比较提交

..

549 次代码提交

作者 SHA1 备注 提交日期
binary-husky
faffc59f51 Update version 2023-04-18 23:28:07 +08:00
binary-husky
0a5464d7d6 Update crazy_utils.py 2023-04-18 23:24:15 +08:00
Your Name
095385f889 强调完整翻译 2023-04-18 17:22:46 +08:00
Your Name
adb49f3866 错别字 2023-04-18 16:15:59 +08:00
Your Name
d35d7710c1 修复pdf分解bug 2023-04-18 16:14:30 +08:00
binary-husky
4c486f27c8 Update toolbox.py 2023-04-18 15:47:48 +08:00
binary-husky
aebd48bc84 Update README.md 2023-04-18 00:12:22 +08:00
binary-husky
a8f0801e99 Update README.md 2023-04-17 23:39:36 +08:00
binary-husky
1d449f5556 Update README.md 2023-04-17 23:38:53 +08:00
binary-husky
48e7757a19 Update README.md 2023-04-17 23:38:27 +08:00
binary-husky
dd92fa235e Update README.md 2023-04-17 23:37:10 +08:00
binary-husky
f0fbc65a36 Merge pull request #493 from rong6767/master
增加解析C#项目功能
2023-04-16 14:14:34 +08:00
wenx29
321a51b5f9 增加解析C#项目功能 2023-04-15 17:05:19 -04:00
binary-husky
a593e2e4ac Update README.md 2023-04-15 19:11:00 +08:00
binary-husky
ea6541c114 Update README.md 2023-04-14 23:41:15 +08:00
binary-husky
c325c6869f Update .gitignore 2023-04-14 20:49:49 +08:00
Your Name
60848b21dc fix version 2023-04-14 17:04:49 +08:00
qingxu fu
14c70c092d redirect images 2023-04-14 16:36:36 +08:00
binary-husky
66bdf8b29a Delete 润色.gif 2023-04-14 15:53:01 +08:00
binary-husky
72a034a1ff Delete 公式.gif 2023-04-14 15:52:53 +08:00
binary-husky
faaa3bb1b6 Update README.md 2023-04-14 15:52:01 +08:00
binary-husky
0485d01d67 Update README.md 2023-04-14 15:41:44 +08:00
binary-husky
f48914f56d Update README.md 2023-04-14 15:38:06 +08:00
binary-husky
443f23521c Update README.md 2023-04-14 15:34:45 +08:00
qingxu fu
cd6a1fd399 当无法正常切割PDF文档时,强制切割 2023-04-14 13:52:56 +08:00
qingxu fu
f10ea20351 延长遇到Rate limit reached时的等待时间 2023-04-14 13:15:42 +08:00
qingxu fu
2e044d97c7 更新提示 2023-04-14 13:10:40 +08:00
qingxu fu
ea7fd53a97 OpenAI缩减了免费用户的请求速率限制 2023-04-14 13:08:19 +08:00
qingxu fu
b2fba01487 把函数插件并行数量限制放到config中 2023-04-14 12:52:47 +08:00
qingxu fu
fb3d0948a0 修改注释 2023-04-14 12:30:43 +08:00
qingxu fu
c8349e766b 削减默认的最大线程数到5 2023-04-14 12:28:25 +08:00
qingxu fu
de8d20bcc2 修改部分注释 2023-04-14 12:23:05 +08:00
qingxu fu
512e3f7a32 修改注释 2023-04-14 12:05:22 +08:00
qingxu fu
717fae8984 修改提示 2023-04-14 12:02:10 +08:00
qingxu fu
2b352de7df 修改提示 2023-04-14 12:01:49 +08:00
qingxu fu
bc3f3429a5 源代码文件数量限制 1024 个 2023-04-14 11:57:27 +08:00
binary-husky
7e14229229 Update issue templates 2023-04-14 11:45:25 +08:00
Your Name
2aab3acfea 2.68 2023-04-14 10:33:53 +08:00
505030475
dd648bd446 disallow special token + limit num of file < 512 2023-04-14 09:50:14 +08:00
binary-husky
a2002ebd85 Update README.md 2023-04-13 17:05:01 +08:00
binary-husky
ff50f30669 Update README.md 2023-04-13 17:01:47 +08:00
binary-husky
0ac7734c7d Delete Dockerfile+ChatGLM 2023-04-13 16:36:08 +08:00
binary-husky
23686bfc77 Update README.md 2023-04-13 15:41:47 +08:00
binary-husky
7e541a7229 Update README.md 2023-04-13 15:40:45 +08:00
binary-husky
5c251f03eb Update README.md 2023-04-13 15:29:27 +08:00
binary-husky
0c21b1edd9 Delete objdump.tmp 2023-04-13 15:26:40 +08:00
binary-husky
0c58795a5e Update README.md 2023-04-13 13:49:54 +08:00
qingxu fu
a70c08a3c4 更新readme 2023-04-13 13:43:05 +08:00
qingxu fu
2712d99d08 添加Markdown全文翻译插件,并用此插件翻译了本项目的README 2023-04-13 13:40:13 +08:00
qingxu fu
76ee4c2c55 Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-04-13 12:46:34 +08:00
qingxu fu
fc222bf287 Lua工程解析+修正注释 2023-04-13 12:46:31 +08:00
binary-husky
eee5763b15 Update requirements.txt 2023-04-13 12:27:28 +08:00
binary-husky
ff55bbd498 Update README.md 2023-04-13 12:20:54 +08:00
binary-husky
703ff7f814 Update README.md 2023-04-13 12:17:59 +08:00
binary-husky
16f7a52207 Update 高级功能函数模板.py 2023-04-13 12:02:52 +08:00
binary-husky
7cad5fa594 Update README.md 2023-04-13 11:53:52 +08:00
binary-husky
0b1d833804 Merge pull request #436 from DDreame/patch-1
[fix]Update requirements.txt For fix
2023-04-13 11:47:19 +08:00
binary-husky
7d414f67f0 Merge pull request #439 from mrhblfx/patch-2
增加解析Lua项目
2023-04-13 11:45:42 +08:00
binary-husky
3e1cecd9f5 Merge pull request #438 from mrhblfx/patch-1
增加了解析Go项目匹配的文件: `go.mod`, `go.sum`, `go.work`
2023-04-13 11:44:03 +08:00
qingxu fu
98724cd395 更新注释 2023-04-13 11:18:44 +08:00
qingxu fu
8ac9b454e3 改善chatpdf的功能 2023-04-13 11:08:53 +08:00
mrhblfx
5e602cabf5 Update crazy_functional.py 2023-04-12 22:44:07 +08:00
mrhblfx
c6610b2aab 新增解析一个Lua项目 2023-04-12 22:39:31 +08:00
mrhblfx
7e53cf7c7e 增加了解析Go项目匹配的文件: go.mod, go.sum, go.work 2023-04-12 22:33:34 +08:00
无知之人
3d6e4ee3a7 [fix]Update requirements.txt For fix
Modify the version of Gradio, which does not support the color button when it is lower than version 3.24. On version 3.25, it fixes the issue https://github.com/gradio-app/gradio/issues/3716 and #371 .

修改一下gradio的版本,低于 3.24版本时不支持 color button,3.25则修复了 issue: #371https://github.com/gradio-app/gradio/issues/3716
2023-04-12 21:32:03 +08:00
fuqingxu
613be5509b 启动ChatGPT+ChatGLM 2023-04-12 17:41:33 +08:00
fuqingxu
d40fa20ce8 Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic 2023-04-12 16:57:56 +08:00
fuqingxu
40bd857c70 UTF8 Ignore read file errors 2023-04-12 16:57:01 +08:00
binary-husky
6e1976d9b8 Update README.md 2023-04-12 12:04:57 +08:00
binary-husky
88a86635c6 Update README.md 2023-04-12 11:21:20 +08:00
binary-husky
acbeebd18d Update README.md 2023-04-12 02:46:04 +08:00
binary-husky
7515863503 Update README.md 2023-04-12 02:41:43 +08:00
binary-husky
a1af5a99e0 Update README.md 2023-04-12 02:27:55 +08:00
binary-husky
84f6ee2fb7 Update README.md 2023-04-12 02:27:10 +08:00
binary-husky
c090df34fa Update README.md 2023-04-12 00:12:42 +08:00
binary-husky
3cb46534b6 Update README.md 2023-04-12 00:08:31 +08:00
Your Name
c41eb0e997 移除故障代码说明 2023-04-11 21:19:31 +08:00
binary-husky
c43a3e6f59 默认关闭share
注意,由于国内 Gradio 的网络访问较为缓慢,启用 demo.queue().launch(share=True, inbrowser=True) 时所有网络会经过 Gradio 服务器转发,导致打字机体验大幅下降,现在默认启动方式已经改为 share=False,如有需要公网访问的需求,可以重新修改为 share=True 启动。
2023-04-11 21:13:21 +08:00
binary-husky
a8399d2727 Merge pull request #413 from liyishuai/patch-1
Dockerfile: unbuffer stdout
2023-04-11 20:15:10 +08:00
binary-husky
d41d0db810 Update README.md 2023-04-11 20:00:33 +08:00
qingxu fu
19d6323801 Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-04-11 19:59:09 +08:00
qingxu fu
929c0afc9b 2.67 修复typo 2023-04-11 19:59:06 +08:00
qingxu fu
3748979133 2.67 修复typo 2023-04-11 19:58:37 +08:00
binary-husky
6e8c5637aa Update README.md 2023-04-11 19:34:03 +08:00
qingxu fu
f336ba060d Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-04-11 19:32:02 +08:00
qingxu fu
4fe4626608 修改功能说明 2023-04-11 19:31:57 +08:00
binary-husky
e6fbf13c67 Update README.md 2023-04-11 19:00:20 +08:00
binary-husky
6bc5cbce20 Update README.md 2023-04-11 18:58:16 +08:00
qingxu fu
3c9d63c37b UP 2023-04-11 18:50:56 +08:00
qingxu fu
93d5fc2f1a 修复 2023-04-11 18:49:22 +08:00
qingxu fu
2f2ad59823 2.62 BUG 修复 2023-04-11 18:47:51 +08:00
qingxu fu
b841d58a26 renew all 2023-04-11 18:36:38 +08:00
qingxu fu
3d66e3eb79 UP 2023-04-11 18:23:59 +08:00
Your Name
4dad114ce7 紧急bug修复 2023-04-11 18:16:33 +08:00
Your Name
f8d565c5a1 紧急BUG修复 2023-04-11 18:15:26 +08:00
Your Name
6bbc10f5b9 紧急bug修复 2023-04-11 18:12:31 +08:00
qingxu fu
8bf2956ff7 version 2.6 2023-04-11 17:55:30 +08:00
qingxu fu
270889a533 print change 2023-04-11 17:52:40 +08:00
qingxu fu
a72b95d2b9 Merge branch 'dev_grand' of https://github.com/binary-husky/chatgpt_academic into dev_grand 2023-04-11 17:42:59 +08:00
qingxu fu
7167c84394 修正解析源代码bug 2023-04-11 17:42:56 +08:00
qingxu fu
d587189ceb 更正bug 2023-04-11 17:40:50 +08:00
Yishuai Li
4a4fb661df Dockerfile: two-stage copy 2023-04-11 17:25:30 +08:00
qingxu fu
a7083873c0 界面重构 2023-04-11 15:31:46 +08:00
Yishuai Li
a13ed231d3 Dockerfile: unbuffer stdout 2023-04-11 15:30:40 +08:00
qingxu fu
0b960df309 add arxiv dependency 2023-04-11 15:20:04 +08:00
qingxu fu
42d366be94 修复chatbotwithcookies的对象传递问题 2023-04-11 15:17:00 +08:00
qingxu fu
fc331681b4 移除陈旧函数 2023-04-11 14:45:00 +08:00
qingxu fu
e965c36db3 Merge branch 'master' into dev_grand 2023-04-10 12:38:26 +08:00
binary-husky
ad208ff7cf Merge pull request #395 from HougeLangley/master
Added python-docx
2023-04-10 10:05:01 +08:00
HougeLangley
1256387488 Added python-docx
解决在使用批量导入 .docx 文件是提示需要 pip install --upgrade python-docx 的问题
2023-04-10 01:06:34 +08:00
binary-husky
88919db63e Merge pull request #388 from WangRongsheng/master
update en2ch prompt
2023-04-10 00:39:54 +08:00
qingxu fu
bc8415b905 翻译成地道的中文 2023-04-10 00:36:05 +08:00
qingxu fu
21a3519c50 Merge branch 'master' of https://github.com/WangRongsheng/chatgpt_academic into WangRongsheng-master 2023-04-10 00:33:16 +08:00
binary-husky
a3dd982159 Merge pull request #389 from Ljp66/master
Update toolbox.py
2023-04-10 00:31:24 +08:00
qingxu fu
f38929b149 +Latex全文中英互译插件 2023-04-10 00:29:53 +08:00
qingxu fu
c8a9069ee3 强调中文 2023-04-10 00:21:20 +08:00
qingxu fu
53b099e3a6 实验 2023-04-10 00:11:07 +08:00
qingxu fu
0d387fa699 UP 2023-04-10 00:05:46 +08:00
qingxu fu
acf0349215 更新提示 2023-04-10 00:00:03 +08:00
qingxu fu
869de46078 自动更新程序+自动pip包安装 2023-04-09 23:56:24 +08:00
qingxu fu
6ce9b724ec 修正prompt 2023-04-09 23:32:32 +08:00
qingxu fu
49a6ff6a7c Latex全文润色 2023-04-09 23:28:57 +08:00
qingxu fu
3725122de1 增加临时输入api-key的功能 2023-04-09 21:23:21 +08:00
qingxu fu
1f6defedfc UP 2023-04-09 20:50:33 +08:00
qingxu fu
0666fec86e 增扩框架的参数IO 2023-04-09 20:42:23 +08:00
qingxu fu
ea031ab05b st 2023-04-09 19:49:42 +08:00
qingxu fu
47445fdc90 declare depriction 2023-04-09 19:02:18 +08:00
qingxu fu
e6cf5532a9 提升稳定性 2023-04-09 18:59:43 +08:00
MPU王荣胜
d741f884c5 Delete core_functional.py 2023-04-09 11:55:27 +08:00
gbwyljp
58db0b04fa Update toolbox.py
remove duplicate "import importlib"
2023-04-09 11:55:00 +08:00
MPU王荣胜
c5ce25d581 update en2ch prompt 2023-04-09 11:45:34 +08:00
MPU王荣胜
53cfed89d5 update en2ch prompt 2023-04-09 11:38:37 +08:00
binary-husky
3592a0de11 Update version 2023-04-08 22:51:37 +08:00
qingxu fu
91d07c329a version 2.5 2023-04-08 22:27:02 +08:00
qingxu fu
ab373c5bf7 移动参数位置 2023-04-08 22:16:33 +08:00
qingxu fu
f714bfc59f 错别字 2023-04-08 22:15:33 +08:00
qingxu fu
09ab60c46d up 2023-04-08 22:14:05 +08:00
Your Name
6383113e85 加入自动更新协议 2023-04-08 02:48:35 +08:00
Your Name
d52b4d6dbb 显示版本 2023-04-08 02:39:54 +08:00
Your Name
2f9ec385c9 自动更新程序 2023-04-08 02:38:02 +08:00
Your Name
3249b31155 多种接口 2023-04-08 00:51:58 +08:00
Your Name
9cd15c6f88 新插件移动到插件菜单中 2023-04-08 00:42:54 +08:00
Your Name
300484f301 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-04-08 00:41:46 +08:00
Your Name
476a174320 代码高亮开关 2023-04-08 00:41:39 +08:00
binary-husky
b475a4f32a Merge pull request #366 from Hanzoe/master
new function: 实现单篇PDF论文翻译理解
2023-04-08 00:41:03 +08:00
binary-husky
c07196698e Update README.md 2023-04-08 00:32:22 +08:00
Your Name
e371b82ea3 更新requirements.txt实现代码高亮必要 2023-04-08 00:23:26 +08:00
Your Name
3de941ee5e Fix dockerfile 2023-04-08 00:01:11 +08:00
Your Name
2120c074c1 version 2.45 2023-04-07 23:58:10 +08:00
Your Name
8dbae2c68a Merge branch 'master' into dev 2023-04-07 23:55:19 +08:00
Your Name
50dfccc010 新增谷歌学术统合小助手 2023-04-07 23:54:24 +08:00
Your Name
036bd93115 version 2.43 2023-04-07 22:08:05 +08:00
Your Name
b7dca67f6e 处理多线程中出现的网络问题 2023-04-07 22:06:08 +08:00
Hanzoe
33dcbf5093 Update crazy_functional.py 2023-04-07 21:35:36 +08:00
Hanzoe
a5785446c0 Add files via upload 2023-04-07 21:34:55 +08:00
Hanzoe
8a83f8315b Merge pull request #1 from binary-husky/master
单篇论文翻译理解
2023-04-07 21:34:11 +08:00
Your Name
9344c414b6 Merge branch 'dev' of github.com:binary-husky/chatgpt_academic into dev 2023-04-07 21:09:43 +08:00
Your Name
042d06846b highlight 2023-04-07 21:09:37 +08:00
Your Name
2a8d6e1d53 highlight 2023-04-07 21:08:34 +08:00
Your Name
ce1cf491b6 Merge branch 'dev' of github.com:binary-husky/chatgpt_academic into dev 2023-04-07 21:00:32 +08:00
Your Name
28a4188332 Merge branch 'master' into dev 2023-04-07 20:59:35 +08:00
qingxu fu
e2770fe37f 代码、公式高亮 2023-04-07 20:30:30 +08:00
qingxu fu
c2dcab0e12 Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-04-07 19:26:20 +08:00
qingxu fu
8597dba5f2 修复小BUG 2023-04-07 19:26:17 +08:00
binary-husky
1f09afcb8f Update README.md 2023-04-07 19:09:18 +08:00
binary-husky
533359e19f Update README.md 2023-04-07 19:08:41 +08:00
qingxu fu
2e3f6b3126 正确显示列表序号 2023-04-07 18:33:46 +08:00
binary-husky
3d3d259125 Update toolbox.py 2023-04-07 18:27:52 +08:00
binary-husky
fffa536303 Update README.md 2023-04-07 18:21:13 +08:00
Your Name
2df4742815 修复公式显示错误 2023-04-07 18:14:27 +08:00
qingxu fu
9ca7a90590 fix equation 2023-04-07 17:55:24 +08:00
qingxu fu
d1a18d293a 更新requirements.txt 2023-04-07 12:45:47 +08:00
binary-husky
769f2fe7d7 Update README.md 2023-04-06 19:24:37 +08:00
binary-husky
991cd29395 Update README.md 2023-04-06 19:15:58 +08:00
binary-husky
9a12adf853 Update README.md 2023-04-06 18:55:16 +08:00
binary-husky
928bef8983 Update README.md 2023-04-06 18:49:49 +08:00
qingxu fu
f14aa4818a 改善提示 2023-04-06 18:45:24 +08:00
Your Name
a4d731b190 替换基础函数 2023-04-06 18:41:04 +08:00
qingxu fu
0079733bfd 主要代码规整化 2023-04-06 18:29:49 +08:00
qingxu fu
1055fdaab7 小问题修复 2023-04-06 18:26:46 +08:00
qingxu fu
0b3f7b8821 format file 2023-04-06 18:15:11 +08:00
qingxu fu
e8cf757dc0 修复完成后的文件显示问题 2023-04-06 18:13:16 +08:00
qingxu fu
06f8094a0a fix error 2023-04-06 17:23:26 +08:00
qingxu fu
d4ed4efa03 Merge branch 'dev_ui' of https://github.com/binary-husky/chatgpt_academic into dev_ui 2023-04-06 17:19:28 +08:00
qingxu fu
aa7574dcec change UI 2023-04-06 17:19:25 +08:00
qingxu fu
62a946e499 change UI 2023-04-06 17:18:30 +08:00
qingxu fu
0b2b0a83d6 change UI 2023-04-06 17:17:31 +08:00
qingxu fu
f8b2524aa3 恢复模板函数 2023-04-06 17:15:13 +08:00
qingxu fu
079916f56c 修正打印提示 2023-04-06 16:59:52 +08:00
qingxu fu
1da77af2a2 update self_analysis 2023-04-06 16:33:01 +08:00
qingxu fu
946481b774 2.4版本 2023-04-06 16:13:56 +08:00
Your Name
d32a52c8e9 End 2023-04-06 03:43:53 +08:00
Your Name
85d85d850a update 2023-04-06 03:30:02 +08:00
Your Name
dcaa7a1808 重命名一些函数 2023-04-06 02:02:04 +08:00
Your Name
785893b64f 修改文件命名 2023-04-05 16:19:35 +08:00
qingxu fu
8aa2b48816 Merge remote-tracking branch 'origin/master' into dev_ui 2023-04-05 14:35:46 +08:00
binary-husky
3269f430ff Update README.md 2023-04-05 14:34:43 +08:00
binary-husky
dad6a64194 Update README.md 2023-04-05 14:09:56 +08:00
binary-husky
2126a5ce74 Update README.md 2023-04-05 14:09:35 +08:00
binary-husky
7ee257a854 Update README.md 2023-04-05 14:07:59 +08:00
Your Name
ddb39453fd 处理没有文件返回的问题 2023-04-05 02:15:47 +08:00
qingxu fu
eda3c6d345 BUG FIX 2023-04-05 01:58:34 +08:00
qingxu fu
745734b601 改进效率 2023-04-05 00:25:53 +08:00
qingxu fu
2bb1f3dd30 Merge branch 'dev_ui' of https://github.com/binary-husky/chatgpt_academic into dev_ui 2023-04-05 00:15:09 +08:00
qingxu fu
82952882eb BUG FIX 2023-04-05 00:11:12 +08:00
qingxu fu
971b45f332 BUG FIX 2023-04-05 00:10:06 +08:00
qingxu fu
04504b1d99 Bug Fix: Hot Reload Wapper For All 2023-04-05 00:09:13 +08:00
qingxu fu
85e71f8a71 参数输入bug修复 2023-04-05 00:07:08 +08:00
qingxu fu
c96a253568 支持更多界面布局的切换 2023-04-04 23:46:47 +08:00
qingxu fu
24780ee628 merge 2023-04-04 22:56:06 +08:00
qingxu fu
b87bfeaddb check_new_version 2023-04-04 22:54:08 +08:00
binary-husky
effa1421b4 Update version 2023-04-04 22:34:28 +08:00
binary-husky
3d95e42dc8 Update version 2023-04-04 22:20:39 +08:00
binary-husky
602fbb08da Update version 2023-04-04 22:20:21 +08:00
binary-husky
7f0393b2b0 Update version 2023-04-04 22:17:47 +08:00
qingxu fu
79c617e437 规划版本号 2023-04-04 21:38:20 +08:00
binary-husky
e5bd6186d5 Update issue templates 2023-04-04 17:13:40 +08:00
binary-husky
2418c45159 Update README.md 2023-04-04 15:33:53 +08:00
qingxu fu
3aa446cf19 修复代码英文重构Bug 2023-04-04 15:23:42 +08:00
qingxu fu
23c1b14ca3 默认暗色护眼主题 2023-04-03 20:56:00 +08:00
binary-husky
f1b0e5f0f7 Merge pull request #290 from LiZheGuang/master
fix: 🐛 修复react解析项目不显示在下拉列表的问题
2023-04-03 17:58:28 +08:00
LiZheGuang
535525e9d5 fix: 🐛 修复react解析项目不显示在下拉列表的问题 2023-04-03 17:44:09 +08:00
binary-husky
c54be726bf Update issue templates 2023-04-03 17:00:51 +08:00
qingxu fu
858c40b0a5 update README 2023-04-03 09:32:01 +08:00
binary-husky
ed33bf5a15 Update README.md 2023-04-03 01:49:40 +08:00
binary-husky
1b793e3397 Update README.md 2023-04-03 01:47:49 +08:00
binary-husky
f58f4fbbf8 Update README.md 2023-04-03 01:39:17 +08:00
binary-husky
b1ed86ee7d Update README.md 2023-04-03 01:38:44 +08:00
binary-husky
5570b94ad1 Update README.md 2023-04-03 01:03:00 +08:00
binary-husky
5aab515bac Update README.md 2023-04-03 01:01:57 +08:00
binary-husky
9b45a66137 Update README.md 2023-04-02 22:15:12 +08:00
binary-husky
7658842bdd Update README.md 2023-04-02 22:04:33 +08:00
binary-husky
a96a865265 Update config.py 2023-04-02 22:02:41 +08:00
binary-husky
ad48645db9 Update README.md 2023-04-02 21:51:41 +08:00
binary-husky
80fed7135a Update README.md 2023-04-02 21:44:44 +08:00
binary-husky
5e003070cd Update README.md 2023-04-02 21:41:36 +08:00
binary-husky
a10a23e347 Update README.md 2023-04-02 21:39:28 +08:00
binary-husky
c2062c05cb Update README.md 2023-04-02 21:33:09 +08:00
binary-husky
2dd674b0b3 Update README.md 2023-04-02 21:31:44 +08:00
binary-husky
88e92bfd8c Update README.md 2023-04-02 21:28:59 +08:00
binary-husky
872888d957 Update README.md 2023-04-02 21:27:19 +08:00
Your Name
dcbfabf657 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-04-02 20:35:16 +08:00
Your Name
75754718c1 #236 2023-04-02 20:35:09 +08:00
Your Name
97193065f6 remove verbose print 2023-04-02 20:22:11 +08:00
Your Name
a999487b8e CHATBOT_HEIGHT - 1 2023-04-02 20:20:37 +08:00
Your Name
c330fa6be1 return None instead of [] when no file is concluded 2023-04-02 20:18:58 +08:00
Your Name
5b9de09c11 +异常处理 2023-04-02 20:03:25 +08:00
Your Name
01265c5934 微调theme 2023-04-02 20:02:47 +08:00
binary-husky
4888656a72 Update README.md 2023-04-02 16:55:18 +08:00
Your Name
4556559e53 Merge branch 'CSS' of https://github.com/Keldos-Li/chatgpt_academic (#236) 2023-04-02 16:01:35 +08:00
Your Name
900b752e61 修改按钮提示 2023-04-02 15:48:54 +08:00
binary-husky
174146b5d7 Merge pull request #253 from RongkangXiong/dev
add crazy_functions 解析一个Java项目
2023-04-02 15:40:03 +08:00
Your Name
3387b5acb0 添加Golang、Java等项目的支持 2023-04-02 15:33:09 +08:00
Your Name
bf3eb0bfab 加入 arxiv 小助手插件 2023-04-02 15:19:21 +08:00
RongkangXiong
9540cf9448 add crazy_functions 解析一个Rect项目 2023-04-02 03:07:21 +08:00
RongkangXiong
55ef4acea9 add crazy_functions 解析一个Java项目 2023-04-02 02:59:03 +08:00
Your Name
8e0f401bf3 Merge branch 'master' into dev 2023-04-02 01:24:03 +08:00
Your Name
99e13e5895 update 2023-04-02 01:23:15 +08:00
Your Name
190b547373 stage llm model interface 2023-04-02 01:18:51 +08:00
Your Name
eee4cb361c q 2023-04-02 00:51:17 +08:00
Your Name
2420d62a33 接入TGUI 2023-04-02 00:40:05 +08:00
Your Name
3af0bbdbe4 成功借助tgui调用更多LLM 2023-04-02 00:22:41 +08:00
Your Name
bfa6661367 up 2023-04-01 23:46:32 +08:00
Your Name
d79dfe2fc7 wait new pr 2023-04-01 21:56:55 +08:00
Your Name
919b15b242 修改文件名 2023-04-01 21:45:58 +08:00
Keldos
a469d8714d fix: 修正CSS中的注释解决列表显示
- 同时使用.markdown-body缩限了css作用域
2023-04-01 20:34:18 +08:00
binary-husky
15d9d9a307 Update README.md 2023-04-01 20:21:31 +08:00
Your Name
a8bd564cd1 advanced theme 2023-04-01 19:48:14 +08:00
Your Name
a51cfbc625 新的arxiv论文插件 2023-04-01 19:43:56 +08:00
binary-husky
d10fec81fa Merge pull request #239 from ylsislove/golang-code-analysis
feat: add function to parse Golang projects
2023-04-01 19:42:06 +08:00
binary-husky
a0841c6e6c Update functional_crazy.py 2023-04-01 19:37:39 +08:00
wangyu
594f4b24f6 feat: add function to parse Golang projects
This commit adds a new function to parse Golang projects to the collection of crazy functions.
2023-04-01 19:19:36 +08:00
Your Name
629d022e8a fix bug 2023-04-01 19:07:58 +08:00
Your Name
c5355a9ca4 README 2023-04-01 18:07:26 +08:00
Your Name
0218efaae7 Typo in Prompt 2023-04-01 17:29:30 +08:00
Your Name
1533c4b604 python3.7 compat 2023-04-01 17:11:59 +08:00
Keldos
b64596de0e feat: 调整表格样式 2023-04-01 16:58:51 +08:00
Keldos
9752af934e feat: 使用CSS完善表格、列表、代码块、对话气泡显示样式
移植了 川虎ChatGPT 的CSS——但是川虎ChatGPT的CSS也是我写的~
2023-04-01 16:51:38 +08:00
Your Name
70d9300972 README up 2023-04-01 16:36:57 +08:00
Your Name
47ea28693a update README 2023-04-01 16:35:45 +08:00
Your Name
172eb4a977 Merge branch 'dev' 2023-04-01 16:31:57 +08:00
binary-husky
666a7448a0 Update README.md 2023-04-01 04:25:03 +08:00
binary-husky
9ce3497183 Update README.md 2023-04-01 04:19:02 +08:00
Your Name
2c963cc368 交互优化 2023-04-01 04:11:31 +08:00
Your Name
b0dfef48e9 将css样式移动到theme文件,减少main.py的代码行数 2023-04-01 03:39:43 +08:00
binary-husky
c85923b17b Merge pull request #209 from jr-shen/dev-1
(1)修改语法检查的prompt,确保输出格式统一。

