比较提交

..

104 次代码提交

作者 SHA1 备注 提交日期
qingxu fu
5e48fc98ed 添加本地缓存删除功能 2023-08-16 22:49:46 +08:00
qingxu fu
2ff8dc787e interface with ChatGPT-to-API 2023-08-16 22:21:51 +08:00
qingxu fu
cd38d1697c fix missing finish_reason problem 2023-08-16 21:40:34 +08:00
qingxu fu
00f63cb0bc configure utf8 encoding 2023-08-16 21:29:16 +08:00
binary-husky
dc7fab3c19 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-08-14 17:27:33 +08:00
binary-husky
d1b5359e2b fix github action 2023-08-14 17:27:13 +08:00
binary-husky
0597ffea2e Update README.md 2023-08-14 16:37:07 +08:00
binary-husky
d16329c1af resolve sparkapi on_close error 2023-08-14 11:31:05 +08:00
binary-husky
d5b4d7ab90 better github action 2023-08-14 11:28:52 +08:00
binary-husky
8199a9a12e Update requirements.txt 2023-08-14 11:23:15 +08:00
binary-husky
cb10a8abec Update requirements.txt 2023-08-14 10:54:46 +08:00
binary-husky
0dbcda89b7 add websocket dep 2023-08-14 10:32:31 +08:00
binary-husky
78a8259b82 Update bridge_all.py 2023-08-14 10:24:59 +08:00
binary-husky
f22fdb4f94 Merge pull request #1040 from Keldos-Li/fix-Chuanhu-theme
调整与修复 [川虎小而美] 主题样式
2023-08-14 10:08:01 +08:00
binary-husky
450645a9d0 version 3.48 2023-08-14 03:09:56 +08:00
binary-husky
af23730f8f 接入讯飞星火Spark大模型 2023-08-14 03:08:15 +08:00
Keldos
0b11260d6f fix: 修复川虎主题的slider问题 2023-08-14 00:15:38 +08:00
Keldos
31ab97dd09 feat: 调整川虎主题样式 2023-08-14 00:14:44 +08:00
binary-husky
c0c4834cfc fix interact message 2023-08-13 22:25:01 +08:00
binary-husky
2dae40f4ba Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-08-13 21:34:33 +08:00
binary-husky
587c7400d1 xunfei spark api test 2023-08-13 21:34:27 +08:00
binary-husky
8dd2e2a6b7 Update bug_report.yml 2023-08-13 21:25:21 +08:00
binary-husky
aaf4f37403 Merge pull request #1014 from hongyi-zhao/master
Fix the reverse proxy based OpenAI access via https://github.com/acheong08/ChatGPT-to-API/.
2023-08-13 20:57:32 +08:00
binary-husky
3e2e81a968 add chatgpt website 2023-08-13 20:55:18 +08:00
binary-husky
cc1be5585b Merge branch 'master' of https://github.com/hongyi-zhao/gpt_academic into hongyi-zhao-master 2023-08-13 20:50:09 +08:00
binary-husky
5050016b22 theme typo fix 2023-08-12 20:28:20 +08:00
binary-husky
7662196514 update tests 2023-08-12 14:09:19 +08:00
binary-husky
8ddaca09e0 add commandline helper 2023-08-12 12:11:49 +08:00
binary-husky
71c692dcef Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-08-07 02:11:57 +08:00
binary-husky
184e417fec handle local llm dependency error properly 2023-08-07 02:11:48 +08:00
binary-husky
7a99560183 Update README.md 2023-08-07 02:01:35 +08:00
binary-husky
48f4d6aa2a Update README.md 2023-08-07 02:00:39 +08:00
binary-husky
c17fc2a9b5 我是来自达摩院的大规模语言模型,我叫通义千问。 2023-08-07 01:58:35 +08:00
binary-husky
4d70b3786f interface with qwen 2023-08-07 01:24:41 +08:00
binary-husky
9bee676cd2 Merge pull request #1009 from ValeriaWong/master
feat(chatglm_int8_onnx):纯CPU推理,最多仅需8GB内存,推理速度未测评,token数有限,暂时还不能流式输出 #…
2023-08-07 01:13:09 +08:00
binary-husky
0a37106692 reverse cmd_to_install 2023-08-07 01:11:44 +08:00
binary-husky
57d4541d4e fix minor bug in chatglm-onnx 2023-08-07 01:07:55 +08:00
binary-husky
d7dd586f09 introduce unified base class for local llm models 2023-08-07 00:57:52 +08:00
binary-husky
b6b53ce2a4 Merge branch 'master' of https://github.com/ValeriaWong/chatgpt_academic into ValeriaWong-master 2023-08-06 22:17:52 +08:00
505030475
43809c107d update multi-language module 2023-08-04 23:53:23 +08:00
505030475
1721edc990 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-08-04 23:30:00 +08:00
Hongyi Zhao
bfb7aab4a0 Fix the reverse proxy based OpenAI access via https://github.com/acheong08/ChatGPT-to-API/.
See https://github.com/binary-husky/gpt_academic/issues/900#issuecomment-1658463065 for more detailed discussions.
2023-08-02 18:03:49 +08:00
binary-husky
f4a87d6380 Update README.md 2023-08-01 12:54:50 +08:00
ValeriaWong
c0c337988f feat(chatglm_int8_onnx):纯CPU推理,最多仅需8GB内存,推理速度未测评,token数有限,暂时还不能流式输出 #1008 2023-08-01 00:48:57 +08:00
binary-husky
27f65c251a Update 图片生成.py 2023-07-31 15:57:18 +08:00
qingxu fu
87f099f740 use get_log_folder() to manage log folder - step 1 2023-07-31 12:28:32 +08:00
qingxu fu
484f16e365 修复空输入触发的BUG 2023-07-31 12:08:07 +08:00
qingxu fu
37afcc709b interface with void terminal 2023-07-31 11:20:01 +08:00
binary-husky
9cbe9f240d Update README.md 2023-07-30 14:08:21 +08:00
binary-husky
f6567c02f6 update translation matrix for japanese and t-zh 2023-07-30 13:58:11 +08:00
binary-husky
8c83061a93 more explaination 2023-07-30 13:51:21 +08:00
binary-husky
23f2adfdc3 update translation matrix 2023-07-30 13:44:11 +08:00
binary-husky
61698444b1 change comments 2023-07-30 13:36:34 +08:00
binary-husky
109afcf8f6 Merge remote-tracking branch 'origin/enable_clear_history_option' 2023-07-30 13:27:10 +08:00
binary-husky
19ef6a530a add additonal source for checking proxy ip 2023-07-30 13:23:35 +08:00
binary-husky
e08bd9669e increase audio assistant watch dog patience 2023-07-30 12:48:43 +08:00
binary-husky
155a7e1174 Merge pull request #998 from awwaawwa/enable_clear_history_option
增加自动清除历史消息时的提示
2023-07-28 21:10:31 +08:00
binary-husky
86e33ea99a Update core_functional.py 2023-07-28 21:09:51 +08:00
qingxu fu
524684f8bd fix the markdown translation functionality 2023-07-28 21:03:20 +08:00
qingxu fu
2a362cec84 markdown translation handle github index page 2023-07-28 20:20:30 +08:00
505030475
2747c23868 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-07-28 10:35:50 +08:00
binary-husky
f446dbb62d Update README.md 2023-07-28 09:54:03 +08:00
binary-husky
8d37d94e2c Update README.md 2023-07-28 09:53:17 +08:00
awwaawwa
e4ba0e6c85 add clear history tips 2023-07-27 23:07:59 +08:00
505030475
4216c5196e verify ignore history practice 2023-07-27 22:30:55 +08:00
binary-husky
2df660a718 Merge pull request #992 from yangchuansheng/master
Update README.md
2023-07-26 22:46:43 +08:00
binary-husky
bb496a9c2c Update README.md 2023-07-26 22:46:21 +08:00
binary-husky
4e0737c0c2 Update README.md 2023-07-26 22:46:02 +08:00
binary-husky
4bb3cba5c8 Update README.md 2023-07-26 18:53:42 +08:00
qingxu fu
08b9b0d140 improve audio assistant documents 2023-07-26 18:51:33 +08:00
qingxu fu
3577a72a3b add audio assistant docker compose solution 2023-07-26 18:39:32 +08:00
qingxu fu
0328d6f498 add ALIYUN ACCESSKEY SECRET 2023-07-26 18:28:15 +08:00
qingxu fu
d437305a4f add audio assistant docker 2023-07-26 18:16:59 +08:00
qingxu fu
c4899bcb20 long-term aliyun access 2023-07-26 18:09:28 +08:00
Carson Yang
4295764f8c Update README.md
添加 Sealos 部署方案
2023-07-25 16:38:37 +08:00
binary-husky
e4e2430255 version 3.47 2023-07-24 19:58:47 +08:00
binary-husky
1732127a28 Merge pull request #979 from fenglui/master
增加chatGLM int4配置支持 小显存也可以选择chatGLM
2023-07-24 19:52:27 +08:00
binary-husky
56bb8b6498 improve re efficiency 2023-07-24 18:50:29 +08:00
binary-husky
e93b6fa3a6 Add GLM INT8 2023-07-24 18:19:57 +08:00
binary-husky
dd4ba0ea22 Merge branch 'master' of https://github.com/fenglui/gpt_academic into fenglui-master 2023-07-24 18:06:15 +08:00
binary-husky
c2701c9ce5 Merge pull request #986 from one-pr/git-clone
默认仅 clone 最新的代码,减小 git clone 的大小
2023-07-24 17:48:35 +08:00
woclass
2f019ce359 优化 README.md 中的其他 git clone 2023-07-24 15:14:48 +08:00
woclass
c5b147aeb7 默认仅 clone 最新的代码,减小 git clone 的大小 2023-07-24 15:14:42 +08:00
fenglui
5813d65e52 增加chatGLM int4配置支持 小显存也可以选择chatGLM 2023-07-22 08:29:15 +08:00
binary-husky
a393edfaa4 ALLOW CUSTOM API KEY PATTERN 2023-07-21 22:49:07 +08:00
binary-husky
dd7a01cda5 Merge pull request #976 from fenglui/master
fix msg.data.split(DELIMITER) exception when msg.data is int
2023-07-21 17:02:29 +08:00
fenglui
00a3b91f95 fix msg.data.split(DELIMITER) exception when msg.data is int 2023-07-21 03:51:33 +08:00
qingxu fu
61ba544282 add latex test samples 2023-07-20 19:49:23 +08:00
qingxu fu
b5b8c123e4 latex plugin stability improvement 2023-07-20 19:39:22 +08:00
qingxu fu
d9ceba959f expand range after failure 2023-07-20 18:39:02 +08:00
qingxu fu
6b5b040701 remove pdf merge 2023-07-20 18:29:06 +08:00
qingxu fu
4f4c09a5f3 增强Latex修复能力 2023-07-20 18:08:22 +08:00
qingxu fu
067bc97cce Merge branch 'interface-interlm' of https://github.com/binary-husky/chatgpt_academic into interface-interlm 2023-07-20 12:46:52 +08:00
qingxu fu
7368580cd6 concat pdf after translation 2023-07-20 12:46:48 +08:00
binary-husky
df90db210c Merge branch 'master' into interface-interlm 2023-07-20 11:40:45 +08:00
binary-husky
0927ed20a2 edit default configuration 2023-07-20 11:39:35 +08:00
binary-husky
73b22f85be compat third party gpt error handle 2023-07-20 11:09:22 +08:00
binary-husky
b8d77557b0 Update README.md 2023-07-20 10:12:42 +08:00
binary-husky
99b8fce8f3 Merge pull request #965 from QQisQQ/patch-2
解决new bing 报错200 (fix new bing error code 200 )
2023-07-19 10:15:15 +08:00
binary-husky
16364f1b2d Merge pull request #966 from doujiang-zheng/master
Add timestamp for chat_secrets.log and disable the verbose httpx log.
2023-07-19 10:14:36 +08:00
doujiang-zheng
3b88e00cfb Add timestamp for chat_secrets.log and disable the verbose httpx log. 2023-07-19 09:43:59 +08:00
QQisQQ
0c8c539e9b 解决new bing 报错200 (fix new bing error code 200 )
modify from 16e00af9d5

works for my issue:
```
Traceback (most recent call last):
  File "./request_llm/bridge_newbingfree.py", line 152, in run
    asyncio.run(self.async_run())
  File "/root/miniconda3/envs/py311/lib/python3.11/asyncio/runners.py", line 190, in run
    return runner.run(main)
           ^^^^^^^^^^^^^^^^
  File "/root/miniconda3/envs/py311/lib/python3.11/asyncio/runners.py", line 118, in run
    return self._loop.run_until_complete(task)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/miniconda3/envs/py311/lib/python3.11/asyncio/base_events.py", line 653, in run_until_complete
    return future.result()
           ^^^^^^^^^^^^^^^
  File "./request_llm/bridge_newbingfree.py", line 98, in async_run
    async for final, response in self.newbing_model.ask_stream(
  File "./request_llm/edge_gpt_free.py", line 676, in ask_stream
    async for response in self.chat_hub.ask_stream(
  File "./request_llm/edge_gpt_free.py", line 456, in ask_stream
    self.wss = await self.session.ws_connect(
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/miniconda3/envs/py311/lib/python3.11/site-packages/aiohttp/client.py", line 795, in _ws_connect
    raise WSServerHandshakeError(
aiohttp.client_exceptions.WSServerHandshakeError: 200, message='Invalid response status', url=URL('wss://sydney.bing.com/sydney/ChatHub')
```
2023-07-19 04:39:15 +08:00
binary-husky
fd549fb986 merge success 2023-07-18 19:51:13 +08:00
binary-husky
babb775cfb interface with interlm 2023-07-18 16:33:34 +08:00
共有 80 个文件被更改,包括 3787 次插入1502 次删除

查看文件

@@ -11,6 +11,8 @@ body:
- Please choose | 请选择
- Pip Install (I ignored requirements.txt)
- Pip Install (I used latest requirements.txt)
- OneKeyInstall (一键安装脚本-windows)
- OneKeyInstall (一键安装脚本-mac)
- Anaconda (I ignored requirements.txt)
- Anaconda (I used latest requirements.txt)
- DockerWindows/Mac

查看文件

@@ -0,0 +1,44 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: build-with-audio-assistant
on:
push:
branches:
- 'master'
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}_audio_assistant
jobs:
build-and-push-image:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- name: Checkout repository
uses: actions/checkout@v3
- name: Log in to the Container registry
uses: docker/login-action@v2
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v4
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
- name: Build and push Docker image
uses: docker/build-push-action@v4
with:
context: .
push: true
file: docs/GithubAction+NoLocal+AudioAssistant
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}

1
.gitignore vendored
查看文件

@@ -151,3 +151,4 @@ multi-language
request_llm/moss
media
flagged
request_llm/ChatGLM-6b-onnx-u8s8

查看文件

@@ -27,6 +27,7 @@ To translate this project to arbitary language with GPT, read and run [`multi_la
功能(⭐= 近期新增功能) | 描述
--- | ---
⭐[接入新模型](https://github.com/binary-husky/gpt_academic/wiki/%E5%A6%82%E4%BD%95%E5%88%87%E6%8D%A2%E6%A8%A1%E5%9E%8B) | ⭐阿里达摩院[通义千问](https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary),上海AI-Lab[书生](https://github.com/InternLM/InternLM),讯飞[星火](https://xinghuo.xfyun.cn/)
一键润色 | 支持一键润色、一键查找论文语法错误
一键中英互译 | 一键中英互译
一键代码解释 | 显示代码、解释代码、生成代码、给代码加注释
@@ -44,7 +45,7 @@ chat分析报告生成 | [函数插件] 运行后自动生成总结汇报
Latex论文一键校对 | [函数插件] 仿Grammarly对Latex文章进行语法、拼写纠错+输出对照PDF
[谷歌学术统合小助手](https://www.bilibili.com/video/BV19L411U7ia) | [函数插件] 给定任意谷歌学术搜索页面URL,让gpt帮你[写relatedworks](https://www.bilibili.com/video/BV1GP411U7Az/)
互联网信息聚合+GPT | [函数插件] 一键[让GPT从互联网获取信息](https://www.bilibili.com/video/BV1om4y127ck)回答问题,让信息永不过时
⭐Arxiv论文精细翻译 | [函数插件] 一键[以超高质量翻译arxiv论文](https://www.bilibili.com/video/BV1dz4y1v77A/),目前最好的论文翻译工具
⭐Arxiv论文精细翻译 ([Docker](https://github.com/binary-husky/gpt_academic/pkgs/container/gpt_academic_with_latex)) | [函数插件] 一键[以超高质量翻译arxiv论文](https://www.bilibili.com/video/BV1dz4y1v77A/),目前最好的论文翻译工具
⭐[实时语音对话输入](https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md) | [函数插件] 异步[监听音频](https://www.bilibili.com/video/BV1AV4y187Uy/),自动断句,自动寻找回答时机
公式/图片/表格显示 | 可以同时显示公式的[tex形式和渲染形式](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png),支持公式、代码高亮
多线程函数插件支持 | 支持多线调用chatgpt,一键处理[海量文本](https://www.bilibili.com/video/BV1FT411H7c5/)或程序
@@ -52,8 +53,8 @@ Latex论文一键校对 | [函数插件] 仿Grammarly对Latex文章进行语法
[多LLM模型](https://www.bilibili.com/video/BV1wT411p7yf)支持 | 同时被GPT3.5、GPT4、[清华ChatGLM2](https://github.com/THUDM/ChatGLM2-6B)、[复旦MOSS](https://github.com/OpenLMLab/MOSS)同时伺候的感觉一定会很不错吧?
⭐ChatGLM2微调模型 | 支持加载ChatGLM2微调模型,提供ChatGLM2微调辅助插件
更多LLM模型接入,支持[huggingface部署](https://huggingface.co/spaces/qingxu98/gpt-academic) | 加入Newbing接口(新必应),引入清华[Jittorllms](https://github.com/Jittor/JittorLLMs)支持[LLaMA](https://github.com/facebookresearch/llama)和[盘古α](https://openi.org.cn/pangu/)
⭐[虚空终端](https://github.com/binary-husky/void-terminal)pip包 | 脱离GUI,在Python中直接调用本项目的函数插件开发中
更多新功能展示 (图像生成等) …… | 见本文档结尾处 ……
</div>
@@ -93,7 +94,7 @@ Latex论文一键校对 | [函数插件] 仿Grammarly对Latex文章进行语法
1. 下载项目
```sh
git clone https://github.com/binary-husky/gpt_academic.git
git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
@@ -116,7 +117,7 @@ python -m pip install -r requirements.txt # 这个步骤和pip安装一样的步
```
<details><summary>如果需要支持清华ChatGLM2/复旦MOSS作为后端,请点击展开此处</summary>
<details><summary>如果需要支持清华ChatGLM2/复旦MOSS/RWKV作为后端,请点击展开此处</summary>
<p>
【可选步骤】如果需要支持清华ChatGLM2/复旦MOSS作为后端,需要额外安装更多依赖前提条件熟悉Python + 用过Pytorch + 电脑配置够强):
@@ -126,9 +127,12 @@ python -m pip install -r request_llm/requirements_chatglm.txt
# 【可选步骤II】支持复旦MOSS
python -m pip install -r request_llm/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # 注意执行此行代码时,必须处于项目根路径
git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llm/moss # 注意执行此行代码时,必须处于项目根路径
# 【可选步骤III】确保config.py配置文件的AVAIL_LLM_MODELS包含了期望的模型,目前支持的全部模型如下(jittorllms系列目前仅支持docker方案)
# 【可选步骤III】支持RWKV Runner
参考wikihttps://github.com/binary-husky/gpt_academic/wiki/%E9%80%82%E9%85%8DRWKV-Runner
# 【可选步骤IV】确保config.py配置文件的AVAIL_LLM_MODELS包含了期望的模型,目前支持的全部模型如下(jittorllms系列目前仅支持docker方案)
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
```
@@ -147,9 +151,10 @@ python main.py
1. 仅ChatGPT推荐大多数人选择,等价于docker-compose方案1
[![basic](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml)
[![basiclatex](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml)
[![basicaudio](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
``` sh
git clone https://github.com/binary-husky/gpt_academic.git # 下载项目
git clone --depth=1 https://github.com/binary-husky/gpt_academic.git # 下载项目
cd gpt_academic # 进入路径
nano config.py # 用任意文本编辑器编辑config.py, 配置 “Proxy”, “API_KEY” 以及 “WEB_PORT” (例如50923) 等
docker build -t gpt-academic . # 安装
@@ -195,10 +200,12 @@ docker-compose up
5. 远程云服务器部署(需要云服务器知识与经验)。
请访问[部署wiki-1](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
6. 使用WSL2Windows Subsystem for Linux 子系统)
6. 使用Sealos[一键部署](https://github.com/binary-husky/gpt_academic/issues/993)
7. 使用WSL2Windows Subsystem for Linux 子系统)。
请访问[部署wiki-2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
7. 如何在二级网址(如`http://localhost/subpath`)下运行。
8. 如何在二级网址(如`http://localhost/subpath`)下运行。
请访问[FastAPI运行说明](docs/WithFastapi.md)
@@ -286,6 +293,10 @@ Tip不指定文件直接点击 `载入对话历史存档` 可以查看历史h
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/476f66d9-7716-4537-b5c1-735372c25adb" height="200">
</div>
11. 语言、主题切换
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/b6799499-b6fb-4f0c-9c8e-1b441872f4e8" width="500" >
</div>
### II版本:

39
cc.json
查看文件

@@ -1,39 +0,0 @@
[
{
"name": "Box-1",
"width": 1,
"height": 1,
"depth": 1,
"location_x": 1,
"location_y": 0,
"location_z": 0
},
{
"name": "Box-2",
"width": 1,
"height": 1,
"depth": 1,
"location_x": -1,
"location_y": 0,
"location_z": 0
},
{
"name": "Box-3",
"width": 1,
"height": 1,
"depth": 1,
"location_x": 0,
"location_y": 1,
"location_z": 0
},
{
"name": "Box-4",
"width": 1,
"height": 1,
"depth": 1,
"location_x": 0,
"location_y": -1,
"location_z": 0
}
]

查看文件

@@ -3,15 +3,18 @@ def check_proxy(proxies):
import requests
proxies_https = proxies['https'] if proxies is not None else ''
try:
response = requests.get("https://ipapi.co/json/",
proxies=proxies, timeout=4)
response = requests.get("https://ipapi.co/json/", proxies=proxies, timeout=4)
data = response.json()
print(f'查询代理的地理位置,返回的结果是{data}')
if 'country_name' in data:
country = data['country_name']
result = f"代理配置 {proxies_https}, 代理所在地:{country}"
elif 'error' in data:
result = f"代理配置 {proxies_https}, 代理所在地未知,IP查询频率受限"
alternative = _check_with_backup_source(proxies)
if alternative is None:
result = f"代理配置 {proxies_https}, 代理所在地未知,IP查询频率受限"
else:
result = f"代理配置 {proxies_https}, 代理所在地:{alternative}"
else:
result = f"代理配置 {proxies_https}, 代理数据解析失败:{data}"
print(result)
@@ -21,6 +24,11 @@ def check_proxy(proxies):
print(result)
return result
def _check_with_backup_source(proxies):
import random, string, requests
random_string = ''.join(random.choices(string.ascii_letters + string.digits, k=32))
try: return requests.get(f"http://{random_string}.edns.ip-api.com/json", proxies=proxies, timeout=4).json()['dns']['geo']
except: return None
def backup_and_download(current_version, remote_version):
"""

查看文件

@@ -32,9 +32,9 @@ else:
# ------------------------------------ 以下配置可以优化体验, 但大部分场合下并不需要修改 ------------------------------------
# 重新URL重新定向,实现更换API_URL的作用常规情况下不要修改!! 高危设置!通过修改此设置,您将把您的API-KEY和对话隐私完全暴露给您设定的中间人
# 格式 API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
# 例如 API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions":"https://reverse-proxy-url/v1/chat/completions"}
# 重新URL重新定向,实现更换API_URL的作用高危设置! 常规情况下不要修改! 通过修改此设置,您将把您的API-KEY和对话隐私完全暴露给您设定的中间人
# 格式: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
# 举例: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "https://reverse-proxy-url/v1/chat/completions"}
API_URL_REDIRECT = {}
@@ -71,7 +71,7 @@ MAX_RETRY = 2
# 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
LLM_MODEL = "gpt-3.5-turbo" # 可选 ↓↓↓
AVAIL_LLM_MODELS = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss", "newbing", "stack-claude"]
# P.S. 其他可用的模型还包括 ["gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "claude-1-100k", "claude-2", "jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
# P.S. 其他可用的模型还包括 ["qwen", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "spark", "chatglm_onnx", "claude-1-100k", "claude-2", "internlm", "jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
# ChatGLM(2) Finetune Model Path 如果使用ChatGLM2微调模型,需要把"chatglmft"加入AVAIL_LLM_MODELS中
@@ -80,6 +80,7 @@ ChatGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b
# 本地LLM模型如ChatGLM的执行方式 CPU/GPU
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
LOCAL_MODEL_QUANT = "FP16" # 默认 "FP16" "INT4" 启用量化INT4版本 "INT8" 启用量化INT8版本
# 设置gradio的并行线程数不需要修改
@@ -131,9 +132,21 @@ put your new bing cookies here
# 阿里云实时语音识别 配置难度较高 仅建议高手用户使用 参考 https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md
ENABLE_AUDIO = False
ALIYUN_TOKEN="" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
ALIYUN_APPKEY="" # 例如 RoPlZrM88DnAFkZK
ALIYUN_TOKEN="" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
ALIYUN_APPKEY="" # 例如 RoPlZrM88DnAFkZK
ALIYUN_ACCESSKEY="" # (无需填写)
ALIYUN_SECRET="" # (无需填写)
# 接入讯飞星火大模型 https://console.xfyun.cn/services/iat
XFYUN_APPID = "00000000"
XFYUN_API_SECRET = "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
XFYUN_API_KEY = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
# Claude API KEY
ANTHROPIC_API_KEY = ""
ANTHROPIC_API_KEY = ""
# 自定义API KEY格式
CUSTOM_API_KEY_PATTERN = ""

查看文件

@@ -1,20 +1,25 @@
# 'primary' 颜色对应 theme.py 中的 primary_hue
# 'secondary' 颜色对应 theme.py 中的 neutral_hue
# 'stop' 颜色对应 theme.py 中的 color_er
# 默认按钮颜色是 secondary
import importlib
from toolbox import clear_line_break
def get_core_functions():
return {
"英语学术润色": {
# 前
# 前缀,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等
"Prefix": r"Below is a paragraph from an academic paper. Polish the writing to meet the academic style, " +
r"improve the spelling, grammar, clarity, concision and overall readability. When necessary, rewrite the whole sentence. " +
r"Furthermore, list all modification and explain the reasons to do so in markdown table." + "\n\n",
# 后
# 后缀,会被加在你的输入之后。例如,配合前缀可以把你的输入内容用引号圈起来
"Suffix": r"",
"Color": r"secondary", # 按钮颜色
# 按钮颜色 (默认 secondary)
"Color": r"secondary",
# 按钮是否可见 (默认 True,即可见)
"Visible": True,
# 是否在触发时清除历史 (默认 False,即不处理之前的对话历史)
"AutoClearHistory": False
},
"中文学术润色": {
"Prefix": r"作为一名中文学术论文写作改进助理,你的任务是改进所提供文本的拼写、语法、清晰、简洁和整体可读性," +
@@ -76,3 +81,14 @@ def get_core_functions():
"Suffix": r"",
}
}
def handle_core_functionality(additional_fn, inputs, history, chatbot):
import core_functional
importlib.reload(core_functional) # 热更新prompt
core_functional = core_functional.get_core_functions()
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
if core_functional[additional_fn].get("AutoClearHistory", False):
history = []
return inputs, history

查看文件

@@ -24,6 +24,7 @@ def get_crazy_functions():
from crazy_functions.对话历史存档 import 对话历史存档
from crazy_functions.对话历史存档 import 载入对话历史存档
from crazy_functions.对话历史存档 import 删除所有本地对话历史记录
from crazy_functions.辅助功能 import 清除缓存
from crazy_functions.批量Markdown翻译 import Markdown英译中
function_plugins = {
@@ -40,7 +41,12 @@ def get_crazy_functions():
"AsButton":False,
"Function": HotReload(删除所有本地对话历史记录)
},
"[测试功能] 解析Jupyter Notebook文件": {
"清除所有缓存文件(请谨慎操作)": {
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(清除缓存)
},
"解析Jupyter Notebook文件": {
"Color": "stop",
"AsButton":False,
"Function": HotReload(解析ipynb文件),
@@ -328,7 +334,7 @@ def get_crazy_functions():
try:
from crazy_functions.Langchain知识库 import 知识库问答
function_plugins.update({
"[功能尚不稳定] 构建知识库(请先上传文件素材)": {
"构建知识库(请先上传文件素材)": {
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
@@ -342,7 +348,7 @@ def get_crazy_functions():
try:
from crazy_functions.Langchain知识库 import 读取知识库作答
function_plugins.update({
"[功能尚不稳定] 知识库问答": {
"知识库问答": {
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
@@ -416,17 +422,6 @@ def get_crazy_functions():
except:
print('Load function plugin failed')
try:
from crazy_functions.Three场景交互3D import 三维生成
function_plugins.update({
"ThreeJS 三维交互": {
"Color": "stop",
"AsButton": False,
"Function": HotReload(三维生成)
}
})
except:
print('Load function plugin failed')
try:
from toolbox import get_conf

查看文件

@@ -157,7 +157,7 @@ def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, histo
try:
import glob, os, time, subprocess
subprocess.Popen(['pdflatex', '-version'])
from .latex_utils import Latex精细分解与转化, 编译Latex
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
except Exception as e:
chatbot.append([ f"解析项目: {txt}",
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
@@ -234,7 +234,7 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
try:
import glob, os, time, subprocess
subprocess.Popen(['pdflatex', '-version'])
from .latex_utils import Latex精细分解与转化, 编译Latex
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
except Exception as e:
chatbot.append([ f"解析项目: {txt}",
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])

查看文件

@@ -1,249 +0,0 @@
from toolbox import CatchException, update_ui, gen_time_str
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import input_clipping
def inspect_dependency(chatbot, history):
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
from VISUALIZE.mcom import mcom
return True
except:
chatbot.append(["导入依赖失败", "使用该模块需要额外依赖,安装方法:```pip install vhmap```"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return False
def get_code_block(reply):
try:
import json
json.loads(reply)
return reply
except:
pass
import re
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
matches = re.findall(pattern, reply) # find all code blocks in text
res = ""
for match in matches:
if 'import ' not in match:
res = match.strip('python').strip('json')
break
if len(res) == 0:
print(reply)
raise RuntimeError("GPT is not generating proper Json.")
return res # code block
def get_json_blocks(reply):
import re, json
pattern = r"{([\s\S]*?)}" # regex pattern to match code blocks
matches = re.findall(pattern, reply) # find all code blocks in text
res = []
for match in matches:
if '"name"' in match:
try:
res.append(json.loads("{" + f'{match}' + "}"))
except:
pass
return res # code block
def read_json(code):
import json
return json.loads(code)
def parse_partial(vi, gpt_say):
# 解析Json
js = get_json_blocks(gpt_say)
vi.update(js)
@CatchException
def 三维生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数,暂时没有用武之地
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
from .vhmap_interact.vhmap import vhmp_interface
vi = vhmp_interface()
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"生成3D, 此插件处于开发阶段, 建议暂时不要使用, 作者: binary-husky, 插件初始化中 ..."
])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖, 如果缺少依赖, 则给出安装建议
dep_ok = yield from inspect_dependency(chatbot=chatbot, history=history) # 刷新界面
if not dep_ok: return
# 输入
i_say = prompt(txt)
# 开始
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=i_say,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
sys_prompt=r"You are a Json generator",
on_reply_update=lambda t:parse_partial(vi, t)
)
chatbot.append(["开始生成执行", "..."])
history.extend([i_say, gpt_say])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
# 解析Json
code = get_code_block(gpt_say)
js = read_json(code)
vi.update(js)
return
def prompt(text):
return r"""
> Requirements:
1. You can only use square Boxes to build cubes and walls.
2. The space you can work in is a sphere with origin (0,0,0) and radius 100.
3. The ground is z=0.
4. You can only use 100 boxes.
5. Format of each box is json, e.g.
{
"name": "Box-1",
"geometry": "box", // choose from "box", "octahedron", "sphere", "cylinder"
"size": 1.0,
"color": "rgb(255,165,0)",
"location_x": 1.0,
"location_y": 0.0,
"location_z": 0.0
},
6. Only produce json as output. Use markdown code block to wrap the json output.
> Example:
User: Generate 4 different objects around the origin.
You:
```
[
{
"name": "Box-1",
"size": 1.0,
"geometry": "box",
"color": "rgb(255,11,10)",
"location_x": 1.0,
"location_y": 0.0,
"location_z": 0.0
},
{
"name": "Box-2",
"size": 1.0,
"geometry": "octahedron",
"color": "rgb(255,11,10)",
"location_x": -1.0,
"location_y": 0.0,
"location_z": 0.0
},
{
"name": "Box-3",
"size": 1.0,
"geometry": "sphere",
"color": "rgb(255,11,10)",
"location_x": 0.0,
"location_y": 1.0,
"location_z": 0.0
},
{
"name": "Box-4",
"size": 1.0,
"geometry": "cylinder",
"color": "rgb(255,11,10)",
"location_x": 0.0,
"location_y": -1.0,
"location_z": 0.0
}
]
```
> User: """ + text
"""
Please construct a 3D environment where a girl is sitting under a tree in a garden.
Requirements:
1. List objects in this scene and make a markdown list.
2. The list must contain creative details, give at least 20 objects
"""
"""
Convert the result to json,
Requirements:
1. Format: [
{
"name": "object-1",
"location": [position_x, position_y, position_z]
}
]
2. Generate relative position of objects
"""
"""
> Requirements:
1. You can use box, octahedron, sphere, cylinder to build objects.
2. The ground is z=0.
3. You can only use 100 boxes.
4. Format of each box is json, e.g.
{
"name": "Box-1",
"geometry": "box", // choose from "box", "octahedron", "sphere", "cylinder"
"size": 1.0,
"color": "rgb(255,165,0)",
"location_x": 1.0,
"location_y": 0.0,
"location_z": 0.0
},
5. Only produce json as output. Use markdown code block to wrap the json output.
> Example:
```
[
{
"name": "Box-1",
"size": 1.0,
"geometry": "box",
"color": "rgb(255,11,10)",
"location_x": 1.0,
"location_y": 0.0,
"location_z": 0.0
},
{
"name": "Box-2",
"size": 1.0,
"geometry": "octahedron",
"color": "rgb(255,11,10)",
"location_x": -1.0,
"location_y": 0.0,
"location_z": 0.0
},
{
"name": "Box-3",
"size": 1.0,
"geometry": "sphere",
"color": "rgb(255,11,10)",
"location_x": 0.0,
"location_y": 1.0,
"location_z": 0.0
},
{
"name": "Box-4",
"size": 1.0,
"geometry": "cylinder",
"color": "rgb(255,11,10)",
"location_x": 0.0,
"location_y": -1.0,
"location_z": 0.0
}
]
```
"""

