tokenizer
def llm_stream_generator(self, **kwargs):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
def adaptor(kwargs):
query = kwargs['query']
max_length = kwargs['max_length']
top_p = kwargs['top_p']
temperature = kwargs['temperature']
history = kwargs['history']
return query, max_length, top_p, temperature, history
query, max_length, top_p, temperature, history = adaptor(kwargs)
for response, history in self._model.stream_chat(self._tokenizer,
query,
history,
max_length=max_length,
top_p=top_p,
temperature=temperature,
):
yield response
def try_to_import_special_deps(self, **kwargs):
# import something that will raise error if the user does not install requirement_*.txt
# 🏃‍♂️🏃‍♂️🏃‍♂️ 主进程执行
import importlib
# importlib.import_module('modelscope')
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 GPT-Academic Interface
# ------------------------------------------------------------------------------------------------------------------------
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetGLM2Handle, model_name)

查看文件

@@ -0,0 +1,77 @@
model_name = "ChatGLM3"
cmd_to_install = "`pip install -r request_llms/requirements_chatglm.txt`"
from transformers import AutoModel, AutoTokenizer
from toolbox import get_conf, ProxyNetworkActivate
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 Local Model
# ------------------------------------------------------------------------------------------------------------------------
class GetGLM3Handle(LocalLLMHandle):
def load_model_info(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
self.model_name = model_name
self.cmd_to_install = cmd_to_install
def load_model_and_tokenizer(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
import os, glob
import os
import platform
LOCAL_MODEL_QUANT, device = get_conf('LOCAL_MODEL_QUANT', 'LOCAL_MODEL_DEVICE')
if LOCAL_MODEL_QUANT == "INT4": # INT4
_model_name_ = "THUDM/chatglm3-6b-int4"
elif LOCAL_MODEL_QUANT == "INT8": # INT8
_model_name_ = "THUDM/chatglm3-6b-int8"
else:
_model_name_ = "THUDM/chatglm3-6b" # FP16
with ProxyNetworkActivate('Download_LLM'):
chatglm_tokenizer = AutoTokenizer.from_pretrained(_model_name_, trust_remote_code=True)
if device=='cpu':
chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True, device='cpu').float()
else:
chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True, device='cuda')
chatglm_model = chatglm_model.eval()
self._model = chatglm_model
self._tokenizer = chatglm_tokenizer
return self._model, self._tokenizer
def llm_stream_generator(self, **kwargs):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
def adaptor(kwargs):
query = kwargs['query']
max_length = kwargs['max_length']
top_p = kwargs['top_p']
temperature = kwargs['temperature']
history = kwargs['history']
return query, max_length, top_p, temperature, history
query, max_length, top_p, temperature, history = adaptor(kwargs)
for response, history in self._model.stream_chat(self._tokenizer,
query,
history,
max_length=max_length,
top_p=top_p,
temperature=temperature,
):
yield response
def try_to_import_special_deps(self, **kwargs):
# import something that will raise error if the user does not install requirement_*.txt
# 🏃‍♂️🏃‍♂️🏃‍♂️ 主进程执行
import importlib
# importlib.import_module('modelscope')
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 GPT-Academic Interface
# ------------------------------------------------------------------------------------------------------------------------
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetGLM3Handle, model_name, history_format='chatglm3')