之前使用时经常发现输出没有把修改的部分加粗,或者在表格中把整段文字输出了,影响阅读。因此在之前的prompt基础上增加了一个example,确保输出格式统一。

(2)表格内增加了边框线,使行/列之间的分隔更清楚。

使用时发现没有边框的表格在里面文字较多时难以区分。因此增加表格内边框线。
2023-04-01 03:37:02 +08:00
Your Name
5e8eb6253c 优化Token溢出时的处理 2023-04-01 03:36:05 +08:00
Your Name
833d136fb9 隐藏、显示功能区 2023-04-01 00:21:27 +08:00
Your Name
753f9d50ff 更清朗些的UI 2023-03-31 23:54:25 +08:00
Your Name
9ad21838fe 更清朗的UI 2023-03-31 23:51:17 +08:00
Junru Shen
7b8de7884f add markdown table border line to make text boundary more clear 2023-03-31 23:40:21 +08:00
Junru Shen
b5b0f6a3ce make grammar correction prompt more clear 2023-03-31 23:38:49 +08:00
Your Name
44a605e766 对word和pdf进行简易的支持 2023-03-31 23:18:45 +08:00
Your Name
939dfa6ac9 Merge branch 'master' into dev 2023-03-31 23:08:30 +08:00
Your Name
8c3a8a2e3b Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-03-31 22:49:45 +08:00
Your Name
d58802af01 修复bug 2023-03-31 22:49:39 +08:00
Your Name
9593b0d09d 优化自译解功能 2023-03-31 22:36:46 +08:00
binary-husky
f7d50cd9fa Update README.md 2023-03-31 21:48:45 +08:00
Your Name
14a7d00037 移动函数到调用模组 2023-03-31 21:46:47 +08:00
binary-husky
94e75d2718 Merge pull request #204 from Eralien/dev-clean_pdf
feat: clean pdf fitz text
2023-03-31 21:42:18 +08:00
binary-husky
6fc2423ae3 add contributor 2023-03-31 21:41:17 +08:00
binary-husky
da8cb77314 Merge pull request #147 from JasonGuo1/master
feat(toolbox.py,总结word文档.py): 支持rar格式与7z格式解压;word读取
2023-03-31 21:39:05 +08:00
Your Name
a87ce5bb77 JasonGuo1 2023-03-31 21:37:46 +08:00
Your Name
a098d08750 Merge branch 'master' of https://github.com/JasonGuo1/chatgpt_academic into JasonGuo1-master 2023-03-31 21:31:31 +08:00
Siyuan Feng
ab879ca4b7 feat: clean pdf fitz text 2023-03-31 21:26:55 +08:00
binary-husky
dde672c63d Merge pull request #117 from XMB-7/better_prompt
feat: better prompt
2023-03-31 21:19:25 +08:00
Your Name
030bfb4568 Merge branch 'better_prompt' of https://github.com/XMB-7/chatgpt_academic into XMB-7-better_prompt 2023-03-31 21:18:28 +08:00
binary-husky
149ef28071 Merge pull request #174 from Euclid-Jie/Euclid_Test
feature(read pdf paper then write summary)
2023-03-31 21:06:02 +08:00
Your Name
16caf34800 整合 2023-03-31 21:05:18 +08:00
Your Name
666dde9f74 Merge branch 'dev' into Euclid-Jie-Euclid_Test 2023-03-31 21:03:43 +08:00
Your Name
167be41621 pdfminer整合到一个文件中 2023-03-31 21:03:12 +08:00
Your Name
a71edeea95 Merge branch 'Euclid_Test' of https://github.com/Euclid-Jie/chatgpt_academic into Euclid-Jie-Euclid_Test 2023-03-31 20:26:59 +08:00
Your Name
87c09368da 修改文本 2023-03-31 20:12:27 +08:00
Your Name
72f23cbbef fix import error 2023-03-31 20:05:31 +08:00
Your Name
a3952be1cb Merge branch 'dev' of github.com:binary-husky/chatgpt_academic into dev 2023-03-31 20:04:11 +08:00
Your Name
fa7464ae44 config新增说明 2023-03-31 20:02:12 +08:00
binary-husky
e5cc1eacd7 Merge pull request #194 from fulyaec/enhance-chataca
修改AUTHENTICATION的判断,使得AUTHENTICATION为None/[]/""时都可以正确判断
2023-03-31 19:49:40 +08:00
Your Name
60506eff9f revert toolbox 2023-03-31 19:46:01 +08:00
Your Name
b655feedde Merge branch 'enhance-chataca' of https://github.com/fulyaec/chatgpt_academic into fulyaec-enhance-chataca 2023-03-31 19:45:23 +08:00
binary-husky
e04d57cddd Merge pull request #198 from oneLuckyman/feature-match-API_KEY
一个小改进:更精准的 API_KEY 确认机制
2023-03-31 19:28:21 +08:00
Your Name
739cec9ab9 Merge remote-tracking branch 'origin/hot-reload-test' 2023-03-31 19:21:15 +08:00
Jia Xinglong
0b03c797bc 使用 re 模块的 match 函数可以更精准的匹配和确认 API_KEY 是否正确 2023-03-31 17:38:39 +08:00
fulyaec
cec44805a5 refactor and enhance 2023-03-31 16:24:40 +08:00
binary-husky
a88a42799f Update main.py 2023-03-31 13:33:03 +08:00
binary-husky
36890a14bf Update README.md 2023-03-31 13:29:37 +08:00
binary-husky
dca98d404b Update README.md 2023-03-31 13:11:10 +08:00
欧玮杰
db8c8afd74 fix(the ".PDF" file can not be recognized): 2023-03-31 10:26:40 +08:00
欧玮杰
125fa7c378 fix(fix "gbk" encode error in 批量总结PDF文档 line14):
由于不可编码字符,导致报错,添加软解码,处理原始文本。
2023-03-31 10:03:10 +08:00
欧玮杰
285fa4690c feature(read pdf paper then write summary):
add a func called readPdf in toolbox, which can read pdf paper to str. then use bs4.BeautifulSoup to clean content.
2023-03-31 00:54:01 +08:00
binary-husky
380bfe6984 Merge pull request #171 from RoderickChan/add-deploy-instruction
在README中添加远程部署的指导
2023-03-31 00:00:35 +08:00
binary-husky
badf4090c5 Update README.md 2023-03-30 23:59:01 +08:00
binary-husky
a3d179c2fa Update README.md 2023-03-30 23:34:17 +08:00
RoderickChan
9564a5e113 在README中添加远程部署的指导方案 2023-03-30 23:31:44 +08:00
JasonGuo1
ac4fce05cf feat(总结word文档):增加读取docx、doc格式的功能 2023-03-30 23:23:41 +08:00
binary-husky
fda48fd37d 添加Wiki链接 2023-03-30 23:09:45 +08:00
JasonGuo1
44e77dc741 feat(toolbox):调整了空格的问题 2023-03-30 20:28:15 +08:00
binary-husky
5d03dd37d2 Merge pull request #151 from SadPencil/patch-1
Fix a typo
2023-03-30 19:14:48 +08:00
qingxu fu
ba0c17ba53 自译解报告 2023-03-30 18:21:17 +08:00
qingxu fu
cd421d8074 Merge branch 'hot-reload-test' of https://github.com/binary-husky/chatgpt_academic into hot-reload-test 2023-03-30 18:05:03 +08:00
qingxu fu
363e45508b 新增热更新功能 2023-03-30 18:04:20 +08:00
qingxu fu
b073477905 新增热更新功能 2023-03-30 18:01:06 +08:00
Sad Pencil
743d18cd98 Fix a typo 2023-03-30 15:55:46 +08:00
JasonGuo1
80e0c4e388 feat(toolbox): 支持rar格式与7z格式解压,修改了下注释 2023-03-30 15:48:55 +08:00
JasonGuo1
6d8c8cd3f0 feat(toolbox): 支持rar格式与7z格式解压,修改了下注释 2023-03-30 15:48:00 +08:00
JasonGuo1
d57d529aa1 feat(toolbox): 支持rar格式与7z格式解压,修改了下注释 2023-03-30 15:47:18 +08:00
JasonGuo1
e470ee1f7f feat(toolbox): 支持rar格式与7z格式解压,修改了下注释 2023-03-30 15:45:58 +08:00
JasonGuo1
a360cd7e74 feat(支持rar格式与7z格式解压) 2023-03-30 15:24:01 +08:00
binary-husky
16ce033d86 Update README.md 2023-03-30 14:48:46 +08:00
binary-husky
81b0118730 Update README.md 2023-03-30 14:48:20 +08:00
binary-husky
35847e4ec4 Update README.md 2023-03-30 14:47:19 +08:00
binary-husky
1f7f71c6b9 Update README.md 2023-03-30 14:08:24 +08:00
binary-husky
06a04f14d8 Update README.md 2023-03-30 13:24:30 +08:00
binary-husky
c21bdaae52 Merge pull request #124 from Freddd13/master
feat: 添加wsl2使用windows proxy的方法
2023-03-30 12:56:13 +08:00
qingxu fu
44155bcc24 查找语法错误之前先清除换行符 2023-03-30 12:52:28 +08:00
qingxu fu
4d02ea9863 语法错误查找prompt更新 2023-03-30 12:16:18 +08:00
qingxu fu
82742f3ea5 up 2023-03-30 11:51:55 +08:00
qingxu fu
6dd83fb1b4 标准化代码格式 2023-03-30 11:50:11 +08:00
qingxu fu
2bf30d8a1e 修改配置的读取方式 2023-03-30 11:05:38 +08:00
Freddd13
0b1f351cba update: 修改readme 2023-03-30 02:00:15 +08:00
Freddd13
0975b60c72 Merge remote-tracking branch 'upstream/master' 2023-03-30 01:58:39 +08:00
Freddd13
e3d763acff feat: 支持wsl2使用windows proxy 2023-03-30 01:47:39 +08:00
Your Name
51c612920d Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-03-30 00:15:37 +08:00
Your Name
bfdc2dee9a change UI layout 2023-03-30 00:15:31 +08:00
binary-husky
3c5122b529 Update README.md 2023-03-30 00:09:58 +08:00
Xiaoming Bai
97cd98d5a2 better prompt 2023-03-30 00:06:02 +08:00
binary-husky
bd4bf71c4b Update README.md 2023-03-29 23:53:33 +08:00
binary-husky
9598029620 Update README.md 2023-03-29 23:50:20 +08:00
binary-husky
d6e4fc27ad Update README.md 2023-03-29 23:48:58 +08:00
binary-husky
e4b3523947 Update README.md 2023-03-29 23:44:37 +08:00
binary-husky
ad75886941 Update README.md 2023-03-29 23:44:01 +08:00
binary-husky
83fef07f58 Merge pull request #108 from sjiang95/condainstall
readme: update
2023-03-29 23:22:44 +08:00
Your Name
3134e13d87 Merge branch 'dev' 2023-03-29 23:15:29 +08:00
binary-husky
48cc477e48 Merge pull request #102 from ValeriaWong/master
feat(读文章写摘要):支持pdf文件批量阅读及总结 #101
2023-03-29 23:14:12 +08:00
Your Name
77e34565e6 change UI layout 2023-03-29 23:04:37 +08:00
Your Name
dc4fe3f8c2 change ui layout 2023-03-29 23:00:16 +08:00
Your Name
4698ec6b98 Merge https://github.com/ValeriaWong/chatgpt_academic into ValeriaWong-master 2023-03-29 21:49:56 +08:00
Your Name
a6c4b8d764 add pip package check 2023-03-29 21:47:56 +08:00
Your Name
92d4400d19 Merge branch 'master' of https://github.com/ValeriaWong/chatgpt_academic 2023-03-29 21:44:59 +08:00
Shengjiang Quan
11c641748f readme: update
Re-format a part of the markdown content
and add conda instruction for installation.