查看文件

@@ -1,256 +0,0 @@
"""
这是什么?
这个文件用于函数插件的单元测试
运行方法 python crazy_functions/crazy_functions_test.py
"""
# ==============================================================================================================================
def validate_path():
import os, sys
dir_name = os.path.dirname(__file__)
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
os.chdir(root_dir_assume)
sys.path.append(root_dir_assume)
validate_path() # validate path so you can run from base directory
# ==============================================================================================================================
from colorful import *
from toolbox import get_conf, ChatBotWithCookies, load_chat_cookies
import contextlib
import os
import sys
from functools import wraps
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY = \
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY')
llm_kwargs = {
'api_key': API_KEY,
'llm_model': LLM_MODEL,
'top_p':1.0,
'max_length': None,
'temperature':1.0,
}
llm_kwargs.update(load_chat_cookies())
plugin_kwargs = { }
chatbot = ChatBotWithCookies(llm_kwargs)
history = []
system_prompt = "Serve me as a writing and programming assistant."
web_port = 1024
# ==============================================================================================================================
def silence_stdout(func):
@wraps(func)
def wrapper(*args, **kwargs):
_original_stdout = sys.stdout
sys.stdout = open(os.devnull, 'w')
for q in func(*args, **kwargs):
sys.stdout = _original_stdout
yield q
sys.stdout = open(os.devnull, 'w')
sys.stdout.close()
sys.stdout = _original_stdout
return wrapper
class CLI_Printer():
def __init__(self) -> None:
self.pre_buf = ""
def print(self, buf):
bufp = ""
for index, chat in enumerate(buf):
a, b = chat
bufp += sprint亮靛('[Me]:' + a) + '\n'
bufp += '[GPT]:' + b
if index < len(buf)-1:
bufp += '\n'
if self.pre_buf!="" and bufp.startswith(self.pre_buf):
print(bufp[len(self.pre_buf):], end='')
else:
print('\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n'+bufp, end='')
self.pre_buf = bufp
return
cli_printer = CLI_Printer()
# ==============================================================================================================================
def test_解析一个Python项目():
from crazy_functions.解析项目源代码 import 解析一个Python项目
txt = "crazy_functions/test_project/python/dqn"
for cookies, cb, hist, msg in 解析一个Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
def test_解析一个Cpp项目():
from crazy_functions.解析项目源代码 import 解析一个C项目
txt = "crazy_functions/test_project/cpp/cppipc"
for cookies, cb, hist, msg in 解析一个C项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
def test_Latex英文润色():
from crazy_functions.Latex全文润色 import Latex英文润色
txt = "crazy_functions/test_project/latex/attention"
for cookies, cb, hist, msg in Latex英文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
def test_Markdown中译英():
from crazy_functions.批量Markdown翻译 import Markdown中译英
txt = "README.md"
for cookies, cb, hist, msg in Markdown中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
def test_批量翻译PDF文档():
from crazy_functions.批量翻译PDF文档_多线程 import 批量翻译PDF文档
txt = "crazy_functions/test_project/pdf_and_word"
for cookies, cb, hist, msg in 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
def test_谷歌检索小助手():
from crazy_functions.谷歌检索小助手 import 谷歌检索小助手
txt = "https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=auto+reinforcement+learning&btnG="
for cookies, cb, hist, msg in 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
def test_总结word文档():
from crazy_functions.总结word文档 import 总结word文档
txt = "crazy_functions/test_project/pdf_and_word"
for cookies, cb, hist, msg in 总结word文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
def test_下载arxiv论文并翻译摘要():
from crazy_functions.下载arxiv论文翻译摘要 import 下载arxiv论文并翻译摘要
txt = "1812.10695"
for cookies, cb, hist, msg in 下载arxiv论文并翻译摘要(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
def test_联网回答问题():
from crazy_functions.联网的ChatGPT import 连接网络回答问题
# txt = "谁是应急食品?"
# >> '根据以上搜索结果可以得知,应急食品是“原神”游戏中的角色派蒙的外号。'
# txt = "道路千万条,安全第一条。后面两句是?"
# >> '行车不规范,亲人两行泪。'
# txt = "You should have gone for the head. What does that mean?"
# >> The phrase "You should have gone for the head" is a quote from the Marvel movies, Avengers: Infinity War and Avengers: Endgame. It was spoken by the character Thanos in Infinity War and by Thor in Endgame.
txt = "AutoGPT是什么?"
for cookies, cb, hist, msg in 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print("当前问答:", cb[-1][-1].replace("\n"," "))
for i, it in enumerate(cb): print亮蓝(it[0]); print亮黄(it[1])
def test_解析ipynb文件():
from crazy_functions.解析JupyterNotebook import 解析ipynb文件
txt = "crazy_functions/test_samples"
for cookies, cb, hist, msg in 解析ipynb文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
def test_数学动画生成manim():
from crazy_functions.数学动画生成manim import 动画生成
txt = "A ball split into 2, and then split into 4, and finally split into 8."
for cookies, cb, hist, msg in 动画生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
def test_Markdown多语言():
from crazy_functions.批量Markdown翻译 import Markdown翻译指定语言
txt = "README.md"
history = []
for lang in ["English", "French", "Japanese", "Korean", "Russian", "Italian", "German", "Portuguese", "Arabic"]:
plugin_kwargs = {"advanced_arg": lang}
for cookies, cb, hist, msg in Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
def test_Langchain知识库():
from crazy_functions.Langchain知识库 import 知识库问答
txt = "./"
chatbot = ChatBotWithCookies(llm_kwargs)
for cookies, cb, hist, msg in silence_stdout(知识库问答)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
cli_printer.print(cb) # print(cb)
chatbot = ChatBotWithCookies(cookies)
from crazy_functions.Langchain知识库 import 读取知识库作答
txt = "What is the installation method?"
for cookies, cb, hist, msg in silence_stdout(读取知识库作答)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
cli_printer.print(cb) # print(cb)
def test_Langchain知识库读取():
from crazy_functions.Langchain知识库 import 读取知识库作答
txt = "远程云服务器部署?"
for cookies, cb, hist, msg in silence_stdout(读取知识库作答)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
cli_printer.print(cb) # print(cb)
def test_Latex():
from crazy_functions.Latex输出PDF结果 import Latex英文纠错加PDF对比, Latex翻译中文并重新编译PDF
# txt = r"https://arxiv.org/abs/1706.03762"
# txt = r"https://arxiv.org/abs/1902.03185"
# txt = r"https://arxiv.org/abs/2305.18290"
# txt = r"https://arxiv.org/abs/2305.17608"
# txt = r"https://arxiv.org/abs/2211.16068" # ACE
# txt = r"C:\Users\x\arxiv_cache\2211.16068\workfolder" # ACE
# txt = r"https://arxiv.org/abs/2002.09253"
# txt = r"https://arxiv.org/abs/2306.07831"
# txt = r"https://arxiv.org/abs/2212.10156"
# txt = r"https://arxiv.org/abs/2211.11559"
# txt = r"https://arxiv.org/abs/2303.08774"
# txt = r"https://arxiv.org/abs/2303.12712"
# txt = r"C:\Users\fuqingxu\arxiv_cache\2303.12712\workfolder"
txt = r"2306.17157" # 这个paper有个input命令文件名大小写错误
for cookies, cb, hist, msg in (Latex翻译中文并重新编译PDF)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
cli_printer.print(cb) # print(cb)
# txt = "2302.02948.tar"
# print(txt)
# main_tex, work_folder = Latex预处理(txt)
# print('main tex:', main_tex)
# res = 编译Latex(main_tex, work_folder)
# # for cookies, cb, hist, msg in silence_stdout(编译Latex)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# cli_printer.print(cb) # print(cb)
def test_chatglm_finetune():
from crazy_functions.chatglm微调工具 import 微调数据集生成, 启动微调
txt = 'build/dev.json'
plugin_kwargs = {"advanced_arg":"--llm_to_learn=gpt-3.5-turbo --prompt_prefix='根据下面的服装类型提示,想象一个穿着者,对这个人外貌、身处的环境、内心世界、人设进行描写。要求100字以内,用第二人称。' --system_prompt=''" }
# for cookies, cb, hist, msg in (微调数据集生成)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# cli_printer.print(cb)
plugin_kwargs = {"advanced_arg":
" --pre_seq_len=128 --learning_rate=2e-2 --num_gpus=1 --json_dataset='t_code.json' --ptuning_directory='/home/hmp/ChatGLM2-6B/ptuning' " }
for cookies, cb, hist, msg in (启动微调)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
cli_printer.print(cb)
def 三维生成():
from crazy_functions.Three场景交互3D import 三维生成
txt = "Generate 10 boxes to form a triangle formation with random color."
plugin_kwargs = {"advanced_arg":""}
for cookies, cb, hist, msg in (三维生成)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
cli_printer.print(cb)
if __name__ == "__main__":
# test_解析一个Python项目()
# test_Latex英文润色()
# test_Markdown中译英()
# test_批量翻译PDF文档()
# test_谷歌检索小助手()
# test_总结word文档()
# test_下载arxiv论文并翻译摘要()
# test_解析一个Cpp项目()
# test_联网回答问题()
# test_解析ipynb文件()
# test_数学动画生成manim()
# test_Langchain知识库()
# test_Langchain知识库读取()
# test_Latex()
三维生成()
input("程序完成,回车退出。")
print("退出。")

查看文件

@@ -40,7 +40,6 @@ def request_gpt_model_in_new_thread_with_ui_alive(
chatbot, history, sys_prompt, refresh_interval=0.2,
handle_token_exceed=True,
retry_times_at_unknown_error=2,
on_reply_update=None
):
"""
Request GPT model,请求GPT模型同时维持用户界面活跃。
@@ -124,7 +123,6 @@ def request_gpt_model_in_new_thread_with_ui_alive(
if future.done():
break
chatbot[-1] = [chatbot[-1][0], mutable[0]]
if on_reply_update: on_reply_update(mutable[0])
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
final_result = future.result()

查看文件

@@ -1,320 +1,16 @@
from toolbox import update_ui, update_ui_lastest_msg # 刷新Gradio前端界面
from toolbox import zip_folder, objdump, objload, promote_file_to_downloadzone
from .latex_toolbox import PRESERVE, TRANSFORM
from .latex_toolbox import set_forbidden_text, set_forbidden_text_begin_end, set_forbidden_text_careful_brace
from .latex_toolbox import reverse_forbidden_text_careful_brace, reverse_forbidden_text, convert_to_linklist, post_process
from .latex_toolbox import fix_content, find_main_tex_file, merge_tex_files, compile_latex_with_timeout
import os, shutil
import re
import numpy as np
pj = os.path.join
"""
========================================================================
Part One
Latex segmentation with a binary mask (PRESERVE=0, TRANSFORM=1)
========================================================================
"""
PRESERVE = 0
TRANSFORM = 1
def set_forbidden_text(text, mask, pattern, flags=0):
"""
Add a preserve text area in this paper
e.g. with pattern = r"\\begin\{algorithm\}(.*?)\\end\{algorithm\}"
you can mask out (mask = PRESERVE so that text become untouchable for GPT)
everything between "\begin{equation}" and "\end{equation}"
"""
if isinstance(pattern, list): pattern = '|'.join(pattern)
pattern_compile = re.compile(pattern, flags)
for res in pattern_compile.finditer(text):
mask[res.span()[0]:res.span()[1]] = PRESERVE
return text, mask
def reverse_forbidden_text(text, mask, pattern, flags=0, forbid_wrapper=True):
"""
Move area out of preserve area (make text editable for GPT)
count the number of the braces so as to catch compelete text area.
e.g.
\begin{abstract} blablablablablabla. \end{abstract}
"""
if isinstance(pattern, list): pattern = '|'.join(pattern)
pattern_compile = re.compile(pattern, flags)
for res in pattern_compile.finditer(text):
if not forbid_wrapper:
mask[res.span()[0]:res.span()[1]] = TRANSFORM
else:
mask[res.regs[0][0]: res.regs[1][0]] = PRESERVE # '\\begin{abstract}'
mask[res.regs[1][0]: res.regs[1][1]] = TRANSFORM # abstract
mask[res.regs[1][1]: res.regs[0][1]] = PRESERVE # abstract
return text, mask
def set_forbidden_text_careful_brace(text, mask, pattern, flags=0):
"""
Add a preserve text area in this paper (text become untouchable for GPT).
count the number of the braces so as to catch compelete text area.
e.g.
\caption{blablablablabla\texbf{blablabla}blablabla.}
"""
pattern_compile = re.compile(pattern, flags)
for res in pattern_compile.finditer(text):
brace_level = -1
p = begin = end = res.regs[0][0]
for _ in range(1024*16):
if text[p] == '}' and brace_level == 0: break
elif text[p] == '}': brace_level -= 1
elif text[p] == '{': brace_level += 1
p += 1
end = p+1
mask[begin:end] = PRESERVE
return text, mask
def reverse_forbidden_text_careful_brace(text, mask, pattern, flags=0, forbid_wrapper=True):
"""
Move area out of preserve area (make text editable for GPT)
count the number of the braces so as to catch compelete text area.
e.g.
\caption{blablablablabla\texbf{blablabla}blablabla.}
"""
pattern_compile = re.compile(pattern, flags)
for res in pattern_compile.finditer(text):
brace_level = 0
p = begin = end = res.regs[1][0]
for _ in range(1024*16):
if text[p] == '}' and brace_level == 0: break
elif text[p] == '}': brace_level -= 1
elif text[p] == '{': brace_level += 1
p += 1
end = p
mask[begin:end] = TRANSFORM
if forbid_wrapper:
mask[res.regs[0][0]:begin] = PRESERVE
mask[end:res.regs[0][1]] = PRESERVE
return text, mask
def set_forbidden_text_begin_end(text, mask, pattern, flags=0, limit_n_lines=42):
"""
Find all \begin{} ... \end{} text block that with less than limit_n_lines lines.
Add it to preserve area
"""
pattern_compile = re.compile(pattern, flags)
def search_with_line_limit(text, mask):
for res in pattern_compile.finditer(text):
cmd = res.group(1) # begin{what}
this = res.group(2) # content between begin and end
this_mask = mask[res.regs[2][0]:res.regs[2][1]]
white_list = ['document', 'abstract', 'lemma', 'definition', 'sproof',
'em', 'emph', 'textit', 'textbf', 'itemize', 'enumerate']
if (cmd in white_list) or this.count('\n') >= limit_n_lines: # use a magical number 42
this, this_mask = search_with_line_limit(this, this_mask)
mask[res.regs[2][0]:res.regs[2][1]] = this_mask
else:
mask[res.regs[0][0]:res.regs[0][1]] = PRESERVE
return text, mask
return search_with_line_limit(text, mask)
class LinkedListNode():
"""
Linked List Node
"""
def __init__(self, string, preserve=True) -> None:
self.string = string
self.preserve = preserve
self.next = None
# self.begin_line = 0
# self.begin_char = 0
def convert_to_linklist(text, mask):
root = LinkedListNode("", preserve=True)
current_node = root
for c, m, i in zip(text, mask, range(len(text))):
if (m==PRESERVE and current_node.preserve) \
or (m==TRANSFORM and not current_node.preserve):
# add
current_node.string += c
else:
current_node.next = LinkedListNode(c, preserve=(m==PRESERVE))
current_node = current_node.next
return root
"""
========================================================================
Latex Merge File
========================================================================
"""
def 寻找Latex主文件(file_manifest, mode):
"""
在多Tex文档中寻找主文件必须包含documentclass返回找到的第一个
P.S. 但愿没人把latex模板放在里面传进来 (6.25 加入判定latex模板的代码)
"""
canidates = []
for texf in file_manifest:
if os.path.basename(texf).startswith('merge'):
continue
with open(texf, 'r', encoding='utf8', errors='ignore') as f:
file_content = f.read()
if r'\documentclass' in file_content:
canidates.append(texf)
else:
continue
if len(canidates) == 0:
raise RuntimeError('无法找到一个主Tex文件包含documentclass关键字')
elif len(canidates) == 1:
return canidates[0]
else: # if len(canidates) >= 2 通过一些Latex模板中常见但通常不会出现在正文的单词,对不同latex源文件扣分,取评分最高者返回
canidates_score = []
# 给出一些判定模板文档的词作为扣分项
unexpected_words = ['\LaTeX', 'manuscript', 'Guidelines', 'font', 'citations', 'rejected', 'blind review', 'reviewers']
expected_words = ['\input', '\ref', '\cite']
for texf in canidates:
canidates_score.append(0)
with open(texf, 'r', encoding='utf8', errors='ignore') as f:
file_content = f.read()
for uw in unexpected_words:
if uw in file_content:
canidates_score[-1] -= 1
for uw in expected_words:
if uw in file_content:
canidates_score[-1] += 1
select = np.argmax(canidates_score) # 取评分最高者返回
return canidates[select]
def rm_comments(main_file):
new_file_remove_comment_lines = []
for l in main_file.splitlines():
# 删除整行的空注释
if l.lstrip().startswith("%"):
pass
else:
new_file_remove_comment_lines.append(l)
main_file = '\n'.join(new_file_remove_comment_lines)
# main_file = re.sub(r"\\include{(.*?)}", r"\\input{\1}", main_file) # 将 \include 命令转换为 \input 命令
main_file = re.sub(r'(?<!\\)%.*', '', main_file) # 使用正则表达式查找半行注释, 并替换为空字符串
return main_file
def find_tex_file_ignore_case(fp):
dir_name = os.path.dirname(fp)
base_name = os.path.basename(fp)
if not base_name.endswith('.tex'): base_name+='.tex'
if os.path.exists(pj(dir_name, base_name)): return pj(dir_name, base_name)
# go case in-sensitive
import glob
for f in glob.glob(dir_name+'/*.tex'):
base_name_s = os.path.basename(fp)
if base_name_s.lower() == base_name.lower(): return f
return None
def merge_tex_files_(project_foler, main_file, mode):
"""
Merge Tex project recrusively
"""
main_file = rm_comments(main_file)
for s in reversed([q for q in re.finditer(r"\\input\{(.*?)\}", main_file, re.M)]):
f = s.group(1)
fp = os.path.join(project_foler, f)
fp = find_tex_file_ignore_case(fp)
if fp:
with open(fp, 'r', encoding='utf-8', errors='replace') as fx: c = fx.read()
else:
raise RuntimeError(f'找不到{fp},Tex源文件缺失')
c = merge_tex_files_(project_foler, c, mode)
main_file = main_file[:s.span()[0]] + c + main_file[s.span()[1]:]
return main_file
def merge_tex_files(project_foler, main_file, mode):
"""
Merge Tex project recrusively
P.S. 顺便把CTEX塞进去以支持中文
P.S. 顺便把Latex的注释去除
"""
main_file = merge_tex_files_(project_foler, main_file, mode)
main_file = rm_comments(main_file)
if mode == 'translate_zh':
# find paper documentclass
pattern = re.compile(r'\\documentclass.*\n')
match = pattern.search(main_file)
assert match is not None, "Cannot find documentclass statement!"
position = match.end()
add_ctex = '\\usepackage{ctex}\n'
add_url = '\\usepackage{url}\n' if '{url}' not in main_file else ''
main_file = main_file[:position] + add_ctex + add_url + main_file[position:]
# fontset=windows
import platform
main_file = re.sub(r"\\documentclass\[(.*?)\]{(.*?)}", r"\\documentclass[\1,fontset=windows,UTF8]{\2}",main_file)
main_file = re.sub(r"\\documentclass{(.*?)}", r"\\documentclass[fontset=windows,UTF8]{\1}",main_file)
# find paper abstract
pattern_opt1 = re.compile(r'\\begin\{abstract\}.*\n')
pattern_opt2 = re.compile(r"\\abstract\{(.*?)\}", flags=re.DOTALL)
match_opt1 = pattern_opt1.search(main_file)
match_opt2 = pattern_opt2.search(main_file)
assert (match_opt1 is not None) or (match_opt2 is not None), "Cannot find paper abstract section!"
return main_file
"""
========================================================================
Post process
========================================================================
"""
def mod_inbraket(match):
"""
为啥chatgpt会把cite里面的逗号换成中文逗号呀
"""
# get the matched string
cmd = match.group(1)
str_to_modify = match.group(2)
# modify the matched string
str_to_modify = str_to_modify.replace('', ':') # 前面是中文冒号,后面是英文冒号
str_to_modify = str_to_modify.replace('', ',') # 前面是中文逗号,后面是英文逗号
# str_to_modify = 'BOOM'
return "\\" + cmd + "{" + str_to_modify + "}"
def fix_content(final_tex, node_string):
"""
Fix common GPT errors to increase success rate
"""
final_tex = re.sub(r"(?<!\\)%", "\\%", final_tex)
final_tex = re.sub(r"\\([a-z]{2,10})\ \{", r"\\\1{", string=final_tex)
final_tex = re.sub(r"\\\ ([a-z]{2,10})\{", r"\\\1{", string=final_tex)
final_tex = re.sub(r"\\([a-z]{2,10})\{([^\}]*?)\}", mod_inbraket, string=final_tex)
if "Traceback" in final_tex and "[Local Message]" in final_tex:
final_tex = node_string # 出问题了,还原原文
if node_string.count('\\begin') != final_tex.count('\\begin'):
final_tex = node_string # 出问题了,还原原文
if node_string.count('\_') > 0 and node_string.count('\_') > final_tex.count('\_'):
# walk and replace any _ without \
final_tex = re.sub(r"(?<!\\)_", "\\_", final_tex)
def compute_brace_level(string):
# this function count the number of { and }
brace_level = 0
for c in string:
if c == "{": brace_level += 1
elif c == "}": brace_level -= 1
return brace_level
def join_most(tex_t, tex_o):
# this function join translated string and original string when something goes wrong
p_t = 0
p_o = 0
def find_next(string, chars, begin):
p = begin
while p < len(string):
if string[p] in chars: return p, string[p]
p += 1
return None, None
while True:
res1, char = find_next(tex_o, ['{','}'], p_o)
if res1 is None: break
res2, char = find_next(tex_t, [char], p_t)
if res2 is None: break
p_o = res1 + 1
p_t = res2 + 1
return tex_t[:p_t] + tex_o[p_o:]
if compute_brace_level(final_tex) != compute_brace_level(node_string):
# 出问题了,还原部分原文,保证括号正确
final_tex = join_most(final_tex, node_string)
return final_tex
def split_subprocess(txt, project_folder, return_dict, opts):
"""
@@ -326,7 +22,8 @@ def split_subprocess(txt, project_folder, return_dict, opts):
mask = np.zeros(len(txt), dtype=np.uint8) + TRANSFORM
# 吸收title与作者以上的部分
text, mask = set_forbidden_text(text, mask, r"(.*?)\\maketitle", re.DOTALL)
text, mask = set_forbidden_text(text, mask, r"^(.*?)\\maketitle", re.DOTALL)
text, mask = set_forbidden_text(text, mask, r"^(.*?)\\begin{document}", re.DOTALL)
# 吸收iffalse注释
text, mask = set_forbidden_text(text, mask, r"\\iffalse(.*?)\\fi", re.DOTALL)
# 吸收在42行以内的begin-end组合
@@ -356,77 +53,9 @@ def split_subprocess(txt, project_folder, return_dict, opts):
text, mask = reverse_forbidden_text(text, mask, r"\\begin\{abstract\}(.*?)\\end\{abstract\}", re.DOTALL, forbid_wrapper=True)
root = convert_to_linklist(text, mask)
# 修复括号
node = root
while True:
string = node.string
if node.preserve:
node = node.next
if node is None: break
continue
def break_check(string):
str_stack = [""] # (lv, index)
for i, c in enumerate(string):
if c == '{':
str_stack.append('{')
elif c == '}':
if len(str_stack) == 1:
print('stack fix')
return i
str_stack.pop(-1)
else:
str_stack[-1] += c
return -1
bp = break_check(string)
# 最后一步处理,增强稳健性
root = post_process(root)
if bp == -1:
pass
elif bp == 0:
node.string = string[:1]
q = LinkedListNode(string[1:], False)
q.next = node.next
node.next = q
else:
node.string = string[:bp]
q = LinkedListNode(string[bp:], False)
q.next = node.next
node.next = q
node = node.next
if node is None: break
# 屏蔽空行和太短的句子
node = root
while True:
if len(node.string.strip('\n').strip(''))==0: node.preserve = True
if len(node.string.strip('\n').strip(''))<42: node.preserve = True
node = node.next
if node is None: break
node = root
while True:
if node.next and node.preserve and node.next.preserve:
node.string += node.next.string
node.next = node.next.next
node = node.next
if node is None: break
# 将前后断行符脱离
node = root
prev_node = None
while True:
if not node.preserve:
lstriped_ = node.string.lstrip().lstrip('\n')
if (prev_node is not None) and (prev_node.preserve) and (len(lstriped_)!=len(node.string)):
prev_node.string += node.string[:-len(lstriped_)]
node.string = lstriped_
rstriped_ = node.string.rstrip().rstrip('\n')
if (node.next is not None) and (node.next.preserve) and (len(rstriped_)!=len(node.string)):
node.next.string = node.string[len(rstriped_):] + node.next.string
node.string = rstriped_
# =====
prev_node = node
node = node.next
if node is None: break
# 输出html调试文件,用红色标注处保留区PRESERVE,用黑色标注转换区TRANSFORM
with open(pj(project_folder, 'debug_log.html'), 'w', encoding='utf8') as f:
segment_parts_for_gpt = []
@@ -437,7 +66,7 @@ def split_subprocess(txt, project_folder, return_dict, opts):
show_html = node.string.replace('\n','<br/>')
if not node.preserve:
segment_parts_for_gpt.append(node.string)
f.write(f'<p style="color:black;">#{show_html}#</p>')
f.write(f'<p style="color:black;">#{node.range}{show_html}#</p>')
else:
f.write(f'<p style="color:red;">{show_html}</p>')
node = node.next
@@ -448,8 +77,6 @@ def split_subprocess(txt, project_folder, return_dict, opts):
return_dict['segment_parts_for_gpt'] = segment_parts_for_gpt
return return_dict
class LatexPaperSplit():
"""
break down latex file to a linked list,
@@ -464,18 +91,32 @@ class LatexPaperSplit():
# 请您不要删除或修改这行警告,除非您是论文的原作者如果您是论文原作者,欢迎加REAME中的QQ联系开发者
self.msg_declare = "为了防止大语言模型的意外谬误产生扩散影响,禁止移除或修改此警告。}}\\\\"
def merge_result(self, arr, mode, msg):
def merge_result(self, arr, mode, msg, buggy_lines=[], buggy_line_surgery_n_lines=10):
"""
Merge the result after the GPT process completed
"""
result_string = ""
p = 0
node_cnt = 0
line_cnt = 0
for node in self.nodes:
if node.preserve:
line_cnt += node.string.count('\n')
result_string += node.string
else:
result_string += fix_content(arr[p], node.string)
p += 1
translated_txt = fix_content(arr[node_cnt], node.string)
begin_line = line_cnt
end_line = line_cnt + translated_txt.count('\n')
# reverse translation if any error
if any([begin_line-buggy_line_surgery_n_lines <= b_line <= end_line+buggy_line_surgery_n_lines for b_line in buggy_lines]):
translated_txt = node.string
result_string += translated_txt
node_cnt += 1
line_cnt += translated_txt.count('\n')
if mode == 'translate_zh':
pattern = re.compile(r'\\begin\{abstract\}.*\n')
match = pattern.search(result_string)
@@ -490,6 +131,7 @@ class LatexPaperSplit():
result_string = result_string[:position] + self.msg + msg + self.msg_declare + result_string[position:]
return result_string
def split(self, txt, project_folder, opts):
"""
break down latex file to a linked list,
@@ -511,7 +153,6 @@ class LatexPaperSplit():
return self.sp
class LatexPaperFileGroup():
"""
use tokenizer to break down text according to max_token_limit
@@ -539,7 +180,7 @@ class LatexPaperFileGroup():
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
from ..crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
@@ -560,41 +201,14 @@ class LatexPaperFileGroup():
f.write(res)
return manifest
def write_html(sp_file_contents, sp_file_result, chatbot, project_folder):
# write html
try:
import shutil
from .crazy_utils import construct_html
from toolbox import gen_time_str
ch = construct_html()
orig = ""
trans = ""
final = []
for c,r in zip(sp_file_contents, sp_file_result):
final.append(c)
final.append(r)
for i, k in enumerate(final):
if i%2==0:
orig = k
if i%2==1:
trans = k
ch.add_row(a=orig, b=trans)
create_report_file_name = f"{gen_time_str()}.trans.html"
ch.save_file(create_report_file_name)
shutil.copyfile(pj('./gpt_log/', create_report_file_name), pj(project_folder, create_report_file_name))
promote_file_to_downloadzone(file=f'./gpt_log/{create_report_file_name}', chatbot=chatbot)
except:
from toolbox import trimmed_format_exc
print('writing html result failed:', trimmed_format_exc())
def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, mode='proofread', switch_prompt=None, opts=[]):
import time, os, re
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from .latex_utils import LatexPaperFileGroup, merge_tex_files, LatexPaperSplit, 寻找Latex主文件
from ..crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from .latex_actions import LatexPaperFileGroup, LatexPaperSplit
# <-------- 寻找主tex文件 ---------->
maintex = 寻找Latex主文件(file_manifest, mode)
maintex = find_main_tex_file(file_manifest, mode)
chatbot.append((f"定位主Latex文件", f'[Local Message] 分析结果该项目的Latex主文件是{maintex}, 如果分析错误, 请立即终止程序, 删除或修改歧义文件, 然后重试。主程序即将开始, 请稍候。'))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
time.sleep(3)
@@ -668,54 +282,51 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
# <-------- 写出文件 ---------->
msg = f"当前大语言模型: {llm_kwargs['llm_model']},当前语言模型温度设定: {llm_kwargs['temperature']}"
final_tex = lps.merge_result(pfg.file_result, mode, msg)
objdump((lps, pfg.file_result, mode, msg), file=pj(project_folder,'merge_result.pkl'))
with open(project_folder + f'/merge_{mode}.tex', 'w', encoding='utf-8', errors='replace') as f:
if mode != 'translate_zh' or "binary" in final_tex: f.write(final_tex)
# <-------- 整理结果, 退出 ---------->
chatbot.append((f"完成了吗?", 'GPT结果已输出, 正在编译PDF'))
chatbot.append((f"完成了吗?", 'GPT结果已输出, 即将编译PDF'))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# <-------- 返回 ---------->
return project_folder + f'/merge_{mode}.tex'
def remove_buggy_lines(file_path, log_path, tex_name, tex_name_pure, n_fix, work_folder_modified):
def remove_buggy_lines(file_path, log_path, tex_name, tex_name_pure, n_fix, work_folder_modified, fixed_line=[]):
try:
with open(log_path, 'r', encoding='utf-8', errors='replace') as f:
log = f.read()
with open(file_path, 'r', encoding='utf-8', errors='replace') as f:
file_lines = f.readlines()
import re
buggy_lines = re.findall(tex_name+':([0-9]{1,5}):', log)
buggy_lines = [int(l) for l in buggy_lines]
buggy_lines = sorted(buggy_lines)
print("removing lines that has errors", buggy_lines)
file_lines.pop(buggy_lines[0]-1)
buggy_line = buggy_lines[0]-1
print("reversing tex line that has errors", buggy_line)
# 重组,逆转出错的段落
if buggy_line not in fixed_line:
fixed_line.append(buggy_line)
lps, file_result, mode, msg = objload(file=pj(work_folder_modified,'merge_result.pkl'))
final_tex = lps.merge_result(file_result, mode, msg, buggy_lines=fixed_line, buggy_line_surgery_n_lines=5*n_fix)
with open(pj(work_folder_modified, f"{tex_name_pure}_fix_{n_fix}.tex"), 'w', encoding='utf-8', errors='replace') as f:
f.writelines(file_lines)
f.write(final_tex)
return True, f"{tex_name_pure}_fix_{n_fix}", buggy_lines
except:
print("Fatal error occurred, but we cannot identify error, please download zip, read latex log, and compile manually.")
return False, -1, [-1]
def compile_latex_with_timeout(command, cwd, timeout=60):
import subprocess
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=cwd)
try:
stdout, stderr = process.communicate(timeout=timeout)
except subprocess.TimeoutExpired:
process.kill()
stdout, stderr = process.communicate()
print("Process timed out!")
return False
return True
def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_folder_original, work_folder_modified, work_folder, mode='default'):
import os, time
current_dir = os.getcwd()
n_fix = 1
fixed_line = []
max_try = 32
chatbot.append([f"正在编译PDF文档", f'编译已经开始。当前工作路径为{work_folder},如果程序停顿5分钟以上,请直接去该路径下取回翻译结果,或者重启之后再度尝试 ...']); yield from update_ui(chatbot=chatbot, history=history)
chatbot.append([f"正在编译PDF文档", '...']); yield from update_ui(chatbot=chatbot, history=history); time.sleep(1); chatbot[-1] = list(chatbot[-1]) # 刷新界面
@@ -723,6 +334,10 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
while True:
import os
may_exist_bbl = pj(work_folder_modified, f'merge.bbl')
target_bbl = pj(work_folder_modified, f'{main_file_modified}.bbl')
if os.path.exists(may_exist_bbl) and not os.path.exists(target_bbl):
shutil.copyfile(may_exist_bbl, target_bbl)
# https://stackoverflow.com/questions/738755/dont-make-me-manually-abort-a-latex-compile-when-theres-an-error
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译原始PDF ...', chatbot, history) # 刷新Gradio前端界面
@@ -756,7 +371,6 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
# <---------- 检查结果 ----------->
results_ = ""
original_pdf_success = os.path.exists(pj(work_folder_original, f'{main_file_original}.pdf'))
@@ -773,9 +387,19 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
if modified_pdf_success:
yield from update_ui_lastest_msg(f'转化PDF编译已经成功, 即将退出 ...', chatbot, history) # 刷新Gradio前端界面
result_pdf = pj(work_folder_modified, f'{main_file_modified}.pdf') # get pdf path
origin_pdf = pj(work_folder_original, f'{main_file_original}.pdf') # get pdf path
if os.path.exists(pj(work_folder, '..', 'translation')):
shutil.copyfile(result_pdf, pj(work_folder, '..', 'translation', 'translate_zh.pdf'))
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
# 将两个PDF拼接
if original_pdf_success:
try:
from .latex_toolbox import merge_pdfs
concat_pdf = pj(work_folder_modified, f'comparison.pdf')
merge_pdfs(origin_pdf, result_pdf, concat_pdf)
promote_file_to_downloadzone(concat_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
except Exception as e:
pass
return True # 成功啦
else:
if n_fix>=max_try: break
@@ -787,6 +411,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
tex_name_pure=f'{main_file_modified}',
n_fix=n_fix,
work_folder_modified=work_folder_modified,
fixed_line=fixed_line
)
yield from update_ui_lastest_msg(f'由于最为关键的转化PDF编译失败, 将根据报错信息修正tex源文件并重试, 当前报错的latex代码处于第{buggy_lines}行 ...', chatbot, history) # 刷新Gradio前端界面
if not can_retry: break
@@ -794,4 +419,29 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
return False # 失败啦
def write_html(sp_file_contents, sp_file_result, chatbot, project_folder):
# write html
try:
import shutil
from ..crazy_utils import construct_html
from toolbox import gen_time_str
ch = construct_html()
orig = ""
trans = ""
final = []
for c,r in zip(sp_file_contents, sp_file_result):
final.append(c)
final.append(r)
for i, k in enumerate(final):
if i%2==0:
orig = k
if i%2==1:
trans = k
ch.add_row(a=orig, b=trans)
create_report_file_name = f"{gen_time_str()}.trans.html"
ch.save_file(create_report_file_name)
shutil.copyfile(pj('./gpt_log/', create_report_file_name), pj(project_folder, create_report_file_name))
promote_file_to_downloadzone(file=f'./gpt_log/{create_report_file_name}', chatbot=chatbot)
except:
from toolbox import trimmed_format_exc
print('writing html result failed:', trimmed_format_exc())

