比较提交

..

896 次代码提交

作者 SHA1 备注 提交日期
hongyi-zhao
0a7455d283 Update bridge_all.py
删除 "chatgpt_website" 函数,从而不再支持域基于逆向工程的方法的接口,该方法对应的实现项目为:https://github.com/acheong08/ChatGPT-to-API/。目前,该项目已被开发者 archived,且该方法由于其实现的原理,而不可能是稳健和完美的,因此不是可持续维护的。
2024-01-13 08:33:03 +08:00
binary-husky
0a2805513e better gui interaction (#1459) 2024-01-07 19:13:12 +08:00
binary-husky
c22867b74c Merge pull request #1458 from binary-husky/frontier
introduce Gemini & Format code
2024-01-07 16:24:33 +08:00
binary-husky
2abe665521 Merge branch 'master' into frontier 2024-01-05 16:12:41 +08:00
binary-husky
b0e6c4d365 change ui prompt 2024-01-05 16:11:30 +08:00
fzcqc
d883c7f34b fix: expected_words添加反斜杆 (#1442) 2024-01-03 19:57:10 +08:00
Menghuan1918
aba871342f 修复分割函数中使用的变量错误 (#1443)
* Fix force_breakdown function parameter name

* Add handling for PDFs with lowercase starting paragraphs

* Change first lowercase word in meta_txt to uppercase
2024-01-03 19:49:17 +08:00
qingxu fu
37744a9cb1 jpeg type align for gemini 2023-12-31 20:28:39 +08:00
qingxu fu
480516380d re-format code to with pre-commit 2023-12-31 19:30:32 +08:00
qingxu fu
60ba712131 use legacy image io for gemini 2023-12-31 19:02:40 +08:00
XIao
a7c960dcb0 适配 google gemini 优化为从用户input中提取文件 (#1419)
适配 google gemini 优化为从用户input中提取文件
2023-12-31 18:05:55 +08:00
binary-husky
a96f842b3a minor ui change 2023-12-30 02:57:42 +08:00
binary-husky
417ca91e23 minor css change 2023-12-30 00:55:52 +08:00
binary-husky
ef8fadfa18 fix ui element padding 2023-12-29 15:16:33 +08:00
binary-husky
865c4ca993 Update README.md 2023-12-26 22:51:56 +08:00
binary-husky
31304f481a remove console log 2023-12-25 22:57:09 +08:00
binary-husky
1bd3637d32 modify image gen plugin user interaction 2023-12-25 22:24:12 +08:00
binary-husky
160a683667 smart input panel swap 2023-12-25 22:05:14 +08:00
binary-husky
49ca03ca06 Merge branch 'master' into frontier 2023-12-25 21:43:33 +08:00
binary-husky
c625348ce1 smarter chatbot height adjustment 2023-12-25 21:26:24 +08:00
binary-husky
6d4a74893a Merge pull request #1415 from binary-husky/frontier
Merge Frontier Branch
2023-12-25 20:18:56 +08:00
qingxu fu
5c7499cada compat with some third party api 2023-12-25 17:21:35 +08:00
binary-husky
f522691529 Merge pull request #1398 from leike0813/frontier
添加通义千问在线模型系列支持&增加插件
2023-12-24 18:21:45 +08:00
binary-husky
ca85573ec1 Update README.md 2023-12-24 18:14:57 +08:00
binary-husky
2c7bba5c63 change dash scope api key check behavior 2023-12-23 21:35:42 +08:00
binary-husky
e22f0226d5 Merge branch 'master' into leike0813-frontier 2023-12-23 21:00:38 +08:00
binary-husky
0f250305b4 add urllib3 version limit 2023-12-23 20:59:32 +08:00
binary-husky
7606f5c130 name fix 2023-12-23 20:55:58 +08:00
binary-husky
4f0dcc431c Merge branch 'frontier' of https://github.com/leike0813/gpt_academic into leike0813-frontier 2023-12-23 20:42:43 +08:00
binary-husky
6ca0dd2f9e Merge pull request #1410 from binary-husky/frontier
fix spark image understanding api
2023-12-23 17:49:35 +08:00
binary-husky
e3e9921f6b correct the misuse of spark image understanding 2023-12-23 17:46:25 +08:00
binary-husky
867ddd355e adjust green theme layout 2023-12-22 21:59:18 +08:00
binary-husky
bb431db7d3 upgrade to version 3.64 2023-12-21 14:44:35 +08:00
binary-husky
43568b83e1 improve file upload notification 2023-12-21 14:39:58 +08:00
Keldos
2b90302851 feat: drag file to chatbot to upload 拖动以上传文件 (#1396)
* feat: 拖动以上传文件

* 上传文件过程中转圈圈

* fix: 解决仅在第一次上传时才有上传动画的问题

---------

Co-authored-by: 505030475 <qingxu.fu@outlook.com>
2023-12-21 10:24:11 +08:00
binary-husky
f7588d4776 avoid adding the same file multiple times
to the chatbot's files_to_promote list
2023-12-20 11:50:54 +08:00
binary-husky
a0bfa7ba1c improve long text breakdown perfomance 2023-12-20 11:50:54 +08:00
leike0813
c60a7452bf Improve NOUGAT pdf plugin
Add an API version of NOUGAT plugin
Add advanced argument support to NOUGAT plugin