查看文件

@@ -44,7 +44,7 @@ class GetGLMFTHandle(Process):
self.info = "依赖检测通过"
self.success = True
except:
self.info = "缺少ChatGLMFT的依赖,如果要使用ChatGLMFT,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_chatglm.txt`安装ChatGLM的依赖。"
self.info = "缺少ChatGLMFT的依赖,如果要使用ChatGLMFT,除了基础的pip依赖以外,您还需要运行`pip install -r request_llms/requirements_chatglm.txt`安装ChatGLM的依赖。"
self.success = False
def ready(self):
@@ -59,11 +59,11 @@ class GetGLMFTHandle(Process):
if self.chatglmft_model is None:
from transformers import AutoConfig
import torch
# conf = 'request_llm/current_ptune_model.json'
# conf = 'request_llms/current_ptune_model.json'
# if not os.path.exists(conf): raise RuntimeError('找不到微调模型信息')
# with open(conf, 'r', encoding='utf8') as f:
# model_args = json.loads(f.read())
CHATGLM_PTUNING_CHECKPOINT, = get_conf('CHATGLM_PTUNING_CHECKPOINT')
CHATGLM_PTUNING_CHECKPOINT = get_conf('CHATGLM_PTUNING_CHECKPOINT')
assert os.path.exists(CHATGLM_PTUNING_CHECKPOINT), "找不到微调模型检查点"
conf = os.path.join(CHATGLM_PTUNING_CHECKPOINT, "config.json")
with open(conf, 'r', encoding='utf8') as f:
@@ -87,7 +87,7 @@ class GetGLMFTHandle(Process):
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
if model_args['quantization_bit'] is not None:
if model_args['quantization_bit'] is not None and model_args['quantization_bit'] != 0:
print(f"Quantized to {model_args['quantization_bit']} bit")
model = model.quantize(model_args['quantization_bit'])
model = model.cuda()
@@ -140,7 +140,7 @@ glmft_handle = None
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
"""
多线程方法
函数的说明请见 request_llm/bridge_all.py
函数的说明请见 request_llms/bridge_all.py
"""
global glmft_handle
if glmft_handle is None:
@@ -171,7 +171,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
单线程方法
函数的说明请见 request_llm/bridge_all.py
函数的说明请见 request_llms/bridge_all.py
"""
chatbot.append((inputs, ""))
@@ -195,13 +195,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
history_feedin.append([history[2*i], history[2*i+1]] )
# 开始接收chatglmft的回复
response = "[Local Message]: 等待ChatGLMFT响应中 ..."
response = "[Local Message] 等待ChatGLMFT响应中 ..."
for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)
# 总结输出
if response == "[Local Message]: 等待ChatGLMFT响应中 ...":
response = "[Local Message]: ChatGLMFT响应异常 ..."
if response == "[Local Message] 等待ChatGLMFT响应中 ...":
response = "[Local Message] ChatGLMFT响应异常 ..."
history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history)

查看文件

@@ -1,5 +1,5 @@
model_name = "ChatGLM-ONNX"
cmd_to_install = "`pip install -r request_llm/requirements_chatglm_onnx.txt`"
cmd_to_install = "`pip install -r request_llms/requirements_chatglm_onnx.txt`"
from transformers import AutoModel, AutoTokenizer
@@ -8,7 +8,7 @@ import threading
import importlib
from toolbox import update_ui, get_conf
from multiprocessing import Process, Pipe
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns, SingletonLocalLLM
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
from .chatglmoonx import ChatGLMModel, chat_template
@@ -17,7 +17,6 @@ from .chatglmoonx import ChatGLMModel, chat_template
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 Local Model
# ------------------------------------------------------------------------------------------------------------------------
@SingletonLocalLLM
class GetONNXGLMHandle(LocalLLMHandle):
def load_model_info(self):
@@ -28,13 +27,13 @@ class GetONNXGLMHandle(LocalLLMHandle):
def load_model_and_tokenizer(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
import os, glob
if not len(glob.glob("./request_llm/ChatGLM-6b-onnx-u8s8/chatglm-6b-int8-onnx-merged/*.bin")) >= 7: # 该模型有七个 bin 文件
if not len(glob.glob("./request_llms/ChatGLM-6b-onnx-u8s8/chatglm-6b-int8-onnx-merged/*.bin")) >= 7: # 该模型有七个 bin 文件
from huggingface_hub import snapshot_download
snapshot_download(repo_id="K024/ChatGLM-6b-onnx-u8s8", local_dir="./request_llm/ChatGLM-6b-onnx-u8s8")
snapshot_download(repo_id="K024/ChatGLM-6b-onnx-u8s8", local_dir="./request_llms/ChatGLM-6b-onnx-u8s8")
def create_model():
return ChatGLMModel(
tokenizer_path = "./request_llm/ChatGLM-6b-onnx-u8s8/chatglm-6b-int8-onnx-merged/sentencepiece.model",
onnx_model_path = "./request_llm/ChatGLM-6b-onnx-u8s8/chatglm-6b-int8-onnx-merged/chatglm-6b-int8.onnx"
tokenizer_path = "./request_llms/ChatGLM-6b-onnx-u8s8/chatglm-6b-int8-onnx-merged/sentencepiece.model",
onnx_model_path = "./request_llms/ChatGLM-6b-onnx-u8s8/chatglm-6b-int8-onnx-merged/chatglm-6b-int8.onnx"
)
self._model = create_model()
return self._model, None