查看文件

@@ -0,0 +1,456 @@
import os, shutil
import re
import numpy as np
PRESERVE = 0
TRANSFORM = 1
pj = os.path.join
class LinkedListNode():
"""
Linked List Node
"""
def __init__(self, string, preserve=True) -> None:
self.string = string
self.preserve = preserve
self.next = None
self.range = None
# self.begin_line = 0
# self.begin_char = 0
def convert_to_linklist(text, mask):
root = LinkedListNode("", preserve=True)
current_node = root
for c, m, i in zip(text, mask, range(len(text))):
if (m==PRESERVE and current_node.preserve) \
or (m==TRANSFORM and not current_node.preserve):
# add
current_node.string += c
else:
current_node.next = LinkedListNode(c, preserve=(m==PRESERVE))
current_node = current_node.next
return root
def post_process(root):
# 修复括号
node = root
while True:
string = node.string
if node.preserve:
node = node.next
if node is None: break
continue
def break_check(string):
str_stack = [""] # (lv, index)
for i, c in enumerate(string):
if c == '{':
str_stack.append('{')
elif c == '}':
if len(str_stack) == 1:
print('stack fix')
return i
str_stack.pop(-1)
else:
str_stack[-1] += c
return -1
bp = break_check(string)
if bp == -1:
pass
elif bp == 0:
node.string = string[:1]
q = LinkedListNode(string[1:], False)
q.next = node.next
node.next = q
else:
node.string = string[:bp]
q = LinkedListNode(string[bp:], False)
q.next = node.next
node.next = q
node = node.next
if node is None: break
# 屏蔽空行和太短的句子
node = root
while True:
if len(node.string.strip('\n').strip(''))==0: node.preserve = True
if len(node.string.strip('\n').strip(''))<42: node.preserve = True
node = node.next
if node is None: break
node = root
while True:
if node.next and node.preserve and node.next.preserve:
node.string += node.next.string
node.next = node.next.next
node = node.next
if node is None: break
# 将前后断行符脱离
node = root
prev_node = None
while True:
if not node.preserve:
lstriped_ = node.string.lstrip().lstrip('\n')
if (prev_node is not None) and (prev_node.preserve) and (len(lstriped_)!=len(node.string)):
prev_node.string += node.string[:-len(lstriped_)]
node.string = lstriped_
rstriped_ = node.string.rstrip().rstrip('\n')
if (node.next is not None) and (node.next.preserve) and (len(rstriped_)!=len(node.string)):
node.next.string = node.string[len(rstriped_):] + node.next.string
node.string = rstriped_
# =====
prev_node = node
node = node.next
if node is None: break
# 标注节点的行数范围
node = root
n_line = 0
expansion = 2
while True:
n_l = node.string.count('\n')
node.range = [n_line-expansion, n_line+n_l+expansion] # 失败时,扭转的范围
n_line = n_line+n_l
node = node.next
if node is None: break
return root
"""
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Latex segmentation with a binary mask (PRESERVE=0, TRANSFORM=1)
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
"""
def set_forbidden_text(text, mask, pattern, flags=0):
"""
Add a preserve text area in this paper
e.g. with pattern = r"\\begin\{algorithm\}(.*?)\\end\{algorithm\}"
you can mask out (mask = PRESERVE so that text become untouchable for GPT)
everything between "\begin{equation}" and "\end{equation}"
"""
if isinstance(pattern, list): pattern = '|'.join(pattern)
pattern_compile = re.compile(pattern, flags)
for res in pattern_compile.finditer(text):
mask[res.span()[0]:res.span()[1]] = PRESERVE
return text, mask
def reverse_forbidden_text(text, mask, pattern, flags=0, forbid_wrapper=True):
"""
Move area out of preserve area (make text editable for GPT)
count the number of the braces so as to catch compelete text area.
e.g.
\begin{abstract} blablablablablabla. \end{abstract}
"""
if isinstance(pattern, list): pattern = '|'.join(pattern)
pattern_compile = re.compile(pattern, flags)
for res in pattern_compile.finditer(text):
if not forbid_wrapper:
mask[res.span()[0]:res.span()[1]] = TRANSFORM
else:
mask[res.regs[0][0]: res.regs[1][0]] = PRESERVE # '\\begin{abstract}'
mask[res.regs[1][0]: res.regs[1][1]] = TRANSFORM # abstract
mask[res.regs[1][1]: res.regs[0][1]] = PRESERVE # abstract
return text, mask
def set_forbidden_text_careful_brace(text, mask, pattern, flags=0):
"""
Add a preserve text area in this paper (text become untouchable for GPT).
count the number of the braces so as to catch compelete text area.
e.g.
\caption{blablablablabla\texbf{blablabla}blablabla.}
"""
pattern_compile = re.compile(pattern, flags)
for res in pattern_compile.finditer(text):
brace_level = -1
p = begin = end = res.regs[0][0]
for _ in range(1024*16):
if text[p] == '}' and brace_level == 0: break
elif text[p] == '}': brace_level -= 1
elif text[p] == '{': brace_level += 1
p += 1
end = p+1
mask[begin:end] = PRESERVE
return text, mask
def reverse_forbidden_text_careful_brace(text, mask, pattern, flags=0, forbid_wrapper=True):
"""
Move area out of preserve area (make text editable for GPT)
count the number of the braces so as to catch compelete text area.
e.g.
\caption{blablablablabla\texbf{blablabla}blablabla.}
"""
pattern_compile = re.compile(pattern, flags)
for res in pattern_compile.finditer(text):
brace_level = 0
p = begin = end = res.regs[1][0]
for _ in range(1024*16):
if text[p] == '}' and brace_level == 0: break
elif text[p] == '}': brace_level -= 1
elif text[p] == '{': brace_level += 1
p += 1
end = p
mask[begin:end] = TRANSFORM
if forbid_wrapper:
mask[res.regs[0][0]:begin] = PRESERVE
mask[end:res.regs[0][1]] = PRESERVE
return text, mask
def set_forbidden_text_begin_end(text, mask, pattern, flags=0, limit_n_lines=42):
"""
Find all \begin{} ... \end{} text block that with less than limit_n_lines lines.
Add it to preserve area
"""
pattern_compile = re.compile(pattern, flags)
def search_with_line_limit(text, mask):
for res in pattern_compile.finditer(text):
cmd = res.group(1) # begin{what}
this = res.group(2) # content between begin and end
this_mask = mask[res.regs[2][0]:res.regs[2][1]]
white_list = ['document', 'abstract', 'lemma', 'definition', 'sproof',
'em', 'emph', 'textit', 'textbf', 'itemize', 'enumerate']
if (cmd in white_list) or this.count('\n') >= limit_n_lines: # use a magical number 42
this, this_mask = search_with_line_limit(this, this_mask)
mask[res.regs[2][0]:res.regs[2][1]] = this_mask
else:
mask[res.regs[0][0]:res.regs[0][1]] = PRESERVE
return text, mask
return search_with_line_limit(text, mask)
"""
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Latex Merge File
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
"""
def find_main_tex_file(file_manifest, mode):
"""
在多Tex文档中,寻找主文件,必须包含documentclass,返回找到的第一个。
P.S. 但愿没人把latex模板放在里面传进来 (6.25 加入判定latex模板的代码)
"""
canidates = []
for texf in file_manifest:
if os.path.basename(texf).startswith('merge'):
continue
with open(texf, 'r', encoding='utf8', errors='ignore') as f:
file_content = f.read()
if r'\documentclass' in file_content:
canidates.append(texf)
else:
continue
if len(canidates) == 0:
raise RuntimeError('无法找到一个主Tex文件包含documentclass关键字')
elif len(canidates) == 1:
return canidates[0]
else: # if len(canidates) >= 2 通过一些Latex模板中常见但通常不会出现在正文的单词,对不同latex源文件扣分,取评分最高者返回
canidates_score = []
# 给出一些判定模板文档的词作为扣分项
unexpected_words = ['\LaTeX', 'manuscript', 'Guidelines', 'font', 'citations', 'rejected', 'blind review', 'reviewers']
expected_words = ['\input', '\ref', '\cite']
for texf in canidates:
canidates_score.append(0)
with open(texf, 'r', encoding='utf8', errors='ignore') as f:
file_content = f.read()
for uw in unexpected_words:
if uw in file_content:
canidates_score[-1] -= 1
for uw in expected_words:
if uw in file_content:
canidates_score[-1] += 1
select = np.argmax(canidates_score) # 取评分最高者返回
return canidates[select]
def rm_comments(main_file):
new_file_remove_comment_lines = []
for l in main_file.splitlines():
# 删除整行的空注释
if l.lstrip().startswith("%"):
pass
else:
new_file_remove_comment_lines.append(l)
main_file = '\n'.join(new_file_remove_comment_lines)
# main_file = re.sub(r"\\include{(.*?)}", r"\\input{\1}", main_file) # 将 \include 命令转换为 \input 命令
main_file = re.sub(r'(?<!\\)%.*', '', main_file) # 使用正则表达式查找半行注释, 并替换为空字符串
return main_file
def find_tex_file_ignore_case(fp):
dir_name = os.path.dirname(fp)
base_name = os.path.basename(fp)
if not base_name.endswith('.tex'): base_name+='.tex'
if os.path.exists(pj(dir_name, base_name)): return pj(dir_name, base_name)
# go case in-sensitive
import glob
for f in glob.glob(dir_name+'/*.tex'):
base_name_s = os.path.basename(fp)
if base_name_s.lower() == base_name.lower(): return f
return None
def merge_tex_files_(project_foler, main_file, mode):
"""
Merge Tex project recrusively
"""
main_file = rm_comments(main_file)
for s in reversed([q for q in re.finditer(r"\\input\{(.*?)\}", main_file, re.M)]):
f = s.group(1)
fp = os.path.join(project_foler, f)
fp = find_tex_file_ignore_case(fp)
if fp:
with open(fp, 'r', encoding='utf-8', errors='replace') as fx: c = fx.read()
else:
raise RuntimeError(f'找不到{fp},Tex源文件缺失')
c = merge_tex_files_(project_foler, c, mode)
main_file = main_file[:s.span()[0]] + c + main_file[s.span()[1]:]
return main_file
def merge_tex_files(project_foler, main_file, mode):
"""
Merge Tex project recrusively
P.S. 顺便把CTEX塞进去以支持中文
P.S. 顺便把Latex的注释去除
"""
main_file = merge_tex_files_(project_foler, main_file, mode)
main_file = rm_comments(main_file)
if mode == 'translate_zh':
# find paper documentclass
pattern = re.compile(r'\\documentclass.*\n')
match = pattern.search(main_file)
assert match is not None, "Cannot find documentclass statement!"
position = match.end()
add_ctex = '\\usepackage{ctex}\n'
add_url = '\\usepackage{url}\n' if '{url}' not in main_file else ''
main_file = main_file[:position] + add_ctex + add_url + main_file[position:]
# fontset=windows
import platform
main_file = re.sub(r"\\documentclass\[(.*?)\]{(.*?)}", r"\\documentclass[\1,fontset=windows,UTF8]{\2}",main_file)
main_file = re.sub(r"\\documentclass{(.*?)}", r"\\documentclass[fontset=windows,UTF8]{\1}",main_file)
# find paper abstract
pattern_opt1 = re.compile(r'\\begin\{abstract\}.*\n')
pattern_opt2 = re.compile(r"\\abstract\{(.*?)\}", flags=re.DOTALL)
match_opt1 = pattern_opt1.search(main_file)
match_opt2 = pattern_opt2.search(main_file)
assert (match_opt1 is not None) or (match_opt2 is not None), "Cannot find paper abstract section!"
return main_file
"""
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Post process
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
"""
def mod_inbraket(match):
"""
为啥chatgpt会把cite里面的逗号换成中文逗号呀
"""
# get the matched string
cmd = match.group(1)
str_to_modify = match.group(2)
# modify the matched string
str_to_modify = str_to_modify.replace('', ':') # 前面是中文冒号,后面是英文冒号
str_to_modify = str_to_modify.replace('', ',') # 前面是中文逗号,后面是英文逗号
# str_to_modify = 'BOOM'
return "\\" + cmd + "{" + str_to_modify + "}"
def fix_content(final_tex, node_string):
"""
Fix common GPT errors to increase success rate
"""
final_tex = re.sub(r"(?<!\\)%", "\\%", final_tex)
final_tex = re.sub(r"\\([a-z]{2,10})\ \{", r"\\\1{", string=final_tex)
final_tex = re.sub(r"\\\ ([a-z]{2,10})\{", r"\\\1{", string=final_tex)
final_tex = re.sub(r"\\([a-z]{2,10})\{([^\}]*?)\}", mod_inbraket, string=final_tex)
if "Traceback" in final_tex and "[Local Message]" in final_tex:
final_tex = node_string # 出问题了,还原原文
if node_string.count('\\begin') != final_tex.count('\\begin'):
final_tex = node_string # 出问题了,还原原文
if node_string.count('\_') > 0 and node_string.count('\_') > final_tex.count('\_'):
# walk and replace any _ without \
final_tex = re.sub(r"(?<!\\)_", "\\_", final_tex)
def compute_brace_level(string):
# this function count the number of { and }
brace_level = 0
for c in string:
if c == "{": brace_level += 1
elif c == "}": brace_level -= 1
return brace_level
def join_most(tex_t, tex_o):
# this function join translated string and original string when something goes wrong
p_t = 0
p_o = 0
def find_next(string, chars, begin):
p = begin
while p < len(string):
if string[p] in chars: return p, string[p]
p += 1
return None, None
while True:
res1, char = find_next(tex_o, ['{','}'], p_o)
if res1 is None: break
res2, char = find_next(tex_t, [char], p_t)
if res2 is None: break
p_o = res1 + 1
p_t = res2 + 1
return tex_t[:p_t] + tex_o[p_o:]
if compute_brace_level(final_tex) != compute_brace_level(node_string):
# 出问题了,还原部分原文,保证括号正确
final_tex = join_most(final_tex, node_string)
return final_tex
def compile_latex_with_timeout(command, cwd, timeout=60):
import subprocess
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=cwd)
try:
stdout, stderr = process.communicate(timeout=timeout)
except subprocess.TimeoutExpired:
process.kill()
stdout, stderr = process.communicate()
print("Process timed out!")
return False
return True
def merge_pdfs(pdf1_path, pdf2_path, output_path):
import PyPDF2
Percent = 0.8
# Open the first PDF file
with open(pdf1_path, 'rb') as pdf1_file:
pdf1_reader = PyPDF2.PdfFileReader(pdf1_file)
# Open the second PDF file
with open(pdf2_path, 'rb') as pdf2_file:
pdf2_reader = PyPDF2.PdfFileReader(pdf2_file)
# Create a new PDF file to store the merged pages
output_writer = PyPDF2.PdfFileWriter()
# Determine the number of pages in each PDF file
num_pages = max(pdf1_reader.numPages, pdf2_reader.numPages)
# Merge the pages from the two PDF files
for page_num in range(num_pages):
# Add the page from the first PDF file
if page_num < pdf1_reader.numPages:
page1 = pdf1_reader.getPage(page_num)
else:
page1 = PyPDF2.PageObject.createBlankPage(pdf1_reader)
# Add the page from the second PDF file
if page_num < pdf2_reader.numPages:
page2 = pdf2_reader.getPage(page_num)
else:
page2 = PyPDF2.PageObject.createBlankPage(pdf1_reader)
# Create a new empty page with double width
new_page = PyPDF2.PageObject.createBlankPage(
width = int(int(page1.mediaBox.getWidth()) + int(page2.mediaBox.getWidth()) * Percent),
height = max(page1.mediaBox.getHeight(), page2.mediaBox.getHeight())
)
new_page.mergeTranslatedPage(page1, 0, 0)
new_page.mergeTranslatedPage(page2, int(int(page1.mediaBox.getWidth())-int(page2.mediaBox.getWidth())* (1-Percent)), 0)
output_writer.addPage(new_page)
# Save the merged PDF file
with open(output_path, 'wb') as output_file:
output_writer.write(output_file)

查看文件

@@ -19,7 +19,7 @@ class AliyunASR():
pass
def test_on_error(self, message, *args):
# print("on_error args=>{}".format(args))
print("on_error args=>{}".format(args))
pass
def test_on_close(self, *args):
@@ -50,6 +50,8 @@ class AliyunASR():
rad.clean_up()
temp_folder = tempfile.gettempdir()
TOKEN, APPKEY = get_conf('ALIYUN_TOKEN', 'ALIYUN_APPKEY')
if len(TOKEN) == 0:
TOKEN = self.get_token()
self.aliyun_service_ok = True
URL="wss://nls-gateway.aliyuncs.com/ws/v1"
sr = nls.NlsSpeechTranscriber(
@@ -91,3 +93,38 @@ class AliyunASR():
self.stop = True
self.stop_msg = 'Aliyun音频服务异常,请检查ALIYUN_TOKEN和ALIYUN_APPKEY是否过期。'
r = sr.stop()
def get_token(self):
from toolbox import get_conf
import json
from aliyunsdkcore.request import CommonRequest
from aliyunsdkcore.client import AcsClient
AccessKey_ID, AccessKey_secret = get_conf('ALIYUN_ACCESSKEY', 'ALIYUN_SECRET')
# 创建AcsClient实例
client = AcsClient(
AccessKey_ID,
AccessKey_secret,
"cn-shanghai"
)
# 创建request,并设置参数。
request = CommonRequest()
request.set_method('POST')
request.set_domain('nls-meta.cn-shanghai.aliyuncs.com')
request.set_version('2019-02-28')
request.set_action_name('CreateToken')
try:
response = client.do_action_with_exception(request)
print(response)
jss = json.loads(response)
if 'Token' in jss and 'Id' in jss['Token']:
token = jss['Token']['Id']
expireTime = jss['Token']['ExpireTime']
print("token = " + token)
print("expireTime = " + str(expireTime))
except Exception as e:
print(e)
return token

查看文件

@@ -1,38 +0,0 @@
from toolbox import update_ui, get_conf, trimmed_format_exc
import threading
def Singleton(cls):
_instance = {}
def _singleton(*args, **kargs):
if cls not in _instance:
_instance[cls] = cls(*args, **kargs)
return _instance[cls]
return _singleton
@Singleton
class vhmp_interface():
def __init__(self) -> None:
from VISUALIZE.mcom_rt import mcom
self.vis3d = mcom(path='TEMP/v2d_logger/', draw_mode='Threejs')
self.vis3d.v2d_init()
self.vis3d.设置样式('star')
# vis3d.设置样式('star') # 布置星空
self.vis3d.其他几何体之旋转缩放和平移('box', 'BoxGeometry(1,1,1)', 0,0,0, 1,1,1, 0,0,0)
# declare geo 'oct1', init with OctahedronGeometry, then (1)rotate & (2)scale & (3)translate
self.vis3d.其他几何体之旋转缩放和平移('octahedron', 'OctahedronGeometry(1,0)', 0,0,0, 1,1,1, 0,0,0) # 八面体
# 需要换成其他几何体,请把'OctahedronGeometry(1,0)'替换,参考网址 https://threejs.org/docs/index.html?q=Geometry
self.vis3d.其他几何体之旋转缩放和平移('sphere', 'SphereGeometry(1)', 0,0,0, 1,1,1, 0,0,0) # 球体
self.vis3d.其他几何体之旋转缩放和平移('cylinder', 'CylinderGeometry(1,1,5,32)', 0,0,0, 1,1,1, 0,0,0) # 球体
def update(self, json):
for obj in json:
self.vis3d.发送几何体(
f'{obj["geometry"]}|{obj["name"]}|{obj["color"]}|{obj["size"]}', # 填入 ‘形状|几何体之ID标识|颜色|大小’即可
obj["location_x"],
obj["location_y"],
obj["location_z"],
ro_x=0, ro_y=0, ro_z=0, # 三维位置+欧拉旋转变换,六自由度
track_n_frame=0) # 显示历史20帧留下的轨迹
self.vis3d.结束关键帧()

查看文件

@@ -0,0 +1,31 @@
from toolbox import CatchException, update_ui, gen_time_str
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import input_clipping
import copy, json
@CatchException
def 命令行助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本, 例如需要翻译的一段话, 再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数, 如温度和top_p等, 一般原样传递下去就行
plugin_kwargs 插件模型的参数, 暂时没有用武之地
chatbot 聊天显示框的句柄, 用于显示给用户
history 聊天历史, 前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
# 清空历史, 以免输入溢出
history = []
# 输入
i_say = "请写bash命令实现以下功能" + txt
# 开始
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=txt,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
sys_prompt="你是一个Linux大师级用户。注意,当我要求你写bash命令时,尽可能地仅用一行命令解决我的要求。"
)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新

查看文件

@@ -55,7 +55,7 @@ def 图片生成(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
chatbot.append(("这是什么功能?", "[Local Message] 生成图像, 请先把模型切换至gpt-xxxx或者api2d-xxxx。如果中文效果不理想, 尝试Prompt。正在处理中 ....."))
chatbot.append(("这是什么功能?", "[Local Message] 生成图像, 请先把模型切换至gpt-*或者api2d-*。如果中文效果不理想, 尝试英文Prompt。正在处理中 ....."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
resolution = plugin_kwargs.get("advanced_arg", '256x256')

查看文件

@@ -1,5 +1,7 @@
from toolbox import update_ui, trimmed_format_exc, gen_time_str
from toolbox import CatchException, report_execption, write_results_to_file
import glob, time, os, re
from toolbox import update_ui, trimmed_format_exc, gen_time_str, disable_auto_promotion
from toolbox import CatchException, report_execption, write_history_to_file
from toolbox import promote_file_to_downloadzone, get_log_folder
fast_debug = False
class PaperFileGroup():
@@ -42,13 +44,13 @@ class PaperFileGroup():
def write_result(self, language):
manifest = []
for path, res in zip(self.file_paths, self.file_result):
with open(path + f'.{gen_time_str()}.{language}.md', 'w', encoding='utf8') as f:
manifest.append(path + f'.{gen_time_str()}.{language}.md')
dst_file = os.path.join(get_log_folder(), f'{gen_time_str()}.md')
with open(dst_file, 'w', encoding='utf8') as f:
manifest.append(dst_file)
f.write(res)
return manifest
def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
import time, os, re
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
# <-------- 读取Markdown文件,删除其中的所有注释 ---------->
@@ -102,28 +104,38 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
print(trimmed_format_exc())
# <-------- 整理结果,退出 ---------->
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
res = write_results_to_file(gpt_response_collection, file_name=create_report_file_name)
create_report_file_name = gen_time_str() + f"-chatgpt.md"
res = write_history_to_file(gpt_response_collection, file_basename=create_report_file_name)
promote_file_to_downloadzone(res, chatbot=chatbot)
history = gpt_response_collection
chatbot.append((f"{fp}完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
def get_files_from_everything(txt):
import glob, os
def get_files_from_everything(txt, preference=''):
if txt == "": return False, None, None
success = True
if txt.startswith('http'):
# 网络的远程文件
txt = txt.replace("https://github.com/", "https://raw.githubusercontent.com/")
txt = txt.replace("/blob/", "/")
import requests
from toolbox import get_conf
proxies, = get_conf('proxies')
# 网络的远程文件
if preference == 'Github':
print('正在从github下载资源 ...')
if not txt.endswith('.md'):
# Make a request to the GitHub API to retrieve the repository information
url = txt.replace("https://github.com/", "https://api.github.com/repos/") + '/readme'
response = requests.get(url, proxies=proxies)
txt = response.json()['download_url']
else:
txt = txt.replace("https://github.com/", "https://raw.githubusercontent.com/")
txt = txt.replace("/blob/", "/")
r = requests.get(txt, proxies=proxies)
with open('./gpt_log/temp.md', 'wb+') as f: f.write(r.content)
project_folder = './gpt_log/'
file_manifest = ['./gpt_log/temp.md']
download_local = f'{get_log_folder(plugin_name="批量Markdown翻译")}/raw-readme-{gen_time_str()}.md'
project_folder = f'{get_log_folder(plugin_name="批量Markdown翻译")}'
with open(download_local, 'wb+') as f: f.write(r.content)
file_manifest = [download_local]
elif txt.endswith('.md'):
# 直接给定文件
file_manifest = [txt]
@@ -145,11 +157,11 @@ def Markdown英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
"函数插件功能?",
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
disable_auto_promotion(chatbot)
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
import glob, os
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
@@ -158,7 +170,7 @@ def Markdown英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
return
history = [] # 清空历史,以免输入溢出
success, file_manifest, project_folder = get_files_from_everything(txt)
success, file_manifest, project_folder = get_files_from_everything(txt, preference="Github")
if not success:
# 什么都没有
@@ -185,11 +197,11 @@ def Markdown中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
"函数插件功能?",
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
disable_auto_promotion(chatbot)
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
import glob, os
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
@@ -218,11 +230,11 @@ def Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history,
"函数插件功能?",
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
disable_auto_promotion(chatbot)
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
import glob, os
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",

查看文件

@@ -1,87 +1,70 @@
from toolbox import CatchException, update_ui, gen_time_str
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import input_clipping
import copy, json
prompt = """
I have to achieve some functionalities by calling one of the functions below.
Your job is to find the correct funtion to use to satisfy my requirement,
and then write python code to call this function with correct parameters.
These are functions you are allowed to choose from:
1.
功能描述: 总结音视频内容
调用函数: ConcludeAudioContent(txt, llm_kwargs)
参数说明:
txt: 音频文件的路径
llm_kwargs: 模型参数, 永远给定None
2.
功能描述: 将每次对话记录写入Markdown格式的文件中
调用函数: WriteMarkdown()
3.
功能描述: 将指定目录下的PDF文件从英文翻译成中文
调用函数: BatchTranslatePDFDocuments_MultiThreaded(txt, llm_kwargs)
参数说明:
txt: PDF文件所在的路径
llm_kwargs: 模型参数, 永远给定None
4.
功能描述: 根据文本使用GPT模型生成相应的图像
调用函数: ImageGeneration(txt, llm_kwargs)
参数说明:
txt: 图像生成所用到的提示文本
llm_kwargs: 模型参数, 永远给定None
5.
功能描述: 对输入的word文档进行摘要生成
调用函数: SummarizingWordDocuments(input_path, output_path)
参数说明:
input_path: 待处理的word文档路径
output_path: 摘要生成后的文档路径
You should always anwser with following format:
----------------
Code:
```
class AutoAcademic(object):
def __init__(self):
self.selected_function = "FILL_CORRECT_FUNCTION_HERE" # e.g., "GenerateImage"
self.txt = "FILL_MAIN_PARAMETER_HERE" # e.g., "荷叶上的蜻蜓"
self.llm_kwargs = None
```
Explanation:
只有GenerateImage和生成图像相关, 因此选择GenerateImage函数。
----------------
Now, this is my requirement:
"""
def get_fn_lib():
return {
"BatchTranslatePDFDocuments_MultiThreaded": ("crazy_functions.批量翻译PDF文档_多线程", "批量翻译PDF文档"),
"SummarizingWordDocuments": ("crazy_functions.总结word文档", "总结word文档"),
"ImageGeneration": ("crazy_functions.图片生成", "图片生成"),
"TranslateMarkdownFromEnglishToChinese": ("crazy_functions.批量Markdown翻译", "Markdown中译英"),
"SummaryAudioVideo": ("crazy_functions.总结音视频", "总结音视频"),
"BatchTranslatePDFDocuments_MultiThreaded": {
"module": "crazy_functions.批量翻译PDF文档_多线程",
"function": "批量翻译PDF文档",
"description": "Translate PDF Documents",
"arg_1_description": "A path containing pdf files.",
},
"SummarizingWordDocuments": {
"module": "crazy_functions.总结word文档",
"function": "总结word文档",
"description": "Summarize Word Documents",
"arg_1_description": "A path containing Word files.",
},
"ImageGeneration": {
"module": "crazy_functions.图片生成",
"function": "图片生成",
"description": "Generate a image that satisfies some description.",
"arg_1_description": "Descriptions about the image to be generated.",
},
"TranslateMarkdownFromEnglishToChinese": {
"module": "crazy_functions.批量Markdown翻译",
"function": "Markdown中译英",
"description": "Translate Markdown Documents from English to Chinese.",
"arg_1_description": "A path containing Markdown files.",
},
"SummaryAudioVideo": {
"module": "crazy_functions.总结音视频",
"function": "总结音视频",
"description": "Get text from a piece of audio and summarize this audio.",
"arg_1_description": "A path containing audio files.",
},
}
functions = [
{
"name": k,
"description": v['description'],
"parameters": {
"type": "object",
"properties": {
"plugin_arg_1": {
"type": "string",
"description": v['arg_1_description'],
},
},
"required": ["plugin_arg_1"],
},
} for k, v in get_fn_lib().items()
]
def inspect_dependency(chatbot, history):
return True
def eval_code(code, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
import subprocess, sys, os, shutil, importlib
with open('gpt_log/void_terminal_runtime.py', 'w', encoding='utf8') as f:
f.write(code)
import importlib
try:
AutoAcademic = getattr(importlib.import_module('gpt_log.void_terminal_runtime', 'AutoAcademic'), 'AutoAcademic')
# importlib.reload(AutoAcademic)
auto_dict = AutoAcademic()
selected_function = auto_dict.selected_function
txt = auto_dict.txt
fp, fn = get_fn_lib()[selected_function]
tmp = get_fn_lib()[code['name']]
fp, fn = tmp['module'], tmp['function']
fn_plugin = getattr(importlib.import_module(fp, fn), fn)
yield from fn_plugin(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port)
arg = json.loads(code['arguments'])['plugin_arg_1']
yield from fn_plugin(arg, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port)
except:
from toolbox import trimmed_format_exc
chatbot.append(["执行错误", f"\n```\n{trimmed_format_exc()}\n```\n"])
@@ -110,22 +93,27 @@ def 终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_
history = []
# 基本信息:功能、贡献者
chatbot.append(["函数插件功能?", "根据自然语言执行插件命令, 作者: binary-husky, 插件初始化中 ..."])
chatbot.append(["虚空终端插件功能?", "根据自然语言的描述, 执行任意插件命令."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# # 尝试导入依赖, 如果缺少依赖, 则给出安装建议
# dep_ok = yield from inspect_dependency(chatbot=chatbot, history=history) # 刷新界面
# if not dep_ok: return
# 输入
i_say = prompt + txt
i_say = txt
# 开始
llm_kwargs_function_call = copy.deepcopy(llm_kwargs)
llm_kwargs_function_call['llm_model'] = 'gpt-call-fn' # 修改调用函数
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=txt,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
sys_prompt=""
llm_kwargs=llm_kwargs_function_call, chatbot=chatbot, history=[],
sys_prompt=functions
)
# 将代码转为动画
code = get_code_block(gpt_say)
yield from eval_code(code, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port)
res = json.loads(gpt_say)['choices'][0]
if res['finish_reason'] == 'function_call':
code = json.loads(gpt_say)['choices'][0]
yield from eval_code(code['message']['function_call'], llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port)
else:
chatbot.append(["无法调用相关功能", res])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

查看文件

@@ -42,12 +42,14 @@ def 同时问询_指定模型(txt, llm_kwargs, plugin_kwargs, chatbot, history,
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
chatbot.append((txt, "正在同时咨询ChatGPT和ChatGLM……"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
# llm_kwargs['llm_model'] = 'chatglm&gpt-3.5-turbo&api2d-gpt-3.5-turbo' # 支持任意数量的llm接口,用&符号分隔
llm_kwargs['llm_model'] = plugin_kwargs.get("advanced_arg", 'chatglm&gpt-3.5-turbo') # 'chatglm&gpt-3.5-turbo' # 支持任意数量的llm接口,用&符号分隔
chatbot.append((txt, f"正在同时咨询{llm_kwargs['llm_model']}"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=txt, inputs_show_user=txt,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,

查看文件

@@ -97,7 +97,7 @@ class InterviewAssistant(AliyunASR):
# 初始化音频采集线程
self.captured_audio = np.array([])
self.keep_latest_n_second = 10
self.commit_after_pause_n_second = 1.5
self.commit_after_pause_n_second = 2.0
self.ready_audio_flagment = None
self.stop = False
self.plugin_wd = WatchDog(timeout=5, bark_fn=self.__del__, msg="程序终止")
@@ -179,12 +179,12 @@ def 语音助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
import nls
from scipy import io
except:
chatbot.append(["导入依赖失败", "使用该模块需要额外依赖, 安装方法:```pip install --upgrade pyOpenSSL scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git```"])
chatbot.append(["导入依赖失败", "使用该模块需要额外依赖, 安装方法:```pip install --upgrade aliyun-python-sdk-core==2.13.3 pyOpenSSL scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git```"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
TOKEN, APPKEY = get_conf('ALIYUN_TOKEN', 'ALIYUN_APPKEY')
if TOKEN == "" or APPKEY == "":
APPKEY = get_conf('ALIYUN_APPKEY')
if APPKEY == "":
chatbot.append(["导入依赖失败", "没有阿里云语音识别APPKEY和TOKEN, 详情见https://help.aliyun.com/document_detail/450255.html"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return

查看文件

@@ -3,7 +3,7 @@
# @Author : Spike
# @Descr :
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
from toolbox import CatchException, report_execption, write_results_to_file, get_log_folder
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
@@ -25,4 +25,19 @@ def 猜你想问(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
)
chatbot[-1] = (show_say, gpt_say)
history.extend([show_say, gpt_say])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@CatchException
def 清除缓存(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
chatbot.append(['清除本地缓存数据', '执行中. 删除 gpt_log & private_upload'])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
import shutil, os
gpt_log_dir = os.path.join(os.path.dirname(__file__), '..', 'gpt_log')
private_upload_dir = os.path.join(os.path.dirname(__file__), '..', 'private_upload')
shutil.rmtree(gpt_log_dir, ignore_errors=True)
shutil.rmtree(private_upload_dir, ignore_errors=True)
chatbot.append(['清除本地缓存数据', '执行完成'])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

查看文件

@@ -115,3 +115,36 @@ services:
command: >
bash -c "python3 -u main.py"
## ===================================================
## 【方案五】 ChatGPT + 语音助手 (请先阅读 docs/use_audio.md
## ===================================================
version: '3'
services:
gpt_academic_with_audio:
image: ghcr.io/binary-husky/gpt_academic_audio_assistant:master
environment:
# 请查阅 `config.py` 以查看所有的配置信息
API_KEY: ' fk195831-IdP0Pb3W6DCMUIbQwVX6MsSiyxwqybyS '
USE_PROXY: ' False '
proxies: ' None '
LLM_MODEL: ' gpt-3.5-turbo '
AVAIL_LLM_MODELS: ' ["gpt-3.5-turbo", "gpt-4"] '
ENABLE_AUDIO: ' True '
LOCAL_MODEL_DEVICE: ' cuda '
DEFAULT_WORKER_NUM: ' 20 '
WEB_PORT: ' 12343 '
ADD_WAIFU: ' True '
THEME: ' Chuanhu-Small-and-Beautiful '
ALIYUN_APPKEY: ' RoP1ZrM84DnAFkZK '
ALIYUN_TOKEN: ' f37f30e0f9934c34a992f6f64f7eba4f '
# (无需填写) ALIYUN_ACCESSKEY: ' LTAI5q6BrFUzoRXVGUWnekh1 '
# (无需填写) ALIYUN_SECRET: ' eHmI20AVWIaQZ0CiTD2bGQVsaP9i68 '
# 与宿主的网络融合
network_mode: "host"
# 不使用代理网络拉取最新代码
command: >
bash -c "python3 -u main.py"

查看文件

@@ -26,8 +26,8 @@ RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
RUN $useProxyNetwork python3 -m pip install torch --extra-index-url https://download.pytorch.org/whl/cu113
# 下载分支
WORKDIR /gpt
RUN $useProxyNetwork git clone https://github.com/binary-husky/chatgpt_academic.git
WORKDIR /gpt/chatgpt_academic
RUN $useProxyNetwork git clone https://github.com/binary-husky/gpt_academic.git
WORKDIR /gpt/gpt_academic
RUN $useProxyNetwork python3 -m pip install -r requirements.txt
RUN $useProxyNetwork python3 -m pip install -r request_llm/requirements_chatglm.txt
RUN $useProxyNetwork python3 -m pip install -r request_llm/requirements_newbing.txt

查看文件

@@ -26,8 +26,8 @@ RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
RUN $useProxyNetwork python3 -m pip install torch --extra-index-url https://download.pytorch.org/whl/cu113
# 下载分支
WORKDIR /gpt
RUN $useProxyNetwork git clone https://github.com/binary-husky/chatgpt_academic.git
WORKDIR /gpt/chatgpt_academic
RUN $useProxyNetwork git clone https://github.com/binary-husky/gpt_academic.git
WORKDIR /gpt/gpt_academic
RUN $useProxyNetwork python3 -m pip install -r requirements.txt
RUN $useProxyNetwork python3 -m pip install -r request_llm/requirements_chatglm.txt
RUN $useProxyNetwork python3 -m pip install -r request_llm/requirements_newbing.txt

查看文件

@@ -13,8 +13,8 @@ RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
RUN python3 -m pip install torch --extra-index-url https://download.pytorch.org/whl/cu113
# 下载分支
WORKDIR /gpt
RUN git clone https://github.com/binary-husky/chatgpt_academic.git
WORKDIR /gpt/chatgpt_academic
RUN git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
WORKDIR /gpt/gpt_academic
RUN git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss
RUN python3 -m pip install -r requirements.txt
RUN python3 -m pip install -r request_llm/requirements_moss.txt

查看文件

@@ -13,8 +13,8 @@ RUN python3 -m pip install torch --extra-index-url https://download.pytorch.org/
# 下载分支
WORKDIR /gpt
RUN git clone https://github.com/binary-husky/chatgpt_academic.git
WORKDIR /gpt/chatgpt_academic
RUN git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
WORKDIR /gpt/gpt_academic
RUN python3 -m pip install -r requirements.txt
RUN python3 -m pip install -r request_llm/requirements_chatglm.txt
RUN python3 -m pip install -r request_llm/requirements_newbing.txt

查看文件

@@ -0,0 +1,22 @@
# 此Dockerfile适用于“无本地模型”的环境构建,如果需要使用chatglm等本地模型,请参考 docs/Dockerfile+ChatGLM
# 如何构建: 先修改 `config.py`, 然后 docker build -t gpt-academic-nolocal -f docs/Dockerfile+NoLocal .
# 如何运行: docker run --rm -it --net=host gpt-academic-nolocal
FROM python:3.11
# 指定路径
WORKDIR /gpt
# 装载项目文件
COPY . .
# 安装依赖
RUN pip3 install -r requirements.txt
# 安装语音插件的额外依赖
RUN pip3 install pyOpenSSL scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
# 可选步骤,用于预热模块
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
# 启动
CMD ["python3", "-u", "main.py"]

查看文件

@@ -15,7 +15,7 @@ Um dieses Projekt in eine beliebige Sprache mit GPT zu übersetzen, lesen Sie `m
>
> 1. Beachten Sie bitte, dass nur Funktionserweiterungen (Schaltflächen) mit **roter Farbe** Dateien lesen können und einige Erweiterungen im **Dropdown-Menü** des Erweiterungsbereichs zu finden sind. Außerdem begrüßen wir jede neue Funktionserweiterung mit **höchster Priorität** und bearbeiten sie.
>
> 2. Die Funktionalität jeder Datei in diesem Projekt wird in der Selbstanalyse [`self_analysis.md`](https://github.com/binary-husky/chatgpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A) detailliert beschrieben. Mit der Weiterentwicklung der Versionen können Sie jederzeit die zugehörigen Funktions-Erweiterungen aufrufen, um durch Aufruf von GPT einen Selbstanalysebericht des Projekts zu erstellen. Häufig gestellte Fragen finden Sie in der [`Wiki`](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98). [Installationsanweisungen](#Installation).
> 2. Die Funktionalität jeder Datei in diesem Projekt wird in der Selbstanalyse [`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A) detailliert beschrieben. Mit der Weiterentwicklung der Versionen können Sie jederzeit die zugehörigen Funktions-Erweiterungen aufrufen, um durch Aufruf von GPT einen Selbstanalysebericht des Projekts zu erstellen. Häufig gestellte Fragen finden Sie in der [`Wiki`](https://github.com/binary-husky/gpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98). [Installationsanweisungen](#Installation).
>
> 3. Dieses Projekt ist kompatibel und fördert die Verwendung von inländischen Sprachmodellen wie ChatGLM und RWKV, Pangu, etc. Es unterstützt das Vorhandensein mehrerer api-keys, die in der Konfigurationsdatei wie folgt angegeben werden können: `API_KEY="openai-key1,openai-key2,api2d-key3"`. Wenn ein `API_KEY` temporär geändert werden muss, geben Sie den temporären `API_KEY` im Eingabebereich ein und drücken Sie dann die Eingabetaste, um ihn zu übernehmen.Funktion | Beschreibung
--- | ---
@@ -23,13 +23,13 @@ Ein-Klick-Polieren | Unterstützt ein-Klick-Polieren und ein-Klick-Suche nach gr
Ein-Klick Chinesisch-Englisch Übersetzung | Ein-Klick Chinesisch-Englisch Übersetzung
Ein-Klick-Code-Erklärung | Zeigt Code, erklärt Code, erzeugt Code und fügt Kommentare zum Code hinzu
[Benutzerdefinierte Tastenkombinationen](https://www.bilibili.com/video/BV14s4y1E7jN) | Unterstützt benutzerdefinierte Tastenkombinationen
Modulare Gestaltung | Unterstützt leistungsstarke individuelle [Funktions-Plugins](https://github.com/binary-husky/chatgpt_academic/tree/master/crazy_functions). Plugins unterstützen [Hot-Updates](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[Selbstprogramm-Analyse](https://www.bilibili.com/video/BV1cj411A7VW) | [Funktions-Plugin] [Ein-Klick Verstehen](https://github.com/binary-husky/chatgpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A) der Quellcode dieses Projekts
Modulare Gestaltung | Unterstützt leistungsstarke individuelle [Funktions-Plugins](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions). Plugins unterstützen [Hot-Updates](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[Selbstprogramm-Analyse](https://www.bilibili.com/video/BV1cj411A7VW) | [Funktions-Plugin] [Ein-Klick Verstehen](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A) der Quellcode dieses Projekts
[Programmanalyse](https://www.bilibili.com/video/BV1cj411A7VW) | [Funktions-Plugin] Ein-Klick-Analyse des Projektbaums anderer Python/C/C++/Java/Lua/...-Projekte
Lesen von Papieren, [Übersetzen](https://www.bilibili.com/video/BV1KT411x7Wn) von Papieren | [Funktions-Plugin] Ein-Klick Erklärung des gesamten LaTeX/PDF-Artikels und Erstellung einer Zusammenfassung
LaTeX-Volltext-Übersetzung und [Polieren](https://www.bilibili.com/video/BV1FT411H7c5/) | [Funktions-Plugin] Ein-Klick-Übersetzung oder-Polieren des LaTeX-Artikels
Bulk-Kommentargenerierung | [Funktions-Plugin] Ein-Klick Massenerstellung von Funktionskommentaren
Markdown [Chinesisch-Englisch Übersetzung](https://www.bilibili.com/video/BV1yo4y157jV/) | [Funktions-Plugin] Haben Sie die [README](https://github.com/binary-husky/chatgpt_academic/blob/master/docs/README_EN.md) in den oben genannten 5 Sprachen gesehen?
Markdown [Chinesisch-Englisch Übersetzung](https://www.bilibili.com/video/BV1yo4y157jV/) | [Funktions-Plugin] Haben Sie die [README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md) in den oben genannten 5 Sprachen gesehen?
Analyse-Berichtserstellung von chat | [Funktions-Plugin] Automatische Zusammenfassung nach der Ausführung
[Funktion zur vollständigen Übersetzung von PDF-Artikeln](https://www.bilibili.com/video/BV1KT411x7Wn) | [Funktions-Plugin] Extrahiert Titel und Zusammenfassung der PDF-Artikel und übersetzt den gesamten Text (mehrere Threads)
[Arxiv-Assistent](https://www.bilibili.com/video/BV1LM4y1279X) | [Funktions-Plugin] Geben Sie die Arxiv-Artikel-URL ein und klicken Sie auf Eine-Klick-Übersetzung-Zusammenfassung + PDF-Download
@@ -37,7 +37,7 @@ Analyse-Berichtserstellung von chat | [Funktions-Plugin] Automatische Zusammenfa
Internet-Informationen Aggregation + GPT | [Funktions-Plugin] Lassen Sie GPT eine Frage beantworten, indem es [zuerst Informationen aus dem Internet](https://www.bilibili.com/video/BV1om4y127ck/) sammelt und so die Informationen nie veralten
Anzeige von Formeln / Bildern / Tabellen | Zeigt Formeln in beiden Formen, [TeX-Format und gerendeter Form](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png), unterstützt Formeln und Code-Highlights
Unterstützung von PlugIns mit mehreren Threads | Unterstützt den Aufruf mehrerer Threads in Chatgpt, um Text oder Programme [Batch zu verarbeiten](https://www.bilibili.com/video/BV1FT411H7c5/)
Starten Sie das dunkle Gradio-[Thema](https://github.com/binary-husky/chatgpt_academic/issues/173) | Fügen Sie ```/?__theme=dark``` an das Ende der Browser-URL an, um das dunkle Thema zu aktivieren
Starten Sie das dunkle Gradio-[Thema](https://github.com/binary-husky/gpt_academic/issues/173) | Fügen Sie ```/?__theme=dark``` an das Ende der Browser-URL an, um das dunkle Thema zu aktivieren
[Unterstützung für mehrere LLM-Modelle](https://www.bilibili.com/video/BV1wT411p7yf), [API2D](https://api2d.com/) Interface-Unterstützung | Das Gefühl, gleichzeitig von GPT3.5, GPT4, [Tshinghua ChatGLM](https://github.com/THUDM/ChatGLM-6B), [Fudan MOSS](https://github.com/OpenLMLab/MOSS) bedient zu werden, muss toll sein, oder?
Zugriff auf weitere LLM-Modelle, Unterstützung von [huggingface deployment](https://huggingface.co/spaces/qingxu98/gpt-academic) | Hinzufügen der Newbing-Schnittstelle (neues Bing), Einführung der Unterstützung von [Jittorllms](https://github.com/Jittor/JittorLLMs) der Tsinghua-Universität, [LLaMA](https://github.com/facebookresearch/llama), [RWKV](https://github.com/BlinkDL/ChatRWKV) und [Pangu alpha](https://openi.org.cn/pangu/)
Weitere neue Funktionen (wie Bildgenerierung) …… | Siehe Ende dieses Dokuments ……
@@ -76,8 +76,8 @@ Weitere neue Funktionen (wie Bildgenerierung) …… | Siehe Ende dieses Dokumen
1. Download the project
```sh
git clone https://github.com/binary-husky/chatgpt_academic.git
cd chatgpt_academic
git clone https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. Configure API_KEY
@@ -133,8 +133,8 @@ python main.py
1. Only ChatGPT (Recommended for most people)
``` sh
git clone https://github.com/binary-husky/chatgpt_academic.git # Download the project
cd chatgpt_academic # Enter the path
git clone https://github.com/binary-husky/gpt_academic.git # Download the project
cd gpt_academic # Enter the path
nano config.py # Edit config.py with any text editor, Configure "Proxy","API_KEY"and"WEB_PORT" (e.g 50923) etc.
docker build -t gpt-academic . # Install
@@ -164,10 +164,10 @@ docker-compose up
Configure API_URL_REDIRECT according to the instructions in `config.py`.
2. Remote cloud server deployment (requires cloud server knowledge and experience)
Please visit [Deployment wiki-1](https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
Please visit [Deployment wiki-1](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
3. Using WSL 2 (Windows subsystem for Linux)
Please visit [Deployment wiki-2](https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
Please visit [Deployment wiki-2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
4. How to run at a secondary URL (such as `http://localhost/subpath`)
Please visit [FastAPI operating instructions](docs/WithFastapi.md)
@@ -199,7 +199,7 @@ For example
Write powerful function plugins to perform any task you want and can't think of.
The difficulty of plugin writing and debugging is very low in this project. As long as you have a certain knowledge of Python, you can implement your own plugin functions by imitating the template we provided.
For more information, please refer to the [Function Plugin Guide](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
For more information, please refer to the [Function Plugin Guide](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
---
# Latest Update