Adapt new text breakdown function

bugfix
2023-12-20 08:57:27 +08:00
leike0813
68a49d3758 Add 2 plugins
相当于将“批量总结PDF文档”插件拆成了两部分,目的在于使用廉价的模型干粗活,再将关键的最终总结交给GPT-4,降低使用成本
批量总结PDF文档_初步:初步总结PDF,每个PDF输出一个md文档
批量总结Markdown文档_进阶:将所有md文档高度凝练并汇总至一个md文档,可直接使用“批量总结PDF文档_初步”的输出结果作为输入
2023-12-20 07:44:53 +08:00
leike0813
ac3d4cf073 Add support to aliyun qwen online models.
Rename model tag "qwen" to "qwen-local"
Add model tag "qwen-turbo", "qwen-plus", "qwen-max"
Add corresponding model interfaces in request_llms/bridge_all.py
Add configuration variable “DASHSCOPE_API_KEY"
Rename request_llms/bridge_qwen.py to bridge_qwen_local.py to distinguish it from the online model interface
2023-12-20 07:37:26 +08:00
binary-husky
9479dd984c avoid adding the same file multiple times
to the chatbot's files_to_promote list
2023-12-19 19:43:03 +08:00
binary-husky
3c271302cc improve long text breakdown perfomance 2023-12-19 19:30:44 +08:00
binary-husky
6e9936531d fix theme shifting bug 2023-12-17 19:45:37 +08:00
binary-husky
439147e4b7 re-arrange main.py 2023-12-17 15:55:15 +08:00
binary-husky
8d13821099 a lm-based story writing game 2023-12-15 23:27:12 +08:00
binary-husky
49fe06ed69 add light edge for audio btn 2023-12-15 21:12:39 +08:00
binary-husky
7882ce7304 Merge branch 'master' into frontier 2023-12-15 16:34:06 +08:00
binary-husky
dc68e601a5 optimize audio plugin 2023-12-15 16:28:42 +08:00
binary-husky
d169fb4b16 fix typo 2023-12-15 13:32:39 +08:00
binary-husky
36e19d5202 compat further with one api 2023-12-15 13:16:06 +08:00
binary-husky
c5f1e4e392 version 3.63 2023-12-15 13:03:52 +08:00
binary-husky
d3f7267a63 Merge branch 'master' into frontier 2023-12-15 12:58:05 +08:00
qingxu fu
f4127a9c9c change clip history policy 2023-12-15 12:52:21 +08:00
binary-husky
c181ad38b4 Update build-with-all-capacity-beta.yml 2023-12-14 12:23:49 +08:00
binary-husky
107944f5b7 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-12-14 11:01:02 +08:00
binary-husky
8c7569b689 修复protobuf版本错误 2023-12-14 11:00:55 +08:00
binary-husky
fa374bf1fc try full dockerfile with vector store 2023-12-11 22:50:19 +08:00
binary-husky
c0a36e37be Merge branch 'master' into frontier 2023-12-09 22:36:28 +08:00
binary-husky
2f2b869efd turn off plugin hot-reload by default 2023-12-09 21:54:34 +08:00
binary-husky
2f148bada0 Merge branch 'new_langchain' 2023-12-09 21:41:33 +08:00
binary-husky
916b2e8aa7 support azure in multi-lang translation 2023-12-09 20:18:44 +08:00
binary-husky
0cb7dd5280 test vector store on docker 2023-12-08 22:22:01 +08:00
binary-husky
892ccb14c7 互动游戏 2023-12-08 00:18:04 +08:00
qingxu fu
21bccf69d2 add installation info 2023-12-07 21:29:41 +08:00
binary-husky
7bac8f4bd3 fix local vector store bug 2023-12-06 22:45:14 +08:00
binary-husky
d0c2923ab1 Merge pull request #1352 from jlw463195395/master
修复deepseekcoder爆显存,加入int8,int4通用加载量化。
2023-12-06 21:37:05 +08:00
binary-husky
8a6e96c369 知识库插件修正 2023-12-05 22:56:19 +08:00
binary-husky
49f3fcf2c0 vector store external to internal 2023-12-05 21:22:15 +08:00
binary-husky
2b96a60b76 Merge branch 'master' into frontier 2023-12-05 15:08:49 +08:00
binary-husky
ec60a85cac new vector store establishment 2023-12-05 00:15:17 +08:00
binary-husky
647d9f88db Merge pull request #1356 from alphaply/update-for-qwen
修复了qwen使用本地模型时候的报错
2023-12-04 15:45:10 +08:00
Alpha
b0c627909a 更改了一些注释 2023-12-04 12:51:41 +08:00
binary-husky
102bf2f1eb Merge pull request #1348 from Skyzayre/TestServer
修改插件分类名称,丰富dalle3风格参数选择
2023-12-04 11:14:32 +08:00
binary-husky
26291b33d1 Merge branch 'TestServer' of https://github.com/Skyzayre/gpt_academic 2023-12-04 11:01:14 +08:00
binary-husky
4f04d810b7 Merge pull request #1342 from Kilig947/copy_moitoring
监听输入框,支持粘贴上传文件
2023-12-04 10:54:50 +08:00
binary-husky
6d2f126253 recv requirements.txt 2023-12-04 10:53:07 +08:00
binary-husky
e5b296d221 Merge branch 'copy_moitoring' of https://github.com/Kilig947/gpt_academic into Kilig947-copy_moitoring 2023-12-04 10:52:31 +08:00
binary-husky
7933675c12 Merge pull request #1347 from Skyzayre/README-edit
转化README徽章为动态徽章
2023-12-04 10:50:20 +08:00
binary-husky
692ff4b59c remove line break 2023-12-04 10:47:07 +08:00
binary-husky
4d8b535c79 Merge branch 'README-edit' of https://github.com/Skyzayre/gpt_academic into Skyzayre-README-edit2 2023-12-04 10:44:46 +08:00
binary-husky
3c03f240ba move token limit conf to bridge_all.py 2023-12-04 10:39:10 +08:00
binary-husky
9bfc3400f9 Merge branch 'master' of https://github.com/jlw463195395/gpt_academic into jlw463195395-master 2023-12-04 10:34:19 +08:00
Skyzayre
95504f0bb7 Resolve conflicts 2023-12-04 10:31:12 +08:00
binary-husky
0cd3274d04 combine qwen model family 2023-12-04 10:30:02 +08:00
binary-husky
2cef81abbe Merge branch 'update-for-qwen' of https://github.com/alphaply/gpt_academic into alphaply-update-for-qwen 2023-12-04 10:09:21 +08:00
binary-husky
6f9bc5d206 Merge branch 'master' into frontier 2023-12-04 00:35:11 +08:00
Alpha
94ab41d3c0 添加了qwen1.8b模型 2023-12-02 23:12:25 +08:00
Alpha
da376068e1 修复了qwen使用本地模型时候的报错 2023-12-02 21:31:59 +08:00
jlw463195935
552219fd5a 加入了int4 int8量化,加入默认fp16加载(in4和int8需要安装额外的库,目前只测试加入deepseek-coder模型,后续测试会加入更多)
解决deepseek-coder连续对话token无限增长爆显存的问题
2023-12-01 16:17:30 +08:00
jlw463195935
4985986243 加入了int4 int8量化,加入默认fp16加载(in4和int8需要安装额外的库)
解决连续对话token无限增长爆显存的问题
2023-12-01 16:11:44 +08:00
Skyzayre
d99b443b4c 优化部分翻译 2023-12-01 10:51:04 +08:00
Skyzayre
2aab6cb708 优化部分翻译 2023-12-01 10:50:20 +08:00
Skyzayre
1134723c80 修改docs中插件分类 2023-12-01 10:40:11 +08:00
Skyzayre
6126024f2c dall-e-3添加 'style' 风格参数
dall-e-3添加 'style' 风格参数(参考 platform.openai.com/doc/api-reference),修改dall-e-3作图时的参数判断逻辑
2023-12-01 10:36:59 +08:00
Skyzayre
ef12d4f754 修改dalle3参数输入区提示语 2023-12-01 10:31:50 +08:00
Skyzayre
e8dd3c02f2 修改插件对应的分类 2023-12-01 10:30:25 +08:00
Skyzayre
e7f4c804eb 修改插件分类名称
将原有分类 “对话” 更名为 “对话&作图”
2023-12-01 10:27:25 +08:00
Skyzayre
3d6ee5c755 转化README徽章为动态徽章
将license、version、realease徽章都转化为动态徽章,减少README维护成本
2023-12-01 09:29:45 +08:00
binary-husky
d8958da8cd 修改Typo 2023-12-01 09:28:22 +08:00
binary-husky
a64d550045 修改README中的一些换行符 2023-11-30 23:23:54 +08:00
binary-husky
d876a81e78 Merge pull request #1337 from Skyzayre/README-edit
修饰README,修正图片链接格式
2023-11-30 23:09:16 +08:00
binary-husky
6723eb77b2 version3.62 2023-11-30 23:08:33 +08:00
binary-husky
86891e3535 Merge branch 'README-edit' of https://github.com/Skyzayre/gpt_academic into Skyzayre-README-edit 2023-11-30 22:58:19 +08:00
binary-husky
2f805db35d Merge branch 'master' into frontier 2023-11-30 22:37:07 +08:00
binary-husky
ecaf2bdf45 add comparison pdf file save and load 2023-11-30 22:36:16 +08:00
binary-husky
22e00eb1c5 Merge branch 'master' into frontier 2023-11-30 22:24:34 +08:00
qingxu fu
900fad69cf produce comparison pdf cache 2023-11-30 22:21:44 +08:00
qingxu fu
55d807c116 解决内存泄露问题 2023-11-30 22:19:05 +08:00
505030475
9a0ed248ca 谁是卧底小游戏 2023-11-30 00:15:09 +08:00
spike
88802b0f72 增加无法粘贴的toast 2023-11-29 20:15:40 +08:00
spike
5720ac127c 监听输入框,支持粘贴上传文件 2023-11-29 20:04:15 +08:00
Skyzayre
f44642d9d2 Update README.md 2023-11-29 13:51:44 +08:00
Skyzayre
29775dedd8 Update README.md 2023-11-29 13:49:38 +08:00
Skyzayre
6417ca9dde Update README.md 2023-11-29 13:46:43 +08:00
Skyzayre
f417c1ce6d Update README.md 2023-11-29 13:46:00 +08:00
Skyzayre
e4c057f5a3 Update README.md 2023-11-29 13:39:33 +08:00
Skyzayre
f9e9b6f4ec Update README.md 2023-11-29 13:38:08 +08:00
Skyzayre
c141e767c6 Update README.md 2023-11-29 13:37:20 +08:00
Skyzayre
17f361d63b Update README.md 2023-11-29 13:11:29 +08:00
Skyzayre
8780fe29f1 Update README.md 2023-11-29 13:07:27 +08:00
Skyzayre
d57bb8afbe Update README.md 2023-11-29 11:41:05 +08:00
Skyzayre
d39945c415 Update README.md 2023-11-29 11:38:59 +08:00
Skyzayre
688df6aa24 Update README.md 2023-11-29 11:28:37 +08:00
binary-husky
b24fef8a61 Merge branch 'master' into frontier 2023-11-29 00:32:56 +08:00
binary-husky
8c840f3d4c 看板娘效果修正 2023-11-29 00:28:13 +08:00
binary-husky
577d3d566b 修复看板娘不断分裂的BUG 2023-11-29 00:11:48 +08:00
qingxu fu
fd92766083 Merge branch 'master' into frontier 2023-11-27 11:00:58 +08:00
qingxu fu
2d2e02040d DALLE2修改图像插件 2023-11-26 01:08:34 +08:00
qingxu fu
aee57364dd edit image 2023-11-26 00:24:51 +08:00
qingxu fu
7ca37c4831 把gpt-4-vision-preview添加到支持列表中 2023-11-25 23:14:57 +08:00
binary-husky
5b06a6cae5 Merge branch 'master' into frontier 2023-11-24 03:28:07 +08:00
qingxu fu
5d5695cd9a version 3.61 2023-11-24 03:19:20 +08:00
qingxu fu
fd72894c90 修复错误的class命名 2023-11-24 02:42:58 +08:00
qingxu fu
c1abec2e4b Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-11-24 02:36:39 +08:00
qingxu fu
9916f59753 接入deepseek-coder 2023-11-24 02:35:44 +08:00
binary-husky
e6716ccf63 添加zhipuai依赖安装提醒 2023-11-24 01:47:03 +08:00
binary-husky
e533ed6d12 修正并行运行时的截断 2023-11-23 17:51:00 +08:00
binary-husky
4fefbb80ac Merge branch 'master' into frontier 2023-11-23 16:21:37 +08:00
qingxu fu
1253a2b0a6 修正错误地把重名路径当成文件的bug 2023-11-23 15:37:00 +08:00
binary-husky
71537b570f Merge pull request #1315 from Harry67Hu/master
fix MacOS-zip bug
2023-11-22 16:49:22 +08:00
Hao Ma
203d5f7296 Merge pull request #1282 from Kilig947/image_understanding_spark
Image understanding spark
2023-11-22 16:19:22 +08:00
Harry67Hu
7754215dad fix MacOS-zip bug 2023-11-22 15:23:23 +08:00
Marroh
b470af7c7b 遵循PEP 328优化太长的import 2023-11-22 13:20:56 +08:00
Marroh
f8c5f9045d Merge branch 'image_understanding_spark' of https://github.com/Kilig947/gpt_academic into Kilig947-image_understanding_spark 2023-11-22 10:45:45 +08:00
qingxu fu
c7a0a5f207 引入更稳定的自动更新URL 2023-11-22 01:40:40 +08:00
qingxu fu
b1be05009b 移除冗余代码,修复多用户存档问题 2023-11-20 01:06:19 +08:00
qingxu fu
977f992e3a 修复多用户文件冲突 2023-11-20 00:33:18 +08:00
Marroh
cdca36f5d2 移动import 2023-11-19 23:42:07 +08:00
Marroh
6ed88fe848 Merge branch 'image_understanding_spark' of https://github.com/Kilig947/gpt_academic into Kilig947-image_understanding_spark 2023-11-19 23:38:17 +08:00
qingxu fu
74f70305b7 introduce precommit 2023-11-19 22:03:36 +08:00
qingxu fu
b506c06542 Merge branch 'master' into frontier 2023-11-19 21:50:19 +08:00
qingxu fu
e5cd66a2f7 Merge branch 'frontier' of https://github.com/binary-husky/chatgpt_academic into frontier 2023-11-19 21:50:15 +08:00
binary-husky
2199cd263c Merge pull request #1293 from mbaneshi/mbaneshi
Update README.English.md
2023-11-17 14:30:26 +08:00
Mehdi Baneshi
47fe06f79d Update README.English.md
Change the reference section, add link for easy access to the resource
2023-11-17 05:45:47 +03:30
binary-husky
75a84d3cec 添加python版本说明 2023-11-16 17:18:07 +08:00
spike
ea4e03b1d8 llm_kwargs 增加most_recent_uploaded 2023-11-15 10:27:40 +08:00
spike
aa341fd268 适配星火大模型图片理解 增加上传图片view 2023-11-15 10:09:42 +08:00
binary-husky
c4aefc5fac Merge pull request #1274 from Skyzayre/master
dall-e作图模型调用错误的相关修正 && dall-e做图质量功能添加
2023-11-14 23:18:07 +08:00
binary-husky
e7c662a5d6 Update crazy_functional.py 2023-11-14 23:16:49 +08:00
binary-husky
5caeb7525d Update 图片生成.py 2023-11-14 23:15:19 +08:00
Skyzayre
f495bb154e Update 图片生成.py 2023-11-14 21:33:00 +08:00
Skyzayre
4d1657a531 Update 图片生成.py 2023-11-14 21:25:47 +08:00
Skyzayre
5391cb4198 Update crazy_functional.py 2023-11-14 21:17:48 +08:00
Skyzayre
1b28ae3baa Update crazy_functional.py 2023-11-14 21:14:41 +08:00
Skyzayre
518a1b2b75 Update crazy_functional.py 2023-11-14 20:51:49 +08:00
Skyzayre
443915b6d6 Update 图片生成.py 2023-11-14 20:49:53 +08:00
binary-husky
371158cb56 Merge pull request #1268 from DoiiarX/master
添加帮助文本
2023-11-14 12:29:15 +08:00
binary-husky
1fa296a303 添加帮助文本 2023-11-14 12:28:57 +08:00
Doiiars
b0c34a89cd Update main.py
添加临时更换API的帮助
2023-11-14 12:22:52 +08:00
binary-husky
2003afe27f API_URL_REDIRECT自动检测 2023-11-14 11:54:07 +08:00
binary-husky
682898a3ba 支持gpt-4-v处理多张图片 2023-11-13 13:21:33 +08:00
binary-husky
9a21e13d33 支持gpt-4-vision-preview 2023-11-13 13:10:59 +08:00
binary-husky
f03aa8713d limit author nums 2023-11-13 01:10:12 +08:00
binary-husky
7b526cf74b 更新scipdf_parser 2023-11-13 00:48:48 +08:00
binary-husky
27db900692 移除batchsize 2023-11-13 00:24:20 +08:00
binary-husky
b9b7bf38ab 修复插件导入时的pytorch加载问题 2023-11-13 00:15:15 +08:00
binary-husky
7e56ace2c0 更新README 2023-11-12 23:31:50 +08:00
binary-husky
67a98de841 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-11-12 22:27:29 +08:00
binary-husky
4306f8fd3e version 3.60 开放AutoGen多智能体插件测试 2023-11-12 22:26:00 +08:00
binary-husky
69f37df356 紧急修复终结点覆盖错误的问题 2023-11-12 22:15:54 +08:00
binary-husky
94ecbde198 将AutoGen放回下拉菜单中 2023-11-12 18:22:46 +08:00
binary-husky
51c70e9e47 update translation 2023-11-12 16:04:55 +08:00
binary-husky
c45336a3cd change nougat batchsize 2023-11-12 15:57:18 +08:00
binary-husky
f34f1091c3 fix nougat 2023-11-12 14:13:49 +08:00
binary-husky
899bbe9229 更新提示 2023-11-11 23:54:24 +08:00
binary-husky
eeb70e966c 修改插件按钮顺序 2023-11-11 23:35:11 +08:00
qingxu fu
1335da4f45 Merge branch 'frontier' into master_autogen 2023-11-11 23:24:21 +08:00
qingxu fu
2d91e438d6 修正internlm输入设备bug 2023-11-11 23:22:50 +08:00
qingxu fu
a55bc0c07c AutoGen自动忽略重复的输入 2023-11-11 23:22:09 +08:00
qingxu fu
f7f6db831b 处理模型兼容的一些细节 2023-11-11 22:35:06 +08:00
qingxu fu
a655ce1f00 Merge branch 'frontier' into master_autogen 2023-11-11 22:03:20 +08:00
qingxu fu
28119e343c 将autogen大模型调用底层hook掉 2023-11-11 22:01:19 +08:00
qingxu fu
f75e39dc27 修复本地模型在Windows下的加载BUG 2023-11-11 21:11:55 +08:00
qingxu fu
e4409b94d1 修正拼写 report_execption -> report_exception #1220 2023-11-11 18:30:57 +08:00
qingxu fu
2570e4b997 remove revision 2023-11-11 18:17:58 +08:00
qingxu fu
2b917edf26 修复本地模型在windows上的兼容性 2023-11-11 17:58:17 +08:00
binary-husky
fcf04554c6 Merge pull request #1255 from xiangsam/master
[Feature] 更新精准翻译PDF文档(NOUGAT)插件
2023-11-11 14:07:22 +08:00
qingxu fu
107ea868e1 API2D自动对齐 2023-11-10 23:08:56 +08:00
qingxu fu
da7c03e868 图像修改 2023-11-10 22:54:55 +08:00
qingxu fu
42339a3e6b Merge branch 'master' into frontier 2023-11-10 22:54:24 +08:00
xiangsam
362b545a45 更改import nougat时机 2023-11-10 14:32:07 +00:00
Samrito
84b45dc4fb Merge branch 'binary-husky:master' into master 2023-11-10 22:07:41 +08:00
qingxu fu
f9fc02948a 更新分辨率提示 2023-11-10 21:04:21 +08:00
qingxu fu
0299b0f95f 支持DALLE3 2023-11-10 20:59:08 +08:00
xiangsam
33bf795c66 更新精准翻译PDF文档(NOUGAT)插件 2023-11-10 12:06:39 +00:00
binary-husky
caf45ef740 Merge pull request #1244 from awwaawwa/fix_gpt_35_16k_maxtoken
修改 gpt-3.5-turbo-16k 系列模型 max_token 为 16385
2023-11-10 12:55:02 +08:00
binary-husky
b49b272587 Merge pull request #1241 from Skyzayre/master
新加入1106两个模型的适配
2023-11-10 12:53:42 +08:00
qingxu fu
a1a91c25a5 移除重复项 2023-11-10 12:53:03 +08:00
qingxu fu
2912eaf082 Merge branch 'master' of https://github.com/Skyzayre/gpt_academic into Skyzayre-master2 2023-11-10 12:51:50 +08:00
binary-husky
795de492fe Merge pull request #1238 from samxiaowastaken/master
Add new API support
2023-11-10 12:41:14 +08:00
qingxu fu
0ff750b60a 修改缩进 2023-11-10 12:40:25 +08:00
qingxu fu
8ad2a2bb86 Merge branch 'master' of https://github.com/samxiaowastaken/gpt_academic into samxiaowastaken-master 2023-11-10 12:37:30 +08:00
binary-husky
12df41563a hide audio btn border 2023-11-08 18:40:36 +08:00
awwaawwa
8d94564e67 修改 gpt-3.5-turbo-16k 系列模型 max_token 为 16385
根据 https://platform.openai.com/docs/models/gpt-3-5 ,这个16k的3.5上下文窗口其实是16385
2023-11-07 15:59:07 +08:00
Skyzayre
736f1214ee Update bridge_all.py 2023-11-07 15:55:23 +08:00
binary-husky
e9cf3d3d12 version 3.57 2023-11-07 15:52:08 +08:00
binary-husky
996057e588 support chatglm3 2023-11-07 15:41:04 +08:00
binary-husky
804599bbc3 autogen 2023-11-07 15:36:05 +08:00
Skyzayre
ffe6c1403e Update bridge_chatgpt.py 2023-11-07 14:25:36 +08:00
Skyzayre
3a2466fe4e Update README_RS.md 2023-11-07 14:23:16 +08:00
Skyzayre
6c795809f7 Update README_JP.md 2023-11-07 14:23:01 +08:00
Skyzayre
3141cd392a Update README_FR.md 2023-11-07 14:22:46 +08:00
Skyzayre
77220002e0 Update README_EN.md 2023-11-07 14:22:29 +08:00
Skyzayre
cd40bf9ae2 Update README.md.Portuguese.md 2023-11-07 14:22:12 +08:00
Skyzayre
6c3405ba55 Update README.md.Korean.md 2023-11-07 14:21:52 +08:00
Skyzayre
bba3419ace Update README.md.Italian.md 2023-11-07 14:21:32 +08:00
Skyzayre
61cf2b32eb Update README.md.German.md 2023-11-07 14:21:08 +08:00
Skyzayre
3ed0e8012d Update bridge_all.py 2023-11-07 14:17:01 +08:00
Skyzayre
4d9256296d Update 多智能体.py 2023-11-07 14:13:37 +08:00
Skyzayre
0897057be1 Update README.md 2023-11-07 14:11:52 +08:00
Skyzayre
136e6aaa21 Update config.py 2023-11-07 14:08:24 +08:00
binary-husky
8e375b0ed2 support chatglm3 2023-11-07 14:07:30 +08:00
binary-husky
5192d316f0 Merge branch 'frontier' 2023-11-07 11:40:27 +08:00
binary-husky
245585be81 Update README.md 2023-11-07 10:39:35 +08:00
Yao Xiao
4824905592 Add new API support 2023-11-07 09:48:01 +08:00
binary-husky
5566ba8257 Merge pull request #1215 from ZornWang/ERNIE_Bot_4
[Feature] 添加百度千帆文心4.0大模型支持
2023-11-01 22:29:33 +08:00
binary-husky
8c4a753b65 Merge pull request #1222 from ji-jinlong/master
Update 理解PDF文档内容.py
2023-11-01 22:26:55 +08:00
binary-husky
f016323b8a Update 理解PDF文档内容.py 2023-11-01 22:26:46 +08:00
binary-husky
cd9f2ec402 Update README.md 2023-11-01 22:25:27 +08:00
ji-jinlong
ca7ff47fcb Update 理解PDF文档内容.py 2023-11-01 16:05:57 +08:00
binary-husky
09857ea455 解除本地模型的若干并发问题 2023-10-31 20:37:07 +08:00
binary-husky
17cf47dcd6 防止多线程数据交叉 2023-10-31 18:02:14 +08:00
binary-husky
136162ec0d better local model interaction 2023-10-31 16:18:27 +08:00
binary-husky
08f036aafd 支持chatglm3 2023-10-31 03:08:50 +08:00
Zorn Wang
9fb29f249b Feature: 添加百度千帆文心4.0大模型支持 2023-10-30 19:20:05 +08:00
binary-husky
9a1aff5bb6 修复get_conf接口 2023-10-30 11:10:05 +08:00
binary-husky
f3f90f7b90 Update README.md 2023-10-30 01:10:45 +08:00
binary-husky
527f9d28ad change get_conf 2023-10-29 00:34:40 +08:00
binary-husky
12b2a229b6 移除调试打印 2023-10-28 20:15:59 +08:00
binary-husky
40a065ce04 Merge branch 'master' into frontier 2023-10-28 20:09:49 +08:00
binary-husky
b14d4de0b1 将默认系统提示词转移到Config中 2023-10-28 20:08:50 +08:00
binary-husky
e64c26e617 紧急修复报错异常 2023-10-28 19:53:05 +08:00
binary-husky
0b1e599b01 紧急修复报错异常 2023-10-28 19:43:48 +08:00
binary-husky
127385b846 接入新模型 2023-10-28 19:23:43 +08:00
binary-husky
cf085565a7 rename folder 2023-10-28 17:44:17 +08:00
binary-husky
5a530df4f2 修复autogen接口的问题 2023-10-28 17:41:22 +08:00
binary-husky
b4c7b26f63 Merge branch 'master' into frontier 2023-10-28 14:32:12 +08:00
binary-husky
8bdcc4ff28 修复对一些第三方接口的兼容性 2023-10-28 14:32:03 +08:00
binary-husky
e596bb6fff 修复AZURE_CFG_ARRAY使用时不给定apikey报错的问题 2023-10-28 00:29:49 +08:00
binary-husky
50ecb45d63 Merge pull request #1173 from Kilig947/azure_multiple_models
Azure 支持部署多个模型
2023-10-27 23:36:05 +08:00
binary-husky
349c399967 Merge branch 'frontier' into azure_multiple_models 2023-10-27 23:35:50 +08:00
binary-husky
103d05d242 增加一个Azure配置的Array 2023-10-27 23:29:18 +08:00
binary-husky
d0589209cc Merge branch 'azure_multiple_models' of https://github.com/Kilig947/gpt_academic into Kilig947-azure_multiple_models 2023-10-27 22:41:51 +08:00
binary-husky
8faf69c41e Merge branch 'master' into frontier 2023-10-27 10:25:11 +08:00
binary-husky
f7a332eee7 Merge pull request #1201 from shao0099876/master
修复了一个导致无法加载未量化的ChatGLM2 fine-tuning模型的问题
2023-10-27 10:00:48 +08:00
shao0099876
f6e34d9621 修复了一个导致无法加载未量化的ChatGLM2 fine-tuning模型的问题(quantization_bit=0) 2023-10-26 14:38:58 +00:00
qingxu fu
706a239232 Newbing组件已不再维护 2023-10-25 11:56:20 +08:00
qingxu fu
00076cc6f4 支持讯飞星火v3 (sparkv3) 2023-10-25 11:48:28 +08:00
qingxu fu
a711db0b5b stashed commit 2023-10-25 11:32:32 +08:00
binary-husky
5dd3f4ad6d rename 2023-10-23 21:50:47 +08:00
binary-husky
65e202881a add option to skip new translation 2023-10-23 21:12:36 +08:00
binary-husky
27c4e3ef4f 优化autogen的使用 2023-10-23 01:56:18 +08:00
binary-husky
e2b3c47186 Version 3.56 - Merge branch 'frontier' 2023-10-22 23:24:41 +08:00
binary-husky
a14ef78d52 容忍tex文件的缺失 2023-10-22 00:05:48 +08:00
binary-husky
b88e577eb5 update translation 2023-10-21 19:15:23 +08:00
binary-husky
991e41b313 change default path to relative 2023-10-21 00:27:55 +08:00
binary-husky
ff2bc64d57 图片交互显示 2023-10-20 23:56:24 +08:00
binary-husky
218f0c445e 微调Autogen代码结构 2023-10-20 23:18:32 +08:00
binary-husky
7ee0c94924 接入autogen 2023-10-20 21:31:50 +08:00
binary-husky
3531e7f23f 修正提示 2023-10-20 15:40:36 +08:00
binary-husky
d99f4681f0 修正提示 2023-10-20 15:39:50 +08:00
binary-husky
f2b2ccd577 Merge branch 'master' into frontier 2023-10-20 10:47:40 +08:00
binary-husky
c18a235d33 微调HTML 2023-10-20 10:43:05 +08:00
binary-husky
6c87c55a8a 微调HTML样式 2023-10-20 10:43:04 +08:00
binary-husky
f925fe7692 添加对NOUGAT的代理设置 2023-10-20 10:43:04 +08:00
qingxu fu
af83c43fb0 补充缺失摘要的措施 2023-10-20 10:43:04 +08:00
qingxu fu
4305ee0313 微调HTML汇报样式 2023-10-20 10:43:04 +08:00
binary-husky
a6e7bbbd22 修改缩进 2023-10-20 10:43:04 +08:00
binary-husky
62c02dfa86 修复warmup模块的延迟问题 2023-10-20 10:43:04 +08:00
binary-husky
a2ebbafb77 微调提示 2023-10-20 10:43:04 +08:00
binary-husky
a915a2ddd1 Grobid负载均衡 2023-10-20 10:43:04 +08:00
Menghuan1918
537c15b354 在proxies返回空时会首先尝试直接连接 2023-10-20 10:43:04 +08:00
binary-husky
73ed92af59 Update GithubAction+NoLocal+Latex 2023-10-20 10:43:04 +08:00
Skyzayre
88303b6f78 Update Dockerfile
gradio已经更新到3.32.6,但是Dockerfile中仍然是3.32.2
2023-10-20 10:42:31 +08:00
binary-husky
120d4ad556 Update README.md 2023-10-20 10:42:31 +08:00
binary-husky
3410bd9b1d Update README.md 2023-10-19 16:05:12 +08:00
binary-husky
20e3eee6e7 Update GithubAction+NoLocal+Latex 2023-10-18 16:23:28 +08:00
binary-husky
775b07dbcc 为Dockerfile添加更多注释 2023-10-18 11:15:35 +08:00
binary-husky
560d4e2cb1 修正Dockerfile中的错误 2023-10-18 11:10:38 +08:00
qingxu fu
4ad432e1da 新版HTML报告页面 2023-10-16 22:13:59 +08:00
binary-husky
32ddcd067a Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-10-16 00:05:53 +08:00
binary-husky
98ef658307 修复warmup模块的延迟问题 2023-10-16 00:05:31 +08:00
w_xiaolizu
1e2bcb8189 Azure 支持部署多个模型 2023-10-15 23:19:07 +08:00
binary-husky
a4de91d000 修改缩进 2023-10-15 22:53:57 +08:00
binary-husky
1bb437a5d0 微调提示 2023-10-15 21:17:00 +08:00
binary-husky
4421219c2b Merge branch 'frontier' 2023-10-15 20:56:49 +08:00
binary-husky
ea28db855d 完善自定义菜单 2023-10-15 20:54:16 +08:00
binary-husky
5aea7b3d09 多线程运行微调 2023-10-15 19:13:25 +08:00
binary-husky
5274117cf1 缺失摘要时,插入伪摘要 2023-10-14 23:48:37 +08:00
binary-husky
673faf8cef Grobid负载均衡 2023-10-14 19:59:35 +08:00
binary-husky
130ae31d55 Merge pull request #1168 from Menghuan1918/master
fix bug  #1167 学术小助手在proxies返回空时会首先尝试直接连接
2023-10-13 17:02:01 +08:00
Menghuan1918
c3abc46d4d 在proxies返回空时会首先尝试直接连接 2023-10-13 15:23:06 +08:00
binary-husky
4df75d49ad 兼容一些第三方代理 2023-10-12 23:42:45 +08:00
binary-husky
9ea0fe4de2 Update GithubAction+NoLocal+Latex 2023-10-12 21:23:15 +08:00
binary-husky
8698c5a80f Merge pull request #1159 from Skyzayre/patch-1
Update Dockerfile
2023-10-11 17:18:28 +08:00
binary-husky
383f7f4f77 add webrtcvad dependency 2023-10-11 15:51:34 +08:00
binary-husky
34d784df79 12 2023-10-11 15:48:25 +08:00
binary-husky
662bebfc02 SSL 2023-10-11 15:34:06 +08:00
binary-husky
0c3b00fc6b cookie space 2023-10-11 12:33:50 +08:00
binary-husky
b6e370e8c9 ymp 2023-10-11 11:30:34 +08:00
binary-husky
71ea8e584a 自定义基础功能区按钮 2023-10-11 11:21:41 +08:00
Skyzayre
a5491b9199 Update Dockerfile
gradio已经更新到3.32.6,但是Dockerfile中仍然是3.32.2
2023-10-11 00:26:16 +08:00
binary-husky
6f383c1dc8 支持自定义基础功能区 2023-10-11 00:14:56 +08:00
binary-husky
500a0cbd16 大幅优化语音助手 2023-10-09 01:18:05 +08:00
binary-husky
1ef6730369 Update README.md 2023-10-08 23:14:07 +08:00
binary-husky
491174095a 更新docker-compose说明 2023-10-07 11:59:06 +08:00
binary-husky
02c270410c 减小Latex容器体积 2023-10-06 11:44:10 +08:00
binary-husky
89eec21f27 随机选择, 绕过openai访问频率限制 2023-10-06 10:50:41 +08:00
binary-husky
49cea97822 启动主题自动转换 2023-10-06 10:36:30 +08:00
binary-husky
6310b65d70 重新编译Gradio优化使用体验 2023-10-06 10:32:03 +08:00
binary-husky
93c76e1809 更新内置gradio版本 2023-10-06 09:54:07 +08:00
binary-husky
f64cf7a3d1 update translation matrix 2023-10-02 14:24:01 +08:00
binary-husky
fdffbee1b0 Update toolbox.py 2023-09-30 09:56:30 +08:00
binary-husky
87ccd1a89a Update crazy_functional.py 2023-09-27 18:35:06 +08:00
binary-husky
87b9734986 修复'copiedIcon'重复定义BUG 2023-09-27 16:35:58 +08:00
binary-husky
d2d5665c37 允许模块预热时使用Proxy 2023-09-27 15:53:45 +08:00
binary-husky
0844b6e9cf GROBID服务代理访问支持 2023-09-27 15:40:55 +08:00
binary-husky
9cb05e5724 修改布局 2023-09-27 15:20:28 +08:00
binary-husky
80b209fa0c Merge branch 'frontier' 2023-09-27 15:19:07 +08:00
binary-husky
8d4cb05738 Matlab项目解析插件的Shortcut 2023-09-26 10:16:38 +08:00
binary-husky
31f4069563 改善润色和校读Prompt 2023-09-25 17:46:28 +08:00
binary-husky
8ba6fc062e Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2023-09-23 23:59:30 +08:00
binary-husky
c0c2d14e3d better scrollbar 2023-09-23 23:58:32 +08:00
binary-husky
f0a5c49a9c Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2023-09-23 23:47:42 +08:00
binary-husky
9333570ab7 减小重置等基础按钮的最小大小 2023-09-23 23:47:25 +08:00
binary-husky
d6eaaad962 禁止gradio显示误导性的share=True 2023-09-23 23:23:23 +08:00
binary-husky
e24f077b68 显式增加azure-gpt-4选项 2023-09-23 23:06:58 +08:00
binary-husky
dc5bb9741a 版本更新 2023-09-23 22:45:07 +08:00
binary-husky
b383b45191 version 3.54 beta 2023-09-23 22:44:18 +08:00
binary-husky
2d8f37baba 细分代理场景 2023-09-23 22:43:15 +08:00
binary-husky
409927ef8e 统一 transformers 版本 2023-09-23 22:26:28 +08:00
binary-husky
5b231e0170 添加整体复制按钮 2023-09-23 22:11:29 +08:00
binary-husky
87f629bb37 添加gpt-4-32k 2023-09-23 20:24:13 +08:00
binary-husky
3672c97a06 动态代码解释器 2023-09-23 01:51:05 +08:00
binary-husky
b6ee3e9807 Merge pull request #1121 from binary-husky/frontier
arxiv翻译插件添加禁用缓存选项
2023-09-21 09:33:19 +08:00
binary-husky
d56bc280e9 添加禁用缓存选项 2023-09-20 22:04:15 +08:00
qingxu fu
d5fd00c15d 微调Dockerfile 2023-09-20 10:02:10 +08:00
binary-husky
5e647ff149 Merge branch 'master' into frontier 2023-09-19 17:21:02 +08:00
binary-husky
868faf00cc 修正docker compose 2023-09-19 17:10:57 +08:00
binary-husky
a0286c39b9 更新README 2023-09-19 17:08:20 +08:00
binary-husky
9cced321f1 修改README 2023-09-19 16:55:39 +08:00
binary-husky
3073935e24 修改readme 推送version 3.53 2023-09-19 16:49:33 +08:00
binary-husky
ef6631b280 TOKEN_LIMIT_PER_FRAGMENT修改为1024 2023-09-19 16:31:36 +08:00
binary-husky
0801e4d881 Merge pull request #1111 from kaixindelele/only_chinese_pdf
提升PDF翻译插件的效果
2023-09-19 15:56:04 +08:00
qingxu fu
ae08cfbcae 修复小Bug 2023-09-19 15:55:27 +08:00
qingxu fu
1c0d5361ea 调整状态栏的最小高度 2023-09-19 15:52:42 +08:00
qingxu fu
278464bfb7 合并重复的函数 2023-09-18 23:03:23 +08:00
qingxu fu
2a6996f5d0 修复Azure的ENDPOINT格式兼容性 2023-09-18 21:19:02 +08:00
qingxu fu
84b11016c6 在nougat处理结束后,同时输出mmd文件 2023-09-18 15:21:30 +08:00
qingxu fu
7e74d3d699 调整按钮位置 2023-09-18 15:19:21 +08:00
qingxu fu
2cad8e2694 支持动态切换主题 2023-09-17 00:15:28 +08:00
qingxu fu
e765ec1223 dynamic theme 2023-09-17 00:02:49 +08:00
kaixindelele
471a369bb8 论文翻译只输出中文 2023-09-16 22:09:44 +08:00
binary-husky
760ff1840c 修复一个循环的Bug 2023-09-15 17:08:23 +08:00
binary-husky
9905122fc2 修复Tex文件匹配BUG 2023-09-15 12:55:41 +08:00
binary-husky
abea0d07ac 修复logging的Bug 2023-09-15 11:00:30 +08:00
binary-husky
16ff5ddcdc 版本3.52 2023-09-14 23:07:12 +08:00
binary-husky
1c4cb340ca 修复滞留文档的提示Bug 2023-09-14 22:45:45 +08:00
binary-husky
5ba8ea27d1 用logging取代print 2023-09-14 22:33:07 +08:00
binary-husky
567c6530d8 增加NOUGAT消息提示和错误操作提示 2023-09-14 21:38:47 +08:00
binary-husky
a3f36668a8 修复latex识别主文件错误的问题 2023-09-14 17:51:41 +08:00
binary-husky
a1cc2f733c 修复nougat线程锁释放Bug 2023-09-14 15:26:03 +08:00
binary-husky
0937f37388 Predict按钮参数修正 2023-09-14 11:02:40 +08:00
binary-husky
74f35e3401 针对虚空终端个别情况下不输出文件的问题进行提示 2023-09-14 01:51:55 +08:00
binary-husky
ab7999c71a 修正本项目源码范围 2023-09-14 01:00:38 +08:00
binary-husky
544771db9a 隐藏历史对话绝对路径 2023-09-14 00:53:15 +08:00
binary-husky
ec9d030457 把上传文件路径和日志路径修改为统一可配置的变量 2023-09-14 00:51:25 +08:00
binary-husky
14de282302 给nougat加线程锁 合并冗余代码 2023-09-13 23:21:00 +08:00
binary-husky
fb5467b85b 更新插件系统提示 2023-09-12 19:13:36 +08:00
binary-husky
c4c6465927 解决issues #1097 2023-09-12 18:57:50 +08:00
qingxu fu
99a1cd6f9f 添加pypinyin依赖 2023-09-12 12:20:05 +08:00
qingxu fu
7e73a255f4 修改知识库插件的提示信息 2023-09-12 11:47:34 +08:00
qingxu fu
4b5f13bff2 修复知识库的依赖问题 2023-09-12 11:35:31 +08:00
qingxu fu
d495b73456 支持更多UI皮肤外观,加入暗色亮色切换键 2023-09-11 22:55:32 +08:00
qingxu fu
e699b6b13f Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-09-11 14:49:37 +08:00
qingxu fu
eb150987f0 兼容一个one-api没有done数据包的第三方Bug情形 2023-09-11 14:49:30 +08:00
binary-husky
34784333dc 融合PDF左右比例调整到95% 2023-09-10 17:22:35 +08:00
binary-husky
28d777a96b 修正报错消息 2023-09-10 16:52:35 +08:00
qingxu fu
c45fa88684 update translation matrix 2023-09-09 21:57:24 +08:00
binary-husky
ad9807dd14 更新虚空终端的提示 2023-09-09 20:32:44 +08:00
binary-husky
2a51715075 修复Dockerfile 2023-09-09 20:15:46 +08:00
binary-husky
7c307d8964 修复源代码解析模块与虚空终端的兼容性 2023-09-09 19:33:05 +08:00
binary-husky
baaacc5a7b Update README.md 2023-09-09 19:11:21 +08:00
binary-husky
6faf5947c9 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-09-09 18:30:59 +08:00
binary-husky
571335cbc4 fix docker file 2023-09-09 18:30:43 +08:00
binary-husky
7d5abb6d69 Merge pull request #1077 from jsz14897502/master
更改谷歌学术搜索助手获取摘要的逻辑
2023-09-09 18:24:30 +08:00
binary-husky
a0f592308a Merge branch 'master' into jsz14897502-master 2023-09-09 18:22:29 +08:00
binary-husky
e512d99879 添加一定的延迟,防止触发反爬虫机制 2023-09-09 18:22:22 +08:00
binary-husky
e70b636513 修复数学公式判定的Bug 2023-09-09 17:50:38 +08:00
binary-husky
408b8403fe Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-09-08 12:10:22 +08:00
binary-husky
74f8cb3511 update dockerfile 2023-09-08 12:10:16 +08:00
qingxu fu
2202cf3701 remove proxy message 2023-09-08 11:11:53 +08:00
qingxu fu
cce69beee9 update error message 2023-09-08 11:08:02 +08:00
qingxu fu
347124c967 update scipdf_parser dep 2023-09-08 10:43:20 +08:00
qingxu fu
77a6105a9a 修改demo案例 2023-09-08 09:52:29 +08:00
qingxu fu
13c9606af7 修正下载PDF失败时产生的错误提示 2023-09-08 09:47:29 +08:00
binary-husky
bac6810e75 修改操作提示 2023-09-08 09:38:16 +08:00
binary-husky
c176187d24 修复因为函数返回值导致的不准确错误提示 2023-09-07 23:46:54 +08:00
binary-husky
31d5ee6ccc Update README.md 2023-09-07 23:05:54 +08:00
binary-husky
5e0dc9b9ad 修复PDF下载路径时间戳的问题 2023-09-07 18:51:09 +08:00
binary-husky
4c6f3aa427 CodeInterpreter 2023-09-07 17:45:44 +08:00
binary-husky
d7331befc1 add note 2023-09-07 17:42:47 +08:00
binary-husky
63219baa21 修正语音对话时 句子末尾显示异常的问题 2023-09-07 17:04:40 +08:00
binary-husky
97cb9a4adc full capacity docker file 2023-09-07 15:09:38 +08:00
binary-husky
24f41b0a75 new docker file 2023-09-07 00:45:03 +08:00
binary-husky
bfec29e9bc new docker file 2023-09-07 00:43:31 +08:00
binary-husky
dd9e624761 add new dockerfile 2023-09-07 00:40:11 +08:00
binary-husky
7855325ff9 update dockerfiles 2023-09-06 23:33:15 +08:00
binary-husky
2c039ff5c9 add session 2023-09-06 22:19:32 +08:00
binary-husky
9a5ee86434 Merge pull request #1084 from eltociear/patch-2
Update README.md
2023-09-06 21:56:39 +08:00
binary-husky
d6698db257 nougat翻译PDF论文 2023-09-06 15:32:11 +08:00
Ikko Eltociear Ashimine
b2d03bf2a3 Update README.md
arbitary -> arbitrary
2023-09-06 15:30:12 +09:00
binary-husky
2f83b60fb3 添加搜索失败时的提示 2023-09-06 12:36:59 +08:00
binary-husky
d183e34461 添加一个全版本搜索的开关 2023-09-06 11:42:29 +08:00
binary-husky
fb78569335 Merge branch 'master' of https://github.com/jsz14897502/gpt_academic into jsz14897502-master 2023-09-06 10:27:52 +08:00
qingxu fu
12c8cd75ee Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-09-06 10:24:14 +08:00
qingxu fu
0e21e3e2e7 修复没填写讯飞APPID无报错提示的问题 2023-09-06 10:24:11 +08:00
binary-husky
fda1e87278 Update stale.yml 2023-09-06 10:19:21 +08:00
binary-husky
1092031d77 Create stale.yml 2023-09-06 10:15:52 +08:00
binary-husky
f0482d3bae Update docker-compose.yml 2023-09-04 12:39:25 +08:00
binary-husky
b6ac3d0d6c Update README.md 2023-09-04 12:34:55 +08:00
binary-husky
3344ffcb8b Update README.md 2023-09-04 11:41:52 +08:00
binary-husky
82936f71b6 Update README.md 2023-09-04 11:37:47 +08:00
binary-husky
51e809c09e Update README.md 2023-09-04 11:34:46 +08:00
qingxu fu
713df396dc Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-09-03 16:46:30 +08:00
qingxu fu
23a42d93df update translation matrix 2023-09-03 16:46:27 +08:00
binary-husky
0ef06683dc Update README.md 2023-09-03 16:35:03 +08:00
qingxu fu
843113ba0f fix minor bugs 2023-09-03 16:20:05 +08:00
binary-husky
79080290c6 Merge pull request #1074 from Kilig947/plugin_classification
插件分区新增插件分类选择
2023-09-03 15:41:45 +08:00
qingxu fu
9bd2023a8e revise version check 2023-09-03 15:40:41 +08:00
qingxu fu
0d6e32d31a version 3.5 release 2023-09-03 15:38:10 +08:00
qingxu fu
0418257218 Merge branch 'master' into Kilig947-plugin_classification 2023-09-03 15:35:16 +08:00
qingxu fu
a3e6fc0141 修复文心一言的接口问题 2023-09-03 15:32:39 +08:00
qingxu fu
1dd165a3cd ui layout improve 2023-09-03 14:47:22 +08:00
qingxu fu
e666b5269e 改进虚空终端 2023-09-03 00:53:57 +08:00
qingxu fu
0b70e9df7b 优化虚空终端调用流程 2023-09-02 23:49:56 +08:00
qingxu fu
1639796041 support file implementation 2023-09-02 22:22:41 +08:00
jsz14
03164bcb6f fix:没有获取到所有版本时的处理 2023-09-02 19:58:24 +08:00
qingxu fu
d0af074225 change layout 2023-09-02 18:19:19 +08:00
binary-husky
6d7f3feab3 优化主题外观,新增high-contrast主题 2023-09-01 10:45:22 +08:00
binary-husky
045b7f6312 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-09-01 10:34:33 +08:00
binary-husky
116b7ce12f 支持星火认知大模型v2 2023-09-01 10:34:26 +08:00
qingxu fu
8b0905c076 提高虚空终端的成功率 2023-08-31 18:04:31 +08:00
qingxu fu
b69140307b 修复对话框对齐的问题 2023-08-31 16:24:00 +08:00
qingxu fu
b31abbcad3 每个插件可以归属多个Group 2023-08-31 15:59:19 +08:00
qingxu fu
2d5a1fbc12 修改前端代码 2023-08-31 00:21:24 +08:00
jsz14
d052d425af 更改谷歌学术搜索助手获取摘要的逻辑 2023-08-30 19:14:01 +08:00
qingxu fu
89de49f31e 修改变量命名,整理配置清单 2023-08-30 16:00:27 +08:00
w_xiaolizu
a208782049 新增插件分类 2023-08-30 14:46:34 +08:00
qingxu fu
eb802ee975 implement two stage plugin selection 2023-08-29 23:53:47 +08:00
qingxu fu
f40d48b014 fix typing problems 2023-08-29 23:46:40 +08:00
qingxu fu
ef4203f5ca Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-08-29 23:25:10 +08:00
qingxu fu
adf93195e8 尝试使用自然语言调度各个插件 2023-08-29 23:25:06 +08:00
binary-husky
3e5cdbaf68 Update README.md 2023-08-29 18:29:45 +08:00
binary-husky
27cab3b38a Update README.md 2023-08-29 18:29:16 +08:00
qingxu fu
09d38e4abf 出于安全性考虑,默认禁用动态配置修改 2023-08-29 17:50:45 +08:00
qingxu fu
7efb5cb6f5 移除早期引入的测试样本 2023-08-29 17:43:55 +08:00
qingxu fu
31ff6e1e7a 支持自然语言修改项目本身的配置 2023-08-29 17:37:41 +08:00
qingxu fu
2fa3d47887 fix json read error 2023-08-29 12:42:06 +08:00
binary-husky
2cca46375c Update crazy_functional.py 2023-08-28 17:47:37 +08:00
binary-husky
06410b593c Update config.py 2023-08-28 16:16:30 +08:00
binary-husky
545c9f47de Update README.md 2023-08-28 11:59:23 +08:00
binary-husky
973ad41bde add a space 2023-08-28 02:03:30 +08:00
binary-husky
3fa7416eb2 notify dummy action 2023-08-28 01:56:15 +08:00
binary-husky
ec76d3dcc4 支持借助GROBID实现PDF高精度翻译 2023-08-28 01:25:44 +08:00
binary-husky
3f27bec94b Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-08-28 01:22:26 +08:00
binary-husky
ed11269aef 支持借助GROBID实现PDF高精度翻译 2023-08-28 01:22:20 +08:00
qingxu fu
6c653734ec Fix 3rd part chatgpt compat 2023-08-26 17:57:59 +08:00
qingxu fu
19bd0c35ed 修复latex input命令解析问题 2023-08-25 21:20:15 +08:00
binary-husky
3f4c4ebc29 调整注释 2023-08-25 13:16:18 +08:00
binary-husky
6cc7d4ed69 修复文心一言最大文本长度限制带来的问题 2023-08-25 13:09:08 +08:00
binary-husky
67fff17917 3.49 接入百度千帆平台和文心一言 2023-08-25 12:45:08 +08:00
binary-husky
8fce49fa02 支持百度云千帆和文心一言 2023-08-25 12:31:51 +08:00
binary-husky
30f28b37c3 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-08-21 22:09:05 +08:00
binary-husky
6a5681dd0a add llama2 2023-08-21 22:08:57 +08:00
binary-husky
dacc282763 Update README.md 2023-08-21 22:00:51 +08:00
binary-husky
9720bec5e5 Interface with LLaMa2 from huggingface 2023-08-21 21:54:21 +08:00
binary-husky
8b3b883fce Update README.md 2023-08-17 10:02:55 +08:00
qingxu fu
4dc0f8e57a 修改dockercompose,添加对阿里qwen的支持 2023-08-17 10:00:42 +08:00
qingxu fu
5e48fc98ed 添加本地缓存删除功能 2023-08-16 22:49:46 +08:00
qingxu fu
2ff8dc787e interface with ChatGPT-to-API 2023-08-16 22:21:51 +08:00
qingxu fu
cd38d1697c fix missing finish_reason problem 2023-08-16 21:40:34 +08:00
qingxu fu
00f63cb0bc configure utf8 encoding 2023-08-16 21:29:16 +08:00
binary-husky
dc7fab3c19 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-08-14 17:27:33 +08:00
binary-husky
d1b5359e2b fix github action 2023-08-14 17:27:13 +08:00
binary-husky
0597ffea2e Update README.md 2023-08-14 16:37:07 +08:00
binary-husky
d16329c1af resolve sparkapi on_close error 2023-08-14 11:31:05 +08:00
binary-husky
d5b4d7ab90 better github action 2023-08-14 11:28:52 +08:00
binary-husky
8199a9a12e Update requirements.txt 2023-08-14 11:23:15 +08:00
binary-husky
cb10a8abec Update requirements.txt 2023-08-14 10:54:46 +08:00
binary-husky
0dbcda89b7 add websocket dep 2023-08-14 10:32:31 +08:00
binary-husky
78a8259b82 Update bridge_all.py 2023-08-14 10:24:59 +08:00
binary-husky
f22fdb4f94 Merge pull request #1040 from Keldos-Li/fix-Chuanhu-theme
调整与修复 [川虎小而美] 主题样式
2023-08-14 10:08:01 +08:00
binary-husky
450645a9d0 version 3.48 2023-08-14 03:09:56 +08:00
binary-husky
af23730f8f 接入讯飞星火Spark大模型 2023-08-14 03:08:15 +08:00
Keldos
0b11260d6f fix: 修复川虎主题的slider问题 2023-08-14 00:15:38 +08:00
Keldos
31ab97dd09 feat: 调整川虎主题样式 2023-08-14 00:14:44 +08:00
binary-husky
c0c4834cfc fix interact message 2023-08-13 22:25:01 +08:00
binary-husky
2dae40f4ba Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-08-13 21:34:33 +08:00
binary-husky
587c7400d1 xunfei spark api test 2023-08-13 21:34:27 +08:00
binary-husky
8dd2e2a6b7 Update bug_report.yml 2023-08-13 21:25:21 +08:00
binary-husky
aaf4f37403 Merge pull request #1014 from hongyi-zhao/master
Fix the reverse proxy based OpenAI access via https://github.com/acheong08/ChatGPT-to-API/.
2023-08-13 20:57:32 +08:00
binary-husky
3e2e81a968 add chatgpt website 2023-08-13 20:55:18 +08:00
binary-husky
cc1be5585b Merge branch 'master' of https://github.com/hongyi-zhao/gpt_academic into hongyi-zhao-master 2023-08-13 20:50:09 +08:00
binary-husky
5050016b22 theme typo fix 2023-08-12 20:28:20 +08:00
binary-husky
7662196514 update tests 2023-08-12 14:09:19 +08:00
binary-husky
8ddaca09e0 add commandline helper 2023-08-12 12:11:49 +08:00
binary-husky
71c692dcef Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-08-07 02:11:57 +08:00
binary-husky
184e417fec handle local llm dependency error properly 2023-08-07 02:11:48 +08:00
binary-husky
7a99560183 Update README.md 2023-08-07 02:01:35 +08:00
binary-husky
48f4d6aa2a Update README.md 2023-08-07 02:00:39 +08:00
binary-husky
c17fc2a9b5 我是来自达摩院的大规模语言模型,我叫通义千问。 2023-08-07 01:58:35 +08:00
binary-husky
4d70b3786f interface with qwen 2023-08-07 01:24:41 +08:00
binary-husky
9bee676cd2 Merge pull request #1009 from ValeriaWong/master
feat(chatglm_int8_onnx):纯CPU推理,最多仅需8GB内存,推理速度未测评,token数有限,暂时还不能流式输出 #…
2023-08-07 01:13:09 +08:00
binary-husky
0a37106692 reverse cmd_to_install 2023-08-07 01:11:44 +08:00
binary-husky
57d4541d4e fix minor bug in chatglm-onnx 2023-08-07 01:07:55 +08:00
binary-husky
d7dd586f09 introduce unified base class for local llm models 2023-08-07 00:57:52 +08:00
binary-husky
b6b53ce2a4 Merge branch 'master' of https://github.com/ValeriaWong/chatgpt_academic into ValeriaWong-master 2023-08-06 22:17:52 +08:00
505030475
43809c107d update multi-language module 2023-08-04 23:53:23 +08:00
505030475
1721edc990 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-08-04 23:30:00 +08:00
Hongyi Zhao
bfb7aab4a0 Fix the reverse proxy based OpenAI access via https://github.com/acheong08/ChatGPT-to-API/.
See https://github.com/binary-husky/gpt_academic/issues/900#issuecomment-1658463065 for more detailed discussions.
2023-08-02 18:03:49 +08:00
binary-husky
f4a87d6380 Update README.md 2023-08-01 12:54:50 +08:00
ValeriaWong
c0c337988f feat(chatglm_int8_onnx):纯CPU推理,最多仅需8GB内存,推理速度未测评,token数有限,暂时还不能流式输出 #1008 2023-08-01 00:48:57 +08:00
binary-husky
27f65c251a Update 图片生成.py 2023-07-31 15:57:18 +08:00
qingxu fu
87f099f740 use get_log_folder() to manage log folder - step 1 2023-07-31 12:28:32 +08:00
qingxu fu
484f16e365 修复空输入触发的BUG 2023-07-31 12:08:07 +08:00
qingxu fu
37afcc709b interface with void terminal 2023-07-31 11:20:01 +08:00
binary-husky
9cbe9f240d Update README.md 2023-07-30 14:08:21 +08:00
binary-husky
f6567c02f6 update translation matrix for japanese and t-zh 2023-07-30 13:58:11 +08:00
binary-husky
8c83061a93 more explaination 2023-07-30 13:51:21 +08:00
binary-husky
23f2adfdc3 update translation matrix 2023-07-30 13:44:11 +08:00
binary-husky
61698444b1 change comments 2023-07-30 13:36:34 +08:00
binary-husky
109afcf8f6 Merge remote-tracking branch 'origin/enable_clear_history_option' 2023-07-30 13:27:10 +08:00
binary-husky
19ef6a530a add additonal source for checking proxy ip 2023-07-30 13:23:35 +08:00
binary-husky
e08bd9669e increase audio assistant watch dog patience 2023-07-30 12:48:43 +08:00
binary-husky
155a7e1174 Merge pull request #998 from awwaawwa/enable_clear_history_option
增加自动清除历史消息时的提示
2023-07-28 21:10:31 +08:00
binary-husky
86e33ea99a Update core_functional.py 2023-07-28 21:09:51 +08:00
qingxu fu
524684f8bd fix the markdown translation functionality 2023-07-28 21:03:20 +08:00
qingxu fu
2a362cec84 markdown translation handle github index page 2023-07-28 20:20:30 +08:00
505030475
2747c23868 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-07-28 10:35:50 +08:00
binary-husky
f446dbb62d Update README.md 2023-07-28 09:54:03 +08:00
binary-husky
8d37d94e2c Update README.md 2023-07-28 09:53:17 +08:00
awwaawwa
e4ba0e6c85 add clear history tips 2023-07-27 23:07:59 +08:00
505030475
4216c5196e verify ignore history practice 2023-07-27 22:30:55 +08:00
binary-husky
2df660a718 Merge pull request #992 from yangchuansheng/master
Update README.md
2023-07-26 22:46:43 +08:00
binary-husky
bb496a9c2c Update README.md 2023-07-26 22:46:21 +08:00
binary-husky
4e0737c0c2 Update README.md 2023-07-26 22:46:02 +08:00
binary-husky
4bb3cba5c8 Update README.md 2023-07-26 18:53:42 +08:00
qingxu fu
08b9b0d140 improve audio assistant documents 2023-07-26 18:51:33 +08:00
qingxu fu
3577a72a3b add audio assistant docker compose solution 2023-07-26 18:39:32 +08:00
qingxu fu
0328d6f498 add ALIYUN ACCESSKEY SECRET 2023-07-26 18:28:15 +08:00
qingxu fu
d437305a4f add audio assistant docker 2023-07-26 18:16:59 +08:00
qingxu fu
c4899bcb20 long-term aliyun access 2023-07-26 18:09:28 +08:00
Carson Yang
4295764f8c Update README.md
添加 Sealos 部署方案
2023-07-25 16:38:37 +08:00
binary-husky
e4e2430255 version 3.47 2023-07-24 19:58:47 +08:00
binary-husky
1732127a28 Merge pull request #979 from fenglui/master
增加chatGLM int4配置支持 小显存也可以选择chatGLM
2023-07-24 19:52:27 +08:00
binary-husky
56bb8b6498 improve re efficiency 2023-07-24 18:50:29 +08:00
binary-husky
e93b6fa3a6 Add GLM INT8 2023-07-24 18:19:57 +08:00
binary-husky
dd4ba0ea22 Merge branch 'master' of https://github.com/fenglui/gpt_academic into fenglui-master 2023-07-24 18:06:15 +08:00
binary-husky
c2701c9ce5 Merge pull request #986 from one-pr/git-clone
默认仅 clone 最新的代码,减小 git clone 的大小
2023-07-24 17:48:35 +08:00
woclass
2f019ce359 优化 README.md 中的其他 git clone 2023-07-24 15:14:48 +08:00
woclass
c5b147aeb7 默认仅 clone 最新的代码,减小 git clone 的大小 2023-07-24 15:14:42 +08:00
fenglui
5813d65e52 增加chatGLM int4配置支持 小显存也可以选择chatGLM 2023-07-22 08:29:15 +08:00
binary-husky
a393edfaa4 ALLOW CUSTOM API KEY PATTERN 2023-07-21 22:49:07 +08:00
binary-husky
dd7a01cda5 Merge pull request #976 from fenglui/master
fix msg.data.split(DELIMITER) exception when msg.data is int
2023-07-21 17:02:29 +08:00
fenglui
00a3b91f95 fix msg.data.split(DELIMITER) exception when msg.data is int 2023-07-21 03:51:33 +08:00
qingxu fu
61ba544282 add latex test samples 2023-07-20 19:49:23 +08:00
qingxu fu
b5b8c123e4 latex plugin stability improvement 2023-07-20 19:39:22 +08:00
qingxu fu
d9ceba959f expand range after failure 2023-07-20 18:39:02 +08:00
qingxu fu
6b5b040701 remove pdf merge 2023-07-20 18:29:06 +08:00
qingxu fu
4f4c09a5f3 增强Latex修复能力 2023-07-20 18:08:22 +08:00
qingxu fu
067bc97cce Merge branch 'interface-interlm' of https://github.com/binary-husky/chatgpt_academic into interface-interlm 2023-07-20 12:46:52 +08:00
qingxu fu
7368580cd6 concat pdf after translation 2023-07-20 12:46:48 +08:00
binary-husky
df90db210c Merge branch 'master' into interface-interlm 2023-07-20 11:40:45 +08:00
binary-husky
0927ed20a2 edit default configuration 2023-07-20 11:39:35 +08:00
binary-husky
73b22f85be compat third party gpt error handle 2023-07-20 11:09:22 +08:00
binary-husky
b8d77557b0 Update README.md 2023-07-20 10:12:42 +08:00
binary-husky
99b8fce8f3 Merge pull request #965 from QQisQQ/patch-2
解决new bing 报错200 (fix new bing error code 200 )
2023-07-19 10:15:15 +08:00
binary-husky
16364f1b2d Merge pull request #966 from doujiang-zheng/master
Add timestamp for chat_secrets.log and disable the verbose httpx log.
2023-07-19 10:14:36 +08:00
doujiang-zheng
3b88e00cfb Add timestamp for chat_secrets.log and disable the verbose httpx log. 2023-07-19 09:43:59 +08:00
QQisQQ
0c8c539e9b 解决new bing 报错200 (fix new bing error code 200 )
modify from 16e00af9d5