Signed-off-by: Shengjiang Quan <qsj287068067@126.com>
2023-03-29 22:36:15 +09:00
ValeriaWong
6867c5eed4 Merge branch 'master' of https://github.com/ValeriaWong/chatgpt_academic 2023-03-29 21:05:25 +08:00
ValeriaWong
5c6d272950 Merge branch 'binary-husky:master' into master 2023-03-29 20:57:07 +08:00
ValeriaWong
0f28564fea feat(读文章写摘要):支持pdf文件批量阅读及总结 #101 2023-03-29 20:55:13 +08:00
binary-husky
403dd2fa59 Update main.py 2023-03-29 20:47:34 +08:00
Your Name
3ac330dff1 bug quick fix 2023-03-29 20:41:07 +08:00
binary-husky
cbcdd39239 Merge pull request #82 from Okabe-Rintarou-0/master
支持暂停按钮 #53
2023-03-29 20:38:06 +08:00
Your Name
e79b0c0835 提交后不清空输入栏,添加停止键 2023-03-29 20:36:58 +08:00
Your Name
730cd1e0e3 Merge branch 'master' of https://github.com/Okabe-Rintarou-0/chatgpt_academic into Okabe-Rintarou-0-master 2023-03-29 20:26:13 +08:00
Your Name
c78254cd86 Merge branch 'master' of https://github.com/Okabe-Rintarou-0/chatgpt_academic into Okabe-Rintarou-0-master 2023-03-29 20:07:38 +08:00
Your Name
23776b90b9 handle ip location lookup error 2023-03-29 19:37:39 +08:00
binary-husky
8849095776 Merge pull request #87 from Okabe-Rintarou-0/fix-markdown-display
正确显示多行输入的 markdown #84
2023-03-29 19:32:19 +08:00
binary-husky
8f60e962de Merge pull request #96 from eltociear/patch-1
fix typo in predict.py
2023-03-29 18:47:51 +08:00
Your Name
b100680f72 新增代理配置说明 2023-03-29 18:07:33 +08:00
Ikko Eltociear Ashimine
5d22785e5a fix typo in predict.py
refleshing -> refreshing
2023-03-29 18:57:37 +09:00
ValeriaWong
3f635bc4aa feat(读文章写摘要):支持pdf文件批量阅读及总结 2023-03-29 17:57:17 +08:00
Your Name
17abd29d50 error message change 2023-03-29 16:50:37 +08:00
Your Name
4699395425 dev 2023-03-29 16:47:15 +08:00
okabe
33adfc35df fix: markdown display bug #84 2023-03-29 15:29:40 +08:00
okabe
4b21ebdba6 feat: support stop generate button (#53) 2023-03-29 14:53:53 +08:00
Your Name
17d9a060d8 fix directory return bug 2023-03-29 14:28:57 +08:00
Your Name
7d5aaa5aee update comments 2023-03-29 14:16:59 +08:00
505030475
67215bcec5 修复变量名 2023-03-29 13:58:30 +08:00
505030475
e381dce78c Merge remote-tracking branch 'origin/test-3-29' 2023-03-29 13:44:57 +08:00
505030475
4d70bc0288 config comments 2023-03-29 13:43:07 +08:00
binary-husky
c90391a902 Update README.md 2023-03-29 13:38:43 +08:00
binary-husky
4e06c350bf Merge pull request #57 from GaiZhenbiao/master
Adding a bunch of nice-to-have features
2023-03-29 13:37:58 +08:00
Your Name
3981555466 Merge branch 'test-3-29' of github.com:binary-husky/chatgpt_academic into test-3-29 2023-03-29 12:29:52 +08:00
Your Name
403d66c3c2 优化Unsplash API的使用 2023-03-29 12:28:45 +08:00
Your Name
6ed2b259db 优化Unsplash API的使用 2023-03-29 12:27:47 +08:00
Your Name
2bedba2e17 历史上的今天,带图片 2023-03-29 12:21:47 +08:00
Your Name
ebf365841e 更新一个更有意思的模板函数 2023-03-29 11:36:55 +08:00
Your Name
e76d8cfbc2 [实验] 历史上的今天(高级函数demo) 2023-03-29 11:34:03 +08:00
Your Name
71d2f01685 bug fix 2023-03-29 01:42:11 +08:00
Your Name
6f1e9b63c2 change description 2023-03-29 01:39:15 +08:00
Your Name
d0e3ca7671 更好的多线程交互性 2023-03-29 01:32:28 +08:00
Your Name
61b4ea6d1b introduce project self-translation 2023-03-29 01:11:53 +08:00
Tuchuanhuhuhu
1805f081d3 增加“重置”按钮,提交之后自动清空输入框 2023-03-28 23:33:19 +08:00
Tuchuanhuhuhu
17c6524b8d temprature的取值范围为[0, 2] 2023-03-28 23:20:54 +08:00
Tuchuanhuhuhu
c7e1b86b52 增加并行处理与权限控制 2023-03-28 23:17:12 +08:00
Your Name
51bde973a1 simplify codes 2023-03-28 23:09:25 +08:00
Chuan Hu
954bc36d76 Improve the way to open webbrowser 2023-03-28 22:47:30 +08:00
Your Name
c06c60b977 界面色彩自定义 2023-03-28 22:35:55 +08:00
Your Name
b9f1a89812 explain color and theme 2023-03-28 22:31:43 +08:00
Your Name
67d1d88ebd Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-03-28 22:25:27 +08:00
Your Name
9ac1068f56 remove .vscode from git 2023-03-28 22:24:59 +08:00
Your Name
9a1d4a0d72 update todo 2023-03-28 22:10:22 +08:00
Your Name
043a9ea068 fix unicode bug 2023-03-28 20:31:44 +08:00
binary-husky
256e61b64d Merge pull request #46 from mambaHu/master
Markdown analysis report garbled issue
2023-03-28 20:04:01 +08:00
luca hu
b9f2792983 improving garbled words issue with utf8 2023-03-28 19:34:18 +08:00
binary-husky
28cd1dbf98 Delete jpeg-compressor.tps 2023-03-28 17:21:14 +08:00
binary-husky
e1ee65eb66 Delete JpegLibrary.tps 2023-03-28 17:21:06 +08:00
binary-husky
d19127b5a9 Delete UElibJPG.Build.cs 2023-03-28 17:20:54 +08:00
505030475
2cb1effd45 theme 2023-03-28 12:59:31 +08:00
505030475
7b48bdf880 o 2023-03-28 12:53:05 +08:00
binary-husky
8f7d9ad2d7 Update README.md 2023-03-28 01:36:15 +08:00
binary-husky
6ef2280281 Update README.md 2023-03-28 01:13:55 +08:00
Your Name
d26fa46b27 http post error show 2023-03-27 18:25:07 +08:00
Your Name
da19fa1992 bug fix 2023-03-27 15:16:50 +08:00
Your Name
ab05cf6a01 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-03-27 15:14:12 +08:00
Your Name
d08edf7801 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-03-27 15:14:05 +08:00
binary-husky
fab0c5dd63 Update README.md 2023-03-27 15:09:02 +08:00
binary-husky
cefd025700 Update README.md 2023-03-27 15:01:49 +08:00
binary-husky
e0aa6389cf Update README.md 2023-03-27 15:01:07 +08:00
binary-husky
e2618a0d3e Update README.md 2023-03-27 14:57:12 +08:00
binary-husky
39dde3b803 Update README.md 2023-03-27 14:56:32 +08:00
binary-husky
ec41c1e9f3 Update README.md 2023-03-27 14:56:20 +08:00
binary-husky
098eff8c68 Update README.md 2023-03-27 14:56:03 +08:00
Your Name
127588c624 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-03-27 14:53:46 +08:00
Your Name
e341596d4b up 2023-03-27 14:51:05 +08:00
binary-husky
84dd6084cf Update README.md 2023-03-27 14:47:52 +08:00
binary-husky
5ab4ba2db2 Update README.md 2023-03-27 14:45:32 +08:00
binary-husky
d9686ef25e Update README.md 2023-03-27 13:47:08 +08:00
binary-husky
01e42acfe4 Update README.md 2023-03-27 13:45:08 +08:00
Your Name
9de97da5e3 UI change 2023-03-27 13:24:29 +08:00
Your Name
81741bc3f6 file IO 2023-03-27 13:01:22 +08:00
qingxu fu
9c5cf2b1f7 localFileToRemote 2023-03-27 11:29:11 +08:00
Your Name
6bc7f95633 Merge branch 'test-3-26' 2023-03-26 20:21:39 +08:00
binary-husky
29c1c898ba Merge pull request #10 from ifyz/patch-1
Update main.py
2023-03-26 20:21:14 +08:00
Your Name
79914bb6aa fix dockerfile 2023-03-26 20:18:55 +08:00
binary-husky
56bf460c97 Update main.py 2023-03-26 20:11:44 +08:00
Your Name
c22b4c39a2 UI 2023-03-26 20:10:14 +08:00
Your Name
6d55c4fbe1 调整样式 2023-03-26 20:04:59 +08:00
Your Name
f76ec644bf up 2023-03-26 19:32:04 +08:00
Your Name
66dfd11efe Merge branch 'ifyz-patch-1' into test-3-26 2023-03-26 19:14:49 +08:00
Your Name
d4a3566b21 Merge branch 'patch-1' of https://github.com/ifyz/chatgpt_academic into ifyz-patch-1 2023-03-26 19:14:27 +08:00
Your Name
f04d9755bf add comments 2023-03-26 19:13:58 +08:00
ifyz
bb8b0567ac Update main.py
使用全局变量,禁用Gradio 的分析功能。解决国内用户因调用GoogleAnalytics导致的加载缓慢。
使用本地字体,修改Gradio默认从Googleapis调用字体。从而解决用户由于国内网络环境打开首页缓慢的问题。
2023-03-26 17:11:58 +08:00
ifyz
dc58745f4c Update main.py
使用本地字体,修改Gradio默认从Googleapis调用字体。从而解决用户由于国内网络环境打开首页缓慢的问题。
2023-03-26 15:48:16 +08:00
qingxu fu
6505fea0b7 Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-03-24 21:03:33 +08:00
binary-husky
652a153b3c Update README.md 2023-03-24 21:03:09 +08:00
binary-husky
877283ec05 Update README.md 2023-03-24 21:02:02 +08:00
qingxu fu
5772fae7c5 trim button text 2023-03-24 20:56:34 +08:00
binary-husky
d6ced8bfac Update predict.py 2023-03-24 19:54:52 +08:00
binary-husky
f138b13024 Update .gitattributes 2023-03-24 19:51:52 +08:00
binary-husky
c31f63cf6c Update .gitattributes 2023-03-24 19:50:54 +08:00
binary-husky
922fdc3c50 Create .gitattributes 2023-03-24 19:49:58 +08:00
Your Name
6e593fd678 测试实验性功能 使用说明 2023-03-24 19:47:37 +08:00
Your Name
57996bf005 update readme 2023-03-24 19:42:21 +08:00
binary-husky
7cb01f2379 Update README.md 2023-03-24 19:38:33 +08:00
Your Name
1def3cecfa source 2023-03-24 19:37:47 +08:00
Your Name
8f739cfcdd remote additional file 2023-03-24 19:35:13 +08:00
Your Name
54cd677d27 move images 2023-03-24 19:34:21 +08:00
binary-husky
7f3b7221fd Update README.md 2023-03-24 19:20:43 +08:00
Your Name
667cefe391 push 2023-03-24 19:10:34 +08:00
binary-husky
e32ae33965 Update README.md 2023-03-24 19:04:55 +08:00
binary-husky
1f9c90f0e0 Update README.md 2023-03-24 19:03:03 +08:00
Your Name
b017a3d167 fix count down error 2023-03-24 18:53:43 +08:00
Your Name
8b4b30a846 beta 2023-03-24 18:47:45 +08:00
Your Name
d29f72ce10 bug fix 2023-03-24 18:08:48 +08:00
Your Name
7186d9b17e 模块化封装 2023-03-24 18:04:59 +08:00
Your Name
86924fffa5 up 2023-03-24 16:34:48 +08:00
Your Name
fedc748e17 用gpt给自己生成注释 2023-03-24 16:25:40 +08:00
Your Name
273e8f38d9 muban 2023-03-24 16:22:26 +08:00
Your Name
7187f079c8 易读性+ 2023-03-24 16:17:01 +08:00
Your Name
77408f795e 批量生成函数注释 2023-03-24 16:14:25 +08:00
Your Name
32f36a609e 生成文本报告 2023-03-24 15:42:09 +08:00
Your Name
93c13aa97a better traceback 2023-03-24 15:25:14 +08:00
Your Name
f238a34bb0 增加读latex文章的功能,添加测试样例 2023-03-24 14:56:57 +08:00
Your Name
644c287a24 Merge remote-tracking branch 'origin/master' into test-3-24 2023-03-24 13:29:37 +08:00
Your Name
abd9077cd2 设置及时响应 2023-03-24 13:28:12 +08:00
Your Name
fa22df9cb6 update 2023-03-24 13:12:25 +08:00
binary-husky
3f559ec4cb Update functional_crazy.py 2023-03-24 13:11:41 +08:00
binary-husky
c9abcef3e5 Update functional_crazy.py 2023-03-24 13:06:42 +08:00
binary-husky
36b3c70b25 Update functional_crazy.py 2023-03-24 13:06:34 +08:00
binary-husky
1ac203195f Update functional_crazy.py 2023-03-24 13:02:47 +08:00
qingxu fu
1c937edcb1 Merge branch 'master' of github.com:binary-husky/chatgpt_academic into master 2023-03-24 11:43:24 +08:00
qingxu fu
248e18e2ba auto retry 2023-03-24 11:42:39 +08:00
binary-husky
86cd069ca7 Update README.md 2023-03-24 00:43:33 +08:00
binary-husky
2e67b516d9 Update README.md 2023-03-23 22:15:31 +08:00
binary-husky
7c20e79c01 Update predict.py 2023-03-23 22:13:09 +08:00
binary-husky
4a2c3eec10 Update README.md 2023-03-23 17:03:08 +08:00
Your Name
09ae862403 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-03-23 00:35:01 +08:00
Your Name
ac2c8cab1f 正确地显示requests错误 2023-03-23 00:34:55 +08:00
binary-husky
1f0c4b1454 Update README.md 2023-03-23 00:20:39 +08:00
binary-husky
b1a6cfb799 Update README.md 2023-03-23 00:15:44 +08:00
binary-husky
b3a67b84b9 Update README.md 2023-03-22 22:52:15 +08:00
Your Name
513d62570f Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-03-22 22:42:56 +08:00
Your Name
5a9aa65f49 bug fix 2023-03-22 22:42:50 +08:00
Your Name
e39c511444 程序自解析功能 2023-03-22 22:37:14 +08:00
binary-husky
6781279019 Update README.md 2023-03-22 22:34:15 +08:00
binary-husky
3f6ddf85e9 Update README.md 2023-03-22 20:47:28 +08:00
binary-husky
1a301e0133 Update README.md 2023-03-22 20:06:09 +08:00
binary-husky
32824f3736 Update README.md 2023-03-22 20:02:03 +08:00
binary-husky
604ba40bdb Update README.md 2023-03-22 19:58:10 +08:00
binary-husky
889b719b09 私密配置
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
2023-03-22 19:49:45 +08:00
binary-husky
a5c122b309 借鉴github.com/GaiZhenbiao/ChuanhuChatGPT项目 2023-03-22 19:47:49 +08:00
binary-husky
e5b7613fc5 from github.com/polarwinkel/mdtex2html 2023-03-22 19:46:08 +08:00
binary-husky
1c4e853484 Update README.md 2023-03-22 19:39:02 +08:00
binary-husky
adbcc22a64 Update README.md 2023-03-22 19:36:39 +08:00
binary-husky
d4434219cd Update README.md 2023-03-22 19:35:34 +08:00
binary-husky
3ea231ee5d Update README.md 2023-03-22 19:33:26 +08:00
binary-husky
2881e080f7 修复gradio不吃代理的问题 2023-03-22 19:22:42 +08:00
qingxu fu
a287230baa add private conf 2023-03-22 17:54:15 +08:00
qingxu fu
37f4544e0f upload 2023-03-22 17:48:25 +08:00
qingxu fu
2a6b17ed5e 代理位置 2023-03-22 17:45:10 +08:00
qingxu fu
98f37e9ea7 upload 2023-03-22 17:35:23 +08:00
qingxu fu
85ff193e53 logging 2023-03-22 17:32:48 +08:00
qingxu fu
54914358c7 fix logging encoding 2023-03-22 17:30:30 +08:00
qingxu fu
1fa9a79c3d add proxy debug funtion 2023-03-22 17:25:37 +08:00
binary-husky
dfa76157c8 Update README.md 2023-03-22 16:09:37 +08:00
binary-husky
0382ae2c72 Update predict.py 2023-03-21 21:24:38 +08:00
binary-husky
8ce9266733 Update README.md 2023-03-21 17:53:40 +08:00
binary-husky
7103ffcdf3 Update README.md 2023-03-21 17:53:04 +08:00
binary-husky
3a2511ec1a Update README.md 2023-03-21 15:49:52 +08:00
505030475
787b5be7af ok 2023-03-21 13:53:24 +08:00
binary-husky
2f94951996 Update README.md 2023-03-21 13:45:08 +08:00
505030475
5066fc8757 add deploy method for windows 2023-03-21 13:35:53 +08:00
binary-husky
4afc7b3dda Update README.md 2023-03-20 18:56:09 +08:00
binary-husky
1faffeca49 Update README.md 2023-03-20 18:55:06 +08:00
Your Name
5092e710c5 readme 2023-03-20 18:39:48 +08:00
共有 37 个文件被更改,包括 2488 次插入666 次删除

查看文件

@@ -7,11 +7,17 @@ assignees: ''
---
**Describe the bug 简述**
- **(1) Describe the bug 简述**
**Screen Shot 截图**
**Terminal Traceback 终端traceback如果有**
- **(2) Screen Shot 截图**
- **(3) Terminal Traceback 终端traceback如有**
- **(4) Material to Help Reproduce Bugs 帮助我们复现的测试材料样本(如有)**
Before submitting an issue 提交issue之前

5
.gitignore vendored
查看文件

@@ -55,6 +55,7 @@ coverage.xml
*.pot
github
.github
.idea/
TEMP
TRASH
@@ -132,6 +133,7 @@ dmypy.json
.pyre/
.vscode
.idea
history
ssr_conf
@@ -140,4 +142,5 @@ gpt_log
private.md
private_upload
other_llms
cradle.py
cradle*
debug*

查看文件

@@ -4,10 +4,11 @@ RUN echo '[global]' > /etc/pip.conf && \
echo 'index-url = https://mirrors.aliyun.com/pypi/simple/' >> /etc/pip.conf && \
echo 'trusted-host = mirrors.aliyun.com' >> /etc/pip.conf
RUN pip3 install gradio requests[socks] mdtex2html
COPY . /gpt
WORKDIR /gpt
COPY requirements.txt .
RUN pip3 install -r requirements.txt
COPY . .
CMD ["python3", "main.py"]
CMD ["python3", "-u", "main.py"]