查看文件

@@ -13,7 +13,7 @@ Per tradurre questo progetto in qualsiasi lingua con GPT, leggere e eseguire [`m
>
> 1. Si prega di notare che solo i plugin (pulsanti) contrassegnati in **rosso** supportano la lettura di file, alcuni plugin sono posizionati nel **menu a discesa** nella zona dei plugin. Accettiamo e gestiamo PR per qualsiasi nuovo plugin con **massima priorità**!
>
> 2. Le funzionalità di ogni file di questo progetto sono descritte dettagliatamente nella propria analisi di autotraduzione [`self_analysis.md`](https://github.com/binary-husky/chatgpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A). Con l'iterazione delle versioni, è possibile fare clic sui plugin funzionali correlati in qualsiasi momento per richiamare GPT e generare nuovamente il rapporto di analisi automatica del progetto. Le domande frequenti sono riassunte nella [`wiki`](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98). [Metodo di installazione] (#installazione).
> 2. Le funzionalità di ogni file di questo progetto sono descritte dettagliatamente nella propria analisi di autotraduzione [`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A). Con l'iterazione delle versioni, è possibile fare clic sui plugin funzionali correlati in qualsiasi momento per richiamare GPT e generare nuovamente il rapporto di analisi automatica del progetto. Le domande frequenti sono riassunte nella [`wiki`](https://github.com/binary-husky/gpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98). [Metodo di installazione] (#installazione).
>
> 3. Questo progetto è compatibile e incoraggia l'utilizzo di grandi modelli di linguaggio di produzione nazionale come chatglm, RWKV, Pangu ecc. Supporta la coesistenza di più api-key e può essere compilato nel file di configurazione come `API_KEY="openai-key1,openai-key2,api2d-key3"`. Per sostituire temporaneamente `API_KEY`, inserire `API_KEY` temporaneo nell'area di input e premere Invio per renderlo effettivo.
@@ -25,13 +25,13 @@ Correzione immediata | Supporta correzione immediata e ricerca degli errori di g
Traduzione cinese-inglese immediata | Traduzione cinese-inglese immediata con un solo clic
Spiegazione del codice immediata | Visualizzazione del codice, spiegazione del codice, generazione del codice, annotazione del codice con un solo clic
[Scorciatoie personalizzate](https://www.bilibili.com/video/BV14s4y1E7jN) | Supporta scorciatoie personalizzate
Design modularizzato | Supporta potenti [plugin di funzioni](https://github.com/binary-husky/chatgpt_academic/tree/master/crazy_functions) personalizzati, i plugin supportano l'[aggiornamento in tempo reale](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[Auto-profiling del programma](https://www.bilibili.com/video/BV1cj411A7VW) | [Plugin di funzioni] [Comprensione immediata](https://github.com/binary-husky/chatgpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A) del codice sorgente di questo progetto
Design modularizzato | Supporta potenti [plugin di funzioni](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions) personalizzati, i plugin supportano l'[aggiornamento in tempo reale](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[Auto-profiling del programma](https://www.bilibili.com/video/BV1cj411A7VW) | [Plugin di funzioni] [Comprensione immediata](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A) del codice sorgente di questo progetto
[Analisi del programma](https://www.bilibili.com/video/BV1cj411A7VW) | [Plugin di funzioni] Un clic può analizzare l'albero di altri progetti Python/C/C++/Java/Lua/...
Lettura del documento, [traduzione](https://www.bilibili.com/video/BV1KT411x7Wn) del documento | [Plugin di funzioni] La lettura immediata dell'intero documento latex/pdf di un documento e la generazione di un riassunto
Traduzione completa di un documento Latex, [correzione immediata](https://www.bilibili.com/video/BV1FT411H7c5/) | [Plugin di funzioni] Una traduzione o correzione immediata di un documento Latex
Generazione di annotazioni in batch | [Plugin di funzioni] Generazione automatica delle annotazioni di funzione con un solo clic
[Traduzione cinese-inglese di Markdown](https://www.bilibili.com/video/BV1yo4y157jV/) | [Plugin di funzioni] Hai letto il [README](https://github.com/binary-husky/chatgpt_academic/blob/master/docs/README_EN.md) delle cinque lingue sopra?
[Traduzione cinese-inglese di Markdown](https://www.bilibili.com/video/BV1yo4y157jV/) | [Plugin di funzioni] Hai letto il [README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md) delle cinque lingue sopra?
Generazione di report di analisi di chat | [Plugin di funzioni] Generazione automatica di un rapporto di sintesi dopo l'esecuzione
[Funzione di traduzione di tutto il documento PDF](https://www.bilibili.com/video/BV1KT411x7Wn) | [Plugin di funzioni] Estrarre il titolo e il sommario dell'articolo PDF + tradurre l'intero testo (multithreading)
[Assistente di Arxiv](https://www.bilibili.com/video/BV1LM4y1279X) | [Plugin di funzioni] Inserire l'URL dell'articolo di Arxiv e tradurre il sommario con un clic + scaricare il PDF
@@ -39,7 +39,7 @@ Generazione di report di analisi di chat | [Plugin di funzioni] Generazione auto
Aggregazione delle informazioni su Internet + GPT | [Plugin di funzioni] Fai in modo che GPT rilevi le informazioni su Internet prima di rispondere alle domande, senza mai diventare obsolete
Visualizzazione di formule/img/tabelle | È possibile visualizzare un'equazione in forma [tex e render](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png) contemporaneamente, supporta equazioni e evidenziazione del codice
Supporto per plugin di funzioni multithreading | Supporto per chiamata multithreaded di chatgpt, elaborazione con un clic di grandi quantità di testo o di un programma
Avvia il tema di gradio [scuro](https://github.com/binary-husky/chatgpt_academic/issues/173) | Aggiungere ```/?__theme=dark``` dopo l'URL del browser per passare a un tema scuro
Avvia il tema di gradio [scuro](https://github.com/binary-husky/gpt_academic/issues/173) | Aggiungere ```/?__theme=dark``` dopo l'URL del browser per passare a un tema scuro
Supporto per maggiori modelli LLM, supporto API2D | Sentirsi serviti simultaneamente da GPT3.5, GPT4, [Tsinghua ChatGLM](https://github.com/THUDM/ChatGLM-6B), [Fudan MOSS](https://github.com/OpenLMLab/MOSS) deve essere una grande sensazione, giusto?
Ulteriori modelli LLM supportat,i supporto per l'implementazione di Huggingface | Aggiunta di un'interfaccia Newbing (Nuovo Bing), introdotta la compatibilità con Tsinghua [Jittorllms](https://github.com/Jittor/JittorLLMs), [LLaMA](https://github.com/facebookresearch/llama), [RWKV](https://github.com/BlinkDL/ChatRWKV) e [PanGu-α](https://openi.org.cn/pangu/)
Ulteriori dimostrazioni di nuove funzionalità (generazione di immagini, ecc.)... | Vedere la fine di questo documento...
@@ -82,8 +82,8 @@ Ulteriori dimostrazioni di nuove funzionalità (generazione di immagini, ecc.)..
1. Scarica il progetto
```sh
git clone https://github.com/binary-husky/chatgpt_academic.git
cd chatgpt_academic
git clone https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. Configura API_KEY
@@ -139,8 +139,8 @@ python main.py
1. Solo ChatGPT (consigliato per la maggior parte delle persone)
``` sh
git clone https://github.com/binary-husky/chatgpt_academic.git # scarica il progetto
cd chatgpt_academic # entra nel percorso
git clone https://github.com/binary-husky/gpt_academic.git # scarica il progetto
cd gpt_academic # entra nel percorso
nano config.py # con un qualsiasi editor di testo, modifica config.py configurando "Proxy", "API_KEY" e "WEB_PORT" (ad esempio 50923)
docker build -t gpt-academic . # installa
@@ -171,10 +171,10 @@ docker-compose up
Configura API_URL_REDIRECT seguendo le istruzioni nel file `config.py`.
2. Distribuzione su un server cloud remoto (richiede conoscenze ed esperienza di server cloud)
Si prega di visitare [wiki di distribuzione-1] (https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
Si prega di visitare [wiki di distribuzione-1] (https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
3. Utilizzo di WSL2 (Windows Subsystem for Linux)
Si prega di visitare [wiki di distribuzione-2] (https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
Si prega di visitare [wiki di distribuzione-2] (https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
4. Come far funzionare ChatGPT all'interno di un sottodominio (ad es. `http://localhost/subpath`)
Si prega di visitare [Istruzioni per l'esecuzione con FastAPI] (docs/WithFastapi.md)
@@ -206,7 +206,7 @@ ad esempio
2. Plugin di funzione personalizzati
Scrivi plugin di funzione personalizzati e esegui tutte le attività che desideri o non hai mai pensato di fare.
La difficoltà di scrittura e debug dei plugin del nostro progetto è molto bassa. Se si dispone di una certa conoscenza di base di Python, è possibile realizzare la propria funzione del plugin seguendo il nostro modello. Per maggiori dettagli, consultare la [guida al plugin per funzioni](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
La difficoltà di scrittura e debug dei plugin del nostro progetto è molto bassa. Se si dispone di una certa conoscenza di base di Python, è possibile realizzare la propria funzione del plugin seguendo il nostro modello. Per maggiori dettagli, consultare la [guida al plugin per funzioni](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
---
# Ultimo aggiornamento

查看文件

@@ -13,7 +13,7 @@ GPT를 이용하여 프로젝트를 임의의 언어로 번역하려면 [`multi_
>
> 1. 파일을 읽기 위해 **빨간색**으로 표시된 기능 플러그인 (버튼) 만 지원됩니다. 일부 플러그인은 플러그인 영역의 **드롭다운 메뉴**에 있습니다. 또한 새로운 플러그인은 **가장 높은 우선순위**로 환영하며 처리합니다!
>
> 2. 이 프로젝트의 각 파일의 기능을 [`self_analysis.md`](https://github.com/binary-husky/chatgpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A)에서 자세히 설명합니다. 버전이 업데이트 됨에 따라 관련된 기능 플러그인을 클릭하고 GPT를 호출하여 프로젝트의 자체 분석 보고서를 다시 생성할 수도 있습니다. 자주 묻는 질문은 [`위키`](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98)에서 볼 수 있습니다. [설치 방법](#installation).
> 2. 이 프로젝트의 각 파일의 기능을 [`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A)에서 자세히 설명합니다. 버전이 업데이트 됨에 따라 관련된 기능 플러그인을 클릭하고 GPT를 호출하여 프로젝트의 자체 분석 보고서를 다시 생성할 수도 있습니다. 자주 묻는 질문은 [`위키`](https://github.com/binary-husky/gpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98)에서 볼 수 있습니다. [설치 방법](#installation).
>
> 3. 이 프로젝트는 국내 언어 모델 chatglm과 RWKV, 판고 등의 시도와 호환 가능합니다. 여러 개의 api-key를 지원하며 설정 파일에 "API_KEY="openai-key1,openai-key2,api2d-key3""와 같이 작성할 수 있습니다. `API_KEY`를 임시로 변경해야하는 경우 입력 영역에 임시 `API_KEY`를 입력 한 후 엔터 키를 누르면 즉시 적용됩니다.
@@ -25,13 +25,13 @@ GPT를 이용하여 프로젝트를 임의의 언어로 번역하려면 [`multi_
한-영 키워드 | 한-영 키워드 지원
코드 설명 | 코드 표시, 코드 설명, 코드 생성, 코드에 주석 추가
[사용자 정의 바로 가기 키](https://www.bilibili.com/video/BV14s4y1E7jN) | 사용자 정의 바로 가기 키 지원
모듈식 설계 | 강력한[함수 플러그인](https://github.com/binary-husky/chatgpt_academic/tree/master/crazy_functions) 지원, 플러그인이 [램 업데이트](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)를 지원합니다.
모듈식 설계 | 강력한[함수 플러그인](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions) 지원, 플러그인이 [램 업데이트](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)를 지원합니다.
[자체 프로그램 분석](https://www.bilibili.com/video/BV1cj411A7VW) | [함수 플러그인] [원 키 우드] 프로젝트 소스 코드의 내용을 이해하는 기능을 제공
[프로그램 분석](https://www.bilibili.com/video/BV1cj411A7VW) | [함수 플러그인] 프로젝트 트리를 분석할 수 있습니다 (Python/C/C++/Java/Lua/...)
논문 읽기, 번역 | [함수 플러그인] LaTex/PDF 논문의 전문을 읽고 요약을 생성합니다.
LaTeX 텍스트[번역](https://www.bilibili.com/video/BV1nk4y1Y7Js/), [원 키워드](https://www.bilibili.com/video/BV1FT411H7c5/) | [함수 플러그인] LaTeX 논문의 번역 또는 개량을 위해 일련의 모드를 번역할 수 있습니다.
대량의 주석 생성 | [함수 플러그인] 함수 코멘트를 대량으로 생성할 수 있습니다.
Markdown 한-영 번역 | [함수 플러그인] 위의 5 종 언어의 [README](https://github.com/binary-husky/chatgpt_academic/blob/master/docs/README_EN.md)를 볼 수 있습니다.
Markdown 한-영 번역 | [함수 플러그인] 위의 5 종 언어의 [README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md)를 볼 수 있습니다.
chat 분석 보고서 생성 | [함수 플러그인] 수행 후 요약 보고서를 자동으로 생성합니다.
[PDF 논문 번역](https://www.bilibili.com/video/BV1KT411x7Wn) | [함수 플러그인] PDF 논문이 제목 및 요약을 추출한 후 번역됩니다. (멀티 스레드)
[Arxiv 도우미](https://www.bilibili.com/video/BV1LM4y1279X) | [함수 플러그인] Arxiv 논문 URL을 입력하면 요약을 번역하고 PDF를 다운로드 할 수 있습니다.
@@ -73,8 +73,8 @@ LLM 모델 추가 및[huggingface 배치](https://huggingface.co/spaces/qingxu98
1. 프로젝트 다운로드
```sh
git clone https://github.com/binary-husky/chatgpt_academic.git
cd chatgpt_academic
git clone https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. API_KEY 구성
@@ -134,8 +134,8 @@ python main.py
1. ChatGPT 만 (대부분의 사람들이 선택하는 것을 권장합니다.)
``` sh
git clone https://github.com/binary-husky/chatgpt_academic.git # 다운로드
cd chatgpt_academic # 경로 이동
git clone https://github.com/binary-husky/gpt_academic.git # 다운로드
cd gpt_academic # 경로 이동
nano config.py # 아무 텍스트 에디터로 config.py를 열고 "Proxy","API_KEY","WEB_PORT" (예 : 50923) 등을 구성합니다.
docker build -t gpt-academic . # 설치
@@ -165,10 +165,10 @@ docker-compose up
API_URL_REDIRECT를 `config.py`에 따라 구성하면됩니다.
2. 원격 클라우드 서버 배치 (클라우드 서버 지식과 경험이 필요합니다.)
[배치위키-1](https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)에 방문하십시오.
[배치위키-1](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)에 방문하십시오.
3. WSL2 사용 (Windows Subsystem for Linux 하위 시스템)
[배치 위키-2](https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)에 방문하십시오.
[배치 위키-2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)에 방문하십시오.
4. 2 차 URL (예 : `http : //localhost/subpath`)에서 실행하는 방법
[FastAPI 실행 설명서] (docs / WithFastapi.md)를 참조하십시오.
@@ -197,7 +197,7 @@ docker-compose.yml을 읽은 후 지시 사항에 따라 작업하십시오.
2. 사용자 지정 함수 플러그인
강력한 함수 플러그인을 작성하여 원하는 작업을 수행하십시오.
이 프로젝트의 플러그인 작성 및 디버깅 난이도는 매우 낮으며, 일부 파이썬 기본 지식만 있으면 제공된 템플릿을 모방하여 플러그인 기능을 구현할 수 있습니다. 자세한 내용은 [함수 플러그인 가이드]를 참조하십시오. (https://github.com/binary -husky/chatgpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E 4%BB%B6%E6%8C%87%E5%8D%97).
이 프로젝트의 플러그인 작성 및 디버깅 난이도는 매우 낮으며, 일부 파이썬 기본 지식만 있으면 제공된 템플릿을 모방하여 플러그인 기능을 구현할 수 있습니다. 자세한 내용은 [함수 플러그인 가이드]를 참조하십시오. (https://github.com/binary -husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E 4%BB%B6%E6%8C%87%E5%8D%97).
---
# 최신 업데이트
## 새로운 기능 동향1. 대화 저장 기능.

查看文件

@@ -14,7 +14,7 @@ Para traduzir este projeto para qualquer idioma com o GPT, leia e execute [`mult
>
> 1. Por favor, preste atenção que somente os plugins de funções (botões) com a cor **vermelha** podem ler arquivos. Alguns plugins estão localizados no **menu suspenso** na área de plugins. Além disso, nós damos as boas-vindas com a **maior prioridade** e gerenciamos quaisquer novos plugins PR!
>
> 2. As funções de cada arquivo neste projeto são detalhadas em [`self_analysis.md`](https://github.com/binary-husky/chatgpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A), auto-análises do projeto geradas pelo GPT também estão podem ser chamadas a qualquer momento ao clicar nos plugins relacionados. As perguntas frequentes estão resumidas no [`wiki`](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98). [Instruções de Instalação](#installation).
> 2. As funções de cada arquivo neste projeto são detalhadas em [`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A), auto-análises do projeto geradas pelo GPT também estão podem ser chamadas a qualquer momento ao clicar nos plugins relacionados. As perguntas frequentes estão resumidas no [`wiki`](https://github.com/binary-husky/gpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98). [Instruções de Instalação](#installation).
>
> 3. Este projeto é compatível com e incentiva o uso de modelos de linguagem nacionais, como chatglm e RWKV, Pangolin, etc. Suporta a coexistência de várias chaves de API e pode ser preenchido no arquivo de configuração como `API_KEY="openai-key1,openai-key2,api2d-key3"`. Quando precisar alterar temporariamente o `API_KEY`, basta digitar o `API_KEY` temporário na área de entrada e pressionar Enter para que ele entre em vigor.
@@ -26,8 +26,8 @@ Um clique de polimento | Suporte a um clique polimento, um clique encontrar erro
Tradução chinês-inglês de um clique | Tradução chinês-inglês de um clique
Explicação de código de um único clique | Exibir código, explicar código, gerar código, adicionar comentários ao código
[Teclas de atalho personalizadas](https://www.bilibili.com/video/BV14s4y1E7jN) | Suporte a atalhos personalizados
Projeto modular | Suporte para poderosos plugins[de função personalizada](https://github.com/binary-husky/chatgpt_academic/tree/master/crazy_functions), os plugins suportam[hot-reload](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[Análise automática do programa](https://www.bilibili.com/video/BV1cj411A7VW) | [Plugin de função][um clique para entender](https://github.com/binary-husky/chatgpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A) o código-fonte do projeto
Projeto modular | Suporte para poderosos plugins[de função personalizada](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions), os plugins suportam[hot-reload](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[Análise automática do programa](https://www.bilibili.com/video/BV1cj411A7VW) | [Plugin de função][um clique para entender](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A) o código-fonte do projeto
[Análise do programa](https://www.bilibili.com/video/BV1cj411A7VW) | [Plugin de função] Um clique pode analisar a árvore de projetos do Python/C/C++/Java/Lua/...
Leitura de artigos, [tradução](https://www.bilibili.com/video/BV1KT411x7Wn) de artigos | [Plugin de função] um clique para interpretar o resumo de artigos LaTeX/PDF e gerar resumo
Tradução completa LATEX, polimento|[Plugin de função] Uma clique para traduzir ou polir um artigo LATEX
@@ -91,8 +91,8 @@ Mais recursos novos mostrados (geração de imagens, etc.) ... | Consulte o fina
1. Download the project
```sh
git clone https://github.com/binary-husky/chatgpt_academic.git
cd chatgpt_academic
git clone https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. Configure the API KEY
@@ -149,8 +149,8 @@ python main.py
1. Apenas ChatGPT (recomendado para a maioria das pessoas)
``` sh
git clone https://github.com/binary-husky/chatgpt_academic.git # Baixar o projeto
cd chatgpt_academic # Entrar no caminho
git clone https://github.com/binary-husky/gpt_academic.git # Baixar o projeto
cd gpt_academic # Entrar no caminho
nano config.py # Editar config.py com qualquer editor de texto configurando "Proxy", "API_KEY" e "WEB_PORT" (por exemplo, 50923), etc.
docker build -t gpt-academic . # Instale
@@ -180,10 +180,10 @@ docker-compose up
Basta configurar o API_URL_REDIRECT de acordo com as instruções em `config.py`.
2. Implantação em servidores em nuvem remotos (requer conhecimento e experiência de servidores em nuvem)
Acesse [Wiki de implementação remota do servidor em nuvem](https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
Acesse [Wiki de implementação remota do servidor em nuvem](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
3. Usando a WSL2 (sub-sistema do Windows para Linux)
Acesse [Wiki da implantação da WSL2](https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
Acesse [Wiki da implantação da WSL2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
4. Como executar em um subdiretório (ex. `http://localhost/subpath`)
Acesse [Instruções de execução FastAPI](docs/WithFastapi.md)
@@ -214,7 +214,7 @@ Por exemplo,
Escreva plug-ins de função poderosos para executar tarefas que você deseja e não pensava possível.
A dificuldade geral de escrever e depurar plug-ins neste projeto é baixa e, se você tem algum conhecimento básico de python, pode implementar suas próprias funções sobre o modelo que fornecemos.
Para mais detalhes, consulte o [Guia do plug-in de função.](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
Para mais detalhes, consulte o [Guia do plug-in de função.](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
---
# Última atualização

查看文件

@@ -14,7 +14,7 @@ To translate this project to arbitary language with GPT, read and run [`multi_la
> Note:
>
> 1. Please note that only the function plugins (buttons) marked in **red** support reading files. Some plugins are in the **drop-down menu** in the plugin area. We welcome and process any new plugins with the **highest priority**!
> 2. The function of each file in this project is detailed in the self-translation analysis [`self_analysis.md`](https://github.com/binary-husky/chatgpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A). With version iteration, you can also click on related function plugins at any time to call GPT to regenerate the project's self-analysis report. Common questions are summarized in the [`wiki`](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98). [Installation method](#installation).
> 2. The function of each file in this project is detailed in the self-translation analysis [`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A). With version iteration, you can also click on related function plugins at any time to call GPT to regenerate the project's self-analysis report. Common questions are summarized in the [`wiki`](https://github.com/binary-husky/gpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98). [Installation method](#installation).
> 3. This project is compatible with and encourages trying domestic large language models such as chatglm, RWKV, Pangu, etc. Multiple API keys are supported and can be filled in the configuration file like `API_KEY="openai-key1,openai-key2,api2d-key3"`. When temporarily changing `API_KEY`, enter the temporary `API_KEY` in the input area and press enter to submit, which will take effect.
<div align="center">
@@ -25,13 +25,13 @@ One-click polishing | Supports one-click polishing and one-click searching for g
One-click Chinese-English translation | One-click Chinese-English translation.
One-click code interpretation | Displays, explains, generates, and adds comments to code.
[Custom shortcut keys](https://www.bilibili.com/video/BV14s4y1E7jN) | Supports custom shortcut keys.
Modular design | Supports custom powerful [function plug-ins](https://github.com/binary-husky/chatgpt_academic/tree/master/crazy_functions), plug-ins support [hot update](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
[Self-program profiling](https://www.bilibili.com/video/BV1cj411A7VW) | [Function plug-in] [One-click understanding](https://github.com/binary-husky/chatgpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A) of the source code of this project
Modular design | Supports custom powerful [function plug-ins](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions), plug-ins support [hot update](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
[Self-program profiling](https://www.bilibili.com/video/BV1cj411A7VW) | [Function plug-in] [One-click understanding](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A) of the source code of this project
[Program profiling](https://www.bilibili.com/video/BV1cj411A7VW) | [Function plug-in] One-click profiling of other project trees in Python/C/C++/Java/Lua/...
Reading papers, [translating](https://www.bilibili.com/video/BV1KT411x7Wn) papers | [Function Plug-in] One-click interpretation of latex/pdf full-text papers and generation of abstracts.
Latex full-text [translation](https://www.bilibili.com/video/BV1nk4y1Y7Js/), [polishing](https://www.bilibili.com/video/BV1FT411H7c5/) | [Function plug-in] One-click translation or polishing of latex papers.
Batch annotation generation | [Function plug-in] One-click batch generation of function annotations.
Markdown [Chinese-English translation](https://www.bilibili.com/video/BV1yo4y157jV/) | [Function plug-in] Have you seen the [README](https://github.com/binary-husky/chatgpt_academic/blob/master/docs/README_EN.md) in the five languages above?
Markdown [Chinese-English translation](https://www.bilibili.com/video/BV1yo4y157jV/) | [Function plug-in] Have you seen the [README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md) in the five languages above?
Chat analysis report generation | [Function plug-in] Automatically generate summary reports after running.
[PDF full-text translation function](https://www.bilibili.com/video/BV1KT411x7Wn) | [Function plug-in] PDF paper extract title & summary + translate full text (multi-threaded)
[Arxiv Assistant](https://www.bilibili.com/video/BV1LM4y1279X) | [Function plug-in] Enter the arxiv article url and you can translate abstracts and download PDFs with one click.
@@ -39,7 +39,7 @@ Chat analysis report generation | [Function plug-in] Automatically generate summ
Internet information aggregation+GPT | [Function plug-in] One-click [let GPT get information from the Internet first](https://www.bilibili.com/video/BV1om4y127ck), then answer questions, and let the information never be outdated.
Formula/image/table display | Can display formulas in both [tex form and render form](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png), support formulas and code highlighting.
Multi-threaded function plug-in support | Supports multi-threaded calling of chatgpt, and can process [massive text](https://www.bilibili.com/video/BV1FT411H7c5/) or programs with one click.
Start Dark Gradio [theme](https://github.com/binary-husky/chatgpt_academic/issues/173) | Add ```/?__theme=dark``` after the browser URL to switch to the dark theme.
Start Dark Gradio [theme](https://github.com/binary-husky/gpt_academic/issues/173) | Add ```/?__theme=dark``` after the browser URL to switch to the dark theme.
[Multiple LLM models](https://www.bilibili.com/video/BV1wT411p7yf) support, [API2D](https://api2d.com/) interface support | The feeling of being served by GPT3.5, GPT4, [Tsinghua ChatGLM](https://github.com/THUDM/ChatGLM-6B), and [Fudan MOSS](https://github.com/OpenLMLab/MOSS) at the same time must be great, right?
More LLM model access, support [huggingface deployment](https://huggingface.co/spaces/qingxu98/gpt-academic) | Add Newbing interface (New Bing), introduce Tsinghua [Jittorllms](https://github.com/Jittor/JittorLLMs) to support [LLaMA](https://github.com/facebookresearch/llama), [RWKV](https://github.com/BlinkDL/ChatRWKV) and [Panguα](https://openi.org.cn/pangu/)
More new feature displays (image generation, etc.)…… | See the end of this document for more...
@@ -79,8 +79,8 @@ More new feature displays (image generation, etc.)…… | See the end of this d
1. Download the project
```sh
git clone https://github.com/binary-husky/chatgpt_academic.git
cd chatgpt_academic
git clone https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. Configure the API_KEY
@@ -136,8 +136,8 @@ python main.py
1. ChatGPT Only (Recommended for Most People)
``` sh
git clone https://github.com/binary-husky/chatgpt_academic.git # Download project
cd chatgpt_academic # Enter path
git clone https://github.com/binary-husky/gpt_academic.git # Download project
cd gpt_academic # Enter path
nano config.py # Edit config.py with any text editor, configure "Proxy", "API_KEY" and "WEB_PORT" (e.g. 50923), etc.
docker build -t gpt-academic . # Install
@@ -167,10 +167,10 @@ docker-compose up
Configure API_URL_REDIRECT according to the instructions in 'config.py'.
2. Deploy to a Remote Server (Requires Knowledge and Experience with Cloud Servers)
Please visit [Deployment Wiki-1](https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
Please visit [Deployment Wiki-1](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
3. Using WSL2 (Windows Subsystem for Linux)
Please visit [Deployment Wiki-2](https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
Please visit [Deployment Wiki-2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
4. How to Run Under a Subdomain (e.g. `http://localhost/subpath`)
Please visit [FastAPI Running Instructions](docs/WithFastapi.md)
@@ -202,7 +202,7 @@ For example,
Write powerful function plugins to perform any task you can think of, even those you cannot think of.
The difficulty of plugin writing and debugging in this project is very low. As long as you have a certain knowledge of Python, you can implement your own plug-in functions based on the template we provide.
For details, please refer to the [Function Plugin Guide](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
For details, please refer to the [Function Plugin Guide](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
---
# Latest Update

查看文件

@@ -16,7 +16,7 @@ Pour traduire ce projet dans une langue arbitraire avec GPT, lisez et exécutez
>
> 1. Veuillez noter que seuls les plugins de fonctions (boutons) **en rouge** prennent en charge la lecture de fichiers. Certains plugins se trouvent dans le **menu déroulant** de la zone de plugins. De plus, nous accueillons et traitons les nouvelles pull requests pour les plugins avec **la plus haute priorité**!
>
> 2. Les fonctions de chaque fichier de ce projet sont expliquées en détail dans l'auto-analyse [`self_analysis.md`](https://github.com/binary-husky/chatgpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A). Avec l'itération des versions, vous pouvez également cliquer sur les plugins de fonctions pertinents et appeler GPT pour régénérer le rapport d'auto-analyse du projet à tout moment. Les FAQ sont résumées dans [le wiki](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98). [Méthode d'installation](#installation).
> 2. Les fonctions de chaque fichier de ce projet sont expliquées en détail dans l'auto-analyse [`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A). Avec l'itération des versions, vous pouvez également cliquer sur les plugins de fonctions pertinents et appeler GPT pour régénérer le rapport d'auto-analyse du projet à tout moment. Les FAQ sont résumées dans [le wiki](https://github.com/binary-husky/gpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98). [Méthode d'installation](#installation).
>
> 3. Ce projet est compatible avec et encourage l'utilisation de grands modèles de langage nationaux tels que chatglm, RWKV, Pangu, etc. La coexistence de plusieurs clés API est prise en charge et peut être remplie dans le fichier de configuration, tel que `API_KEY="openai-key1,openai-key2,api2d-key3"`. Lorsque vous souhaitez remplacer temporairement `API_KEY`, saisissez temporairement `API_KEY` dans la zone de saisie, puis appuyez sur Entrée pour soumettre et activer.
@@ -28,13 +28,13 @@ Révision en un clic | prend en charge la révision en un clic et la recherche d
Traduction chinois-anglais en un clic | Traduction chinois-anglais en un clic
Explication de code en un clic | Affichage, explication, génération et ajout de commentaires de code
[Raccourcis personnalisés](https://www.bilibili.com/video/BV14s4y1E7jN) | prend en charge les raccourcis personnalisés
Conception modulaire | prend en charge de puissants plugins de fonction personnalisée, les plugins prennent en charge la [mise à jour à chaud](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[Autoscanner](https://www.bilibili.com/video/BV1cj411A7VW) | [Plug-in de fonction] [Compréhension instantanée](https://github.com/binary-husky/chatgpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A) du code source de ce projet
Conception modulaire | prend en charge de puissants plugins de fonction personnalisée, les plugins prennent en charge la [mise à jour à chaud](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[Autoscanner](https://www.bilibili.com/video/BV1cj411A7VW) | [Plug-in de fonction] [Compréhension instantanée](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A) du code source de ce projet
[Analyse de programme](https://www.bilibili.com/video/BV1cj411A7VW) | [Plug-in de fonction] Analyse en un clic de la structure d'autres projets Python / C / C ++ / Java / Lua / ...
Lecture d'articles, [traduction](https://www.bilibili.com/video/BV1KT411x7Wn) d'articles | [Plug-in de fonction] Compréhension instantanée de l'article latex / pdf complet et génération de résumés
[Traduction](https://www.bilibili.com/video/BV1nk4y1Y7Js/) et [révision](https://www.bilibili.com/video/BV1FT411H7c5/) complets en latex | [Plug-in de fonction] traduction ou révision en un clic d'articles en latex
Génération de commentaires en masse | [Plug-in de fonction] Génération en un clic de commentaires de fonction en masse
Traduction [chinois-anglais](https://www.bilibili.com/video/BV1yo4y157jV/) en Markdown | [Plug-in de fonction] avez-vous vu la [README](https://github.com/binary-husky/chatgpt_academic/blob/master/docs/README_EN.md) pour les 5 langues ci-dessus?
Traduction [chinois-anglais](https://www.bilibili.com/video/BV1yo4y157jV/) en Markdown | [Plug-in de fonction] avez-vous vu la [README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md) pour les 5 langues ci-dessus?
Génération de rapports d'analyse de chat | [Plug-in de fonction] Génère automatiquement un rapport de résumé après l'exécution
[Traduction intégrale en pdf](https://www.bilibili.com/video/BV1KT411x7Wn) | [Plug-in de fonction] Extraction de titre et de résumé de l'article pdf + traduction intégrale (multi-thread)
[Aide à arxiv](https://www.bilibili.com/video/BV1LM4y1279X) | [Plug-in de fonction] Entrer l'url de l'article arxiv pour traduire et télécharger le résumé en un clic
@@ -84,8 +84,8 @@ Plus de nouvelles fonctionnalités (génération d'images, etc.) ... | Voir la f
1. Télécharger le projet
```sh
git clone https://github.com/binary-husky/chatgpt_academic.git
cd chatgpt_academic
git clone https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. Configuration de la clé API
@@ -141,8 +141,8 @@ python main.py
1. ChatGPT uniquement (recommandé pour la plupart des gens)
``` sh
git clone https://github.com/binary-husky/chatgpt_academic.git # Télécharger le projet
cd chatgpt_academic # Accéder au chemin
git clone https://github.com/binary-husky/gpt_academic.git # Télécharger le projet
cd gpt_academic # Accéder au chemin
nano config.py # Editez config.py avec n'importe quel éditeur de texte en configurant "Proxy", "API_KEY" et "WEB_PORT" (p. ex. 50923)
docker build -t gpt-academic . # Installer
@@ -172,10 +172,10 @@ docker-compose up
Configurez simplement API_URL_REDIRECT selon les instructions de config.py.
2. Déploiement distant sur un serveur cloud (connaissance et expérience des serveurs cloud requises)
Veuillez consulter [Wiki de déploiement-1] (https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97).
Veuillez consulter [Wiki de déploiement-1] (https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97).
3. Utilisation de WSL2 (sous-système Windows pour Linux)
Veuillez consulter [Wiki de déploiement-2] (https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2).
Veuillez consulter [Wiki de déploiement-2] (https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2).
4. Comment exécuter sous un sous-répertoire (tel que `http://localhost/subpath`)
Veuillez consulter les [instructions d'exécution de FastAPI] (docs/WithFastapi.md).
@@ -206,7 +206,7 @@ Par exemple
Écrivez des plugins de fonctions puissants pour effectuer toutes les tâches que vous souhaitez ou que vous ne pouvez pas imaginer.
Les plugins de ce projet ont une difficulté de programmation et de débogage très faible. Si vous avez des connaissances de base en Python, vous pouvez simuler la fonctionnalité de votre propre plugin en suivant le modèle que nous avons fourni.
Veuillez consulter le [Guide du plugin de fonction] (https://github.com/binary-husky/chatgpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97) pour plus de détails.
Veuillez consulter le [Guide du plugin de fonction] (https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97) pour plus de détails.
---
# Latest Update