查看文件

@@ -7,8 +7,7 @@
1. predict: 正常对话时使用具备完备的交互功能不可多线程
具备多线程调用能力的函数
2. predict_no_ui高级实验性功能模块调用不会实时显示在界面上参数简单可以多线程并行方便实现复杂的功能逻辑
3. predict_no_ui_long_connection在实验过程中发现调用predict_no_ui处理长文档时和openai的连接容易断掉这个函数用stream的方式解决这个问题同样支持多线程
2. predict_no_ui_long_connection支持多线程
"""
import json
@@ -18,12 +17,13 @@ import logging
import traceback
import requests
import importlib
import random
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件不受git管控,如果有,则覆盖原config文件
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG = \
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG')
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, is_the_upload_folder
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
@@ -39,6 +39,33 @@ def get_full_error(chunk, stream_response):
break
return chunk
def decode_chunk(chunk):
# 提前读取一些信息 (用于判断异常)
chunk_decoded = chunk.decode()
chunkjson = None
has_choices = False
choice_valid = False
has_content = False
has_role = False
try:
chunkjson = json.loads(chunk_decoded[6:])
has_choices = 'choices' in chunkjson
if has_choices: choice_valid = (len(chunkjson['choices']) > 0)
if has_choices and choice_valid: has_content = "content" in chunkjson['choices'][0]["delta"]
if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"]
except:
pass
return chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role
from functools import lru_cache
@lru_cache(maxsize=32)
def verify_endpoint(endpoint):
"""
检查endpoint是否可用
"""
if "你亲手写的api名称" in endpoint:
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
return endpoint
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
"""
@@ -61,7 +88,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
try:
# make a POST request to the API endpoint, stream=False
from .bridge_all import model_info
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
response = requests.post(endpoint, headers=headers, proxies=proxies,
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
except requests.exceptions.ReadTimeout as e:
@@ -70,8 +97,9 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
stream_response = response.iter_lines()
stream_response = response.iter_lines()
result = ''
json_data = None
while True:
try: chunk = next(stream_response).decode()
except StopIteration:
@@ -90,20 +118,21 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
delta = json_data["delta"]
if len(delta) == 0: break
if "role" in delta: continue
if "content" in delta:
if "content" in delta:
result += delta["content"]
if not console_slience: print(delta["content"], end='')
if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1: observe_window[0] += delta["content"]
if len(observe_window) >= 1:
observe_window[0] += delta["content"]
# 看门狗,如果超过期限没有喂狗,则终止
if len(observe_window) >= 2:
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("用户取消了程序。")
else: raise RuntimeError("意外Json结构"+delta)
if json_data['finish_reason'] == 'content_filter':
if json_data and json_data['finish_reason'] == 'content_filter':
raise RuntimeError("由于提问含不合规内容被Azure过滤。")
if json_data['finish_reason'] == 'length':
if json_data and json_data['finish_reason'] == 'length':
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
return result
@@ -128,6 +157,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
yield from update_ui(chatbot=chatbot, history=history, msg="缺少api_key") # 刷新界面
return
user_input = inputs
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
@@ -138,8 +168,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
# check mis-behavior
if raw_input.startswith('private_upload/') and len(raw_input) == 34:
chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“函数插件区”按钮进行处理,而不是点击“提交”按钮。")
if is_the_upload_folder(user_input):
chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮")
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
time.sleep(2)
@@ -150,14 +180,22 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
return
# 检查endpoint是否合法
try:
from .bridge_all import model_info
endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
except:
tb_str = '```\n' + trimmed_format_exc() + '```'
chatbot[-1] = (inputs, tb_str)