works for my issue:
```
Traceback (most recent call last):
  File "./request_llm/bridge_newbingfree.py", line 152, in run
    asyncio.run(self.async_run())
  File "/root/miniconda3/envs/py311/lib/python3.11/asyncio/runners.py", line 190, in run
    return runner.run(main)
           ^^^^^^^^^^^^^^^^
  File "/root/miniconda3/envs/py311/lib/python3.11/asyncio/runners.py", line 118, in run
    return self._loop.run_until_complete(task)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/miniconda3/envs/py311/lib/python3.11/asyncio/base_events.py", line 653, in run_until_complete
    return future.result()
           ^^^^^^^^^^^^^^^
  File "./request_llm/bridge_newbingfree.py", line 98, in async_run
    async for final, response in self.newbing_model.ask_stream(
  File "./request_llm/edge_gpt_free.py", line 676, in ask_stream
    async for response in self.chat_hub.ask_stream(
  File "./request_llm/edge_gpt_free.py", line 456, in ask_stream
    self.wss = await self.session.ws_connect(
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/miniconda3/envs/py311/lib/python3.11/site-packages/aiohttp/client.py", line 795, in _ws_connect
    raise WSServerHandshakeError(
aiohttp.client_exceptions.WSServerHandshakeError: 200, message='Invalid response status', url=URL('wss://sydney.bing.com/sydney/ChatHub')
```
2023-07-19 04:39:15 +08:00
binary-husky
fd549fb986 merge success 2023-07-18 19:51:13 +08:00
binary-husky
babb775cfb interface with interlm 2023-07-18 16:33:34 +08:00
qingxu fu
eef9e470c9 Latex解除非UTF8编码错误 2023-07-18 11:00:20 +08:00
binary-husky
3002c6318a Update README.md 2023-07-17 22:21:39 +08:00
binary-husky
6d0bceaebd 移除插件依赖 2023-07-17 22:00:29 +08:00
binary-husky
aa51d6fde6 up 2023-07-17 21:54:28 +08:00
binary-husky
136479e218 Update README.md 2023-07-17 10:38:46 +08:00
binary-husky
19a2742354 Merge pull request #957 from 1Haschwalth/patch-1
Update README.md
2023-07-17 10:35:15 +08:00
1Haschwalth
45aac96dd3 Update README.md 2023-07-16 21:50:08 +08:00
binary-husky
6f21ae8939 support claude api 2023-07-16 15:03:05 +08:00
binary-husky
add98f4eeb 修复自动版本升级Bug 2023-07-16 13:23:28 +08:00
binary-husky
fe231f72b6 fix theme folder rename problem 2023-07-16 13:15:55 +08:00
binary-husky
b308fde480 update readme 2023-07-15 19:19:39 +08:00
binary-husky
f3e14ff806 更新繁體中文映射詞典 2023-07-15 19:11:00 +08:00
binary-husky
79ef9bdf1c update English projection dictionary 2023-07-15 19:01:49 +08:00
binary-husky
a3e938aee9 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-07-15 18:41:46 +08:00
binary-husky
b19a6155f4 restore jittor support 2023-07-15 18:41:35 +08:00
binary-husky
801f7342b1 Update config.py 2023-07-15 17:58:34 +08:00
binary-husky
4829fa0f35 Update README.md 2023-07-15 17:46:19 +08:00
binary-husky
3671f4208e Update README.md 2023-07-15 17:39:04 +08:00
binary-husky
e8c51181ee 进一步提高语音识别的实时性 2023-07-15 17:02:00 +08:00
binary-husky
3ccbb4d6fb 移除google字体 2023-07-15 17:01:37 +08:00
binary-husky
93fe457e99 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-07-15 16:41:46 +08:00
binary-husky
afac657aaa 解决语音助手看门狗线程泄露的问题 2023-07-15 16:41:11 +08:00
binary-husky
3e5c32860a Update README.md 2023-07-15 14:59:05 +08:00
binary-husky
d577bb38b6 Update use_audio.md 2023-07-15 14:58:27 +08:00
binary-husky
418bc32b39 Update use_audio.md 2023-07-15 14:53:30 +08:00
binary-husky
7148ea0596 更新README 2023-07-15 14:44:07 +08:00
binary-husky
87adb17df4 3.46 2023-07-15 14:38:18 +08:00
binary-husky
3fcee3762d 微调样式 2023-07-15 14:35:24 +08:00
binary-husky
1f014779e4 微调样式 2023-07-15 14:31:38 +08:00
binary-husky
97879e73ef 恢复横向调整css 2023-07-15 13:35:11 +08:00
binary-husky
13d4cd3237 音频功能说明书 2023-07-15 13:30:12 +08:00
binary-husky
73e835885b Merge branch 'master' into improve_ui_master 2023-07-15 13:01:13 +08:00
binary-husky
2524c908fc 修改提示 2023-07-15 12:58:38 +08:00
binary-husky
0e71d81bb3 Update README.md 2023-07-14 16:30:03 +08:00
binary-husky
a47864888f Update build-with-latex.yml 2023-07-14 16:25:25 +08:00
binary-husky
9b61ac807c Update build-with-chatglm.yml 2023-07-14 16:25:03 +08:00
binary-husky
bc200dc555 Update build-without-local-llms.yml 2023-07-14 16:24:32 +08:00
binary-husky
2c18b84517 修复依赖自动安装程序 2023-07-12 22:16:25 +08:00
qingxu fu
fe7b651c56 更新提示 2023-07-11 15:56:28 +08:00
qingxu fu
9b8f160788 up 2023-07-11 15:52:38 +08:00
binary-husky
801d5e2fc2 audio readme 2023-07-11 11:11:06 +08:00
binary-husky
cecdd28e04 Update README.md 2023-07-10 03:41:19 +08:00
binary-husky
d364df1cd6 add test instance 2023-07-10 03:33:51 +08:00
binary-husky
f51bc03686 3.45版本说明 2023-07-10 03:24:34 +08:00
binary-husky
c010d50716 允许加入ChatGLM微调模型 2023-07-10 03:17:09 +08:00
binary-husky
acddb86f3a 小而美 2023-07-10 00:20:14 +08:00
binary-husky
4fde0120ab 完善提醒 2023-07-10 00:08:59 +08:00
binary-husky
592a354eef 完善插件提示 2023-07-10 00:06:48 +08:00
binary-husky
bd66cf3d8b 修复对话历史的问题 2023-07-10 00:02:22 +08:00
binary-husky
e6e5174734 改名 2023-07-09 23:47:10 +08:00
binary-husky
13ade82677 改善语音辅助 2023-07-09 23:18:06 +08:00
binary-husky
ce9eb8d20a UP 2023-07-09 21:18:04 +08:00
binary-husky
dd47c0a284 merge changes 2023-07-09 20:55:37 +08:00
binary-husky
f725ab1b31 Merge branch 'master' into improve_ui_master 2023-07-09 20:47:53 +08:00
binary-husky
7ce4192c52 add comments 2023-07-09 17:25:50 +08:00
binary-husky
c06aafb642 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-07-09 16:01:15 +08:00
binary-husky
b298c5416c 完善PDF总结插件 2023-07-09 16:01:08 +08:00
505030475
94abf302cb 修正模板注释 2023-07-09 12:50:51 +08:00
binary-husky
fcc5534e66 ChatGLM 黑盒微调插件 2023-07-09 03:37:47 +08:00
binary-husky
56c0e4d575 3.44说明 2023-07-09 01:21:18 +08:00
binary-husky
8a10db618e Merge branch 'master-interact' 2023-07-09 01:05:04 +08:00
binary-husky
1fe66f0291 优化azure的体验 2023-07-09 00:20:58 +08:00
binary-husky
ced977c443 修复双dollar公式匹配bug 2023-07-08 22:23:29 +08:00
binary-husky
6c2ffbae52 Update README.md 2023-07-08 19:17:35 +08:00
binary-husky
be2f54fac9 Update README.md 2023-07-08 18:21:20 +08:00
binary-husky
87b5e56378 Update requirements.txt 2023-07-08 18:10:33 +08:00
binary-husky
3a5764ed34 Update requirements.txt 2023-07-08 17:59:27 +08:00
qingxu fu
91aee50ea7 Chuanhu 主题 2023-07-07 20:12:06 +08:00
qingxu fu
e5ccedf491 名称修订 2023-07-07 20:08:26 +08:00
qingxu fu
f620666a58 Merge branch 'improve_ui_master' of https://github.com/binary-husky/chatgpt_academic into improve_ui_master 2023-07-07 19:51:48 +08:00
qingxu fu
594c63e5d6 主题修正 2023-07-07 19:51:09 +08:00
qingxu fu
67d9051890 update error message 2023-07-07 17:41:43 +08:00
binary-husky
be96232127 Merge pull request #933 from binary-husky/master-latex-patch
Latex File Name Bug Patch
2023-07-07 16:57:58 +08:00
binary-husky
3b5bc7a784 Update use_azure.md 2023-07-07 10:55:22 +08:00
binary-husky
5e92f437a1 Update use_azure.md 2023-07-07 10:54:21 +08:00
qingxu fu
eabd9d312f 3.43 2023-07-07 10:47:30 +08:00
qingxu fu
0da6fe78ac 统一azure-gpt-3.5的格式 2023-07-07 10:45:11 +08:00
qingxu fu
be990380a0 Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-07-07 10:42:41 +08:00
qingxu fu
9c0bc48420 修复Azure OpenAI接口的各种bug 2023-07-07 10:42:38 +08:00
binary-husky
5c0d34793e Latex File Name Bug Patch 2023-07-07 00:09:50 +08:00
binary-husky
37fc550652 Update config.py 2023-07-06 10:47:06 +08:00
binary-husky
2c1d6ac212 修复Organization的bug 2023-07-05 21:14:13 +08:00
binary-husky
8c699c1b26 Update README.md 2023-07-05 21:04:28 +08:00
binary-husky
c620fa9011 Update README.md 2023-07-05 20:55:59 +08:00
binary-husky
f16fd60211 Update README.md 2023-07-05 20:34:22 +08:00
binary-husky
9674e59d26 更新说明 2023-07-05 20:22:57 +08:00
binary-husky
643c5e125a 更新提醒 2023-07-05 20:10:18 +08:00
binary-husky
e5099e1daa 极少数情况下,openai的官方KEY需要伴随组织编码 2023-07-05 20:05:20 +08:00
binary-husky
3e621bbec1 Update Dockerfile 2023-07-05 14:37:54 +08:00
qingxu fu
bb1d5a61c0 update translation matrix 2023-07-05 14:32:33 +08:00
binary-husky
fd3d0be2d8 Update config.py 2023-07-05 14:13:04 +08:00
binary-husky
ae623258f3 更详细的配置提示 2023-07-05 14:10:06 +08:00
binary-husky
cda281f08b 把newbing的cookie加回来 2023-07-05 13:48:50 +08:00
binary-husky
9f8e7a6efa 显示更详细的报错 2023-07-05 13:35:11 +08:00
qingxu fu
57643dd2b6 update error msg 2023-07-05 13:01:06 +08:00
qingxu fu
6bc8a78cfe No more cookie for NewBing! 2023-07-05 12:45:10 +08:00
binary-husky
d2700e97fb 更新openai失效提醒 2023-07-05 11:03:11 +08:00
binary-husky
c4dd81dc9a Update Dockerfile 2023-07-04 12:28:52 +08:00
binary-husky
e9b06d7cde Merge pull request #927 from QuantumRoseinAmethystVase/master
Update 批量总结PDF文档.py
2023-07-04 12:24:17 +08:00
qingxu fu
6e6ea69611 Unsplash恢复了 2023-07-04 12:16:01 +08:00
505030475
b082b5eb1b 将阿里云TOKEN移动到config中 2023-07-03 23:20:25 +08:00
505030475
9648d78453 重构异步代码,增强可读性 2023-07-03 22:44:10 +08:00
QuantumRoseinAmethystVase
16c17eb077 Update 批量总结PDF文档.py
Improve the output.
2023-07-03 18:55:16 +08:00
505030475
2dc8718041 语音模组第一个版本 2023-07-03 00:13:10 +08:00
505030475
a330d6636e error 2023-07-02 22:54:05 +08:00
qingxu fu
322c4be145 同步音频输入 2023-07-02 14:42:12 +08:00
qingxu fu
a3596ff60d audio 2023-07-02 01:05:20 +08:00
qingxu fu
e11d8132f8 add green theme 2023-07-01 23:02:44 +08:00
kainstan
59877dd728 Local variable 'result' might be referenced before assignment, add else result 2023-07-01 22:27:11 +08:00
w_xiaolizu
5f7ffef238 增加基础功能判空 2023-07-01 22:04:42 +08:00
qingxu fu
41c10f5688 report image generation error in UI 2023-07-01 02:28:32 +08:00
qingxu fu
d7ac99f603 更正错误提示 2023-07-01 01:46:43 +08:00
qingxu fu
1616daae6a Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-07-01 00:17:30 +08:00
qingxu fu
a1092d8f92 提供自动清空输入框的选项 2023-07-01 00:17:26 +08:00
binary-husky
34ca9f138f Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-06-30 14:56:28 +08:00
binary-husky
df3f1aa3ca 更正ChatGLM2的默认Token数量 2023-06-30 14:56:22 +08:00
qingxu fu
bf805cf477 Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-06-30 13:09:51 +08:00
qingxu fu
ecb08e69be remove find picture core functionality 2023-06-30 13:08:54 +08:00
binary-husky
28c1e3f11b Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-06-30 12:06:33 +08:00
binary-husky
403667aec1 upgrade chatglm to chatglm2 2023-06-30 12:06:28 +08:00
qingxu fu
22f377e2fb fix multi user cwd shift 2023-06-30 11:05:47 +08:00
binary-husky
37172906ef 修复文件导出的bug 2023-06-29 14:55:55 +08:00
binary-husky
3b78e0538b 修复插件demo的图像显示的问题 2023-06-29 14:52:58 +08:00
binary-husky
d8f9ac71d0 Merge pull request #907 from Xminry/master
feat:联网搜索功能,cn.bing.com版,国内可用
2023-06-29 12:44:32 +08:00
qingxu fu
aced272d3c 微调插件提示 2023-06-29 12:43:50 +08:00
qingxu fu
aff77a086d Merge branch 'master' of https://github.com/Xminry/gpt_academic into Xminry-master 2023-06-29 12:38:43 +08:00
qingxu fu
49253c4dc6 [arxiv trans] add html comparison to zip file 2023-06-29 12:29:49 +08:00
qingxu fu
1a00093015 修复提示 2023-06-29 12:15:52 +08:00
qingxu fu
64f76e7401 3.42 2023-06-29 11:32:19 +08:00
qingxu fu
eb4c07997e 修复Latex矫错和本地Latex论文翻译的问题 2023-06-29 11:30:42 +08:00
Xminry
99cf7205c3 feat:联网搜索功能,cn.bing.com版,国内可用 2023-06-28 10:30:08 +08:00
binary-husky
d684b4cdb3 Merge pull request #905 from Xminry/master
Update 理解PDF文档内容.py
2023-06-27 23:37:25 +08:00
binary-husky
601a95c948 Merge pull request #881 from OverKit/master
update latex_utils.py
2023-06-27 19:20:17 +08:00
qingxu fu
e18bef2e9c add item breaker 2023-06-27 19:16:05 +08:00
qingxu fu
f654c1af31 merge regex expressions 2023-06-27 18:59:56 +08:00
qingxu fu
e90048a671 Merge branch 'master' of https://github.com/OverKit/gpt_academic into OverKit-master 2023-06-27 16:14:12 +08:00
binary-husky
ea624b1510 Merge pull request #889 from dackdawn/master
添加0613模型的声明
2023-06-27 15:03:15 +08:00
qingxu fu
057e3dda3c Merge branch 'master' of https://github.com/dackdawn/gpt_academic into dackdawn-master 2023-06-27 15:02:22 +08:00
Xminry
4290821a50 Update 理解PDF文档内容.py 2023-06-27 01:57:31 +08:00
binary-husky
280e14d7b7 更新Latex模块的docker-compose 2023-06-26 09:59:14 +08:00
505030475
9f0cf9fb2b arxiv PDF 引用 2023-06-25 23:30:31 +08:00
505030475
b8560b7510 修正误判latex模板文件的bug 2023-06-25 22:46:16 +08:00
505030475
d841d13b04 add arxiv translation test samples 2023-06-25 22:12:44 +08:00
binary-husky
efda9e5193 Merge pull request #897 from Ranhuiryan/master
添加azure-gpt35选项
2023-06-24 17:59:51 +10:00
Ranhuiryan
33d2e75aac add azure-gpt35 to model list 2023-06-21 16:19:49 +08:00
Ranhuiryan
74941170aa update azure use instruction 2023-06-21 16:19:26 +08:00
505030475
cd38949903 当遇到错误时,回滚到原文 2023-06-21 11:53:57 +10:00
505030475
d87f1eb171 更新接入azure的说明 2023-06-21 11:38:59 +10:00
binary-husky
cd1e4e1ba7 Merge pull request #797 from XiaojianTang/master
增加azure openai api的支持
2023-06-21 11:23:41 +10:00
505030475
cf5f348d70 update test samples 2023-06-21 11:20:31 +10:00
binary-husky
0ee25f475e Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-06-20 23:07:51 +08:00
binary-husky
1fede6df7f temp 2023-06-20 23:05:17 +08:00
binary-husky
22a65cd163 Create build-with-latex.yml 2023-06-21 00:55:24 +10:00
binary-husky
538b041ea3 Merge pull request #890 from Mcskiller/master
Update README.md
2023-06-21 00:53:26 +10:00
505030475
d7b056576d add latex docker-compose 2023-06-21 00:52:58 +10:00
505030475
cb0bb6ab4a fix minor bugs 2023-06-21 00:41:33 +10:00
505030475
bf955aaf12 fix bugs 2023-06-20 23:12:30 +10:00
505030475
61eb0da861 fix encoding bug 2023-06-20 22:08:09 +10:00
Lebenito(生糸)
5da633d94d Update README.md
Fix the error URL for the git clone.
2023-06-20 19:10:11 +08:00
dackdawn
f3e4e26e2f 添加0613模型的声明
openai对gpt-3.5-turbo的RPM限制是3,而gpt-3.5-turbo-0613的RPM是60,虽然两个模型的内容是一致的,但是选定特定模型可以获得更高的RPM和TPM
2023-06-19 21:40:26 +08:00
505030475
af7734dd35 avoid file fusion 2023-06-19 16:57:11 +10:00
505030475
d5bab093f9 rename function names 2023-06-19 15:17:33 +10:00
505030475
f94b167dc2 Merge branch 'master' into overkit-master 2023-06-19 14:53:51 +10:00
505030475
951d5ec758 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-06-19 14:52:25 +10:00
505030475
016d8ee156 Merge remote-tracking branch 'origin/master' into OverKit-master 2023-06-19 14:51:59 +10:00
505030475
dca9ec4bae Merge branch 'master' of https://github.com/OverKit/gpt_academic into OverKit-master 2023-06-19 14:49:50 +10:00
binary-husky
a06e43c96b Update README.md 2023-06-18 16:15:37 +08:00
binary-husky
29c6bfb6cb Update README.md 2023-06-18 16:12:06 +08:00
binary-husky
8d7ee975a0 Update README.md 2023-06-18 16:10:45 +08:00
binary-husky
4bafbb3562 Update Latex输出PDF结果.py 2023-06-18 15:54:23 +08:00
OverKit
7fdf0a8e51 调整区分内容的代码 2023-06-18 15:51:29 +08:00
binary-husky
2bb13b4677 Update README.md 2023-06-18 15:44:42 +08:00
OverKit
9a5a509dd9 修复关于abstract的搜索 2023-06-17 19:27:21 +08:00
binary-husky
cbcb98ef6a Merge pull request #872 from Skyzayre/master
Update README.md
2023-06-16 17:54:39 +08:00
qingxu fu
bb864c6313 增加一些提示文字 2023-06-16 17:33:19 +08:00
qingxu fu
6d849eeb12 修复Langchain插件的bug 2023-06-16 17:33:03 +08:00
Skyzayre
ef752838b0 Update README.md 2023-06-15 02:07:43 +08:00
binary-husky
73d4a1ff4b Update README.md 2023-06-14 10:15:47 +08:00
qingxu fu
8c62f21aa6 3.41增加gpt-3.5-16k的支持 2023-06-14 09:57:09 +08:00
qingxu fu
c40ebfc21f 将gpt-3.5-16k作为加入支持列表 2023-06-14 09:50:15 +08:00
binary-husky
c365ea9f57 Update README.md 2023-06-13 16:13:19 +08:00
binary-husky
12d66777cc Merge pull request #864 from OverKit/master
check letter % after removing spaces or tabs in the left
2023-06-12 15:21:35 +08:00
OverKit
9ac3d0d65d check letter % after removing spaces or tabs in the left 2023-06-12 10:09:52 +08:00
binary-husky
9fd212652e 专业词汇声明 2023-06-12 09:45:59 +08:00
binary-husky
790a1cf12a 添加一些提示 2023-06-11 20:12:25 +08:00
binary-husky
3ecf2977a8 修复caption翻译 2023-06-11 18:23:54 +08:00
binary-husky
aeddf6b461 Update Latex输出PDF结果.py 2023-06-11 10:20:49 +08:00
505030475
ce0d8b9dab 虚空终端插件雏形 2023-06-11 01:36:23 +08:00
binary-husky
3c00e7a143 file link in chatbot 2023-06-10 21:45:38 +08:00
binary-husky
ef1bfdd60f update pip install notice 2023-06-08 21:29:10 +08:00
qingxu fu
e48d92e82e update translation 2023-06-08 18:34:06 +08:00
binary-husky
110510997f Update README.md 2023-06-08 12:48:52 +08:00
binary-husky
b52695845e Update README.md 2023-06-08 12:44:05 +08:00
binary-husky
f30c9c6d3b Update README.md 2023-06-08 12:43:13 +08:00
binary-husky
ff5403eac6 Update README.md 2023-06-08 12:42:24 +08:00
binary-husky
f9226d92be Update version 2023-06-08 12:24:14 +08:00
binary-husky
a0ea5d0e9e Update README.md 2023-06-08 12:22:03 +08:00
binary-husky
ce6f11d200 Update README.md 2023-06-08 12:20:49 +08:00
binary-husky
10b3001dba Update README.md 2023-06-08 12:19:11 +08:00
binary-husky
e2de1d76ea Update README.md 2023-06-08 12:18:31 +08:00
binary-husky
77cc141a82 Update README.md 2023-06-08 12:14:02 +08:00
binary-husky
526b4d8ecd Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-06-07 11:09:20 +08:00
binary-husky
149db621ec langchain check depends 2023-06-07 11:09:12 +08:00
binary-husky
2e1bb7311c Merge pull request #848 from MengDanzz/master
将Dockerfile COPY分成两段,缓存依赖库,重新构建不需要重新安装
2023-06-07 10:44:09 +08:00
binary-husky
dae65fd2c2 在copy ..后在运行一次pip install检查依赖变化 2023-06-07 10:43:45 +08:00
MengDanzz
9aafb2ee47 非pypi包加入COPY 2023-06-07 09:18:57 +08:00
MengDanzz
6bc91bd02e Merge branch 'binary-husky:master' into master 2023-06-07 09:15:44 +08:00
qingxu fu
8ef7344101 fix subprocess bug in Windows 2023-06-06 18:57:52 +08:00
binary-husky
40da1b0afe 将Latex分解程序放到子进程执行 2023-06-06 18:44:00 +08:00
MengDanzz
c65def90f3 将Dockerfile COPY分成两段,缓存依赖库,重新构建不需要重新安装 2023-06-06 14:36:30 +08:00
binary-husky
ddeaf76422 check latex in PATH 2023-06-06 00:23:00 +08:00
qingxu fu
f23b66dec2 update Dockerfile with Latex 2023-06-05 23:49:54 +08:00
qingxu fu
a26b294817 Write Some Docstring 2023-06-05 23:44:59 +08:00
qingxu fu
66018840da declare resp 2023-06-05 23:24:41 +08:00
qingxu fu
cea2144f34 fix test samples 2023-06-05 23:11:21 +08:00
qingxu fu
7f5be93c1d 修正一些正则匹配bug 2023-06-05 22:57:39 +08:00
binary-husky
85b838b302 add Linux support 2023-06-04 23:06:35 +08:00
qingxu fu
27f97ba92a remove previous results 2023-06-04 16:55:36 +08:00
qingxu fu
14269eba98 建立本地arxiv缓存区 2023-06-04 16:08:01 +08:00
qingxu fu
d5c9bc9f0a 提高iffalse搜索优先级 2023-06-04 14:15:59 +08:00
qingxu fu
b0fed3edfc consider iffalse state 2023-06-04 14:06:02 +08:00
qingxu fu
7296d054a2 patch latex segmentation 2023-06-04 13:56:15 +08:00
qingxu fu
d57c7d352d improve quality 2023-06-03 23:54:30 +08:00
qingxu fu
3fd2927ea3 改善 2023-06-03 23:33:45 +08:00
qingxu fu
b745074160 avoid most compile failure 2023-06-03 23:33:32 +08:00
qingxu fu
70ee810133 improve success rate 2023-06-03 19:39:19 +08:00
qingxu fu
68fea9e79b fix test 2023-06-03 18:09:39 +08:00
qingxu fu
f82bf91aa8 test example 2023-06-03 18:06:39 +08:00
qingxu fu
dde9edcc0c fix a fatal mistake 2023-06-03 17:49:22 +08:00
qingxu fu
66c78e459e 修正提示 2023-06-03 17:18:38 +08:00
qingxu fu
de54102303 修改提醒 2023-06-03 16:43:26 +08:00
qingxu fu
7c7d2d8a84 Latex的minipage补丁 2023-06-03 16:16:32 +08:00
qingxu fu
834f989ed4 考虑有人用input不加.tex的情况 2023-06-03 15:42:22 +08:00
qingxu fu
b658ee6e04 修复arxiv翻译的一些问题 2023-06-03 15:36:55 +08:00
qingxu fu
1a60280ea0 添加警告 2023-06-03 14:40:37 +08:00
qingxu fu
991cb7d272 warning 2023-06-03 14:39:40 +08:00
qingxu fu
463991cfb2 fix bug 2023-06-03 14:24:06 +08:00
qingxu fu
06f10b5fdc fix zh cite bug 2023-06-03 14:17:58 +08:00
qingxu fu
d275d012c6 Merge branch 'langchain' into master 2023-06-03 13:53:39 +08:00
qingxu fu
c5d1ea3e21 update langchain version 2023-06-03 13:53:34 +08:00
qingxu fu
0022b92404 update prompt 2023-06-03 13:50:39 +08:00
qingxu fu
ef61221241 latex auto translation milestone 2023-06-03 13:46:40 +08:00
qingxu fu
5a1831db98 成功! 2023-06-03 00:34:23 +08:00
qingxu fu
a643f8b0db debug translation 2023-06-02 23:06:01 +08:00
qingxu fu
601712fd0a latex toolchain 2023-06-02 21:44:11 +08:00
505030475
e769f831c7 latex 2023-06-02 14:07:04 +08:00
binary-husky
dcd952671f Update main.py 2023-06-01 15:56:52 +08:00
binary-husky
06564df038 Merge branch 'langchain' 2023-06-01 09:39:34 +08:00
binary-husky
2f037f30d5 暂时移除插件锁定 2023-06-01 09:39:00 +08:00
505030475
efedab186d Merge branch 'master' into langchain 2023-06-01 00:10:22 +08:00
binary-husky
f49cae5116 Update Langchain知识库.py 2023-06-01 00:09:07 +08:00
binary-husky
2b620ccf2e 更新提示 2023-06-01 00:07:19 +08:00
binary-husky
a1b7a4da56 更新测试案例 2023-06-01 00:03:27 +08:00
binary-husky
61b0e49fed fix some bugs in linux 2023-05-31 23:49:25 +08:00
binary-husky
f60dc371db 12 2023-05-31 10:42:44 +08:00
binary-husky
0a3433b8ac Update README.md 2023-05-31 10:37:08 +08:00
binary-husky
31bce54abb Update README.md 2023-05-31 10:34:21 +08:00
binary-husky
5db1530717 Merge branch 'langchain' of github.com:binary-husky/chatgpt_academic into langchain 2023-05-30 20:08:47 +08:00
binary-husky
c32929fd11 Merge branch 'master' into langchain 2023-05-30 20:08:15 +08:00
505030475
3e4c2b056c knowledge base 2023-05-30 19:55:38 +08:00
505030475
e79e9d7d23 Merge branch 'master' into langchain 2023-05-30 18:31:39 +08:00
binary-husky
d175b93072 Update README.md.Italian.md 2023-05-30 17:27:41 +08:00
binary-husky
ed254687d2 Update README.md.Italian.md 2023-05-30 17:26:12 +08:00
binary-husky
c0392f7074 Update README.md.Korean.md 2023-05-30 17:25:32 +08:00
binary-husky
f437712af7 Update README.md.Portuguese.md 2023-05-30 17:22:46 +08:00
505030475
6d1ea643e9 langchain 2023-05-30 12:54:42 +08:00
binary-husky
9e84cfcd46 Update README.md 2023-05-29 19:48:34 +08:00
binary-husky
897695d29f 修复二级路径的文件屏蔽 2023-05-28 20:25:35 +08:00
binary-husky
1dcc2873d2 修复Gradio配置泄露的问题 2023-05-28 20:23:47 +08:00
binary-husky
42cf738a31 修复一些情况下复制键失效的问题 2023-05-28 18:12:48 +08:00
binary-husky
e4646789af Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-05-28 16:07:29 +08:00
binary-husky
e6c3aabd45 docker-compose check 2023-05-28 16:07:24 +08:00
binary-husky
6789d1fab4 Update README.md 2023-05-28 11:21:50 +08:00
binary-husky
7a733f00a2 Update README.md 2023-05-28 00:19:23 +08:00
binary-husky
dd55888f0e Update README.md 2023-05-28 00:16:45 +08:00
binary-husky
0327df22eb Update README.md 2023-05-28 00:14:54 +08:00
binary-husky
e544f5e9d0 Update README.md 2023-05-27 23:45:15 +08:00
binary-husky
0fad4f44a4 fix dockerfile 2023-05-27 23:36:42 +08:00
binary-husky
1240dd6f26 local gradio 2023-05-27 23:29:22 +08:00
505030475
d6be947177 修复gradio的依赖安装问题 2023-05-27 23:10:44 +08:00
505030475
3cfbdce9f2 remove limitation for now 2023-05-27 22:25:50 +08:00
505030475
1ee471ff57 fix reminder 2023-05-27 22:20:46 +08:00
binary-husky
25ccecf8e3 Update README.md 2023-05-27 21:56:43 +08:00
binary-husky
9e991bfa3e Update requirements.txt 2023-05-27 21:56:16 +08:00
binary-husky
221efd0193 Update README.md 2023-05-27 21:11:25 +08:00
binary-husky
976b9bf65f Update README.md 2023-05-27 21:04:52 +08:00
binary-husky
ae5783e383 修复gradio复制按钮BUG 2023-05-27 20:20:45 +08:00
binary-husky
30224af042 Merge pull request #798 from Bit0r/master
🐛 匹配latex注释的正则表达式
2023-05-27 14:03:07 +08:00
Bit0r
8ff7c15cd8 🐛 匹配latex注释的正则表达式 2023-05-27 11:19:48 +08:00
XiaojianTang
f3205994ea 增加azure openai api的支持 2023-05-26 23:22:12 +08:00
505030475
ec8cc48a4d Add ProxyNetworkActivate 2023-05-25 23:48:18 +08:00
binary-husky
5d75c578b9 fix dependency 2023-05-25 15:28:27 +08:00
binary-husky
cd411c2eea newbing-free deps 2023-05-25 15:12:54 +08:00
共有 165 个文件被更改,包括 1957 次插入28817 次删除

查看文件

@@ -11,6 +11,8 @@ body:
- Please choose | 请选择
- Pip Install (I ignored requirements.txt)
- Pip Install (I used latest requirements.txt)
- OneKeyInstall (一键安装脚本-windows)
- OneKeyInstall (一键安装脚本-mac)
- Anaconda (I ignored requirements.txt)
- Anaconda (I used latest requirements.txt)
- DockerWindows/Mac
@@ -32,7 +34,7 @@ body:
- Others | 非最新版
validations:
required: true
- type: dropdown
id: os
attributes:
@@ -45,7 +47,7 @@ body:
- Docker
validations:
required: true
- type: textarea
id: describe
attributes:
@@ -53,7 +55,7 @@ body:
description: Describe the bug | 简述
validations:
required: true
- type: textarea
id: screenshot
attributes:
@@ -61,15 +63,9 @@ body:
description: Screen Shot | 有帮助的截图
validations:
required: true
- type: textarea
id: traceback
attributes:
label: Terminal Traceback & Material to Help Reproduce Bugs | 终端traceback如有 + 帮助我们复现的测试材料样本(如有)
description: Terminal Traceback & Material to Help Reproduce Bugs | 终端traceback如有 + 帮助我们复现的测试材料样本(如有)

查看文件

@@ -21,8 +21,3 @@ body:
attributes:
label: Feature Request | 功能请求
description: Feature Request | 功能请求

查看文件

@@ -0,0 +1,44 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: build-with-all-capacity-beta
on:
push:
branches:
- 'master'
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}_with_all_capacity_beta
jobs:
build-and-push-image:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- name: Checkout repository
uses: actions/checkout@v3
- name: Log in to the Container registry
uses: docker/login-action@v2
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v4
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
- name: Build and push Docker image
uses: docker/build-push-action@v4
with:
context: .
push: true
file: docs/GithubAction+AllCapacityBeta
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}

查看文件

@@ -0,0 +1,44 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: build-with-all-capacity
on:
push:
branches:
- 'master'
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}_with_all_capacity
jobs:
build-and-push-image:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- name: Checkout repository
uses: actions/checkout@v3
- name: Log in to the Container registry
uses: docker/login-action@v2
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v4
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
- name: Build and push Docker image
uses: docker/build-push-action@v4
with:
context: .
push: true
file: docs/GithubAction+AllCapacity
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}

查看文件

@@ -0,0 +1,44 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: build-with-audio-assistant
on:
push:
branches:
- 'master'
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}_audio_assistant
jobs:
build-and-push-image:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- name: Checkout repository
uses: actions/checkout@v3
- name: Log in to the Container registry
uses: docker/login-action@v2
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v4
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
- name: Build and push Docker image
uses: docker/build-push-action@v4
with:
context: .
push: true
file: docs/GithubAction+NoLocal+AudioAssistant
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}

查看文件

@@ -1,5 +1,5 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: Create and publish a Docker image for ChatGLM support
name: build-with-chatglm
on:
push:

查看文件

@@ -1,5 +1,5 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: Create and publish a Docker image for ChatGLM support
name: build-with-jittorllms
on:
push:

查看文件

@@ -1,5 +1,5 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: Create and publish a Docker image for Latex support
name: build-with-latex
on:
push:

查看文件

@@ -1,5 +1,5 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: Create and publish a Docker image
name: build-without-local-llms
on:
push:

25
.github/workflows/stale.yml vendored 普通文件
查看文件

@@ -0,0 +1,25 @@
# This workflow warns and then closes issues and PRs that have had no activity for a specified amount of time.
#
# You can adjust the behavior by modifying this file.
# For more information, see:
# https://github.com/actions/stale
name: 'Close stale issues and PRs'
on:
schedule:
- cron: '*/5 * * * *'
jobs:
stale:
runs-on: ubuntu-latest
permissions:
issues: write
pull-requests: read
steps:
- uses: actions/stale@v8
with:
stale-issue-message: 'This issue is stale because it has been open 100 days with no activity. Remove stale label or comment or this will be closed in 1 days.'
days-before-stale: 100
days-before-close: 1
debug-only: true

7
.gitignore vendored
查看文件

@@ -146,7 +146,10 @@ debug*
private*
crazy_functions/test_project/pdf_and_word
crazy_functions/test_samples
request_llm/jittorllms
request_llms/jittorllms
multi-language
request_llm/moss
request_llms/moss
media
flagged
request_llms/ChatGLM-6b-onnx-u8s8
.pre-commit-config.yaml

查看文件

@@ -1,32 +0,0 @@
default_language_version:
python: python3
exclude: 'dotnet'
ci:
autofix_prs: true
autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
autoupdate_schedule: 'quarterly'
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.4.0
hooks:
- id: check-ast
# - id: check-yaml
- id: check-toml
- id: check-json
- id: check-byte-order-marker
exclude: .gitignore
- id: check-merge-conflict
- id: detect-private-key
- id: trailing-whitespace
- id: end-of-file-fixer
- id: no-commit-to-branch
- repo: https://github.com/psf/black
rev: 23.3.0
hooks:
- id: black
# - repo: https://github.com/charliermarsh/ruff-pre-commit
# rev: v0.0.261
# hooks:
# - id: ruff
# args: ["--fix"]

查看文件

@@ -18,6 +18,7 @@ WORKDIR /gpt
# 安装大部分依赖,利用Docker缓存加速以后的构建 (以下三行,可以删除)
COPY requirements.txt ./
COPY ./docs/gradio-3.32.6-py3-none-any.whl ./docs/gradio-3.32.6-py3-none-any.whl
RUN pip3 install -r requirements.txt