查看文件

@@ -16,7 +16,7 @@ GPTを使った任意の言語にこのプロジェクトを翻訳するには
>
> 1. **赤色**で表示された関数プラグイン(ボタン)のみ、ファイルの読み取りをサポートしています。一部のプラグインは、プラグインエリアの**ドロップダウンメニュー**内にあります。また、私たちはどんな新しいプラグインのPRでも、**最優先**で歓迎し、処理します!
>
> 2. このプロジェクトの各ファイルの機能は、自己解析の詳細説明書である[`self_analysis.md`](https://github.com/binary-husky/chatgpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A)で説明されています。バージョンが進化するにつれて、関連する関数プラグインをいつでもクリックし、GPTを呼び出してプロジェクトの自己解析レポートを再生成することができます。よくある問題は[`wiki`](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98)にまとめられています。[インストール方法](#installation)。
> 2. このプロジェクトの各ファイルの機能は、自己解析の詳細説明書である[`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A)で説明されています。バージョンが進化するにつれて、関連する関数プラグインをいつでもクリックし、GPTを呼び出してプロジェクトの自己解析レポートを再生成することができます。よくある問題は[`wiki`](https://github.com/binary-husky/gpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98)にまとめられています。[インストール方法](#installation)。
> 3. このプロジェクトは、chatglmやRWKV、パンクなど、国内の大規模自然言語モデルを利用することをサポートし、試みることを奨励します。複数のAPIキーを共存することができ、設定ファイルに`API_KEY="openai-key1,openai-key2,api2d-key3"`のように記入することができます。`API_KEY`を一時的に変更する場合は、入力エリアに一時的な`API_KEY`を入力してEnterキーを押せば、それが有効になります。
@@ -29,13 +29,13 @@ GPTを使った任意の言語にこのプロジェクトを翻訳するには
一键中英翻訳 | 一键で中英翻訳可能
一键コード解説 | コードを表示し、解説し、生成し、コードに注釈をつけることができる
[自分でカスタマイズ可能なショートカットキー](https://www.bilibili.com/video/BV14s4y1E7jN) | 自分でカスタマイズ可能なショートカットキーをサポートする
モジュール化された設計 | カスタマイズ可能な[強力な関数プラグイン](https://github.com/binary-husky/chatgpt_academic/tree/master/crazy_functions)をサポートし、プラグインは[ホットアップデート](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)に対応している
[自己プログラム解析](https://www.bilibili.com/video/BV1cj411A7VW) | [関数プラグイン] [一键読解](https://github.com/binary-husky/chatgpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A)このプロジェクトのソースコード
モジュール化された設計 | カスタマイズ可能な[強力な関数プラグイン](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions)をサポートし、プラグインは[ホットアップデート](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)に対応している
[自己プログラム解析](https://www.bilibili.com/video/BV1cj411A7VW) | [関数プラグイン] [一键読解](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A)このプロジェクトのソースコード
プログラム解析 | [関数プラグイン] 一鍵で他のPython/C/C++/Java/Lua/...プロジェクトを分析できる
論文の読み、[翻訳](https://www.bilibili.com/video/BV1KT411x7Wn) | [関数プラグイン] LaTex/ PDF論文の全文を一鍵で読み解き、要約を生成することができる
LaTex全文[翻訳](https://www.bilibili.com/video/BV1nk4y1Y7Js/)、[校正](https://www.bilibili.com/video/BV1FT411H7c5/) | [関数プラグイン] LaTex論文の翻訳または校正を一鍵で行うことができる
一括で注釈を生成 | [関数プラグイン] 一鍵で関数に注釈をつけることができる
Markdown[中英翻訳](https://www.bilibili.com/video/BV1yo4y157jV/) | [関数プラグイン] 上記の5種類の言語の[README](https://github.com/binary-husky/chatgpt_academic/blob/master/docs/README_EN.md)を見たことがありますか?
Markdown[中英翻訳](https://www.bilibili.com/video/BV1yo4y157jV/) | [関数プラグイン] 上記の5種類の言語の[README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md)を見たことがありますか?
チャット分析レポート生成 | [関数プラグイン] 実行後、自動的に概要報告書を生成する
[PDF論文全文翻訳機能](https://www.bilibili.com/video/BV1KT411x7Wn) | [関数プラグイン] PDF論文からタイトルと要約を抽出し、全文を翻訳するマルチスレッド
[Arxivアシスタント](https://www.bilibili.com/video/BV1LM4y1279X) | [関数プラグイン] arxiv記事のURLを入力するだけで、要約を一鍵翻訳し、PDFをダウンロードできる
@@ -43,7 +43,7 @@ Markdown[中英翻訳](https://www.bilibili.com/video/BV1yo4y157jV/) | [関数
インターネット情報収集GPT | [関数プラグイン] まずGPTに[インターネットから情報を収集](https://www.bilibili.com/video/BV1om4y127ck)してから質問に回答させ、情報が常に最新であるようにする
数式/画像/表表示 | 数式の[tex形式とレンダリング形式](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png)を同時に表示し、数式、コードハイライトをサポートしている
マルチスレッド関数プラグインがサポートされている | chatgptをマルチスレッドで呼び出し、[大量のテキスト](https://www.bilibili.com/video/BV1FT411H7c5/)またはプログラムを一鍵で処理できる
ダークグラジオ[テーマの起動](https://github.com/binary-husky/chatgpt_academic/issues/173) | ブラウザのURLの後ろに```/?__theme=dark```を追加すると、ダークテーマを切り替えることができます。
ダークグラジオ[テーマの起動](https://github.com/binary-husky/gpt_academic/issues/173) | ブラウザのURLの後ろに```/?__theme=dark```を追加すると、ダークテーマを切り替えることができます。
[多数のLLMモデル](https://www.bilibili.com/video/BV1wT411p7yf)がサポートされ、[API2D](https://api2d.com/)がサポートされている | 同時にGPT3.5、GPT4、[清華ChatGLM](https://github.com/THUDM/ChatGLM-6B)、[復旦MOSS](https://github.com/OpenLMLab/MOSS)に対応
より多くのLLMモデルが接続され、[huggingfaceデプロイ](https://huggingface.co/spaces/qingxu98/gpt-academic)がサポートされている | NewbingインターフェイスNewbing、清華大学の[Jittorllm](https://github.com/Jittor/JittorLLMs)のサポート[LLaMA](https://github.com/facebookresearch/llama), [RWKV](https://github.com/BlinkDL/ChatRWKV)と[盘古α](https://openi.org.cn/pangu/)
さらに多くの新機能(画像生成など)を紹介する... | この文書の最後に示す...
@@ -92,8 +92,8 @@ Markdown[中英翻訳](https://www.bilibili.com/video/BV1yo4y157jV/) | [関数
1. Download the project.
```sh
git clone https://github.com/binary-husky/chatgpt_academic.git
cd chatgpt_academic
git clone https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. Configure the API_KEY.
@@ -151,8 +151,8 @@ python main.py
1. Only ChatGPT (recommended for most people)
``` sh
git clone https://github.com/binary-husky/chatgpt_academic.git # Download project
cd chatgpt_academic # Enter path
git clone https://github.com/binary-husky/gpt_academic.git # Download project
cd gpt_academic # Enter path
nano config.py # Edit config.py with any text editor configure "Proxy," "API_KEY," "WEB_PORT" (e.g., 50923) and more
docker build -t gpt-academic . # installation
@@ -182,10 +182,10 @@ docker-compose up
Configure API_URL_REDIRECT according to the instructions in `config.py`.
2. Remote Cloud Server Deployment (requires cloud server knowledge and experience)
Please visit [Deployment Wiki-1](https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
Please visit [Deployment Wiki-1](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
3. Using WSL2 (Windows Subsystem for Linux Subsystem)
Please visit [Deployment Wiki-2](https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
Please visit [Deployment Wiki-2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
4. How to run on a secondary URL (such as `http://localhost/subpath`)
Please visit [FastAPI Running Instructions](docs/WithFastapi.md)
@@ -216,7 +216,7 @@ example:
Write powerful function plugins to perform any task you can and cannot think of.
The difficulty of writing and debugging plugins in this project is low, and as long as you have a certain amount of python basic knowledge, you can follow the template provided by us to achieve your own plugin functions.
For details, please refer to the [Function Plugin Guide](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
For details, please refer to the [Function Plugin Guide](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
---
# Latest Update

查看文件

@@ -11,7 +11,7 @@
>
> 1. Обратите внимание, что только функциональные плагины (кнопки), помеченные **красным цветом**, поддерживают чтение файлов, некоторые плагины находятся в **выпадающем меню** в области плагинов. Кроме того, мы с наивысшим приоритетом рады и обрабатываем pull requests для любых новых плагинов!
>
> 2. В каждом файле проекта функциональность описана в документе самоанализа [`self_analysis.md`](https://github.com/binary-husky/chatgpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A). С каждой итерацией выполнения версии вы можете в любое время вызвать повторное создание отчета о самоанализе этого проекта, щелкнув соответствующий функциональный плагин и вызвав GPT. Вопросы сборки описаны в [`wiki`](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98). [Метод установки](#installation).
> 2. В каждом файле проекта функциональность описана в документе самоанализа [`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A). С каждой итерацией выполнения версии вы можете в любое время вызвать повторное создание отчета о самоанализе этого проекта, щелкнув соответствующий функциональный плагин и вызвав GPT. Вопросы сборки описаны в [`wiki`](https://github.com/binary-husky/gpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98). [Метод установки](#installation).
>
> 3. Этот проект совместим и поощряет использование китайских языковых моделей chatglm и RWKV, пангу и т. Д. Поддержка нескольких api-key, которые могут существовать одновременно, может быть указан в файле конфигурации, например `API_KEY="openai-key1,openai-key2,api2d-key3"`. Если требуется временно изменить `API_KEY`, введите временный `API_KEY` в области ввода и нажмите клавишу Enter, чтобы он вступил в силу.
@@ -33,13 +33,13 @@
Однокнопочный перевод на английский и китайский | Однокнопочный перевод на английский и китайский
Однокнопочное объяснение кода | Показ кода, объяснение его, генерация кода, комментирование кода
[Настройка быстрых клавиш](https://www.bilibili.com/video/BV14s4y1E7jN) | Поддержка настройки быстрых клавиш
Модульный дизайн | Поддержка пользовательских функциональных плагинов мощных [функциональных плагинов](https://github.com/binary-husky/chatgpt_academic/tree/master/crazy_functions), плагины поддерживают [горячую замену](https://github.com/binary-husky/chatgpt_academic/wiki/Function-Plug-in-Guide)
[Анализ своей программы](https://www.bilibili.com/video/BV1cj411A7VW) | [Функциональный плагин] [Однокнопочный просмотр](https://github.com/binary-husky/chatgpt_academic/wiki/chatgpt-academicProject-Self-analysis-Report) исходного кода этого проекта
Модульный дизайн | Поддержка пользовательских функциональных плагинов мощных [функциональных плагинов](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions), плагины поддерживают [горячую замену](https://github.com/binary-husky/gpt_academic/wiki/Function-Plug-in-Guide)
[Анализ своей программы](https://www.bilibili.com/video/BV1cj411A7VW) | [Функциональный плагин] [Однокнопочный просмотр](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academicProject-Self-analysis-Report) исходного кода этого проекта
[Анализ программы](https://www.bilibili.com/video/BV1cj411A7VW) | [Функциональный плагин] Однокнопочный анализ дерева других проектов Python/C/C++/Java/Lua/...
Чтение статей, [перевод](https://www.bilibili.com/video/BV1KT411x7Wn) статей | [Функциональный плагин] Однокнопочное чтение полного текста научных статей и генерация резюме
Полный перевод [LaTeX](https://www.bilibili.com/video/BV1nk4y1Y7Js/) и совершенствование | [Функциональный плагин] Однокнопочный перевод или совершенствование LaTeX статьи
Автоматическое комментирование | [Функциональный плагин] Однокнопочное автоматическое генерирование комментариев функций
[Перевод](https://www.bilibili.com/video/BV1yo4y157jV/) Markdown на английский и китайский | [Функциональный плагин] Вы видели обе версии файлов [README](https://github.com/binary-husky/chatgpt_academic/blob/master/docs/README_EN.md) для этих 5 языков?
[Перевод](https://www.bilibili.com/video/BV1yo4y157jV/) Markdown на английский и китайский | [Функциональный плагин] Вы видели обе версии файлов [README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md) для этих 5 языков?
Отчет о чат-анализе | [Функциональный плагин] После запуска будет автоматически сгенерировано сводное извещение
Функция перевода полного текста [PDF-статьи](https://www.bilibili.com/video/BV1KT411x7Wn) | [Функциональный плагин] Извлечение заголовка и резюме [PDF-статьи](https://www.bilibili.com/video/BV1KT411x7Wn) и перевод всего документа (многопоточность)
[Arxiv Helper](https://www.bilibili.com/video/BV1LM4y1279X) | [Функциональный плагин] Введите URL статьи на arxiv и одним щелчком мыши переведите резюме и загрузите PDF
@@ -81,8 +81,8 @@
1. Download the project
```sh
git clone https://github.com/binary-husky/chatgpt_academic.git
cd chatgpt_academic
git clone https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. Configure API_KEY
@@ -138,8 +138,8 @@ python main.py
1. ChatGPT only (recommended for most people)
``` sh
git clone https://github.com/binary-husky/chatgpt_academic.git # download the project
cd chatgpt_academic # enter the path
git clone https://github.com/binary-husky/gpt_academic.git # download the project
cd gpt_academic # enter the path
nano config.py # edit config.py with any text editor to configure "Proxy", "API_KEY", and "WEB_PORT" (eg 50923)
docker build -t gpt-academic . # install
@@ -169,10 +169,10 @@ docker-compose up
Configure API_URL_REDIRECT according to the instructions in `config.py`.
2. Remote Cloud Server Deployment (Requires Knowledge and Experience of Cloud Servers)
Please visit [Deployment Wiki-1](https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
Please visit [Deployment Wiki-1](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
3. Using WSL2 (Windows Subsystem for Linux subsystem)
Please visit [Deployment Wiki-2](https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
Please visit [Deployment Wiki-2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
4. How to run at the secondary URL (such as `http://localhost/subpath`)
Please visit [FastAPI Operation Instructions](docs/WithFastapi.md)
@@ -204,7 +204,7 @@ For example:
Write powerful function plugins to perform any task you can and can't imagine.
The difficulty of debugging and writing plugins in this project is very low. As long as you have a certain knowledge of python, you can implement your own plugin function by imitating the template we provide.
Please refer to the [Function Plugin Guide](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97) for details.
Please refer to the [Function Plugin Guide](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97) for details.
---
# Latest Update

查看文件

@@ -2085,5 +2085,81 @@
"欢迎使用 MOSS 人工智能助手!输入内容即可进行对话": "Welcome to use MOSS AI assistant! Enter the content to start the conversation.",
"记住当前的label": "Remember the current label.",
"不能正常加载ChatGLMFT的参数": "Cannot load ChatGLMFT parameters normally!",
"建议直接在API_KEY处填写": "It is recommended to fill in directly at API_KEY."
"建议直接在API_KEY处填写": "It is recommended to fill in directly at API_KEY.",
"创建request": "Create request",
"默认 secondary": "Default secondary",
"会被加在你的输入之前": "Will be added before your input",
"缺少": "Missing",
"前者是API2D的结束条件": "The former is the termination condition of API2D",
"无需填写": "No need to fill in",
"后缀": "Suffix",
"扭转的范围": "Range of twisting",
"是否在触发时清除历史": "Whether to clear history when triggered",
"⭐多线程方法": "⭐Multi-threaded method",
"消耗大量的内存": "Consumes a large amount of memory",
"重组": "Reorganize",
"高危设置! 常规情况下不要修改! 通过修改此设置": "High-risk setting! Do not modify under normal circumstances! Modify this setting",
"检查USE_PROXY": "Check USE_PROXY",
"标注节点的行数范围": "Range of line numbers for annotated nodes",
"即不处理之前的对话历史": "That is, do not process previous conversation history",
"即将编译PDF": "Compiling PDF",
"没有设置ANTHROPIC_API_KEY选项": "ANTHROPIC_API_KEY option is not set",
"非Openai官方接口返回了错误": "Non-Openai official interface returned an error",
"您的 API_KEY 不满足任何一种已知的密钥格式": "Your API_KEY does not meet any known key format",
"格式": "Format",
"不能正常加载": "Cannot load properly",
"🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行": "🏃‍♂️🏃‍♂️🏃‍♂️ Subprocess execution",
"前缀": "Prefix",
"创建AcsClient实例": "Create AcsClient instance",
"⭐主进程执行": "⭐Main process execution",
"增强稳健性": "Enhance robustness",
"用来描述你的要求": "Used to describe your requirements",
"举例": "For example",
"⭐单线程方法": "⭐Single-threaded method",
"后者是OPENAI的结束条件": "The latter is the termination condition of OPENAI",
"防止proxies单独起作用": "Prevent proxies from working alone",
"将两个PDF拼接": "Concatenate two PDFs",
"最后一步处理": "The last step processing",
"正在从github下载资源": "Downloading resources from github",
"失败时": "When failed",
"尚未加载": "Not loaded yet",
"配合前缀可以把你的输入内容用引号圈起来": "With the prefix, you can enclose your input content in quotation marks",
"我好!": "I'm good!",
"默认 False": "Default False",
"的依赖": "Dependencies of",
"并设置参数": "and set parameters",
"会被加在你的输入之后": "Will be added after your input",
"安装": "Installation",
"一个单实例装饰器": "Single instance decorator",
"自定义API KEY格式": "Customize API KEY format",
"的参数": "Parameters of",
"api2d等请求源": "api2d and other request sources",
"逆转出错的段落": "Reverse the wrong paragraph",
"没有设置ANTHROPIC_API_KEY": "ANTHROPIC_API_KEY is not set",
"默认 True": "Default True",
"本项目现已支持OpenAI和Azure的api-key": "This project now supports OpenAI and Azure's api-key",
"即可见": "Visible immediately",
"请问什么是质子": "What is a proton?",
"按钮是否可见": "Is the button visible?",
"调用": "Call",
"如果要使用": "If you want to use",
"的参数!": "parameters!",
"例如翻译、解释代码、润色等等": "such as translation, code interpretation, polishing, etc.",
"响应异常": "Response exception",
"响应中": "Responding",
"请尝试英文Prompt": "Try English Prompt",
"在运行过程中动态地修改多个配置": "Dynamically modify multiple configurations during runtime",
"无法调用相关功能": "Unable to invoke related functions",
"接驳虚空终端": "Connect to Void Terminal",
"虚空终端插件的功能": "Functionality of Void Terminal plugin",
"执行任意插件的命令": "Execute commands of any plugin",
"修改调用函数": "Modify calling function",
"获取简单聊天的默认参数": "Get default parameters for simple chat",
"根据自然语言的描述": "Based on natural language description",
"获取插件的句柄": "Get handle of plugin",
"第四部分": "Part Four",
"在运行过程中动态地修改配置": "Dynamically modify configurations during runtime",
"请先把模型切换至gpt-*或者api2d-*": "Please switch the model to gpt-* or api2d-* first",
"获取简单聊天的句柄": "Get handle of simple chat",
"获取插件的默认参数": "Get default parameters of plugin"
}