yield from update_ui(chatbot=chatbot, history=history, msg="Endpoint不满足要求") # 刷新界面
return
history.append(inputs); history.append("")
retry = 0
while True:
try:
# make a POST request to the API endpoint, stream=True
from .bridge_all import model_info
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
response = requests.post(endpoint, headers=headers, proxies=proxies,
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
except:
@@ -179,27 +217,45 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
# 非OpenAI官方接口的出现这样的报错,OpenAI和API2D不会走这里
chunk_decoded = chunk.decode()
error_msg = chunk_decoded
# 首先排除一个one-api没有done数据包的第三方Bug情形
if len(gpt_replying_buffer.strip()) > 0 and len(error_msg) == 0:
yield from update_ui(chatbot=chatbot, history=history, msg="检测到有缺陷的非OpenAI官方接口,建议选择更稳定的接口。")
break
# 其他情况,直接返回报错
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
yield from update_ui(chatbot=chatbot, history=history, msg="非Openai官方接口返回了错误:" + chunk.decode()) # 刷新界面
yield from update_ui(chatbot=chatbot, history=history, msg="非OpenAI官方接口返回了错误:" + chunk.decode()) # 刷新界面
return
chunk_decoded = chunk.decode()
# 提前读取一些信息 (用于判断异常)
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r"content" not in chunk_decoded):
# 数据流的第一帧不携带content
is_head_of_the_stream = False; continue
if chunk:
try:
if has_choices and not choice_valid:
# 一些垃圾第三方接口的出现这样的错误
continue
# 前者是API2D的结束条件,后者是OPENAI的结束条件
if ('data: [DONE]' in chunk_decoded) or (len(json.loads(chunk_decoded[6:])['choices'][0]["delta"]) == 0):
if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0):
# 判定为数据流的结束,gpt_replying_buffer也写完了
logging.info(f'[response] {gpt_replying_buffer}')
break
# 处理数据流的主体
chunkjson = json.loads(chunk_decoded[6:])
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
gpt_replying_buffer = gpt_replying_buffer + json.loads(chunk_decoded[6:])['choices'][0]["delta"]["content"]
if has_content:
# 正常情况
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
elif has_role:
# 一些第三方接口的出现这样的错误,兼容一下吧
continue
else:
# 一些垃圾第三方接口的出现这样的错误
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
history[-1] = gpt_replying_buffer
chatbot[-1] = (history[-2], history[-1])
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
@@ -231,6 +287,8 @@ def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
chatbot[-1] = (chatbot[-1][0], "[Local Message] Your account is not active. OpenAI以账户失效为由, 拒绝服务." + openai_website)
elif "associated with a deactivated account" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] You are associated with a deactivated account. OpenAI以账户失效为由, 拒绝服务." + openai_website)
elif "API key has been deactivated" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] API key has been deactivated. OpenAI以账户失效为由, 拒绝服务." + openai_website)
elif "bad forward key" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.")
elif "Not enough point" in error_msg:
@@ -255,7 +313,11 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
"Authorization": f"Bearer {api_key}"
}
if API_ORG.startswith('org-'): headers.update({"OpenAI-Organization": API_ORG})
if llm_kwargs['llm_model'].startswith('azure-'): headers.update({"api-key": api_key})
if llm_kwargs['llm_model'].startswith('azure-'):
headers.update({"api-key": api_key})
if llm_kwargs['llm_model'] in AZURE_CFG_ARRAY.keys():
azure_api_key_unshared = AZURE_CFG_ARRAY[llm_kwargs['llm_model']]["AZURE_API_KEY"]
headers.update({"api-key": azure_api_key_unshared})
conversation_cnt = len(history) // 2
@@ -280,9 +342,23 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = inputs
messages.append(what_i_ask_now)
model = llm_kwargs['llm_model']
if llm_kwargs['llm_model'].startswith('api2d-'):
model = llm_kwargs['llm_model'][len('api2d-'):]
if model == "gpt-3.5-random": # 随机选择, 绕过openai访问频率限制
model = random.choice([
"gpt-3.5-turbo",
"gpt-3.5-turbo-16k",
"gpt-3.5-turbo-1106",
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-16k-0613",
"gpt-3.5-turbo-0301",
])
logging.info("Random select model:" + model)
payload = {
"model": llm_kwargs['llm_model'].strip('api2d-'),
"model": model,
"messages": messages,
"temperature": llm_kwargs['temperature'], # 1.0,
"top_p": llm_kwargs['top_p'], # 1.0,