查看文件

@@ -1,20 +1,16 @@
# ChatGPT 学术优化
**如果喜欢这个项目,请给它一个Star;如果你发明了更好用的快捷键或函数插件,欢迎发issue或者pull requestsdev分支**
**如果喜欢这个项目,请给它一个Star;如果你发明了更好用的快捷键或函数插件,欢迎发issue或者pull requests**
If you like this project, please give it a Star. If you've come up with more useful academic shortcuts or functional plugins, feel free to open an issue or pull request to `dev` branch.
If you like this project, please give it a Star. If you've come up with more useful academic shortcuts or functional plugins, feel free to open an issue or pull request. We also have a [README in English](img/README_EN.md) translated by this project itself.
> **Note**
>
> 1.请注意只有红颜色标识的函数插件(按钮)才支持读取文件。目前对pdf/word格式文件的支持插件正在逐步完善中,需要更多developer的帮助。
> 1.请注意只有**红颜色**标识的函数插件(按钮)才支持读取文件,部分插件位于插件区的**下拉菜单**中。另外我们以**最高优先级**欢迎和处理任何新插件的PR
>
> 2.本项目中每个文件的功能都在自译解[`self_analysis.md`](https://github.com/binary-husky/chatgpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A)详细说明。随着版本的迭代,您也可以随时自行点击相关函数插件,调用GPT重新生成项目的自我解析报告。常见问题汇总在[`wiki`](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98)当中。
>
> 3.如果您不太习惯部分中文命名的函数、注释或者界面,您可以随时点击相关函数插件,调用ChatGPT一键生成纯英文的项目源代码。
>
> 4.项目使用OpenAI的gpt-3.5-turbo模型,期待gpt-4早点放宽门槛😂
<div align="center">
@@ -26,58 +22,61 @@ If you like this project, please give it a Star. If you've come up with more use
[自定义快捷键](https://www.bilibili.com/video/BV14s4y1E7jN) | 支持自定义快捷键
[配置代理服务器](https://www.bilibili.com/video/BV1rc411W7Dr) | 支持配置代理服务器
模块化设计 | 支持自定义高阶的实验性功能与[函数插件],插件支持[热更新](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[自我程序剖析](https://www.bilibili.com/video/BV1cj411A7VW) | [函数插件] 一键读懂本项目的源代码
[程序剖析](https://www.bilibili.com/video/BV1cj411A7VW) | [函数插件] 一键可以剖析其他Python/C/C++/Java项目树
[自我程序剖析](https://www.bilibili.com/video/BV1cj411A7VW) | [函数插件] [一键读懂](https://github.com/binary-husky/chatgpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A)本项目的源代码
[程序剖析](https://www.bilibili.com/video/BV1cj411A7VW) | [函数插件] 一键可以剖析其他Python/C/C++/Java/Lua/...项目树
读论文 | [函数插件] 一键解读latex论文全文并生成摘要
Latex全文翻译、润色 | [函数插件] 一键翻译或润色latex论文
批量注释生成 | [函数插件] 一键批量生成函数注释
chat分析报告生成 | [函数插件] 运行后自动生成总结汇报
[arxiv小助手](https://www.bilibili.com/video/BV1LM4y1279X) | [函数插件] 输入arxiv文章url即可一键翻译摘要+下载PDF
[PDF论文全文翻译功能](https://www.bilibili.com/video/BV1KT411x7Wn) | [函数插件] PDF论文提取题目&摘要+翻译全文(多线程)
公式显示 | 可以同时显示公式的tex形式和渲染形式
图片显示 | 可以在markdown中显示图片
[谷歌学术统合小助手](https://www.bilibili.com/video/BV19L411U7ia) | [函数插件] 给定任意谷歌学术搜索页面URL,让gpt帮你选择有趣的文章
公式/图片/表格显示 | 可以同时显示公式的tex形式和渲染形式,支持公式、代码高亮
多线程函数插件支持 | 支持多线调用chatgpt,一键处理海量文本或程序
支持GPT输出的markdown表格 | 可以输出支持GPT的markdown表格
启动暗色gradio[主题](https://github.com/binary-husky/chatgpt_academic/issues/173) | 在浏览器url后面添加```/?__dark-theme=true```可以切换dark主题
[多LLM模型](https://www.bilibili.com/video/BV1EM411K7VH/)支持([v3.1分支](https://github.com/binary-husky/chatgpt_academic/tree/v3.1) | 同时被ChatGPT和[清华ChatGLM](https://github.com/THUDM/ChatGLM-6B)伺候的感觉一定会很不错吧?
兼容[TGUI](https://github.com/oobabooga/text-generation-webui)接入更多样的语言模型 | 接入opt-1.3b, galactica-1.3b等模型([v3.1分支](https://github.com/binary-husky/chatgpt_academic/tree/v3.0)测试中)
huggingface免科学上网[在线体验](https://huggingface.co/spaces/qingxu98/gpt-academic) | 登陆huggingface后复制[此空间](https://huggingface.co/spaces/qingxu98/gpt-academic)
…… | ……
</div>
<!-- - 新界面master主分支, 右dev开发前沿 -->
- 新界面
- 新界面修改config.py中的LAYOUT选项即可实现“左右布局”和“上下布局”的切换
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230361456-61078362-a966-4eb5-b49e-3c62ef18b860.gif" width="700" >
</div>
- 所有按钮都通过读取functional.py动态生成,可随意加自定义功能,解放粘贴板
<div align="center">
<img src="img/公式.gif" width="700" >
<img src="https://user-images.githubusercontent.com/96192199/231975334-b4788e91-4887-412f-8b43-2b9c5f41d248.gif" width="700" >
</div>
- 润色/纠错
<div align="center">
<img src="img/润色.gif" width="700" >
</div>
- 支持GPT输出的markdown表格
<div align="center">
<img src="img/demo2.jpg" width="500" >
<img src="https://user-images.githubusercontent.com/96192199/231980294-f374bdcb-3309-4560-b424-38ef39f04ebd.gif" width="700" >
</div>
- 如果输出包含公式,会同时以tex形式和渲染形式显示,方便复制和阅读
<div align="center">
<img src="img/demo.jpg" width="500" >
<img src="https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700" >
</div>
- 懒得看项目代码?整个工程直接给chatgpt炫嘴里
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700" >
</div>
- 多种大语言模型混合调用ChatGLM + OpenAI-GPT3.5 + [API2D](https://api2d.com/)-GPT4, [v3.1分支](https://github.com/binary-husky/chatgpt_academic/tree/v3.1)测试中)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700" >
</div>
v3.1的[huggingface测试版](https://huggingface.co/spaces/qingxu98/academic-chatgpt-beta)huggingface版不支持chatglm
## 直接运行 (Windows, Linux or MacOS)
### 1. 下载项目
@@ -159,15 +158,15 @@ input区域 输入 ./crazy_functions/test_project/python/dqn , 然后点击 "[
```
## 其他部署方式
- 远程云服务器部署
请访问[部署wiki-2](https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
- 使用WSL2Windows Subsystem for Linux 子系统)
请访问[部署wiki-1](https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
- nginx远程部署
请访问[部署wiki-2](https://github.com/binary-husky/chatgpt_academic/wiki/%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E7%9A%84%E6%8C%87%E5%AF%BC)
## 自定义新的便捷按钮(学术快捷键自定义)
打开functional.py,添加条目如下,然后重启程序即可。如果按钮已经添加成功并可见,那么前缀、后缀都支持热修改,无需重启程序即可生效。
任意文本编辑器打开`core_functional.py`,添加条目如下,然后重启程序即可。(如果按钮已经添加成功并可见,那么前缀、后缀都支持热修改,无需重启程序即可生效。)
例如
```
"超级英译中": {
@@ -185,7 +184,7 @@ input区域 输入 ./crazy_functions/test_project/python/dqn , 然后点击 "[
</div>
如果你发明了更好用的学术快捷键,欢迎发issue或者pull requests
如果你发明了更好用的快捷键,欢迎发issue或者pull requests
## 配置代理
### 方法一:常规方法
@@ -203,7 +202,7 @@ python check_proxy.py
### 方法二:纯新手教程
[纯新手教程](https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BB%A3%E7%90%86%E8%BD%AF%E4%BB%B6%E9%97%AE%E9%A2%98%E7%9A%84%E6%96%B0%E6%89%8B%E8%A7%A3%E5%86%B3%E6%96%B9%E6%B3%95%EF%BC%88%E6%96%B9%E6%B3%95%E5%8F%AA%E9%80%82%E7%94%A8%E4%BA%8E%E6%96%B0%E6%89%8B%EF%BC%89)
## 兼容性测试
## 功能测试
### 图片显示:
@@ -258,13 +257,10 @@ python check_proxy.py
## Todo 与 版本规划:
- version 3 (Todo):
- - 支持gpt4和其他更多llm
- version 2.3+ (Todo):
- - 总结大工程源代码时文本过长、token溢出的问题
- - 实现项目打包部署
- - 函数插件参数接口优化
- - 自更新
- version 3.0 (Todo): 优化对chatglm和其他小型llm的支持
- version 2.6: 重构了插件结构,提高了交互性,加入更多插件
- version 2.5: 自更新,解决总结大工程源代码时文本过长、token溢出的问题
- version 2.4: (1)新增PDF全文翻译功能; (2)新增输入区切换位置的功能; (3)新增垂直布局选项; (4)多线程函数插件优化。
- version 2.3: 增强多线程交互性
- version 2.2: 函数插件支持热重载
- version 2.1: 可折叠式布局
@@ -280,8 +276,7 @@ python check_proxy.py
# 借鉴项目1借鉴了ChuanhuChatGPT中读取OpenAI json的方法、记录历史问询记录的方法以及gradio queue的使用技巧
https://github.com/GaiZhenbiao/ChuanhuChatGPT
# 借鉴项目2借鉴了mdtex2html中公式处理的方法
https://github.com/polarwinkel/mdtex2html
# 借鉴项目2
https://github.com/THUDM/ChatGLM-6B
```

查看文件

@@ -20,31 +20,118 @@ def check_proxy(proxies):
return result
def auto_update():
def backup_and_download(current_version, remote_version):
"""
一键更新协议:备份和下载
"""
from toolbox import get_conf
import shutil
import os
import requests
import time
import json
import zipfile
os.makedirs(f'./history', exist_ok=True)
backup_dir = f'./history/backup-{current_version}/'
new_version_dir = f'./history/new-version-{remote_version}/'
if os.path.exists(new_version_dir):
return new_version_dir
os.makedirs(new_version_dir)
shutil.copytree('./', backup_dir, ignore=lambda x, y: ['history'])
proxies, = get_conf('proxies')
response = requests.get("https://raw.githubusercontent.com/binary-husky/chatgpt_academic/master/version",
proxies=proxies, timeout=1)
remote_json_data = json.loads(response.text)
remote_version = remote_json_data['version']
if remote_json_data["show_feature"]:
new_feature = "新功能:" + remote_json_data["new_feature"]
else:
new_feature = ""
with open('./version', 'r', encoding='utf8') as f:
current_version = f.read()
current_version = json.loads(current_version)['version']
if (remote_version - current_version) >= 0.05:
print(
f'\n新版本可用。新版本:{remote_version},当前版本:{current_version}{new_feature}')
print('Github更新地址:\nhttps://github.com/binary-husky/chatgpt_academic\n')
time.sleep(3)
return
else:
return
r = requests.get(
'https://github.com/binary-husky/chatgpt_academic/archive/refs/heads/master.zip', proxies=proxies, stream=True)
zip_file_path = backup_dir+'/master.zip'
with open(zip_file_path, 'wb+') as f:
f.write(r.content)
dst_path = new_version_dir
with zipfile.ZipFile(zip_file_path, "r") as zip_ref:
for zip_info in zip_ref.infolist():
dst_file_path = os.path.join(dst_path, zip_info.filename)
if os.path.exists(dst_file_path):
os.remove(dst_file_path)
zip_ref.extract(zip_info, dst_path)
return new_version_dir
def patch_and_restart(path):
"""
一键更新协议:覆盖和重启
"""
import distutils
import shutil
import os
import sys
import time
from colorful import print亮黄, print亮绿, print亮红
# if not using config_private, move origin config.py as config_private.py
if not os.path.exists('config_private.py'):
print亮黄('由于您没有设置config_private.py私密配置,现将您的现有配置移动至config_private.py以防止配置丢失,',
'另外您可以随时在history子文件夹下找回旧版的程序。')
shutil.copyfile('config.py', 'config_private.py')
distutils.dir_util.copy_tree(path+'/chatgpt_academic-master', './')
import subprocess
print亮绿('代码已经更新,即将更新pip包依赖……')
for i in reversed(range(5)): time.sleep(1); print(i)
try:
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-r', 'requirements.txt'])
except:
print亮红('pip包依赖安装出现问题,需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
print亮绿('更新完成,您可以随时在history子文件夹下找回旧版的程序,5s之后重启')
print亮红('假如重启失败,您可能需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
print(' ------------------------------ -----------------------------------')
for i in reversed(range(8)): time.sleep(1); print(i)
os.execl(sys.executable, sys.executable, *sys.argv)
def get_current_version():
import json
try:
with open('./version', 'r', encoding='utf8') as f:
current_version = json.loads(f.read())['version']
except:
current_version = ""
return current_version
def auto_update():
"""
一键更新协议:查询版本和用户意见
"""
try:
from toolbox import get_conf
import requests
import time
import json
proxies, = get_conf('proxies')
response = requests.get(
"https://raw.githubusercontent.com/binary-husky/chatgpt_academic/master/version", proxies=proxies, timeout=1)
remote_json_data = json.loads(response.text)
remote_version = remote_json_data['version']
if remote_json_data["show_feature"]:
new_feature = "新功能:" + remote_json_data["new_feature"]
else:
new_feature = ""
with open('./version', 'r', encoding='utf8') as f:
current_version = f.read()
current_version = json.loads(current_version)['version']
if (remote_version - current_version) >= 0.01:
from colorful import print亮黄
print亮黄(
f'\n新版本可用。新版本:{remote_version},当前版本:{current_version}{new_feature}')
print('1Github更新地址:\nhttps://github.com/binary-husky/chatgpt_academic\n')
user_instruction = input('2是否一键更新代码Y+回车=确认,输入其他/无输入+回车=不更新)?')
if user_instruction in ['Y', 'y']:
path = backup_and_download(current_version, remote_version)
try:
patch_and_restart(path)
except:
print('更新失败。')
else:
print('自动更新程序:已禁用')
return
else:
return
except:
print('自动更新程序:已禁用')
if __name__ == '__main__':

91
colorful.py 普通文件
查看文件

@@ -0,0 +1,91 @@
import platform
from sys import stdout
if platform.system()=="Linux":
pass
else:
from colorama import init
init()
# Do you like the elegance of Chinese characters?
def print红(*kw,**kargs):
print("\033[0;31m",*kw,"\033[0m",**kargs)
def print绿(*kw,**kargs):
print("\033[0;32m",*kw,"\033[0m",**kargs)
def print黄(*kw,**kargs):
print("\033[0;33m",*kw,"\033[0m",**kargs)
def print蓝(*kw,**kargs):
print("\033[0;34m",*kw,"\033[0m",**kargs)
def print紫(*kw,**kargs):
print("\033[0;35m",*kw,"\033[0m",**kargs)
def print靛(*kw,**kargs):
print("\033[0;36m",*kw,"\033[0m",**kargs)
def print亮红(*kw,**kargs):
print("\033[1;31m",*kw,"\033[0m",**kargs)
def print亮绿(*kw,**kargs):
print("\033[1;32m",*kw,"\033[0m",**kargs)
def print亮黄(*kw,**kargs):
print("\033[1;33m",*kw,"\033[0m",**kargs)
def print亮蓝(*kw,**kargs):
print("\033[1;34m",*kw,"\033[0m",**kargs)
def print亮紫(*kw,**kargs):
print("\033[1;35m",*kw,"\033[0m",**kargs)
def print亮靛(*kw,**kargs):
print("\033[1;36m",*kw,"\033[0m",**kargs)
def print亮红(*kw,**kargs):
print("\033[1;31m",*kw,"\033[0m",**kargs)
def print亮绿(*kw,**kargs):
print("\033[1;32m",*kw,"\033[0m",**kargs)
def print亮黄(*kw,**kargs):
print("\033[1;33m",*kw,"\033[0m",**kargs)
def print亮蓝(*kw,**kargs):
print("\033[1;34m",*kw,"\033[0m",**kargs)
def print亮紫(*kw,**kargs):
print("\033[1;35m",*kw,"\033[0m",**kargs)
def print亮靛(*kw,**kargs):
print("\033[1;36m",*kw,"\033[0m",**kargs)
print_red = print红
print_green = print绿
print_yellow = print黄
print_blue = print蓝
print_purple = print紫
print_indigo = print靛
print_bold_red = print亮红
print_bold_green = print亮绿
print_bold_yellow = print亮黄
print_bold_blue = print亮蓝
print_bold_purple = print亮紫
print_bold_indigo = print亮靛
if not stdout.isatty():
# redirection, avoid a fucked up log file
print红 = print
print绿 = print
print黄 = print
print蓝 = print
print紫 = print
print靛 = print
print亮红 = print
print亮绿 = print
print亮黄 = print
print亮蓝 = print
print亮紫 = print
print亮靛 = print
print_red = print
print_green = print
print_yellow = print
print_blue = print
print_purple = print
print_indigo = print
print_bold_red = print
print_bold_green = print
print_bold_yellow = print
print_bold_blue = print
print_bold_purple = print
print_bold_indigo = print

查看文件

@@ -19,16 +19,24 @@ if USE_PROXY:
else:
proxies = None
# 多线程函数插件中,默认允许多少路线程同时访问OpenAI。
# Free trial users的限制是每分钟3次,Pay-as-you-go users的限制是每分钟3500次。提高限制请查询
# https://platform.openai.com/docs/guides/rate-limits/overview
DEFAULT_WORKER_NUM = 3
# [step 3]>> 以下配置可以优化体验,但大部分场合下并不需要修改
# 对话窗的高度
CHATBOT_HEIGHT = 1115
# 代码高亮
CODE_HIGHLIGHT = True
# 窗口布局
LAYOUT = "LEFT-RIGHT" # "LEFT-RIGHT"(左右布局) # "TOP-DOWN"(上下布局)
# 发送请求到OpenAI后,等待多久判定为超时
TIMEOUT_SECONDS = 25
TIMEOUT_SECONDS = 30
# 网页的端口, -1代表随机端口
WEB_PORT = -1

查看文件

@@ -56,7 +56,7 @@ def get_core_functions():
"Color": "secondary",
},
"英译中": {
"Prefix": r"翻译成中文:" + "\n\n",
"Prefix": r"翻译成地道的中文:" + "\n\n",
"Suffix": r"",
},
"找图片": {

查看文件

@@ -15,12 +15,11 @@ def get_crazy_functions():
from crazy_functions.解析项目源代码 import 解析一个Rect项目
from crazy_functions.高级功能函数模板 import 高阶功能模板函数
from crazy_functions.代码重写为全英文_多线程 import 全项目切换英文
from crazy_functions.Latex全文润色 import Latex英文润色
from crazy_functions.解析项目源代码 import 解析一个Lua项目
from crazy_functions.解析项目源代码 import 解析一个CSharp项目
function_plugins = {
"请解析并解构此项目本身(源码自译解)": {
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(解析项目本身)
},
"解析整个Python项目": {
"Color": "stop", # 按钮颜色
"Function": HotReload(解析一个Python项目)
@@ -29,7 +28,7 @@ def get_crazy_functions():
"Color": "stop", # 按钮颜色
"Function": HotReload(解析一个C项目的头文件)
},
"解析整个C++项目(.cpp/.h": {
"解析整个C++项目(.cpp/.hpp/.c/.h": {
"Color": "stop", # 按钮颜色
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(解析一个C项目)
@@ -49,6 +48,16 @@ def get_crazy_functions():
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(解析一个Rect项目)
},
"解析整个Lua项目": {
"Color": "stop", # 按钮颜色
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(解析一个Lua项目)
},
"解析整个CSharp项目": {
"Color": "stop", # 按钮颜色
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(解析一个CSharp项目)
},
"读Tex论文写摘要": {
"Color": "stop", # 按钮颜色
"Function": HotReload(读文章写摘要)
@@ -57,14 +66,19 @@ def get_crazy_functions():
"Color": "stop", # 按钮颜色
"Function": HotReload(批量生成函数注释)
},
"[多线程Demo] 解析此项目本身(源码自译解)": {
"Function": HotReload(解析项目本身)
},
"[多线程demo] 把本项目源代码切换成全英文": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(全项目切换英文)
},
"[函数插件模板demo] 历史上的今天": {
"[函数插件模板Demo] 历史上的今天": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Function": HotReload(高阶功能模板函数)
},
}
###################### 第二组插件 ###########################
# [第二组插件]: 经过充分测试,但功能上距离达到完美状态还差一点点
@@ -72,6 +86,13 @@ def get_crazy_functions():
from crazy_functions.批量总结PDF文档pdfminer import 批量总结PDF文档pdfminer
from crazy_functions.总结word文档 import 总结word文档
from crazy_functions.批量翻译PDF文档_多线程 import 批量翻译PDF文档
from crazy_functions.谷歌检索小助手 import 谷歌检索小助手
from crazy_functions.理解PDF文档内容 import 理解PDF文档内容标准文件输入
from crazy_functions.Latex全文润色 import Latex中文润色
from crazy_functions.Latex全文翻译 import Latex中译英
from crazy_functions.Latex全文翻译 import Latex英译中
from crazy_functions.批量Markdown翻译 import Markdown中译英
from crazy_functions.批量Markdown翻译 import Markdown英译中
function_plugins.update({
"批量翻译PDF文档多线程": {
@@ -79,21 +100,69 @@ def get_crazy_functions():
"AsButton": True, # 加入下拉菜单中
"Function": HotReload(批量翻译PDF文档)
},
"[仅供开发调试] 批量总结PDF文档": {
"[测试功能] 批量总结PDF文档": {
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Function": HotReload(批量总结PDF文档)
},
"[仅供开发调试] 批量总结PDF文档pdfminer": {
"[测试功能] 批量总结PDF文档pdfminer": {
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(批量总结PDF文档pdfminer)
},
"谷歌学术检索助手输入谷歌学术搜索页url": {
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(谷歌检索小助手)
},
"批量总结Word文档": {
"Color": "stop",
"Function": HotReload(总结word文档)
},
"理解PDF文档内容 模仿ChatPDF": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(理解PDF文档内容标准文件输入)
},
"[测试功能] 英文Latex项目全文润色输入路径或上传压缩包": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(Latex英文润色)
},
"[测试功能] 中文Latex项目全文润色输入路径或上传压缩包": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(Latex中文润色)
},
"[测试功能] Latex项目全文中译英输入路径或上传压缩包": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(Latex中译英)
},
"[测试功能] Latex项目全文英译中输入路径或上传压缩包": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(Latex英译中)
},
"[测试功能] 批量Markdown中译英输入路径或上传压缩包": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(Markdown中译英)
},
"[测试功能] 批量Markdown英译中输入路径或上传压缩包": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(Markdown英译中)
},
})
###################### 第三组插件 ###########################
@@ -110,6 +179,8 @@ def get_crazy_functions():
except Exception as err:
print(f'[下载arxiv论文并翻译摘要] 插件导入失败 {str(err)}')
###################### 第n组插件 ###########################
return function_plugins

查看文件

@@ -0,0 +1,176 @@
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
fast_debug = False
class PaperFileGroup():
def __init__(self):
self.file_paths = []
self.file_contents = []
self.sp_file_contents = []
self.sp_file_index = []
self.sp_file_tag = []
# count_token
import tiktoken
from toolbox import get_conf
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
self.get_token_num = get_token_num
def run_file_split(self, max_token_limit=1900):
"""
将长文本分离开来
"""
for index, file_content in enumerate(self.file_contents):
if self.get_token_num(file_content) < max_token_limit:
self.sp_file_contents.append(file_content)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
print('Segmentation: done')
def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
import time, os, re
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
pfg = PaperFileGroup()
for index, fp in enumerate(file_manifest):
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
# 定义注释的正则表达式
comment_pattern = r'%.*'
# 使用正则表达式查找注释,并替换为空字符串
clean_tex_content = re.sub(comment_pattern, '', file_content)
# 记录删除注释后的文本
pfg.file_paths.append(fp)
pfg.file_contents.append(clean_tex_content)
# <-------- 拆分过长的latex文件 ---------->
pfg.run_file_split(max_token_limit=1024)
n_split = len(pfg.sp_file_contents)
# <-------- 抽取摘要 ---------->
# if language == 'en':
# abs_extract_inputs = f"Please write an abstract for this paper"
# # 单线,获取文章meta信息
# paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
# inputs=abs_extract_inputs,
# inputs_show_user=f"正在抽取摘要信息。",
# llm_kwargs=llm_kwargs,
# chatbot=chatbot, history=[],
# sys_prompt="Your job is to collect information from materials。",
# )
# <-------- 多线程润色开始 ---------->
if language == 'en':
inputs_array = ["Below is a section from an academic paper, polish this section to meet the academic standard, improve the grammar, clarity and overall readability, do not modify any latex command such as \section, \cite and equations:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"Polish {f}" for f in pfg.sp_file_tag]
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
elif language == 'zh':
inputs_array = [f"以下是一篇学术论文中的一段内容,请将此部分润色以满足学术标准,提高语法、清晰度和整体可读性,不要修改任何LaTeX命令,例如\section,\cite和方程式" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"润色 {f}" for f in pfg.sp_file_tag]
sys_prompt_array=["你是一位专业的中文学术论文作家。" for _ in range(n_split)]
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[[""] for _ in range(n_split)],
sys_prompt_array=sys_prompt_array,
# max_workers=5, # 并行任务数量限制,最多同时执行5个,其他的排队等待
scroller_max_len = 80
)
# <-------- 整理结果,退出 ---------->
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
res = write_results_to_file(gpt_response_collection, file_name=create_report_file_name)
history = gpt_response_collection
chatbot.append((f"{fp}完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@CatchException
def Latex英文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"对整个Latex项目进行润色。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en')
@CatchException
def Latex中文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"对整个Latex项目进行润色。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh')

查看文件

@@ -0,0 +1,176 @@
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
fast_debug = False
class PaperFileGroup():
def __init__(self):
self.file_paths = []
self.file_contents = []
self.sp_file_contents = []
self.sp_file_index = []
self.sp_file_tag = []
# count_token
import tiktoken
from toolbox import get_conf
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
self.get_token_num = get_token_num
def run_file_split(self, max_token_limit=1900):
"""
将长文本分离开来
"""
for index, file_content in enumerate(self.file_contents):
if self.get_token_num(file_content) < max_token_limit:
self.sp_file_contents.append(file_content)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
print('Segmentation: done')
def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
import time, os, re
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
pfg = PaperFileGroup()
for index, fp in enumerate(file_manifest):
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
# 定义注释的正则表达式
comment_pattern = r'%.*'
# 使用正则表达式查找注释,并替换为空字符串
clean_tex_content = re.sub(comment_pattern, '', file_content)
# 记录删除注释后的文本
pfg.file_paths.append(fp)
pfg.file_contents.append(clean_tex_content)
# <-------- 拆分过长的latex文件 ---------->
pfg.run_file_split(max_token_limit=1024)
n_split = len(pfg.sp_file_contents)
# <-------- 抽取摘要 ---------->
# if language == 'en':
# abs_extract_inputs = f"Please write an abstract for this paper"
# # 单线,获取文章meta信息
# paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
# inputs=abs_extract_inputs,
# inputs_show_user=f"正在抽取摘要信息。",
# llm_kwargs=llm_kwargs,
# chatbot=chatbot, history=[],
# sys_prompt="Your job is to collect information from materials。",
# )
# <-------- 多线程润色开始 ---------->
if language == 'en->zh':
inputs_array = ["Below is a section from an English academic paper, translate it into Chinese, do not modify any latex command such as \section, \cite and equations:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
elif language == 'zh->en':
inputs_array = [f"Below is a section from a Chinese academic paper, translate it into English, do not modify any latex command such as \section, \cite and equations:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[[""] for _ in range(n_split)],
sys_prompt_array=sys_prompt_array,
# max_workers=5, # OpenAI所允许的最大并行过载
scroller_max_len = 80
)
# <-------- 整理结果,退出 ---------->
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
res = write_results_to_file(gpt_response_collection, file_name=create_report_file_name)
history = gpt_response_collection
chatbot.append((f"{fp}完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@CatchException
def Latex英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"对整个Latex项目进行翻译。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en->zh')
@CatchException
def Latex中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"对整个Latex项目进行翻译。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh->en')

查看文件

@@ -1,19 +1,120 @@
import traceback
from toolbox import update_ui, get_conf
def input_clipping(inputs, history, max_token_limit):
import tiktoken
import numpy as np
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_p, temperature, chatbot, history, sys_prompt, refresh_interval=0.2):
mode = 'input-and-history'
# 当 输入部分的token占比 小于 全文的一半时,只裁剪历史
input_token_num = get_token_num(inputs)
if input_token_num < max_token_limit//2:
mode = 'only-history'
max_token_limit = max_token_limit - input_token_num
everything = [inputs] if mode == 'input-and-history' else ['']
everything.extend(history)
n_token = get_token_num('\n'.join(everything))
everything_token = [get_token_num(e) for e in everything]
delta = max(everything_token) // 16 # 截断时的颗粒度
while n_token > max_token_limit:
where = np.argmax(everything_token)
encoded = enc.encode(everything[where], disallowed_special=())
clipped_encoded = encoded[:len(encoded)-delta]
everything[where] = enc.decode(clipped_encoded)[:-1] # -1 to remove the may-be illegal char
everything_token[where] = get_token_num(everything[where])
n_token = get_token_num('\n'.join(everything))
if mode == 'input-and-history':
inputs = everything[0]
else:
pass
history = everything[1:]
return inputs, history
def request_gpt_model_in_new_thread_with_ui_alive(
inputs, inputs_show_user, llm_kwargs,
chatbot, history, sys_prompt, refresh_interval=0.2,
handle_token_exceed=True,
retry_times_at_unknown_error=2,
):
"""
Request GPT model,请求GPT模型同时维持用户界面活跃。
输入参数 Args 以_array结尾的输入变量都是列表,列表长度为子任务的数量,执行时,会把列表拆解,放到每个子线程中分别执行:
inputs (string): List of inputs (输入)
inputs_show_user (string): List of inputs to show user展现在报告中的输入,借助此参数,在汇总报告中隐藏啰嗦的真实输入,增强报告的可读性
top_p (float): Top p value for sampling from model distribution GPT参数,浮点数
temperature (float): Temperature value for sampling from model distributionGPT参数,浮点数
chatbot: chatbot inputs and outputs (用户界面对话窗口句柄,用于数据流可视化)
history (list): List of chat history (历史,对话历史列表)
sys_prompt (string): List of system prompts 系统输入,列表,用于输入给GPT的前提提示,比如你是翻译官怎样怎样
refresh_interval (float, optional): Refresh interval for UI (default: 0.2) 刷新时间间隔频率,建议低于1,不可高于3,仅仅服务于视觉效果
handle_token_exceed是否自动处理token溢出的情况,如果选择自动处理,则会在溢出时暴力截断,默认开启
retry_times_at_unknown_error失败时的重试次数
输出 Returns:
future: 输出,GPT返回的结果
"""
import time
from concurrent.futures import ThreadPoolExecutor
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
# 用户反馈
chatbot.append([inputs_show_user, ""])
msg = '正常'
yield chatbot, [], msg
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
executor = ThreadPoolExecutor(max_workers=16)
mutable = ["", time.time()]
future = executor.submit(lambda:
predict_no_ui_long_connection(
inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable)
)
def _req_gpt(inputs, history, sys_prompt):
retry_op = retry_times_at_unknown_error
exceeded_cnt = 0
while True:
# watchdog error
if len(mutable) >= 2 and (time.time()-mutable[1]) > 5:
raise RuntimeError("检测到程序终止。")
try:
# 【第一种情况】:顺利完成
result = predict_no_ui_long_connection(
inputs=inputs, llm_kwargs=llm_kwargs,
history=history, sys_prompt=sys_prompt, observe_window=mutable)
return result
except ConnectionAbortedError as token_exceeded_error:
# 【第二种情况】Token溢出
if handle_token_exceed:
exceeded_cnt += 1
# 【选择处理】 尝试计算比例,尽可能多地保留文本
from toolbox import get_reduce_token_percent
p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error))
MAX_TOKEN = 4096
EXCEED_ALLO = 512 + 512 * exceeded_cnt
inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN-EXCEED_ALLO)
mutable[0] += f'[Local Message] 警告,文本过长将进行截断,Token溢出数{n_exceed}\n\n'
continue # 返回重试
else:
# 【选择放弃】
tb_str = '```\n' + traceback.format_exc() + '```'
mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
return mutable[0] # 放弃
except:
# 【第三种情况】:其他错误:重试几次
tb_str = '```\n' + traceback.format_exc() + '```'
print(tb_str)
mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
if retry_op > 0:
retry_op -= 1
mutable[0] += f"[Local Message] 重试中,请稍等 {retry_times_at_unknown_error-retry_op}/{retry_times_at_unknown_error}\n\n"
if "Rate limit reached" in tb_str:
time.sleep(30)
time.sleep(5)
continue # 返回重试
else:
time.sleep(5)
return mutable[0] # 放弃
# 提交任务
future = executor.submit(_req_gpt, inputs, history, sys_prompt)
while True:
# yield一次以刷新前端页面
time.sleep(refresh_interval)
@@ -22,32 +123,130 @@ def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_
if future.done():
break
chatbot[-1] = [chatbot[-1][0], mutable[0]]
msg = "正常"
yield chatbot, [], msg
return future.result()
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
final_result = future.result()
chatbot[-1] = [chatbot[-1][0], final_result]
yield from update_ui(chatbot=chatbot, history=[]) # 如果最后成功了,则删除报错信息
return final_result
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inputs_array, inputs_show_user_array, top_p, temperature, chatbot, history_array, sys_prompt_array, refresh_interval=0.2, max_workers=10, scroller_max_len=30):
import time
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array, inputs_show_user_array, llm_kwargs,
chatbot, history_array, sys_prompt_array,
refresh_interval=0.2, max_workers=-1, scroller_max_len=30,
handle_token_exceed=True, show_user_at_complete=False,
retry_times_at_unknown_error=2,
):
"""
Request GPT model using multiple threads with UI and high efficiency
请求GPT模型的[多线程]版。
具备以下功能:
实时在UI上反馈远程数据流
使用线程池,可调节线程池的大小避免openai的流量限制错误
处理中途中止的情况
网络等出问题时,会把traceback和已经接收的数据转入输出
输入参数 Args 以_array结尾的输入变量都是列表,列表长度为子任务的数量,执行时,会把列表拆解,放到每个子线程中分别执行:
inputs_array (list): List of inputs (每个子任务的输入)
inputs_show_user_array (list): List of inputs to show user每个子任务展现在报告中的输入,借助此参数,在汇总报告中隐藏啰嗦的真实输入,增强报告的可读性
llm_kwargs: llm_kwargs参数
chatbot: chatbot (用户界面对话窗口句柄,用于数据流可视化)
history_array (list): List of chat history (历史对话输入,双层列表,第一层列表是子任务分解,第二层列表是对话历史)
sys_prompt_array (list): List of system prompts 系统输入,列表,用于输入给GPT的前提提示,比如你是翻译官怎样怎样
refresh_interval (float, optional): Refresh interval for UI (default: 0.2) 刷新时间间隔频率,建议低于1,不可高于3,仅仅服务于视觉效果
max_workers (int, optional): Maximum number of threads (default: see config.py) 最大线程数,如果子任务非常多,需要用此选项防止高频地请求openai导致错误
scroller_max_len (int, optional): Maximum length for scroller (default: 30)(数据流的显示最后收到的多少个字符,仅仅服务于视觉效果)
handle_token_exceed (bool, optional): (是否在输入过长时,自动缩减文本)
handle_token_exceed是否自动处理token溢出的情况,如果选择自动处理,则会在溢出时暴力截断,默认开启
show_user_at_complete (bool, optional): (在结束时,把完整输入-输出结果显示在聊天框)
retry_times_at_unknown_error子任务失败时的重试次数
输出 Returns:
list: List of GPT model responses 每个子任务的输出汇总,如果某个子任务出错,response中会携带traceback报错信息,方便调试和定位问题。
"""
import time, random
from concurrent.futures import ThreadPoolExecutor
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
assert len(inputs_array) == len(history_array)
assert len(inputs_array) == len(sys_prompt_array)
if max_workers == -1: # 读取配置文件
try: max_workers, = get_conf('DEFAULT_WORKER_NUM')
except: max_workers = 8
if max_workers <= 0 or max_workers >= 20: max_workers = 8
executor = ThreadPoolExecutor(max_workers=max_workers)
n_frag = len(inputs_array)
# 用户反馈
chatbot.append(["请开始多线程操作。", ""])
msg = '正常'
yield chatbot, [], msg
# 异步原子
mutable = [["", time.time()] for _ in range(n_frag)]
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
# 跨线程传递
mutable = [["", time.time(), "等待中"] for _ in range(n_frag)]
# 子线程任务
def _req_gpt(index, inputs, history, sys_prompt):
gpt_say = predict_no_ui_long_connection(
inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[
index]
)
return gpt_say
gpt_say = ""
retry_op = retry_times_at_unknown_error
exceeded_cnt = 0
mutable[index][2] = "执行中"
while True:
# watchdog error
if len(mutable[index]) >= 2 and (time.time()-mutable[index][1]) > 5:
raise RuntimeError("检测到程序终止。")
try:
# 【第一种情况】:顺利完成
# time.sleep(10); raise RuntimeError("测试")
gpt_say = predict_no_ui_long_connection(
inputs=inputs, llm_kwargs=llm_kwargs, history=history,
sys_prompt=sys_prompt, observe_window=mutable[index], console_slience=True
)
mutable[index][2] = "已成功"
return gpt_say
except ConnectionAbortedError as token_exceeded_error:
# 【第二种情况】Token溢出,
if handle_token_exceed:
exceeded_cnt += 1
# 【选择处理】 尝试计算比例,尽可能多地保留文本
from toolbox import get_reduce_token_percent
p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error))
MAX_TOKEN = 4096
EXCEED_ALLO = 512 + 512 * exceeded_cnt
inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN-EXCEED_ALLO)
gpt_say += f'[Local Message] 警告,文本过长将进行截断,Token溢出数{n_exceed}\n\n'
mutable[index][2] = f"截断重试"
continue # 返回重试
else:
# 【选择放弃】
tb_str = '```\n' + traceback.format_exc() + '```'
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0]
mutable[index][2] = "输入过长已放弃"
return gpt_say # 放弃
except:
# 【第三种情况】:其他错误
tb_str = '```\n' + traceback.format_exc() + '```'
print(tb_str)
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0]
if retry_op > 0:
retry_op -= 1
wait = random.randint(5, 20)
if "Rate limit reached" in tb_str:
wait = wait * 3
fail_info = "OpenAI请求速率限制 "
else:
fail_info = ""
# 也许等待十几秒后,情况会好转
for i in range(wait):
mutable[index][2] = f"{fail_info}等待重试 {wait-i}"; time.sleep(1)
# 开始重试
mutable[index][2] = f"重试中 {retry_times_at_unknown_error-retry_op}/{retry_times_at_unknown_error}"
continue # 返回重试
else:
mutable[index][2] = "已失败"
wait = 5
time.sleep(5)
return gpt_say # 放弃
# 异步任务开始
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(
range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
@@ -71,17 +270,27 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inp
replace('\n', '').replace('```', '...').replace(
' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]"
observe_win.append(print_something_really_funny)
stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(
worker_done, observe_win)])
chatbot[-1] = [chatbot[-1][0],
f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt % 10+1))]
msg = "正常"
yield chatbot, [], msg
# 在前端打印些好玩的东西
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n'
if not done else f'`{mutable[thread_index][2]}`\n\n'
for thread_index, done, obs in zip(range(len(worker_done)), worker_done, observe_win)])
# 在前端打印些好玩的东西
chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt % 10+1))]
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
# 异步任务结束
gpt_response_collection = []
for inputs_show_user, f in zip(inputs_show_user_array, futures):
gpt_res = f.result()
gpt_response_collection.extend([inputs_show_user, gpt_res])
# 是否在结束时,在界面上显示结果
if show_user_at_complete:
for inputs_show_user, f in zip(inputs_show_user_array, futures):
gpt_res = f.result()
chatbot.append([inputs_show_user, gpt_res])
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
time.sleep(0.3)
return gpt_response_collection
@@ -103,7 +312,6 @@ def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
if get_token_fn(prev) < limit:
break
if cnt == 0:
print('what the fuck ?')
raise RuntimeError("存在一行极长的文本!")
# print(len(post))
# 列表递归接龙
@@ -116,8 +324,18 @@ def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
return cut(txt, must_break_at_empty_line=False)
def force_breakdown(txt, limit, get_token_fn):
"""
当无法用标点、空行分割时,我们用最暴力的方法切割
"""
for i in reversed(range(len(txt))):
if get_token_fn(txt[:i]) < limit:
return txt[:i], txt[i:]
return "Tiktoken未知错误", "Tiktoken未知错误"
def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
def cut(txt_tocut, must_break_at_empty_line): # 递归
# 递归
def cut(txt_tocut, must_break_at_empty_line, break_anyway=False):
if get_token_fn(txt_tocut) <= limit:
return [txt_tocut]
else:
@@ -129,25 +347,216 @@ def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
if must_break_at_empty_line:
if lines[cnt] != "":
continue
print(cnt)
prev = "\n".join(lines[:cnt])
post = "\n".join(lines[cnt:])
if get_token_fn(prev) < limit:
break
if cnt == 0:
# print('what the fuck ? 存在一行极长的文本!')
raise RuntimeError("存在一行极长的文本!")
if break_anyway:
prev, post = force_breakdown(txt_tocut, limit, get_token_fn)
else:
raise RuntimeError(f"存在一行极长的文本!{txt_tocut}")
# print(len(post))
# 列表递归接龙
result = [prev]
result.extend(cut(post, must_break_at_empty_line))
result.extend(cut(post, must_break_at_empty_line, break_anyway=break_anyway))
return result
try:
# 第1次尝试,将双空行\n\n作为切分点
return cut(txt, must_break_at_empty_line=True)
except RuntimeError:
try:
# 第2次尝试,将单空行\n作为切分点
return cut(txt, must_break_at_empty_line=False)
except RuntimeError:
# 这个中文的句号是故意的,作为一个标识而存在
res = cut(txt.replace('.', '\n'), must_break_at_empty_line=False)
return [r.replace('\n', '.') for r in res]
try:
# 第3次尝试,将英文句号.)作为切分点
res = cut(txt.replace('.', '\n'), must_break_at_empty_line=False) # 这个中文的句号是故意的,作为一个标识而存在
return [r.replace('\n', '.') for r in res]
except RuntimeError as e:
try:
# 第4次尝试,将中文句号作为切分点
res = cut(txt.replace('', '。。\n'), must_break_at_empty_line=False)
return [r.replace('。。\n', '') for r in res]
except RuntimeError as e:
# 第5次尝试,没办法了,随便切一下敷衍吧
return cut(txt, must_break_at_empty_line=False, break_anyway=True)
def read_and_clean_pdf_text(fp):
"""
这个函数用于分割pdf,用了很多trick,逻辑较乱,效果奇好
**输入参数说明**
- `fp`需要读取和清理文本的pdf文件路径
**输出参数说明**
- `meta_txt`:清理后的文本内容字符串
- `page_one_meta`:第一页清理后的文本内容列表
**函数功能**
读取pdf文件并清理其中的文本内容,清理规则包括
- 提取所有块元的文本信息,并合并为一个字符串
- 去除短块字符数小于100并替换为回车符
- 清理多余的空行
- 合并小写字母开头的段落块并替换为空格
- 清除重复的换行
- 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔
"""
import fitz, copy
import re
import numpy as np
from colorful import print亮黄, print亮绿
fc = 0 # Index 0 文本
fs = 1 # Index 1 字体
fb = 2 # Index 2 框框
REMOVE_FOOT_NOTE = True # 是否丢弃掉 不是正文的内容 (比正文字体小,如参考文献、脚注、图注等)
REMOVE_FOOT_FFSIZE_PERCENT = 0.95 # 小于正文的?时,判定为不是正文有些文章的正文部分字体大小不是100%统一的,有肉眼不可见的小变化)
def primary_ffsize(l):
"""
提取文本块主字体
"""
fsize_statiscs = {}
for wtf in l['spans']:
if wtf['size'] not in fsize_statiscs: fsize_statiscs[wtf['size']] = 0
fsize_statiscs[wtf['size']] += len(wtf['text'])
return max(fsize_statiscs, key=fsize_statiscs.get)
def ffsize_same(a,b):
"""
提取字体大小是否近似相等
"""
return abs((a-b)/max(a,b)) < 0.02
with fitz.open(fp) as doc:
meta_txt = []
meta_font = []
meta_line = []
meta_span = []
############################## <第 1 步,搜集初始信息> ##################################
for index, page in enumerate(doc):
# file_content += page.get_text()
text_areas = page.get_text("dict") # 获取页面上的文本信息
for t in text_areas['blocks']:
if 'lines' in t:
pf = 998
for l in t['lines']:
txt_line = "".join([wtf['text'] for wtf in l['spans']])
if len(txt_line) == 0: continue
pf = primary_ffsize(l)
meta_line.append([txt_line, pf, l['bbox'], l])
for wtf in l['spans']: # for l in t['lines']:
meta_span.append([wtf['text'], wtf['size'], len(wtf['text'])])
# meta_line.append(["NEW_BLOCK", pf])
# 块元提取 for each word segment with in line for each line cross-line words for each block
meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
'- ', '') for t in text_areas['blocks'] if 'lines' in t])
meta_font.extend([np.mean([np.mean([wtf['size'] for wtf in l['spans']])
for l in t['lines']]) for t in text_areas['blocks'] if 'lines' in t])
if index == 0:
page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
'- ', '') for t in text_areas['blocks'] if 'lines' in t]
############################## <第 2 步,获取正文主字体> ##################################
fsize_statiscs = {}
for span in meta_span:
if span[1] not in fsize_statiscs: fsize_statiscs[span[1]] = 0
fsize_statiscs[span[1]] += span[2]
main_fsize = max(fsize_statiscs, key=fsize_statiscs.get)
if REMOVE_FOOT_NOTE:
give_up_fize_threshold = main_fsize * REMOVE_FOOT_FFSIZE_PERCENT
############################## <第 3 步,切分和重新整合> ##################################
mega_sec = []
sec = []
for index, line in enumerate(meta_line):
if index == 0:
sec.append(line[fc])
continue
if REMOVE_FOOT_NOTE:
if meta_line[index][fs] <= give_up_fize_threshold:
continue
if ffsize_same(meta_line[index][fs], meta_line[index-1][fs]):
# 尝试识别段落
if meta_line[index][fc].endswith('.') and\
(meta_line[index-1][fc] != 'NEW_BLOCK') and \
(meta_line[index][fb][2] - meta_line[index][fb][0]) < (meta_line[index-1][fb][2] - meta_line[index-1][fb][0]) * 0.7:
sec[-1] += line[fc]
sec[-1] += "\n\n"
else:
sec[-1] += " "
sec[-1] += line[fc]
else:
if (index+1 < len(meta_line)) and \
meta_line[index][fs] > main_fsize:
# 单行 + 字体大
mega_sec.append(copy.deepcopy(sec))
sec = []
sec.append("# " + line[fc])
else:
# 尝试识别section
if meta_line[index-1][fs] > meta_line[index][fs]:
sec.append("\n" + line[fc])
else:
sec.append(line[fc])
mega_sec.append(copy.deepcopy(sec))
finals = []
for ms in mega_sec:
final = " ".join(ms)
final = final.replace('- ', ' ')
finals.append(final)
meta_txt = finals
############################## <第 4 步,乱七八糟的后处理> ##################################
def 把字符太少的块清除为回车(meta_txt):
for index, block_txt in enumerate(meta_txt):
if len(block_txt) < 100:
meta_txt[index] = '\n'
return meta_txt
meta_txt = 把字符太少的块清除为回车(meta_txt)
def 清理多余的空行(meta_txt):
for index in reversed(range(1, len(meta_txt))):
if meta_txt[index] == '\n' and meta_txt[index-1] == '\n':
meta_txt.pop(index)
return meta_txt
meta_txt = 清理多余的空行(meta_txt)
def 合并小写开头的段落块(meta_txt):
def starts_with_lowercase_word(s):
pattern = r"^[a-z]+"
match = re.match(pattern, s)
if match:
return True
else:
return False
for _ in range(100):
for index, block_txt in enumerate(meta_txt):
if starts_with_lowercase_word(block_txt):
if meta_txt[index-1] != '\n':
meta_txt[index-1] += ' '
else:
meta_txt[index-1] = ''
meta_txt[index-1] += meta_txt[index]
meta_txt[index] = '\n'
return meta_txt
meta_txt = 合并小写开头的段落块(meta_txt)
meta_txt = 清理多余的空行(meta_txt)
meta_txt = '\n'.join(meta_txt)
# 清除重复的换行
for _ in range(5):
meta_txt = meta_txt.replace('\n\n', '\n')
# 换行 -> 双换行
meta_txt = meta_txt.replace('\n', '\n\n')
############################## <第 5 步,展示分割效果> ##################################
# for f in finals:
# print亮黄(f)
# print亮绿('***************************')
return meta_txt, page_one_meta

查看文件

@@ -1,7 +1,7 @@
from request_llm.bridge_chatgpt import predict_no_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down, get_conf
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file, get_conf
import re, requests, unicodedata, os
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
def download_arxiv_(url_pdf):
if 'arxiv.org' not in url_pdf:
if ('.' in url_pdf) and ('/' not in url_pdf):
@@ -132,7 +132,7 @@ def get_name(_url_):
@CatchException
def 下载arxiv论文并翻译摘要(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 下载arxiv论文并翻译摘要(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
CRAZY_FUNCTION_INFO = "下载arxiv论文并翻译摘要,函数插件作者[binary-husky]。正在提取摘要并下载PDF文档……"
import glob
@@ -140,7 +140,7 @@ def 下载arxiv论文并翻译摘要(txt, top_p, temperature, chatbot, history,
# 基本信息:功能、贡献者
chatbot.append(["函数插件功能?", CRAZY_FUNCTION_INFO])
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
@@ -149,7 +149,7 @@ def 下载arxiv论文并翻译摘要(txt, top_p, temperature, chatbot, history,
report_execption(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pdfminer beautifulsoup4```。")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 清空历史,以免输入溢出
@@ -162,25 +162,33 @@ def 下载arxiv论文并翻译摘要(txt, top_p, temperature, chatbot, history,
report_execption(chatbot, history,
a = f"解析项目: {txt}",
b = f"下载pdf文件未成功")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 翻译摘要等
i_say = f"请你阅读以下学术论文相关的材料,提取摘要,翻译为中文。材料如下:{str(info)}"
i_say_show_user = f'请你阅读以下学术论文相关的材料,提取摘要,翻译为中文。论文:{pdf_path}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
# 单线,获取文章meta信息
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say_show_user,
llm_kwargs=llm_kwargs,
chatbot=chatbot, history=[],
sys_prompt="Your job is to collect information from materials and translate to Chinese。",
)
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
# 写入文件
import shutil
# 重置文件的创建时间
shutil.copyfile(pdf_path, f'./gpt_log/{os.path.basename(pdf_path)}'); os.remove(pdf_path)
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res + "\n\nPDF文件也已经下载"))
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面

查看文件

@@ -1,5 +1,6 @@
import threading
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
from toolbox import update_ui
from toolbox import CatchException, write_results_to_file, report_execption
from .crazy_utils import breakdown_txt_to_satisfy_token_limit
@@ -22,22 +23,22 @@ def break_txt_into_half_at_some_linebreak(txt):
@CatchException
def 全项目切换英文(txt, top_p, temperature, chatbot, history, sys_prompt, WEB_PORT):
def 全项目切换英文(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys_prompt, web_port):
# 第1步清空历史,以免输入溢出
history = []
# 第2步尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import openai, transformers
import tiktoken
except:
report_execption(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade openai transformers```。")
yield chatbot, history, '正常'
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 第3步集合文件
import time, glob, os, shutil, re, openai
import time, glob, os, shutil, re
os.makedirs('gpt_log/generated_english_version', exist_ok=True)
os.makedirs('gpt_log/generated_english_version/crazy_functions', exist_ok=True)
file_manifest = [f for f in glob.glob('./*.py') if ('test_project' not in f) and ('gpt_log' not in f)] + \
@@ -48,21 +49,20 @@ def 全项目切换英文(txt, top_p, temperature, chatbot, history, sys_prompt,
# 第4步随便显示点什么防止卡顿的感觉
for index, fp in enumerate(file_manifest):
# if 'test_project' in fp: continue
with open(fp, 'r', encoding='utf-8') as f:
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
i_say_show_user =f'[{index}/{len(file_manifest)}] 接下来请将以下代码中包含的所有中文转化为英文,只输出转化后的英文代码,请用代码块输出代码: {os.path.abspath(fp)}'
i_say_show_user_buffer.append(i_say_show_user)
chatbot.append((i_say_show_user, "[Local Message] 等待多线程操作,中间过程不予显示."))
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 第5步Token限制下的截断与处理
MAX_TOKEN = 3000
from transformers import GPT2TokenizerFast
print('加载tokenizer中')
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
get_token_fn = lambda txt: len(tokenizer(txt)["input_ids"])
print('加载tokenizer结束')
import tiktoken
from toolbox import get_conf
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
def get_token_fn(txt): return len(enc.encode(txt, disallowed_special=()))
# 第6步任务函数
@@ -72,7 +72,7 @@ def 全项目切换英文(txt, top_p, temperature, chatbot, history, sys_prompt,
if index > 10:
time.sleep(60)
print('Openai 限制免费用户每分钟20次请求,降低请求频率中。')
with open(fp, 'r', encoding='utf-8') as f:
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
i_say_template = lambda fp, file_content: f'接下来请将以下代码中包含的所有中文转化为英文,只输出代码,文件名是{fp},文件代码是 ```{file_content}```'
try:
@@ -82,7 +82,7 @@ def 全项目切换英文(txt, top_p, temperature, chatbot, history, sys_prompt,
for file_content_partial in file_content_breakdown:
i_say = i_say_template(fp, file_content_partial)
# # ** gpt request **
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, top_p=top_p, temperature=temperature, history=[], sys_prompt=sys_prompt, observe_window=observe_window[index])
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=observe_window[index])
gpt_say_partial = extract_code_block_carefully(gpt_say_partial)
gpt_say += gpt_say_partial
mutable_return[index] = gpt_say
@@ -97,7 +97,7 @@ def 全项目切换英文(txt, top_p, temperature, chatbot, history, sys_prompt,
h.daemon = True
h.start()
chatbot.append(('开始了吗?', f'多线程操作已经开始'))
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 第8步循环轮询各个线程是否执行完毕
cnt = 0
@@ -113,7 +113,7 @@ def 全项目切换英文(txt, top_p, temperature, chatbot, history, sys_prompt,
stat = [f'执行中: {obs}\n\n' if alive else '已完成\n\n' for alive, obs in zip(th_alive, observe_win)]
stat_str = ''.join(stat)
chatbot[-1] = (chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt%10+1)))
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 第9步把结果写入文件
for index, h in enumerate(handles):
@@ -130,10 +130,10 @@ def 全项目切换英文(txt, top_p, temperature, chatbot, history, sys_prompt,
shutil.copyfile(file_manifest[index], where_to_relocate)
chatbot.append((i_say_show_user, f'[Local Message] 已完成{os.path.abspath(fp)}的转化,\n\n存入{os.path.abspath(where_to_relocate)}'))
history.append(i_say_show_user); history.append(gpt_say)
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
time.sleep(1)
# 第10步备份一个文件
res = write_results_to_file(history)
chatbot.append(("生成一份任务执行报告", res))
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

查看文件

@@ -1,9 +1,10 @@
from request_llm.bridge_chatgpt import predict_no_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
fast_debug = False
def 解析docx(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
def 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
import time, os
# pip install python-docx 用于docx格式,跨平台
# pip install pywin32 用于doc格式,仅支持Win平台
@@ -35,58 +36,69 @@ def 解析docx(file_manifest, project_folder, top_p, temperature, chatbot, histo
f'文章内容是 ```{file_content}```'
i_say_show_user = prefix + f'[{index+1}/{len(file_manifest)}] 假设你是论文审稿专家,请对下面的文章片段做概述: {os.path.abspath(fp)}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature,
history=[]) # 带超时倒计时
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say_show_user,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=[],
sys_prompt="总结文章。"
) # 带超时倒计时
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user);
history.append(i_say_show_user)
history.append(gpt_say)
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
if not fast_debug: time.sleep(2)
"""
# 可按需启用
i_say = f'根据你上述的分析,对全文进行概括,用学术性语言写一段中文摘要,然后再写一篇英文的。'
chatbot.append((i_say, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
i_say = f'我想让你做一个论文写作导师。您的任务是使用人工智能工具(例如自然语言处理)提供有关如何改进其上述文章的反馈。' \
f'您还应该利用您在有效写作技巧方面的修辞知识和经验来建议作者可以更好地以书面形式表达他们的想法和想法的方法。' \
f'根据你之前的分析,提出建议'
chatbot.append((i_say, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
"""
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature,
history=history) # 带超时倒计时
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=history,
sys_prompt="总结文章。"
) # 带超时倒计时
chatbot[-1] = (i_say, gpt_say)
history.append(i_say)
history.append(gpt_say)
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res))
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
@CatchException
def 总结word文档(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 总结word文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
import glob, os
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"批量总结Word文档。函数插件贡献者: JasonGuo1"])
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
@@ -95,7 +107,7 @@ def 总结word文档(txt, top_p, temperature, chatbot, history, systemPromptTxt,
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade python-docx pywin32```。")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 清空历史,以免输入溢出
@@ -107,7 +119,7 @@ def 总结word文档(txt, top_p, temperature, chatbot, history, systemPromptTxt,
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 搜索需要处理的文件清单
@@ -120,8 +132,8 @@ def 总结word文档(txt, top_p, temperature, chatbot, history, systemPromptTxt,
# 如果没找到任何文件
if len(file_manifest) == 0:
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.docx或doc文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 开始正式执行任务
yield from 解析docx(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

查看文件

@@ -0,0 +1,162 @@
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
fast_debug = False
class PaperFileGroup():
def __init__(self):
self.file_paths = []
self.file_contents = []
self.sp_file_contents = []
self.sp_file_index = []
self.sp_file_tag = []
# count_token
import tiktoken
from toolbox import get_conf
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
self.get_token_num = get_token_num
def run_file_split(self, max_token_limit=1900):
"""
将长文本分离开来
"""
for index, file_content in enumerate(self.file_contents):
if self.get_token_num(file_content) < max_token_limit:
self.sp_file_contents.append(file_content)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.md")
print('Segmentation: done')
def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
import time, os, re
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
# <-------- 读取Markdown文件,删除其中的所有注释 ---------->
pfg = PaperFileGroup()
for index, fp in enumerate(file_manifest):
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
# 记录删除注释后的文本
pfg.file_paths.append(fp)
pfg.file_contents.append(file_content)
# <-------- 拆分过长的Markdown文件 ---------->
pfg.run_file_split(max_token_limit=2048)
n_split = len(pfg.sp_file_contents)
# <-------- 多线程润色开始 ---------->
if language == 'en->zh':
inputs_array = ["This is a Markdown file, translate it into Chinese, do not modify any existing Markdown commands:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
elif language == 'zh->en':
inputs_array = [f"This is a Markdown file, translate it into English, do not modify any existing Markdown commands:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[[""] for _ in range(n_split)],
sys_prompt_array=sys_prompt_array,
# max_workers=5, # OpenAI所允许的最大并行过载
scroller_max_len = 80
)
# <-------- 整理结果,退出 ---------->
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
res = write_results_to_file(gpt_response_collection, file_name=create_report_file_name)
history = gpt_response_collection
chatbot.append((f"{fp}完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@CatchException
def Markdown英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.md', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en->zh')
@CatchException
def Markdown中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
if txt.endswith('.md'):
file_manifest = [txt]
else:
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.md', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh->en')

查看文件

@@ -1,8 +1,9 @@
from request_llm.bridge_chatgpt import predict_no_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
import re
import unicodedata
fast_debug = False
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
def is_paragraph_break(match):
"""
@@ -57,7 +58,7 @@ def clean_text(raw_text):
return final_text.strip()
def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
import time, glob, os, fitz
print('begin analysis on:', file_manifest)
for index, fp in enumerate(file_manifest):
@@ -72,49 +73,60 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
i_say = prefix + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```'
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
print('[1] yield chatbot, history')
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say_show_user,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=[],
sys_prompt="总结文章。"
) # 带超时倒计时
print('[2] end gpt req')
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
print('[3] yield chatbot, history')
yield chatbot, history, msg
print('[4] next')
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
if not fast_debug: time.sleep(2)
all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)])
i_say = f'根据以上你自己的分析,对全文进行概括,用学术性语言写一段中文摘要,然后再写一段英文摘要(包括{all_file})。'
chatbot.append((i_say, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature, history=history) # 带超时倒计时
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=history,
sys_prompt="总结文章。"
) # 带超时倒计时
chatbot[-1] = (i_say, gpt_say)
history.append(i_say); history.append(gpt_say)
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res))
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
@CatchException
def 批量总结PDF文档(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
import glob, os
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"批量总结PDF文档。函数插件贡献者: ValeriaWong,Eralien"])
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
@@ -123,7 +135,7 @@ def 批量总结PDF文档(txt, top_p, temperature, chatbot, history, systemPromp
report_execption(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 清空历史,以免输入溢出
@@ -135,7 +147,7 @@ def 批量总结PDF文档(txt, top_p, temperature, chatbot, history, systemPromp
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 搜索需要处理的文件清单
@@ -147,8 +159,8 @@ def 批量总结PDF文档(txt, top_p, temperature, chatbot, history, systemPromp
# 如果没找到任何文件
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex或.pdf文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 开始正式执行任务
yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

查看文件

@@ -1,5 +1,6 @@
from request_llm.bridge_chatgpt import predict_no_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
fast_debug = False
@@ -61,13 +62,13 @@ def readPdf(pdfPath):
return outTextList
def 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
import time, glob, os
from bs4 import BeautifulSoup
print('begin analysis on:', file_manifest)
for index, fp in enumerate(file_manifest):
if ".tex" in fp:
with open(fp, 'r', encoding='utf-8') as f:
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
if ".pdf" in fp.lower():
file_content = readPdf(fp)
@@ -77,43 +78,51 @@ def 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, hist
i_say = prefix + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```'
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
print('[1] yield chatbot, history')
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
print('[2] end gpt req')
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say_show_user,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=[],
sys_prompt="总结文章。"
) # 带超时倒计时
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
print('[3] yield chatbot, history')
yield chatbot, history, msg
print('[4] next')
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
if not fast_debug: time.sleep(2)
all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)])
i_say = f'根据以上你自己的分析,对全文进行概括,用学术性语言写一段中文摘要,然后再写一段英文摘要(包括{all_file})。'
chatbot.append((i_say, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature, history=history) # 带超时倒计时
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=history,
sys_prompt="总结文章。"
) # 带超时倒计时
chatbot[-1] = (i_say, gpt_say)
history.append(i_say); history.append(gpt_say)
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res))
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
@CatchException
def 批量总结PDF文档pdfminer(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 批量总结PDF文档pdfminer(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
@@ -121,7 +130,7 @@ def 批量总结PDF文档pdfminer(txt, top_p, temperature, chatbot, history, sys
chatbot.append([
"函数插件功能?",
"批量总结PDF文档,此版本使用pdfminer插件,带token约简功能。函数插件贡献者: Euclid-Jie。"])
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
@@ -130,14 +139,14 @@ def 批量总结PDF文档pdfminer(txt, top_p, temperature, chatbot, history, sys
report_execption(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pdfminer beautifulsoup4```。")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)] # + \
@@ -145,7 +154,7 @@ def 批量总结PDF文档pdfminer(txt, top_p, temperature, chatbot, history, sys
# [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex或pdf文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

查看文件

@@ -1,102 +1,20 @@
from toolbox import CatchException, report_execption, write_results_to_file
from toolbox import update_ui
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
def read_and_clean_pdf_text(fp):
"""
**输入参数说明**
- `fp`需要读取和清理文本的pdf文件路径
**输出参数说明**
- `meta_txt`:清理后的文本内容字符串
- `page_one_meta`:第一页清理后的文本内容列表
**函数功能**
读取pdf文件并清理其中的文本内容,清理规则包括
- 提取所有块元的文本信息,并合并为一个字符串
- 去除短块字符数小于100并替换为回车符
- 清理多余的空行
- 合并小写字母开头的段落块并替换为空格
- 清除重复的换行
- 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔
"""
import fitz
import re
import numpy as np
# file_content = ""
with fitz.open(fp) as doc:
meta_txt = []
meta_font = []
for index, page in enumerate(doc):
# file_content += page.get_text()
text_areas = page.get_text("dict") # 获取页面上的文本信息
# 块元提取 for each word segment with in line for each line cross-line words for each block
meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
'- ', '') for t in text_areas['blocks'] if 'lines' in t])
meta_font.extend([np.mean([np.mean([wtf['size'] for wtf in l['spans']])
for l in t['lines']]) for t in text_areas['blocks'] if 'lines' in t])
if index == 0:
page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
'- ', '') for t in text_areas['blocks'] if 'lines' in t]
def 把字符太少的块清除为回车(meta_txt):
for index, block_txt in enumerate(meta_txt):
if len(block_txt) < 100:
meta_txt[index] = '\n'
return meta_txt
meta_txt = 把字符太少的块清除为回车(meta_txt)
def 清理多余的空行(meta_txt):
for index in reversed(range(1, len(meta_txt))):
if meta_txt[index] == '\n' and meta_txt[index-1] == '\n':
meta_txt.pop(index)
return meta_txt
meta_txt = 清理多余的空行(meta_txt)
def 合并小写开头的段落块(meta_txt):
def starts_with_lowercase_word(s):
pattern = r"^[a-z]+"
match = re.match(pattern, s)
if match:
return True
else:
return False
for _ in range(100):
for index, block_txt in enumerate(meta_txt):
if starts_with_lowercase_word(block_txt):
if meta_txt[index-1] != '\n':
meta_txt[index-1] += ' '
else:
meta_txt[index-1] = ''
meta_txt[index-1] += meta_txt[index]
meta_txt[index] = '\n'
return meta_txt
meta_txt = 合并小写开头的段落块(meta_txt)
meta_txt = 清理多余的空行(meta_txt)
meta_txt = '\n'.join(meta_txt)
# 清除重复的换行
for _ in range(5):
meta_txt = meta_txt.replace('\n\n', '\n')
# 换行 -> 双换行
meta_txt = meta_txt.replace('\n', '\n\n')
return meta_txt, page_one_meta
from .crazy_utils import read_and_clean_pdf_text
from colorful import *
@CatchException
def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt, WEB_PORT):
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys_prompt, web_port):
import glob
import os
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"批量总结PDF文档。函数插件贡献者: Binary-Husky(二进制哈士奇)"])
yield chatbot, history, '正常'
"批量翻译PDF文档。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
@@ -106,7 +24,7 @@ def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt,
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf tiktoken```。")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 清空历史,以免输入溢出
@@ -120,7 +38,7 @@ def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt,
txt = '空空如也的输入栏'
report_execption(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 搜索需要处理的文件清单
@@ -131,63 +49,73 @@ def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt,
if len(file_manifest) == 0:
report_execption(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 开始正式执行任务
yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt)
yield from 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, sys_prompt)
def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt):
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, sys_prompt):
import os
import tiktoken
TOKEN_LIMIT_PER_FRAGMENT = 1600
TOKEN_LIMIT_PER_FRAGMENT = 1280
generated_conclusion_files = []
for index, fp in enumerate(file_manifest):
# 读取PDF文件
file_content, page_one = read_and_clean_pdf_text(fp)
# 递归地切割PDF文件
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
enc = tiktoken.get_encoding("gpt2")
def get_token_num(txt): return len(enc.encode(txt))
# 分解文本
from toolbox import get_conf
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
# 为了更好的效果,我们剥离Introduction之后的部分
paper_meta = page_one_fragments[0].split('introduction')[0].split(
'Introduction')[0].split('INTRODUCTION')[0]
# 为了更好的效果,我们剥离Introduction之后的部分如果有
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
# 单线,获取文章meta信息
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取{paper_meta}",
inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。",
top_p=top_p, temperature=temperature,
llm_kwargs=llm_kwargs,
chatbot=chatbot, history=[],
sys_prompt="Your job is to collect information from materials。",
)
# 多线,翻译
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=[
f"以下是你需要翻译的文章段落\n{frag}" for frag in paper_fragments],
inputs_show_user_array=[f"" for _ in paper_fragments],
top_p=top_p, temperature=temperature,
f"你需要翻译以下内容\n{frag}" for frag in paper_fragments],
inputs_show_user_array=[f"\n---\n 原文: \n\n {frag.replace('#', '')} \n---\n 翻译:\n " for frag in paper_fragments],
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[[paper_meta] for _ in paper_fragments],
sys_prompt_array=[
"请你作为一个学术翻译,把整个段落翻译成中文,要求语言简洁,禁止重复输出原文" for _ in paper_fragments],
max_workers=16 # OpenAI所允许的最大并行过载
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译" for _ in paper_fragments],
# max_workers=5 # OpenAI所允许的最大并行过载
)
final = ["", paper_meta_info + '\n\n---\n\n---\n\n---\n\n']
# 整理报告的格式
for i,k in enumerate(gpt_response_collection):
if i%2==0:
gpt_response_collection[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection)//2}] \n\n {paper_fragments[i//2].replace('#', '')} \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection)//2}]\n "
else:
gpt_response_collection[i] = gpt_response_collection[i]
final = ["一、论文概况\n\n---\n\n", paper_meta_info.replace('# ', '### ') + '\n\n---\n\n', "二、论文翻译", ""]
final.extend(gpt_response_collection)
create_report_file_name = f"{os.path.basename(fp)}.trans.md"
res = write_results_to_file(final, file_name=create_report_file_name)
generated_conclusion_files.append(
f'./gpt_log/{create_report_file_name}')
# 更新UI
generated_conclusion_files.append(f'./gpt_log/{create_report_file_name}')
chatbot.append((f"{fp}完成了吗?", res))
msg = "完成"
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 准备文件的下载
import shutil
@@ -200,4 +128,4 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
if os.path.exists(pdf_path):
os.remove(pdf_path)
chatbot.append(("给出输出文件清单", str(generated_conclusion_files)))
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

查看文件

@@ -0,0 +1,112 @@
from toolbox import update_ui
from toolbox import CatchException, report_execption
from .crazy_utils import read_and_clean_pdf_text
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
fast_debug = False
def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
import tiktoken
print('begin analysis on:', file_name)
############################## <第 0 步,切割PDF> ##################################
# 递归地切割PDF文件,每一块尽量是完整的一个section,比如introduction,experiment等,必要时再进行切割
# 的长度必须小于 2500 个 Token
file_content, page_one = read_and_clean_pdf_text(file_name) # 尝试按照章节切割PDF
TOKEN_LIMIT_PER_FRAGMENT = 2500
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
from toolbox import get_conf
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
# 为了更好的效果,我们剥离Introduction之后的部分如果有
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
############################## <第 1 步,从摘要中提取高价值信息,放到history中> ##################################
final_results = []
final_results.append(paper_meta)
############################## <第 2 步,迭代地历遍整个文章,提取精炼信息> ##################################
i_say_show_user = f'首先你在英文语境下通读整篇论文。'; gpt_say = "[Local Message] 收到。" # 用户提示
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=[]) # 更新UI
iteration_results = []
last_iteration_result = paper_meta # 初始值是摘要
MAX_WORD_TOTAL = 4096
n_fragment = len(paper_fragments)
if n_fragment >= 20: print('文章极长,不能达到预期效果')
for i in range(n_fragment):
NUM_OF_WORD = MAX_WORD_TOTAL // n_fragment
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i]}"
i_say_show_user = f"[{i+1}/{n_fragment}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i][:200]}"
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
llm_kwargs, chatbot,
history=["The main idea of the previous section is?", last_iteration_result], # 迭代上一次的结果
sys_prompt="Extract the main idea of this section." # 提示
)
iteration_results.append(gpt_say)
last_iteration_result = gpt_say
############################## <第 3 步,整理history> ##################################
final_results.extend(iteration_results)
final_results.append(f'接下来,你是一名专业的学术教授,利用以上信息,使用中文回答我的问题。')
# 接下来两句话只显示在界面上,不起实际作用
i_say_show_user = f'接下来,你是一名专业的学术教授,利用以上信息,使用中文回答我的问题。'; gpt_say = "[Local Message] 收到。"
chatbot.append([i_say_show_user, gpt_say])
############################## <第 4 步,设置一个token上限,防止回答时Token溢出> ##################################
from .crazy_utils import input_clipping
_, final_results = input_clipping("", final_results, max_token_limit=3200)
yield from update_ui(chatbot=chatbot, history=final_results) # 注意这里的历史记录被替代了
@CatchException
def 理解PDF文档内容标准文件输入(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
import glob, os
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"理解PDF论文内容,并且将结合上下文内容,进行学术解答。函数插件贡献者: Hanzoe, binary-husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import fitz
except:
report_execption(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 清空历史,以免输入溢出
history = []
# 检测输入参数,如没有给定输入参数,直接退出
if os.path.exists(txt):
project_folder = txt
else:
if txt == "":
txt = '空空如也的输入栏'
report_execption(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 搜索需要处理的文件清单
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)]
# 如果没找到任何文件
if len(file_manifest) == 0:
report_execption(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
txt = file_manifest[0]
# 开始正式执行任务
yield from 解析PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

查看文件

@@ -1,43 +1,40 @@
from request_llm.bridge_chatgpt import predict_no_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
fast_debug = False
def 生成函数注释(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
import time, glob, os
def 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
import time, os
print('begin analysis on:', file_manifest)
for index, fp in enumerate(file_manifest):
with open(fp, 'r', encoding='utf-8') as f:
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
i_say = f'请对下面的程序文件做一个概述,并对文件中的所有函数生成注释,使用markdown表格输出结果,文件名是{os.path.relpath(fp, project_folder)},文件内容是 ```{file_content}```'
i_say_show_user = f'[{index}/{len(file_manifest)}] 请对下面的程序文件做一个概述,并对文件中的所有函数生成注释: {os.path.abspath(fp)}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
print('[1] yield chatbot, history')
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
i_say, i_say_show_user, llm_kwargs, chatbot, history=[], sys_prompt=system_prompt) # 带超时倒计时
print('[2] end gpt req')
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
print('[3] yield chatbot, history')
yield chatbot, history, msg
print('[4] next')
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
if not fast_debug: time.sleep(2)
if not fast_debug:
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res))
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
@CatchException
def 批量生成函数注释(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 批量生成函数注释(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -45,13 +42,13 @@ def 批量生成函数注释(txt, top_p, temperature, chatbot, history, systemPr
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.py', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 生成函数注释(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

查看文件

@@ -1,96 +1,103 @@
from request_llm.bridge_chatgpt import predict_no_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
fast_debug = False
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
def 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
import time, glob, os
print('begin analysis on:', file_manifest)
def 解析源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
import os, copy
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
msg = '正常'
inputs_array = []
inputs_show_user_array = []
history_array = []
sys_prompt_array = []
report_part_1 = []
assert len(file_manifest) <= 1024, "源文件太多超过1024个, 请缩减输入文件的数量。或者,您也可以选择删除此行警告,并修改代码拆分file_manifest列表,从而实现分批次处理。"
############################## <第一步,逐个文件分析,多线程> ##################################
for index, fp in enumerate(file_manifest):
with open(fp, 'r', encoding='utf-8') as f:
# 读取文件
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
prefix = "接下来请你逐文件分析下面的工程" if index==0 else ""
i_say = prefix + f'请对下面的程序文件做一个概述文件名是{os.path.relpath(fp, project_folder)},文件代码是 ```{file_content}```'
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的程序文件做一个概述: {os.path.abspath(fp)}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