102
README.md
查看文件

@@ -1,19 +1,7 @@
---
title: GPT-Academic
emoji: 😻
colorFrom: blue
colorTo: blue
sdk: gradio
sdk_version: 3.32.0
app_file: app.py
pinned: false
---
# ChatGPT 学术优化
> **Note**
>
> **Caution**
>
> 2023.11.12: 某些依赖包尚不兼容python 3.12,推荐python 3.11。
>
>
> 2023.12.26: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目完全开源免费,您可通过订阅[在线服务](https://github.com/binary-husky/gpt_academic/wiki/online)的方式鼓励本项目的发展。
<br>
@@ -54,11 +42,13 @@ If you like this project, please give it a Star.
Read this in [English](docs/README.English.md) | [日本語](docs/README.Japanese.md) | [한국어](docs/README.Korean.md) | [Русский](docs/README.Russian.md) | [Français](docs/README.French.md). All translations have been provided by the project itself. To translate this project to arbitrary language with GPT, read and run [`multi_language.py`](multi_language.py) (experimental).
<br>
> [!NOTE]
> 1.本项目中每个文件的功能都在[自译解报告](https://github.com/binary-husky/gpt_academic/wiki/GPTAcademic项目自译解报告)`self_analysis.md`详细说明。随着版本的迭代,您也可以随时自行点击相关函数插件,调用GPT重新生成项目的自我解析报告。常见问题请查阅wiki
> 1.请注意只有 **高亮** 标识的插件(按钮)才支持读取文件,部分插件位于插件区的**下拉菜单**中。另外我们以**最高优先级**欢迎和处理任何新插件的PR
>
> 2.本项目中每个文件的功能都在[自译解报告](https://github.com/binary-husky/gpt_academic/wiki/GPTAcademic项目自译解报告)`self_analysis.md`详细说明。随着版本的迭代,您也可以随时自行点击相关函数插件,调用GPT重新生成项目的自我解析报告。常见问题请查阅wiki。
> [![常规安装方法](https://img.shields.io/static/v1?label=&message=常规安装方法&color=gray)](#installation) [![一键安装脚本](https://img.shields.io/static/v1?label=&message=一键安装脚本&color=gray)](https://github.com/binary-husky/gpt_academic/releases) [![配置说明](https://img.shields.io/static/v1?label=&message=配置说明&color=gray)](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明) [![wiki](https://img.shields.io/static/v1?label=&message=wiki&color=gray)]([https://github.com/binary-husky/gpt_academic/wiki/项目配置说明](https://github.com/binary-husky/gpt_academic/wiki))
>
> 2.本项目兼容并鼓励尝试国内中文大语言基座模型如通义千问,智谱GLM等。支持多个api-key共存,可在配置文件中填写如`API_KEY="openai-key1,openai-key2,azure-key3,api2d-key4"`。需要临时更换`API_KEY`时,在输入区输入临时的`API_KEY`然后回车键提交即可生效。
> 3.本项目兼容并鼓励尝试国产大语言模型ChatGLM等。支持多个api-key共存,可在配置文件中填写如`API_KEY="openai-key1,openai-key2,azure-key3,api2d-key4"`。需要临时更换`API_KEY`时,在输入区输入临时的`API_KEY`然后回车键提交即可生效。
<br><br>
@@ -66,12 +56,7 @@ Read this in [English](docs/README.English.md) | [日本語](docs/README.Japanes
功能(⭐= 近期新增功能) | 描述
--- | ---
⭐[接入新模型](https://github.com/binary-husky/gpt_academic/wiki/%E5%A6%82%E4%BD%95%E5%88%87%E6%8D%A2%E6%A8%A1%E5%9E%8B) | 百度[千帆](https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu)与文心一言, 通义千问[Qwen](https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary),上海AI-Lab[书生](https://github.com/InternLM/InternLM),讯飞[星火](https://xinghuo.xfyun.cn/),[LLaMa2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf),[智谱GLM4](https://open.bigmodel.cn/),DALLE3, [DeepseekCoder](https://coder.deepseek.com/)
⭐支持mermaid图像渲染 | 支持让GPT生成[流程图](https://www.bilibili.com/video/BV18c41147H9/)、状态转移图、甘特图、饼状图、GitGraph等等3.7版本)
⭐Arxiv论文精细翻译 ([Docker](https://github.com/binary-husky/gpt_academic/pkgs/container/gpt_academic_with_latex)) | [插件] 一键[以超高质量翻译arxiv论文](https://www.bilibili.com/video/BV1dz4y1v77A/),目前最好的论文翻译工具
⭐[实时语音对话输入](https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md) | [插件] 异步[监听音频](https://www.bilibili.com/video/BV1AV4y187Uy/),自动断句,自动寻找回答时机
⭐AutoGen多智能体插件 | [插件] 借助微软AutoGen,探索多Agent的智能涌现可能
⭐虚空终端插件 | [插件] 能够使用自然语言直接调度本项目其他插件
⭐[接入新模型](https://github.com/binary-husky/gpt_academic/wiki/%E5%A6%82%E4%BD%95%E5%88%87%E6%8D%A2%E6%A8%A1%E5%9E%8B) | 百度[千帆](https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu)与文心一言, 通义千问[Qwen](https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary),上海AI-Lab[书生](https://github.com/InternLM/InternLM),讯飞[星火](https://xinghuo.xfyun.cn/),[LLaMa2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf),[智谱API](https://open.bigmodel.cn/),DALLE3, [DeepseekCoder](https://coder.deepseek.com/)
润色、翻译、代码解释 | 一键润色、翻译、查找论文语法错误、解释代码
[自定义快捷键](https://www.bilibili.com/video/BV14s4y1E7jN) | 支持自定义快捷键
模块化设计 | 支持自定义强大的[插件](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions),插件支持[热更新](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
@@ -80,16 +65,22 @@ Read this in [English](docs/README.English.md) | [日本語](docs/README.Japanes
Latex全文[翻译](https://www.bilibili.com/video/BV1nk4y1Y7Js/)、[润色](https://www.bilibili.com/video/BV1FT411H7c5/) | [插件] 一键翻译或润色latex论文
批量注释生成 | [插件] 一键批量生成函数注释
Markdown[中英互译](https://www.bilibili.com/video/BV1yo4y157jV/) | [插件] 看到上面5种语言的[README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md)了吗?就是出自他的手笔
chat分析报告生成 | [插件] 运行后自动生成总结汇报
[PDF论文全文翻译功能](https://www.bilibili.com/video/BV1KT411x7Wn) | [插件] PDF论文提取题目&摘要+翻译全文(多线程)
[Arxiv小助手](https://www.bilibili.com/video/BV1LM4y1279X) | [插件] 输入arxiv文章url即可一键翻译摘要+下载PDF
Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼写纠错+输出对照PDF
[谷歌学术统合小助手](https://www.bilibili.com/video/BV19L411U7ia) | [插件] 给定任意谷歌学术搜索页面URL,让gpt帮你[写relatedworks](https://www.bilibili.com/video/BV1GP411U7Az/)
互联网信息聚合+GPT | [插件] 一键[让GPT从互联网获取信息](https://www.bilibili.com/video/BV1om4y127ck)回答问题,让信息永不过时
⭐Arxiv论文精细翻译 ([Docker](https://github.com/binary-husky/gpt_academic/pkgs/container/gpt_academic_with_latex)) | [插件] 一键[以超高质量翻译arxiv论文](https://www.bilibili.com/video/BV1dz4y1v77A/),目前最好的论文翻译工具
⭐[实时语音对话输入](https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md) | [插件] 异步[监听音频](https://www.bilibili.com/video/BV1AV4y187Uy/),自动断句,自动寻找回答时机
公式/图片/表格显示 | 可以同时显示公式的[tex形式和渲染形式](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png),支持公式、代码高亮
⭐AutoGen多智能体插件 | [插件] 借助微软AutoGen,探索多Agent的智能涌现可能
启动暗色[主题](https://github.com/binary-husky/gpt_academic/issues/173) | 在浏览器url后面添加```/?__theme=dark```可以切换dark主题
[多LLM模型](https://www.bilibili.com/video/BV1wT411p7yf)支持 | 同时被GPT3.5、GPT4、[清华ChatGLM2](https://github.com/THUDM/ChatGLM2-6B)、[复旦MOSS](https://github.com/OpenLMLab/MOSS)伺候的感觉一定会很不错吧?
⭐ChatGLM2微调模型 | 支持加载ChatGLM2微调模型,提供ChatGLM2微调辅助插件
更多LLM模型接入,支持[huggingface部署](https://huggingface.co/spaces/qingxu98/gpt-academic) | 加入Newbing接口(新必应),引入清华[Jittorllms](https://github.com/Jittor/JittorLLMs)支持[LLaMA](https://github.com/facebookresearch/llama)和[盘古α](https://openi.org.cn/pangu/)
⭐[void-terminal](https://github.com/binary-husky/void-terminal) pip包 | 脱离GUI,在Python中直接调用本项目的所有函数插件开发中
⭐虚空终端插件 | [插件] 能够使用自然语言直接调度本项目其他插件
更多新功能展示 (图像生成等) …… | 见本文档结尾处 ……
</div>
@@ -128,25 +119,6 @@ Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼
<br><br>
# Installation
```mermaid
flowchart TD
A{"安装方法"} --> W1("I. 🔑直接运行 (Windows, Linux or MacOS)")
W1 --> W11["1. Python pip包管理依赖"]
W1 --> W12["2. Anaconda包管理依赖推荐⭐"]
A --> W2["II. 🐳使用Docker (Windows, Linux or MacOS)"]
W2 --> k1["1. 部署项目全部能力的大镜像(推荐⭐)"]
W2 --> k2["2. 仅在线模型GPT, GLM4等镜像"]
W2 --> k3["3. 在线模型 + Latex的大镜像"]
A --> W4["IV. 🚀其他部署方法"]
W4 --> C1["1. Windows/MacOS 一键安装运行脚本(推荐⭐)"]
W4 --> C2["2. Huggingface, Sealos远程部署"]
W4 --> C4["3. ... 其他 ..."]
```
### 安装方法I直接运行 (Windows, Linux or MacOS)
1. 下载项目
@@ -160,7 +132,7 @@ flowchart TD
在`config.py`中,配置API KEY等变量。[特殊网络环境设置方法](https://github.com/binary-husky/gpt_academic/issues/1)、[Wiki-项目配置说明](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。
「 程序会优先检查是否存在名为`config_private.py`的私密配置文件,并用其中的配置覆盖`config.py`的同名配置。如您能理解以上读取逻辑,我们强烈建议您在`config.py`同路径下创建一个名为`config_private.py`的新配置文件,并使用`config_private.py`配置项目,从而确保自动更新时不会丢失配置 」。
「 程序会优先检查是否存在名为`config_private.py`的私密配置文件,并用其中的配置覆盖`config.py`的同名配置。如您能理解以上读取逻辑,我们强烈建议您在`config.py`同路径下创建一个名为`config_private.py`的新配置文件,并使用`config_private.py`配置项目,以确保更新或其他用户无法轻易查看您的私有配置 」。
「 支持通过`环境变量`配置项目,环境变量的书写格式参考`docker-compose.yml`文件或者我们的[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。配置读取优先级: `环境变量` > `config_private.py` > `config.py` 」。
@@ -180,10 +152,10 @@ flowchart TD
<details><summary>如果需要支持清华ChatGLM2/复旦MOSS/RWKV作为后端,请点击展开此处</summary>
<p>
【可选步骤】如果需要支持清华ChatGLM3/复旦MOSS作为后端,需要额外安装更多依赖前提条件熟悉Python + 用过Pytorch + 电脑配置够强):
【可选步骤】如果需要支持清华ChatGLM2/复旦MOSS作为后端,需要额外安装更多依赖前提条件熟悉Python + 用过Pytorch + 电脑配置够强):
```sh
# 【可选步骤I】支持清华ChatGLM3。清华ChatGLM备注如果遇到"Call ChatGLM fail 不能正常加载ChatGLM的参数" 错误,参考如下: 1以上默认安装的为torch+cpu版,使用cuda需要卸载torch重新安装torch+cuda; 2如因本机配置不够无法加载模型,可以修改request_llm/bridge_chatglm.py中的模型精度, 将 AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) 都修改为 AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
# 【可选步骤I】支持清华ChatGLM2。清华ChatGLM备注如果遇到"Call ChatGLM fail 不能正常加载ChatGLM的参数" 错误,参考如下: 1以上默认安装的为torch+cpu版,使用cuda需要卸载torch重新安装torch+cuda; 2如因本机配置不够无法加载模型,可以修改request_llm/bridge_chatglm.py中的模型精度, 将 AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) 都修改为 AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llms/requirements_chatglm.txt
# 【可选步骤II】支持复旦MOSS
@@ -225,7 +197,7 @@ pip install peft
docker-compose up
```
1. 仅ChatGPT + GLM4 + 文心一言+spark等在线模型推荐大多数人选择
1. 仅ChatGPT+文心一言+spark等在线模型推荐大多数人选择
[![basic](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml)
[![basiclatex](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml)
[![basicaudio](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
@@ -237,7 +209,7 @@ pip install peft
P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以直接使用方案4或者方案0获取Latex功能。
2. ChatGPT + GLM3 + MOSS + LLAMA2 + 通义千问(需要熟悉[Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian)运行时)
2. ChatGPT + ChatGLM2 + MOSS + LLAMA2 + 通义千问(需要熟悉[Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian)运行时)
[![chatglm](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml)
``` sh
@@ -336,9 +308,9 @@ Tip不指定文件直接点击 `载入对话历史存档` 可以查看历史h
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/bc7ab234-ad90-48a0-8d62-f703d9e74665" width="500" >
</div>
8. 基于mermaid的流图、脑图绘制
8. OpenAI音频解析与总结
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/c518b82f-bd53-46e2-baf5-ad1b081c1da4" width="500" >
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/709ccf95-3aee-498a-934a-e1c22d3d5d5b" width="500" >
</div>
9. Latex全文校对纠错
@@ -355,8 +327,8 @@ Tip不指定文件直接点击 `载入对话历史存档` 可以查看历史h
### II版本:
- version 3.80(TODO): 优化AutoGen插件主题并设计一系列衍生插件
- version 3.70: 引入Mermaid绘图,实现GPT画脑图等功能
- version 3.70todo: 优化AutoGen插件主题并设计一系列衍生插件
- version 3.60: 引入AutoGen作为新一代插件的基石
- version 3.57: 支持GLM3,星火v3,文心一言v4,修复本地模型的并发BUG
- version 3.56: 支持动态追加基础功能按钮,新汇报PDF汇总页面
@@ -389,32 +361,6 @@ GPT Academic开发者QQ群`610599535`
- 某些浏览器翻译插件干扰此软件前端的运行
- 官方Gradio目前有很多兼容性问题,请**务必使用`requirement.txt`安装Gradio**
```mermaid
timeline LR
title GPT-Academic项目发展历程
section 2.x
1.0~2.2: 基础功能: 引入模块化函数插件: 可折叠式布局: 函数插件支持热重载
2.3~2.5: 增强多线程交互性: 新增PDF全文翻译功能: 新增输入区切换位置的功能: 自更新
2.6: 重构了插件结构: 提高了交互性: 加入更多插件
section 3.x
3.0~3.1: 对chatglm支持: 对其他小型llm支持: 支持同时问询多个gpt模型: 支持多个apikey负载均衡
3.2~3.3: 函数插件支持更多参数接口: 保存对话功能: 解读任意语言代码: 同时询问任意的LLM组合: 互联网信息综合功能
3.4: 加入arxiv论文翻译: 加入latex论文批改功能
3.44: 正式支持Azure: 优化界面易用性
3.46: 自定义ChatGLM2微调模型: 实时语音对话
3.49: 支持阿里达摩院通义千问: 上海AI-Lab书生: 讯飞星火: 支持百度千帆平台 & 文心一言
3.50: 虚空终端: 支持插件分类: 改进UI: 设计新主题
3.53: 动态选择不同界面主题: 提高稳定性: 解决多用户冲突问题
3.55: 动态代码解释器: 重构前端界面: 引入悬浮窗口与菜单栏
3.56: 动态追加基础功能按钮: 新汇报PDF汇总页面
3.57: GLM3, 星火v3: 支持文心一言v4: 修复本地模型的并发BUG
3.60: 引入AutoGen
3.70: 引入Mermaid绘图: 实现GPT画脑图等功能
3.80(TODO): 优化AutoGen插件主题: 设计衍生插件
```
### III主题
可以通过修改`THEME`选项config.py变更主题
1. `Chuanhu-Small-and-Beautiful` [网址](https://github.com/GaiZhenbiao/ChuanhuChatGPT/)

查看文件

@@ -2,8 +2,8 @@
以下所有配置也都支持利用环境变量覆写,环境变量配置格式见docker-compose.yml。
读取优先级:环境变量 > config_private.py > config.py
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
All the following configurations also support using environment variables to override,
and the environment variable configuration format can be seen in docker-compose.yml.
All the following configurations also support using environment variables to override,
and the environment variable configuration format can be seen in docker-compose.yml.
Configuration reading priority: environment variable > config_private.py > config.py
"""
@@ -11,10 +11,6 @@
API_KEY = "此处填API密钥" # 可同时填写多个API-KEY,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey3,azure-apikey4"
# [step 1]>> API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下,还需要填写组织格式如org-123456789abcdefghijklmno的,请向下翻,找 API_ORG 设置项
API_KEY = "此处填API密钥" # 可同时填写多个API-KEY,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey3,azure-apikey4"
# [step 2]>> 改为True应用代理,如果直接在海外服务器部署,此处不修改;如果使用本地或无地域限制的大模型时,此处也不需要修改
USE_PROXY = False
if USE_PROXY:
@@ -37,7 +33,7 @@ else:
# ------------------------------------ 以下配置可以优化体验, 但大部分场合下并不需要修改 ------------------------------------
# 重新URL重新定向,实现更换API_URL的作用高危设置! 常规情况下不要修改! 通过修改此设置,您将把您的API-KEY和对话隐私完全暴露给您设定的中间人
# 格式: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
# 格式: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
# 举例: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "https://reverse-proxy-url/v1/chat/completions"}
API_URL_REDIRECT = {}
@@ -49,7 +45,7 @@ DEFAULT_WORKER_NUM = 3
# 色彩主题, 可选 ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast"]
# 更多主题, 请查阅Gradio主题商店: https://huggingface.co/spaces/gradio/theme-gallery 可选 ["Gstaff/Xkcd", "NoCrypt/Miku", ...]
THEME = "Chuanhu-Small-and-Beautiful"
THEME = "Default"
AVAIL_THEMES = ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast", "Gstaff/Xkcd", "NoCrypt/Miku"]
@@ -70,7 +66,7 @@ LAYOUT = "LEFT-RIGHT" # "LEFT-RIGHT"(左右布局) # "TOP-DOWN"(上下
# 暗色模式 / 亮色模式
DARK_MODE = False
DARK_MODE = True
# 发送请求到OpenAI后,等待多久判定为超时
@@ -84,23 +80,20 @@ WEB_PORT = -1
# 如果OpenAI不响应网络卡顿、代理失败、KEY失效,重试的次数限制
MAX_RETRY = 2
# OpenAI模型选择是gpt4现在只对申请成功的人开放
LLM_MODEL = "gpt-3.5-turbo" # 可选 "chatglm"
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "api2d-gpt-3.5-turbo", "spark", "azure-gpt-3.5"]
# 插件分类默认选项
DEFAULT_FN_GROUPS = ['对话', '编程', '学术', '智能体']
# 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
LLM_MODEL = "gpt-3.5-turbo-16k" # 可选 ↓↓↓
AVAIL_LLM_MODELS = ["gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-3-turbo",
"gemini-pro", "chatglm3", "claude-2"]
LLM_MODEL = "gpt-3.5-turbo" # 可选 ↓↓↓
AVAIL_LLM_MODELS = ["gpt-3.5-turbo-1106","gpt-4-1106-preview","gpt-4-vision-preview",
"gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
"gpt-4", "gpt-4-32k", "azure-gpt-4", "api2d-gpt-4",
"gemini-pro", "chatglm3", "moss", "claude-2"]
# P.S. 其他可用的模型还包括 [
# "moss", "qwen-turbo", "qwen-plus", "qwen-max"
# "zhipuai", "qianfan", "deepseekcoder", "llama2", "qwen-local", "gpt-3.5-turbo-0613",
# "qwen-turbo", "qwen-plus", "qwen-max"
# "zhipuai", "qianfan", "deepseekcoder", "llama2", "qwen-local", "gpt-3.5-turbo-0613",
# "gpt-3.5-turbo-16k-0613", "gpt-3.5-random", "api2d-gpt-3.5-turbo", 'api2d-gpt-3.5-turbo-16k',
# "spark", "sparkv2", "sparkv3", "chatglm_onnx", "claude-1-100k", "claude-2", "internlm", "jittorllms_pangualpha", "jittorllms_llama"
# ]
@@ -143,7 +136,7 @@ AUTO_CLEAR_TXT = False
# 加一个live2d装饰
ADD_WAIFU = True
ADD_WAIFU = False
# 设置用户名和密码不需要修改相关功能不稳定,与gradio版本和网络都相关,如果本地使用不建议加这个
@@ -165,7 +158,7 @@ API_ORG = ""
# 如果需要使用Slack Claude,使用教程详情见 request_llms/README.md
SLACK_CLAUDE_BOT_ID = ''
SLACK_CLAUDE_BOT_ID = ''
SLACK_CLAUDE_USER_TOKEN = ''
@@ -202,24 +195,13 @@ XFYUN_API_KEY = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
# 接入智谱大模型
ZHIPUAI_API_KEY = ""
ZHIPUAI_MODEL = "" # 此选项已废弃,不再需要填写
# # 火山引擎YUNQUE大模型
# YUNQUE_SECRET_KEY = ""
# YUNQUE_ACCESS_KEY = ""
# YUNQUE_MODEL = ""
ZHIPUAI_MODEL = "chatglm_turbo"
# Claude API KEY
ANTHROPIC_API_KEY = ""
# Mathpix 拥有执行PDF的OCR功能,但是需要注册账号
MATHPIX_APPID = ""
MATHPIX_APPKEY = ""
# 自定义API KEY格式
CUSTOM_API_KEY_PATTERN = ""
@@ -229,15 +211,15 @@ GEMINI_API_KEY = ''
# HUGGINGFACE的TOKEN,下载LLAMA时起作用 https://huggingface.co/docs/hub/security-tokens
HUGGINGFACE_ACCESS_TOKEN = ""
HUGGINGFACE_ACCESS_TOKEN = "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"
# GROBID服务器地址填写多个可以均衡负载,用于高质量地读取PDF文档
# 获取方法复制以下空间https://huggingface.co/spaces/qingxu98/grobid,设为public,然后GROBID_URL = "https://(你的hf用户名如qingxu98)-(你的填写的空间名如grobid).hf.space"
GROBID_URLS = [
"https://qingxu98-grobid.hf.space","https://qingxu98-grobid2.hf.space","https://qingxu98-grobid3.hf.space",
"https://qingxu98-grobid4.hf.space","https://qingxu98-grobid5.hf.space", "https://qingxu98-grobid6.hf.space",
"https://qingxu98-grobid7.hf.space", "https://qingxu98-grobid8.hf.space",
"https://qingxu98-grobid4.hf.space","https://qingxu98-grobid5.hf.space", "https://qingxu98-grobid6.hf.space",
"https://qingxu98-grobid7.hf.space", "https://qingxu98-grobid8.hf.space",
]
@@ -258,7 +240,7 @@ PATH_LOGGING = "gpt_log"
# 除了连接OpenAI之外,还有哪些场合允许使用代理,请勿修改
WHEN_TO_USE_PROXY = ["Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
WHEN_TO_USE_PROXY = ["Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
"Warmup_Modules", "Nougat_Download", "AutoGen"]
@@ -309,8 +291,9 @@ NUM_CUSTOM_BASIC_BTN = 4
│ ├── BAIDU_CLOUD_API_KEY
│ └── BAIDU_CLOUD_SECRET_KEY
├── "glm-4", "glm-3-turbo", "zhipuai" 智谱AI大模型
── ZHIPUAI_API_KEY
├── "zhipuai" 智谱AI大模型chatglm_turbo
── ZHIPUAI_API_KEY
│ └── ZHIPUAI_MODEL
├── "qwen-turbo" 等通义千问大模型
│ └── DASHSCOPE_API_KEY
@@ -322,7 +305,7 @@ NUM_CUSTOM_BASIC_BTN = 4
├── NEWBING_STYLE
└── NEWBING_COOKIES
本地大模型示意图
├── "chatglm3"
@@ -362,9 +345,6 @@ NUM_CUSTOM_BASIC_BTN = 4
│ └── ALIYUN_SECRET
└── PDF文档精准解析
── GROBID_URLS
├── MATHPIX_APPID
└── MATHPIX_APPKEY
── GROBID_URLS
"""

查看文件

@@ -3,69 +3,30 @@
# 'stop' 颜色对应 theme.py 中的 color_er
import importlib
from toolbox import clear_line_break
from toolbox import apply_gpt_academic_string_mask_langbased
from toolbox import build_gpt_academic_masked_string_langbased
from textwrap import dedent
def get_core_functions():
return {
"学术语料润色": {
# [1*] 前缀字符串,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等。
# 这里填一个提示词字符串就行了,这里为了区分中英文情景搞复杂了一点
"Prefix": build_gpt_academic_masked_string_langbased(
text_show_english=
r"Below is a paragraph from an academic paper. Polish the writing to meet the academic style, "
r"improve the spelling, grammar, clarity, concision and overall readability. When necessary, rewrite the whole sentence. "
r"Firstly, you should provide the polished paragraph. "
r"Secondly, you should list all your modification and explain the reasons to do so in markdown table.",
text_show_chinese=
r"作为一名中文学术论文写作改进助理,你的任务是改进所提供文本的拼写、语法、清晰、简洁和整体可读性,"
r"同时分解长句,减少重复,并提供改进建议。请先提供文本的更正版本,然后在markdown表格中列出修改的内容,并给出修改的理由:"
) + "\n\n",
# [2*] 后缀字符串,会被加在你的输入之后。例如,配合前缀可以把你的输入内容用引号圈起来
"Suffix": r"",
# [3] 按钮颜色 (可选参数,默认 secondary)
"Color": r"secondary",
# [4] 按钮是否可见 (可选参数,默认 True,即可见)
"Visible": True,
# [5] 是否在触发时清除历史 (可选参数,默认 False,即不处理之前的对话历史)
"AutoClearHistory": False,
# [6] 文本预处理 (可选参数,默认 None,举例写个函数移除所有的换行符
"PreProcess": None,
},
"总结绘制脑图": {
"英语学术润色": {
# 前缀,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等
"Prefix": r"",
"Prefix": r"Below is a paragraph from an academic paper. Polish the writing to meet the academic style, " +
r"improve the spelling, grammar, clarity, concision and overall readability. When necessary, rewrite the whole sentence. " +
r"Firstly, you should provide the polished paragraph. "
r"Secondly, you should list all your modification and explain the reasons to do so in markdown table." + "\n\n",
# 后缀,会被加在你的输入之后。例如,配合前缀可以把你的输入内容用引号圈起来
"Suffix":
# dedent() 函数用于去除多行字符串的缩进
dedent("\n"+r'''
==============================
使用mermaid flowchart对以上文本进行总结,概括上述段落的内容以及内在逻辑关系,例如
以下是对以上文本的总结,以mermaid flowchart的形式展示
```mermaid
flowchart LR
A["节点名1"] --> B("节点名2")
B --> C{"节点名3"}
C --> D["节点名4"]
C --> |"箭头名1"| E["节点名5"]
C --> |"箭头名2"| F["节点名6"]
```
警告:
1使用中文
2节点名字使用引号包裹,如["Laptop"]
3`|` 和 `"`之间不要存在空格
4根据情况选择flowchart LR从左到右或者flowchart TD从上到下
'''),
"Suffix": r"",
# 按钮颜色 (默认 secondary)
"Color": r"secondary",
# 按钮是否可见 (默认 True,即可见)
"Visible": True,
# 是否在触发时清除历史 (默认 False,即不处理之前的对话历史)
"AutoClearHistory": False
},
"中文学术润色": {
"Prefix": r"作为一名中文学术论文写作改进助理,你的任务是改进所提供文本的拼写、语法、清晰、简洁和整体可读性," +
r"同时分解长句,减少重复,并提供改进建议。请只提供文本的更正版本,避免包括解释。请编辑以下文本" + "\n\n",
"Suffix": r"",
},
"查找语法错误": {
"Prefix": r"Help me ensure that the grammar and the spelling is correct. "
r"Do not try to polish the text, if no mistake is found, tell me that this paragraph is good. "
@@ -85,61 +46,42 @@ def get_core_functions():
"Suffix": r"",
"PreProcess": clear_line_break, # 预处理:清除换行符
},
"中译英": {
"Prefix": r"Please translate following sentence to English:" + "\n\n",
"Suffix": r"",
},
"学术英中互译": {
"Prefix": build_gpt_academic_masked_string_langbased(
text_show_chinese=
r"I want you to act as a scientific English-Chinese translator, "
r"I will provide you with some paragraphs in one language "
r"and your task is to accurately and academically translate the paragraphs only into the other language. "
r"Do not repeat the original provided paragraphs after translation. "
r"You should use artificial intelligence tools, "
r"such as natural language processing, and rhetorical knowledge "
r"and experience about effective writing techniques to reply. "
r"I'll give you my paragraphs as follows, tell me what language it is written in, and then translate:",
text_show_english=
r"你是经验丰富的翻译,请把以下学术文章段落翻译成中文,"
r"并同时充分考虑中文的语法、清晰、简洁和整体可读性,"
r"必要时,你可以修改整个句子的顺序以确保翻译后的段落符合中文的语言习惯。"
r"你需要翻译的文本如下:"
) + "\n\n",
"Suffix": r"",
"学术中英互译": {
"Prefix": r"I want you to act as a scientific English-Chinese translator, " +
r"I will provide you with some paragraphs in one language " +
r"and your task is to accurately and academically translate the paragraphs only into the other language. " +
r"Do not repeat the original provided paragraphs after translation. " +
r"You should use artificial intelligence tools, " +
r"such as natural language processing, and rhetorical knowledge " +
r"and experience about effective writing techniques to reply. " +
r"I'll give you my paragraphs as follows, tell me what language it is written in, and then translate:" + "\n\n",
"Suffix": "",
"Color": "secondary",
},
"英译中": {
"Prefix": r"翻译成地道的中文:" + "\n\n",
"Suffix": r"",
"Visible": False,
"Visible": False,
},
"找图片": {
"Prefix": r"我需要你找一张网络图片。使用Unsplash API(https://source.unsplash.com/960x640/?<英语关键词>)获取图片URL,"
"Prefix": r"我需要你找一张网络图片。使用Unsplash API(https://source.unsplash.com/960x640/?<英语关键词>)获取图片URL," +
r"然后请使用Markdown格式封装,并且不要有反斜线,不要用代码块。现在,请按以下描述给我发送图片" + "\n\n",
"Suffix": r"",
"Visible": False,
"Visible": False,
},
"解释代码": {
"Prefix": r"请解释以下代码:" + "\n```\n",
"Suffix": "\n```\n",
},
"参考文献转Bib": {
"Prefix": r"Here are some bibliography items, please transform them into bibtex style."
r"Note that, reference styles maybe more than one kind, you should transform each item correctly."
r"Items need to be transformed:" + "\n\n",
"Visible": False,
"Prefix": r"Here are some bibliography items, please transform them into bibtex style." +
r"Note that, reference styles maybe more than one kind, you should transform each item correctly." +
r"Items need to be transformed:",
"Visible": False,
"Suffix": r"",
}
}
@@ -156,18 +98,8 @@ def handle_core_functionality(additional_fn, inputs, history, chatbot):
return inputs, history
else:
# 预制功能
if "PreProcess" in core_functional[additional_fn]:
if core_functional[additional_fn]["PreProcess"] is not None:
inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
# 为字符串加上上面定义的前缀和后缀。
inputs = apply_gpt_academic_string_mask_langbased(
string = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"],
lang_reference = inputs,
)
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
if core_functional[additional_fn].get("AutoClearHistory", False):
history = []
return inputs, history
if __name__ == "__main__":
t = get_core_functions()["总结绘制脑图"]
print(t["Prefix"] + t["Suffix"])

查看文件

@@ -32,122 +32,115 @@ def get_crazy_functions():
from crazy_functions.理解PDF文档内容 import 理解PDF文档内容标准文件输入
from crazy_functions.Latex全文润色 import Latex中文润色
from crazy_functions.Latex全文润色 import Latex英文纠错
from crazy_functions.Latex全文翻译 import Latex中译英
from crazy_functions.Latex全文翻译 import Latex英译中
from crazy_functions.批量Markdown翻译 import Markdown中译英
from crazy_functions.虚空终端 import 虚空终端
from crazy_functions.生成多种Mermaid图表 import 生成多种Mermaid图表
function_plugins = {
"虚空终端": {
"Group": "对话|编程|学术|智能体",
"Color": "stop",
"AsButton": True,
"Function": HotReload(虚空终端),
"Function": HotReload(虚空终端)
},
"解析整个Python项目": {
"Group": "编程",
"Color": "stop",
"AsButton": True,
"Info": "解析一个Python项目的所有源文件(.py) | 输入参数为路径",
"Function": HotReload(解析一个Python项目),
"Function": HotReload(解析一个Python项目)
},
"载入对话历史存档(先上传存档或输入路径)": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"Info": "载入对话历史存档 | 输入参数为路径",
"Function": HotReload(载入对话历史存档),
"Function": HotReload(载入对话历史存档)
},
"删除所有本地对话历史记录(谨慎操作)": {
"Group": "对话",
"AsButton": False,
"Info": "删除所有本地对话历史记录,谨慎操作 | 不需要输入参数",
"Function": HotReload(删除所有本地对话历史记录),
"Function": HotReload(删除所有本地对话历史记录)
},
"清除所有缓存文件(谨慎操作)": {
"Group": "对话",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "清除所有缓存文件,谨慎操作 | 不需要输入参数",
"Function": HotReload(清除缓存),
},
"生成多种Mermaid图表(从当前对话或路径(.pdf/.md/.docx)中生产图表)": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"Info" : "基于当前对话或文件生成多种Mermaid图表,图表类型由模型判断",
"Function": HotReload(生成多种Mermaid图表),
"AdvancedArgs": True,
"ArgsReminder": "请输入图类型对应的数字,不输入则为模型自行判断:1-流程图,2-序列图,3-类图,4-饼图,5-甘特图,6-状态图,7-实体关系图,8-象限提示图,9-思维导图",
"Function": HotReload(清除缓存)
},
"批量总结Word文档": {
"Group": "学术",
"Color": "stop",
"AsButton": True,
"Info": "批量总结word文档 | 输入参数为路径",
"Function": HotReload(总结word文档),
"Function": HotReload(总结word文档)
},
"解析整个Matlab项目": {
"Group": "编程",
"Color": "stop",
"AsButton": False,
"Info": "解析一个Matlab项目的所有源文件(.m) | 输入参数为路径",
"Function": HotReload(解析一个Matlab项目),
"Function": HotReload(解析一个Matlab项目)
},
"解析整个C++项目头文件": {
"Group": "编程",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "解析一个C++项目的所有头文件(.h/.hpp) | 输入参数为路径",
"Function": HotReload(解析一个C项目的头文件),
"Function": HotReload(解析一个C项目的头文件)
},
"解析整个C++项目(.cpp/.hpp/.c/.h": {
"Group": "编程",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "解析一个C++项目的所有源文件(.cpp/.hpp/.c/.h| 输入参数为路径",
"Function": HotReload(解析一个C项目),
"Function": HotReload(解析一个C项目)
},
"解析整个Go项目": {
"Group": "编程",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "解析一个Go项目的所有源文件 | 输入参数为路径",
"Function": HotReload(解析一个Golang项目),
"Function": HotReload(解析一个Golang项目)
},
"解析整个Rust项目": {
"Group": "编程",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "解析一个Rust项目的所有源文件 | 输入参数为路径",
"Function": HotReload(解析一个Rust项目),
"Function": HotReload(解析一个Rust项目)
},
"解析整个Java项目": {
"Group": "编程",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "解析一个Java项目的所有源文件 | 输入参数为路径",
"Function": HotReload(解析一个Java项目),
"Function": HotReload(解析一个Java项目)
},
"解析整个前端项目js,ts,css等": {
"Group": "编程",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "解析一个前端项目的所有源文件js,ts,css等 | 输入参数为路径",
"Function": HotReload(解析一个前端项目),
"Function": HotReload(解析一个前端项目)
},
"解析整个Lua项目": {
"Group": "编程",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "解析一个Lua项目的所有源文件 | 输入参数为路径",
"Function": HotReload(解析一个Lua项目),
"Function": HotReload(解析一个Lua项目)
},
"解析整个CSharp项目": {
"Group": "编程",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "解析一个CSharp项目的所有源文件 | 输入参数为路径",
"Function": HotReload(解析一个CSharp项目),
"Function": HotReload(解析一个CSharp项目)
},
"解析Jupyter Notebook文件": {
"Group": "编程",
@@ -163,104 +156,103 @@ def get_crazy_functions():
"Color": "stop",
"AsButton": False,
"Info": "读取Tex论文并写摘要 | 输入参数为路径",
"Function": HotReload(读文章写摘要),
"Function": HotReload(读文章写摘要)
},
"翻译README或MD": {
"Group": "编程",
"Color": "stop",
"AsButton": True,
"Info": "将Markdown翻译为中文 | 输入参数为路径或URL",
"Function": HotReload(Markdown英译中),
"Function": HotReload(Markdown英译中)
},
"翻译Markdown或README支持Github链接": {
"Group": "编程",
"Color": "stop",
"AsButton": False,
"Info": "将Markdown或README翻译为中文 | 输入参数为路径或URL",
"Function": HotReload(Markdown英译中),
"Function": HotReload(Markdown英译中)
},
"批量生成函数注释": {
"Group": "编程",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "批量生成函数的注释 | 输入参数为路径",
"Function": HotReload(批量生成函数注释),
"Function": HotReload(批量生成函数注释)
},
"保存当前的对话": {
"Group": "对话",
"AsButton": True,
"Info": "保存当前的对话 | 不需要输入参数",
"Function": HotReload(对话历史存档),
"Function": HotReload(对话历史存档)
},
"[多线程Demo]解析此项目本身(源码自译解)": {
"Group": "对话|编程",
"AsButton": False, # 加入下拉菜单中
"Info": "多线程解析并翻译此项目的源码 | 不需要输入参数",
"Function": HotReload(解析项目本身),
"Function": HotReload(解析项目本身)
},
"历史上的今天": {
"Group": "对话",
"AsButton": True,
"Info": "查看历史上的今天事件 (这是一个面向开发者的插件Demo) | 不需要输入参数",
"Function": HotReload(高阶功能模板函数),
"Function": HotReload(高阶功能模板函数)
},
"精准翻译PDF论文": {
"Group": "学术",
"Color": "stop",
"AsButton": True,
"AsButton": True,
"Info": "精准翻译PDF论文为中文 | 输入参数为路径",
"Function": HotReload(批量翻译PDF文档),
"Function": HotReload(批量翻译PDF文档)
},
"询问多个GPT模型": {
"Group": "对话",
"Color": "stop",
"AsButton": True,
"Function": HotReload(同时问询),
"Function": HotReload(同时问询)
},
"批量总结PDF文档": {
"Group": "学术",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "批量总结PDF文档的内容 | 输入参数为路径",
"Function": HotReload(批量总结PDF文档),
"Function": HotReload(批量总结PDF文档)
},
"谷歌学术检索助手输入谷歌学术搜索页url": {
"Group": "学术",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "使用谷歌学术检索助手搜索指定URL的结果 | 输入参数为谷歌学术搜索页的URL",
"Function": HotReload(谷歌检索小助手),
"Function": HotReload(谷歌检索小助手)
},
"理解PDF文档内容 模仿ChatPDF": {
"Group": "学术",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "理解PDF文档的内容并进行回答 | 输入参数为路径",
"Function": HotReload(理解PDF文档内容标准文件输入),
"Function": HotReload(理解PDF文档内容标准文件输入)
},
"英文Latex项目全文润色输入路径或上传压缩包": {
"Group": "学术",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "对英文Latex项目全文进行润色处理 | 输入参数为路径或上传压缩包",
"Function": HotReload(Latex英文润色),
"Function": HotReload(Latex英文润色)
},
"英文Latex项目全文纠错输入路径或上传压缩包": {
"Group": "学术",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "对英文Latex项目全文进行纠错处理 | 输入参数为路径或上传压缩包",
"Function": HotReload(Latex英文纠错)
},
"中文Latex项目全文润色输入路径或上传压缩包": {
"Group": "学术",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "对中文Latex项目全文进行润色处理 | 输入参数为路径或上传压缩包",
"Function": HotReload(Latex中文润色),
"Function": HotReload(Latex中文润色)
},
# 已经被新插件取代
# "英文Latex项目全文纠错输入路径或上传压缩包": {
# "Group": "学术",
# "Color": "stop",
# "AsButton": False, # 加入下拉菜单中
# "Info": "对英文Latex项目全文进行纠错处理 | 输入参数为路径或上传压缩包",
# "Function": HotReload(Latex英文纠错),
# },
# 已经被新插件取代
# "Latex项目全文中译英输入路径或上传压缩包": {
# "Group": "学术",
@@ -269,6 +261,7 @@ def get_crazy_functions():
# "Info": "对Latex项目全文进行中译英处理 | 输入参数为路径或上传压缩包",
# "Function": HotReload(Latex中译英)
# },
# 已经被新插件取代
# "Latex项目全文英译中输入路径或上传压缩包": {
# "Group": "学术",
@@ -277,417 +270,339 @@ def get_crazy_functions():
# "Info": "对Latex项目全文进行英译中处理 | 输入参数为路径或上传压缩包",
# "Function": HotReload(Latex英译中)
# },
"批量Markdown中译英输入路径或上传压缩包": {
"Group": "编程",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "批量将Markdown文件中文翻译为英文 | 输入参数为路径或上传压缩包",
"Function": HotReload(Markdown中译英),
"Function": HotReload(Markdown中译英)
},
}
# -=--=- 尚未充分测试的实验性插件 & 需要额外依赖的插件 -=--=-
try:
from crazy_functions.下载arxiv论文翻译摘要 import 下载arxiv论文并翻译摘要
function_plugins.update(
{
"一键下载arxiv论文并翻译摘要先在input输入编号,如1812.10695": {
"Group": "学术",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
# "Info": "下载arxiv论文并翻译摘要 | 输入参数为arxiv编号如1812.10695",
"Function": HotReload(下载arxiv论文并翻译摘要),
}
function_plugins.update({
"一键下载arxiv论文并翻译摘要先在input输入编号,如1812.10695": {
"Group": "学术",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
# "Info": "下载arxiv论文并翻译摘要 | 输入参数为arxiv编号如1812.10695",
"Function": HotReload(下载arxiv论文并翻译摘要)
}
)
})
except:
print(trimmed_format_exc())
print("Load function plugin failed")
print('Load function plugin failed')
try:
from crazy_functions.联网的ChatGPT import 连接网络回答问题
function_plugins.update(
{
"连接网络回答问题(输入问题后点击该插件,需要访问谷歌)": {
"Group": "对话",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
# "Info": "连接网络回答问题(需要访问谷歌)| 输入参数是一个问题",
"Function": HotReload(连接网络回答问题),
}
function_plugins.update({
"连接网络回答问题(输入问题后点击该插件,需要访问谷歌)": {
"Group": "对话",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
# "Info": "连接网络回答问题(需要访问谷歌)| 输入参数是一个问题",
"Function": HotReload(连接网络回答问题)
}
)
})
from crazy_functions.联网的ChatGPT_bing版 import 连接bing搜索回答问题
function_plugins.update(
{
"连接网络回答问题中文Bing版,输入问题后点击该插件": {
"Group": "对话",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "连接网络回答问题需要访问中文Bing| 输入参数是一个问题",
"Function": HotReload(连接bing搜索回答问题),