查看文件

@@ -7,8 +7,7 @@
1. predict: 正常对话时使用具备完备的交互功能不可多线程
具备多线程调用能力的函数
2. predict_no_ui高级实验性功能模块调用不会实时显示在界面上参数简单可以多线程并行方便实现复杂的功能逻辑
3. predict_no_ui_long_connection在实验过程中发现调用predict_no_ui处理长文档时和openai的连接容易断掉这个函数用stream的方式解决这个问题同样支持多线程
2. predict_no_ui_long_connection支持多线程
"""
import json

查看文件

@@ -7,7 +7,7 @@
1. predict: 正常对话时使用具备完备的交互功能不可多线程
具备多线程调用能力的函数
2. predict_no_ui_long_connection在实验过程中发现调用predict_no_ui处理长文档时和openai的连接容易断掉这个函数用stream的方式解决这个问题同样支持多线程
2. predict_no_ui_long_connection支持多线程
"""
import os

查看文件

@@ -1,13 +1,13 @@
model_name = "InternLM"
cmd_to_install = "`pip install -r request_llm/requirements_chatglm.txt`"
cmd_to_install = "`pip install -r request_llms/requirements_chatglm.txt`"
from transformers import AutoModel, AutoTokenizer
import time
import threading
import importlib
from toolbox import update_ui, get_conf
from toolbox import update_ui, get_conf, ProxyNetworkActivate
from multiprocessing import Process, Pipe
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns, SingletonLocalLLM
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
# ------------------------------------------------------------------------------------------------------------------------
@@ -34,7 +34,6 @@ def combine_history(prompt, hist):
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 Local Model
# ------------------------------------------------------------------------------------------------------------------------
@SingletonLocalLLM
class GetInternlmHandle(LocalLLMHandle):
def load_model_info(self):
@@ -52,15 +51,16 @@ class GetInternlmHandle(LocalLLMHandle):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device, = get_conf('LOCAL_MODEL_DEVICE')
if self._model is None:
tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True)
if device=='cpu':
model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True).to(torch.bfloat16)
else:
model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True).to(torch.bfloat16).cuda()
device = get_conf('LOCAL_MODEL_DEVICE')
with ProxyNetworkActivate('Download_LLM'):
if self._model is None:
tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True)
if device=='cpu':
model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True).to(torch.bfloat16)
else:
model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True).to(torch.bfloat16).cuda()
model = model.eval()
model = model.eval()
return model, tokenizer
def llm_stream_generator(self, **kwargs):
@@ -94,8 +94,9 @@ class GetInternlmHandle(LocalLLMHandle):
inputs = tokenizer([prompt], padding=True, return_tensors="pt")
input_length = len(inputs["input_ids"][0])
device = get_conf('LOCAL_MODEL_DEVICE')
for k, v in inputs.items():
inputs[k] = v.cuda()
inputs[k] = v.to(device)
input_ids = inputs["input_ids"]
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
if generation_config is None:

查看文件

@@ -28,8 +28,8 @@ class GetGLMHandle(Process):
self.success = True
except:
from toolbox import trimmed_format_exc
self.info = r"缺少jittorllms的依赖,如果要使用jittorllms,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I`"+\
r"和`git clone https://gitlink.org.cn/jittor/JittorLLMs.git --depth 1 request_llm/jittorllms`两个指令来安装jittorllms的依赖在项目根目录运行这两个指令" +\
self.info = r"缺少jittorllms的依赖,如果要使用jittorllms,除了基础的pip依赖以外,您还需要运行`pip install -r request_llms/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I`"+\
r"和`git clone https://gitlink.org.cn/jittor/JittorLLMs.git --depth 1 request_llms/jittorllms`两个指令来安装jittorllms的依赖在项目根目录运行这两个指令" +\
r"警告安装jittorllms依赖后将完全破坏现有的pytorch环境,建议使用docker环境" + trimmed_format_exc()
self.success = False
@@ -45,15 +45,15 @@ class GetGLMHandle(Process):
env = os.environ.get("PATH", "")
os.environ["PATH"] = env.replace('/cuda/bin', '/x/bin')
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
os.chdir(root_dir_assume + '/request_llm/jittorllms')
sys.path.append(root_dir_assume + '/request_llm/jittorllms')
os.chdir(root_dir_assume + '/request_llms/jittorllms')
sys.path.append(root_dir_assume + '/request_llms/jittorllms')
validate_path() # validate path so you can run from base directory
def load_model():
import types
try:
if self.jittorllms_model is None:
device, = get_conf('LOCAL_MODEL_DEVICE')
device = get_conf('LOCAL_MODEL_DEVICE')
from .jittorllms.models import get_model
# availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
args_dict = {'model': 'llama'}
@@ -109,7 +109,7 @@ llama_glm_handle = None
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
"""
多线程方法
函数的说明请见 request_llm/bridge_all.py
函数的说明请见 request_llms/bridge_all.py
"""
global llama_glm_handle
if llama_glm_handle is None:
@@ -140,7 +140,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
单线程方法
函数的说明请见 request_llm/bridge_all.py
函数的说明请见 request_llms/bridge_all.py
"""
chatbot.append((inputs, ""))
@@ -163,13 +163,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
history_feedin.append([history[2*i], history[2*i+1]] )
# 开始接收jittorllms的回复
response = "[Local Message]: 等待jittorllms响应中 ..."
response = "[Local Message] 等待jittorllms响应中 ..."
for response in llama_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)
# 总结输出
if response == "[Local Message]: 等待jittorllms响应中 ...":
response = "[Local Message]: jittorllms响应异常 ..."
if response == "[Local Message] 等待jittorllms响应中 ...":
response = "[Local Message] jittorllms响应异常 ..."
history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history)