# 装载请求内容
inputs_array.append(i_say)
inputs_show_user_array.append(i_say_show_user)
history_array.append([])
sys_prompt_array.append("你是一个程序架构分析师,正在分析一个源代码项目。你的回答必须简单明了。")
if not fast_debug:
msg = '正常'
# 文件读取完成,对每一个源代码文件,生成一个请求线程,发送到chatgpt进行分析
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array = inputs_array,
inputs_show_user_array = inputs_show_user_array,
history_array = history_array,
sys_prompt_array = sys_prompt_array,
llm_kwargs = llm_kwargs,
chatbot = chatbot,
show_user_at_complete = True
)
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
# 全部文件解析完成,结果写入文件,准备对工程源代码进行汇总分析
report_part_1 = copy.deepcopy(gpt_response_collection)
history_to_return = report_part_1
res = write_results_to_file(report_part_1)
chatbot.append(("完成?", "逐个文件分析已完成。" + res + "\n\n正在开始汇总。"))
yield from update_ui(chatbot=chatbot, history=history_to_return) # 刷新界面
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
yield chatbot, history, msg
if not fast_debug: time.sleep(2)
all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)])
i_say = f'根据以上你自己的分析,对程序的整体功能和构架做出概括。然后用一张markdown表格整理每个文件的功能包括{all_file})。'
chatbot.append((i_say, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature, history=history) # 带超时倒计时
chatbot[-1] = (i_say, gpt_say)
history.append(i_say); history.append(gpt_say)
yield chatbot, history, msg
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res))
yield chatbot, history, msg
############################## <第二步,综合,单线程,分组+迭代处理> ##################################
batchsize = 16 # 10个文件为一组
report_part_2 = []
previous_iteration_files = []
last_iteration_result = ""
while True:
if len(file_manifest) == 0: break
this_iteration_file_manifest = file_manifest[:batchsize]
this_iteration_gpt_response_collection = gpt_response_collection[:batchsize*2]
file_rel_path = [os.path.relpath(fp, project_folder) for index, fp in enumerate(this_iteration_file_manifest)]
# 把“请对下面的程序文件做一个概述” 替换成 精简的 "文件名:{all_file[index]}"
for index, content in enumerate(this_iteration_gpt_response_collection):
if index%2==0: this_iteration_gpt_response_collection[index] = f"{file_rel_path[index//2]}" # 只保留文件名节省token
previous_iteration_files.extend([os.path.relpath(fp, project_folder) for index, fp in enumerate(this_iteration_file_manifest)])
previous_iteration_files_string = ', '.join(previous_iteration_files)
current_iteration_focus = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(this_iteration_file_manifest)])
i_say = f'根据以上分析,对程序的整体功能和构架重新做出概括。然后用一张markdown表格整理每个文件的功能包括{previous_iteration_files_string})。'
inputs_show_user = f'根据以上分析,对程序的整体功能和构架重新做出概括,由于输入长度限制,可能需要分组处理,本组文件为 {current_iteration_focus} + 已经汇总的文件组。'
this_iteration_history = copy.deepcopy(this_iteration_gpt_response_collection)
this_iteration_history.append(last_iteration_result)
result = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=inputs_show_user, llm_kwargs=llm_kwargs, chatbot=chatbot,
history=this_iteration_history, # 迭代之前的分析
sys_prompt="你是一个程序架构分析师,正在分析一个项目的源代码。")
report_part_2.extend([i_say, result])
last_iteration_result = result
file_manifest = file_manifest[batchsize:]
gpt_response_collection = gpt_response_collection[batchsize*2:]
############################## <END> ##################################
history_to_return.extend(report_part_2)
res = write_results_to_file(history_to_return)
chatbot.append(("完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history_to_return) # 刷新界面
@CatchException
def 解析项目本身(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 解析项目本身(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import time, glob, os
import glob
file_manifest = [f for f in glob.glob('./*.py') if ('test_project' not in f) and ('gpt_log' not in f)] + \
[f for f in glob.glob('./crazy_functions/*.py') if ('test_project' not in f) and ('gpt_log' not in f)]
for index, fp in enumerate(file_manifest):
# if 'test_project' in fp: continue
with open(fp, 'r', encoding='utf-8') as f:
file_content = f.read()
prefix = "接下来请你分析自己的程序构成,别紧张," if index==0 else ""
i_say = prefix + f'请对下面的程序文件做一个概述文件名是{fp},文件代码是 ```{file_content}```'
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的程序文件做一个概述: {os.path.abspath(fp)}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
if not fast_debug:
# ** gpt request **
# gpt_say = predict_no_ui(inputs=i_say, top_p=top_p, temperature=temperature)
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[], long_connection=True) # 带超时倒计时
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
yield chatbot, history, '正常'
time.sleep(2)
i_say = f'根据以上你自己的分析,对程序的整体功能和构架做出概括。然后用一张markdown表格整理每个文件的功能包括{file_manifest})。'
chatbot.append((i_say, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
if not fast_debug:
# ** gpt request **
# gpt_say = predict_no_ui(inputs=i_say, top_p=top_p, temperature=temperature, history=history)
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature, history=history, long_connection=True) # 带超时倒计时
chatbot[-1] = (i_say, gpt_say)
history.append(i_say); history.append(gpt_say)
yield chatbot, history, '正常'
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res))
yield chatbot, history, '正常'
[f for f in glob.glob('./crazy_functions/*.py') if ('test_project' not in f) and ('gpt_log' not in f)]+ \
[f for f in glob.glob('./request_llm/*.py') if ('test_project' not in f) and ('gpt_log' not in f)]
project_folder = './'
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何python文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个Python项目(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 解析一个Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -98,18 +105,18 @@ def 解析一个Python项目(txt, top_p, temperature, chatbot, history, systemPr
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.py', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何python文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个C项目的头文件(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 解析一个C项目的头文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -117,19 +124,19 @@ def 解析一个C项目的头文件(txt, top_p, temperature, chatbot, history, s
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.h', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.hpp', recursive=True)] #+ \
# [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.h头文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个C项目(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 解析一个C项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -137,7 +144,7 @@ def 解析一个C项目(txt, top_p, temperature, chatbot, history, systemPromptT
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.h', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)] + \
@@ -145,13 +152,13 @@ def 解析一个C项目(txt, top_p, temperature, chatbot, history, systemPromptT
[f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.h头文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个Java项目(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 解析一个Java项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -159,7 +166,7 @@ def 解析一个Java项目(txt, top_p, temperature, chatbot, history, systemProm
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.java', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.jar', recursive=True)] + \
@@ -167,13 +174,13 @@ def 解析一个Java项目(txt, top_p, temperature, chatbot, history, systemProm
[f for f in glob.glob(f'{project_folder}/**/*.sh', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何java文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个Rect项目(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 解析一个Rect项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -181,7 +188,7 @@ def 解析一个Rect项目(txt, top_p, temperature, chatbot, history, systemProm
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.ts', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.tsx', recursive=True)] + \
@@ -190,13 +197,13 @@ def 解析一个Rect项目(txt, top_p, temperature, chatbot, history, systemProm
[f for f in glob.glob(f'{project_folder}/**/*.jsx', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何Rect文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个Golang项目(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 解析一个Golang项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -204,11 +211,56 @@ def 解析一个Golang项目(txt, top_p, temperature, chatbot, history, systemPr
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.go', recursive=True)]
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.go', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/go.mod', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/go.sum', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/go.work', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何golang文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个Lua项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.lua', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.xml', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.json', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.toml', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何lua文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个CSharp项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.cs', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.csproj', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何CSharp文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

查看文件

@@ -1,56 +1,53 @@
from request_llm.bridge_chatgpt import predict_no_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
fast_debug = False
def 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
import time, glob, os
print('begin analysis on:', file_manifest)
for index, fp in enumerate(file_manifest):
with open(fp, 'r', encoding='utf-8') as f:
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
prefix = "接下来请你逐文件分析下面的论文文件,概括其内容" if index==0 else ""
i_say = prefix + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```'
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
print('[1] yield chatbot, history')
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, llm_kwargs, chatbot, history=[], sys_prompt=system_prompt) # 带超时倒计时
print('[2] end gpt req')
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
print('[3] yield chatbot, history')
yield chatbot, history, msg
print('[4] next')
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
if not fast_debug: time.sleep(2)
all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)])
i_say = f'根据以上你自己的分析,对全文进行概括,用学术性语言写一段中文摘要,然后再写一段英文摘要(包括{all_file})。'
chatbot.append((i_say, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature, history=history) # 带超时倒计时
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say, llm_kwargs, chatbot, history=history, sys_prompt=system_prompt) # 带超时倒计时
chatbot[-1] = (i_say, gpt_say)
history.append(i_say); history.append(gpt_say)
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res))
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
@CatchException
def 读文章写摘要(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 读文章写摘要(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -58,13 +55,13 @@ def 读文章写摘要(txt, top_p, temperature, chatbot, history, systemPromptTx
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] # + \
# [f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)] + \
# [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

查看文件

@@ -0,0 +1,106 @@
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from toolbox import CatchException, report_execption, write_results_to_file
from toolbox import update_ui
def get_meta_information(url, chatbot, history):
import requests
import arxiv
import difflib
from bs4 import BeautifulSoup
from toolbox import get_conf
proxies, = get_conf('proxies')
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36',
}
# 发送 GET 请求
response = requests.get(url, proxies=proxies, headers=headers)
# 解析网页内容
soup = BeautifulSoup(response.text, "html.parser")
def string_similar(s1, s2):
return difflib.SequenceMatcher(None, s1, s2).quick_ratio()
profile = []
# 获取所有文章的标题和作者
for result in soup.select(".gs_ri"):
title = result.a.text.replace('\n', ' ').replace(' ', ' ')
author = result.select_one(".gs_a").text
try:
citation = result.select_one(".gs_fl > a[href*='cites']").text # 引用次数是链接中的文本,直接取出来
except:
citation = 'cited by 0'
abstract = result.select_one(".gs_rs").text.strip() # 摘要在 .gs_rs 中的文本,需要清除首尾空格
search = arxiv.Search(
query = title,
max_results = 1,
sort_by = arxiv.SortCriterion.Relevance,
)
paper = next(search.results())
if string_similar(title, paper.title) > 0.90: # same paper
abstract = paper.summary.replace('\n', ' ')
is_paper_in_arxiv = True
else: # different paper
abstract = abstract
is_paper_in_arxiv = False
paper = next(search.results())
print(title)
print(author)
print(citation)
profile.append({
'title':title,
'author':author,
'citation':citation,
'abstract':abstract,
'is_paper_in_arxiv':is_paper_in_arxiv,
})
chatbot[-1] = [chatbot[-1][0], title + f'\n\n是否在arxiv中不在arxiv中无法获取完整摘要:{is_paper_in_arxiv}\n\n' + abstract]
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
return profile
@CatchException
def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"分析用户提供的谷歌学术google scholar搜索页面中,出现的所有文章: binary-husky,插件初始化中..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import arxiv
from bs4 import BeautifulSoup
except:
report_execption(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade beautifulsoup4 arxiv```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 清空历史,以免输入溢出
history = []
meta_paper_info_list = yield from get_meta_information(txt, chatbot, history)
if len(meta_paper_info_list[:10]) > 0:
i_say = "下面是一些学术文献的数据,请从中提取出以下内容。" + \
"1、英文题目;2、中文题目翻译;3、作者;4、arxiv公开is_paper_in_arxiv;4、引用数量cite;5、中文摘要翻译。" + \
f"以下是信息源:{str(meta_paper_info_list[:10])}"
inputs_show_user = f"请分析此页面中出现的所有文章:{txt}"
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=inputs_show_user,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
sys_prompt="你是一个学术翻译,请从数据中提取信息。你必须使用Markdown格式。你必须逐个文献进行处理。"
)
history.extend([ "第一批", gpt_say ])
meta_paper_info_list = meta_paper_info_list[10:]
chatbot.append(["状态?", "已经全部完成"])
msg = '正常'
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res));
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面

查看文件

@@ -1,20 +1,29 @@
from toolbox import CatchException
from toolbox import CatchException, update_ui
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
import datetime
@CatchException
def 高阶功能模板函数(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数,暂时没有用武之地
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
chatbot.append(("这是什么功能?", "[Local Message] 请注意,您正在调用一个[函数插件]的模板,该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板该函数只有20行代码。此外我们也提供可同步处理大量文件的多线程Demo供您参考。您若希望分享新的功能模组,请不吝PR"))
yield chatbot, history, '正常' # 由于请求gpt需要一段时间,我们先及时地做一次状态显示
chatbot.append(("这是什么功能?", "[Local Message] 请注意,您正在调用一个[函数插件]的模板,该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板该函数只有20行代码。此外我们也提供可同步处理大量文件的多线程Demo供您参考。您若希望分享新的功能模组,请不吝PR"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
for i in range(5):
currentMonth = (datetime.date.today() + datetime.timedelta(days=i)).month
currentDay = (datetime.date.today() + datetime.timedelta(days=i)).day
i_say = f'历史中哪些事件发生在{currentMonth}{currentDay}日?列举两条并发送相关图片。发送图片时,请使用Markdown,将Unsplash API中的PUT_YOUR_QUERY_HERE替换成描述该事件的一个最重要的单词。'
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=i_say,
top_p=top_p, temperature=temperature, chatbot=chatbot, history=[],
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
sys_prompt="当你想发送一张照片时,请使用Markdown, 并且不要有反斜线, 不要用代码块。使用 Unsplash API (https://source.unsplash.com/1280x720/? < PUT_YOUR_QUERY_HERE >)。"
)
chatbot[-1] = (i_say, gpt_say)
history.append(i_say);history.append(gpt_say)
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新

294
img/README_EN.md 普通文件
查看文件

@@ -0,0 +1,294 @@
# ChatGPT Academic Optimization
> **Note**
>
> This English readme is automatically generated by the markdown translation plugin in this project, and may not be 100% correct.
>
**If you like this project, please give it a star. If you have come up with more useful academic shortcuts or functional plugins, feel free to open an issue or pull request (to the `dev` branch).**
> **Note**
>
> 1. Please note that only function plugins (buttons) marked in **red** support reading files, and some plugins are located in the **dropdown menu** in the plugin area. Additionally, we welcome and process PRs for any new plugins with the **highest priority**!
>
> 2. The functions of each file in this project are detailed in the self-translation report [self_analysis.md](https://github.com/binary-husky/chatgpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A). With the version iteration, you can click on a relevant function plugin at any time to call GPT to regenerate the self-analysis report for the project. Commonly asked questions are summarized in the [`wiki`](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98).
>
> 3. If you are not used to the function, comments or interface with some Chinese names, you can click on the relevant function plugin at any time to call ChatGPT to generate the source code of the project in English.
<div align="center">
Function | Description
--- | ---
One-click refinement | Supports one-click refinement, one-click searching for grammatical errors in papers.
One-click translation between Chinese and English | One-click translation between Chinese and English.
One-click code interpretation | Can correctly display and interpret the code.
[Custom shortcuts](https://www.bilibili.com/video/BV14s4y1E7jN) | Supports custom shortcuts.
[Configure proxy server](https://www.bilibili.com/video/BV1rc411W7Dr) | Supports configuring proxy server.
Modular design | Supports custom high-order experimental features and [function plug-ins], and plug-ins support [hot update](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
[Self-program analysis](https://www.bilibili.com/video/BV1cj411A7VW) | [Function Plug-in] [One-Key Understanding](https://github.com/binary-husky/chatgpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A) the source code of this project.
[Program analysis](https://www.bilibili.com/video/BV1cj411A7VW) | [Function Plug-in] One-click can analyze other Python/C/C++/Java/Golang/Lua/Rect project trees.
Read papers | [Function Plug-in] One-click reads the full text of a latex paper and generates an abstract.
Latex full-text translation/refinement | [Function Plug-in] One-click translates or refines a latex paper.
Batch annotation generation | [Function Plug-in] One-click generates function annotations in batches.
Chat analysis report generation | [Function Plug-in] Automatically generate summary reports after running.
[Arxiv assistant](https://www.bilibili.com/video/BV1LM4y1279X) | [Function Plug-in] Enter the arxiv paper url and you can translate the abstract and download the PDF with one click.
[PDF paper full-text translation function](https://www.bilibili.com/video/BV1KT411x7Wn) | [Function Plug-in] Extract title and abstract of PDF papers + translate full text (multi-threaded).
[Google Scholar integration assistant](https://www.bilibili.com/video/BV19L411U7ia) (Version>=2.45) | [Function Plug-in] Given any Google Scholar search page URL, let GPT help you choose interesting articles.
Formula display | Can simultaneously display the tex form and rendering form of formulas.
Image display | Can display images in Markdown.
Multithreaded function plug-in support | Supports multi-threaded calling of chatgpt, one-click processing of massive texts or programs.
Support for markdown tables output by GPT | Can output markdown tables that support GPT.
Start dark gradio theme [theme](https://github.com/binary-husky/chatgpt_academic/issues/173) | Add ```/?__dark-theme=true``` to the browser URL to switch to the dark theme.
Huggingface free scientific online experience](https://huggingface.co/spaces/qingxu98/gpt-academic) | After logging in to Huggingface, copy [this space](https://huggingface.co/spaces/qingxu98/gpt-academic).
[Mixed support for multiple LLM models](https://www.bilibili.com/video/BV1EM411K7VH/) ([v3.0 branch](https://github.com/binary-husky/chatgpt_academic/tree/v3.0) in testing) | It must feel great to be served by both ChatGPT and [Tsinghua ChatGLM](https://github.com/THUDM/ChatGLM-6B)!
Compatible with [TGUI](https://github.com/oobabooga/text-generation-webui) to access more language models | Access to opt-1.3b, galactica-1.3b and other models ([v3.0 branch](https://github.com/binary-husky/chatgpt_academic/tree/v3.0) under testing).
… | ...
</div>
<!-- - New interface (left: master branch, right: dev development frontier) -->
- New interface (modify the `LAYOUT` option in `config.py` to switch between "left and right layout" and "up and down layout").
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230361456-61078362-a966-4eb5-b49e-3c62ef18b860.gif" width="700" >
</div>
- All buttons are dynamically generated by reading `functional.py`, and custom functions can be added freely, freeing up the clipboard.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231975334-b4788e91-4887-412f-8b43-2b9c5f41d248.gif" width="700" >
</div>
- Refinement/Correction
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231980294-f374bdcb-3309-4560-b424-38ef39f04ebd.gif" width="700" >
</div>
- Supports markdown tables output by GPT.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700" >
</div>
- If the output contains formulas, both the tex form and the rendering form are displayed simultaneously for easy copying and reading.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700" >
</div>
- Don't want to read project code? Let chatgpt boast about the whole project.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700" >
</div>
- Multiple large language models mixed calling. ([v3.0 branch](https://github.com/binary-husky/chatgpt_academic/tree/v3.0) in testing)
## Running Directly (Windows, Linux or MacOS)
### 1. Download the Project
```sh
git clone https://github.com/binary-husky/chatgpt_academic.git
cd chatgpt_academic
```
### 2. Configure API_KEY and Proxy Settings
In `config.py`, configure the overseas Proxy and OpenAI API KEY, as follows:
```
1. If you are in China, you need to set an overseas proxy to use the OpenAI API smoothly. Please read the instructions in config.py carefully (1. Modify the USE_PROXY to True; 2. Modify the proxies according to the instructions).
2. Configure OpenAI API KEY. You need to register on the OpenAI official website and obtain an API KEY. Once you get the API KEY, configure it in the config.py file.
3. Issues related to proxy network (network timeout, proxy not working) are summarized to https://github.com/binary-husky/chatgpt_academic/issues/1
```
(Note: When the program is running, it will first check whether there is a private configuration file named `config_private.py`, and use the configuration in it to overwrite the same name configuration in `config.py`. Therefore, if you can understand our configuration reading logic, we strongly recommend that you create a new configuration file next to `config.py` named `config_private.py` and transfer (copy) the configuration in `config.py` to `config_private.py`. `config_private.py` is not managed by Git, which can make your privacy information more secure.)
### 3. Install Dependencies
```sh
# (Option 1) Recommended
python -m pip install -r requirements.txt
# (Option 2) If you use anaconda, the steps are also similar:
# (Option 2.1) conda create -n gptac_venv python=3.11
# (Option 2.2) conda activate gptac_venv
# (Option 2.3) python -m pip install -r requirements.txt
# Note: Use the official pip source or the Ali pip source. Other pip sources (such as some university pips) may have problems. Temporary substitution method:
# python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
```
### 4. Run
```sh
python main.py
```
### 5. Test Experimental Features
```
- Test C++ Project Header Analysis
In the input area, enter `./crazy_functions/test_project/cpp/libJPG` , and then click "[Experiment] Parse the entire C++ project (input inputs the root path of the project)"
- Test Writing Abstracts for Latex Projects
In the input area, enter `./crazy_functions/test_project/latex/attention` , and then click "[Experiment] Read the tex paper and write an abstract (input inputs the root path of the project)"
- Test Python Project Analysis
In the input area, enter `./crazy_functions/test_project/python/dqn` , and then click "[Experiment] Parse the entire py project (input inputs the root path of the project)"
- Test Self-code Interpretation
Click "[Experiment] Please analyze and deconstruct this project itself"
- Test Experimental Function Template (asking GPT what happened in history today), you can implement more complex functions based on this template function
Click "[Experiment] Experimental function template"
```
## Use Docker (Linux)
``` sh
# Download Project
git clone https://github.com/binary-husky/chatgpt_academic.git
cd chatgpt_academic
# Configure Overseas Proxy and OpenAI API KEY
Configure config.py with any text editor
# Installation
docker build -t gpt-academic .
# Run
docker run --rm -it --net=host gpt-academic
# Test Experimental Features
## Test Self-code Interpretation
Click "[Experiment] Please analyze and deconstruct this project itself"
## Test Experimental Function Template (asking GPT what happened in history today), you can implement more complex functions based on this template function
Click "[Experiment] Experimental function template"
## (Please note that when running in docker, you need to pay extra attention to file access rights issues of the program.)
## Test C++ Project Header Analysis
In the input area, enter ./crazy_functions/test_project/cpp/libJPG , and then click "[Experiment] Parse the entire C++ project (input inputs the root path of the project)"
## Test Writing Abstracts for Latex Projects
In the input area, enter ./crazy_functions/test_project/latex/attention , and then click "[Experiment] Read the tex paper and write an abstract (input inputs the root path of the project)"
## Test Python Project Analysis
In the input area, enter ./crazy_functions/test_project/python/dqn , and then click "[Experiment] Parse the entire py project (input inputs the root path of the project)"
```
## Other Deployment Methods
- Use WSL2 (Windows Subsystem for Linux subsystem)
Please visit [Deploy Wiki-1] (https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
- nginx remote deployment
Please visit [Deploy Wiki-2] (https://github.com/binary-husky/chatgpt_academic/wiki/%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E7%9A%84%E6%8C%87%E5%AF%BC)
## Customizing New Convenient Buttons (Academic Shortcut Key Customization)
Open functional.py and add the entry as follows, and then restart the program. (If the button has been successfully added and is visible, both the prefix and suffix support hot modification and take effect without restarting the program.)
For example,
```
"Super English to Chinese Translation": {
# Prefix, which will be added before your input. For example, it is used to describe your requirements, such as translation, code interpretation, polishing, etc.
"Prefix": "Please translate the following content into Chinese, and then use a markdown table to explain each proprietary term in the text:\n\n",
# Suffix, which will be added after your input. For example, in conjunction with the prefix, you can bracket your input in quotes.
"Suffix": "",
},
```
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226899272-477c2134-ed71-4326-810c-29891fe4a508.png" width="500" >
</div>
If you invent a more user-friendly academic shortcut key, welcome to post an issue or pull request!
## Configure Proxy
### Method 1: General Method
Modify the port and proxy software corresponding in ```config.py```
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226571294-37a47cd9-4d40-4c16-97a2-d360845406f7.png" width="500" >
<img src="https://user-images.githubusercontent.com/96192199/226838985-e5c95956-69c2-4c23-a4dd-cd7944eeb451.png" width="500" >
</div>
After configuring, you can use the following command to test whether the proxy works. If everything is normal, the code below will output the location of your proxy server:
```
python check_proxy.py
```
### Method Two: Pure Beginner Tutorial
[Pure Beginner Tutorial](https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BB%A3%E7%90%86%E8%BD%AF%E4%BB%B6%E9%97%AE%E9%A2%98%E7%9A%84%E6%96%B0%E6%89%8B%E8%A7%A3%E5%86%B3%E6%96%B9%E6%B3%95%EF%BC%88%E6%96%B9%E6%B3%95%E5%8F%AA%E9%80%82%E7%94%A8%E4%BA%8E%E6%96%B0%E6%89%8B%EF%BC%89)
## Compatibility Testing
### Image Display:
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/228737599-bf0a9d9c-1808-4f43-ae15-dfcc7af0f295.png" width="800" >
</div>
### If the program can read and analyze itself:
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226936850-c77d7183-0749-4c1c-9875-fd4891842d0c.png" width="800" >
</div>
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226936618-9b487e4b-ab5b-4b6e-84c6-16942102e917.png" width="800" >
</div>
### Any other Python/Cpp project analysis:
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="800" >
</div>
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226969067-968a27c1-1b9c-486b-8b81-ab2de8d3f88a.png" width="800" >
</div>
### Latex paper reading comprehension and abstract generation with one click
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/227504406-86ab97cd-f208-41c3-8e4a-7000e51cf980.png" width="800" >
</div>
### Automatic Report Generation
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/227503770-fe29ce2c-53fd-47b0-b0ff-93805f0c2ff4.png" height="300" >
<img src="https://user-images.githubusercontent.com/96192199/227504617-7a497bb3-0a2a-4b50-9a8a-95ae60ea7afd.png" height="300" >
<img src="https://user-images.githubusercontent.com/96192199/227504005-efeaefe0-b687-49d0-bf95-2d7b7e66c348.png" height="300" >
</div>
### Modular Function Design
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/229288270-093643c1-0018-487a-81e6-1d7809b6e90f.png" height="400" >
<img src="https://user-images.githubusercontent.com/96192199/227504931-19955f78-45cd-4d1c-adac-e71e50957915.png" height="400" >
</div>
### Translating source code to English
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/229720562-fe6c3508-6142-4635-a83d-21eb3669baee.png" height="400" >
</div>
## Todo and Version Planning:
- version 3 (Todo):
- - Support for gpt4 and other llm
- version 2.4+ (Todo):
- - Summary of long text and token overflow problems in large project source code
- - Implementation of project packaging and deployment
- - Function plugin parameter interface optimization
- - Self-updating
- version 2.4: (1) Added PDF full-text translation function; (2) Added input area switching function; (3) Added vertical layout option; (4) Optimized multi-threaded function plugin.
- version 2.3: Enhanced multi-threaded interactivity
- version 2.2: Function plug-in supports hot reloading
- version 2.1: Collapsible layout
- version 2.0: Introduction of modular function plugins
- version 1.0: Basic functions
## References and Learning
```
The code refers to the design of many other excellent projects, mainly including:
# Reference Project 1: Referenced the method of reading OpenAI json, recording historical inquiry records, and using gradio queue in ChuanhuChatGPT
https://github.com/GaiZhenbiao/ChuanhuChatGPT
# Reference Project 2:
https://github.com/THUDM/ChatGLM-6B
```

二进制
img/公式.gif

二进制文件未显示。

之前

宽度:  |  高度:  |  大小: 11 MiB

二进制
img/润色.gif

二进制文件未显示。

之前

宽度:  |  高度:  |  大小: 12 MiB

30
main.py
查看文件

@@ -4,15 +4,16 @@ from request_llm.bridge_chatgpt import predict
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, DummyWith
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT = \
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT')
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY = \
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY')
# 如果WEB_PORT是-1, 则随机选取WEB端口
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
if not AUTHENTICATION: AUTHENTICATION = None
from check_proxy import get_current_version
initial_prompt = "Serve me as a writing and programming assistant."
title_html = "<h1 align=\"center\">ChatGPT 学术优化</h1>"
title_html = f"<h1 align=\"center\">ChatGPT 学术优化 {get_current_version()}</h1>"
description = """代码开源和更新[地址🚀](https://github.com/binary-husky/chatgpt_academic),感谢热情的[开发者们❤️](https://github.com/binary-husky/chatgpt_academic/graphs/contributors)"""
# 问询记录, python 版本建议3.9+(越新越好)
@@ -49,8 +50,9 @@ if LAYOUT == "TOP-DOWN":
CHATBOT_HEIGHT /= 2
cancel_handles = []
with gr.Blocks(theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
with gr.Blocks(title="ChatGPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
gr.HTML(title_html)
cookies = gr.State({'api_key': API_KEY, 'llm_model': LLM_MODEL})
with gr_L1():
with gr_L2(scale=2):
chatbot = gr.Chatbot()
@@ -116,16 +118,16 @@ with gr.Blocks(theme=set_theme, analytics_enabled=False, css=advanced_css) as de
return ret
checkboxes.select(fn_area_visibility, [checkboxes], [area_basic_fn, area_crazy_fn, area_input_primary, area_input_secondary, txt, txt2] )
# 整理反复出现的控件句柄组合
input_combo = [txt, txt2, top_p, temperature, chatbot, history, system_prompt]
output_combo = [chatbot, history, status]
input_combo = [cookies, txt, txt2, top_p, temperature, chatbot, history, system_prompt]
output_combo = [cookies, chatbot, history, status]
predict_args = dict(fn=ArgsGeneralWrapper(predict), inputs=input_combo, outputs=output_combo)
# 提交按钮、重置按钮
cancel_handles.append(txt.submit(**predict_args))
cancel_handles.append(txt2.submit(**predict_args))
cancel_handles.append(submitBtn.click(**predict_args))
cancel_handles.append(submitBtn2.click(**predict_args))
resetBtn.click(lambda: ([], [], "已重置"), None, output_combo)
resetBtn2.click(lambda: ([], [], "已重置"), None, output_combo)
resetBtn.click(lambda: ([], [], "已重置"), None, [chatbot, history, status])
resetBtn2.click(lambda: ([], [], "已重置"), None, [chatbot, history, status])
# 基础功能区的回调函数注册
for k in functional:
click_handle = functional[k]["Button"].click(fn=ArgsGeneralWrapper(predict), inputs=[*input_combo, gr.State(True), gr.State(k)], outputs=output_combo)
@@ -160,15 +162,13 @@ with gr.Blocks(theme=set_theme, analytics_enabled=False, css=advanced_css) as de
def auto_opentab_delay():
import threading, webbrowser, time
print(f"如果浏览器没有自动打开,请复制并转到以下URL")
print(f"\t(亮色主: http://localhost:{PORT}")
print(f"\t(暗色主: http://localhost:{PORT}/?__dark-theme=true")
print(f"\t(亮色主: http://localhost:{PORT}")
print(f"\t(暗色主: http://localhost:{PORT}/?__dark-theme=true")
def open():
time.sleep(2)
try: auto_update() # 检查新版本
except: pass
time.sleep(2) # 打开浏览器
webbrowser.open_new_tab(f"http://localhost:{PORT}/?__dark-theme=true")
threading.Thread(target=open, name="open-browser", daemon=True).start()
threading.Thread(target=auto_update, name="self-upgrade", daemon=True).start()
auto_opentab_delay()
demo.title = "ChatGPT 学术优化"
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(server_name="0.0.0.0", share=True, server_port=PORT, auth=AUTHENTICATION)
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(server_name="0.0.0.0", server_port=PORT, auth=AUTHENTICATION)

查看文件

@@ -1,4 +1,4 @@
# 如何使用其他大语言模型(dev分支测试中)
# 如何使用其他大语言模型(v3.0分支测试中)
## 1. 先运行text-generation
``` sh