查看文件

@@ -939,7 +939,6 @@
"以下は学術論文の基本情報です": "以下は学術論文の基本情報です",
"出力が不完全になる原因となる": "出力が不完全になる原因となる",
"ハイフンを使って": "ハイフンを使って",
"シングルスレッド": "シングルスレッド",
"请先把模型切换至gpt-xxxx或者api2d-xxxx": "Please switch the model to gpt-xxxx or api2d-xxxx first.",
"路径或网址": "Path or URL",
"*代表通配符": "* represents a wildcard",
@@ -1484,5 +1483,632 @@
"请提交新问题": "新しい問題を提出してください",
"您正在调用一个": "あなたは呼び出しています",
"请编辑以下文本": "以下のテキストを編集してください",
"常见协议无非socks5h/http": "一般的なプロトコルはsocks5h/http以外ありません"
"常见协议无非socks5h/http": "一般的なプロトコルはsocks5h/http以外ありません",
"Latex英文纠错": "LatexEnglishErrorCorrection",
"连接bing搜索回答问题": "ConnectBingSearchAnswerQuestion",
"联网的ChatGPT_bing版": "OnlineChatGPT_BingVersion",
"总结音视频": "SummarizeAudioVideo",
"动画生成": "GenerateAnimation",
"数学动画生成manim": "GenerateMathematicalAnimationManim",
"Markdown翻译指定语言": "TranslateMarkdownSpecifiedLanguage",
"知识库问答": "KnowledgeBaseQuestionAnswer",
"Langchain知识库": "LangchainKnowledgeBase",
"读取知识库作答": "ReadKnowledgeBaseAnswer",
"交互功能模板函数": "InteractiveFunctionTemplateFunction",
"交互功能函数模板": "InteractiveFunctionFunctionTemplate",
"Latex英文纠错加PDF对比": "LatexEnglishErrorCorrectionWithPDFComparison",
"Latex输出PDF结果": "LatexOutputPDFResult",
"Latex翻译中文并重新编译PDF": "TranslateChineseAndRecompilePDF",
"语音助手": "VoiceAssistant",
"微调数据集生成": "FineTuneDatasetGeneration",
"chatglm微调工具": "ChatGLMFineTuningTool",
"启动微调": "StartFineTuning",
"sprint亮靛": "SprintAzureIndigo",
"专业词汇声明": "ProfessionalVocabularyDeclaration",
"Latex精细分解与转化": "LatexDetailedDecompositionAndConversion",
"编译Latex": "CompileLatex",
"将代码转为动画": "コードをアニメーションに変換する",
"解析arxiv网址失败": "arxivのURLの解析に失敗しました",
"其他模型转化效果未知": "他のモデルの変換効果は不明です",
"把文件复制过去": "ファイルをコピーする",
"!!!如果需要运行量化版本": "!!!量子化バージョンを実行する必要がある場合",
"报错信息如下. 如果是与网络相关的问题": "エラーメッセージは次のとおりです。ネットワークに関連する問題の場合",
"请检查ALIYUN_TOKEN和ALIYUN_APPKEY是否过期": "ALIYUN_TOKENとALIYUN_APPKEYの有効期限を確認してください",
"编译结束": "コンパイル終了",
"只读": "読み取り専用",
"模型选择是": "モデルの選択は",
"正在从github下载资源": "GitHubからリソースをダウンロードしています",
"同时分解长句": "同時に長い文を分解する",
"寻找主tex文件": "メインのtexファイルを検索する",
"例如您可以将以下命令复制到下方": "たとえば、以下のコマンドを下にコピーできます",
"使用中文总结音频“": "中国語で音声を要約する",
"此处填API密钥": "ここにAPIキーを入力してください",
"裁剪输入": "入力をトリミングする",
"当前语言模型温度设定": "現在の言語モデルの温度設定",
"history 是之前的对话列表": "historyは以前の対話リストです",
"对输入的word文档进行摘要生成": "入力されたWord文書の要約を生成する",
"输入问题后点击该插件": "質問を入力した後、このプラグインをクリックします",
"仅在Windows系统进行了测试": "Windowsシステムでのみテストされています",
"reverse 操作必须放在最后": "reverse操作は最後に配置する必要があります",
"即将编译PDF": "PDFをコンパイルする予定です",
"执行错误": "エラーが発生しました",
"段音频完成了吗": "セグメントのオーディオは完了しましたか",
"然后重启程序": "それからプログラムを再起動してください",
"是所有LLM的通用接口": "これはすべてのLLMの共通インターフェースです",
"当前报错的latex代码处于第": "現在のエラーのあるLaTeXコードは第",
"🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行": "🏃‍♂️🏃‍♂️🏃‍♂️ サブプロセスの実行",
"用来描述你的要求": "要求を説明するために使用されます",
"原始PDF编译是否成功": "元のPDFのコンパイルは成功しましたか",
"本地Latex论文精细翻译": "ローカルのLaTeX論文の詳細な翻訳",
"设置OpenAI密钥和模型": "OpenAIキーとモデルの設定",
"如果使用ChatGLM2微调模型": "ChatGLM2ファインチューニングモデルを使用する場合",
"项目Github地址 \\url{https": "プロジェクトのGithubアドレス \\url{https",
"将前后断行符脱离": "前後の改行文字を削除します",
"该项目的Latex主文件是": "このプロジェクトのLaTeXメインファイルは",
"编译已经开始": "コンパイルが開始されました",
"*{\\scriptsize\\textbf{警告": "*{\\scriptsize\\textbf{警告",
"从一批文件": "一連のファイルから",
"等待用户的再次调用": "ユーザーの再呼び出しを待っています",
"目前仅支持GPT3.5/GPT4": "現在、GPT3.5/GPT4のみをサポートしています",
"如果一句话小于7个字": "1つの文が7文字未満の場合",
"目前对机器学习类文献转化效果最好": "現在、機械学習の文献変換効果が最も良いです",
"寻找主文件": "メインファイルを検索中",
"解除插件状态": "プラグインの状態を解除します",
"默认为Chinese": "デフォルトはChineseです",
"依赖不足": "不足の依存関係",
"编译文献交叉引用": "文献の相互参照をコンパイルする",
"对不同latex源文件扣分": "異なるLaTeXソースファイルに罰則を課す",
"再列出用户可能提出的三个问题": "ユーザーが提出する可能性のある3つの問題を再リスト化する",
"建议排查": "トラブルシューティングの提案",
"生成时间戳": "タイムスタンプの生成",
"检查config中的AVAIL_LLM_MODELS选项": "configのAVAIL_LLM_MODELSオプションを確認する",
"chatglmft 没有 sys_prompt 接口": "chatglmftにはsys_promptインターフェースがありません",
"在一个异步线程中采集音频": "非同期スレッドでオーディオを収集する",
"初始化插件状态": "プラグインの状態を初期化する",
"内含已经翻译的Tex文档": "翻訳済みのTexドキュメントが含まれています",
"请注意自我隐私保护哦!": "プライバシー保護に注意してください!",
"使用正则表达式查找半行注释": "正規表現を使用して半行コメントを検索する",
"不能正常加载ChatGLMFT的参数": "ChatGLMFTのパラメータを正常にロードできません",
"首先你在中文语境下通读整篇论文": "まず、中国語の文脈で論文全体を読んでください",
"如 绿帽子*深蓝色衬衫*黑色运动裤": "例えば、緑の帽子*濃い青のシャツ*黒のスポーツパンツ",
"默认为default": "デフォルトはdefaultです",
"将": "置き換える",
"使用 Unsplash API": "Unsplash APIを使用する",
"会被加在你的输入之前": "あなたの入力の前に追加されます",
"还需要填写组织": "組織を入力する必要があります",
"test_LangchainKnowledgeBase读取": "test_LangchainKnowledgeBaseの読み込み",
"目前不支持历史消息查询": "現在、過去のメッセージのクエリはサポートされていません",
"临时存储用于调试": "デバッグ用の一時的なストレージ",
"提取总结": "テキストの翻訳",
"每秒采样数量": "テキストの翻訳",
"但通常不会出现在正文": "テキストの翻訳",
"通过调用conversations_open方法打开一个频道": "テキストの翻訳",
"导致输出不完整": "テキストの翻訳",
"获取已打开频道的最新消息并返回消息列表": "テキストの翻訳",
"Tex源文件缺失": "テキストの翻訳",
"如果需要使用Slack Claude": "テキストの翻訳",
"扭转的范围": "テキストの翻訳",
"使用latexdiff生成论文转化前后对比": "テキストの翻訳",
"--读取文件": "テキストの翻訳",
"调用openai api 使用whisper-1模型": "テキストの翻訳",
"避免遗忘导致死锁": "テキストの翻訳",
"在多Tex文档中": "テキストの翻訳",
"失败时": "テキストの翻訳",
"然后转移到指定的另一个路径中": "テキストの翻訳",
"使用Newbing": "テキストの翻訳",
"的参数": "テキストの翻訳",
"后者是OPENAI的结束条件": "テキストの翻訳",
"构建知识库": "テキストの翻訳",
"吸收匿名公式": "テキストの翻訳",
"前缀": "テキストの翻訳",
"会直接转到该函数": "テキストの翻訳",
"Claude失败": "テキストの翻訳",
"P.S. 但愿没人把latex模板放在里面传进来": "P.S. 但愿没人把latex模板放在里面传进来",
"临时地启动代理网络": "临时地启动代理网络",
"读取文件内容到内存": "読み込んだファイルの内容をメモリに保存する",
"总结音频": "音声をまとめる",
"没有找到任何可读取文件": "読み込み可能なファイルが見つかりません",
"获取Slack消息失败": "Slackメッセージの取得に失敗しました",
"用黑色标注转换区": "黒い注釈で変換エリアをマークする",
"此插件处于开发阶段": "このプラグインは開発中です",
"其他操作系统表现未知": "他のオペレーティングシステムの動作は不明です",
"返回找到的第一个": "最初に見つかったものを返す",
"发现已经存在翻译好的PDF文档": "翻訳済みのPDFドキュメントが既に存在することがわかりました",
"不包含任何可用于": "使用できるものは含まれていません",
"发送到openai音频解析终端": "openai音声解析端に送信する",
"========================================= 插件主程序2 =====================================================": "========================================= プラグインメインプログラム2 =====================================================",
"正在重试": "再試行中",
"从而更全面地理解项目的整体功能": "プロジェクトの全体的な機能をより理解するために",
"正在等您说完问题": "質問が完了するのをお待ちしています",
"使用教程详情见 request_llm/README.md": "使用方法の詳細については、request_llm/README.mdを参照してください",
"6.25 加入判定latex模板的代码": "6.25 テンプレートの判定コードを追加",
"找不到任何音频或视频文件": "音声またはビデオファイルが見つかりません",
"请求GPT模型的": "GPTモデルのリクエスト",
"行": "行",
"分析上述回答": "上記の回答を分析する",
"如果要使用ChatGLMFT": "ChatGLMFTを使用する場合",
"上传Latex项目": "Latexプロジェクトをアップロードする",
"如参考文献、脚注、图注等": "参考文献、脚注、図のキャプションなど",
"未配置": "設定されていません",
"请在此处给出自定义翻译命令": "カスタム翻訳コマンドをここに入力してください",
"第二部分": "第2部分",
"解压失败! 需要安装pip install py7zr来解压7z文件": "解凍に失敗しました7zファイルを解凍するにはpip install py7zrをインストールする必要があります",
"吸收在42行以内的begin-end组合": "42行以内のbegin-endの組み合わせを取り込む",
"Latex文件融合完成": "Latexファイルの統合が完了しました",
"输出html调试文件": "HTMLデバッグファイルの出力",
"论文概况": "論文の概要",
"修复括号": "括弧の修復",
"赋予插件状态": "プラグインの状態を付与する",
"标注节点的行数范围": "ノードの行数範囲を注釈する",
"MOSS can understand and communicate fluently in the language chosen by the user such as English and 中文. MOSS can perform any language-based tasks.": "MOSSは、ユーザーが選択した言語英語や中文などでスムーズに理解し、コミュニケーションすることができます。MOSSは、言語に基づくさまざまなタスクを実行できます。",
"LLM_MODEL是默认选中的模型": "LLM_MODELはデフォルトで選択されたモデルです",
"配合前缀可以把你的输入内容用引号圈起来": "接頭辞と組み合わせて、入力内容を引用符で囲むことができます",
"获取关键词": "キーワードの取得",
"本项目现已支持OpenAI和Azure的api-key": "このプロジェクトは、OpenAIおよびAzureのAPIキーをサポートしています",
"欢迎使用 MOSS 人工智能助手!": "MOSS AIアシスタントをご利用いただきありがとうございます",
"在执行完成之后": "実行が完了した後",
"正在听您讲话": "お話をお聞きしています",
"Claude回复的片段": "Claudeの返信の一部",
"返回": "戻る",
"期望格式例如": "期待される形式の例",
"gpt 多线程请求": "GPTマルチスレッドリクエスト",
"当前工作路径为": "現在の作業パスは",
"该PDF由GPT-Academic开源项目调用大语言模型+Latex翻译插件一键生成": "このPDFはGPT-Academicオープンソースプロジェクトによって大規模言語モデル+Latex翻訳プラグインを使用して一括生成されました",
"解决插件锁定时的界面显示问题": "プラグインのロック時のインターフェース表示の問題を解決する",
"默认 secondary": "デフォルトのセカンダリ",
"会把列表拆解": "リストを分解します",
"暂时不支持历史消息": "一時的に歴史メッセージはサポートされていません",
"或者重启之后再度尝试": "または再起動後に再試行してください",
"吸收其他杂项": "他の雑項を吸収する",
"双手离开鼠标键盘吧": "両手をマウスとキーボードから離してください",
"建议更换代理协议": "プロキシプロトコルの変更をお勧めします",
"音频助手": "オーディオアシスタント",
"请耐心等待": "お待ちください",
"翻译结果": "翻訳結果",
"请在此处追加更细致的矫错指令": "ここにより詳細なエラー修正命令を追加してください",
"编译原始PDF": "元のPDFをコンパイルする",
"-构建知识库": "-ナレッジベースの構築",
"删除中间文件夹": "中間フォルダを削除する",
"这段代码定义了一个名为TempProxy的空上下文管理器": "このコードはTempProxyという名前の空のコンテキストマネージャを定義しています",
"参数说明": "パラメータの説明",
"正在预热文本向量化模组": "テキストベクトル化モジュールのプリヒート中",
"函数插件": "関数プラグイン",
"右下角更换模型菜单中可切换openai": "右下のモデルメニューでopenaiを切り替えることができます",
"先上传数据集": "まずデータセットをアップロードしてください",
"LatexEnglishErrorCorrection+高亮修正位置": "テキストの翻訳",
"正在构建知识库": "テキストの翻訳",
"用红色标注处保留区": "テキストの翻訳",
"安装Claude的依赖": "テキストの翻訳",
"已禁用": "テキストの翻訳",
"是否在提交时自动清空输入框": "テキストの翻訳",
"GPT 学术优化": "テキストの翻訳",
"需要特殊依赖": "テキストの翻訳",
"test_联网回答问题": "テキストの翻訳",
"除非您是论文的原作者": "テキストの翻訳",
"即可见": "テキストの翻訳",
"解析为简体中文": "テキストの翻訳",
"解析整个Python项目": "テキストの翻訳",
"========================================= 插件主程序1 =====================================================": "テキストの翻訳",
"当前参数": "テキストの翻訳",
"处理个别特殊插件的锁定状态": "テキストの翻訳",
"已知某些代码的局部作用是": "テキストの翻訳",
"请务必用 pip install -r requirements.txt 指令安装依赖": "テキストの翻訳",
"安装": "テキストの翻訳",
"请登录OpenAI查看详情 https": "テキストの翻訳",
"必须包含documentclass": "テキストの翻訳",
"极少数情况下": "テキストの翻訳",
"并将返回的频道ID保存在属性CHANNEL_ID中": "テキストの翻訳",
"您的 API_KEY 不满足任何一种已知的密钥格式": "テキストの翻訳",
"-预热文本向量化模组": "テキストの翻訳",
"什么都没有": "テキストの翻訳",
"等待GPT响应": "テキストの翻訳",
"请尝试把以下指令复制到高级参数区": "テキストの翻訳",
"模型参数": "テキストの翻訳",
"先删除": "テキストの翻訳",
"响应中": "テキストの翻訳",
"开始接收chatglmft的回复": "テキストの翻訳",
"手动指定语言": "テキストの翻訳",
"获取线程锁": "テキストの翻訳",
"当前大语言模型": "テキストの翻訳",
"段音频的第": "テキストの翻訳",
"正在编译对比PDF": "テキストの翻訳",
"根据需要切换prompt": "テキストの翻訳",
"取评分最高者返回": "テキストの翻訳",
"如果您是论文原作者": "テキストの翻訳",
"段音频的主要内容": "テキストの翻訳",
"为啥chatgpt会把cite里面的逗号换成中文逗号呀": "テキストの翻訳",
"为每一位访问的用户赋予一个独一无二的uuid编码": "テキストの翻訳",
"将每次对话记录写入Markdown格式的文件中": "テキストの翻訳",
"ChatGLMFT尚未加载": "テキストの翻訳",
"切割音频文件": "テキストの翻訳",
"例如 f37f30e0f9934c34a992f6f64f7eba4f": "テキストの翻訳",
"work_folder = Latex预处理": "テキストの翻訳",
"出问题了": "問題が発生しました",
"等待Claude响应中": "Claudeの応答を待っています",
"增强稳健性": "信頼性を向上させる",
"赋予插件锁定 锁定插件回调路径": "プラグインにコールバックパスをロックする",
"将多文件tex工程融合为一个巨型tex": "複数のファイルのtexプロジェクトを1つの巨大なtexに統合する",
"参考文献转Bib": "参考文献をBibに変換する",
"由于提问含不合规内容被Azure过滤": "質問が規則に違反しているため、Azureによってフィルタリングされました",
"读取优先级": "優先度を読み取る",
"格式如org-xxxxxxxxxxxxxxxxxxxxxxxx": "形式はorg-xxxxxxxxxxxxxxxxxxxxxxxxのようです",
"辅助gpt生成代码": "GPTのコード生成を補助する",
"读取音频文件": "音声ファイルを読み取る",
"输入arxivID": "arxivIDを入力する",
"转化PDF编译是否成功": "PDFのコンパイルが成功したかどうかを変換する",
"Call ChatGLMFT fail 不能正常加载ChatGLMFT的参数": "ChatGLMFTのパラメータを正常にロードできませんでした",
"创建AcsClient实例": "AcsClientのインスタンスを作成する",
"将 chatglm 直接对齐到 chatglm2": "chatglmをchatglm2に直接整列させる",
"要求": "要求",
"子任务失败时的重试次数": "サブタスクが失敗した場合のリトライ回数",
"请求子进程": "サブプロセスを要求する",
"按钮是否可见": "ボタンが表示可能かどうか",
"将 \\include 命令转换为 \\input 命令": "\\includeコマンドを\\inputコマンドに変換する",
"用户填3": "ユーザーが3を入力する",
"后面是英文逗号": "後ろに英語のカンマがあります",
"吸收iffalse注释": "iffalseコメントを吸収する",
"请稍候": "お待ちください",
"摘要生成后的文档路径": "要約生成後のドキュメントのパス",
"主程序即将开始": "メインプログラムがすぐに開始されます",
"处理历史信息": "履歴情報の処理",
"根据给定的切割时长将音频文件切割成多个片段": "指定された分割時間に基づいてオーディオファイルを複数のセグメントに分割する",
"解决部分词汇翻译不准确的问题": "一部の用語の翻訳の不正確さを解決する",
"即将退出": "すぐに終了します",
"用于给一小段代码上代理": "一部のコードにプロキシを適用するために使用されます",
"提取文件扩展名": "ファイルの拡張子を抽出する",
"目前支持的格式": "現在サポートされている形式",
"第一次调用": "最初の呼び出し",
"异步方法": "非同期メソッド",
"P.S. 顺便把Latex的注释去除": "P.S. LaTeXのコメントを削除する",
"构建完成": "ビルドが完了しました",
"缺少": "不足しています",
"建议暂时不要使用": "一時的に使用しないことをお勧めします",
"对比PDF编译是否成功": "PDFのコンパイルが成功したかどうかを比較する",
"填入azure openai api的密钥": "Azure OpenAI APIのキーを入力してください",
"功能尚不稳定": "機能はまだ安定していません",
"则跳过GPT请求环节": "GPTリクエストのスキップ",
"即不处理之前的对话历史": "以前の対話履歴を処理しない",
"非Openai官方接口返回了错误": "非公式のOpenAI APIがエラーを返しました",
"其他类型文献转化效果未知": "他のタイプの文献の変換効果は不明です",
"给出一些判定模板文档的词作为扣分项": "テンプレートドキュメントの単語を減点項目として提供する",
"找 API_ORG 设置项": "API_ORGの設定項目を検索します",
"调用函数": "関数を呼び出します",
"需要手动安装新增的依赖库": "新しい依存ライブラリを手動でインストールする必要があります",
"或者使用此插件继续上传更多文件": "または、このプラグインを使用してさらにファイルをアップロードします",
"640个字节为一组": "640バイトごとにグループ化します",
"逆转出错的段落": "エラーのあるパラグラフを逆転させます",
"对话助手函数插件": "対話アシスタント関数プラグイン",
"前者是API2D的结束条件": "前者はAPI2Dの終了条件です",
"终端": "ターミナル",
"仅调试": "デバッグのみ",
"论文": "論文",
"想象一个穿着者": "着用者を想像してください",
"音频内容是": "音声の内容は",
"如果需要使用AZURE 详情请见额外文档 docs\\use_azure.md": "AZUREを使用する必要がある場合は、詳細については別のドキュメント docs\\use_azure.md を参照してください",
"请先将.doc文档转换为.docx文档": ".docドキュメントを.docxドキュメントに変換してください",
"请查看终端的输出或耐心等待": "ターミナルの出力を確認するか、お待ちください",
"初始化音频采集线程": "オーディオキャプチャスレッドを初期化します",
"用该压缩包+ConversationHistoryArchive进行反馈": "この圧縮ファイル+ConversationHistoryArchiveを使用してフィードバックします",
"阿里云实时语音识别 配置难度较高 仅建议高手用户使用 参考 https": "阿里云リアルタイム音声認識の設定は難しいため、上級ユーザーのみに推奨されます 参考 https",
"多线程翻译开始": "マルチスレッド翻訳が開始されました",
"只有GenerateImage和生成图像相关": "GenerateImageと関連する画像の生成のみ",
"代理数据解析失败": "プロキシデータの解析に失敗しました",
"建议使用英文单词": "英単語の使用をお勧めします",
"功能描述": "機能の説明",
"读 docs\\use_azure.md": "ドキュメントを読む",
"将消耗较长时间下载中文向量化模型": "中国語のベクトル化モデルをダウンロードするのに時間がかかります",
"表示频道ID": "チャネルIDを表示する",
"未知指令": "不明なコマンド",
"包含documentclass关键字": "documentclassキーワードを含む",
"中读取数据构建知识库": "データを読み取って知識ベースを構築する",
"远程云服务器部署": "リモートクラウドサーバーにデプロイする",
"输入部分太自由": "入力が自由すぎる",
"读取pdf文件": "PDFファイルを読み込む",
"将两个PDF拼接": "2つのPDFを結合する",
"默认值为1000": "デフォルト値は1000です",
"写出文件": "ファイルに書き出す",
"生成的视频文件路径": "生成されたビデオファイルのパス",
"Arixv论文精细翻译": "Arixv論文の詳細な翻訳",
"用latex编译为PDF对修正处做高亮": "LaTeXでコンパイルしてPDFに修正をハイライトする",
"点击“停止”键可终止程序": "「停止」ボタンをクリックしてプログラムを終了できます",
"否则将导致每个人的Claude问询历史互相渗透": "さもないと、各人のClaudeの問い合わせ履歴が相互に侵入します",
"音频文件名": "オーディオファイル名",
"的参数!": "のパラメータ!",
"对话历史": "対話履歴",
"当下一次用户提交时": "次のユーザーの提出時に",
"数学GenerateAnimation": "数学GenerateAnimation",
"如果要使用Claude": "Claudeを使用する場合は",
"请向下翻": "下にスクロールしてください",
"报告已经添加到右侧“文件上传区”": "報告は右側の「ファイルアップロードエリア」に追加されました",
"删除整行的空注释": "空のコメントを含む行を削除する",
"建议直接在API_KEY处填写": "API_KEYの場所に直接入力することをお勧めします",
"暗色模式 / 亮色模式": "ダークモード/ライトモード",
"做一些外观色彩上的调整": "外観の色調整を行う",
"请切换至“KnowledgeBaseQuestionAnswer”插件进行知识库访问": "ナレッジベースのアクセスには「KnowledgeBaseQuestionAnswer」プラグインに切り替えてください",
"它*必须*被包含在AVAIL_LLM_MODELS列表中": "それはAVAIL_LLM_MODELSリストに含まれている必要があります",
"并设置参数": "パラメータを設定する",
"待处理的word文档路径": "処理待ちのWord文書のパス",
"调用缓存": "キャッシュを呼び出す",
"片段": "フラグメント",
"否则结束循环": "それ以外の場合はループを終了する",
"请对下面的音频片段做概述": "以下のオーディオフラグメントについて概要を作成してください",
"高危设置! 常规情况下不要修改! 通过修改此设置": "高リスクの設定!通常は変更しないでください!この設定を変更することで",
"插件锁定中": "プラグインがロックされています",
"开始": "開始",
"但请查收结果": "結果を確認してください",
"刷新Gradio前端界面": "Gradioフロントエンドインターフェースをリフレッシュする",
"批量SummarizeAudioVideo": "オーディオビデオを一括要約する",
"一个单实例装饰器": "単一のインスタンスデコレータ",
"Claude响应异常": "Claudeの応答が異常です",
"但内部用stream的方法避免中途网线被掐": "ただし、途中でネットワーク接続が切断されることを避けるために、内部ではストリームを使用しています",
"检查USE_PROXY": "USE_PROXYを確認する",
"永远给定None": "常にNoneを指定する",
"报告如何远程获取": "報告のリモート取得方法",
"您可以到Github Issue区": "GithubのIssueエリアにアクセスできます",
"如果只询问1个大语言模型": "1つの大規模言語モデルにのみ質問する場合",
"为了防止大语言模型的意外谬误产生扩散影响": "大規模言語モデルの誤った結果が広がるのを防ぐために",
"编译BibTex": "BibTexのコンパイル",
"⭐多线程方法": "マルチスレッドの方法",
"推荐http": "httpをおすすめします",
"如果要使用": "使用する場合",
"的单词": "の単語",
"如果本地使用不建议加这个": "ローカルで使用する場合はお勧めしません",
"避免线程阻塞": "スレッドのブロックを回避する",
"吸收title与作者以上的部分": "タイトルと著者以上の部分を吸収する",
"作者": "著者",
"5刀": "5ドル",
"ChatGLMFT响应异常": "ChatGLMFTの応答異常",
"才能继续下面的步骤": "次の手順に進むために",
"对这个人外貌、身处的环境、内心世界、过去经历进行描写": "この人の外見、環境、内面世界、過去の経験について描写する",
"找不到微调模型检查点": "ファインチューニングモデルのチェックポイントが見つかりません",
"请仔细鉴别并以原文为准": "注意深く確認し、元のテキストを参照してください",
"计算文件总时长和切割点": "ファイルの総時間とカットポイントを計算する",
"我将为您查找相关壁纸": "関連する壁紙を検索します",
"此插件Windows支持最佳": "このプラグインはWindowsに最適です",
"请输入关键词": "キーワードを入力してください",
"以下所有配置也都支持利用环境变量覆写": "以下のすべての設定は環境変数を使用して上書きすることもサポートしています",
"尝试第": "第#",
"开始生成动画": "アニメーションの生成を開始します",
"免费": "無料",
"我好!": "私は元気です!",
"str类型": "strタイプ",
"生成数学动画": "数学アニメーションの生成",
"GPT结果已输出": "GPTの結果が出力されました",
"PDF文件所在的路径": "PDFファイルのパス",
"源码自译解": "ソースコードの自動翻訳解析",
"格式如org-123456789abcdefghijklmno的": "org-123456789abcdefghijklmnoの形式",
"请对这部分内容进行语法矫正": "この部分の内容に文法修正を行ってください",
"调用whisper模型音频转文字": "whisperモデルを使用して音声をテキストに変換する",
"编译转化后的PDF": "変換されたPDFをコンパイルする",
"将音频解析为简体中文": "音声を簡体字中国語に解析する",
"删除或修改歧义文件": "曖昧なファイルを削除または修正する",
"ChatGLMFT消耗大量的内存": "ChatGLMFTは大量のメモリを消費します",
"图像生成所用到的提示文本": "画像生成に使用されるヒントテキスト",
"如果已经存在": "既に存在する場合",
"以下是一篇学术论文的基础信息": "以下は学術論文の基本情報です",
"解压失败! 需要安装pip install rarfile来解压rar文件": "解凍に失敗しましたrarファイルを解凍するにはpip install rarfileをインストールする必要があります",
"一般是文本过长": "通常、テキストが長すぎます",
"单线程": "シングルスレッド",
"Linux下必须使用Docker安装": "LinuxではDockerを使用してインストールする必要があります",
"请先上传文件素材": "まずファイル素材をアップロードしてください",
"如果分析错误": "もし解析エラーがある場合",
"快捷的调试函数": "便利なデバッグ関数",
"欢迎使用 MOSS 人工智能助手!输入内容即可进行对话": "MOSS AIアシスタントをご利用いただきありがとうございます入力内容を入力すると、対話ができます",
"json等": "jsonなど",
"--读取参数": "--パラメータの読み込み",
"⭐单线程方法": "⭐シングルスレッドメソッド",
"请用一句话概括这些文件的整体功能": "これらのファイルの全体的な機能を一文で要約してください",
"用于灵活调整复杂功能的各种参数": "複雑な機能を柔軟に調整するためのさまざまなパラメータ",
"默认 False": "デフォルトはFalseです",
"生成中文PDF": "中国語のPDFを生成する",
"正在处理": "処理中",
"需要被切割的音频文件名": "分割する必要のある音声ファイル名",
"根据文本使用GPT模型生成相应的图像": "テキストに基づいてGPTモデルを使用して対応する画像を生成する",
"可选": "オプション",
"Aliyun音频服务异常": "Aliyunオーディオサービスの異常",
"尝试下载": "ダウンロードを試みる",
"需Latex": "LaTeXが必要です",
"拆分过长的Markdown文件": "長すぎるMarkdownファイルを分割する",
"当前支持的格式包括": "現在サポートされている形式には",
"=================================== 工具函数 ===============================================": "=================================== ユーティリティ関数 ===============================================",
"所有音频都总结完成了吗": "すべてのオーディオが要約されましたか",
"没有设置ANTHROPIC_API_KEY": "ANTHROPIC_API_KEYが設定されていません",
"详见项目主README.md": "詳細はプロジェクトのメインREADME.mdを参照してください",
"使用": "使用する",
"P.S. 其他可用的模型还包括": "P.S. 其他可用的模型还包括",
"保证括号正确": "保证括号正确",
"或代理节点": "或代理节点",
"整理结果为压缩包": "整理结果为压缩包",
"实时音频采集": "实时音频采集",
"获取回复": "获取回复",
"插件可读取“输入区”文本/路径作为参数": "插件可读取“输入区”文本/路径作为参数",
"请讲话": "请讲话",
"将文件复制一份到下载区": "将文件复制一份到下载区",
"from crazy_functions.虚空终端 import 终端": "from crazy_functions.虚空终端 import 终端",
"这个paper有个input命令文件名大小写错误": "这个paper有个input命令文件名大小写错误",
"解除插件锁定": "解除插件锁定",
"不能加载Claude组件": "不能加载Claude组件",
"如果有必要": "如果有必要",
"禁止移除或修改此警告": "禁止移除或修改此警告",
"然后进行问答": "然后进行问答",
"响应异常": "响应异常",
"使用英文": "使用英文",
"add gpt task 创建子线程请求gpt": "add gpt task 创建子线程请求gpt",
"实际得到格式": "实际得到格式",
"请继续分析其他源代码": "请继续分析其他源代码",
"”的主要内容": "”的主要内容",
"防止proxies单独起作用": "防止proxies单独起作用",
"临时地激活代理网络": "临时地激活代理网络",
"屏蔽空行和太短的句子": "屏蔽空行和太短的句子",
"把某个路径下所有文件压缩": "把某个路径下所有文件压缩",
"您需要首先调用构建知识库": "您需要首先调用构建知识库",
"翻译-": "翻译-",
"Newbing 请求失败": "Newbing 请求失败",
"次编译": "次编译",
"后缀": "后缀",
"文本碎片重组为完整的tex片段": "文本碎片重组为完整的tex片段",
"待注入的知识库名称id": "待注入的知识库名称id",
"消耗时间的函数": "消耗时间的函数",
"You are associated with a deactivated account. OpenAI以账户失效为由": "You are associated with a deactivated account. OpenAI以账户失效为由",
"成功啦": "成功啦",
"音频文件的路径": "音频文件的路径",
"英文Latex项目全文纠错": "英文Latex项目全文纠错",
"将子线程的gpt结果写入chatbot": "将子线程的gpt结果写入chatbot",
"开始最终总结": "开始最终总结",
"调用": "调用",
"正在锁定插件": "正在锁定插件",
"记住当前的label": "记住当前的label",
"根据自然语言执行插件命令": "根据自然语言执行插件命令",
"response中会携带traceback报错信息": "response中会携带traceback报错信息",
"避免多用户干扰": "避免多用户干扰",
"顺利完成": "顺利完成",
"详情见https": "详情见https",
"清空label": "ラベルをクリアする",
"这需要一段时间计算": "これには時間がかかります",
"找不到": "見つかりません",
"消耗大量的内存": "大量のメモリを消費する",
"安装方法https": "インストール方法https",
"为发送请求做准备": "リクエストの準備をする",
"第1次尝试": "1回目の試み",
"检查结果": "結果をチェックする",
"精细切分latex文件": "LaTeXファイルを細かく分割する",
"api2d等请求源": "api2dなどのリクエストソース",
"填入你亲手写的部署名": "あなたが手書きしたデプロイ名を入力してください",
"给出指令": "指示を与える",
"请问什么是质子": "プロトンとは何ですか",
"请直接去该路径下取回翻译结果": "直接そのパスに移動して翻訳結果を取得してください",
"等待Claude回复的片段": "Claudeの返信を待っているフラグメント",
"Latex没有安装": "LaTeXがインストールされていません",
"文档越长耗时越长": "ドキュメントが長いほど時間がかかります",
"没有阿里云语音识别APPKEY和TOKEN": "阿里雲の音声認識のAPPKEYとTOKENがありません",
"分析结果": "結果を分析する",
"请立即终止程序": "プログラムを即座に終了してください",
"正在尝试自动安装": "自動インストールを試みています",
"请直接提交即可": "直接提出してください",
"将指定目录下的PDF文件从英文翻译成中文": "指定されたディレクトリ内のPDFファイルを英語から中国語に翻訳する",
"请查收结果": "結果を確認してください",
"上下布局": "上下布局",
"此处可以输入解析提示": "此处可以输入解析提示",
"前面是中文逗号": "前面是中文逗号",
"的依赖": "的依赖",
"材料如下": "材料如下",
"欢迎加REAME中的QQ联系开发者": "欢迎加REAME中的QQ联系开发者",
"开始下载": "開始ダウンロード",
"100字以内": "100文字以内",
"创建request": "リクエストの作成",
"创建存储切割音频的文件夹": "切り取られた音声を保存するフォルダの作成",
"⭐主进程执行": "⭐メインプロセスの実行",
"音频解析结果": "音声解析結果",
"Your account is not active. OpenAI以账户失效为由": "アカウントがアクティブではありません。OpenAIはアカウントの無効化を理由にしています",
"虽然PDF生成失败了": "PDFの生成に失敗しました",
"如果这里报错": "ここでエラーが発生した場合",
"前面是中文冒号": "前面は中国語のコロンです",
"SummarizeAudioVideo内容": "SummarizeAudioVideoの内容",
"openai的官方KEY需要伴随组织编码": "openaiの公式KEYは組織コードと一緒に必要です",
"是本次输入": "これは今回の入力です",
"色彩主体": "色彩の主体",
"Markdown翻译": "Markdownの翻訳",
"会被加在你的输入之后": "あなたの入力の後に追加されます",
"失败啦": "失敗しました",
"每个切割音频片段的时长": "各切り取り音声の長さ",
"拆分过长的latex片段": "原始文本",
"待提取的知识库名称id": "原始文本",
"在这里放一些网上搜集的demo": "原始文本",
"环境变量配置格式见docker-compose.yml": "原始文本",
"Claude组件初始化成功": "原始文本",
"尚未加载": "原始文本",
"等待Claude响应": "原始文本",
"重组": "原始文本",
"将文件添加到chatbot cookie中": "原始文本",
"回答完问题后": "原始文本",
"将根据报错信息修正tex源文件并重试": "原始文本",
"是否在触发时清除历史": "原始文本",
"尝试执行Latex指令失败": "原始文本",
"默认 True": "原始文本",
"文本碎片重组为完整的tex文件": "原始文本",
"注意事项": "原始文本",
"您接下来不能再使用其他插件了": "原始文本",
"属性": "原始文本",
"正在编译PDF文档": "原始文本",
"提取视频中的音频": "原始文本",
"正在同时咨询ChatGPT和ChatGLM……": "原始文本",
"Chuanhu-Small-and-Beautiful主题": "原始文本",
"版权归原文作者所有": "原始文本",
"如果程序停顿5分钟以上": "原始文本",
"请输入要翻译成哪种语言": "日本語",
"以秒为单位": "秒単位で",
"请以以下方式load模型": "以下の方法でモデルをロードしてください!!!",
"使用时": "使用時",
"对这个人外貌、身处的环境、内心世界、人设进行描写": "この人の外見、環境、内面世界、キャラクターを描写する",
"例如翻译、解释代码、润色等等": "例えば翻訳、コードの説明、修正など",
"多线程Demo": "マルチスレッドデモ",
"不能正常加载": "正常にロードできません",
"还原部分原文": "一部の元のテキストを復元する",
"可以将自身的状态存储到cookie中": "自身の状態をcookieに保存することができます",
"释放线程锁": "スレッドロックを解放する",
"当前知识库内的有效文件": "現在のナレッジベース内の有効なファイル",
"也是可读的": "読み取り可能です",
"等待ChatGLMFT响应中": "ChatGLMFTの応答を待っています",
"输入 stop 以终止对话": "stopを入力して対話を終了します",
"对整个Latex项目进行纠错": "全体のLatexプロジェクトを修正する",
"报错信息": "エラーメッセージ",
"下载pdf文件未成功": "PDFファイルのダウンロードに失敗しました",
"正在加载Claude组件": "Claudeコンポーネントを読み込んでいます",
"格式": "フォーマット",
"Claude响应缓慢": "Claudeの応答が遅い",
"该选项即将被弃用": "このオプションはまもなく廃止されます",
"正常状态": "正常な状態",
"中文Bing版": "中国語Bing版",
"代理网络配置": "プロキシネットワークの設定",
"Openai 限制免费用户每分钟20次请求": "Openaiは無料ユーザーに対して1分間に20回のリクエスト制限を設けています",
"gpt写的": "gptで書かれた",
"向已打开的频道发送一条文本消息": "既に開いているチャンネルにテキストメッセージを送信する",
"缺少ChatGLMFT的依赖": "ChatGLMFTの依存関係が不足しています",
"注意目前不能多人同时调用Claude接口": "現在、複数の人が同時にClaudeインターフェースを呼び出すことはできません",
"或者不在环境变量PATH中": "または環境変数PATHに存在しません",
"提问吧! 但注意": "質問してください!ただし注意してください",
"因此选择GenerateImage函数": "したがって、GenerateImage関数を選択します",
"无法找到一个主Tex文件": "メインのTexファイルが見つかりません",
"转化PDF编译已经成功": "PDF変換コンパイルが成功しました",
"因为在同一个频道里存在多人使用时历史消息渗透问题": "同じチャンネルで複数の人が使用する場合、過去のメッセージが漏洩する問題があります",
"SlackClient类用于与Slack API进行交互": "SlackClientクラスはSlack APIとのインタラクションに使用されます",
"如果存在调试缓存文件": "デバッグキャッシュファイルが存在する場合",
"举例": "例を挙げる",
"无需填写": "記入する必要はありません",
"配置教程&视频教程": "設定チュートリアル&ビデオチュートリアル",
"最后一步处理": "最後のステップの処理",
"定位主Latex文件": "メインのLatexファイルを特定する",
"暂不提交": "一時的に提出しない",
"由于最为关键的转化PDF编译失败": "最も重要なPDF変換コンパイルが失敗したため",
"用第二人称": "第二人称を使用する",
"例如 RoPlZrM88DnAFkZK": "例えば RoPlZrM88DnAFkZK",
"没有设置ANTHROPIC_API_KEY选项": "ANTHROPIC_API_KEYオプションが設定されていません",
"找不到任何.tex文件": "テキストの翻訳",
"请您不要删除或修改这行警告": "テキストの翻訳",
"只有第二步成功": "テキストの翻訳",
"调用Claude时": "テキストの翻訳",
"输入 clear 以清空对话历史": "テキストの翻訳",
"= 2 通过一些Latex模板中常见": "テキストの翻訳",
"没给定指令": "テキストの翻訳",
"还原原文": "テキストの翻訳",
"自定义API KEY格式": "テキストの翻訳",
"防止丢失最后一条消息": "テキストの翻訳",
"方法": "テキストの翻訳",
"压缩包": "テキストの翻訳",
"对各个llm模型进行单元测试": "テキストの翻訳",
"导入依赖失败": "テキストの翻訳",
"详情信息见requirements.txt": "テキストの翻訳",
"翻译内容可靠性无保障": "テキストの翻訳",
"刷新页面即可以退出KnowledgeBaseQuestionAnswer模式": "テキストの翻訳",
"上传本地文件/压缩包供函数插件调用": "テキストの翻訳",
"循环监听已打开频道的消息": "テキストの翻訳",
"一个包含所有切割音频片段文件路径的列表": "テキストの翻訳",
"检测到arxiv文档连接": "テキストの翻訳",
"P.S. 顺便把CTEX塞进去以支持中文": "テキストの翻訳",
"后面是英文冒号": "テキストの翻訳",
"上传文件自动修正路径": "テキストの翻訳",
"实现消息发送、接收等功能": "メッセージの送受信などの機能を実現する",
"改变输入参数的顺序与结构": "入力パラメータの順序と構造を変更する",
"正在精细切分latex文件": "LaTeXファイルを細かく分割しています",
"读取文件": "ファイルを読み込んでいます"
}

87
docs/translate_std.json 普通文件
查看文件

@@ -0,0 +1,87 @@
{
"解析JupyterNotebook": "ParsingJupyterNotebook",
"Latex翻译中文并重新编译PDF": "TranslateChineseToEnglishInLatexAndRecompilePDF",
"联网的ChatGPT_bing版": "OnlineChatGPT_BingEdition",
"理解PDF文档内容标准文件输入": "UnderstandPdfDocumentContentStandardFileInput",
"Latex英文纠错加PDF对比": "CorrectEnglishInLatexWithPDFComparison",
"下载arxiv论文并翻译摘要": "DownloadArxivPaperAndTranslateAbstract",
"Markdown翻译指定语言": "TranslateMarkdownToSpecifiedLanguage",
"批量翻译PDF文档_多线程": "BatchTranslatePDFDocuments_MultiThreaded",
"下载arxiv论文翻译摘要": "DownloadArxivPaperTranslateAbstract",
"解析一个Python项目": "ParsePythonProject",
"解析一个Golang项目": "ParseGolangProject",
"代码重写为全英文_多线程": "RewriteCodeToEnglish_MultiThreaded",
"解析一个CSharp项目": "ParsingCSharpProject",
"删除所有本地对话历史记录": "DeleteAllLocalConversationHistoryRecords",
"批量Markdown翻译": "BatchTranslateMarkdown",
"连接bing搜索回答问题": "ConnectBingSearchAnswerQuestion",
"Langchain知识库": "LangchainKnowledgeBase",
"Latex输出PDF结果": "OutputPDFFromLatex",
"把字符太少的块清除为回车": "ClearBlocksWithTooFewCharactersToNewline",
"Latex精细分解与转化": "DecomposeAndConvertLatex",
"解析一个C项目的头文件": "ParseCProjectHeaderFiles",
"Markdown英译中": "TranslateMarkdownFromEnglishToChinese",
"Markdown中译英": "MarkdownChineseToEnglish",
"数学动画生成manim": "MathematicalAnimationGenerationManim",
"chatglm微调工具": "ChatGLMFineTuningTool",
"解析一个Rust项目": "ParseRustProject",
"解析一个Java项目": "ParseJavaProject",
"联网的ChatGPT": "ChatGPTConnectedToNetwork",
"解析任意code项目": "ParseAnyCodeProject",
"合并小写开头的段落块": "MergeLowercaseStartingParagraphBlocks",
"Latex英文润色": "EnglishProofreadingForLatex",
"Latex全文润色": "FullTextProofreadingForLatex",
"询问多个大语言模型": "InquiryMultipleLargeLanguageModels",
"解析一个Lua项目": "ParsingLuaProject",
"解析ipynb文件": "ParsingIpynbFiles",
"批量总结PDF文档": "BatchSummarizePDFDocuments",
"批量翻译PDF文档": "BatchTranslatePDFDocuments",
"理解PDF文档内容": "UnderstandPdfDocumentContent",
"Latex中文润色": "LatexChineseProofreading",
"Latex英文纠错": "LatexEnglishCorrection",
"Latex全文翻译": "LatexFullTextTranslation",
"同时问询_指定模型": "InquireSimultaneously_SpecifiedModel",
"批量生成函数注释": "BatchGenerateFunctionComments",
"解析一个前端项目": "ParseFrontendProject",
"高阶功能模板函数": "HighOrderFunctionTemplateFunctions",
"高级功能函数模板": "AdvancedFunctionTemplate",
"总结word文档": "SummarizingWordDocuments",
"载入对话历史存档": "LoadConversationHistoryArchive",
"Latex中译英": "LatexChineseToEnglish",
"Latex英译中": "LatexEnglishToChinese",
"连接网络回答问题": "ConnectToNetworkToAnswerQuestions",
"交互功能模板函数": "InteractiveFunctionTemplateFunction",
"交互功能函数模板": "InteractiveFunctionFunctionTemplate",
"sprint亮靛": "SprintIndigo",
"print亮黄": "PrintBrightYellow",
"print亮绿": "PrintBrightGreen",
"print亮红": "PrintBrightRed",
"解析项目源代码": "ParseProjectSourceCode",
"解析一个C项目": "ParseCProject",
"全项目切换英文": "SwitchToEnglishForTheWholeProject",
"谷歌检索小助手": "GoogleSearchAssistant",
"读取知识库作答": "ReadKnowledgeArchiveAnswerQuestions",
"print亮蓝": "PrintBrightBlue",
"微调数据集生成": "FineTuneDatasetGeneration",
"清理多余的空行": "CleanUpExcessBlankLines",
"编译Latex": "CompileLatex",
"解析Paper": "ParsePaper",
"ipynb解释": "IpynbExplanation",
"读文章写摘要": "ReadArticleWriteSummary",
"生成函数注释": "GenerateFunctionComments",
"解析项目本身": "ParseProjectItself",
"对话历史存档": "ConversationHistoryArchive",
"专业词汇声明": "ProfessionalTerminologyDeclaration",
"解析docx": "ParseDocx",
"解析源代码新": "ParsingSourceCodeNew",
"总结音视频": "SummaryAudioVideo",
"知识库问答": "UpdateKnowledgeArchive",
"多文件润色": "ProofreadMultipleFiles",
"多文件翻译": "TranslateMultipleFiles",
"解析PDF": "ParsePDF",
"同时问询": "SimultaneousInquiry",
"图片生成": "ImageGeneration",
"动画生成": "AnimationGeneration",
"语音助手": "VoiceAssistant",
"启动微调": "StartFineTuning"
}

查看文件

@@ -2213,5 +2213,66 @@
"“喂狗”": "“喂狗”",
"第4步": "第4步",
"退出": "退出",
"使用 Unsplash API": "使用 Unsplash API"
"使用 Unsplash API": "使用 Unsplash API",
"非Openai官方接口返回了错误": "非Openai官方接口返回了错误",
"用来描述你的要求": "用來描述你的要求",
"自定义API KEY格式": "自定義API KEY格式",
"前缀": "前綴",
"会被加在你的输入之前": "會被加在你的輸入之前",
"api2d等请求源": "api2d等請求源",
"高危设置! 常规情况下不要修改! 通过修改此设置": "高危設置!常規情況下不要修改!通過修改此設置",
"即将编译PDF": "即將編譯PDF",
"默认 secondary": "默認 secondary",
"正在从github下载资源": "正在從github下載資源",
"响应异常": "響應異常",
"我好!": "我好!",
"无需填写": "無需填寫",
"缺少": "缺少",
"请问什么是质子": "請問什麼是質子",
"如果要使用": "如果要使用",
"重组": "重組",
"一个单实例装饰器": "一個單實例裝飾器",
"的参数!": "的參數!",
"🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行": "🏃‍♂️🏃‍♂️🏃‍♂️ 子進程執行",
"失败时": "失敗時",
"没有设置ANTHROPIC_API_KEY选项": "沒有設置ANTHROPIC_API_KEY選項",
"并设置参数": "並設置參數",
"格式": "格式",
"按钮是否可见": "按鈕是否可見",
"即可见": "即可見",
"创建request": "創建request",
"的依赖": "的依賴",
"⭐主进程执行": "⭐主進程執行",
"最后一步处理": "最後一步處理",
"没有设置ANTHROPIC_API_KEY": "沒有設置ANTHROPIC_API_KEY",
"的参数": "的參數",
"逆转出错的段落": "逆轉出錯的段落",
"本项目现已支持OpenAI和Azure的api-key": "本項目現已支持OpenAI和Azure的api-key",
"前者是API2D的结束条件": "前者是API2D的結束條件",
"增强稳健性": "增強穩健性",
"消耗大量的内存": "消耗大量的內存",
"您的 API_KEY 不满足任何一种已知的密钥格式": "您的API_KEY不滿足任何一種已知的密鑰格式",
"⭐单线程方法": "⭐單線程方法",
"是否在触发时清除历史": "是否在觸發時清除歷史",
"⭐多线程方法": "多線程方法",
"不能正常加载": "無法正常加載",
"举例": "舉例",
"即不处理之前的对话历史": "即不處理之前的對話歷史",
"尚未加载": "尚未加載",
"防止proxies单独起作用": "防止proxies單獨起作用",
"默认 False": "默認 False",
"检查USE_PROXY": "檢查USE_PROXY",
"响应中": "響應中",
"扭转的范围": "扭轉的範圍",
"后缀": "後綴",
"调用": "調用",
"创建AcsClient实例": "創建AcsClient實例",
"安装": "安裝",
"会被加在你的输入之后": "會被加在你的輸入之後",
"配合前缀可以把你的输入内容用引号圈起来": "配合前綴可以把你的輸入內容用引號圈起來",
"例如翻译、解释代码、润色等等": "例如翻譯、解釋代碼、潤色等等",
"后者是OPENAI的结束条件": "後者是OPENAI的結束條件",
"标注节点的行数范围": "標註節點的行數範圍",
"默认 True": "默認 True",
"将两个PDF拼接": "將兩個PDF拼接"
}

查看文件

@@ -28,6 +28,16 @@ ALIYUN_APPKEY = "RoPlZrM88DnAFkZK" # 此appkey已经失效
参考 https://help.aliyun.com/document_detail/450255.html
先有阿里云开发者账号,登录之后,需要开通 智能语音交互 的功能,可以免费获得一个token,然后在 全部项目 中,创建一个项目,可以获得一个appkey.
- 进阶功能
进一步填写ALIYUN_ACCESSKEY和ALIYUN_SECRET实现自动获取ALIYUN_TOKEN
```
ALIYUN_APPKEY = "RoP1ZrM84DnAFkZK"
ALIYUN_TOKEN = ""
ALIYUN_ACCESSKEY = "LTAI5q6BrFUzoRXVGUWnekh1"
ALIYUN_SECRET = "eHmI20AVWIaQZ0CiTD2bGQVsaP9i68"
```
## 3.启动
启动gpt-academic `python main.py`
@@ -48,7 +58,7 @@ III `[把特殊软件如腾讯会议的外放声音用VoiceMeeter截留]`
VI 两种音频监听模式切换时,需要刷新页面才有效。
VII 非localhost运行+非https情况下无法打开录音功能的坑https://blog.csdn.net/weixin_39461487/article/details/109594434
## 5.点击函数插件区“实时音频采集” 或者其他音频交互功能

查看文件

@@ -22,8 +22,10 @@ def main():
# 问询记录, python 版本建议3.9+(越新越好)
import logging, uuid
os.makedirs("gpt_log", exist_ok=True)
try:logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.INFO, encoding="utf-8")
except:logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.INFO)
try:logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.INFO, encoding="utf-8", format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
except:logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.INFO, format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
# Disable logging output from the 'httpx' logger
logging.getLogger("httpx").setLevel(logging.WARNING)
print("所有问询记录将自动保存在本地目录./gpt_log/chat_secrets.log, 请注意自我隐私保护哦!")
# 一些普通功能模块

查看文件

@@ -3,16 +3,18 @@
Usage:
1. modify LANG
1. modify config.py, set your LLM_MODEL and API_KEY(s) to provide access to OPENAI (or any other LLM model provider)
2. modify LANG (below ↓)
LANG = "English"
2. modify TransPrompt
3. modify TransPrompt (below ↓)
TransPrompt = f"Replace each json value `#` with translated results in English, e.g., \"原始文本\":\"TranslatedText\". Keep Json format. Do not answer #."
3. Run `python multi_language.py`.
4. Run `python multi_language.py`.
Note: You need to run it multiple times to increase translation coverage because GPT makes mistakes sometimes.
4. Find the translated program in `multi-language\English\*`
5. Find the translated program in `multi-language\English\*`
P.S.
@@ -286,6 +288,7 @@ def trans_json(word_to_translate, language, special=False):
def step_1_core_key_translate():
LANG_STD = 'std'
def extract_chinese_characters(file_path):
syntax = []
with open(file_path, 'r', encoding='utf-8') as f:
@@ -325,15 +328,15 @@ def step_1_core_key_translate():
for d in chinese_core_keys:
if d not in chinese_core_keys_norepeat: chinese_core_keys_norepeat.append(d)
need_translate = []
cached_translation = read_map_from_json(language=LANG)
cached_translation = read_map_from_json(language=LANG_STD)
cached_translation_keys = list(cached_translation.keys())
for d in chinese_core_keys_norepeat:
if d not in cached_translation_keys:
need_translate.append(d)
need_translate_mapping = trans(need_translate, language=LANG, special=True)
map_to_json(need_translate_mapping, language=LANG)
cached_translation = read_map_from_json(language=LANG)
need_translate_mapping = trans(need_translate, language=LANG_STD, special=True)
map_to_json(need_translate_mapping, language=LANG_STD)
cached_translation = read_map_from_json(language=LANG_STD)
cached_translation = dict(sorted(cached_translation.items(), key=lambda x: -len(x[0])))
chinese_core_keys_norepeat_mapping = {}