}
function_plugins.update({
"连接网络回答问题中文Bing版,输入问题后点击该插件": {
"Group": "对话",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "连接网络回答问题需要访问中文Bing| 输入参数是一个问题",
"Function": HotReload(连接bing搜索回答问题)
}
)
})
except:
print(trimmed_format_exc())
print("Load function plugin failed")
print('Load function plugin failed')
try:
from crazy_functions.解析项目源代码 import 解析任意code项目
function_plugins.update(
{
"解析项目源代码(手动指定和筛选源代码文件类型)": {
"Group": "编程",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区默认False
"ArgsReminder": '输入时用逗号隔开, *代表通配符, 加了^代表不匹配; 不输入代表全部匹配。例如: "*.c, ^*.cpp, config.toml, ^*.toml"', # 高级参数输入区的显示提示
"Function": HotReload(解析任意code项目),
},
}
)
function_plugins.update({
"解析项目源代码(手动指定和筛选源代码文件类型)": {
"Group": "编程",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区默认False
"ArgsReminder": "输入时用逗号隔开, *代表通配符, 加了^代表不匹配; 不输入代表全部匹配。例如: \"*.c, ^*.cpp, config.toml, ^*.toml\"", # 高级参数输入区的显示提示
"Function": HotReload(解析任意code项目)
},
})
except:
print(trimmed_format_exc())
print("Load function plugin failed")
print('Load function plugin failed')
try:
from crazy_functions.询问多个大语言模型 import 同时问询_指定模型
function_plugins.update(
{
"询问多个GPT模型手动指定询问哪些模型": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区默认False
"ArgsReminder": "支持任意数量的llm接口,用&符号分隔。例如chatglm&gpt-3.5-turbo&gpt-4", # 高级参数输入区的显示提示
"Function": HotReload(同时问询_指定模型),
},
}
)
function_plugins.update({
"询问多个GPT模型手动指定询问哪些模型": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区默认False
"ArgsReminder": "支持任意数量的llm接口,用&符号分隔。例如chatglm&gpt-3.5-turbo&gpt-4", # 高级参数输入区的显示提示
"Function": HotReload(同时问询_指定模型)
},
})
except:
print(trimmed_format_exc())
print("Load function plugin failed")
print('Load function plugin failed')
try:
from crazy_functions.图片生成 import 图片生成_DALLE2, 图片生成_DALLE3, 图片修改_DALLE2
function_plugins.update(
{
"图片生成_DALLE2 先切换模型到gpt-*": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区默认False
"ArgsReminder": "在这里输入分辨率, 如1024x1024默认,支持 256x256, 512x512, 1024x1024", # 高级参数输入区的显示提示
"Info": "使用DALLE2生成图片 | 输入参数字符串,提供图像的内容",
"Function": HotReload(图片生成_DALLE2),
},
}
)
function_plugins.update(
{
"图片生成_DALLE3 先切换模型到gpt-*": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区默认False
"ArgsReminder": "在这里输入自定义参数「分辨率-质量(可选)-风格(可选)」, 参数示例「1024x1024-hd-vivid」 || 分辨率支持 「1024x1024」(默认) /「1792x1024」/「1024x1792」 || 质量支持 「-standard」(默认) /「-hd」 || 风格支持 「-vivid」(默认) /「-natural」", # 高级参数输入区的显示提示
"Info": "使用DALLE3生成图片 | 输入参数字符串,提供图像的内容",
"Function": HotReload(图片生成_DALLE3),
},
}
)
function_plugins.update(
{
"图片修改_DALLE2 先切换模型到gpt-*": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": False, # 调用时,唤起高级参数输入区默认False
# "Info": "使用DALLE2修改图片 | 输入参数字符串,提供图像的内容",
"Function": HotReload(图片修改_DALLE2),
},
}
)
function_plugins.update({
"图片生成_DALLE2 先切换模型到gpt-*": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区默认False
"ArgsReminder": "在这里输入分辨率, 如1024x1024默认,支持 256x256, 512x512, 1024x1024", # 高级参数输入区的显示提示
"Info": "使用DALLE2生成图片 | 输入参数字符串,提供图像的内容",
"Function": HotReload(图片生成_DALLE2)
},
})
function_plugins.update({
"图片生成_DALLE3 先切换模型到gpt-*": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区默认False
"ArgsReminder": "在这里输入自定义参数「分辨率-质量(可选)-风格(可选)」, 参数示例「1024x1024-hd-vivid」 || 分辨率支持 「1024x1024」(默认) /「1792x1024」/「1024x1792」 || 质量支持 「-standard」(默认) /「-hd」 || 风格支持 「-vivid」(默认) /「-natural」", # 高级参数输入区的显示提示
"Info": "使用DALLE3生成图片 | 输入参数字符串,提供图像的内容",
"Function": HotReload(图片生成_DALLE3)
},
})
function_plugins.update({
"图片修改_DALLE2 先切换模型到gpt-*": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": False, # 调用时,唤起高级参数输入区默认False
# "Info": "使用DALLE2修改图片 | 输入参数字符串,提供图像的内容",
"Function": HotReload(图片修改_DALLE2)
},
})
except:
print(trimmed_format_exc())
print("Load function plugin failed")
print('Load function plugin failed')
try:
from crazy_functions.总结音视频 import 总结音视频
function_plugins.update(
{
"批量总结音视频(输入路径或上传压缩包)": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": "调用openai api 使用whisper-1模型, 目前支持的格式:mp4, m4a, wav, mpga, mpeg, mp3。此处可以输入解析提示,例如解析为简体中文默认",
"Info": "批量总结音频或视频 | 输入参数为路径",
"Function": HotReload(总结音视频),
}
function_plugins.update({
"批量总结音视频(输入路径或上传压缩包)": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": "调用openai api 使用whisper-1模型, 目前支持的格式:mp4, m4a, wav, mpga, mpeg, mp3。此处可以输入解析提示,例如解析为简体中文默认",
"Info": "批量总结音频或视频 | 输入参数为路径",
"Function": HotReload(总结音视频)
}
)
})
except:
print(trimmed_format_exc())
print("Load function plugin failed")
print('Load function plugin failed')
try:
from crazy_functions.数学动画生成manim import 动画生成
function_plugins.update(
{
"数学动画生成Manim": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"Info": "按照自然语言描述生成一个动画 | 输入参数是一段话",
"Function": HotReload(动画生成),
}
function_plugins.update({
"数学动画生成Manim": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"Info": "按照自然语言描述生成一个动画 | 输入参数是一段话",
"Function": HotReload(动画生成)
}
)
})
except:
print(trimmed_format_exc())
print("Load function plugin failed")
print('Load function plugin failed')
try:
from crazy_functions.批量Markdown翻译 import Markdown翻译指定语言
function_plugins.update(
{
"Markdown翻译指定翻译成何种语言": {
"Group": "编程",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": "请输入要翻译成哪种语言,默认为Chinese。",
"Function": HotReload(Markdown翻译指定语言),
}
function_plugins.update({
"Markdown翻译指定翻译成何种语言": {
"Group": "编程",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": "请输入要翻译成哪种语言,默认为Chinese。",
"Function": HotReload(Markdown翻译指定语言)
}
)
})
except:
print(trimmed_format_exc())
print("Load function plugin failed")
print('Load function plugin failed')
try:
from crazy_functions.知识库问答 import 知识库文件注入
function_plugins.update(
{
"构建知识库(先上传文件素材,再运行此插件)": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": "此处待注入的知识库名称id, 默认为default。文件进入知识库后可长期保存。可以通过再次调用本插件的方式,向知识库追加更多文档。",
"Function": HotReload(知识库文件注入),
}
function_plugins.update({
"构建知识库(先上传文件素材,再运行此插件)": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": "此处待注入的知识库名称id, 默认为default。文件进入知识库后可长期保存。可以通过再次调用本插件的方式,向知识库追加更多文档。",
"Function": HotReload(知识库文件注入)
}
)
})
except:
print(trimmed_format_exc())
print("Load function plugin failed")
print('Load function plugin failed')
try:
from crazy_functions.知识库问答 import 读取知识库作答
function_plugins.update(
{
"知识库文件注入(构建知识库后,再运行此插件)": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": "待提取的知识库名称id, 默认为default, 您需要构建知识库后再运行此插件。",
"Function": HotReload(读取知识库作答),
}
function_plugins.update({
"知识库文件注入(构建知识库后,再运行此插件)": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": "待提取的知识库名称id, 默认为default, 您需要构建知识库后再运行此插件。",
"Function": HotReload(读取知识库作答)
}
)
})
except:
print(trimmed_format_exc())
print("Load function plugin failed")
print('Load function plugin failed')
try:
from crazy_functions.交互功能函数模板 import 交互功能模板函数
function_plugins.update(
{
"交互功能模板Demo函数查找wallhaven.cc的壁纸": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"Function": HotReload(交互功能模板函数),
}
function_plugins.update({
"交互功能模板Demo函数查找wallhaven.cc的壁纸": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"Function": HotReload(交互功能模板函数)
}
)
})
except:
print(trimmed_format_exc())
print("Load function plugin failed")
print('Load function plugin failed')
try:
from crazy_functions.Latex输出PDF import Latex英文纠错加PDF对比
from crazy_functions.Latex输出PDF import Latex翻译中文并重新编译PDF
from crazy_functions.Latex输出PDF import PDF翻译中文并重新编译PDF
function_plugins.update(
{
"Latex英文纠错+高亮修正位置 [需Latex]": {
"Group": "学术",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": "如果有必要, 请在此处追加更细致的矫错指令(使用英文)。",
"Function": HotReload(Latex英文纠错加PDF对比),
},
"Arxiv论文精细翻译输入arxivID[需Latex]": {
"Group": "学术",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
"Info": "Arixv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
"Function": HotReload(Latex翻译中文并重新编译PDF),
},
"本地Latex论文精细翻译上传Latex项目[需Latex]": {
"Group": "学术",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
"Info": "本地Latex论文精细翻译 | 输入参数是路径",
"Function": HotReload(Latex翻译中文并重新编译PDF),
},
"PDF翻译中文并重新编译PDF上传PDF[需Latex]": {
"Group": "学术",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
"Info": "PDF翻译中文,并重新编译PDF | 输入参数为路径",
"Function": HotReload(PDF翻译中文并重新编译PDF)
}
from crazy_functions.Latex输出PDF结果 import Latex英文纠错加PDF对比
function_plugins.update({
"Latex英文纠错+高亮修正位置 [需Latex]": {
"Group": "学术",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": "如果有必要, 请在此处追加更细致的矫错指令(使用英文)。",
"Function": HotReload(Latex英文纠错加PDF对比)
}
)
})
from crazy_functions.Latex输出PDF结果 import Latex翻译中文并重新编译PDF
function_plugins.update({
"Arxiv论文精细翻译输入arxivID[需Latex]": {
"Group": "学术",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder":
"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 " +
"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: " +
'If the term "agent" is used in this section, it should be translated to "智能体". ',
"Info": "Arixv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
"Function": HotReload(Latex翻译中文并重新编译PDF)
}
})
function_plugins.update({
"本地Latex论文精细翻译上传Latex项目[需Latex]": {
"Group": "学术",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder":
"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 " +
"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: " +
'If the term "agent" is used in this section, it should be translated to "智能体". ',
"Info": "本地Latex论文精细翻译 | 输入参数是路径",
"Function": HotReload(Latex翻译中文并重新编译PDF)
}
})
except:
print(trimmed_format_exc())
print("Load function plugin failed")
print('Load function plugin failed')
try:
from toolbox import get_conf
ENABLE_AUDIO = get_conf("ENABLE_AUDIO")
ENABLE_AUDIO = get_conf('ENABLE_AUDIO')
if ENABLE_AUDIO:
from crazy_functions.语音助手 import 语音助手
function_plugins.update(
{
"实时语音对话": {
"Group": "对话",
"Color": "stop",
"AsButton": True,
"Info": "这是一个时刻聆听着的语音对话助手 | 没有输入参数",
"Function": HotReload(语音助手),
}
function_plugins.update({
"实时语音对话": {
"Group": "对话",
"Color": "stop",
"AsButton": True,
"Info": "这是一个时刻聆听着的语音对话助手 | 没有输入参数",
"Function": HotReload(语音助手)
}
)
})
except:
print(trimmed_format_exc())
print("Load function plugin failed")
print('Load function plugin failed')
try:
from crazy_functions.批量翻译PDF文档_NOUGAT import 批量翻译PDF文档
function_plugins.update(
{
"精准翻译PDF文档NOUGAT": {
"Group": "学术",
"Color": "stop",
"AsButton": False,
"Function": HotReload(批量翻译PDF文档),
}
function_plugins.update({
"精准翻译PDF文档NOUGAT": {
"Group": "学术",
"Color": "stop",
"AsButton": False,
"Function": HotReload(批量翻译PDF文档)
}
)
})
except:
print(trimmed_format_exc())
print("Load function plugin failed")
print('Load function plugin failed')
try:
from crazy_functions.函数动态生成 import 函数动态生成
function_plugins.update(
{
"动态代码解释器CodeInterpreter": {
"Group": "智能体",
"Color": "stop",
"AsButton": False,
"Function": HotReload(函数动态生成),
}
function_plugins.update({
"动态代码解释器CodeInterpreter": {
"Group": "智能体",
"Color": "stop",
"AsButton": False,
"Function": HotReload(函数动态生成)
}
)
})
except:
print(trimmed_format_exc())
print("Load function plugin failed")
print('Load function plugin failed')
try:
from crazy_functions.多智能体 import 多智能体终端
function_plugins.update(
{
"AutoGen多智能体终端仅供测试": {
"Group": "智能体",
"Color": "stop",
"AsButton": False,
"Function": HotReload(多智能体终端),
}
function_plugins.update({
"AutoGen多智能体终端仅供测试": {
"Group": "智能体",
"Color": "stop",
"AsButton": False,
"Function": HotReload(多智能体终端)
}
)
})
except:
print(trimmed_format_exc())
print("Load function plugin failed")
print('Load function plugin failed')
try:
from crazy_functions.互动小游戏 import 随机小游戏
function_plugins.update(
{
"随机互动小游戏(仅供测试)": {
"Group": "智能体",
"Color": "stop",
"AsButton": False,
"Function": HotReload(随机小游戏),
}
function_plugins.update({
"随机互动小游戏(仅供测试)": {
"Group": "智能体",
"Color": "stop",
"AsButton": False,
"Function": HotReload(随机小游戏)
}
)
})
except:
print(trimmed_format_exc())
print("Load function plugin failed")
# try:
# from crazy_functions.高级功能函数模板 import 测试图表渲染
# function_plugins.update({
# "绘制逻辑关系(测试图表渲染)": {
# "Group": "智能体",
# "Color": "stop",
# "AsButton": True,
# "Function": HotReload(测试图表渲染)
# }
# })
# except:
# print(trimmed_format_exc())
# print('Load function plugin failed')
print('Load function plugin failed')
# try:
# from crazy_functions.chatglm微调工具 import 微调数据集生成
@@ -703,6 +618,8 @@ def get_crazy_functions():
# except:
# print('Load function plugin failed')
"""
设置默认值:
- 默认 Group = 对话
@@ -712,12 +629,12 @@ def get_crazy_functions():
"""
for name, function_meta in function_plugins.items():
if "Group" not in function_meta:
function_plugins[name]["Group"] = "对话"
function_plugins[name]["Group"] = '对话'
if "AsButton" not in function_meta:
function_plugins[name]["AsButton"] = True
if "AdvancedArgs" not in function_meta:
function_plugins[name]["AdvancedArgs"] = False
if "Color" not in function_meta:
function_plugins[name]["Color"] = "secondary"
function_plugins[name]["Color"] = 'secondary'
return function_plugins

查看文件

@@ -1,106 +0,0 @@
from toolbox import CatchException, update_ui, ProxyNetworkActivate, update_ui_lastest_msg
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_files_from_everything
@CatchException
def 知识库问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数, 如温度和top_p等, 一般原样传递下去就行
plugin_kwargs 插件模型的参数,暂时没有用武之地
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
# < --------------------读取参数--------------- >
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
kai_id = plugin_kwargs.get("advanced_arg", 'default')
chatbot.append((f"向`{kai_id}`知识库中添加文件。", "[Local Message] 从一批文件(txt, md, tex)中读取数据构建知识库, 然后进行问答。"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# resolve deps
try:
from zh_langchain import construct_vector_store
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from .crazy_utils import knowledge_archive_interface
except Exception as e:
chatbot.append(["依赖不足", "导入依赖失败。正在尝试自动安装,请查看终端的输出或耐心等待..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
from .crazy_utils import try_install_deps
try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history)
return
# < --------------------读取文件--------------- >
file_manifest = []
spl = ["txt", "doc", "docx", "email", "epub", "html", "json", "md", "msg", "pdf", "ppt", "pptx", "rtf"]
for sp in spl:
_, file_manifest_tmp, _ = get_files_from_everything(txt, type=f'.{sp}')
file_manifest += file_manifest_tmp
if len(file_manifest) == 0:
chatbot.append(["没有找到任何可读取文件", "当前支持的格式包括: txt, md, docx, pptx, pdf, json等"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# < -------------------预热文本向量化模组--------------- >
chatbot.append(['<br/>'.join(file_manifest), "正在预热文本向量化模组, 如果是第一次运行, 将消耗较长时间下载中文向量化模型..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
print('Checking Text2vec ...')
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
# < -------------------构建知识库--------------- >
chatbot.append(['<br/>'.join(file_manifest), "正在构建知识库..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
print('Establishing knowledge archive ...')
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
kai = knowledge_archive_interface()
kai.feed_archive(file_manifest=file_manifest, id=kai_id)
kai_files = kai.get_loaded_file()
kai_files = '<br/>'.join(kai_files)
# chatbot.append(['知识库构建成功', "正在将知识库存储至cookie中"])
# yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# chatbot._cookies['langchain_plugin_embedding'] = kai.get_current_archive_id()
# chatbot._cookies['lock_plugin'] = 'crazy_functions.Langchain知识库->读取知识库作答'
# chatbot.append(['完成', "“根据知识库作答”函数插件已经接管问答系统, 提问吧! 但注意, 您接下来不能再使用其他插件了,刷新页面即可以退出知识库问答模式。"])
chatbot.append(['构建完成', f"当前知识库内的有效文件:\n\n---\n\n{kai_files}\n\n---\n\n请切换至“知识库问答”插件进行知识库访问, 或者使用此插件继续上传更多文件。"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
@CatchException
def 读取知识库作答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port=-1):
# resolve deps
try:
from zh_langchain import construct_vector_store
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from .crazy_utils import knowledge_archive_interface
except Exception as e:
chatbot.append(["依赖不足", "导入依赖失败。正在尝试自动安装,请查看终端的输出或耐心等待..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
from .crazy_utils import try_install_deps
try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history)
return
# < ------------------- --------------- >
kai = knowledge_archive_interface()
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
kai_id = plugin_kwargs.get("advanced_arg", 'default')
resp, prompt = kai.answer_with_archive_by_id(txt, kai_id)
chatbot.append((txt, f'[知识库 {kai_id}] ' + prompt))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=prompt, inputs_show_user=txt,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
sys_prompt=system_prompt
)
history.extend((prompt, gpt_say))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新

查看文件

@@ -135,11 +135,11 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
@CatchException
def Latex英文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def Latex英文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"对整个Latex项目进行润色。函数插件贡献者: Binary-Husky。注意,此插件不调用Latex,如果有Latex环境,请使用Latex英文纠错+高亮修正位置(需Latex)插件"])
"对整个Latex项目进行润色。函数插件贡献者: Binary-Husky。注意,此插件不调用Latex,如果有Latex环境,请使用Latex英文纠错+高亮插件"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
@@ -173,7 +173,7 @@ def Latex英文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
@CatchException
def Latex中文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def Latex中文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
@@ -209,7 +209,7 @@ def Latex中文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
@CatchException
def Latex英文纠错(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def Latex英文纠错(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",

查看文件

@@ -106,7 +106,7 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
@CatchException
def Latex英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def Latex英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
@@ -143,7 +143,7 @@ def Latex英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
@CatchException
def Latex中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def Latex中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",

查看文件

@@ -1,484 +0,0 @@
from toolbox import update_ui, trimmed_format_exc, get_conf, get_log_folder, promote_file_to_downloadzone
from toolbox import CatchException, report_exception, update_ui_lastest_msg, zip_result, gen_time_str
from functools import partial
import glob, os, requests, time, json, tarfile
pj = os.path.join
ARXIV_CACHE_DIR = os.path.expanduser(f"~/arxiv_cache/")
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- 工具函数 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
# 专业词汇声明 = 'If the term "agent" is used in this section, it should be translated to "智能体". '
def switch_prompt(pfg, mode, more_requirement):
"""
Generate prompts and system prompts based on the mode for proofreading or translating.
Args:
- pfg: Proofreader or Translator instance.
- mode: A string specifying the mode, either 'proofread' or 'translate_zh'.
Returns:
- inputs_array: A list of strings containing prompts for users to respond to.
- sys_prompt_array: A list of strings containing prompts for system prompts.
"""
n_split = len(pfg.sp_file_contents)
if mode == 'proofread_en':
inputs_array = [r"Below is a section from an academic paper, proofread this section." +
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " + more_requirement +
r"Answer me only with the revised text:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
elif mode == 'translate_zh':
inputs_array = [
r"Below is a section from an English academic paper, translate it into Chinese. " + more_requirement +
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " +
r"Answer me only with the translated text:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
sys_prompt_array = ["You are a professional translator." for _ in range(n_split)]
else:
assert False, "未知指令"
return inputs_array, sys_prompt_array
def desend_to_extracted_folder_if_exist(project_folder):
"""
Descend into the extracted folder if it exists, otherwise return the original folder.
Args:
- project_folder: A string specifying the folder path.
Returns:
- A string specifying the path to the extracted folder, or the original folder if there is no extracted folder.
"""
maybe_dir = [f for f in glob.glob(f'{project_folder}/*') if os.path.isdir(f)]
if len(maybe_dir) == 0: return project_folder
if maybe_dir[0].endswith('.extract'): return maybe_dir[0]
return project_folder
def move_project(project_folder, arxiv_id=None):
"""
Create a new work folder and copy the project folder to it.
Args:
- project_folder: A string specifying the folder path of the project.
Returns:
- A string specifying the path to the new work folder.
"""
import shutil, time
time.sleep(2) # avoid time string conflict
if arxiv_id is not None:
new_workfolder = pj(ARXIV_CACHE_DIR, arxiv_id, 'workfolder')
else:
new_workfolder = f'{get_log_folder()}/{gen_time_str()}'
try:
shutil.rmtree(new_workfolder)
except:
pass
# align subfolder if there is a folder wrapper
items = glob.glob(pj(project_folder, '*'))
items = [item for item in items if os.path.basename(item) != '__MACOSX']
if len(glob.glob(pj(project_folder, '*.tex'))) == 0 and len(items) == 1:
if os.path.isdir(items[0]): project_folder = items[0]
shutil.copytree(src=project_folder, dst=new_workfolder)
return new_workfolder
def arxiv_download(chatbot, history, txt, allow_cache=True):
def check_cached_translation_pdf(arxiv_id):
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'translation')
if not os.path.exists(translation_dir):
os.makedirs(translation_dir)
target_file = pj(translation_dir, 'translate_zh.pdf')
if os.path.exists(target_file):
promote_file_to_downloadzone(target_file, rename_file=None, chatbot=chatbot)
target_file_compare = pj(translation_dir, 'comparison.pdf')
if os.path.exists(target_file_compare):
promote_file_to_downloadzone(target_file_compare, rename_file=None, chatbot=chatbot)
return target_file
return False
def is_float(s):
try:
float(s)
return True
except ValueError:
return False
if ('.' in txt) and ('/' not in txt) and is_float(txt): # is arxiv ID
txt = 'https://arxiv.org/abs/' + txt.strip()
if ('.' in txt) and ('/' not in txt) and is_float(txt[:10]): # is arxiv ID
txt = 'https://arxiv.org/abs/' + txt[:10]
if not txt.startswith('https://arxiv.org'):
return txt, None # 是本地文件,跳过下载
# <-------------- inspect format ------------->
chatbot.append([f"检测到arxiv文档连接", '尝试下载 ...'])
yield from update_ui(chatbot=chatbot, history=history)
time.sleep(1) # 刷新界面
url_ = txt # https://arxiv.org/abs/1707.06690
if not txt.startswith('https://arxiv.org/abs/'):
msg = f"解析arxiv网址失败, 期望格式例如: https://arxiv.org/abs/1707.06690。实际得到格式: {url_}"
yield from update_ui_lastest_msg(msg, chatbot=chatbot, history=history) # 刷新界面
return msg, None
# <-------------- set format ------------->
arxiv_id = url_.split('/abs/')[-1]
if 'v' in arxiv_id: arxiv_id = arxiv_id[:10]
cached_translation_pdf = check_cached_translation_pdf(arxiv_id)
if cached_translation_pdf and allow_cache: return cached_translation_pdf, arxiv_id
url_tar = url_.replace('/abs/', '/e-print/')
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'e-print')
extract_dst = pj(ARXIV_CACHE_DIR, arxiv_id, 'extract')
os.makedirs(translation_dir, exist_ok=True)
# <-------------- download arxiv source file ------------->
dst = pj(translation_dir, arxiv_id + '.tar')
if os.path.exists(dst):
yield from update_ui_lastest_msg("调用缓存", chatbot=chatbot, history=history) # 刷新界面
else:
yield from update_ui_lastest_msg("开始下载", chatbot=chatbot, history=history) # 刷新界面
proxies = get_conf('proxies')
r = requests.get(url_tar, proxies=proxies)
with open(dst, 'wb+') as f:
f.write(r.content)
# <-------------- extract file ------------->
yield from update_ui_lastest_msg("下载完成", chatbot=chatbot, history=history) # 刷新界面
from toolbox import extract_archive
extract_archive(file_path=dst, dest_dir=extract_dst)
return extract_dst, arxiv_id
def pdf2tex_project(pdf_file_path):
# Mathpix API credentials
app_id, app_key = get_conf('MATHPIX_APPID', 'MATHPIX_APPKEY')
headers = {"app_id": app_id, "app_key": app_key}
# Step 1: Send PDF file for processing
options = {
"conversion_formats": {"tex.zip": True},
"math_inline_delimiters": ["$", "$"],
"rm_spaces": True
}
response = requests.post(url="https://api.mathpix.com/v3/pdf",
headers=headers,
data={"options_json": json.dumps(options)},
files={"file": open(pdf_file_path, "rb")})
if response.ok:
pdf_id = response.json()["pdf_id"]
print(f"PDF processing initiated. PDF ID: {pdf_id}")
# Step 2: Check processing status
while True:
conversion_response = requests.get(f"https://api.mathpix.com/v3/pdf/{pdf_id}", headers=headers)
conversion_data = conversion_response.json()
if conversion_data["status"] == "completed":
print("PDF processing completed.")
break
elif conversion_data["status"] == "error":
print("Error occurred during processing.")
else:
print(f"Processing status: {conversion_data['status']}")
time.sleep(5) # wait for a few seconds before checking again
# Step 3: Save results to local files
output_dir = os.path.join(os.path.dirname(pdf_file_path), 'mathpix_output')
if not os.path.exists(output_dir):
os.makedirs(output_dir)
url = f"https://api.mathpix.com/v3/pdf/{pdf_id}.tex"
response = requests.get(url, headers=headers)
file_name_wo_dot = '_'.join(os.path.basename(pdf_file_path).split('.')[:-1])
output_name = f"{file_name_wo_dot}.tex.zip"
output_path = os.path.join(output_dir, output_name)
with open(output_path, "wb") as output_file:
output_file.write(response.content)
print(f"tex.zip file saved at: {output_path}")
import zipfile
unzip_dir = os.path.join(output_dir, file_name_wo_dot)
with zipfile.ZipFile(output_path, 'r') as zip_ref:
zip_ref.extractall(unzip_dir)
return unzip_dir
else:
print(f"Error sending PDF for processing. Status code: {response.status_code}")
return None
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序1 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
@CatchException
def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
# <-------------- information about this plugin ------------->
chatbot.append(["函数插件功能?",
"对整个Latex项目进行纠错, 用latex编译为PDF对修正处做高亮。函数插件贡献者: Binary-Husky。注意事项: 目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。仅在Windows系统进行了测试,其他操作系统表现未知。"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# <-------------- more requirements ------------->
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
more_req = plugin_kwargs.get("advanced_arg", "")
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
# <-------------- check deps ------------->
try:
import glob, os, time, subprocess
subprocess.Popen(['pdflatex', '-version'])
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
except Exception as e:
chatbot.append([f"解析项目: {txt}",
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# <-------------- clear history and read input ------------->
history = []
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# <-------------- if is a zip/tar file ------------->
project_folder = desend_to_extracted_folder_if_exist(project_folder)
# <-------------- move latex project away from temp folder ------------->
project_folder = move_project(project_folder, arxiv_id=None)
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
if not os.path.exists(project_folder + '/merge_proofread_en.tex'):
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
chatbot, history, system_prompt, mode='proofread_en',
switch_prompt=_switch_prompt_)
# <-------------- compile PDF ------------->
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
main_file_modified='merge_proofread_en',
work_folder_original=project_folder, work_folder_modified=project_folder,
work_folder=project_folder)
# <-------------- zip PDF ------------->
zip_res = zip_result(project_folder)
if success:
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
yield from update_ui(chatbot=chatbot, history=history);
time.sleep(1) # 刷新界面
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
else:
chatbot.append((f"失败了",
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 也是可读的, 您可以到Github Issue区, 用该压缩包+对话历史存档进行反馈 ...'))
yield from update_ui(chatbot=chatbot, history=history);
time.sleep(1) # 刷新界面
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
# <-------------- we are done ------------->
return success
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序2 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
@CatchException
def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
# <-------------- information about this plugin ------------->
chatbot.append([
"函数插件功能?",
"对整个Latex项目进行翻译, 生成中文PDF。函数插件贡献者: Binary-Husky。注意事项: 此插件Windows支持最佳,Linux下必须使用Docker安装,详见项目主README.md。目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# <-------------- more requirements ------------->
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
more_req = plugin_kwargs.get("advanced_arg", "")
no_cache = more_req.startswith("--no-cache")
if no_cache: more_req.lstrip("--no-cache")
allow_cache = not no_cache
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
# <-------------- check deps ------------->
try:
import glob, os, time, subprocess
subprocess.Popen(['pdflatex', '-version'])
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
except Exception as e:
chatbot.append([f"解析项目: {txt}",
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# <-------------- clear history and read input ------------->
history = []
try:
txt, arxiv_id = yield from arxiv_download(chatbot, history, txt, allow_cache)
except tarfile.ReadError as e:
yield from update_ui_lastest_msg(
"无法自动下载该论文的Latex源码,请前往arxiv打开此论文下载页面,点other Formats,然后download source手动下载latex源码包。接下来调用本地Latex翻译插件即可。",
chatbot=chatbot, history=history)
return
if txt.endswith('.pdf'):
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"发现已经存在翻译好的PDF文档")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无法处理: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# <-------------- if is a zip/tar file ------------->
project_folder = desend_to_extracted_folder_if_exist(project_folder)
# <-------------- move latex project away from temp folder ------------->
project_folder = move_project(project_folder, arxiv_id)
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
if not os.path.exists(project_folder + '/merge_translate_zh.tex'):
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
chatbot, history, system_prompt, mode='translate_zh',
switch_prompt=_switch_prompt_)
# <-------------- compile PDF ------------->
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
main_file_modified='merge_translate_zh', mode='translate_zh',
work_folder_original=project_folder, work_folder_modified=project_folder,
work_folder=project_folder)
# <-------------- zip PDF ------------->
zip_res = zip_result(project_folder)
if success:
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
yield from update_ui(chatbot=chatbot, history=history);
time.sleep(1) # 刷新界面
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
else:
chatbot.append((f"失败了",
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体见Github wiki ...'))
yield from update_ui(chatbot=chatbot, history=history);
time.sleep(1) # 刷新界面
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
# <-------------- we are done ------------->
return success
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- 插件主程序3 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
@CatchException
def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# <-------------- information about this plugin ------------->
chatbot.append([
"函数插件功能?",
"将PDF转换为Latex项目,翻译为中文后重新编译为PDF。函数插件贡献者: Marroh。注意事项: 此插件Windows支持最佳,Linux下必须使用Docker安装,详见项目主README.md。目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# <-------------- more requirements ------------->
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
more_req = plugin_kwargs.get("advanced_arg", "")
no_cache = more_req.startswith("--no-cache")