查看文件

@@ -28,8 +28,8 @@ class GetGLMHandle(Process):
self.success = True
except:
from toolbox import trimmed_format_exc
self.info = r"缺少jittorllms的依赖,如果要使用jittorllms,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I`"+\
r"和`git clone https://gitlink.org.cn/jittor/JittorLLMs.git --depth 1 request_llm/jittorllms`两个指令来安装jittorllms的依赖在项目根目录运行这两个指令" +\
self.info = r"缺少jittorllms的依赖,如果要使用jittorllms,除了基础的pip依赖以外,您还需要运行`pip install -r request_llms/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I`"+\
r"和`git clone https://gitlink.org.cn/jittor/JittorLLMs.git --depth 1 request_llms/jittorllms`两个指令来安装jittorllms的依赖在项目根目录运行这两个指令" +\
r"警告安装jittorllms依赖后将完全破坏现有的pytorch环境,建议使用docker环境" + trimmed_format_exc()
self.success = False
@@ -45,15 +45,15 @@ class GetGLMHandle(Process):
env = os.environ.get("PATH", "")
os.environ["PATH"] = env.replace('/cuda/bin', '/x/bin')
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
os.chdir(root_dir_assume + '/request_llm/jittorllms')
sys.path.append(root_dir_assume + '/request_llm/jittorllms')
os.chdir(root_dir_assume + '/request_llms/jittorllms')
sys.path.append(root_dir_assume + '/request_llms/jittorllms')
validate_path() # validate path so you can run from base directory
def load_model():
import types
try:
if self.jittorllms_model is None:
device, = get_conf('LOCAL_MODEL_DEVICE')
device = get_conf('LOCAL_MODEL_DEVICE')
from .jittorllms.models import get_model
# availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
args_dict = {'model': 'pangualpha'}
@@ -109,7 +109,7 @@ pangu_glm_handle = None
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
"""
多线程方法
函数的说明请见 request_llm/bridge_all.py
函数的说明请见 request_llms/bridge_all.py
"""
global pangu_glm_handle
if pangu_glm_handle is None:
@@ -140,7 +140,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
单线程方法
函数的说明请见 request_llm/bridge_all.py
函数的说明请见 request_llms/bridge_all.py
"""
chatbot.append((inputs, ""))
@@ -163,13 +163,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
history_feedin.append([history[2*i], history[2*i+1]] )
# 开始接收jittorllms的回复
response = "[Local Message]: 等待jittorllms响应中 ..."
response = "[Local Message] 等待jittorllms响应中 ..."
for response in pangu_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)
# 总结输出
if response == "[Local Message]: 等待jittorllms响应中 ...":
response = "[Local Message]: jittorllms响应异常 ..."
if response == "[Local Message] 等待jittorllms响应中 ...":
response = "[Local Message] jittorllms响应异常 ..."
history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history)

查看文件

@@ -28,8 +28,8 @@ class GetGLMHandle(Process):
self.success = True
except:
from toolbox import trimmed_format_exc
self.info = r"缺少jittorllms的依赖,如果要使用jittorllms,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I`"+\
r"和`git clone https://gitlink.org.cn/jittor/JittorLLMs.git --depth 1 request_llm/jittorllms`两个指令来安装jittorllms的依赖在项目根目录运行这两个指令" +\
self.info = r"缺少jittorllms的依赖,如果要使用jittorllms,除了基础的pip依赖以外,您还需要运行`pip install -r request_llms/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I`"+\
r"和`git clone https://gitlink.org.cn/jittor/JittorLLMs.git --depth 1 request_llms/jittorllms`两个指令来安装jittorllms的依赖在项目根目录运行这两个指令" +\
r"警告安装jittorllms依赖后将完全破坏现有的pytorch环境,建议使用docker环境" + trimmed_format_exc()
self.success = False
@@ -45,15 +45,15 @@ class GetGLMHandle(Process):
env = os.environ.get("PATH", "")
os.environ["PATH"] = env.replace('/cuda/bin', '/x/bin')
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
os.chdir(root_dir_assume + '/request_llm/jittorllms')
sys.path.append(root_dir_assume + '/request_llm/jittorllms')
os.chdir(root_dir_assume + '/request_llms/jittorllms')
sys.path.append(root_dir_assume + '/request_llms/jittorllms')
validate_path() # validate path so you can run from base directory
def load_model():
import types
try:
if self.jittorllms_model is None:
device, = get_conf('LOCAL_MODEL_DEVICE')
device = get_conf('LOCAL_MODEL_DEVICE')
from .jittorllms.models import get_model
# availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
args_dict = {'model': 'chatrwkv'}
@@ -109,7 +109,7 @@ rwkv_glm_handle = None
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
"""
多线程方法
函数的说明请见 request_llm/bridge_all.py
函数的说明请见 request_llms/bridge_all.py
"""
global rwkv_glm_handle
if rwkv_glm_handle is None:
@@ -140,7 +140,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
单线程方法
函数的说明请见 request_llm/bridge_all.py
函数的说明请见 request_llms/bridge_all.py
"""
chatbot.append((inputs, ""))
@@ -163,13 +163,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
history_feedin.append([history[2*i], history[2*i+1]] )
# 开始接收jittorllms的回复
response = "[Local Message]: 等待jittorllms响应中 ..."
response = "[Local Message] 等待jittorllms响应中 ..."
for response in rwkv_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)
# 总结输出
if response == "[Local Message]: 等待jittorllms响应中 ...":
response = "[Local Message]: jittorllms响应异常 ..."
if response == "[Local Message] 等待jittorllms响应中 ...":
response = "[Local Message] jittorllms响应异常 ..."
history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history)