查看文件

@@ -21,7 +21,7 @@ import importlib
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件不受git管控,如果有,则覆盖原config文件
from toolbox import get_conf
from toolbox import get_conf, update_ui
proxies, API_URL, API_KEY, TIMEOUT_SECONDS, MAX_RETRY, LLM_MODEL = \
get_conf('proxies', 'API_URL', 'API_KEY', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'LLM_MODEL')
@@ -39,47 +39,15 @@ def get_full_error(chunk, stream_response):
break
return chunk
def predict_no_ui(inputs, top_p, temperature, history=[], sys_prompt=""):
"""
发送至chatGPT,等待回复,一次性完成,不显示中间过程。
predict函数的简化版。
用于payload比较大的情况,或者用于实现多线、带嵌套的复杂功能。
inputs 是本次问询的输入
top_p, temperature是chatGPT的内部调优参数
history 是之前的对话列表
注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误,然后raise ConnectionAbortedError
"""
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt=sys_prompt, stream=False)
retry = 0
while True:
try:
# make a POST request to the API endpoint, stream=False
response = requests.post(API_URL, headers=headers, proxies=proxies,
json=payload, stream=False, timeout=TIMEOUT_SECONDS*2); break
except requests.exceptions.ReadTimeout as e:
retry += 1
traceback.print_exc()
if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
try:
result = json.loads(response.text)["choices"][0]["message"]["content"]
return result
except Exception as e:
if "choices" not in response.text: print(response.text)
raise ConnectionAbortedError("Json解析不合常规,可能是文本过长" + response.text)
def predict_no_ui_long_connection(inputs, top_p, temperature, history=[], sys_prompt="", observe_window=None):
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
"""
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
inputs
是本次问询的输入
sys_prompt:
系统静默prompt
top_p, temperature
llm_kwargs
chatGPT的内部调优参数
history
是之前的对话列表
@@ -87,7 +55,7 @@ def predict_no_ui_long_connection(inputs, top_p, temperature, history=[], sys_pr
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]观测窗。observe_window[1]:看门狗
"""
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt=sys_prompt, stream=True)
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
retry = 0
while True:
try:
@@ -104,7 +72,10 @@ def predict_no_ui_long_connection(inputs, top_p, temperature, history=[], sys_pr
result = ''
while True:
try: chunk = next(stream_response).decode()
except StopIteration: break
except StopIteration:
break
except requests.exceptions.ConnectionError:
chunk = next(stream_response).decode() # 失败了,重试一次?再失败就没办法了。
if len(chunk)==0: continue
if not chunk.startswith('data:'):
error_msg = get_full_error(chunk.encode('utf8'), stream_response).decode()
@@ -118,22 +89,21 @@ def predict_no_ui_long_connection(inputs, top_p, temperature, history=[], sys_pr
if "role" in delta: continue
if "content" in delta:
result += delta["content"]
print(delta["content"], end='')
if not console_slience: print(delta["content"], end='')
if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1: observe_window[0] += delta["content"]
# 看门狗,如果超过期限没有喂狗,则终止
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("程序终止")
raise RuntimeError("用户取消了程序。")
else: raise RuntimeError("意外Json结构"+delta)
if json_data['finish_reason'] == 'length':
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
return result
def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt='',
stream = True, additional_fn=None):
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
发送至chatGPT,流式获取输出。
用于基础的对话功能。
@@ -143,6 +113,16 @@ def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt=''
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
additional_fn代表点击的哪个按钮,按钮见functional.py
"""
if inputs.startswith('sk-') and len(inputs) == 51:
chatbot._cookies['api_key'] = inputs
chatbot.append(("输入已识别为openai的api_key", "api_key已导入"))
yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") # 刷新界面
return
elif len(chatbot._cookies['api_key']) != 51:
chatbot.append((inputs, "缺少api_key。\n\n1. 临时解决方案直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案在config.py中配置。"))
yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") # 刷新界面
return
if additional_fn is not None:
import core_functional
importlib.reload(core_functional) # 热更新prompt
@@ -154,9 +134,9 @@ def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt=''
raw_input = inputs
logging.info(f'[raw_input] {raw_input}')
chatbot.append((inputs, ""))
yield chatbot, history, "等待响应"
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt, stream)
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
history.append(inputs); history.append(" ")
retry = 0
@@ -169,7 +149,7 @@ def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt=''
retry += 1
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
yield chatbot, history, "请求超时"+retry_msg
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
if retry > MAX_RETRY: raise TimeoutError
gpt_replying_buffer = ""
@@ -197,11 +177,11 @@ def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt=''
gpt_replying_buffer = gpt_replying_buffer + json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"]
history[-1] = gpt_replying_buffer
chatbot[-1] = (history[-2], history[-1])
yield chatbot, history, status_text
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
except Exception as e:
traceback.print_exc()
yield chatbot, history, "Json解析不合常规"
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
chunk = get_full_error(chunk, stream_response)
error_msg = chunk.decode()
if "reduce the length" in error_msg:
@@ -215,16 +195,19 @@ def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt=''
from toolbox import regular_txt_to_markdown
tb_str = '```\n' + traceback.format_exc() + '```'
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk.decode()[4:])}")
yield chatbot, history, "Json异常" + error_msg
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
return
def generate_payload(inputs, top_p, temperature, history, system_prompt, stream):
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
"""
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
"""
if len(llm_kwargs['api_key']) != 51:
raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案在config.py中配置。")
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_KEY}"
"Authorization": f"Bearer {llm_kwargs['api_key']}"
}
conversation_cnt = len(history) // 2
@@ -252,17 +235,19 @@ def generate_payload(inputs, top_p, temperature, history, system_prompt, stream)
messages.append(what_i_ask_now)
payload = {
"model": LLM_MODEL,
"model": llm_kwargs['llm_model'],
"messages": messages,
"temperature": temperature, # 1.0,
"top_p": top_p, # 1.0,
"temperature": llm_kwargs['temperature'], # 1.0,
"top_p": llm_kwargs['top_p'], # 1.0,
"n": 1,
"stream": stream,
"presence_penalty": 0,
"frequency_penalty": 0,
}
print(f" {LLM_MODEL} : {conversation_cnt} : {inputs}")
try:
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
except:
print('输入中可能存在乱码。')
return headers,payload