if no_cache: more_req.lstrip("--no-cache")
allow_cache = not no_cache
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
# <-------------- check deps ------------->
try:
import glob, os, time, subprocess
subprocess.Popen(['pdflatex', '-version'])
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
except Exception as e:
chatbot.append([f"解析项目: {txt}",
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# <-------------- clear history and read input ------------->
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无法处理: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)]
if len(file_manifest) == 0:
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.pdf文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
if len(file_manifest) != 1:
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"不支持同时处理多个pdf文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
app_id, app_key = get_conf('MATHPIX_APPID', 'MATHPIX_APPKEY')
if len(app_id) == 0 or len(app_key) == 0:
report_exception(chatbot, history, a="缺失 MATHPIX_APPID 和 MATHPIX_APPKEY。", b=f"请配置 MATHPIX_APPID 和 MATHPIX_APPKEY")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# <-------------- convert pdf into tex ------------->
project_folder = pdf2tex_project(file_manifest[0])
# Translate English Latex to Chinese Latex, and compile it
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# <-------------- if is a zip/tar file ------------->
project_folder = desend_to_extracted_folder_if_exist(project_folder)
# <-------------- move latex project away from temp folder ------------->
project_folder = move_project(project_folder)
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
if not os.path.exists(project_folder + '/merge_translate_zh.tex'):
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
chatbot, history, system_prompt, mode='translate_zh',
switch_prompt=_switch_prompt_)
# <-------------- compile PDF ------------->
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
main_file_modified='merge_translate_zh', mode='translate_zh',
work_folder_original=project_folder, work_folder_modified=project_folder,
work_folder=project_folder)
# <-------------- zip PDF ------------->
zip_res = zip_result(project_folder)
if success:
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
yield from update_ui(chatbot=chatbot, history=history);
time.sleep(1) # 刷新界面
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
else:
chatbot.append((f"失败了",
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体见Github wiki ...'))
yield from update_ui(chatbot=chatbot, history=history);
time.sleep(1) # 刷新界面
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
# <-------------- we are done ------------->
return success

查看文件

@@ -5,7 +5,7 @@ import glob, os, requests, time
pj = os.path.join
ARXIV_CACHE_DIR = os.path.expanduser(f"~/arxiv_cache/")
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- 工具函数 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
# =================================== 工具函数 ===============================================
# 专业词汇声明 = 'If the term "agent" is used in this section, it should be translated to "智能体". '
def switch_prompt(pfg, mode, more_requirement):
"""
@@ -142,7 +142,7 @@ def arxiv_download(chatbot, history, txt, allow_cache=True):
from toolbox import extract_archive
extract_archive(file_path=dst, dest_dir=extract_dst)
return extract_dst, arxiv_id
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序1 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
# ========================================= 插件主程序1 =====================================================
@CatchException
@@ -218,7 +218,7 @@ def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, histo
# <-------------- we are done ------------->
return success
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序2 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
# ========================================= 插件主程序2 =====================================================
@CatchException
def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):

查看文件

@@ -35,11 +35,7 @@ def gpt_academic_generate_oai_reply(
class AutoGenGeneral(PluginMultiprocessManager):
def gpt_academic_print_override(self, user_proxy, message, sender):
# ⭐⭐ run in subprocess
try:
print_msg = sender.name + "\n\n---\n\n" + message["content"]
except:
print_msg = sender.name + "\n\n---\n\n" + message
self.child_conn.send(PipeCom("show", print_msg))
self.child_conn.send(PipeCom("show", sender.name + "\n\n---\n\n" + message["content"]))
def gpt_academic_get_human_input(self, user_proxy, message):
# ⭐⭐ run in subprocess
@@ -66,33 +62,33 @@ class AutoGenGeneral(PluginMultiprocessManager):
def exe_autogen(self, input):
# ⭐⭐ run in subprocess
input = input.content
code_execution_config = {"work_dir": self.autogen_work_dir, "use_docker": self.use_docker}
agents = self.define_agents()
user_proxy = None
assistant = None
for agent_kwargs in agents:
agent_cls = agent_kwargs.pop('cls')
kwargs = {
'llm_config':self.llm_kwargs,
'code_execution_config':code_execution_config
}
kwargs.update(agent_kwargs)
agent_handle = agent_cls(**kwargs)
agent_handle._print_received_message = lambda a,b: self.gpt_academic_print_override(agent_kwargs, a, b)
for d in agent_handle._reply_func_list:
if hasattr(d['reply_func'],'__name__') and d['reply_func'].__name__ == 'generate_oai_reply':
d['reply_func'] = gpt_academic_generate_oai_reply
if agent_kwargs['name'] == 'user_proxy':
agent_handle.get_human_input = lambda a: self.gpt_academic_get_human_input(user_proxy, a)
user_proxy = agent_handle
if agent_kwargs['name'] == 'assistant': assistant = agent_handle
try:
if user_proxy is None or assistant is None: raise Exception("用户代理或助理代理未定义")
with ProxyNetworkActivate("AutoGen"):
with ProxyNetworkActivate("AutoGen"):
code_execution_config = {"work_dir": self.autogen_work_dir, "use_docker": self.use_docker}
agents = self.define_agents()
user_proxy = None
assistant = None
for agent_kwargs in agents:
agent_cls = agent_kwargs.pop('cls')
kwargs = {
'llm_config':self.llm_kwargs,
'code_execution_config':code_execution_config
}
kwargs.update(agent_kwargs)
agent_handle = agent_cls(**kwargs)
agent_handle._print_received_message = lambda a,b: self.gpt_academic_print_override(agent_kwargs, a, b)
for d in agent_handle._reply_func_list:
if hasattr(d['reply_func'],'__name__') and d['reply_func'].__name__ == 'generate_oai_reply':
d['reply_func'] = gpt_academic_generate_oai_reply
if agent_kwargs['name'] == 'user_proxy':
agent_handle.get_human_input = lambda a: self.gpt_academic_get_human_input(user_proxy, a)
user_proxy = agent_handle
if agent_kwargs['name'] == 'assistant': assistant = agent_handle
try:
if user_proxy is None or assistant is None: raise Exception("用户代理或助理代理未定义")
user_proxy.initiate_chat(assistant, message=input)
except Exception as e:
tb_str = '```\n' + trimmed_format_exc() + '```'
self.child_conn.send(PipeCom("done", "AutoGen 执行失败: \n\n" + tb_str))
except Exception as e:
tb_str = '```\n' + trimmed_format_exc() + '```'
self.child_conn.send(PipeCom("done", "AutoGen 执行失败: \n\n" + tb_str))
def subprocess_worker(self, child_conn):
# ⭐⭐ run in subprocess

查看文件

@@ -9,7 +9,7 @@ class PipeCom:
class PluginMultiprocessManager:
def __init__(self, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def __init__(self, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# ⭐ run in main process
self.autogen_work_dir = os.path.join(get_log_folder("autogen"), gen_time_str())
self.previous_work_dir_files = {}
@@ -18,7 +18,7 @@ class PluginMultiprocessManager:
self.chatbot = chatbot
self.history = history
self.system_prompt = system_prompt
# self.user_request = user_request
# self.web_port = web_port
self.alive = True
self.use_docker = get_conf("AUTOGEN_USE_DOCKER")
self.last_user_input = ""

查看文件

@@ -32,7 +32,7 @@ def string_to_options(arguments):
return args
@CatchException
def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
@@ -40,7 +40,7 @@ def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成"))
@@ -80,7 +80,7 @@ def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
@CatchException
def 启动微调(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 启动微调(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
@@ -88,7 +88,7 @@ def 启动微调(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
web_port 当前软件运行的端口号
"""
import subprocess
history = [] # 清空历史,以免输入溢出

查看文件

@@ -1,231 +0,0 @@
"""
这是什么?
这个文件用于函数插件的单元测试
运行方法 python crazy_functions/crazy_functions_test.py
"""
# ==============================================================================================================================
def validate_path():
import os, sys
dir_name = os.path.dirname(__file__)
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
os.chdir(root_dir_assume)
sys.path.append(root_dir_assume)
validate_path() # validate path so you can run from base directory
# ==============================================================================================================================
from colorful import *
from toolbox import get_conf, ChatBotWithCookies
import contextlib
import os
import sys
from functools import wraps
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY = \
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY')
llm_kwargs = {
'api_key': API_KEY,
'llm_model': LLM_MODEL,
'top_p':1.0,
'max_length': None,
'temperature':1.0,
}
plugin_kwargs = { }
chatbot = ChatBotWithCookies(llm_kwargs)
history = []
system_prompt = "Serve me as a writing and programming assistant."
web_port = 1024
# ==============================================================================================================================
def silence_stdout(func):
@wraps(func)
def wrapper(*args, **kwargs):
_original_stdout = sys.stdout
sys.stdout = open(os.devnull, 'w')
for q in func(*args, **kwargs):
sys.stdout = _original_stdout
yield q
sys.stdout = open(os.devnull, 'w')
sys.stdout.close()
sys.stdout = _original_stdout
return wrapper
class CLI_Printer():
def __init__(self) -> None:
self.pre_buf = ""
def print(self, buf):
bufp = ""
for index, chat in enumerate(buf):
a, b = chat
bufp += sprint亮靛('[Me]:' + a) + '\n'
bufp += '[GPT]:' + b
if index < len(buf)-1:
bufp += '\n'
if self.pre_buf!="" and bufp.startswith(self.pre_buf):
print(bufp[len(self.pre_buf):], end='')
else:
print('\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n'+bufp, end='')
self.pre_buf = bufp
return
cli_printer = CLI_Printer()
# ==============================================================================================================================
def test_解析一个Python项目():
from crazy_functions.解析项目源代码 import 解析一个Python项目
txt = "crazy_functions/test_project/python/dqn"
for cookies, cb, hist, msg in 解析一个Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
def test_解析一个Cpp项目():
from crazy_functions.解析项目源代码 import 解析一个C项目
txt = "crazy_functions/test_project/cpp/cppipc"
for cookies, cb, hist, msg in 解析一个C项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
def test_Latex英文润色():
from crazy_functions.Latex全文润色 import Latex英文润色
txt = "crazy_functions/test_project/latex/attention"
for cookies, cb, hist, msg in Latex英文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
def test_Markdown中译英():
from crazy_functions.批量Markdown翻译 import Markdown中译英
txt = "README.md"
for cookies, cb, hist, msg in Markdown中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
def test_批量翻译PDF文档():
from crazy_functions.批量翻译PDF文档_多线程 import 批量翻译PDF文档
txt = "crazy_functions/test_project/pdf_and_word"
for cookies, cb, hist, msg in 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
def test_谷歌检索小助手():
from crazy_functions.谷歌检索小助手 import 谷歌检索小助手
txt = "https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=auto+reinforcement+learning&btnG="
for cookies, cb, hist, msg in 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
def test_总结word文档():
from crazy_functions.总结word文档 import 总结word文档
txt = "crazy_functions/test_project/pdf_and_word"
for cookies, cb, hist, msg in 总结word文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
def test_下载arxiv论文并翻译摘要():
from crazy_functions.下载arxiv论文翻译摘要 import 下载arxiv论文并翻译摘要
txt = "1812.10695"
for cookies, cb, hist, msg in 下载arxiv论文并翻译摘要(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
def test_联网回答问题():
from crazy_functions.联网的ChatGPT import 连接网络回答问题
# txt = "谁是应急食品?"
# >> '根据以上搜索结果可以得知,应急食品是“原神”游戏中的角色派蒙的外号。'
# txt = "道路千万条,安全第一条。后面两句是?"
# >> '行车不规范,亲人两行泪。'
# txt = "You should have gone for the head. What does that mean?"
# >> The phrase "You should have gone for the head" is a quote from the Marvel movies, Avengers: Infinity War and Avengers: Endgame. It was spoken by the character Thanos in Infinity War and by Thor in Endgame.
txt = "AutoGPT是什么?"
for cookies, cb, hist, msg in 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print("当前问答:", cb[-1][-1].replace("\n"," "))
for i, it in enumerate(cb): print亮蓝(it[0]); print亮黄(it[1])
def test_解析ipynb文件():
from crazy_functions.解析JupyterNotebook import 解析ipynb文件
txt = "crazy_functions/test_samples"
for cookies, cb, hist, msg in 解析ipynb文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
def test_数学动画生成manim():
from crazy_functions.数学动画生成manim import 动画生成
txt = "A ball split into 2, and then split into 4, and finally split into 8."
for cookies, cb, hist, msg in 动画生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
def test_Markdown多语言():
from crazy_functions.批量Markdown翻译 import Markdown翻译指定语言
txt = "README.md"
history = []
for lang in ["English", "French", "Japanese", "Korean", "Russian", "Italian", "German", "Portuguese", "Arabic"]:
plugin_kwargs = {"advanced_arg": lang}
for cookies, cb, hist, msg in Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
def test_Langchain知识库():
from crazy_functions.Langchain知识库 import 知识库问答
txt = "./"
chatbot = ChatBotWithCookies(llm_kwargs)
for cookies, cb, hist, msg in silence_stdout(知识库问答)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
cli_printer.print(cb) # print(cb)
chatbot = ChatBotWithCookies(cookies)
from crazy_functions.Langchain知识库 import 读取知识库作答
txt = "What is the installation method?"
for cookies, cb, hist, msg in silence_stdout(读取知识库作答)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
cli_printer.print(cb) # print(cb)
def test_Langchain知识库读取():
from crazy_functions.Langchain知识库 import 读取知识库作答
txt = "远程云服务器部署?"
for cookies, cb, hist, msg in silence_stdout(读取知识库作答)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
cli_printer.print(cb) # print(cb)
def test_Latex():
from crazy_functions.Latex输出PDF结果 import Latex英文纠错加PDF对比, Latex翻译中文并重新编译PDF
# txt = r"https://arxiv.org/abs/1706.03762"
# txt = r"https://arxiv.org/abs/1902.03185"
# txt = r"https://arxiv.org/abs/2305.18290"
# txt = r"https://arxiv.org/abs/2305.17608"
# txt = r"https://arxiv.org/abs/2211.16068" # ACE
# txt = r"C:\Users\x\arxiv_cache\2211.16068\workfolder" # ACE
# txt = r"https://arxiv.org/abs/2002.09253"
# txt = r"https://arxiv.org/abs/2306.07831"
# txt = r"https://arxiv.org/abs/2212.10156"
# txt = r"https://arxiv.org/abs/2211.11559"
# txt = r"https://arxiv.org/abs/2303.08774"
txt = r"https://arxiv.org/abs/2303.12712"
# txt = r"C:\Users\fuqingxu\arxiv_cache\2303.12712\workfolder"
for cookies, cb, hist, msg in (Latex翻译中文并重新编译PDF)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
cli_printer.print(cb) # print(cb)
# txt = "2302.02948.tar"
# print(txt)
# main_tex, work_folder = Latex预处理(txt)
# print('main tex:', main_tex)
# res = 编译Latex(main_tex, work_folder)
# # for cookies, cb, hist, msg in silence_stdout(编译Latex)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# cli_printer.print(cb) # print(cb)
# test_解析一个Python项目()
# test_Latex英文润色()
# test_Markdown中译英()
# test_批量翻译PDF文档()
# test_谷歌检索小助手()
# test_总结word文档()
# test_下载arxiv论文并翻译摘要()
# test_解析一个Cpp项目()
# test_联网回答问题()
# test_解析ipynb文件()
# test_数学动画生成manim()
# test_Langchain知识库()
# test_Langchain知识库读取()
if __name__ == "__main__":
test_Latex()
input("程序完成,回车退出。")
print("退出。")

查看文件

@@ -12,7 +12,7 @@ def input_clipping(inputs, history, max_token_limit):
mode = 'input-and-history'
# 当 输入部分的token占比 小于 全文的一半时,只裁剪历史
input_token_num = get_token_num(inputs)
if input_token_num < max_token_limit//2:
if input_token_num < max_token_limit//2:
mode = 'only-history'
max_token_limit = max_token_limit - input_token_num
@@ -21,7 +21,7 @@ def input_clipping(inputs, history, max_token_limit):
n_token = get_token_num('\n'.join(everything))
everything_token = [get_token_num(e) for e in everything]
delta = max(everything_token) // 16 # 截断时的颗粒度
while n_token > max_token_limit:
where = np.argmax(everything_token)
encoded = enc.encode(everything[where], disallowed_special=())
@@ -38,9 +38,9 @@ def input_clipping(inputs, history, max_token_limit):
return inputs, history
def request_gpt_model_in_new_thread_with_ui_alive(
inputs, inputs_show_user, llm_kwargs,
inputs, inputs_show_user, llm_kwargs,
chatbot, history, sys_prompt, refresh_interval=0.2,
handle_token_exceed=True,
handle_token_exceed=True,
retry_times_at_unknown_error=2,
):
"""
@@ -77,7 +77,7 @@ def request_gpt_model_in_new_thread_with_ui_alive(
exceeded_cnt = 0
while True:
# watchdog error
if len(mutable) >= 2 and (time.time()-mutable[1]) > watch_dog_patience:
if len(mutable) >= 2 and (time.time()-mutable[1]) > watch_dog_patience:
raise RuntimeError("检测到程序终止。")
try:
# 【第一种情况】:顺利完成
@@ -140,12 +140,12 @@ def can_multi_process(llm):
if llm.startswith('api2d-'): return True
if llm.startswith('azure-'): return True
if llm.startswith('spark'): return True
if llm.startswith('zhipuai') or llm.startswith('glm-'): return True
if llm.startswith('zhipuai'): return True
return False
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array, inputs_show_user_array, llm_kwargs,
chatbot, history_array, sys_prompt_array,
inputs_array, inputs_show_user_array, llm_kwargs,
chatbot, history_array, sys_prompt_array,
refresh_interval=0.2, max_workers=-1, scroller_max_len=30,
handle_token_exceed=True, show_user_at_complete=False,
retry_times_at_unknown_error=2,
@@ -189,7 +189,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
# 屏蔽掉 chatglm的多线程,可能会导致严重卡顿
if not can_multi_process(llm_kwargs['llm_model']):
max_workers = 1
executor = ThreadPoolExecutor(max_workers=max_workers)
n_frag = len(inputs_array)
# 用户反馈
@@ -214,7 +214,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
try:
# 【第一种情况】:顺利完成
gpt_say = predict_no_ui_long_connection(
inputs=inputs, llm_kwargs=llm_kwargs, history=history,
inputs=inputs, llm_kwargs=llm_kwargs, history=history,
sys_prompt=sys_prompt, observe_window=mutable[index], console_slience=True
)
mutable[index][2] = "已成功"
@@ -246,7 +246,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
print(tb_str)
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0]
if retry_op > 0:
if retry_op > 0:
retry_op -= 1
wait = random.randint(5, 20)
if ("Rate limit reached" in tb_str) or ("Too Many Requests" in tb_str):
@@ -284,11 +284,12 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
# 在前端打印些好玩的东西
for thread_index, _ in enumerate(worker_done):
print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
replace('\n', '').replace('`', '.').replace(' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]"
replace('\n', '').replace('`', '.').replace(
' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]"
observe_win.append(print_something_really_funny)
# 在前端打印些好玩的东西
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n'
if not done else f'`{mutable[thread_index][2]}`\n\n'
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n'
if not done else f'`{mutable[thread_index][2]}`\n\n'
for thread_index, done, obs in zip(range(len(worker_done)), worker_done, observe_win)])
# 在前端打印些好玩的东西
chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt % 10+1))]
@@ -302,7 +303,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
for inputs_show_user, f in zip(inputs_show_user_array, futures):
gpt_res = f.result()
gpt_response_collection.extend([inputs_show_user, gpt_res])
# 是否在结束时,在界面上显示结果
if show_user_at_complete:
for inputs_show_user, f in zip(inputs_show_user_array, futures):
@@ -352,7 +353,7 @@ def read_and_clean_pdf_text(fp):
if wtf['size'] not in fsize_statiscs: fsize_statiscs[wtf['size']] = 0
fsize_statiscs[wtf['size']] += len(wtf['text'])
return max(fsize_statiscs, key=fsize_statiscs.get)
def ffsize_same(a,b):
"""
提取字体大小是否近似相等
@@ -388,7 +389,7 @@ def read_and_clean_pdf_text(fp):
if index == 0:
page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
'- ', '') for t in text_areas['blocks'] if 'lines' in t]
############################## <第 2 步,获取正文主字体> ##################################
try:
fsize_statiscs = {}
@@ -404,7 +405,7 @@ def read_and_clean_pdf_text(fp):
mega_sec = []
sec = []
for index, line in enumerate(meta_line):
if index == 0:
if index == 0:
sec.append(line[fc])
continue
if REMOVE_FOOT_NOTE:
@@ -501,12 +502,12 @@ def get_files_from_everything(txt, type): # type='.md'
"""
这个函数是用来获取指定目录下所有指定类型(如.md的文件,并且对于网络上的文件,也可以获取它。
下面是对每个参数和返回值的说明:
参数
- txt: 路径或网址,表示要搜索的文件或者文件夹路径或网络上的文件。
参数
- txt: 路径或网址,表示要搜索的文件或者文件夹路径或网络上的文件。
- type: 字符串,表示要搜索的文件类型。默认是.md。
返回值
- success: 布尔值,表示函数是否成功执行。
- file_manifest: 文件路径列表,里面包含以指定类型为后缀名的所有文件的绝对路径。
返回值
- success: 布尔值,表示函数是否成功执行。
- file_manifest: 文件路径列表,里面包含以指定类型为后缀名的所有文件的绝对路径。
- project_folder: 字符串,表示文件所在的文件夹路径。如果是网络上的文件,就是临时文件夹的路径。
该函数详细注释已添加,请确认是否满足您的需要。
"""
@@ -570,7 +571,7 @@ class nougat_interface():
def NOUGAT_parse_pdf(self, fp, chatbot, history):
from toolbox import update_ui_lastest_msg
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度:正在排队, 等待线程锁...",
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度:正在排队, 等待线程锁...",
chatbot=chatbot, history=history, delay=0)
self.threadLock.acquire()
import glob, threading, os
@@ -578,7 +579,7 @@ class nougat_interface():
dst = os.path.join(get_log_folder(plugin_name='nougat'), gen_time_str())
os.makedirs(dst)
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度正在加载NOUGAT... 提示首次运行需要花费较长时间下载NOUGAT参数",
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度正在加载NOUGAT... 提示首次运行需要花费较长时间下载NOUGAT参数",
chatbot=chatbot, history=history, delay=0)
self.nougat_with_timeout(f'nougat --out "{os.path.abspath(dst)}" "{os.path.abspath(fp)}"', os.getcwd(), timeout=3600)
res = glob.glob(os.path.join(dst,'*.mmd'))

查看文件

@@ -1,122 +0,0 @@
import os
from textwrap import indent
class FileNode:
def __init__(self, name):
self.name = name
self.children = []
self.is_leaf = False
self.level = 0
self.parenting_ship = []
self.comment = ""
self.comment_maxlen_show = 50
@staticmethod
def add_linebreaks_at_spaces(string, interval=10):
return '\n'.join(string[i:i+interval] for i in range(0, len(string), interval))
def sanitize_comment(self, comment):
if len(comment) > self.comment_maxlen_show: suf = '...'
else: suf = ''
comment = comment[:self.comment_maxlen_show]
comment = comment.replace('\"', '').replace('`', '').replace('\n', '').replace('`', '').replace('$', '')
comment = self.add_linebreaks_at_spaces(comment, 10)
return '`' + comment + suf + '`'
def add_file(self, file_path, file_comment):
directory_names, file_name = os.path.split(file_path)
current_node = self
level = 1
if directory_names == "":
new_node = FileNode(file_name)
current_node.children.append(new_node)
new_node.is_leaf = True
new_node.comment = self.sanitize_comment(file_comment)
new_node.level = level
current_node = new_node
else:
dnamesplit = directory_names.split(os.sep)
for i, directory_name in enumerate(dnamesplit):
found_child = False
level += 1
for child in current_node.children:
if child.name == directory_name:
current_node = child
found_child = True
break
if not found_child:
new_node = FileNode(directory_name)
current_node.children.append(new_node)
new_node.level = level - 1
current_node = new_node
term = FileNode(file_name)
term.level = level
term.comment = self.sanitize_comment(file_comment)
term.is_leaf = True
current_node.children.append(term)
def print_files_recursively(self, level=0, code="R0"):
print(' '*level + self.name + ' ' + str(self.is_leaf) + ' ' + str(self.level))
for j, child in enumerate(self.children):
child.print_files_recursively(level=level+1, code=code+str(j))
self.parenting_ship.extend(child.parenting_ship)
p1 = f"""{code}[\"🗎{self.name}\"]""" if self.is_leaf else f"""{code}[[\"📁{self.name}\"]]"""
p2 = """ --> """
p3 = f"""{code+str(j)}[\"🗎{child.name}\"]""" if child.is_leaf else f"""{code+str(j)}[[\"📁{child.name}\"]]"""
edge_code = p1 + p2 + p3
if edge_code in self.parenting_ship:
continue
self.parenting_ship.append(edge_code)
if self.comment != "":
pc1 = f"""{code}[\"🗎{self.name}\"]""" if self.is_leaf else f"""{code}[[\"📁{self.name}\"]]"""
pc2 = f""" -.-x """
pc3 = f"""C{code}[\"{self.comment}\"]:::Comment"""
edge_code = pc1 + pc2 + pc3
self.parenting_ship.append(edge_code)
MERMAID_TEMPLATE = r"""
```mermaid
flowchart LR
%% <gpt_academic_hide_mermaid_code> 一个特殊标记,用于在生成mermaid图表时隐藏代码块
classDef Comment stroke-dasharray: 5 5
subgraph {graph_name}
{relationship}
end
```
"""
def build_file_tree_mermaid_diagram(file_manifest, file_comments, graph_name):
# Create the root node
file_tree_struct = FileNode("root")
# Build the tree structure
for file_path, file_comment in zip(file_manifest, file_comments):
file_tree_struct.add_file(file_path, file_comment)
file_tree_struct.print_files_recursively()
cc = "\n".join(file_tree_struct.parenting_ship)
ccc = indent(cc, prefix=" "*8)
return MERMAID_TEMPLATE.format(graph_name=graph_name, relationship=ccc)
if __name__ == "__main__":
# File manifest
file_manifest = [
"cradle_void_terminal.ipynb",
"tests/test_utils.py",
"tests/test_plugins.py",
"tests/test_llms.py",
"config.py",
"build/ChatGLM-6b-onnx-u8s8/chatglm-6b-int8-onnx-merged/model_weights_0.bin",
"crazy_functions/latex_fns/latex_actions.py",
"crazy_functions/latex_fns/latex_toolbox.py"
]
file_comments = [
"根据位置和名称,可能是一个模块的初始化文件根据位置和名称,可能是一个模块的初始化文件根据位置和名称,可能是一个模块的初始化文件",
"包含一些用于文本处理和模型微调的函数和装饰器包含一些用于文本处理和模型微调的函数和装饰器包含一些用于文本处理和模型微调的函数和装饰器",
"用于构建HTML报告的类和方法用于构建HTML报告的类和方法用于构建HTML报告的类和方法",
"包含了用于文本切分的函数,以及处理PDF文件的示例代码包含了用于文本切分的函数,以及处理PDF文件的示例代码包含了用于文本切分的函数,以及处理PDF文件的示例代码",
"用于解析和翻译PDF文件的功能和相关辅助函数用于解析和翻译PDF文件的功能和相关辅助函数用于解析和翻译PDF文件的功能和相关辅助函数",
"是一个包的初始化文件,用于初始化包的属性和导入模块是一个包的初始化文件,用于初始化包的属性和导入模块是一个包的初始化文件,用于初始化包的属性和导入模块",
"用于加载和分割文件中的文本的通用文件加载器用于加载和分割文件中的文本的通用文件加载器用于加载和分割文件中的文本的通用文件加载器",
"包含了用于构建和管理向量数据库的函数和类包含了用于构建和管理向量数据库的函数和类包含了用于构建和管理向量数据库的函数和类",
]
print(build_file_tree_mermaid_diagram(file_manifest, file_comments, "项目文件树"))

查看文件

@@ -1,18 +1,15 @@
import os, shutil
import re
import numpy as np
PRESERVE = 0
TRANSFORM = 1
pj = os.path.join
class LinkedListNode:
class LinkedListNode():
"""
Linked List Node
"""
def __init__(self, string, preserve=True) -> None:
self.string = string
self.preserve = preserve
@@ -21,47 +18,41 @@ class LinkedListNode:
# self.begin_line = 0
# self.begin_char = 0
def convert_to_linklist(text, mask):
root = LinkedListNode("", preserve=True)
current_node = root
for c, m, i in zip(text, mask, range(len(text))):
if (m == PRESERVE and current_node.preserve) or (
m == TRANSFORM and not current_node.preserve
):
if (m==PRESERVE and current_node.preserve) \
or (m==TRANSFORM and not current_node.preserve):
# add
current_node.string += c
else:
current_node.next = LinkedListNode(c, preserve=(m == PRESERVE))
current_node.next = LinkedListNode(c, preserve=(m==PRESERVE))
current_node = current_node.next
return root
def post_process(root):
# 修复括号
node = root
while True:
string = node.string
if node.preserve:
if node.preserve:
node = node.next
if node is None:
break
if node is None: break
continue
def break_check(string):
str_stack = [""] # (lv, index)
str_stack = [""] # (lv, index)
for i, c in enumerate(string):
if c == "{":
str_stack.append("{")
elif c == "}":
if c == '{':
str_stack.append('{')
elif c == '}':
if len(str_stack) == 1:
print("stack fix")
print('stack fix')
return i
str_stack.pop(-1)
else:
str_stack[-1] += c
return -1
bp = break_check(string)
if bp == -1:
@@ -78,66 +69,51 @@ def post_process(root):
node.next = q
node = node.next
if node is None:
break
if node is None: break
# 屏蔽空行和太短的句子
node = root
while True:
if len(node.string.strip("\n").strip("")) == 0:
node.preserve = True
if len(node.string.strip("\n").strip("")) < 42:
node.preserve = True
if len(node.string.strip('\n').strip(''))==0: node.preserve = True
if len(node.string.strip('\n').strip(''))<42: node.preserve = True
node = node.next
if node is None:
break
if node is None: break
node = root
while True:
if node.next and node.preserve and node.next.preserve:
node.string += node.next.string
node.next = node.next.next
node = node.next
if node is None:
break
if node is None: break
# 将前后断行符脱离
node = root
prev_node = None
while True:
if not node.preserve:
lstriped_ = node.string.lstrip().lstrip("\n")
if (
(prev_node is not None)
and (prev_node.preserve)
and (len(lstriped_) != len(node.string))
):
prev_node.string += node.string[: -len(lstriped_)]
lstriped_ = node.string.lstrip().lstrip('\n')
if (prev_node is not None) and (prev_node.preserve) and (len(lstriped_)!=len(node.string)):
prev_node.string += node.string[:-len(lstriped_)]
node.string = lstriped_
rstriped_ = node.string.rstrip().rstrip("\n")
if (
(node.next is not None)
and (node.next.preserve)
and (len(rstriped_) != len(node.string))
):
node.next.string = node.string[len(rstriped_) :] + node.next.string
rstriped_ = node.string.rstrip().rstrip('\n')
if (node.next is not None) and (node.next.preserve) and (len(rstriped_)!=len(node.string)):
node.next.string = node.string[len(rstriped_):] + node.next.string
node.string = rstriped_
# =-=-=
# =====
prev_node = node
node = node.next
if node is None:
break
if node is None: break
# 标注节点的行数范围
node = root
n_line = 0
expansion = 2
while True:
n_l = node.string.count("\n")
node.range = [n_line - expansion, n_line + n_l + expansion] # 失败时,扭转的范围
n_line = n_line + n_l
n_l = node.string.count('\n')
node.range = [n_line-expansion, n_line+n_l+expansion] # 失败时,扭转的范围
n_line = n_line+n_l
node = node.next
if node is None:
break
if node is None: break
return root
@@ -152,125 +128,97 @@ def set_forbidden_text(text, mask, pattern, flags=0):
"""
Add a preserve text area in this paper
e.g. with pattern = r"\\begin\{algorithm\}(.*?)\\end\{algorithm\}"
you can mask out (mask = PRESERVE so that text become untouchable for GPT)
you can mask out (mask = PRESERVE so that text become untouchable for GPT)
everything between "\begin{equation}" and "\end{equation}"
"""
if isinstance(pattern, list):
pattern = "|".join(pattern)
if isinstance(pattern, list): pattern = '|'.join(pattern)
pattern_compile = re.compile(pattern, flags)
for res in pattern_compile.finditer(text):
mask[res.span()[0] : res.span()[1]] = PRESERVE
mask[res.span()[0]:res.span()[1]] = PRESERVE
return text, mask
def reverse_forbidden_text(text, mask, pattern, flags=0, forbid_wrapper=True):
"""
Move area out of preserve area (make text editable for GPT)
count the number of the braces so as to catch compelete text area.
count the number of the braces so as to catch compelete text area.
e.g.
\begin{abstract} blablablablablabla. \end{abstract}
\begin{abstract} blablablablablabla. \end{abstract}
"""
if isinstance(pattern, list):
pattern = "|".join(pattern)
if isinstance(pattern, list): pattern = '|'.join(pattern)
pattern_compile = re.compile(pattern, flags)
for res in pattern_compile.finditer(text):
if not forbid_wrapper:
mask[res.span()[0] : res.span()[1]] = TRANSFORM
mask[res.span()[0]:res.span()[1]] = TRANSFORM
else:
mask[res.regs[0][0] : res.regs[1][0]] = PRESERVE # '\\begin{abstract}'
mask[res.regs[1][0] : res.regs[1][1]] = TRANSFORM # abstract