查看文件

@@ -1,18 +1,17 @@
model_name = "LLaMA"
cmd_to_install = "`pip install -r request_llm/requirements_chatglm.txt`"
cmd_to_install = "`pip install -r request_llms/requirements_chatglm.txt`"
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from toolbox import update_ui, get_conf, ProxyNetworkActivate
from multiprocessing import Process, Pipe
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns, SingletonLocalLLM
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
from threading import Thread
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 Local Model
# ------------------------------------------------------------------------------------------------------------------------
@SingletonLocalLLM
class GetONNXGLMHandle(LocalLLMHandle):
def load_model_info(self):
@@ -30,7 +29,7 @@ class GetONNXGLMHandle(LocalLLMHandle):
with open(os.path.expanduser('~/.cache/huggingface/token'), 'w') as f:
f.write(huggingface_token)
model_id = 'meta-llama/Llama-2-7b-chat-hf'
with ProxyNetworkActivate():
with ProxyNetworkActivate('Download_LLM'):
self._tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=huggingface_token)
# use fp16
model = AutoModelForCausalLM.from_pretrained(model_id, use_auth_token=huggingface_token).eval()

查看文件

@@ -24,12 +24,12 @@ class GetGLMHandle(Process):
def check_dependency(self): # 主进程执行
try:
import datasets, os
assert os.path.exists('request_llm/moss/models')
assert os.path.exists('request_llms/moss/models')
self.info = "依赖检测通过"
self.success = True
except:
self.info = """
缺少MOSS的依赖如果要使用MOSS除了基础的pip依赖以外您还需要运行`pip install -r request_llm/requirements_moss.txt``git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss`安装MOSS的依赖
缺少MOSS的依赖如果要使用MOSS除了基础的pip依赖以外您还需要运行`pip install -r request_llms/requirements_moss.txt``git clone https://github.com/OpenLMLab/MOSS.git request_llms/moss`安装MOSS的依赖
"""
self.success = False
return self.success
@@ -110,8 +110,8 @@ class GetGLMHandle(Process):
def validate_path():
import os, sys
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
os.chdir(root_dir_assume + '/request_llm/moss')
sys.path.append(root_dir_assume + '/request_llm/moss')
os.chdir(root_dir_assume + '/request_llms/moss')
sys.path.append(root_dir_assume + '/request_llms/moss')
validate_path() # validate path so you can run from base directory
try:
@@ -176,7 +176,7 @@ moss_handle = None
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
"""
多线程方法
函数的说明请见 request_llm/bridge_all.py
函数的说明请见 request_llms/bridge_all.py
"""
global moss_handle
if moss_handle is None:
@@ -206,7 +206,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
单线程方法
函数的说明请见 request_llm/bridge_all.py
函数的说明请见 request_llms/bridge_all.py
"""
chatbot.append((inputs, ""))
@@ -219,7 +219,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
moss_handle = None
return
else:
response = "[Local Message]: 等待MOSS响应中 ..."
response = "[Local Message] 等待MOSS响应中 ..."
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)
@@ -238,7 +238,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
yield from update_ui(chatbot=chatbot, history=history)
# 总结输出
if response == "[Local Message]: 等待MOSS响应中 ...":
response = "[Local Message]: MOSS响应异常 ..."
if response == "[Local Message] 等待MOSS响应中 ...":
response = "[Local Message] MOSS响应异常 ..."
history.extend([inputs, response.strip('<|MOSS|>: ')])
yield from update_ui(chatbot=chatbot, history=history)

某些文件未显示,因为此 diff 中更改的文件太多 显示更多