查看文件

@@ -19,9 +19,6 @@ from .bridge_chatgpt import predict as chatgpt_ui
from .bridge_chatglm import predict_no_ui_long_connection as chatglm_noui
from .bridge_chatglm import predict as chatglm_ui
# from .bridge_tgui import predict_no_ui_long_connection as tgui_noui
# from .bridge_tgui import predict as tgui_ui
colors = ['#FF00FF', '#00FFFF', '#FF0000', '#990099', '#009999', '#990044']
class LazyloadTiktoken(object):
@@ -71,6 +68,10 @@ get_token_num_gpt35 = lambda txt: len(tokenizer_gpt35.encode(txt, disallowed_spe
get_token_num_gpt4 = lambda txt: len(tokenizer_gpt4.encode(txt, disallowed_special=()))
# 开始初始化模型
AVAIL_LLM_MODELS, LLM_MODEL = get_conf("AVAIL_LLM_MODELS", "LLM_MODEL")
AVAIL_LLM_MODELS = AVAIL_LLM_MODELS + [LLM_MODEL]
# -=-=-=-=-=-=- 以下这部分是最早加入的最稳定的模型 -=-=-=-=-=-=-
model_info = {
# openai
"gpt-3.5-turbo": {
@@ -167,9 +168,7 @@ model_info = {
}
AVAIL_LLM_MODELS, LLM_MODEL = get_conf("AVAIL_LLM_MODELS", "LLM_MODEL")
AVAIL_LLM_MODELS = AVAIL_LLM_MODELS + [LLM_MODEL]
# -=-=-=-=-=-=- 以下部分是新加入的模型,可能附带额外依赖 -=-=-=-=-=-=-
if "claude-1-100k" in AVAIL_LLM_MODELS or "claude-2" in AVAIL_LLM_MODELS:
from .bridge_claude import predict_no_ui_long_connection as claude_noui
from .bridge_claude import predict as claude_ui
@@ -248,7 +247,6 @@ if "moss" in AVAIL_LLM_MODELS:
if "stack-claude" in AVAIL_LLM_MODELS:
from .bridge_stackclaude import predict_no_ui_long_connection as claude_noui
from .bridge_stackclaude import predict as claude_ui
# claude
model_info.update({
"stack-claude": {
"fn_with_ui": claude_ui,
@@ -263,7 +261,6 @@ if "newbing-free" in AVAIL_LLM_MODELS:
try:
from .bridge_newbingfree import predict_no_ui_long_connection as newbingfree_noui
from .bridge_newbingfree import predict as newbingfree_ui
# claude
model_info.update({
"newbing-free": {
"fn_with_ui": newbingfree_ui,
@@ -280,7 +277,6 @@ if "newbing" in AVAIL_LLM_MODELS: # same with newbing-free
try:
from .bridge_newbingfree import predict_no_ui_long_connection as newbingfree_noui
from .bridge_newbingfree import predict as newbingfree_ui
# claude
model_info.update({
"newbing": {
"fn_with_ui": newbingfree_ui,
@@ -297,7 +293,6 @@ if "chatglmft" in AVAIL_LLM_MODELS: # same with newbing-free
try:
from .bridge_chatglmft import predict_no_ui_long_connection as chatglmft_noui
from .bridge_chatglmft import predict as chatglmft_ui
# claude
model_info.update({
"chatglmft": {
"fn_with_ui": chatglmft_ui,
@@ -310,6 +305,87 @@ if "chatglmft" in AVAIL_LLM_MODELS: # same with newbing-free
})
except:
print(trimmed_format_exc())
if "internlm" in AVAIL_LLM_MODELS:
try:
from .bridge_internlm import predict_no_ui_long_connection as internlm_noui
from .bridge_internlm import predict as internlm_ui
model_info.update({
"internlm": {
"fn_with_ui": internlm_ui,
"fn_without_ui": internlm_noui,
"endpoint": None,
"max_token": 4096,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}
})
except:
print(trimmed_format_exc())
if "chatglm_onnx" in AVAIL_LLM_MODELS:
try:
from .bridge_chatglmonnx import predict_no_ui_long_connection as chatglm_onnx_noui
from .bridge_chatglmonnx import predict as chatglm_onnx_ui
model_info.update({
"chatglm_onnx": {
"fn_with_ui": chatglm_onnx_ui,
"fn_without_ui": chatglm_onnx_noui,
"endpoint": None,
"max_token": 4096,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}
})
except:
print(trimmed_format_exc())
if "qwen" in AVAIL_LLM_MODELS:
try:
from .bridge_qwen import predict_no_ui_long_connection as qwen_noui
from .bridge_qwen import predict as qwen_ui
model_info.update({
"qwen": {
"fn_with_ui": qwen_ui,
"fn_without_ui": qwen_noui,
"endpoint": None,
"max_token": 4096,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}
})
except:
print(trimmed_format_exc())
if "chatgpt_website" in AVAIL_LLM_MODELS: # 接入一些逆向工程https://github.com/acheong08/ChatGPT-to-API/
try:
from .bridge_chatgpt_website import predict_no_ui_long_connection as chatgpt_website_noui
from .bridge_chatgpt_website import predict as chatgpt_website_ui
model_info.update({
"chatgpt_website": {
"fn_with_ui": chatgpt_website_ui,
"fn_without_ui": chatgpt_website_noui,
"endpoint": openai_endpoint,
"max_token": 4096,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}
})
except:
print(trimmed_format_exc())
if "spark" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
try:
from .bridge_spark import predict_no_ui_long_connection as spark_noui
from .bridge_spark import predict as spark_ui
model_info.update({
"spark": {
"fn_with_ui": spark_ui,
"fn_without_ui": spark_noui,
"endpoint": None,
"max_token": 4096,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}
})
except:
print(trimmed_format_exc())
def LLM_CATCH_EXCEPTION(f):
@@ -351,7 +427,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
method = model_info[model]["fn_without_ui"]
return method(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
else:
# 如果同时询问多个大语言模型:
# 如果同时询问多个大语言模型,这个稍微啰嗦一点,但思路相同,您不必读这个else分支
executor = ThreadPoolExecutor(max_workers=4)
models = model.split('&')
n_model = len(models)

查看文件

@@ -37,15 +37,23 @@ class GetGLMHandle(Process):
# 子进程执行
# 第一次运行,加载参数
retry = 0
LOCAL_MODEL_QUANT, device = get_conf('LOCAL_MODEL_QUANT', 'LOCAL_MODEL_DEVICE')
if LOCAL_MODEL_QUANT == "INT4": # INT4
_model_name_ = "THUDM/chatglm2-6b-int4"
elif LOCAL_MODEL_QUANT == "INT8": # INT8
_model_name_ = "THUDM/chatglm2-6b-int8"
else:
_model_name_ = "THUDM/chatglm2-6b" # FP16
while True:
try:
if self.chatglm_model is None:
self.chatglm_tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
device, = get_conf('LOCAL_MODEL_DEVICE')
self.chatglm_tokenizer = AutoTokenizer.from_pretrained(_model_name_, trust_remote_code=True)
if device=='cpu':
self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).float()
self.chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).float()
else:
self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).half().cuda()
self.chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).half().cuda()
self.chatglm_model = self.chatglm_model.eval()
break
else:
@@ -136,11 +144,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
return
if additional_fn is not None:
import core_functional
importlib.reload(core_functional) # 热更新prompt
core_functional = core_functional.get_core_functions()
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
# 处理历史信息
history_feedin = []

查看文件

@@ -185,11 +185,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
return
if additional_fn is not None:
import core_functional
importlib.reload(core_functional) # 热更新prompt
core_functional = core_functional.get_core_functions()
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
# 处理历史信息
history_feedin = []

查看文件

@@ -0,0 +1,73 @@
model_name = "ChatGLM-ONNX"
cmd_to_install = "`pip install -r request_llm/requirements_chatglm_onnx.txt`"
from transformers import AutoModel, AutoTokenizer
import time
import threading
import importlib
from toolbox import update_ui, get_conf
from multiprocessing import Process, Pipe
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns, SingletonLocalLLM
from .chatglmoonx import ChatGLMModel, chat_template
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 Local Model
# ------------------------------------------------------------------------------------------------------------------------
@SingletonLocalLLM
class GetONNXGLMHandle(LocalLLMHandle):
def load_model_info(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
self.model_name = model_name
self.cmd_to_install = cmd_to_install
def load_model_and_tokenizer(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
import os, glob
if not len(glob.glob("./request_llm/ChatGLM-6b-onnx-u8s8/chatglm-6b-int8-onnx-merged/*.bin")) >= 7: # 该模型有七个 bin 文件
from huggingface_hub import snapshot_download
snapshot_download(repo_id="K024/ChatGLM-6b-onnx-u8s8", local_dir="./request_llm/ChatGLM-6b-onnx-u8s8")
def create_model():
return ChatGLMModel(
tokenizer_path = "./request_llm/ChatGLM-6b-onnx-u8s8/chatglm-6b-int8-onnx-merged/sentencepiece.model",
onnx_model_path = "./request_llm/ChatGLM-6b-onnx-u8s8/chatglm-6b-int8-onnx-merged/chatglm-6b-int8.onnx"
)
self._model = create_model()
return self._model, None
def llm_stream_generator(self, **kwargs):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
def adaptor(kwargs):
query = kwargs['query']
max_length = kwargs['max_length']
top_p = kwargs['top_p']
temperature = kwargs['temperature']
history = kwargs['history']
return query, max_length, top_p, temperature, history
query, max_length, top_p, temperature, history = adaptor(kwargs)
prompt = chat_template(history, query)
for answer in self._model.generate_iterate(
prompt,
max_generated_tokens=max_length,
top_k=1,
top_p=top_p,
temperature=temperature,
):
yield answer
def try_to_import_special_deps(self, **kwargs):
# import something that will raise error if the user does not install requirement_*.txt
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
pass
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 GPT-Academic Interface
# ------------------------------------------------------------------------------------------------------------------------
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetONNXGLMHandle, model_name)

查看文件

@@ -129,11 +129,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
return
if additional_fn is not None:
import core_functional
importlib.reload(core_functional) # 热更新prompt
core_functional = core_functional.get_core_functions()
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
raw_input = inputs
logging.info(f'[raw_input] {raw_input}')
@@ -174,9 +171,10 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
chunk = next(stream_response)
except StopIteration:
# 非OpenAI官方接口的出现这样的报错,OpenAI和API2D不会走这里
from toolbox import regular_txt_to_markdown; tb_str = '```\n' + trimmed_format_exc() + '```'
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 远程返回错误: \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk.decode())}")
yield from update_ui(chatbot=chatbot, history=history, msg="远程返回错误:" + chunk.decode()) # 刷新界面
chunk_decoded = chunk.decode()
error_msg = chunk_decoded
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
yield from update_ui(chatbot=chatbot, history=history, msg="非Openai官方接口返回了错误:" + chunk.decode()) # 刷新界面
return
# print(chunk.decode()[6:])
@@ -187,54 +185,58 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
if chunk:
try:
chunk_decoded = chunk.decode()
# 前者API2D的
# 前者API2D的结束条件,后者是OPENAI的结束条件
if ('data: [DONE]' in chunk_decoded) or (len(json.loads(chunk_decoded[6:])['choices'][0]["delta"]) == 0):
# 判定为数据流的结束,gpt_replying_buffer也写完了
logging.info(f'[response] {gpt_replying_buffer}')
break
# 处理数据流的主体
chunkjson = json.loads(chunk_decoded[6:])
status_text = f"finish_reason: {chunkjson['choices'][0]['finish_reason']}"
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
gpt_replying_buffer = gpt_replying_buffer + json.loads(chunk_decoded[6:])['choices'][0]["delta"]["content"]
history[-1] = gpt_replying_buffer
chatbot[-1] = (history[-2], history[-1])
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
except Exception as e:
traceback.print_exc()
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
chunk = get_full_error(chunk, stream_response)
chunk_decoded = chunk.decode()
error_msg = chunk_decoded
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
if "reduce the length" in error_msg:
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入history[-2] 是本次输入, history[-1] 是本次输出
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
# history = [] # 清除历史
elif "does not exist" in error_msg:
chatbot[-1] = (chatbot[-1][0], f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格.")
elif "Incorrect API key" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由, 拒绝服务. " + openai_website)
elif "exceeded your current quota" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由, 拒绝服务." + openai_website)
elif "account is not active" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Your account is not active. OpenAI以账户失效为由, 拒绝服务." + openai_website)
elif "associated with a deactivated account" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] You are associated with a deactivated account. OpenAI以账户失效为由, 拒绝服务." + openai_website)
elif "bad forward key" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.")
elif "Not enough point" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Not enough point. API2D账户点数不足.")
else:
from toolbox import regular_txt_to_markdown
tb_str = '```\n' + trimmed_format_exc() + '```'
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
print(error_msg)
return
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
from .bridge_all import model_info
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
if "reduce the length" in error_msg:
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入history[-2] 是本次输入, history[-1] 是本次输出
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
# history = [] # 清除历史
elif "does not exist" in error_msg:
chatbot[-1] = (chatbot[-1][0], f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格.")
elif "Incorrect API key" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由, 拒绝服务. " + openai_website)
elif "exceeded your current quota" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由, 拒绝服务." + openai_website)
elif "account is not active" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Your account is not active. OpenAI以账户失效为由, 拒绝服务." + openai_website)
elif "associated with a deactivated account" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] You are associated with a deactivated account. OpenAI以账户失效为由, 拒绝服务." + openai_website)
elif "bad forward key" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.")
elif "Not enough point" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Not enough point. API2D账户点数不足.")
else:
from toolbox import regular_txt_to_markdown
tb_str = '```\n' + trimmed_format_exc() + '```'
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
return chatbot, history
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
"""
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备

查看文件

@@ -0,0 +1,282 @@
# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目
"""
该文件中主要包含三个函数
不具备多线程能力的函数:
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
具备多线程调用能力的函数
2. predict_no_ui高级实验性功能模块调用,不会实时显示在界面上,参数简单,可以多线程并行,方便实现复杂的功能逻辑
3. predict_no_ui_long_connection在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程
"""
import json
import time
import gradio as gr
import logging
import traceback
import requests
import importlib
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件不受git管控,如果有,则覆盖原config文件
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG = \
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG')
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
def get_full_error(chunk, stream_response):
"""
获取完整的从Openai返回的报错
"""
while True:
try:
chunk += next(stream_response)
except:
break
return chunk
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
"""
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
inputs
是本次问询的输入
sys_prompt:
系统静默prompt
llm_kwargs
chatGPT的内部调优参数
history
是之前的对话列表
observe_window = None
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]观测窗。observe_window[1]:看门狗
"""
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
retry = 0
while True:
try:
# make a POST request to the API endpoint, stream=False
from .bridge_all import model_info
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
response = requests.post(endpoint, headers=headers, proxies=proxies,
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
except requests.exceptions.ReadTimeout as e:
retry += 1
traceback.print_exc()
if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
stream_response = response.iter_lines()
result = ''
while True:
try: chunk = next(stream_response).decode()
except StopIteration:
break
except requests.exceptions.ConnectionError:
chunk = next(stream_response).decode() # 失败了,重试一次?再失败就没办法了。
if len(chunk)==0: continue
if not chunk.startswith('data:'):
error_msg = get_full_error(chunk.encode('utf8'), stream_response).decode()
if "reduce the length" in error_msg:
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
else:
raise RuntimeError("OpenAI拒绝了请求" + error_msg)
if ('data: [DONE]' in chunk): break # api2d 正常完成
json_data = json.loads(chunk.lstrip('data:'))['choices'][0]
delta = json_data["delta"]
if len(delta) == 0: break
if "role" in delta: continue
if "content" in delta:
result += delta["content"]
if not console_slience: print(delta["content"], end='')
if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1: observe_window[0] += delta["content"]
# 看门狗,如果超过期限没有喂狗,则终止
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("用户取消了程序。")
else: raise RuntimeError("意外Json结构"+delta)
if json_data['finish_reason'] == 'content_filter':
raise RuntimeError("由于提问含不合规内容被Azure过滤。")
if json_data['finish_reason'] == 'length':
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
return result
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
发送至chatGPT,流式获取输出。
用于基础的对话功能。
inputs 是本次问询的输入
top_p, temperature是chatGPT的内部调优参数
history 是之前的对话列表注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
additional_fn代表点击的哪个按钮,按钮见functional.py
"""
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
raw_input = inputs
logging.info(f'[raw_input] {raw_input}')
chatbot.append((inputs, ""))
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
try:
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
except RuntimeError as e:
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
return
history.append(inputs); history.append("")
retry = 0
while True:
try:
# make a POST request to the API endpoint, stream=True
from .bridge_all import model_info
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
response = requests.post(endpoint, headers=headers, proxies=proxies,
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
except:
retry += 1
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
if retry > MAX_RETRY: raise TimeoutError
gpt_replying_buffer = ""
is_head_of_the_stream = True
if stream:
stream_response = response.iter_lines()
while True:
try:
chunk = next(stream_response)
except StopIteration:
# 非OpenAI官方接口的出现这样的报错,OpenAI和API2D不会走这里
chunk_decoded = chunk.decode()
error_msg = chunk_decoded
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
yield from update_ui(chatbot=chatbot, history=history, msg="非Openai官方接口返回了错误:" + chunk.decode()) # 刷新界面
return
# print(chunk.decode()[6:])
if is_head_of_the_stream and (r'"object":"error"' not in chunk.decode()):
# 数据流的第一帧不携带content
is_head_of_the_stream = False; continue
if chunk:
try:
chunk_decoded = chunk.decode()
# 前者是API2D的结束条件,后者是OPENAI的结束条件
if 'data: [DONE]' in chunk_decoded:
# 判定为数据流的结束,gpt_replying_buffer也写完了
logging.info(f'[response] {gpt_replying_buffer}')
break
# 处理数据流的主体
chunkjson = json.loads(chunk_decoded[6:])
status_text = f"finish_reason: {chunkjson['choices'][0]['finish_reason']}"
delta = chunkjson['choices'][0]["delta"]
if "content" in delta:
gpt_replying_buffer = gpt_replying_buffer + delta["content"]
history[-1] = gpt_replying_buffer
chatbot[-1] = (history[-2], history[-1])
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
except Exception as e:
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
chunk = get_full_error(chunk, stream_response)
chunk_decoded = chunk.decode()
error_msg = chunk_decoded
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
print(error_msg)
return
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
from .bridge_all import model_info
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
if "reduce the length" in error_msg:
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入history[-2] 是本次输入, history[-1] 是本次输出
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
# history = [] # 清除历史
elif "does not exist" in error_msg:
chatbot[-1] = (chatbot[-1][0], f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格.")
elif "Incorrect API key" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由, 拒绝服务. " + openai_website)
elif "exceeded your current quota" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由, 拒绝服务." + openai_website)
elif "account is not active" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Your account is not active. OpenAI以账户失效为由, 拒绝服务." + openai_website)
elif "associated with a deactivated account" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] You are associated with a deactivated account. OpenAI以账户失效为由, 拒绝服务." + openai_website)
elif "bad forward key" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.")
elif "Not enough point" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Not enough point. API2D账户点数不足.")
else:
from toolbox import regular_txt_to_markdown
tb_str = '```\n' + trimmed_format_exc() + '```'
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
return chatbot, history
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
"""
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
"""
if not is_any_api_key(llm_kwargs['api_key']):
raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案在config.py中配置。")
headers = {
"Content-Type": "application/json",
}
conversation_cnt = len(history) // 2
messages = [{"role": "system", "content": system_prompt}]
if conversation_cnt:
for index in range(0, 2*conversation_cnt, 2):
what_i_have_asked = {}
what_i_have_asked["role"] = "user"
what_i_have_asked["content"] = history[index]
what_gpt_answer = {}
what_gpt_answer["role"] = "assistant"
what_gpt_answer["content"] = history[index+1]
if what_i_have_asked["content"] != "":
if what_gpt_answer["content"] == "": continue
if what_gpt_answer["content"] == timeout_bot_msg: continue
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
else:
messages[-1]['content'] = what_gpt_answer['content']
what_i_ask_now = {}
what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = inputs
messages.append(what_i_ask_now)
payload = {
"model": llm_kwargs['llm_model'].strip('api2d-'),
"messages": messages,
"temperature": llm_kwargs['temperature'], # 1.0,
"top_p": llm_kwargs['top_p'], # 1.0,
"n": 1,
"stream": stream,
"presence_penalty": 0,
"frequency_penalty": 0,
}
try:
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
except:
print('输入中可能存在乱码。')
return headers,payload

查看文件

@@ -116,11 +116,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
return
if additional_fn is not None:
import core_functional
importlib.reload(core_functional) # 热更新prompt
core_functional = core_functional.get_core_functions()
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
raw_input = inputs
logging.info(f'[raw_input] {raw_input}')

查看文件

@@ -0,0 +1,202 @@
model_name = "InternLM"
cmd_to_install = "`pip install -r request_llm/requirements_chatglm.txt`"
from transformers import AutoModel, AutoTokenizer
import time
import threading
import importlib
from toolbox import update_ui, get_conf
from multiprocessing import Process, Pipe
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns, SingletonLocalLLM
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 Local Model Utils
# ------------------------------------------------------------------------------------------------------------------------
def try_to_import_special_deps():
import sentencepiece
def combine_history(prompt, hist):
user_prompt = "<|User|>:{user}<eoh>\n"
robot_prompt = "<|Bot|>:{robot}<eoa>\n"
cur_query_prompt = "<|User|>:{user}<eoh>\n<|Bot|>:"
messages = hist
total_prompt = ""
for message in messages:
cur_content = message
cur_prompt = user_prompt.replace("{user}", cur_content[0])
total_prompt += cur_prompt
cur_prompt = robot_prompt.replace("{robot}", cur_content[1])
total_prompt += cur_prompt
total_prompt = total_prompt + cur_query_prompt.replace("{user}", prompt)
return total_prompt
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 Local Model
# ------------------------------------------------------------------------------------------------------------------------
@SingletonLocalLLM
class GetInternlmHandle(LocalLLMHandle):
def load_model_info(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
self.model_name = model_name
self.cmd_to_install = cmd_to_install
def try_to_import_special_deps(self, **kwargs):
"""
import something that will raise error if the user does not install requirement_*.txt
"""
import sentencepiece
def load_model_and_tokenizer(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device, = get_conf('LOCAL_MODEL_DEVICE')
if self._model is None:
tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True)
if device=='cpu':
model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True).to(torch.bfloat16)
else:
model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True).to(torch.bfloat16).cuda()
model = model.eval()
return model, tokenizer
def llm_stream_generator(self, **kwargs):
import torch
import logging
import copy
import warnings
import torch.nn as nn
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
def adaptor():
model = self._model
tokenizer = self._tokenizer
prompt = kwargs['query']
max_length = kwargs['max_length']
top_p = kwargs['top_p']
temperature = kwargs['temperature']
history = kwargs['history']
real_prompt = combine_history(prompt, history)
return model, tokenizer, real_prompt, max_length, top_p, temperature
model, tokenizer, prompt, max_length, top_p, temperature = adaptor()
prefix_allowed_tokens_fn = None
logits_processor = None
stopping_criteria = None
additional_eos_token_id = 103028
generation_config = None
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
# 🏃‍♂️🏃‍♂️🏃‍♂️ https://github.com/InternLM/InternLM/blob/efbf5335709a8c8faeac6eaf07193973ff1d56a1/web_demo.py#L25
inputs = tokenizer([prompt], padding=True, return_tensors="pt")
input_length = len(inputs["input_ids"][0])
for k, v in inputs.items():
inputs[k] = v.cuda()
input_ids = inputs["input_ids"]
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
if generation_config is None:
generation_config = model.generation_config
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(**kwargs)
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
if additional_eos_token_id is not None:
eos_token_id.append(additional_eos_token_id)
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
if has_default_max_length and generation_config.max_new_tokens is None:
warnings.warn(
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
" recommend using `max_new_tokens` to control the maximum length of the generation.",
UserWarning,
)
elif generation_config.max_new_tokens is not None:
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
if not has_default_max_length:
logging.warn(
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
"Please refer to the documentation for more information. "
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
UserWarning,
)
if input_ids_seq_length >= generation_config.max_length:
input_ids_string = "input_ids"
logging.warning(
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
" increasing `max_new_tokens`."
)
# 2. Set generation parameters if not already defined
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
logits_processor = model._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_seq_length,
encoder_input_ids=input_ids,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
logits_processor=logits_processor,
)
stopping_criteria = model._get_stopping_criteria(
generation_config=generation_config, stopping_criteria=stopping_criteria
)
logits_warper = model._get_logits_warper(generation_config)
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
scores = None
while True:
model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs)
# forward pass to get next token
outputs = model(
**model_inputs,
return_dict=True,
output_attentions=False,
output_hidden_states=False,
)
next_token_logits = outputs.logits[:, -1, :]
# pre-process distribution
next_token_scores = logits_processor(input_ids, next_token_logits)
next_token_scores = logits_warper(input_ids, next_token_scores)
# sample
probs = nn.functional.softmax(next_token_scores, dim=-1)
if generation_config.do_sample:
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
else:
next_tokens = torch.argmax(probs, dim=-1)
# update generated ids, model inputs, and length for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
model_kwargs = model._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=False
)
unfinished_sequences = unfinished_sequences.mul((min(next_tokens != i for i in eos_token_id)).long())
output_token_ids = input_ids[0].cpu().tolist()
output_token_ids = output_token_ids[input_length:]
for each_eos_token_id in eos_token_id:
if output_token_ids[-1] == each_eos_token_id:
output_token_ids = output_token_ids[:-1]
response = tokenizer.decode(output_token_ids)
yield response
# stop when each sentence is finished, or if we exceed the maximum length
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
return
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 GPT-Academic Interface
# ------------------------------------------------------------------------------------------------------------------------
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetInternlmHandle, model_name)

查看文件

@@ -154,11 +154,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
return
if additional_fn is not None:
import core_functional
importlib.reload(core_functional) # 热更新prompt
core_functional = core_functional.get_core_functions()
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
# 处理历史信息
history_feedin = []

查看文件

@@ -154,11 +154,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
return
if additional_fn is not None:
import core_functional
importlib.reload(core_functional) # 热更新prompt
core_functional = core_functional.get_core_functions()
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
# 处理历史信息
history_feedin = []

查看文件

@@ -154,11 +154,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
return
if additional_fn is not None:
import core_functional
importlib.reload(core_functional) # 热更新prompt
core_functional = core_functional.get_core_functions()
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
# 处理历史信息
history_feedin = []

查看文件

@@ -224,11 +224,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
yield from update_ui(chatbot=chatbot, history=history)
if additional_fn is not None:
import core_functional
importlib.reload(core_functional) # 热更新prompt
core_functional = core_functional.get_core_functions()
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
# 处理历史信息
history_feedin = []

查看文件

@@ -224,11 +224,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
return
if additional_fn is not None:
import core_functional
importlib.reload(core_functional) # 热更新prompt
core_functional = core_functional.get_core_functions()
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
history_feedin = []
for i in range(len(history)//2):

68
request_llm/bridge_qwen.py 普通文件
查看文件

@@ -0,0 +1,68 @@
model_name = "Qwen"
cmd_to_install = "`pip install -r request_llm/requirements_qwen.txt`"
from transformers import AutoModel, AutoTokenizer
import time
import threading
import importlib
from toolbox import update_ui, get_conf
from multiprocessing import Process, Pipe
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns, SingletonLocalLLM
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 Local Model
# ------------------------------------------------------------------------------------------------------------------------
@SingletonLocalLLM
class GetONNXGLMHandle(LocalLLMHandle):
def load_model_info(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
self.model_name = model_name
self.cmd_to_install = cmd_to_install
def load_model_and_tokenizer(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
import os, glob
import os
import platform
from modelscope import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
model_id = 'qwen/Qwen-7B-Chat'
revision = 'v1.0.1'
self._tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision, trust_remote_code=True)
# use fp16
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", revision=revision, trust_remote_code=True, fp16=True).eval()
model.generation_config = GenerationConfig.from_pretrained(model_id, trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
self._model = model
return self._model, self._tokenizer
def llm_stream_generator(self, **kwargs):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
def adaptor(kwargs):
query = kwargs['query']
max_length = kwargs['max_length']
top_p = kwargs['top_p']
temperature = kwargs['temperature']
history = kwargs['history']
return query, max_length, top_p, temperature, history
query, max_length, top_p, temperature, history = adaptor(kwargs)
for response in self._model.chat(self._tokenizer, query, history=history, stream=True):
yield response
def try_to_import_special_deps(self, **kwargs):
# import something that will raise error if the user does not install requirement_*.txt
# 🏃‍♂️🏃‍♂️🏃‍♂️ 主进程执行
import importlib
importlib.import_module('modelscope')
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 GPT-Academic Interface
# ------------------------------------------------------------------------------------------------------------------------
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetONNXGLMHandle, model_name)

49
request_llm/bridge_spark.py 普通文件
查看文件

@@ -0,0 +1,49 @@
import time
import threading
import importlib
from toolbox import update_ui, get_conf
from multiprocessing import Process, Pipe
model_name = '星火认知大模型'
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
"""
⭐多线程方法
函数的说明请见 request_llm/bridge_all.py
"""
watch_dog_patience = 5
response = ""
from .com_sparkapi import SparkRequestInstance
sri = SparkRequestInstance()
for response in sri.generate(inputs, llm_kwargs, history, sys_prompt):
if len(observe_window) >= 1:
observe_window[0] = response
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。")
return response
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
⭐单线程方法
函数的说明请见 request_llm/bridge_all.py
"""
chatbot.append((inputs, ""))
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
# 开始接收回复
from .com_sparkapi import SparkRequestInstance
sri = SparkRequestInstance()
for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)
# 总结输出
if response == f"[Local Message]: 等待{model_name}响应中 ...":
response = f"[Local Message]: {model_name}响应异常 ..."
history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history)

查看文件

@@ -248,14 +248,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
return
if additional_fn is not None:
import core_functional
importlib.reload(core_functional) # 热更新prompt
core_functional = core_functional.get_core_functions()
if "PreProcess" in core_functional[additional_fn]:
inputs = core_functional[additional_fn]["PreProcess"](
inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + \
inputs + core_functional[additional_fn]["Suffix"]
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
history_feedin = []
for i in range(len(history)//2):

查看文件

@@ -96,11 +96,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
additional_fn代表点击的哪个按钮,按钮见functional.py
"""
if additional_fn is not None:
import core_functional
importlib.reload(core_functional) # 热更新prompt
core_functional = core_functional.get_core_functions()
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
raw_input = "What I would like to say is the following: " + inputs
history.extend([inputs, ""])

229
request_llm/chatglmoonx.py 普通文件
查看文件

@@ -0,0 +1,229 @@
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 Source Code From https://huggingface.co/K024/ChatGLM-6b-onnx-u8s8/blob/main/model.py
# ------------------------------------------------------------------------------------------------------------------------
import re
import numpy as np
# import torch
from onnxruntime import InferenceSession, SessionOptions
# Currently `MatMulInteger` and `DynamicQuantizeLinear` are only supported on CPU,
# although they are documented as supported on CUDA.
providers = ["CPUExecutionProvider"]
# if torch.cuda.is_available():
# providers = ["CUDAExecutionProvider"] + providers
# Default paths
tokenizer_path = "chatglm-6b-int8-onnx-merged/sentencepiece.model"
onnx_model_path = "chatglm-6b-int8-onnx-merged/chatglm-6b-int8.onnx"
# input & output names
past_names = [f"past_{name}_{i}" for i in range(28) for name in ["key", "value"]]
present_names = [f"present_{name}_{i}" for i in range(28) for name in ["key", "value"]]
output_names = ["logits"] + present_names
# default kv_cache for first inference
default_past_key_values = {
k: np.zeros((1, 0, 32, 128), dtype=np.float32) for k in past_names
}
def chat_template(history: list[tuple[str, str]], current: str):
prompt = ""
chat_round = 0
for question, answer in history:
prompt += f"[Round {chat_round}]\n问:{question}\n答:{answer}\n"
chat_round += 1
prompt += f"[Round {chat_round}]\n问:{current}\n答:"
return prompt
def process_response(response: str):
response = response.strip()
response = response.replace("[[训练时间]]", "2023年")
punkts = [
[",", ""],
["!", ""],
[":", ""],
[";", ""],
["\?", ""],
]
for item in punkts:
response = re.sub(r"([\u4e00-\u9fff])%s" % item[0], r"\1%s" % item[1], response)
response = re.sub(r"%s([\u4e00-\u9fff])" % item[0], r"%s\1" % item[1], response)
return response
class ChatGLMModel():
def __init__(self, onnx_model_path=onnx_model_path, tokenizer_path=tokenizer_path, profile=False) -> None:
self.tokenizer = ChatGLMTokenizer(tokenizer_path)
options = SessionOptions()
options.enable_profiling = profile
self.session = InferenceSession(onnx_model_path, options, providers=providers)
self.eop_token_id = self.tokenizer["<eop>"]
def prepare_input(self, prompt: str):
input_ids, prefix_mask = self.tokenizer.encode(prompt)
input_ids = np.array([input_ids], dtype=np.longlong)
prefix_mask = np.array([prefix_mask], dtype=np.longlong)
return input_ids, prefix_mask, default_past_key_values
def sample_next_token(self, logits: np.ndarray, top_k=50, top_p=0.7, temperature=1):
# softmax with temperature
exp_logits = np.exp(logits / temperature)
probs = exp_logits / np.sum(exp_logits)
# top k
top_k_idx = np.argsort(-probs)[:top_k]
top_k_probs = probs[top_k_idx]
# top p
cumsum_probs = np.cumsum(top_k_probs)
top_k_probs[(cumsum_probs - top_k_probs) > top_p] = 0.0
top_k_probs = top_k_probs / np.sum(top_k_probs)
# sample
next_token = np.random.choice(top_k_idx, size=1, p=top_k_probs)
return next_token[0].item()
def generate_iterate(self, prompt: str, max_generated_tokens=100, top_k=50, top_p=0.7, temperature=1):
input_ids, prefix_mask, past_key_values = self.prepare_input(prompt)
output_tokens = []
while True:
inputs = {
"input_ids": input_ids,
"prefix_mask": prefix_mask,
"use_past": np.array(len(output_tokens) > 0),
}
inputs.update(past_key_values)
logits, *past_key_values = self.session.run(output_names, inputs)
past_key_values = { k: v for k, v in zip(past_names, past_key_values) }
next_token = self.sample_next_token(logits[0, -1], top_k=top_k, top_p=top_p, temperature=temperature)
output_tokens += [next_token]
if next_token == self.eop_token_id or len(output_tokens) > max_generated_tokens:
break
input_ids = np.array([[next_token]], dtype=np.longlong)
prefix_mask = np.concatenate([prefix_mask, np.array([[0]], dtype=np.longlong)], axis=1)
yield process_response(self.tokenizer.decode(output_tokens))
return process_response(self.tokenizer.decode(output_tokens))
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 Source Code From https://huggingface.co/K024/ChatGLM-6b-onnx-u8s8/blob/main/tokenizer.py
# ------------------------------------------------------------------------------------------------------------------------
import re
from sentencepiece import SentencePieceProcessor
def replace_spaces_with_blank(match: re.Match[str]):
return f"<|blank_{len(match.group())}|>"
def replace_blank_with_spaces(match: re.Match[str]):
return " " * int(match.group(1))
class ChatGLMTokenizer:
def __init__(self, vocab_file):
assert vocab_file is not None
self.vocab_file = vocab_file
self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"]
self.text_tokenizer = SentencePieceProcessor(str(vocab_file))
def __len__(self):
return len(self.text_tokenizer)
def __getitem__(self, key: str):
return self.text_tokenizer[key]
def preprocess(self, text: str, linebreak=True, whitespaces=True):
if linebreak:
text = text.replace("\n", "<n>")
if whitespaces:
text = text.replace("\t", "<|tab|>")
text = re.sub(r" {2,80}", replace_spaces_with_blank, text)
return text
def encode(
self, text: str, text_pair: str = None,
linebreak=True, whitespaces=True,
add_dummy_prefix=True, special_tokens=True,
) -> tuple[list[int], list[int]]:
"""
text: Text to encode. Bidirectional part with a [gMASK] and an <sop> for causal LM.
text_pair: causal LM part.
linebreak: Whether to encode newline (\n) in text.
whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
add_dummy_prefix: Whether to add dummy blank space in the beginning.
"""
text = self.preprocess(text, linebreak, whitespaces)
if not add_dummy_prefix:
text = "<n>" + text
tokens = self.text_tokenizer.encode(text)
prefix_mask = [1] * len(tokens)
if special_tokens:
tokens += [self.text_tokenizer["[gMASK]"], self.text_tokenizer["<sop>"]]
prefix_mask += [1, 0]
if text_pair is not None:
text_pair = self.preprocess(text_pair, linebreak, whitespaces)
pair_tokens = self.text_tokenizer.encode(text_pair)
tokens += pair_tokens
prefix_mask += [0] * len(pair_tokens)
if special_tokens:
tokens += [self.text_tokenizer["<eop>"]]
prefix_mask += [0]
return (tokens if add_dummy_prefix else tokens[2:]), prefix_mask
def decode(self, text_ids: list[int]) -> str:
text = self.text_tokenizer.decode(text_ids)
text = text.replace("<n>", "\n")
text = text.replace("<|tab|>", "\t")
text = re.sub(r"<\|blank_(\d\d?)\|>", replace_blank_with_spaces, text)
return text