mask[res.regs[1][1] : res.regs[0][1]] = PRESERVE # abstract
mask[res.regs[0][0]: res.regs[1][0]] = PRESERVE # '\\begin{abstract}'
mask[res.regs[1][0]: res.regs[1][1]] = TRANSFORM # abstract
mask[res.regs[1][1]: res.regs[0][1]] = PRESERVE # abstract
return text, mask
def set_forbidden_text_careful_brace(text, mask, pattern, flags=0):
"""
Add a preserve text area in this paper (text become untouchable for GPT).
count the number of the braces so as to catch compelete text area.
count the number of the braces so as to catch compelete text area.
e.g.
\caption{blablablablabla\texbf{blablabla}blablabla.}
\caption{blablablablabla\texbf{blablabla}blablabla.}
"""
pattern_compile = re.compile(pattern, flags)
for res in pattern_compile.finditer(text):
brace_level = -1
p = begin = end = res.regs[0][0]
for _ in range(1024 * 16):
if text[p] == "}" and brace_level == 0:
break
elif text[p] == "}":
brace_level -= 1
elif text[p] == "{":
brace_level += 1
for _ in range(1024*16):
if text[p] == '}' and brace_level == 0: break
elif text[p] == '}': brace_level -= 1
elif text[p] == '{': brace_level += 1
p += 1
end = p + 1
end = p+1
mask[begin:end] = PRESERVE
return text, mask
def reverse_forbidden_text_careful_brace(
text, mask, pattern, flags=0, forbid_wrapper=True
):
def reverse_forbidden_text_careful_brace(text, mask, pattern, flags=0, forbid_wrapper=True):
"""
Move area out of preserve area (make text editable for GPT)
count the number of the braces so as to catch compelete text area.
count the number of the braces so as to catch compelete text area.
e.g.
\caption{blablablablabla\texbf{blablabla}blablabla.}
\caption{blablablablabla\texbf{blablabla}blablabla.}
"""
pattern_compile = re.compile(pattern, flags)
for res in pattern_compile.finditer(text):
brace_level = 0
p = begin = end = res.regs[1][0]
for _ in range(1024 * 16):
if text[p] == "}" and brace_level == 0:
break
elif text[p] == "}":
brace_level -= 1
elif text[p] == "{":
brace_level += 1
for _ in range(1024*16):
if text[p] == '}' and brace_level == 0: break
elif text[p] == '}': brace_level -= 1
elif text[p] == '{': brace_level += 1
p += 1
end = p
mask[begin:end] = TRANSFORM
if forbid_wrapper:
mask[res.regs[0][0] : begin] = PRESERVE
mask[end : res.regs[0][1]] = PRESERVE
mask[res.regs[0][0]:begin] = PRESERVE
mask[end:res.regs[0][1]] = PRESERVE
return text, mask
def set_forbidden_text_begin_end(text, mask, pattern, flags=0, limit_n_lines=42):
"""
Find all \begin{} ... \end{} text block that with less than limit_n_lines lines.
Add it to preserve area
"""
pattern_compile = re.compile(pattern, flags)
def search_with_line_limit(text, mask):
for res in pattern_compile.finditer(text):
cmd = res.group(1) # begin{what}
this = res.group(2) # content between begin and end
this_mask = mask[res.regs[2][0] : res.regs[2][1]]
white_list = [
"document",
"abstract",
"lemma",
"definition",
"sproof",
"em",
"emph",
"textit",
"textbf",
"itemize",
"enumerate",
]
if (cmd in white_list) or this.count(
"\n"
) >= limit_n_lines: # use a magical number 42
this = res.group(2) # content between begin and end
this_mask = mask[res.regs[2][0]:res.regs[2][1]]
white_list = ['document', 'abstract', 'lemma', 'definition', 'sproof',
'em', 'emph', 'textit', 'textbf', 'itemize', 'enumerate']
if (cmd in white_list) or this.count('\n') >= limit_n_lines: # use a magical number 42
this, this_mask = search_with_line_limit(this, this_mask)
mask[res.regs[2][0] : res.regs[2][1]] = this_mask
mask[res.regs[2][0]:res.regs[2][1]] = this_mask
else:
mask[res.regs[0][0] : res.regs[0][1]] = PRESERVE
mask[res.regs[0][0]:res.regs[0][1]] = PRESERVE
return text, mask
return search_with_line_limit(text, mask)
return search_with_line_limit(text, mask)
"""
@@ -279,7 +227,6 @@ Latex Merge File
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
"""
def find_main_tex_file(file_manifest, mode):
"""
在多Tex文档中,寻找主文件,必须包含documentclass,返回找到的第一个。
@@ -287,36 +234,27 @@ def find_main_tex_file(file_manifest, mode):
"""
canidates = []
for texf in file_manifest:
if os.path.basename(texf).startswith("merge"):
if os.path.basename(texf).startswith('merge'):
continue
with open(texf, "r", encoding="utf8", errors="ignore") as f:
with open(texf, 'r', encoding='utf8', errors='ignore') as f:
file_content = f.read()
if r"\documentclass" in file_content:
if r'\documentclass' in file_content:
canidates.append(texf)
else:
continue
if len(canidates) == 0:
raise RuntimeError("无法找到一个主Tex文件包含documentclass关键字")
raise RuntimeError('无法找到一个主Tex文件包含documentclass关键字')
elif len(canidates) == 1:
return canidates[0]
else: # if len(canidates) >= 2 通过一些Latex模板中常见但通常不会出现在正文的单词,对不同latex源文件扣分,取评分最高者返回
else: # if len(canidates) >= 2 通过一些Latex模板中常见但通常不会出现在正文的单词,对不同latex源文件扣分,取评分最高者返回
canidates_score = []
# 给出一些判定模板文档的词作为扣分项
unexpected_words = [
"\\LaTeX",
"manuscript",
"Guidelines",
"font",
"citations",
"rejected",
"blind review",
"reviewers",
]
expected_words = ["\\input", "\\ref", "\\cite"]
unexpected_words = ['\\LaTeX', 'manuscript', 'Guidelines', 'font', 'citations', 'rejected', 'blind review', 'reviewers']
expected_words = ['\\input', '\\ref', '\\cite']
for texf in canidates:
canidates_score.append(0)
with open(texf, "r", encoding="utf8", errors="ignore") as f:
with open(texf, 'r', encoding='utf8', errors='ignore') as f:
file_content = f.read()
file_content = rm_comments(file_content)
for uw in unexpected_words:
@@ -325,10 +263,9 @@ def find_main_tex_file(file_manifest, mode):
for uw in expected_words:
if uw in file_content:
canidates_score[-1] += 1
select = np.argmax(canidates_score) # 取评分最高者返回
select = np.argmax(canidates_score) # 取评分最高者返回
return canidates[select]
def rm_comments(main_file):
new_file_remove_comment_lines = []
for l in main_file.splitlines():
@@ -337,39 +274,30 @@ def rm_comments(main_file):
pass
else:
new_file_remove_comment_lines.append(l)
main_file = "\n".join(new_file_remove_comment_lines)
main_file = '\n'.join(new_file_remove_comment_lines)
# main_file = re.sub(r"\\include{(.*?)}", r"\\input{\1}", main_file) # 将 \include 命令转换为 \input 命令
main_file = re.sub(r"(?<!\\)%.*", "", main_file) # 使用正则表达式查找半行注释, 并替换为空字符串
main_file = re.sub(r'(?<!\\)%.*', '', main_file) # 使用正则表达式查找半行注释, 并替换为空字符串
return main_file
def find_tex_file_ignore_case(fp):
dir_name = os.path.dirname(fp)
base_name = os.path.basename(fp)
# 如果输入的文件路径是正确的
if os.path.isfile(pj(dir_name, base_name)):
return pj(dir_name, base_name)
if os.path.isfile(pj(dir_name, base_name)): return pj(dir_name, base_name)
# 如果不正确,试着加上.tex后缀试试
if not base_name.endswith(".tex"):
base_name += ".tex"
if os.path.isfile(pj(dir_name, base_name)):
return pj(dir_name, base_name)
if not base_name.endswith('.tex'): base_name+='.tex'
if os.path.isfile(pj(dir_name, base_name)): return pj(dir_name, base_name)
# 如果还找不到,解除大小写限制,再试一次
import glob
for f in glob.glob(dir_name + "/*.tex"):
for f in glob.glob(dir_name+'/*.tex'):
base_name_s = os.path.basename(fp)
base_name_f = os.path.basename(f)
if base_name_s.lower() == base_name_f.lower():
return f
if base_name_s.lower() == base_name_f.lower(): return f
# 试着加上.tex后缀试试
if not base_name_s.endswith(".tex"):
base_name_s += ".tex"
if base_name_s.lower() == base_name_f.lower():
return f
if not base_name_s.endswith('.tex'): base_name_s+='.tex'
if base_name_s.lower() == base_name_f.lower(): return f
return None
def merge_tex_files_(project_foler, main_file, mode):
"""
Merge Tex project recrusively
@@ -381,18 +309,18 @@ def merge_tex_files_(project_foler, main_file, mode):
fp_ = find_tex_file_ignore_case(fp)
if fp_:
try:
with open(fp_, "r", encoding="utf-8", errors="replace") as fx:
c = fx.read()
with open(fp_, 'r', encoding='utf-8', errors='replace') as fx: c = fx.read()
except:
c = f"\n\nWarning from GPT-Academic: LaTex source file is missing!\n\n"
else:
raise RuntimeError(f"找不到{fp},Tex源文件缺失")
raise RuntimeError(f'找不到{fp},Tex源文件缺失')
c = merge_tex_files_(project_foler, c, mode)
main_file = main_file[: s.span()[0]] + c + main_file[s.span()[1] :]
main_file = main_file[:s.span()[0]] + c + main_file[s.span()[1]:]
return main_file
def find_title_and_abs(main_file):
def extract_abstract_1(text):
pattern = r"\\abstract\{(.*?)\}"
match = re.search(pattern, text, re.DOTALL)
@@ -434,30 +362,21 @@ def merge_tex_files(project_foler, main_file, mode):
main_file = merge_tex_files_(project_foler, main_file, mode)
main_file = rm_comments(main_file)
if mode == "translate_zh":
if mode == 'translate_zh':
# find paper documentclass
pattern = re.compile(r"\\documentclass.*\n")
pattern = re.compile(r'\\documentclass.*\n')
match = pattern.search(main_file)
assert match is not None, "Cannot find documentclass statement!"
position = match.end()
add_ctex = "\\usepackage{ctex}\n"
add_url = "\\usepackage{url}\n" if "{url}" not in main_file else ""
add_ctex = '\\usepackage{ctex}\n'
add_url = '\\usepackage{url}\n' if '{url}' not in main_file else ''
main_file = main_file[:position] + add_ctex + add_url + main_file[position:]
# fontset=windows
import platform
main_file = re.sub(
r"\\documentclass\[(.*?)\]{(.*?)}",
r"\\documentclass[\1,fontset=windows,UTF8]{\2}",
main_file,
)
main_file = re.sub(
r"\\documentclass{(.*?)}",
r"\\documentclass[fontset=windows,UTF8]{\1}",
main_file,
)
main_file = re.sub(r"\\documentclass\[(.*?)\]{(.*?)}", r"\\documentclass[\1,fontset=windows,UTF8]{\2}",main_file)
main_file = re.sub(r"\\documentclass{(.*?)}", r"\\documentclass[fontset=windows,UTF8]{\1}",main_file)
# find paper abstract
pattern_opt1 = re.compile(r"\\begin\{abstract\}.*\n")
pattern_opt1 = re.compile(r'\\begin\{abstract\}.*\n')
pattern_opt2 = re.compile(r"\\abstract\{(.*?)\}", flags=re.DOTALL)
match_opt1 = pattern_opt1.search(main_file)
match_opt2 = pattern_opt2.search(main_file)
@@ -466,9 +385,7 @@ def merge_tex_files(project_foler, main_file, mode):
main_file = insert_abstract(main_file)
match_opt1 = pattern_opt1.search(main_file)
match_opt2 = pattern_opt2.search(main_file)
assert (match_opt1 is not None) or (
match_opt2 is not None
), "Cannot find paper abstract section!"
assert (match_opt1 is not None) or (match_opt2 is not None), "Cannot find paper abstract section!"
return main_file
@@ -478,7 +395,6 @@ The GPT-Academic program cannot find abstract section in this paper.
\end{abstract}
"""
def insert_abstract(tex_content):
if "\\maketitle" in tex_content:
# find the position of "\maketitle"
@@ -486,13 +402,7 @@ def insert_abstract(tex_content):
# find the nearest ending line
end_line_index = tex_content.find("\n", find_index)
# insert "abs_str" on the next line
modified_tex = (
tex_content[: end_line_index + 1]
+ "\n\n"
+ insert_missing_abs_str
+ "\n\n"
+ tex_content[end_line_index + 1 :]
)
modified_tex = tex_content[:end_line_index+1] + '\n\n' + insert_missing_abs_str + '\n\n' + tex_content[end_line_index+1:]
return modified_tex
elif r"\begin{document}" in tex_content:
# find the position of "\maketitle"
@@ -500,39 +410,29 @@ def insert_abstract(tex_content):
# find the nearest ending line
end_line_index = tex_content.find("\n", find_index)
# insert "abs_str" on the next line
modified_tex = (
tex_content[: end_line_index + 1]
+ "\n\n"
+ insert_missing_abs_str
+ "\n\n"
+ tex_content[end_line_index + 1 :]
)
modified_tex = tex_content[:end_line_index+1] + '\n\n' + insert_missing_abs_str + '\n\n' + tex_content[end_line_index+1:]
return modified_tex
else:
return tex_content
"""
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Post process
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
"""
def mod_inbraket(match):
"""
为啥chatgpt会把cite里面的逗号换成中文逗号呀
为啥chatgpt会把cite里面的逗号换成中文逗号呀
"""
# get the matched string
cmd = match.group(1)
str_to_modify = match.group(2)
# modify the matched string
str_to_modify = str_to_modify.replace("", ":") # 前面是中文冒号,后面是英文冒号
str_to_modify = str_to_modify.replace("", ",") # 前面是中文逗号,后面是英文逗号
str_to_modify = str_to_modify.replace('', ':') # 前面是中文冒号,后面是英文冒号
str_to_modify = str_to_modify.replace('', ',') # 前面是中文逗号,后面是英文逗号
# str_to_modify = 'BOOM'
return "\\" + cmd + "{" + str_to_modify + "}"
def fix_content(final_tex, node_string):
"""
Fix common GPT errors to increase success rate
@@ -543,10 +443,10 @@ def fix_content(final_tex, node_string):
final_tex = re.sub(r"\\([a-z]{2,10})\{([^\}]*?)\}", mod_inbraket, string=final_tex)
if "Traceback" in final_tex and "[Local Message]" in final_tex:
final_tex = node_string # 出问题了,还原原文
if node_string.count("\\begin") != final_tex.count("\\begin"):
final_tex = node_string # 出问题了,还原原文
if node_string.count("\_") > 0 and node_string.count("\_") > final_tex.count("\_"):
final_tex = node_string # 出问题了,还原原文
if node_string.count('\\begin') != final_tex.count('\\begin'):
final_tex = node_string # 出问题了,还原原文
if node_string.count('\_') > 0 and node_string.count('\_') > final_tex.count('\_'):
# walk and replace any _ without \
final_tex = re.sub(r"(?<!\\)_", "\\_", final_tex)
@@ -554,32 +454,24 @@ def fix_content(final_tex, node_string):
# this function count the number of { and }
brace_level = 0
for c in string:
if c == "{":
brace_level += 1
elif c == "}":
brace_level -= 1
if c == "{": brace_level += 1
elif c == "}": brace_level -= 1
return brace_level
def join_most(tex_t, tex_o):
# this function join translated string and original string when something goes wrong
p_t = 0
p_o = 0
def find_next(string, chars, begin):
p = begin
while p < len(string):
if string[p] in chars:
return p, string[p]
if string[p] in chars: return p, string[p]
p += 1
return None, None
while True:
res1, char = find_next(tex_o, ["{", "}"], p_o)
if res1 is None:
break
res1, char = find_next(tex_o, ['{','}'], p_o)
if res1 is None: break
res2, char = find_next(tex_t, [char], p_t)
if res2 is None:
break
if res2 is None: break
p_o = res1 + 1
p_t = res2 + 1
return tex_t[:p_t] + tex_o[p_o:]
@@ -588,14 +480,10 @@ def fix_content(final_tex, node_string):
# 出问题了,还原部分原文,保证括号正确
final_tex = join_most(final_tex, node_string)
return final_tex
def compile_latex_with_timeout(command, cwd, timeout=60):
import subprocess
process = subprocess.Popen(
command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=cwd
)
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=cwd)
try:
stdout, stderr = process.communicate(timeout=timeout)
except subprocess.TimeoutExpired:
@@ -605,52 +493,43 @@ def compile_latex_with_timeout(command, cwd, timeout=60):
return False
return True
def run_in_subprocess_wrapper_func(func, args, kwargs, return_dict, exception_dict):
import sys
try:
result = func(*args, **kwargs)
return_dict["result"] = result
return_dict['result'] = result
except Exception as e:
exc_info = sys.exc_info()
exception_dict["exception"] = exc_info
exception_dict['exception'] = exc_info
def run_in_subprocess(func):
import multiprocessing
def wrapper(*args, **kwargs):
return_dict = multiprocessing.Manager().dict()
exception_dict = multiprocessing.Manager().dict()
process = multiprocessing.Process(
target=run_in_subprocess_wrapper_func,
args=(func, args, kwargs, return_dict, exception_dict),
)
process = multiprocessing.Process(target=run_in_subprocess_wrapper_func,
args=(func, args, kwargs, return_dict, exception_dict))
process.start()
process.join()
process.close()
if "exception" in exception_dict:
if 'exception' in exception_dict:
# ooops, the subprocess ran into an exception
exc_info = exception_dict["exception"]
exc_info = exception_dict['exception']
raise exc_info[1].with_traceback(exc_info[2])
if "result" in return_dict.keys():
if 'result' in return_dict.keys():
# If the subprocess ran successfully, return the result
return return_dict["result"]
return return_dict['result']
return wrapper
def _merge_pdfs(pdf1_path, pdf2_path, output_path):
import PyPDF2 # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放
import PyPDF2 # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放
Percent = 0.95
# raise RuntimeError('PyPDF2 has a serious memory leak problem, please use other tools to merge PDF files.')
# Open the first PDF file
with open(pdf1_path, "rb") as pdf1_file:
with open(pdf1_path, 'rb') as pdf1_file:
pdf1_reader = PyPDF2.PdfFileReader(pdf1_file)
# Open the second PDF file
with open(pdf2_path, "rb") as pdf2_file:
with open(pdf2_path, 'rb') as pdf2_file:
pdf2_reader = PyPDF2.PdfFileReader(pdf2_file)
# Create a new PDF file to store the merged pages
output_writer = PyPDF2.PdfFileWriter()
@@ -670,25 +549,14 @@ def _merge_pdfs(pdf1_path, pdf2_path, output_path):
page2 = PyPDF2.PageObject.createBlankPage(pdf1_reader)
# Create a new empty page with double width
new_page = PyPDF2.PageObject.createBlankPage(
width=int(
int(page1.mediaBox.getWidth())
+ int(page2.mediaBox.getWidth()) * Percent
),
height=max(page1.mediaBox.getHeight(), page2.mediaBox.getHeight()),
width = int(int(page1.mediaBox.getWidth()) + int(page2.mediaBox.getWidth()) * Percent),
height = max(page1.mediaBox.getHeight(), page2.mediaBox.getHeight())
)
new_page.mergeTranslatedPage(page1, 0, 0)
new_page.mergeTranslatedPage(
page2,
int(
int(page1.mediaBox.getWidth())
- int(page2.mediaBox.getWidth()) * (1 - Percent)
),
0,
)
new_page.mergeTranslatedPage(page2, int(int(page1.mediaBox.getWidth())-int(page2.mediaBox.getWidth())* (1-Percent)), 0)
output_writer.addPage(new_page)
# Save the merged PDF file
with open(output_path, "wb") as output_file:
with open(output_path, 'wb') as output_file:
output_writer.write(output_file)
merge_pdfs = run_in_subprocess(_merge_pdfs) # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放
merge_pdfs = run_in_subprocess(_merge_pdfs) # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放

查看文件

@@ -1,788 +0,0 @@
from toolbox import update_ui, update_ui_lastest_msg # 刷新Gradio前端界面
from toolbox import zip_folder, objdump, objload, promote_file_to_downloadzone
import os, shutil
import re
import numpy as np
pj = os.path.join
"""
========================================================================
Part One
Latex segmentation with a binary mask (PRESERVE=0, TRANSFORM=1)
========================================================================
"""
PRESERVE = 0
TRANSFORM = 1
def set_forbidden_text(text, mask, pattern, flags=0):
"""
Add a preserve text area in this paper
e.g. with pattern = r"\\begin\{algorithm\}(.*?)\\end\{algorithm\}"
you can mask out (mask = PRESERVE so that text become untouchable for GPT)
everything between "\begin{equation}" and "\end{equation}"
"""
if isinstance(pattern, list): pattern = '|'.join(pattern)
pattern_compile = re.compile(pattern, flags)
for res in pattern_compile.finditer(text):
mask[res.span()[0]:res.span()[1]] = PRESERVE
return text, mask
def reverse_forbidden_text(text, mask, pattern, flags=0, forbid_wrapper=True):
"""
Move area out of preserve area (make text editable for GPT)
count the number of the braces so as to catch compelete text area.
e.g.
\begin{abstract} blablablablablabla. \end{abstract}
"""
if isinstance(pattern, list): pattern = '|'.join(pattern)
pattern_compile = re.compile(pattern, flags)
for res in pattern_compile.finditer(text):
if not forbid_wrapper:
mask[res.span()[0]:res.span()[1]] = TRANSFORM
else:
mask[res.regs[0][0]: res.regs[1][0]] = PRESERVE # '\\begin{abstract}'
mask[res.regs[1][0]: res.regs[1][1]] = TRANSFORM # abstract
mask[res.regs[1][1]: res.regs[0][1]] = PRESERVE # abstract
return text, mask
def set_forbidden_text_careful_brace(text, mask, pattern, flags=0):
"""
Add a preserve text area in this paper (text become untouchable for GPT).
count the number of the braces so as to catch compelete text area.
e.g.
\caption{blablablablabla\texbf{blablabla}blablabla.}
"""
pattern_compile = re.compile(pattern, flags)
for res in pattern_compile.finditer(text):
brace_level = -1
p = begin = end = res.regs[0][0]
for _ in range(1024*16):
if text[p] == '}' and brace_level == 0: break
elif text[p] == '}': brace_level -= 1
elif text[p] == '{': brace_level += 1
p += 1
end = p+1
mask[begin:end] = PRESERVE
return text, mask
def reverse_forbidden_text_careful_brace(text, mask, pattern, flags=0, forbid_wrapper=True):
"""
Move area out of preserve area (make text editable for GPT)
count the number of the braces so as to catch compelete text area.
e.g.
\caption{blablablablabla\texbf{blablabla}blablabla.}
"""
pattern_compile = re.compile(pattern, flags)
for res in pattern_compile.finditer(text):
brace_level = 0
p = begin = end = res.regs[1][0]
for _ in range(1024*16):
if text[p] == '}' and brace_level == 0: break
elif text[p] == '}': brace_level -= 1
elif text[p] == '{': brace_level += 1
p += 1
end = p
mask[begin:end] = TRANSFORM
if forbid_wrapper:
mask[res.regs[0][0]:begin] = PRESERVE
mask[end:res.regs[0][1]] = PRESERVE
return text, mask
def set_forbidden_text_begin_end(text, mask, pattern, flags=0, limit_n_lines=42):
"""
Find all \begin{} ... \end{} text block that with less than limit_n_lines lines.
Add it to preserve area
"""
pattern_compile = re.compile(pattern, flags)
def search_with_line_limit(text, mask):
for res in pattern_compile.finditer(text):
cmd = res.group(1) # begin{what}
this = res.group(2) # content between begin and end
this_mask = mask[res.regs[2][0]:res.regs[2][1]]
white_list = ['document', 'abstract', 'lemma', 'definition', 'sproof',
'em', 'emph', 'textit', 'textbf', 'itemize', 'enumerate']
if (cmd in white_list) or this.count('\n') >= limit_n_lines: # use a magical number 42
this, this_mask = search_with_line_limit(this, this_mask)
mask[res.regs[2][0]:res.regs[2][1]] = this_mask
else:
mask[res.regs[0][0]:res.regs[0][1]] = PRESERVE
return text, mask
return search_with_line_limit(text, mask)
class LinkedListNode():
"""
Linked List Node
"""
def __init__(self, string, preserve=True) -> None:
self.string = string
self.preserve = preserve
self.next = None
# self.begin_line = 0
# self.begin_char = 0
def convert_to_linklist(text, mask):
root = LinkedListNode("", preserve=True)
current_node = root
for c, m, i in zip(text, mask, range(len(text))):
if (m==PRESERVE and current_node.preserve) \
or (m==TRANSFORM and not current_node.preserve):
# add
current_node.string += c
else:
current_node.next = LinkedListNode(c, preserve=(m==PRESERVE))
current_node = current_node.next
return root
"""
========================================================================
Latex Merge File
========================================================================
"""
def 寻找Latex主文件(file_manifest, mode):
"""
在多Tex文档中,寻找主文件,必须包含documentclass,返回找到的第一个。
P.S. 但愿没人把latex模板放在里面传进来 (6.25 加入判定latex模板的代码)
"""
canidates = []
for texf in file_manifest:
if os.path.basename(texf).startswith('merge'):
continue
with open(texf, 'r', encoding='utf8') as f:
file_content = f.read()
if r'\documentclass' in file_content:
canidates.append(texf)
else:
continue
if len(canidates) == 0:
raise RuntimeError('无法找到一个主Tex文件包含documentclass关键字')
elif len(canidates) == 1:
return canidates[0]
else: # if len(canidates) >= 2 通过一些Latex模板中常见但通常不会出现在正文的单词,对不同latex源文件扣分,取评分最高者返回
canidates_score = []
# 给出一些判定模板文档的词作为扣分项
unexpected_words = ['\LaTeX', 'manuscript', 'Guidelines', 'font', 'citations', 'rejected', 'blind review', 'reviewers']
expected_words = ['\input', '\ref', '\cite']
for texf in canidates:
canidates_score.append(0)
with open(texf, 'r', encoding='utf8') as f:
file_content = f.read()
for uw in unexpected_words:
if uw in file_content:
canidates_score[-1] -= 1
for uw in expected_words:
if uw in file_content:
canidates_score[-1] += 1
select = np.argmax(canidates_score) # 取评分最高者返回
return canidates[select]
def rm_comments(main_file):
new_file_remove_comment_lines = []
for l in main_file.splitlines():
# 删除整行的空注释
if l.lstrip().startswith("%"):
pass
else:
new_file_remove_comment_lines.append(l)
main_file = '\n'.join(new_file_remove_comment_lines)
# main_file = re.sub(r"\\include{(.*?)}", r"\\input{\1}", main_file) # 将 \include 命令转换为 \input 命令
main_file = re.sub(r'(?<!\\)%.*', '', main_file) # 使用正则表达式查找半行注释, 并替换为空字符串
return main_file
def merge_tex_files_(project_foler, main_file, mode):
"""
Merge Tex project recrusively
"""
main_file = rm_comments(main_file)
for s in reversed([q for q in re.finditer(r"\\input\{(.*?)\}", main_file, re.M)]):
f = s.group(1)
fp = os.path.join(project_foler, f)
if os.path.exists(fp):
# e.g., \input{srcs/07_appendix.tex}
with open(fp, 'r', encoding='utf-8', errors='replace') as fx:
c = fx.read()
else:
# e.g., \input{srcs/07_appendix}
with open(fp+'.tex', 'r', encoding='utf-8', errors='replace') as fx:
c = fx.read()
c = merge_tex_files_(project_foler, c, mode)
main_file = main_file[:s.span()[0]] + c + main_file[s.span()[1]:]
return main_file
def merge_tex_files(project_foler, main_file, mode):
"""
Merge Tex project recrusively
P.S. 顺便把CTEX塞进去以支持中文
P.S. 顺便把Latex的注释去除
"""
main_file = merge_tex_files_(project_foler, main_file, mode)
main_file = rm_comments(main_file)
if mode == 'translate_zh':
# find paper documentclass
pattern = re.compile(r'\\documentclass.*\n')
match = pattern.search(main_file)
assert match is not None, "Cannot find documentclass statement!"
position = match.end()
add_ctex = '\\usepackage{ctex}\n'
add_url = '\\usepackage{url}\n' if '{url}' not in main_file else ''
main_file = main_file[:position] + add_ctex + add_url + main_file[position:]
# fontset=windows
import platform
main_file = re.sub(r"\\documentclass\[(.*?)\]{(.*?)}", r"\\documentclass[\1,fontset=windows,UTF8]{\2}",main_file)
main_file = re.sub(r"\\documentclass{(.*?)}", r"\\documentclass[fontset=windows,UTF8]{\1}",main_file)
# find paper abstract
pattern_opt1 = re.compile(r'\\begin\{abstract\}.*\n')
pattern_opt2 = re.compile(r"\\abstract\{(.*?)\}", flags=re.DOTALL)
match_opt1 = pattern_opt1.search(main_file)
match_opt2 = pattern_opt2.search(main_file)
assert (match_opt1 is not None) or (match_opt2 is not None), "Cannot find paper abstract section!"
return main_file
"""
========================================================================
Post process
========================================================================
"""
def mod_inbraket(match):
"""
为啥chatgpt会把cite里面的逗号换成中文逗号呀
"""
# get the matched string
cmd = match.group(1)
str_to_modify = match.group(2)
# modify the matched string
str_to_modify = str_to_modify.replace('', ':') # 前面是中文冒号,后面是英文冒号
str_to_modify = str_to_modify.replace('', ',') # 前面是中文逗号,后面是英文逗号
# str_to_modify = 'BOOM'
return "\\" + cmd + "{" + str_to_modify + "}"
def fix_content(final_tex, node_string):
"""
Fix common GPT errors to increase success rate
"""
final_tex = re.sub(r"(?<!\\)%", "\\%", final_tex)
final_tex = re.sub(r"\\([a-z]{2,10})\ \{", r"\\\1{", string=final_tex)
final_tex = re.sub(r"\\\ ([a-z]{2,10})\{", r"\\\1{", string=final_tex)
final_tex = re.sub(r"\\([a-z]{2,10})\{([^\}]*?)\}", mod_inbraket, string=final_tex)
if "Traceback" in final_tex and "[Local Message]" in final_tex:
final_tex = node_string # 出问题了,还原原文
if node_string.count('\\begin') != final_tex.count('\\begin'):
final_tex = node_string # 出问题了,还原原文
if node_string.count('\_') > 0 and node_string.count('\_') > final_tex.count('\_'):
# walk and replace any _ without \
final_tex = re.sub(r"(?<!\\)_", "\\_", final_tex)
def compute_brace_level(string):
# this function count the number of { and }
brace_level = 0
for c in string:
if c == "{": brace_level += 1
elif c == "}": brace_level -= 1
return brace_level
def join_most(tex_t, tex_o):
# this function join translated string and original string when something goes wrong
p_t = 0
p_o = 0
def find_next(string, chars, begin):
p = begin
while p < len(string):
if string[p] in chars: return p, string[p]
p += 1
return None, None
while True:
res1, char = find_next(tex_o, ['{','}'], p_o)
if res1 is None: break
res2, char = find_next(tex_t, [char], p_t)
if res2 is None: break
p_o = res1 + 1
p_t = res2 + 1
return tex_t[:p_t] + tex_o[p_o:]
if compute_brace_level(final_tex) != compute_brace_level(node_string):
# 出问题了,还原部分原文,保证括号正确
final_tex = join_most(final_tex, node_string)
return final_tex
def split_subprocess(txt, project_folder, return_dict, opts):
"""
break down latex file to a linked list,
each node use a preserve flag to indicate whether it should
be proccessed by GPT.
"""
text = txt
mask = np.zeros(len(txt), dtype=np.uint8) + TRANSFORM
# 吸收title与作者以上的部分
text, mask = set_forbidden_text(text, mask, r"(.*?)\\maketitle", re.DOTALL)
# 吸收iffalse注释
text, mask = set_forbidden_text(text, mask, r"\\iffalse(.*?)\\fi", re.DOTALL)
# 吸收在42行以内的begin-end组合
text, mask = set_forbidden_text_begin_end(text, mask, r"\\begin\{([a-z\*]*)\}(.*?)\\end\{\1\}", re.DOTALL, limit_n_lines=42)
# 吸收匿名公式
text, mask = set_forbidden_text(text, mask, [ r"\$\$(.*?)\$\$", r"\\\[.*?\\\]" ], re.DOTALL)
# 吸收其他杂项
text, mask = set_forbidden_text(text, mask, [ r"\\section\{(.*?)\}", r"\\section\*\{(.*?)\}", r"\\subsection\{(.*?)\}", r"\\subsubsection\{(.*?)\}" ])
text, mask = set_forbidden_text(text, mask, [ r"\\bibliography\{(.*?)\}", r"\\bibliographystyle\{(.*?)\}" ])
text, mask = set_forbidden_text(text, mask, r"\\begin\{thebibliography\}.*?\\end\{thebibliography\}", re.DOTALL)
text, mask = set_forbidden_text(text, mask, r"\\begin\{lstlisting\}(.*?)\\end\{lstlisting\}", re.DOTALL)
text, mask = set_forbidden_text(text, mask, r"\\begin\{wraptable\}(.*?)\\end\{wraptable\}", re.DOTALL)
text, mask = set_forbidden_text(text, mask, r"\\begin\{algorithm\}(.*?)\\end\{algorithm\}", re.DOTALL)
text, mask = set_forbidden_text(text, mask, [r"\\begin\{wrapfigure\}(.*?)\\end\{wrapfigure\}", r"\\begin\{wrapfigure\*\}(.*?)\\end\{wrapfigure\*\}"], re.DOTALL)
text, mask = set_forbidden_text(text, mask, [r"\\begin\{figure\}(.*?)\\end\{figure\}", r"\\begin\{figure\*\}(.*?)\\end\{figure\*\}"], re.DOTALL)
text, mask = set_forbidden_text(text, mask, [r"\\begin\{multline\}(.*?)\\end\{multline\}", r"\\begin\{multline\*\}(.*?)\\end\{multline\*\}"], re.DOTALL)
text, mask = set_forbidden_text(text, mask, [r"\\begin\{table\}(.*?)\\end\{table\}", r"\\begin\{table\*\}(.*?)\\end\{table\*\}"], re.DOTALL)
text, mask = set_forbidden_text(text, mask, [r"\\begin\{minipage\}(.*?)\\end\{minipage\}", r"\\begin\{minipage\*\}(.*?)\\end\{minipage\*\}"], re.DOTALL)
text, mask = set_forbidden_text(text, mask, [r"\\begin\{align\*\}(.*?)\\end\{align\*\}", r"\\begin\{align\}(.*?)\\end\{align\}"], re.DOTALL)
text, mask = set_forbidden_text(text, mask, [r"\\begin\{equation\}(.*?)\\end\{equation\}", r"\\begin\{equation\*\}(.*?)\\end\{equation\*\}"], re.DOTALL)
text, mask = set_forbidden_text(text, mask, [r"\\includepdf\[(.*?)\]\{(.*?)\}", r"\\clearpage", r"\\newpage", r"\\appendix", r"\\tableofcontents", r"\\include\{(.*?)\}"])
text, mask = set_forbidden_text(text, mask, [r"\\vspace\{(.*?)\}", r"\\hspace\{(.*?)\}", r"\\label\{(.*?)\}", r"\\begin\{(.*?)\}", r"\\end\{(.*?)\}", r"\\item "])
text, mask = set_forbidden_text_careful_brace(text, mask, r"\\hl\{(.*?)\}", re.DOTALL)
# reverse 操作必须放在最后
text, mask = reverse_forbidden_text_careful_brace(text, mask, r"\\caption\{(.*?)\}", re.DOTALL, forbid_wrapper=True)
text, mask = reverse_forbidden_text_careful_brace(text, mask, r"\\abstract\{(.*?)\}", re.DOTALL, forbid_wrapper=True)
text, mask = reverse_forbidden_text(text, mask, r"\\begin\{abstract\}(.*?)\\end\{abstract\}", re.DOTALL, forbid_wrapper=True)
root = convert_to_linklist(text, mask)
# 修复括号
node = root
while True:
string = node.string
if node.preserve:
node = node.next
if node is None: break
continue
def break_check(string):
str_stack = [""] # (lv, index)
for i, c in enumerate(string):
if c == '{':
str_stack.append('{')
elif c == '}':
if len(str_stack) == 1:
print('stack fix')
return i
str_stack.pop(-1)
else:
str_stack[-1] += c
return -1
bp = break_check(string)
if bp == -1:
pass
elif bp == 0:
node.string = string[:1]
q = LinkedListNode(string[1:], False)
q.next = node.next
node.next = q
else:
node.string = string[:bp]
q = LinkedListNode(string[bp:], False)
q.next = node.next
node.next = q
node = node.next