查看文件

@@ -12,7 +12,7 @@ import logging
import time
import threading
import importlib
from toolbox import get_conf
from toolbox import get_conf, update_ui
LLM_MODEL, = get_conf('LLM_MODEL')
# "TGUI:galactica-1.3b@localhost:7860"
@@ -90,7 +90,7 @@ async def run(context, max_token=512):
def predict_tgui(inputs, top_p, temperature, chatbot=[], history=[], system_prompt='', stream = True, additional_fn=None):
def predict_tgui(inputs, top_p, temperature, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
发送至chatGPT,流式获取输出。
用于基础的对话功能。
@@ -111,7 +111,7 @@ def predict_tgui(inputs, top_p, temperature, chatbot=[], history=[], system_prom
logging.info(f'[raw_input] {raw_input}')
history.extend([inputs, ""])
chatbot.append([inputs, ""])
yield chatbot, history, "等待响应"
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
prompt = inputs
tgui_say = ""
@@ -138,7 +138,7 @@ def predict_tgui(inputs, top_p, temperature, chatbot=[], history=[], system_prom
tgui_say = mutable[0]
history[-1] = tgui_say
chatbot[-1] = (history[-2], history[-1])
yield chatbot, history, "status_text"
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
logging.info(f'[response] {tgui_say}')

查看文件

@@ -1,8 +1,16 @@
gradio>=3.23
gradio==3.25.0
tiktoken>=0.3.3
requests[socks]
mdtex2html
Markdown
latex2mathml
openai
transformers
numpy
python-markdown-math
beautifulsoup4
latex2mathml
python-docx
mdtex2html
colorama
Markdown
pygments
pymupdf
openai
numpy
arxiv

查看文件

@@ -1,80 +0,0 @@
# This program is written by: https://github.com/polarwinkel/mdtex2html
from latex2mathml.converter import convert as tex2mathml
import re
incomplete = '<font style="color:orange;" class="tooltip">&#9888;<span class="tooltiptext">formula incomplete</span></font>'
convError = '<font style="color:red" class="tooltip">&#9888;<span class="tooltiptext">LaTeX-convert-error</span></font>'
def convert(mdtex, extensions=[], splitParagraphs=True):
''' converts recursively the Markdown-LaTeX-mixture to HTML with MathML '''
found = False
# handle all paragraphs separately (prevents aftereffects)
if splitParagraphs:
parts = re.split("\n\n", mdtex)
result = ''
for part in parts:
result += convert(part, extensions, splitParagraphs=False)
return result
# find first $$-formula:
parts = re.split('\${2}', mdtex, 2)
if len(parts)>1:
found = True
result = convert(parts[0], extensions, splitParagraphs=False)+'\n'
try:
result += '<div class="blockformula">'+tex2mathml(parts[1])+'</div>\n'
except:
result += '<div class="blockformula">'+convError+'</div>'
if len(parts)==3:
result += convert(parts[2], extensions, splitParagraphs=False)
else:
result += '<div class="blockformula">'+incomplete+'</div>'
# else find first $-formulas:
else:
parts = re.split('\${1}', mdtex, 2)
if len(parts)>1 and not found:
found = True
try:
mathml = tex2mathml(parts[1])
except:
mathml = convError
if parts[0].endswith('\n\n') or parts[0]=='': # make sure textblock starts before formula!
parts[0]=parts[0]+'&#x200b;'
if len(parts)==3:
result = convert(parts[0]+mathml+parts[2], extensions, splitParagraphs=False)
else:
result = convert(parts[0]+mathml+incomplete, extensions, splitParagraphs=False)
# else find first \[..\]-equation:
else:
parts = re.split(r'\\\[', mdtex, 1)
if len(parts)>1 and not found:
found = True
result = convert(parts[0], extensions, splitParagraphs=False)+'\n'
parts = re.split(r'\\\]', parts[1], 1)
try:
result += '<div class="blockformula">'+tex2mathml(parts[0])+'</div>\n'
except:
result += '<div class="blockformula">'+convError+'</div>'
if len(parts)==2:
result += convert(parts[1], extensions, splitParagraphs=False)
else:
result += '<div class="blockformula">'+incomplete+'</div>'
# else find first \(..\)-equation:
else:
parts = re.split(r'\\\(', mdtex, 1)
if len(parts)>1 and not found:
found = True
subp = re.split(r'\\\)', parts[1], 1)
try:
mathml = tex2mathml(subp[0])
except:
mathml = convError
if parts[0].endswith('\n\n') or parts[0]=='': # make sure textblock starts before formula!
parts[0]=parts[0]+'&#x200b;'
if len(subp)==2:
result = convert(parts[0]+mathml+subp[1], extensions, splitParagraphs=False)
else:
result = convert(parts[0]+mathml+incomplete, extensions, splitParagraphs=False)
if not found:
result = mdtex
return result

查看文件

@@ -1,5 +1,6 @@
import gradio as gr
from toolbox import get_conf
CODE_HIGHLIGHT, = get_conf('CODE_HIGHLIGHT')
# gradio可用颜色列表
# gr.themes.utils.colors.slate (石板色)
# gr.themes.utils.colors.gray (灰色)
@@ -153,4 +154,78 @@ advanced_css = """
padding: 1em;
margin: 1em 2em 1em 0.5em;
}
"""
if CODE_HIGHLIGHT:
advanced_css += """
.hll { background-color: #ffffcc }
.c { color: #3D7B7B; font-style: italic } /* Comment */
.err { border: 1px solid #FF0000 } /* Error */
.k { color: hsl(197, 94%, 51%); font-weight: bold } /* Keyword */
.o { color: #666666 } /* Operator */
.ch { color: #3D7B7B; font-style: italic } /* Comment.Hashbang */
.cm { color: #3D7B7B; font-style: italic } /* Comment.Multiline */
.cp { color: #9C6500 } /* Comment.Preproc */
.cpf { color: #3D7B7B; font-style: italic } /* Comment.PreprocFile */
.c1 { color: #3D7B7B; font-style: italic } /* Comment.Single */
.cs { color: #3D7B7B; font-style: italic } /* Comment.Special */
.gd { color: #A00000 } /* Generic.Deleted */
.ge { font-style: italic } /* Generic.Emph */
.gr { color: #E40000 } /* Generic.Error */
.gh { color: #000080; font-weight: bold } /* Generic.Heading */
.gi { color: #008400 } /* Generic.Inserted */
.go { color: #717171 } /* Generic.Output */
.gp { color: #000080; font-weight: bold } /* Generic.Prompt */
.gs { font-weight: bold } /* Generic.Strong */
.gu { color: #800080; font-weight: bold } /* Generic.Subheading */
.gt { color: #a9dd00 } /* Generic.Traceback */
.kc { color: #008000; font-weight: bold } /* Keyword.Constant */
.kd { color: #008000; font-weight: bold } /* Keyword.Declaration */
.kn { color: #008000; font-weight: bold } /* Keyword.Namespace */
.kp { color: #008000 } /* Keyword.Pseudo */
.kr { color: #008000; font-weight: bold } /* Keyword.Reserved */
.kt { color: #B00040 } /* Keyword.Type */
.m { color: #666666 } /* Literal.Number */
.s { color: #BA2121 } /* Literal.String */
.na { color: #687822 } /* Name.Attribute */
.nb { color: #e5f8c3 } /* Name.Builtin */
.nc { color: #ffad65; font-weight: bold } /* Name.Class */
.no { color: #880000 } /* Name.Constant */
.nd { color: #AA22FF } /* Name.Decorator */
.ni { color: #717171; font-weight: bold } /* Name.Entity */
.ne { color: #CB3F38; font-weight: bold } /* Name.Exception */
.nf { color: #f9f978 } /* Name.Function */
.nl { color: #767600 } /* Name.Label */
.nn { color: #0000FF; font-weight: bold } /* Name.Namespace */
.nt { color: #008000; font-weight: bold } /* Name.Tag */
.nv { color: #19177C } /* Name.Variable */
.ow { color: #AA22FF; font-weight: bold } /* Operator.Word */
.w { color: #bbbbbb } /* Text.Whitespace */
.mb { color: #666666 } /* Literal.Number.Bin */
.mf { color: #666666 } /* Literal.Number.Float */
.mh { color: #666666 } /* Literal.Number.Hex */
.mi { color: #666666 } /* Literal.Number.Integer */
.mo { color: #666666 } /* Literal.Number.Oct */
.sa { color: #BA2121 } /* Literal.String.Affix */
.sb { color: #BA2121 } /* Literal.String.Backtick */
.sc { color: #BA2121 } /* Literal.String.Char */
.dl { color: #BA2121 } /* Literal.String.Delimiter */
.sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */
.s2 { color: #2bf840 } /* Literal.String.Double */
.se { color: #AA5D1F; font-weight: bold } /* Literal.String.Escape */
.sh { color: #BA2121 } /* Literal.String.Heredoc */
.si { color: #A45A77; font-weight: bold } /* Literal.String.Interpol */
.sx { color: #008000 } /* Literal.String.Other */
.sr { color: #A45A77 } /* Literal.String.Regex */
.s1 { color: #BA2121 } /* Literal.String.Single */
.ss { color: #19177C } /* Literal.String.Symbol */
.bp { color: #008000 } /* Name.Builtin.Pseudo */
.fm { color: #0000FF } /* Name.Function.Magic */
.vc { color: #19177C } /* Name.Variable.Class */
.vg { color: #19177C } /* Name.Variable.Global */
.vi { color: #19177C } /* Name.Variable.Instance */
.vm { color: #19177C } /* Name.Variable.Magic */
.il { color: #666666 } /* Literal.Number.Integer.Long */
"""

查看文件

@@ -3,26 +3,65 @@ import mdtex2html
import threading
import importlib
import traceback
import importlib
import inspect
import re
from show_math import convert as convert_math
from latex2mathml.converter import convert as tex2mathml
from functools import wraps, lru_cache
############################### 插件输入输出接驳区 #######################################
class ChatBotWithCookies(list):
def __init__(self, cookie):
self._cookies = cookie
def write_list(self, list):
for t in list:
self.append(t)
def get_list(self):
return [t for t in self]
def get_cookies(self):
return self._cookies
def ArgsGeneralWrapper(f):
"""
装饰器函数,用于重组输入参数,改变输入参数的顺序与结构。
"""
def decorated(txt, txt2, *args, **kwargs):
def decorated(cookies, txt, txt2, top_p, temperature, chatbot, history, system_prompt, *args):
txt_passon = txt
if txt == "" and txt2 != "":
txt_passon = txt2
yield from f(txt_passon, *args, **kwargs)
if txt == "" and txt2 != "": txt_passon = txt2
# 引入一个有cookie的chatbot
cookies.update({
'top_p':top_p,
'temperature':temperature,
})
llm_kwargs = {
'api_key': cookies['api_key'],
'llm_model': cookies['llm_model'],
'top_p':top_p,
'temperature':temperature,
}
plugin_kwargs = {
# 目前还没有
}
chatbot_with_cookie = ChatBotWithCookies(cookies)
chatbot_with_cookie.write_list(chatbot)
yield from f(txt_passon, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, system_prompt, *args)
return decorated
def update_ui(chatbot, history, msg='正常', **kwargs): # 刷新界面
"""
刷新用户界面
"""
assert isinstance(chatbot, ChatBotWithCookies), "在传递chatbot的过程中不要将其丢弃。必要时,可用clear将其清空,然后用for+append循环重新赋值。"
yield chatbot.get_cookies(), chatbot, history, msg
############################### ################## #######################################
##########################################################################################
def get_reduce_token_percent(text):
"""
* 此函数未来将被弃用
"""
try:
# text = "maximum context length is 4097 tokens. However, your messages resulted in 4870 tokens"
pattern = r"(\d+)\s+tokens\b"
@@ -36,9 +75,10 @@ def get_reduce_token_percent(text):
except:
return 0.5, '不详'
def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[], sys_prompt='', long_connection=True):
def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, llm_kwargs, history=[], sys_prompt='', long_connection=True):
"""
* 此函数未来将被弃用(替代函数 request_gpt_model_in_new_thread_with_ui_alive 文件 chatgpt_academic/crazy_functions/crazy_utils
调用简单的predict_no_ui接口,但是依然保留了些许界面心跳功能,当对话太长时,会自动采用二分法截断
i_say: 当前输入
i_say_show_user: 显示到对话界面上的当前输入,例如,输入整个文件时,你绝对不想把文件的内容都糊到对话界面上
@@ -46,10 +86,10 @@ def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temp
top_p, temperature: gpt参数
history: gpt参数 对话历史
sys_prompt: gpt参数 sys_prompt
long_connection: 是否采用更稳定的连接方式(推荐)
long_connection: 是否采用更稳定的连接方式(推荐)(已弃用)
"""
import time
from request_llm.bridge_chatgpt import predict_no_ui, predict_no_ui_long_connection
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
from toolbox import get_conf
TIMEOUT_SECONDS, MAX_RETRY = get_conf('TIMEOUT_SECONDS', 'MAX_RETRY')
# 多线程的时候,需要一个mutable结构在不同线程之间传递信息
@@ -60,13 +100,9 @@ def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temp
def mt(i_say, history):
while True:
try:
if long_connection:
mutable[0] = predict_no_ui_long_connection(
inputs=i_say, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt)
else:
mutable[0] = predict_no_ui(
inputs=i_say, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt)
break
mutable[0] = predict_no_ui_long_connection(
inputs=i_say, llm_kwargs=llm_kwargs, history=history, sys_prompt=sys_prompt)
except ConnectionAbortedError as token_exceeded_error:
# 尝试计算比例,尽可能多地保留文本
p_ratio, n_exceed = get_reduce_token_percent(
@@ -92,7 +128,7 @@ def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temp
cnt += 1
chatbot[-1] = (i_say_show_user,
f"[Local Message] {mutable[1]}waiting gpt response {cnt}/{TIMEOUT_SECONDS*2*(MAX_RETRY+1)}"+''.join(['.']*(cnt % 4)))
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
time.sleep(1)
# 把gpt的输出从mutable中取出来
gpt_say = mutable[0]
@@ -156,13 +192,19 @@ def CatchException(f):
chatbot = [["插件调度异常", "异常原因"]]
chatbot[-1] = (chatbot[-1][0],
f"[Local Message] 实验性函数调用出错: \n\n{tb_str} \n\n当前代理可用性: \n\n{check_proxy(proxies)}")
yield chatbot, history, f'异常 {e}'
yield from update_ui(chatbot=chatbot, history=history, msg=f'异常 {e}') # 刷新界面
return decorated
def HotReload(f):
"""
装饰器函数,实现函数插件热更新
HotReload的装饰器函数,用于实现Python函数插件热更新
函数热更新是指在不停止程序运行的情况下,更新函数代码,从而达到实时更新功能。
在装饰器内部,使用wraps(f)来保留函数的元信息,并定义了一个名为decorated的内部函数。
内部函数通过使用importlib模块的reload函数和inspect模块的getmodule函数来重新加载并获取函数模块,
然后通过getattr函数获取函数名,并在新模块中重新加载函数。
最后,使用yield from语句返回重新加载过的函数,并在被装饰的函数上执行。
最终,装饰器函数返回内部函数。这个内部函数可以将函数的原始定义更新为最新版本,并执行函数的新版本。
"""
@wraps(f)
def decorated(*args, **kwargs):
@@ -203,15 +245,76 @@ def markdown_convertion(txt):
"""
pre = '<div class="markdown-body">'
suf = '</div>'
if ('$' in txt) and ('```' not in txt):
return pre + markdown.markdown(txt, extensions=['fenced_code', 'tables']) + '<br><br>' + markdown.markdown(convert_math(txt, splitParagraphs=False), extensions=['fenced_code', 'tables']) + suf
markdown_extension_configs = {
'mdx_math': {
'enable_dollar_delimiter': True,
'use_gitlab_delimiters': False,
},
}
find_equation_pattern = r'<script type="math/tex(?:.*?)>(.*?)</script>'
def tex2mathml_catch_exception(content, *args, **kwargs):
try:
content = tex2mathml(content, *args, **kwargs)
except:
content = content
return content
def replace_math_no_render(match):
content = match.group(1)
if 'mode=display' in match.group(0):
content = content.replace('\n', '</br>')
return f"<font color=\"#00FF00\">$$</font><font color=\"#FF00FF\">{content}</font><font color=\"#00FF00\">$$</font>"
else:
return f"<font color=\"#00FF00\">$</font><font color=\"#FF00FF\">{content}</font><font color=\"#00FF00\">$</font>"
def replace_math_render(match):
content = match.group(1)
if 'mode=display' in match.group(0):
if '\\begin{aligned}' in content:
content = content.replace('\\begin{aligned}', '\\begin{array}')
content = content.replace('\\end{aligned}', '\\end{array}')
content = content.replace('&', ' ')
content = tex2mathml_catch_exception(content, display="block")
return content
else:
return tex2mathml_catch_exception(content)
def markdown_bug_hunt(content):
"""
解决一个mdx_math的bug单$包裹begin命令时多余<script>
"""
content = content.replace('<script type="math/tex">\n<script type="math/tex; mode=display">', '<script type="math/tex; mode=display">')
content = content.replace('</script>\n</script>', '</script>')
return content
if ('$' in txt) and ('```' not in txt): # 有$标识的公式符号,且没有代码段```的标识
# convert everything to html format
split = markdown.markdown(text='---')
convert_stage_1 = markdown.markdown(text=txt, extensions=['mdx_math', 'fenced_code', 'tables', 'sane_lists'], extension_configs=markdown_extension_configs)
convert_stage_1 = markdown_bug_hunt(convert_stage_1)
# re.DOTALL: Make the '.' special character match any character at all, including a newline; without this flag, '.' will match anything except a newline. Corresponds to the inline flag (?s).
# 1. convert to easy-to-copy tex (do not render math)
convert_stage_2_1, n = re.subn(find_equation_pattern, replace_math_no_render, convert_stage_1, flags=re.DOTALL)
# 2. convert to rendered equation
convert_stage_2_2, n = re.subn(find_equation_pattern, replace_math_render, convert_stage_1, flags=re.DOTALL)
# cat them together
return pre + convert_stage_2_1 + f'{split}' + convert_stage_2_2 + suf
else:
return pre + markdown.markdown(txt, extensions=['fenced_code', 'tables']) + suf
return pre + markdown.markdown(txt, extensions=['fenced_code', 'codehilite', 'tables', 'sane_lists']) + suf
def close_up_code_segment_during_stream(gpt_reply):
"""
在gpt输出代码的中途输出了前面的```,但还没输出完后面的```),补上后面的```
在gpt输出代码的中途输出了前面的```,但还没输出完后面的```),补上后面的```
Args:
gpt_reply (str): GPT模型返回的回复字符串。
Returns:
str: 返回一个新的字符串,将输出代码片段的“后面的```”补上。
"""
if '```' not in gpt_reply:
return gpt_reply
@@ -236,11 +339,9 @@ def format_io(self, y):
return []
i_ask, gpt_reply = y[-1]
i_ask = text_divide_paragraph(i_ask) # 输入部分太自由,预处理一波
gpt_reply = close_up_code_segment_during_stream(
gpt_reply) # 当代码输出半截的时候,试着补上后个```
gpt_reply = close_up_code_segment_during_stream(gpt_reply) # 当代码输出半截的时候,试着补上后个```
y[-1] = (
None if i_ask is None else markdown.markdown(
i_ask, extensions=['fenced_code', 'tables']),
None if i_ask is None else markdown.markdown(i_ask, extensions=['fenced_code', 'tables']),
None if gpt_reply is None else markdown_convertion(gpt_reply)
)
return y
@@ -354,7 +455,7 @@ def on_file_uploaded(files, chatbot, txt):
chatbot.append(['我上传了文件,请查收',
f'[Local Message] 收到以下文件: \n\n{moved_files_str}' +
f'\n\n调用路径参数已自动修正到: \n\n{txt}' +
f'\n\n现在您点击任意实验功能时,以上文件将被作为输入参数'+err_msg])
f'\n\n现在您点击任意“红颜色”标识的函数插件时,以上文件将被作为输入参数'+err_msg])
return chatbot, txt
@@ -367,27 +468,30 @@ def on_report_generated(files, chatbot):
chatbot.append(['汇总报告如何远程获取?', '汇总报告已经添加到右侧“文件上传区”(可能处于折叠状态),请查收。'])
return report_files, chatbot
def is_openai_api_key(key):
# 正确的 API_KEY 是 "sk-" + 48 位大小写字母数字的组合
API_MATCH = re.match(r"sk-[a-zA-Z0-9]{48}$", key)
return API_MATCH
@lru_cache(maxsize=128)
def read_single_conf_with_lru_cache(arg):
from colorful import print亮红, print亮绿
try:
r = getattr(importlib.import_module('config_private'), arg)
except:
r = getattr(importlib.import_module('config'), arg)
# 在读取API_KEY时,检查一下是不是忘了改config
if arg == 'API_KEY':
# 正确的 API_KEY 是 "sk-" + 48 位大小写字母数字的组合
API_MATCH = re.match(r"sk-[a-zA-Z0-9]{48}$", r)
if API_MATCH:
print(f"[API_KEY] 您的 API_KEY 是: {r[:15]}*** API_KEY 导入成功")
if is_openai_api_key(r):
print亮绿(f"[API_KEY] 您的 API_KEY 是: {r[:15]}*** API_KEY 导入成功")
else:
assert False, "正确的 API_KEY 是 'sk-' + '48 位大小写字母数字' 的组合,请在config文件中修改API密钥, 添加海外代理之后再运行。" + \
"如果您刚更新过代码,请确保旧版config_private文件中没有遗留任何新增键值"
print亮红( "[API_KEY] 正确的 API_KEY 是 'sk-' + '48 位大小写字母数字' 的组合,请在config文件中修改API密钥, 添加海外代理之后再运行。" + \
"如果您刚更新过代码,请确保旧版config_private文件中没有遗留任何新增键值")
if arg == 'proxies':
if r is None:
print('[PROXY] 网络代理状态未配置。无代理状态下很可能无法访问。建议检查USE_PROXY选项是否修改。')
print亮红('[PROXY] 网络代理状态未配置。无代理状态下很可能无法访问。建议检查USE_PROXY选项是否修改。')
else:
print('[PROXY] 网络代理状态:已配置。配置信息如下:', r)
print亮绿('[PROXY] 网络代理状态:已配置。配置信息如下:', r)
assert isinstance(r, dict), 'proxies格式错误,请注意proxies选项的格式,不要遗漏括号。'
return r
@@ -409,6 +513,15 @@ def clear_line_break(txt):
class DummyWith():
"""
这段代码定义了一个名为DummyWith的空上下文管理器,
它的作用是……额……没用,即在代码结构不变得情况下取代其他的上下文管理器。
上下文管理器是一种Python对象,用于与with语句一起使用,
以确保一些资源在代码块执行期间得到正确的初始化和清理。
上下文管理器必须实现两个方法,分别为 __enter__()和 __exit__()。
在上下文执行开始的情况下,__enter__()方法会在代码块被执行前被调用,
而在上下文执行结束时,__exit__()方法则会被调用。
"""
def __enter__(self):
return self

查看文件

@@ -1,5 +1,5 @@
{
"version": 2.4,
"version": 2.7,
"show_feature": true,
"new_feature": "(1)新增PDF全文翻译功能; (2)新增输入区切换位置的功能; (3)新增垂直布局选项; (4)多线程函数插件优化。"
"new_feature": "修复BUG <-> 改善理解pdfchatpdf功能 <-> 如果一键更新失败,可前往github手动更新"
}