184
request_llm/com_sparkapi.py 普通文件
查看文件

@@ -0,0 +1,184 @@
from toolbox import get_conf
import base64
import datetime
import hashlib
import hmac
import json
from urllib.parse import urlparse
import ssl
from datetime import datetime
from time import mktime
from urllib.parse import urlencode
from wsgiref.handlers import format_date_time
import websocket
import threading, time
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
class Ws_Param(object):
# 初始化
def __init__(self, APPID, APIKey, APISecret, gpt_url):
self.APPID = APPID
self.APIKey = APIKey
self.APISecret = APISecret
self.host = urlparse(gpt_url).netloc
self.path = urlparse(gpt_url).path
self.gpt_url = gpt_url
# 生成url
def create_url(self):
# 生成RFC1123格式的时间戳
now = datetime.now()
date = format_date_time(mktime(now.timetuple()))
# 拼接字符串
signature_origin = "host: " + self.host + "\n"
signature_origin += "date: " + date + "\n"
signature_origin += "GET " + self.path + " HTTP/1.1"
# 进行hmac-sha256进行加密
signature_sha = hmac.new(self.APISecret.encode('utf-8'), signature_origin.encode('utf-8'), digestmod=hashlib.sha256).digest()
signature_sha_base64 = base64.b64encode(signature_sha).decode(encoding='utf-8')
authorization_origin = f'api_key="{self.APIKey}", algorithm="hmac-sha256", headers="host date request-line", signature="{signature_sha_base64}"'
authorization = base64.b64encode(authorization_origin.encode('utf-8')).decode(encoding='utf-8')
# 将请求的鉴权参数组合为字典
v = {
"authorization": authorization,
"date": date,
"host": self.host
}
# 拼接鉴权参数,生成url
url = self.gpt_url + '?' + urlencode(v)
# 此处打印出建立连接时候的url,参考本demo的时候可取消上方打印的注释,比对相同参数时生成的url与自己代码生成的url是否一致
return url
class SparkRequestInstance():
def __init__(self):
XFYUN_APPID, XFYUN_API_SECRET, XFYUN_API_KEY = get_conf('XFYUN_APPID', 'XFYUN_API_SECRET', 'XFYUN_API_KEY')
self.appid = XFYUN_APPID
self.api_secret = XFYUN_API_SECRET
self.api_key = XFYUN_API_KEY
self.gpt_url = "ws://spark-api.xf-yun.com/v1.1/chat"
self.time_to_yield_event = threading.Event()
self.time_to_exit_event = threading.Event()
self.result_buf = ""
def generate(self, inputs, llm_kwargs, history, system_prompt):
llm_kwargs = llm_kwargs
history = history
system_prompt = system_prompt
import _thread as thread
thread.start_new_thread(self.create_blocking_request, (inputs, llm_kwargs, history, system_prompt))
while True:
self.time_to_yield_event.wait(timeout=1)
if self.time_to_yield_event.is_set():
yield self.result_buf
if self.time_to_exit_event.is_set():
return self.result_buf
def create_blocking_request(self, inputs, llm_kwargs, history, system_prompt):
wsParam = Ws_Param(self.appid, self.api_key, self.api_secret, self.gpt_url)
websocket.enableTrace(False)
wsUrl = wsParam.create_url()
# 收到websocket连接建立的处理
def on_open(ws):
import _thread as thread
thread.start_new_thread(run, (ws,))
def run(ws, *args):
data = json.dumps(gen_params(ws.appid, *ws.all_args))
ws.send(data)
# 收到websocket消息的处理
def on_message(ws, message):
data = json.loads(message)
code = data['header']['code']
if code != 0:
print(f'请求错误: {code}, {data}')
ws.close()
self.time_to_exit_event.set()
else:
choices = data["payload"]["choices"]
status = choices["status"]
content = choices["text"][0]["content"]
ws.content += content
self.result_buf += content
if status == 2:
ws.close()
self.time_to_exit_event.set()
self.time_to_yield_event.set()
# 收到websocket错误的处理
def on_error(ws, error):
print("error:", error)
self.time_to_exit_event.set()
# 收到websocket关闭的处理
def on_close(ws, *args):
self.time_to_exit_event.set()
# websocket
ws = websocket.WebSocketApp(wsUrl, on_message=on_message, on_error=on_error, on_close=on_close, on_open=on_open)
ws.appid = self.appid
ws.content = ""
ws.all_args = (inputs, llm_kwargs, history, system_prompt)
ws.run_forever(sslopt={"cert_reqs": ssl.CERT_NONE})
def generate_message_payload(inputs, llm_kwargs, history, system_prompt):
conversation_cnt = len(history) // 2
messages = [{"role": "system", "content": system_prompt}]
if conversation_cnt:
for index in range(0, 2*conversation_cnt, 2):
what_i_have_asked = {}
what_i_have_asked["role"] = "user"
what_i_have_asked["content"] = history[index]
what_gpt_answer = {}
what_gpt_answer["role"] = "assistant"
what_gpt_answer["content"] = history[index+1]
if what_i_have_asked["content"] != "":
if what_gpt_answer["content"] == "": continue
if what_gpt_answer["content"] == timeout_bot_msg: continue
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
else:
messages[-1]['content'] = what_gpt_answer['content']
what_i_ask_now = {}
what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = inputs
messages.append(what_i_ask_now)
return messages
def gen_params(appid, inputs, llm_kwargs, history, system_prompt):
"""
通过appid和用户的提问来生成请参数
"""
data = {
"header": {
"app_id": appid,
"uid": "1234"
},
"parameter": {
"chat": {
"domain": "general",
"temperature": llm_kwargs["temperature"],
"random_threshold": 0.5,
"max_tokens": 4096,
"auditing": "default"
}
},
"payload": {
"message": {
"text": generate_message_payload(inputs, llm_kwargs, history, system_prompt)
}
}
}
return data

查看文件

@@ -447,6 +447,15 @@ class _ChatHub:
"""
Ask a question to the bot
"""
req_header = HEADERS
if self.cookies is not None:
ws_cookies = []
for cookie in self.cookies:
ws_cookies.append(f"{cookie['name']}={cookie['value']}")
req_header.update({
'Cookie': ';'.join(ws_cookies),
})
timeout = aiohttp.ClientTimeout(total=30)
self.session = aiohttp.ClientSession(timeout=timeout)
@@ -455,7 +464,7 @@ class _ChatHub:
# Check if websocket is closed
self.wss = await self.session.ws_connect(
wss_link,
headers=HEADERS,
headers=req_header,
ssl=ssl_context,
proxy=self.proxy,
autoping=False,
@@ -510,7 +519,11 @@ class _ChatHub:
resp_txt_no_link = ""
while not final:
msg = await self.wss.receive()
objects = msg.data.split(DELIMITER)
try:
objects = msg.data.split(DELIMITER)
except :
continue
for obj in objects:
if obj is None or not obj:
continue
@@ -1109,4 +1122,4 @@ class ImageQuery(Query):
if __name__ == "__main__":
main()
main()

查看文件

@@ -0,0 +1,180 @@
from transformers import AutoModel, AutoTokenizer
import time
import threading
import importlib
from toolbox import update_ui, get_conf, Singleton
from multiprocessing import Process, Pipe
def SingletonLocalLLM(cls):
"""
一个单实例装饰器
"""
_instance = {}
def _singleton(*args, **kargs):
if cls not in _instance:
_instance[cls] = cls(*args, **kargs)
return _instance[cls]
elif _instance[cls].corrupted:
_instance[cls] = cls(*args, **kargs)
return _instance[cls]
else:
return _instance[cls]
return _singleton
class LocalLLMHandle(Process):
def __init__(self):
# ⭐主进程执行
super().__init__(daemon=True)
self.corrupted = False
self.load_model_info()
self.parent, self.child = Pipe()
self.running = True
self._model = None
self._tokenizer = None
self.info = ""
self.check_dependency()
self.start()
self.threadLock = threading.Lock()
def load_model_info(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
raise NotImplementedError("Method not implemented yet")
self.model_name = ""
self.cmd_to_install = ""
def load_model_and_tokenizer(self):
"""
This function should return the model and the tokenizer
"""
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
raise NotImplementedError("Method not implemented yet")
def llm_stream_generator(self, **kwargs):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
raise NotImplementedError("Method not implemented yet")
def try_to_import_special_deps(self, **kwargs):
"""
import something that will raise error if the user does not install requirement_*.txt
"""
# ⭐主进程执行
raise NotImplementedError("Method not implemented yet")
def check_dependency(self):
# ⭐主进程执行
try:
self.try_to_import_special_deps()
self.info = "依赖检测通过"
self.running = True
except:
self.info = f"缺少{self.model_name}的依赖,如果要使用{self.model_name},除了基础的pip依赖以外,您还需要运行{self.cmd_to_install}安装{self.model_name}的依赖。"
self.running = False
def run(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
# 第一次运行,加载参数
try:
self._model, self._tokenizer = self.load_model_and_tokenizer()
except:
self.running = False
from toolbox import trimmed_format_exc
self.child.send(f'[Local Message] 不能正常加载{self.model_name}的参数.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
self.child.send('[FinishBad]')
raise RuntimeError(f"不能正常加载{self.model_name}的参数!")
while True:
# 进入任务等待状态
kwargs = self.child.recv()
# 收到消息,开始请求
try:
for response_full in self.llm_stream_generator(**kwargs):
self.child.send(response_full)
self.child.send('[Finish]')
# 请求处理结束,开始下一个循环
except:
from toolbox import trimmed_format_exc
self.child.send(f'[Local Message] 调用{self.model_name}失败.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
self.child.send('[Finish]')
def stream_chat(self, **kwargs):
# ⭐主进程执行
self.threadLock.acquire()
self.parent.send(kwargs)
while True:
res = self.parent.recv()
if res == '[Finish]':
break
if res == '[FinishBad]':
self.running = False
self.corrupted = True
break
else:
yield res
self.threadLock.release()
def get_local_llm_predict_fns(LLMSingletonClass, model_name):
load_message = f"{model_name}尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,{model_name}消耗大量的内存CPU或显存GPU,也许会导致低配计算机卡死 ……"
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
"""
⭐多线程方法
函数的说明请见 request_llm/bridge_all.py
"""
_llm_handle = LLMSingletonClass()
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + _llm_handle.info
if not _llm_handle.running: raise RuntimeError(_llm_handle.info)
# chatglm 没有 sys_prompt 接口,因此把prompt加入 history
history_feedin = []
history_feedin.append(["What can I do?", sys_prompt])
for i in range(len(history)//2):
history_feedin.append([history[2*i], history[2*i+1]] )
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
response = ""
for response in _llm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
if len(observe_window) >= 1:
observe_window[0] = response
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。")
return response
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
⭐单线程方法
函数的说明请见 request_llm/bridge_all.py
"""
chatbot.append((inputs, ""))
_llm_handle = LLMSingletonClass()
chatbot[-1] = (inputs, load_message + "\n\n" + _llm_handle.info)
yield from update_ui(chatbot=chatbot, history=[])
if not _llm_handle.running: raise RuntimeError(_llm_handle.info)
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
# 处理历史信息
history_feedin = []
history_feedin.append(["What can I do?", system_prompt] )
for i in range(len(history)//2):
history_feedin.append([history[2*i], history[2*i+1]] )
# 开始接收回复
response = f"[Local Message]: 等待{model_name}响应中 ..."
for response in _llm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)
# 总结输出
if response == f"[Local Message]: 等待{model_name}响应中 ...":
response = f"[Local Message]: {model_name}响应异常 ..."
history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history)
return predict_no_ui_long_connection, predict

查看文件

@@ -1,5 +1,5 @@
protobuf
transformers==4.27.1
transformers>=4.27.1
cpm_kernels
torch>=1.10
mdtex2html

查看文件

@@ -0,0 +1,11 @@
protobuf
transformers>=4.27.1
cpm_kernels
torch>=1.10
mdtex2html
sentencepiece
numpy
onnxruntime
sentencepiece
streamlit
streamlit-chat

查看文件

@@ -0,0 +1,2 @@
modelscope
transformers_stream_generator

查看文件

@@ -1,66 +0,0 @@
# """
# 对各个llm模型进行单元测试
# """
def validate_path():
import os, sys
dir_name = os.path.dirname(__file__)
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
os.chdir(root_dir_assume)
sys.path.append(root_dir_assume)
validate_path() # validate path so you can run from base directory
if __name__ == "__main__":
# from request_llm.bridge_newbingfree import predict_no_ui_long_connection
# from request_llm.bridge_moss import predict_no_ui_long_connection
# from request_llm.bridge_jittorllms_pangualpha import predict_no_ui_long_connection
# from request_llm.bridge_jittorllms_llama import predict_no_ui_long_connection
from request_llm.bridge_claude import predict_no_ui_long_connection
llm_kwargs = {
'max_length': 512,
'top_p': 1,
'temperature': 1,
}
result = predict_no_ui_long_connection(inputs="你好",
llm_kwargs=llm_kwargs,
history=[],
sys_prompt="")
print('final result:', result)
# # print(result)
# from multiprocessing import Process, Pipe
# class GetGLMHandle(Process):
# def __init__(self):
# super().__init__(daemon=True)
# pass
# def run(self):
# # 子进程执行
# # 第一次运行,加载参数
# def validate_path():
# import os, sys
# dir_name = os.path.dirname(__file__)
# root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
# os.chdir(root_dir_assume + '/request_llm/jittorllms')
# sys.path.append(root_dir_assume + '/request_llm/jittorllms')
# validate_path() # validate path so you can run from base directory
# jittorllms_model = None
# import types
# try:
# if jittorllms_model is None:
# from models import get_model
# # availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
# args_dict = {'model': 'chatrwkv'}
# print('self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))')
# jittorllms_model = get_model(types.SimpleNamespace(**args_dict))
# print('done get model')
# except:
# # self.child.send('[Local Message] Call jittorllms fail 不能正常加载jittorllms的参数。')
# raise RuntimeError("不能正常加载jittorllms的参数")
# x = GetGLMHandle()
# x.start()
# input()

查看文件

@@ -18,3 +18,5 @@ openai
numpy
arxiv
rich
websocket-client
pypdf2==2.12.1

0
tests/__init__.py 普通文件
查看文件

32
tests/test_llms.py 普通文件
查看文件

@@ -0,0 +1,32 @@
# """
# 对各个llm模型进行单元测试
# """
def validate_path():
import os, sys
dir_name = os.path.dirname(__file__)
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
os.chdir(root_dir_assume)
sys.path.append(root_dir_assume)
validate_path() # validate path so you can run from base directory
if __name__ == "__main__":
# from request_llm.bridge_newbingfree import predict_no_ui_long_connection
# from request_llm.bridge_moss import predict_no_ui_long_connection
# from request_llm.bridge_jittorllms_pangualpha import predict_no_ui_long_connection
# from request_llm.bridge_jittorllms_llama import predict_no_ui_long_connection
# from request_llm.bridge_claude import predict_no_ui_long_connection
# from request_llm.bridge_internlm import predict_no_ui_long_connection
# from request_llm.bridge_qwen import predict_no_ui_long_connection
from request_llm.bridge_spark import predict_no_ui_long_connection
llm_kwargs = {
'max_length': 4096,
'top_p': 1,
'temperature': 1,
}
result = predict_no_ui_long_connection( inputs="请问什么是质子?",
llm_kwargs=llm_kwargs,
history=["你好", "我好!"],
sys_prompt="")
print('final result:', result)

52
tests/test_plugins.py 普通文件
查看文件

@@ -0,0 +1,52 @@
"""
对项目中的各个插件进行测试。运行方法:直接运行 python tests/test_plugins.py
"""
import os, sys
def validate_path(): dir_name = os.path.dirname(__file__); root_dir_assume = os.path.abspath(dir_name + '/..'); os.chdir(root_dir_assume); sys.path.append(root_dir_assume)
validate_path() # 返回项目根路径
from tests.test_utils import plugin_test
if __name__ == "__main__":
plugin_test(plugin='crazy_functions.命令行助手->命令行助手', main_input='查看当前的docker容器列表')
plugin_test(plugin='crazy_functions.解析项目源代码->解析一个Python项目', main_input="crazy_functions/test_project/python/dqn")
# plugin_test(plugin='crazy_functions.解析项目源代码->解析一个C项目', main_input="crazy_functions/test_project/cpp/cppipc")
# plugin_test(plugin='crazy_functions.Latex全文润色->Latex英文润色', main_input="crazy_functions/test_project/latex/attention")
# plugin_test(plugin='crazy_functions.批量Markdown翻译->Markdown中译英', main_input="README.md")
# plugin_test(plugin='crazy_functions.批量翻译PDF文档_多线程->批量翻译PDF文档', main_input="crazy_functions/test_project/pdf_and_word")
# plugin_test(plugin='crazy_functions.谷歌检索小助手->谷歌检索小助手', main_input="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=auto+reinforcement+learning&btnG=")
# plugin_test(plugin='crazy_functions.总结word文档->总结word文档', main_input="crazy_functions/test_project/pdf_and_word")
# plugin_test(plugin='crazy_functions.下载arxiv论文翻译摘要->下载arxiv论文并翻译摘要', main_input="1812.10695")
# plugin_test(plugin='crazy_functions.联网的ChatGPT->连接网络回答问题', main_input="谁是应急食品?")
# plugin_test(plugin='crazy_functions.解析JupyterNotebook->解析ipynb文件', main_input="crazy_functions/test_samples")
# plugin_test(plugin='crazy_functions.数学动画生成manim->动画生成', main_input="A ball split into 2, and then split into 4, and finally split into 8.")
# for lang in ["English", "French", "Japanese", "Korean", "Russian", "Italian", "German", "Portuguese", "Arabic"]:
# plugin_test(plugin='crazy_functions.批量Markdown翻译->Markdown翻译指定语言', main_input="README.md", advanced_arg={"advanced_arg": lang})
# plugin_test(plugin='crazy_functions.Langchain知识库->知识库问答', main_input="./")
# plugin_test(plugin='crazy_functions.Langchain知识库->读取知识库作答', main_input="What is the installation method?")
# plugin_test(plugin='crazy_functions.Langchain知识库->读取知识库作答', main_input="远程云服务器部署?")
# plugin_test(plugin='crazy_functions.Latex输出PDF结果->Latex翻译中文并重新编译PDF', main_input="2210.03629")
# advanced_arg = {"advanced_arg":"--llm_to_learn=gpt-3.5-turbo --prompt_prefix='根据下面的服装类型提示,想象一个穿着者,对这个人外貌、身处的环境、内心世界、人设进行描写。要求100字以内,用第二人称。' --system_prompt=''" }
# plugin_test(plugin='crazy_functions.chatglm微调工具->微调数据集生成', main_input='build/dev.json', advanced_arg=advanced_arg)
# advanced_arg = {"advanced_arg":"--pre_seq_len=128 --learning_rate=2e-2 --num_gpus=1 --json_dataset='t_code.json' --ptuning_directory='/home/hmp/ChatGLM2-6B/ptuning' " }
# plugin_test(plugin='crazy_functions.chatglm微调工具->启动微调', main_input='build/dev.json', advanced_arg=advanced_arg)

81
tests/test_utils.py 普通文件
查看文件

@@ -0,0 +1,81 @@
from toolbox import get_conf
from toolbox import set_conf
from toolbox import set_multi_conf
from toolbox import get_plugin_handle
from toolbox import get_plugin_default_kwargs
from toolbox import get_chat_handle
from toolbox import get_chat_default_kwargs
from functools import wraps
import sys
import os
def chat_to_markdown_str(chat):
result = ""
for i, cc in enumerate(chat):
result += f'\n\n{cc[0]}\n\n{cc[1]}'
if i != len(chat)-1:
result += '\n\n---'
return result
def silence_stdout(func):
@wraps(func)
def wrapper(*args, **kwargs):
_original_stdout = sys.stdout
sys.stdout = open(os.devnull, 'w')
sys.stdout.reconfigure(encoding='utf-8')
for q in func(*args, **kwargs):
sys.stdout = _original_stdout
yield q
sys.stdout = open(os.devnull, 'w')
sys.stdout.reconfigure(encoding='utf-8')
sys.stdout.close()
sys.stdout = _original_stdout
return wrapper
def silence_stdout_fn(func):
@wraps(func)
def wrapper(*args, **kwargs):
_original_stdout = sys.stdout
sys.stdout = open(os.devnull, 'w')
sys.stdout.reconfigure(encoding='utf-8')
result = func(*args, **kwargs)
sys.stdout.close()
sys.stdout = _original_stdout
return result
return wrapper
class VoidTerminal():
def __init__(self) -> None:
pass
vt = VoidTerminal()
vt.get_conf = silence_stdout_fn(get_conf)
vt.set_conf = silence_stdout_fn(set_conf)
vt.set_multi_conf = silence_stdout_fn(set_multi_conf)
vt.get_plugin_handle = silence_stdout_fn(get_plugin_handle)
vt.get_plugin_default_kwargs = silence_stdout_fn(get_plugin_default_kwargs)
vt.get_chat_handle = silence_stdout_fn(get_chat_handle)
vt.get_chat_default_kwargs = silence_stdout_fn(get_chat_default_kwargs)
vt.chat_to_markdown_str = chat_to_markdown_str
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY = \
vt.get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY')
def plugin_test(main_input, plugin, advanced_arg=None):
from rich.live import Live
from rich.markdown import Markdown
vt.set_conf(key="API_KEY", value=API_KEY)
vt.set_conf(key="LLM_MODEL", value=LLM_MODEL)
plugin = vt.get_plugin_handle(plugin)
plugin_kwargs = vt.get_plugin_default_kwargs()
plugin_kwargs['main_input'] = main_input
if advanced_arg is not None:
plugin_kwargs['plugin_kwargs'] = advanced_arg
my_working_plugin = silence_stdout(plugin)(**plugin_kwargs)
with Live(Markdown(""), auto_refresh=False) as live:
for cookies, chat, hist, msg in my_working_plugin:
md_str = vt.chat_to_markdown_str(chat)
md = Markdown(md_str)
live.update(md, refresh=True)

查看文件

@@ -103,6 +103,10 @@ mspace {
width: 10% !important;
}
button.sm {
padding: 6px 8px !important;
}
/* usage_display */
.insert_block {
position: relative;
@@ -124,15 +128,15 @@ textarea {
resize: none;
height: 100%; /* 填充父元素的高度 */
}
#main_chatbot {
/* #main_chatbot {
height: 75vh !important;
max-height: 75vh !important;
/* overflow: auto !important; */
overflow: auto !important;
z-index: 2;
transform: translateZ(0) !important;
backface-visibility: hidden !important;
will-change: transform !important;
}
} */
#prompt_result{
height: 60vh !important;
max-height: 60vh !important;
@@ -201,9 +205,9 @@ textarea.svelte-1pie7s6 {
background: #393939 !important;
border: var(--input-border-width) solid var(--input-border-color) !important;
}
.dark input[type="range"] {
/* .dark input[type="range"] {
background: #393939 !important;
}
} */
#user_info .wrap {
opacity: 0;
}
@@ -238,7 +242,7 @@ textarea.svelte-1pie7s6 {
#debug_mes {
transition: all 0.6s;
}
#main_chatbot {
#gpt-chatbot {
transition: height 0.3s ease;
}
@@ -415,7 +419,7 @@ input[type="range"]::-webkit-slider-thumb {
input[type="range"]::-webkit-slider-thumb:hover {
background: var(--neutral-50);
}
input[type=range]::-webkit-slider-runnable-track {
input[type="range"]::-webkit-slider-runnable-track {
-webkit-appearance: none;
box-shadow: none;
border: none;
@@ -440,28 +444,37 @@ ol:not(.options), ul:not(.options) {
}
/* 亮色(默认) */
#main_chatbot {
#gpt-chatbot {
background-color: var(--chatbot-background-color-light) !important;
color: var(--chatbot-color-light) !important;
box-shadow: 0 0 12px 4px rgba(0, 0, 0, 0.06);
}
/* 暗色 */
.dark #main_chatbot {
.dark #gpt-chatbot {
background-color: var(--block-background-fill) !important;
color: var(--chatbot-color-dark) !important;
box-shadow: 0 0 12px 4px rgba(0, 0, 0, 0.2);
}
#gpt-panel > div {
box-shadow: 0 0 12px 4px rgba(0, 0, 0, 0.06);
}
.dark #gpt-panel > div {
box-shadow: 0 0 12px 4px rgba(0, 0, 0, 0.2);
}
/* 屏幕宽度大于等于500px的设备 */
/* update on 2023.4.8: 高度的细致调整已写入JavaScript */
@media screen and (min-width: 500px) {
/* @media screen and (min-width: 500px) {
#main_chatbot {
height: calc(100vh - 200px);
}
#main_chatbot .wrap {
max-height: calc(100vh - 200px - var(--line-sm)*1rem - 2*var(--block-label-margin) );
}
}
} */
/* 屏幕宽度小于500px的设备 */
@media screen and (max-width: 499px) {
/* @media screen and (max-width: 499px) {
#main_chatbot {
height: calc(100vh - 140px);
}
@@ -474,8 +487,8 @@ ol:not(.options), ul:not(.options) {
#app_title h1{
letter-spacing: -1px; font-size: 22px;
}
}
#main_chatbot .wrap {
} */
#gpt-chatbot .wrap {
overflow-x: hidden
}
/* 对话气泡 */
@@ -491,11 +504,19 @@ ol:not(.options), ul:not(.options) {
[data-testid = "bot"] {
max-width: 85%;
border-bottom-left-radius: 0 !important;
background-color: var(--message-bot-background-color-light) !important;
}
[data-testid = "user"] {
max-width: 85%;
width: auto !important;
border-bottom-right-radius: 0 !important;
background-color: var(--message-user-background-color-light) !important;
}
.dark [data-testid = "bot"] {
background-color: var(--message-bot-background-color-dark) !important;
}
.dark [data-testid = "user"] {
background-color: var(--message-user-background-color-dark) !important;
}
.message p {

41
themes/green.js 普通文件
查看文件

@@ -0,0 +1,41 @@
var academic_chat = null;
var sliders = null;
var rangeInputs = null;
var numberInputs = null;
function set_elements() {
academic_chat = document.querySelector('gradio-app');
async function get_sliders() {
sliders = document.querySelectorAll('input[type="range"]');
while (sliders.length == 0) {
await new Promise(r => setTimeout(r, 100));
sliders = document.querySelectorAll('input[type="range"]');
}
setSlider();
}
get_sliders();
}
function setSlider() {
rangeInputs = document.querySelectorAll('input[type="range"]');
numberInputs = document.querySelectorAll('input[type="number"]')
function setSliderRange() {
var range = document.querySelectorAll('input[type="range"]');
range.forEach(range => {
range.style.backgroundSize = (range.value - range.min) / (range.max - range.min) * 100 + '% 100%';
});
}
setSliderRange();
rangeInputs.forEach(rangeInput => {
rangeInput.addEventListener('input', setSliderRange);
});
numberInputs.forEach(numberInput => {
numberInput.addEventListener('input', setSliderRange);
})
}
window.addEventListener("DOMContentLoaded", () => {
set_elements();
});

查看文件

@@ -56,14 +56,14 @@ def adjust_theme():
button_primary_background_fill_hover="*primary_400",
button_primary_border_color="*primary_500",
button_primary_border_color_dark="*primary_600",
button_primary_text_color="wihte",
button_primary_text_color="white",
button_primary_text_color_dark="white",
button_secondary_background_fill="*neutral_100",
button_secondary_background_fill_hover="*neutral_50",
button_secondary_background_fill_dark="*neutral_900",
button_secondary_text_color="*neutral_800",
button_secondary_text_color_dark="white",
background_fill_primary="#F7F7F7",
background_fill_primary="*neutral_50",
background_fill_primary_dark="#1F1F1F",
block_title_text_color="*primary_500",
block_title_background_fill_dark="*primary_900",
@@ -87,6 +87,10 @@ def adjust_theme():
<script src="file=docs/waifu_plugin/jquery-ui.min.js"></script>
<script src="file=docs/waifu_plugin/autoload.js"></script>
"""
with open('themes/green.js', 'r', encoding='utf8') as f:
js += f"<script>{f.read()}</script>"
gradio_original_template_fn = gr.routes.templates.TemplateResponse
def gradio_new_template_fn(*args, **kwargs):
res = gradio_original_template_fn(*args, **kwargs)

查看文件

@@ -117,20 +117,20 @@ def CatchException(f):
"""
@wraps(f)
def decorated(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT=-1):
def decorated(main_input, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, *args, **kwargs):
try:
yield from f(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT)
yield from f(main_input, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, *args, **kwargs)
except Exception as e:
from check_proxy import check_proxy
from toolbox import get_conf
proxies, = get_conf('proxies')
tb_str = '```\n' + trimmed_format_exc() + '```'
if len(chatbot) == 0:
chatbot.clear()
chatbot.append(["插件调度异常", "异常原因"])
chatbot[-1] = (chatbot[-1][0],
if len(chatbot_with_cookie) == 0:
chatbot_with_cookie.clear()
chatbot_with_cookie.append(["插件调度异常", "异常原因"])
chatbot_with_cookie[-1] = (chatbot_with_cookie[-1][0],
f"[Local Message] 实验性函数调用出错: \n\n{tb_str} \n\n当前代理可用性: \n\n{check_proxy(proxies)}")
yield from update_ui(chatbot=chatbot, history=history, msg=f'异常 {e}') # 刷新界面
yield from update_ui(chatbot=chatbot_with_cookie, history=history, msg=f'异常 {e}') # 刷新界面
return decorated
@@ -196,11 +196,10 @@ def write_results_to_file(history, file_name=None):
import time
if file_name is None:
# file_name = time.strftime("chatGPT分析报告%Y-%m-%d-%H-%M-%S", time.localtime()) + '.md'
file_name = 'chatGPT分析报告' + \
time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.md'
file_name = 'GPT-Report-' + gen_time_str() + '.md'
os.makedirs('./gpt_log/', exist_ok=True)
with open(f'./gpt_log/{file_name}', 'w', encoding='utf8') as f:
f.write('# chatGPT 分析报告\n')
f.write('# GPT-Academic Report\n')
for i, content in enumerate(history):
try:
if type(content) != str: content = str(content)
@@ -219,6 +218,37 @@ def write_results_to_file(history, file_name=None):
return res
def write_history_to_file(history, file_basename=None, file_fullname=None):
"""
将对话记录history以Markdown格式写入文件中。如果没有指定文件名,则使用当前时间生成文件名。
"""
import os
import time
if file_fullname is None:
if file_basename is not None:
file_fullname = os.path.join(get_log_folder(), file_basename)
else:
file_fullname = os.path.join(get_log_folder(), f'GPT-Academic-{gen_time_str()}.md')
os.makedirs(os.path.dirname(file_fullname), exist_ok=True)
with open(file_fullname, 'w', encoding='utf8') as f:
f.write('# GPT-Academic Report\n')
for i, content in enumerate(history):
try:
if type(content) != str: content = str(content)
except:
continue
if i % 2 == 0:
f.write('## ')
try:
f.write(content)
except:
# remove everything that cannot be handled by utf8
f.write(content.encode('utf-8', 'ignore').decode())
f.write('\n\n')
res = os.path.abspath(file_fullname)
return res
def regular_txt_to_markdown(text):
"""
将普通文本转换为Markdown格式的文本。
@@ -466,7 +496,7 @@ def promote_file_to_downloadzone(file, rename_file=None, chatbot=None):
# 将文件复制一份到下载区
import shutil
if rename_file is None: rename_file = f'{gen_time_str()}-{os.path.basename(file)}'
new_path = os.path.join(f'./gpt_log/', rename_file)
new_path = os.path.join(get_log_folder(), rename_file)
# 如果已经存在,先删除
if os.path.exists(new_path) and not os.path.samefile(new_path, file): os.remove(new_path)
# 把文件复制过去
@@ -477,6 +507,10 @@ def promote_file_to_downloadzone(file, rename_file=None, chatbot=None):
else: current = []
chatbot._cookies.update({'file_to_promote': [new_path] + current})
def disable_auto_promotion(chatbot):
chatbot._cookies.update({'file_to_promote': []})
return
def on_file_uploaded(files, chatbot, txt, txt2, checkboxes):
"""
当文件被上传时的回调函数
@@ -492,7 +526,7 @@ def on_file_uploaded(files, chatbot, txt, txt2, checkboxes):
shutil.rmtree('./private_upload/')
except:
pass
time_tag = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
time_tag = gen_time_str()
os.makedirs(f'private_upload/{time_tag}', exist_ok=True)
err_msg = ''
for file in files:
@@ -538,7 +572,11 @@ def load_chat_cookies():
return {'api_key': API_KEY, 'llm_model': LLM_MODEL}
def is_openai_api_key(key):
API_MATCH_ORIGINAL = re.match(r"sk-[a-zA-Z0-9]{48}$", key)
CUSTOM_API_KEY_PATTERN, = get_conf('CUSTOM_API_KEY_PATTERN')
if len(CUSTOM_API_KEY_PATTERN) != 0:
API_MATCH_ORIGINAL = re.match(CUSTOM_API_KEY_PATTERN, key)
else:
API_MATCH_ORIGINAL = re.match(r"sk-[a-zA-Z0-9]{48}$", key)
return bool(API_MATCH_ORIGINAL)
def is_azure_api_key(key):
@@ -594,7 +632,7 @@ def select_api_key(keys, llm_model):
if is_azure_api_key(k): avail_key_list.append(k)
if len(avail_key_list) == 0:
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源右下角更换模型菜单中可切换openai,azureapi2d请求源")
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源右下角更换模型菜单中可切换openai,azure,claude,api2d请求源)")
api_key = random.choice(avail_key_list) # 随机负载均衡
return api_key
@@ -670,13 +708,14 @@ def read_single_conf_with_lru_cache(arg):
# 在读取API_KEY时,检查一下是不是忘了改config
if arg == 'API_KEY':
print亮蓝(f"[API_KEY] 本项目现已支持OpenAI和API2D的api-key。也支持同时填写多个api-key,如API_KEY=\"openai-key1,openai-key2,api2d-key3\"")
print亮蓝(f"[API_KEY] 本项目现已支持OpenAI和Azure的api-key。也支持同时填写多个api-key,如API_KEY=\"openai-key1,openai-key2,azure-key3\"")
print亮蓝(f"[API_KEY] 您既可以在config.py中修改api-key(s),也可以在问题输入区输入临时的api-key(s),然后回车键提交后即可生效。")
if is_any_api_key(r):
print亮绿(f"[API_KEY] 您的 API_KEY 是: {r[:15]}*** API_KEY 导入成功")
else:
print亮红( "[API_KEY] 正确的 API_KEY 'sk'开头的51位密钥OpenAI,或者 'fk'开头的41位密钥,请在config文件中修改API密钥之后再运行。")
print亮红( "[API_KEY] 的 API_KEY 不满足任何一种已知的密钥格式,请在config文件中修改API密钥之后再运行。")
if arg == 'proxies':
if not read_single_conf_with_lru_cache('USE_PROXY'): r = None # 检查USE_PROXY,防止proxies单独起作用
if r is None:
print亮红('[PROXY] 网络代理状态未配置。无代理状态下很可能无法访问OpenAI家族的模型。建议检查USE_PROXY选项是否修改。')
else:
@@ -685,6 +724,7 @@ def read_single_conf_with_lru_cache(arg):
return r
@lru_cache(maxsize=128)
def get_conf(*args):
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
res = []
@@ -843,8 +883,7 @@ def zip_folder(source_folder, dest_folder, zip_name):
print(f"Zip file created at {zip_file}")
def zip_result(folder):
import time
t = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
t = gen_time_str()
zip_folder(folder, './gpt_log/', f'{t}-result.zip')
return pj('./gpt_log/', f'{t}-result.zip')
@@ -852,6 +891,11 @@ def gen_time_str():
import time
return time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
def get_log_folder(user='default', plugin_name='shared'):
_dir = os.path.join(os.path.dirname(__file__), 'gpt_log', user, plugin_name)
if not os.path.exists(_dir): os.makedirs(_dir)
return _dir
class ProxyNetworkActivate():
"""
这段代码定义了一个名为TempProxy的空上下文管理器, 用于给一小段代码上代理
@@ -883,4 +927,114 @@ def objload(file='objdump.tmp'):
return
with open(file, 'rb') as f:
return pickle.load(f)
def Singleton(cls):
"""
一个单实例装饰器
"""
_instance = {}
def _singleton(*args, **kargs):
if cls not in _instance:
_instance[cls] = cls(*args, **kargs)
return _instance[cls]
return _singleton
"""
========================================================================
第四部分
接驳虚空终端:
- set_conf: 在运行过程中动态地修改配置
- set_multi_conf: 在运行过程中动态地修改多个配置
- get_plugin_handle: 获取插件的句柄
- get_plugin_default_kwargs: 获取插件的默认参数
- get_chat_handle: 获取简单聊天的句柄
- get_chat_default_kwargs: 获取简单聊天的默认参数
========================================================================
"""
def set_conf(key, value):
from toolbox import read_single_conf_with_lru_cache, get_conf
read_single_conf_with_lru_cache.cache_clear()
get_conf.cache_clear()
os.environ[key] = str(value)
altered, = get_conf(key)
return altered
def set_multi_conf(dic):
for k, v in dic.items(): set_conf(k, v)
return
def get_plugin_handle(plugin_name):
"""
e.g. plugin_name = 'crazy_functions.批量Markdown翻译->Markdown翻译指定语言'
"""
import importlib
assert '->' in plugin_name, \
"Example of plugin_name: crazy_functions.批量Markdown翻译->Markdown翻译指定语言"
module, fn_name = plugin_name.split('->')
f_hot_reload = getattr(importlib.import_module(module, fn_name), fn_name)
return f_hot_reload
def get_chat_handle():
"""
"""
from request_llm.bridge_all import predict_no_ui_long_connection
return predict_no_ui_long_connection
def get_plugin_default_kwargs():
"""
"""
from toolbox import get_conf, ChatBotWithCookies
WEB_PORT, LLM_MODEL, API_KEY = \
get_conf('WEB_PORT', 'LLM_MODEL', 'API_KEY')
llm_kwargs = {
'api_key': API_KEY,
'llm_model': LLM_MODEL,
'top_p':1.0,
'max_length': None,
'temperature':1.0,
}
chatbot = ChatBotWithCookies(llm_kwargs)
# txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port
default_plugin_kwargs = {
"main_input": "./README.md",
"llm_kwargs": llm_kwargs,
"plugin_kwargs": {},
"chatbot_with_cookie": chatbot,
"history": [],
"system_prompt": "You are a good AI.",
"web_port": WEB_PORT
}
return default_plugin_kwargs
def get_chat_default_kwargs():
"""
"""
from toolbox import get_conf
LLM_MODEL, API_KEY = get_conf('LLM_MODEL', 'API_KEY')
llm_kwargs = {
'api_key': API_KEY,
'llm_model': LLM_MODEL,
'top_p':1.0,
'max_length': None,
'temperature':1.0,
}
default_chat_kwargs = {
"inputs": "Hello there, are you ready?",
"llm_kwargs": llm_kwargs,
"history": [],
"sys_prompt": "You are AI assistant",
"observe_window": None,
"console_slience": False,
}
return default_chat_kwargs

查看文件

@@ -1,5 +1,5 @@
{
"version": 3.46,
"version": 3.48,
"show_feature": true,
"new_feature": "临时修复theme的文件丢失问题 <-> 新增实时语音对话插件(自动断句,脱手对话) <-> 支持加载自定义的ChatGLM2微调模型 <-> 动态ChatBot窗口高度 <-> 修复Azure接口的BUG <-> 完善多语言模块 <-> 完善本地Latex矫错和翻译功能 <-> 增加gpt-3.5-16k的支持 <-> 新增最强Arxiv论文翻译插件 <-> 修复gradio复制按钮BUG <-> 修复PDF翻译的BUG, 新增HTML中英双栏对照 <-> 添加了OpenAI图片生成插件"
}
"new_feature": "接入阿里通义千问、讯飞星火、上海AI-Lab书生 <-> 优化一键升级 <-> 提高arxiv翻译速度和成功率 <-> 支持自定义APIKEY格式 <-> 临时修复theme的文件丢失问题 <-> 新增实时语音对话插件(自动断句,脱手对话) <-> 支持加载自定义的ChatGLM2微调模型 <-> 动态ChatBot窗口高度 <-> 修复Azure接口的BUG <-> 完善多语言模块 <-> 完善本地Latex矫错和翻译功能 <-> 增加gpt-3.5-16k的支持"
}