if node is None: break
# 屏蔽空行和太短的句子
node = root
while True:
if len(node.string.strip('\n').strip(''))==0: node.preserve = True
if len(node.string.strip('\n').strip(''))<42: node.preserve = True
node = node.next
if node is None: break
node = root
while True:
if node.next and node.preserve and node.next.preserve:
node.string += node.next.string
node.next = node.next.next
node = node.next
if node is None: break
# 将前后断行符脱离
node = root
prev_node = None
while True:
if not node.preserve:
lstriped_ = node.string.lstrip().lstrip('\n')
if (prev_node is not None) and (prev_node.preserve) and (len(lstriped_)!=len(node.string)):
prev_node.string += node.string[:-len(lstriped_)]
node.string = lstriped_
rstriped_ = node.string.rstrip().rstrip('\n')
if (node.next is not None) and (node.next.preserve) and (len(rstriped_)!=len(node.string)):
node.next.string = node.string[len(rstriped_):] + node.next.string
node.string = rstriped_
# =====
prev_node = node
node = node.next
if node is None: break
# 输出html调试文件,用红色标注处保留区PRESERVE,用黑色标注转换区TRANSFORM
with open(pj(project_folder, 'debug_log.html'), 'w', encoding='utf8') as f:
segment_parts_for_gpt = []
nodes = []
node = root
while True:
nodes.append(node)
show_html = node.string.replace('\n','<br/>')
if not node.preserve:
segment_parts_for_gpt.append(node.string)
f.write(f'<p style="color:black;">#{show_html}#</p>')
else:
f.write(f'<p style="color:red;">{show_html}</p>')
node = node.next
if node is None: break
for n in nodes: n.next = None # break
return_dict['nodes'] = nodes
return_dict['segment_parts_for_gpt'] = segment_parts_for_gpt
return return_dict
class LatexPaperSplit():
"""
break down latex file to a linked list,
each node use a preserve flag to indicate whether it should
be proccessed by GPT.
"""
def __init__(self) -> None:
self.nodes = None
self.msg = "*{\\scriptsize\\textbf{警告该PDF由GPT-Academic开源项目调用大语言模型+Latex翻译插件一键生成," + \
"版权归原文作者所有。翻译内容可靠性无保障,请仔细鉴别并以原文为准。" + \
"项目Github地址 \\url{https://github.com/binary-husky/gpt_academic/}。"
# 请您不要删除或修改这行警告,除非您是论文的原作者如果您是论文原作者,欢迎加REAME中的QQ联系开发者
self.msg_declare = "为了防止大语言模型的意外谬误产生扩散影响,禁止移除或修改此警告。}}\\\\"
def merge_result(self, arr, mode, msg):
"""
Merge the result after the GPT process completed
"""
result_string = ""
p = 0
for node in self.nodes:
if node.preserve:
result_string += node.string
else:
result_string += fix_content(arr[p], node.string)
p += 1
if mode == 'translate_zh':
pattern = re.compile(r'\\begin\{abstract\}.*\n')
match = pattern.search(result_string)
if not match:
# match \abstract{xxxx}
pattern_compile = re.compile(r"\\abstract\{(.*?)\}", flags=re.DOTALL)
match = pattern_compile.search(result_string)
position = match.regs[1][0]
else:
# match \begin{abstract}xxxx\end{abstract}
position = match.end()
result_string = result_string[:position] + self.msg + msg + self.msg_declare + result_string[position:]
return result_string
def split(self, txt, project_folder, opts):
"""
break down latex file to a linked list,
each node use a preserve flag to indicate whether it should
be proccessed by GPT.
P.S. use multiprocessing to avoid timeout error
"""
import multiprocessing
manager = multiprocessing.Manager()
return_dict = manager.dict()
p = multiprocessing.Process(
target=split_subprocess,
args=(txt, project_folder, return_dict, opts))
p.start()
p.join()
p.close()
self.nodes = return_dict['nodes']
self.sp = return_dict['segment_parts_for_gpt']
return self.sp
class LatexPaperFileGroup():
"""
use tokenizer to break down text according to max_token_limit
"""
def __init__(self):
self.file_paths = []
self.file_contents = []
self.sp_file_contents = []
self.sp_file_index = []
self.sp_file_tag = []
# count_token
from request_llm.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
self.get_token_num = get_token_num
def run_file_split(self, max_token_limit=1900):
"""
use tokenizer to break down text according to max_token_limit
"""
for index, file_content in enumerate(self.file_contents):
if self.get_token_num(file_content) < max_token_limit:
self.sp_file_contents.append(file_content)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
print('Segmentation: done')
def merge_result(self):
self.file_result = ["" for _ in range(len(self.file_paths))]
for r, k in zip(self.sp_file_result, self.sp_file_index):
self.file_result[k] += r
def write_result(self):
manifest = []
for path, res in zip(self.file_paths, self.file_result):
with open(path + '.polish.tex', 'w', encoding='utf8') as f:
manifest.append(path + '.polish.tex')
f.write(res)
return manifest
def write_html(sp_file_contents, sp_file_result, chatbot, project_folder):
# write html
try:
import shutil
from .crazy_utils import construct_html
from toolbox import gen_time_str
ch = construct_html()
orig = ""
trans = ""
final = []
for c,r in zip(sp_file_contents, sp_file_result):
final.append(c)
final.append(r)
for i, k in enumerate(final):
if i%2==0:
orig = k
if i%2==1:
trans = k
ch.add_row(a=orig, b=trans)
create_report_file_name = f"{gen_time_str()}.trans.html"
ch.save_file(create_report_file_name)
shutil.copyfile(pj('./gpt_log/', create_report_file_name), pj(project_folder, create_report_file_name))
promote_file_to_downloadzone(file=f'./gpt_log/{create_report_file_name}', chatbot=chatbot)
except:
from toolbox import trimmed_format_exc
print('writing html result failed:', trimmed_format_exc())
def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, mode='proofread', switch_prompt=None, opts=[]):
import time, os, re
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from .latex_utils import LatexPaperFileGroup, merge_tex_files, LatexPaperSplit, 寻找Latex主文件
# <-------- 寻找主tex文件 ---------->
maintex = 寻找Latex主文件(file_manifest, mode)
chatbot.append((f"定位主Latex文件", f'[Local Message] 分析结果该项目的Latex主文件是{maintex}, 如果分析错误, 请立即终止程序, 删除或修改歧义文件, 然后重试。主程序即将开始, 请稍候。'))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
time.sleep(3)
# <-------- 读取Latex文件, 将多文件tex工程融合为一个巨型tex ---------->
main_tex_basename = os.path.basename(maintex)
assert main_tex_basename.endswith('.tex')
main_tex_basename_bare = main_tex_basename[:-4]
may_exist_bbl = pj(project_folder, f'{main_tex_basename_bare}.bbl')
if os.path.exists(may_exist_bbl):
shutil.copyfile(may_exist_bbl, pj(project_folder, f'merge.bbl'))
shutil.copyfile(may_exist_bbl, pj(project_folder, f'merge_{mode}.bbl'))
shutil.copyfile(may_exist_bbl, pj(project_folder, f'merge_diff.bbl'))
with open(maintex, 'r', encoding='utf-8', errors='replace') as f:
content = f.read()
merged_content = merge_tex_files(project_folder, content, mode)
with open(project_folder + '/merge.tex', 'w', encoding='utf-8', errors='replace') as f:
f.write(merged_content)
# <-------- 精细切分latex文件 ---------->
chatbot.append((f"Latex文件融合完成", f'[Local Message] 正在精细切分latex文件,这需要一段时间计算,文档越长耗时越长,请耐心等待。'))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
lps = LatexPaperSplit()
res = lps.split(merged_content, project_folder, opts) # 消耗时间的函数
# <-------- 拆分过长的latex片段 ---------->
pfg = LatexPaperFileGroup()
for index, r in enumerate(res):
pfg.file_paths.append('segment-' + str(index))
pfg.file_contents.append(r)
pfg.run_file_split(max_token_limit=1024)
n_split = len(pfg.sp_file_contents)
# <-------- 根据需要切换prompt ---------->
inputs_array, sys_prompt_array = switch_prompt(pfg, mode)
inputs_show_user_array = [f"{mode} {f}" for f in pfg.sp_file_tag]
if os.path.exists(pj(project_folder,'temp.pkl')):
# <-------- 【仅调试】如果存在调试缓存文件,则跳过GPT请求环节 ---------->
pfg = objload(file=pj(project_folder,'temp.pkl'))
else:
# <-------- gpt 多线程请求 ---------->
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[[""] for _ in range(n_split)],
sys_prompt_array=sys_prompt_array,
# max_workers=5, # 并行任务数量限制, 最多同时执行5个, 其他的排队等待
scroller_max_len = 40
)
# <-------- 文本碎片重组为完整的tex片段 ---------->
pfg.sp_file_result = []
for i_say, gpt_say, orig_content in zip(gpt_response_collection[0::2], gpt_response_collection[1::2], pfg.sp_file_contents):
pfg.sp_file_result.append(gpt_say)
pfg.merge_result()
# <-------- 临时存储用于调试 ---------->
pfg.get_token_num = None
objdump(pfg, file=pj(project_folder,'temp.pkl'))
write_html(pfg.sp_file_contents, pfg.sp_file_result, chatbot=chatbot, project_folder=project_folder)
# <-------- 写出文件 ---------->
msg = f"当前大语言模型: {llm_kwargs['llm_model']},当前语言模型温度设定: {llm_kwargs['temperature']}"
final_tex = lps.merge_result(pfg.file_result, mode, msg)
with open(project_folder + f'/merge_{mode}.tex', 'w', encoding='utf-8', errors='replace') as f:
if mode != 'translate_zh' or "binary" in final_tex: f.write(final_tex)
# <-------- 整理结果, 退出 ---------->
chatbot.append((f"完成了吗?", 'GPT结果已输出, 正在编译PDF'))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# <-------- 返回 ---------->
return project_folder + f'/merge_{mode}.tex'
def remove_buggy_lines(file_path, log_path, tex_name, tex_name_pure, n_fix, work_folder_modified):
try:
with open(log_path, 'r', encoding='utf-8', errors='replace') as f:
log = f.read()
with open(file_path, 'r', encoding='utf-8', errors='replace') as f:
file_lines = f.readlines()
import re
buggy_lines = re.findall(tex_name+':([0-9]{1,5}):', log)
buggy_lines = [int(l) for l in buggy_lines]
buggy_lines = sorted(buggy_lines)
print("removing lines that has errors", buggy_lines)
file_lines.pop(buggy_lines[0]-1)
with open(pj(work_folder_modified, f"{tex_name_pure}_fix_{n_fix}.tex"), 'w', encoding='utf-8', errors='replace') as f:
f.writelines(file_lines)
return True, f"{tex_name_pure}_fix_{n_fix}", buggy_lines
except:
print("Fatal error occurred, but we cannot identify error, please download zip, read latex log, and compile manually.")
return False, -1, [-1]
def compile_latex_with_timeout(command, cwd, timeout=60):
import subprocess
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=cwd)
try:
stdout, stderr = process.communicate(timeout=timeout)
except subprocess.TimeoutExpired:
process.kill()
stdout, stderr = process.communicate()
print("Process timed out!")
return False
return True
def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_folder_original, work_folder_modified, work_folder, mode='default'):
import os, time
current_dir = os.getcwd()
n_fix = 1
max_try = 32
chatbot.append([f"正在编译PDF文档", f'编译已经开始。当前工作路径为{work_folder},如果程序停顿5分钟以上,请直接去该路径下取回翻译结果,或者重启之后再度尝试 ...']); yield from update_ui(chatbot=chatbot, history=history)
chatbot.append([f"正在编译PDF文档", '...']); yield from update_ui(chatbot=chatbot, history=history); time.sleep(1); chatbot[-1] = list(chatbot[-1]) # 刷新界面
yield from update_ui_lastest_msg('编译已经开始...', chatbot, history) # 刷新Gradio前端界面
while True:
import os
# https://stackoverflow.com/questions/738755/dont-make-me-manually-abort-a-latex-compile-when-theres-an-error
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译原始PDF ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译转化后的PDF ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
if ok and os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf')):
# 只有第二步成功,才能继续下面的步骤
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译BibTex ...', chatbot, history) # 刷新Gradio前端界面
if not os.path.exists(pj(work_folder_original, f'{main_file_original}.bbl')):
ok = compile_latex_with_timeout(f'bibtex {main_file_original}.aux', work_folder_original)
if not os.path.exists(pj(work_folder_modified, f'{main_file_modified}.bbl')):
ok = compile_latex_with_timeout(f'bibtex {main_file_modified}.aux', work_folder_modified)
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译文献交叉引用 ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
if mode!='translate_zh':
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 使用latexdiff生成论文转化前后对比 ...', chatbot, history) # 刷新Gradio前端界面
print( f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex')
ok = compile_latex_with_timeout(f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex')
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 正在编译对比PDF ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
ok = compile_latex_with_timeout(f'bibtex merge_diff.aux', work_folder)
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
# <---------- 检查结果 ----------->
results_ = ""
original_pdf_success = os.path.exists(pj(work_folder_original, f'{main_file_original}.pdf'))
modified_pdf_success = os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf'))
diff_pdf_success = os.path.exists(pj(work_folder, f'merge_diff.pdf'))
results_ += f"原始PDF编译是否成功: {original_pdf_success};"
results_ += f"转化PDF编译是否成功: {modified_pdf_success};"
results_ += f"对比PDF编译是否成功: {diff_pdf_success};"
yield from update_ui_lastest_msg(f'{n_fix}编译结束:<br/>{results_}...', chatbot, history) # 刷新Gradio前端界面
if diff_pdf_success:
result_pdf = pj(work_folder_modified, f'merge_diff.pdf') # get pdf path
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
if modified_pdf_success:
yield from update_ui_lastest_msg(f'转化PDF编译已经成功, 即将退出 ...', chatbot, history) # 刷新Gradio前端界面
result_pdf = pj(work_folder_modified, f'{main_file_modified}.pdf') # get pdf path
if os.path.exists(pj(work_folder, '..', 'translation')):
shutil.copyfile(result_pdf, pj(work_folder, '..', 'translation', 'translate_zh.pdf'))
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
return True # 成功啦
else:
if n_fix>=max_try: break
n_fix += 1
can_retry, main_file_modified, buggy_lines = remove_buggy_lines(
file_path=pj(work_folder_modified, f'{main_file_modified}.tex'),
log_path=pj(work_folder_modified, f'{main_file_modified}.log'),
tex_name=f'{main_file_modified}.tex',
tex_name_pure=f'{main_file_modified}',
n_fix=n_fix,
work_folder_modified=work_folder_modified,
)
yield from update_ui_lastest_msg(f'由于最为关键的转化PDF编译失败, 将根据报错信息修正tex源文件并重试, 当前报错的latex代码处于第{buggy_lines}行 ...', chatbot, history) # 刷新Gradio前端界面
if not can_retry: break
return False # 失败啦

查看文件

@@ -1,85 +0,0 @@
from crazy_functions.crazy_utils import read_and_clean_pdf_text, get_files_from_everything
import os
import re
def extract_text_from_files(txt, chatbot, history):
"""
查找pdf/md/word并获取文本内容并返回状态以及文本
输入参数 Args:
chatbot: chatbot inputs and outputs (用户界面对话窗口句柄,用于数据流可视化)
history (list): List of chat history (历史,对话历史列表)
输出 Returns:
文件是否存在(bool)
final_result(list):文本内容
page_one(list):第一页内容/摘要
file_manifest(list):文件路径
excption(string):需要用户手动处理的信息,如没出错则保持为空
"""
final_result = []
page_one = []
file_manifest = []
excption = ""
if txt == "":
final_result.append(txt)
return False, final_result, page_one, file_manifest, excption #如输入区内容不是文件则直接返回输入区内容
#查找输入区内容中的文件
file_pdf,pdf_manifest,folder_pdf = get_files_from_everything(txt, '.pdf')
file_md,md_manifest,folder_md = get_files_from_everything(txt, '.md')
file_word,word_manifest,folder_word = get_files_from_everything(txt, '.docx')
file_doc,doc_manifest,folder_doc = get_files_from_everything(txt, '.doc')
if file_doc:
excption = "word"
return False, final_result, page_one, file_manifest, excption
file_num = len(pdf_manifest) + len(md_manifest) + len(word_manifest)
if file_num == 0:
final_result.append(txt)
return False, final_result, page_one, file_manifest, excption #如输入区内容不是文件则直接返回输入区内容
if file_pdf:
try: # 尝试导入依赖,如果缺少依赖,则给出安装建议
import fitz
except:
excption = "pdf"
return False, final_result, page_one, file_manifest, excption
for index, fp in enumerate(pdf_manifest):
file_content, pdf_one = read_and_clean_pdf_text(fp) # 尝试按照章节切割PDF
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
pdf_one = str(pdf_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
final_result.append(file_content)
page_one.append(pdf_one)
file_manifest.append(os.path.relpath(fp, folder_pdf))
if file_md:
for index, fp in enumerate(md_manifest):
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
file_content = file_content.encode('utf-8', 'ignore').decode()
headers = re.findall(r'^#\s(.*)$', file_content, re.MULTILINE) #接下来提取md中的一级/二级标题作为摘要
if len(headers) > 0:
page_one.append("\n".join(headers)) #合并所有的标题,以换行符分割
else:
page_one.append("")
final_result.append(file_content)
file_manifest.append(os.path.relpath(fp, folder_md))
if file_word:
try: # 尝试导入依赖,如果缺少依赖,则给出安装建议
from docx import Document
except:
excption = "word_pip"
return False, final_result, page_one, file_manifest, excption
for index, fp in enumerate(word_manifest):
doc = Document(fp)
file_content = '\n'.join([p.text for p in doc.paragraphs])
file_content = file_content.encode('utf-8', 'ignore').decode()
page_one.append(file_content[:200])
final_result.append(file_content)
file_manifest.append(os.path.relpath(fp, folder_word))
return True, final_result, page_one, file_manifest, excption

查看文件

@@ -1,87 +0,0 @@
#include "libipc/buffer.h"
#include "libipc/utility/pimpl.h"
#include <cstring>
namespace ipc {
bool operator==(buffer const & b1, buffer const & b2) {
return (b1.size() == b2.size()) && (std::memcmp(b1.data(), b2.data(), b1.size()) == 0);
}
bool operator!=(buffer const & b1, buffer const & b2) {
return !(b1 == b2);
}
class buffer::buffer_ : public pimpl<buffer_> {
public:
void* p_;
std::size_t s_;
void* a_;
buffer::destructor_t d_;
buffer_(void* p, std::size_t s, buffer::destructor_t d, void* a)
: p_(p), s_(s), a_(a), d_(d) {
}
~buffer_() {
if (d_ == nullptr) return;
d_((a_ == nullptr) ? p_ : a_, s_);
}
};
buffer::buffer()
: buffer(nullptr, 0, nullptr, nullptr) {
}
buffer::buffer(void* p, std::size_t s, destructor_t d)
: p_(p_->make(p, s, d, nullptr)) {
}
buffer::buffer(void* p, std::size_t s, destructor_t d, void* additional)
: p_(p_->make(p, s, d, additional)) {
}
buffer::buffer(void* p, std::size_t s)
: buffer(p, s, nullptr) {
}
buffer::buffer(char const & c)
: buffer(const_cast<char*>(&c), 1) {
}
buffer::buffer(buffer&& rhs)
: buffer() {
swap(rhs);
}
buffer::~buffer() {
p_->clear();
}
void buffer::swap(buffer& rhs) {
std::swap(p_, rhs.p_);
}
buffer& buffer::operator=(buffer rhs) {
swap(rhs);
return *this;
}
bool buffer::empty() const noexcept {
return (impl(p_)->p_ == nullptr) || (impl(p_)->s_ == 0);
}
void* buffer::data() noexcept {
return impl(p_)->p_;
}
void const * buffer::data() const noexcept {
return impl(p_)->p_;
}
std::size_t buffer::size() const noexcept {
return impl(p_)->s_;
}
} // namespace ipc

查看文件

@@ -1,701 +0,0 @@
#include <type_traits>
#include <cstring>
#include <algorithm>
#include <utility> // std::pair, std::move, std::forward
#include <atomic>
#include <type_traits> // aligned_storage_t
#include <string>
#include <vector>
#include <array>
#include <cassert>
#include "libipc/ipc.h"
#include "libipc/def.h"
#include "libipc/shm.h"
#include "libipc/pool_alloc.h"
#include "libipc/queue.h"
#include "libipc/policy.h"
#include "libipc/rw_lock.h"
#include "libipc/waiter.h"
#include "libipc/utility/log.h"
#include "libipc/utility/id_pool.h"
#include "libipc/utility/scope_guard.h"
#include "libipc/utility/utility.h"
#include "libipc/memory/resource.h"
#include "libipc/platform/detail.h"
#include "libipc/circ/elem_array.h"
namespace {
using msg_id_t = std::uint32_t;
using acc_t = std::atomic<msg_id_t>;
template <std::size_t DataSize, std::size_t AlignSize>
struct msg_t;
template <std::size_t AlignSize>
struct msg_t<0, AlignSize> {
msg_id_t cc_id_;
msg_id_t id_;
std::int32_t remain_;
bool storage_;
};
template <std::size_t DataSize, std::size_t AlignSize>
struct msg_t : msg_t<0, AlignSize> {
std::aligned_storage_t<DataSize, AlignSize> data_ {};
msg_t() = default;
msg_t(msg_id_t cc_id, msg_id_t id, std::int32_t remain, void const * data, std::size_t size)
: msg_t<0, AlignSize> {cc_id, id, remain, (data == nullptr) || (size == 0)} {
if (this->storage_) {
if (data != nullptr) {
// copy storage-id
*reinterpret_cast<ipc::storage_id_t*>(&data_) =
*static_cast<ipc::storage_id_t const *>(data);
}
}
else std::memcpy(&data_, data, size);
}
};
template <typename T>
ipc::buff_t make_cache(T& data, std::size_t size) {
auto ptr = ipc::mem::alloc(size);
std::memcpy(ptr, &data, (ipc::detail::min)(sizeof(data), size));
return { ptr, size, ipc::mem::free };
}
struct cache_t {
std::size_t fill_;
ipc::buff_t buff_;
cache_t(std::size_t f, ipc::buff_t && b)
: fill_(f), buff_(std::move(b))
{}
void append(void const * data, std::size_t size) {
if (fill_ >= buff_.size() || data == nullptr || size == 0) return;
auto new_fill = (ipc::detail::min)(fill_ + size, buff_.size());
std::memcpy(static_cast<ipc::byte_t*>(buff_.data()) + fill_, data, new_fill - fill_);
fill_ = new_fill;
}
};
auto cc_acc() {
static ipc::shm::handle acc_h("__CA_CONN__", sizeof(acc_t));
return static_cast<acc_t*>(acc_h.get());
}
IPC_CONSTEXPR_ std::size_t align_chunk_size(std::size_t size) noexcept {
return (((size - 1) / ipc::large_msg_align) + 1) * ipc::large_msg_align;
}
IPC_CONSTEXPR_ std::size_t calc_chunk_size(std::size_t size) noexcept {
return ipc::make_align(alignof(std::max_align_t), align_chunk_size(
ipc::make_align(alignof(std::max_align_t), sizeof(std::atomic<ipc::circ::cc_t>)) + size));
}
struct chunk_t {
std::atomic<ipc::circ::cc_t> &conns() noexcept {
return *reinterpret_cast<std::atomic<ipc::circ::cc_t> *>(this);
}
void *data() noexcept {
return reinterpret_cast<ipc::byte_t *>(this)
+ ipc::make_align(alignof(std::max_align_t), sizeof(std::atomic<ipc::circ::cc_t>));
}
};
struct chunk_info_t {
ipc::id_pool<> pool_;
ipc::spin_lock lock_;
IPC_CONSTEXPR_ static std::size_t chunks_mem_size(std::size_t chunk_size) noexcept {
return ipc::id_pool<>::max_count * chunk_size;
}
ipc::byte_t *chunks_mem() noexcept {
return reinterpret_cast<ipc::byte_t *>(this + 1);
}
chunk_t *at(std::size_t chunk_size, ipc::storage_id_t id) noexcept {
if (id < 0) return nullptr;
return reinterpret_cast<chunk_t *>(chunks_mem() + (chunk_size * id));
}
};
auto& chunk_storages() {
class chunk_handle_t {
ipc::shm::handle handle_;
public:
chunk_info_t *get_info(std::size_t chunk_size) {
if (!handle_.valid() &&
!handle_.acquire( ("__CHUNK_INFO__" + ipc::to_string(chunk_size)).c_str(),
sizeof(chunk_info_t) + chunk_info_t::chunks_mem_size(chunk_size) )) {
ipc::error("[chunk_storages] chunk_shm.id_info_.acquire failed: chunk_size = %zd\n", chunk_size);
return nullptr;
}
auto info = static_cast<chunk_info_t*>(handle_.get());
if (info == nullptr) {
ipc::error("[chunk_storages] chunk_shm.id_info_.get failed: chunk_size = %zd\n", chunk_size);
return nullptr;
}
return info;
}
};
static ipc::map<std::size_t, chunk_handle_t> chunk_hs;
return chunk_hs;
}
chunk_info_t *chunk_storage_info(std::size_t chunk_size) {
auto &storages = chunk_storages();
std::decay_t<decltype(storages)>::iterator it;
{
static ipc::rw_lock lock;
IPC_UNUSED_ std::shared_lock<ipc::rw_lock> guard {lock};
if ((it = storages.find(chunk_size)) == storages.end()) {
using chunk_handle_t = std::decay_t<decltype(storages)>::value_type::second_type;
guard.unlock();
IPC_UNUSED_ std::lock_guard<ipc::rw_lock> guard {lock};
it = storages.emplace(chunk_size, chunk_handle_t{}).first;
}
}
return it->second.get_info(chunk_size);
}
std::pair<ipc::storage_id_t, void*> acquire_storage(std::size_t size, ipc::circ::cc_t conns) {
std::size_t chunk_size = calc_chunk_size(size);
auto info = chunk_storage_info(chunk_size);
if (info == nullptr) return {};
info->lock_.lock();
info->pool_.prepare();
// got an unique id
auto id = info->pool_.acquire();
info->lock_.unlock();
auto chunk = info->at(chunk_size, id);
if (chunk == nullptr) return {};
chunk->conns().store(conns, std::memory_order_relaxed);
return { id, chunk->data() };
}
void *find_storage(ipc::storage_id_t id, std::size_t size) {
if (id < 0) {
ipc::error("[find_storage] id is invalid: id = %ld, size = %zd\n", (long)id, size);
return nullptr;
}
std::size_t chunk_size = calc_chunk_size(size);
auto info = chunk_storage_info(chunk_size);
if (info == nullptr) return nullptr;
return info->at(chunk_size, id)->data();
}
void release_storage(ipc::storage_id_t id, std::size_t size) {
if (id < 0) {
ipc::error("[release_storage] id is invalid: id = %ld, size = %zd\n", (long)id, size);
return;
}
std::size_t chunk_size = calc_chunk_size(size);
auto info = chunk_storage_info(chunk_size);
if (info == nullptr) return;
info->lock_.lock();
info->pool_.release(id);
info->lock_.unlock();
}
template <ipc::relat Rp, ipc::relat Rc>
bool sub_rc(ipc::wr<Rp, Rc, ipc::trans::unicast>,
std::atomic<ipc::circ::cc_t> &/*conns*/, ipc::circ::cc_t /*curr_conns*/, ipc::circ::cc_t /*conn_id*/) noexcept {
return true;
}
template <ipc::relat Rp, ipc::relat Rc>
bool sub_rc(ipc::wr<Rp, Rc, ipc::trans::broadcast>,
std::atomic<ipc::circ::cc_t> &conns, ipc::circ::cc_t curr_conns, ipc::circ::cc_t conn_id) noexcept {
auto last_conns = curr_conns & ~conn_id;
for (unsigned k = 0;;) {
auto chunk_conns = conns.load(std::memory_order_acquire);
if (conns.compare_exchange_weak(chunk_conns, chunk_conns & last_conns, std::memory_order_release)) {
return (chunk_conns & last_conns) == 0;
}
ipc::yield(k);
}
}
template <typename Flag>
void recycle_storage(ipc::storage_id_t id, std::size_t size, ipc::circ::cc_t curr_conns, ipc::circ::cc_t conn_id) {
if (id < 0) {
ipc::error("[recycle_storage] id is invalid: id = %ld, size = %zd\n", (long)id, size);
return;
}
std::size_t chunk_size = calc_chunk_size(size);
auto info = chunk_storage_info(chunk_size);
if (info == nullptr) return;
auto chunk = info->at(chunk_size, id);
if (chunk == nullptr) return;
if (!sub_rc(Flag{}, chunk->conns(), curr_conns, conn_id)) {
return;
}
info->lock_.lock();
info->pool_.release(id);
info->lock_.unlock();
}
template <typename MsgT>
bool clear_message(void* p) {
auto msg = static_cast<MsgT*>(p);
if (msg->storage_) {
std::int32_t r_size = static_cast<std::int32_t>(ipc::data_length) + msg->remain_;
if (r_size <= 0) {
ipc::error("[clear_message] invalid msg size: %d\n", (int)r_size);
return true;
}
release_storage(
*reinterpret_cast<ipc::storage_id_t*>(&msg->data_),
static_cast<std::size_t>(r_size));
}
return true;
}
struct conn_info_head {
ipc::string name_;
msg_id_t cc_id_; // connection-info id
ipc::detail::waiter cc_waiter_, wt_waiter_, rd_waiter_;
ipc::shm::handle acc_h_;
conn_info_head(char const * name)
: name_ {name}
, cc_id_ {(cc_acc() == nullptr) ? 0 : cc_acc()->fetch_add(1, std::memory_order_relaxed)}
, cc_waiter_{("__CC_CONN__" + name_).c_str()}
, wt_waiter_{("__WT_CONN__" + name_).c_str()}
, rd_waiter_{("__RD_CONN__" + name_).c_str()}
, acc_h_ {("__AC_CONN__" + name_).c_str(), sizeof(acc_t)} {
}
void quit_waiting() {
cc_waiter_.quit_waiting();
wt_waiter_.quit_waiting();
rd_waiter_.quit_waiting();
}
auto acc() {
return static_cast<acc_t*>(acc_h_.get());
}
auto& recv_cache() {
thread_local ipc::unordered_map<msg_id_t, cache_t> tls;
return tls;
}
};
template <typename W, typename F>
bool wait_for(W& waiter, F&& pred, std::uint64_t tm) {
if (tm == 0) return !pred();
for (unsigned k = 0; pred();) {
bool ret = true;
ipc::sleep(k, [&k, &ret, &waiter, &pred, tm] {
ret = waiter.wait_if(std::forward<F>(pred), tm);
k = 0;
});
if (!ret) return false; // timeout or fail
if (k == 0) break; // k has been reset
}
return true;
}
template <typename Policy,
std::size_t DataSize = ipc::data_length,
std::size_t AlignSize = (ipc::detail::min)(DataSize, alignof(std::max_align_t))>
struct queue_generator {
using queue_t = ipc::queue<msg_t<DataSize, AlignSize>, Policy>;
struct conn_info_t : conn_info_head {
queue_t que_;
conn_info_t(char const * name)
: conn_info_head{name}
, que_{("__QU_CONN__" +
ipc::to_string(DataSize) + "__" +
ipc::to_string(AlignSize) + "__" + name).c_str()} {
}
void disconnect_receiver() {
bool dis = que_.disconnect();
this->quit_waiting();
if (dis) {
this->recv_cache().clear();
}
}
};
};
template <typename Policy>
struct detail_impl {
using policy_t = Policy;
using flag_t = typename policy_t::flag_t;
using queue_t = typename queue_generator<policy_t>::queue_t;
using conn_info_t = typename queue_generator<policy_t>::conn_info_t;
constexpr static conn_info_t* info_of(ipc::handle_t h) noexcept {
return static_cast<conn_info_t*>(h);
}
constexpr static queue_t* queue_of(ipc::handle_t h) noexcept {
return (info_of(h) == nullptr) ? nullptr : &(info_of(h)->que_);
}
/* API implementations */
static void disconnect(ipc::handle_t h) {
auto que = queue_of(h);
if (que == nullptr) {
return;
}
que->shut_sending();
assert(info_of(h) != nullptr);
info_of(h)->disconnect_receiver();
}
static bool reconnect(ipc::handle_t * ph, bool start_to_recv) {
assert(ph != nullptr);
assert(*ph != nullptr);
auto que = queue_of(*ph);
if (que == nullptr) {
return false;
}
if (start_to_recv) {
que->shut_sending();
if (que->connect()) { // wouldn't connect twice
info_of(*ph)->cc_waiter_.broadcast();
return true;
}
return false;
}
// start_to_recv == false
if (que->connected()) {
info_of(*ph)->disconnect_receiver();
}
return que->ready_sending();
}
static bool connect(ipc::handle_t * ph, char const * name, bool start_to_recv) {
assert(ph != nullptr);
if (*ph == nullptr) {
*ph = ipc::mem::alloc<conn_info_t>(name);
}
return reconnect(ph, start_to_recv);
}
static void destroy(ipc::handle_t h) {
disconnect(h);
ipc::mem::free(info_of(h));
}
static std::size_t recv_count(ipc::handle_t h) noexcept {
auto que = queue_of(h);
if (que == nullptr) {
return ipc::invalid_value;
}
return que->conn_count();
}
static bool wait_for_recv(ipc::handle_t h, std::size_t r_count, std::uint64_t tm) {
auto que = queue_of(h);
if (que == nullptr) {
return false;
}
return wait_for(info_of(h)->cc_waiter_, [que, r_count] {
return que->conn_count() < r_count;
}, tm);
}
template <typename F>
static bool send(F&& gen_push, ipc::handle_t h, void const * data, std::size_t size) {
if (data == nullptr || size == 0) {
ipc::error("fail: send(%p, %zd)\n", data, size);
return false;
}
auto que = queue_of(h);
if (que == nullptr) {
ipc::error("fail: send, queue_of(h) == nullptr\n");
return false;
}
if (que->elems() == nullptr) {
ipc::error("fail: send, queue_of(h)->elems() == nullptr\n");
return false;
}
if (!que->ready_sending()) {
ipc::error("fail: send, que->ready_sending() == false\n");
return false;
}
ipc::circ::cc_t conns = que->elems()->connections(std::memory_order_relaxed);
if (conns == 0) {
ipc::error("fail: send, there is no receiver on this connection.\n");
return false;
}
// calc a new message id
auto acc = info_of(h)->acc();
if (acc == nullptr) {
ipc::error("fail: send, info_of(h)->acc() == nullptr\n");
return false;
}
auto msg_id = acc->fetch_add(1, std::memory_order_relaxed);
auto try_push = std::forward<F>(gen_push)(info_of(h), que, msg_id);
if (size > ipc::large_msg_limit) {
auto dat = acquire_storage(size, conns);
void * buf = dat.second;
if (buf != nullptr) {
std::memcpy(buf, data, size);
return try_push(static_cast<std::int32_t>(size) -
static_cast<std::int32_t>(ipc::data_length), &(dat.first), 0);
}
// try using message fragment
//ipc::log("fail: shm::handle for big message. msg_id: %zd, size: %zd\n", msg_id, size);
}
// push message fragment
std::int32_t offset = 0;
for (std::int32_t i = 0; i < static_cast<std::int32_t>(size / ipc::data_length); ++i, offset += ipc::data_length) {
if (!try_push(static_cast<std::int32_t>(size) - offset - static_cast<std::int32_t>(ipc::data_length),
static_cast<ipc::byte_t const *>(data) + offset, ipc::data_length)) {
return false;
}
}
// if remain > 0, this is the last message fragment
std::int32_t remain = static_cast<std::int32_t>(size) - offset;
if (remain > 0) {
if (!try_push(remain - static_cast<std::int32_t>(ipc::data_length),
static_cast<ipc::byte_t const *>(data) + offset,
static_cast<std::size_t>(remain))) {
return false;
}
}
return true;
}
static bool send(ipc::handle_t h, void const * data, std::size_t size, std::uint64_t tm) {
return send([tm](auto info, auto que, auto msg_id) {
return [tm, info, que, msg_id](std::int32_t remain, void const * data, std::size_t size) {
if (!wait_for(info->wt_waiter_, [&] {
return !que->push(
[](void*) { return true; },
info->cc_id_, msg_id, remain, data, size);
}, tm)) {
ipc::log("force_push: msg_id = %zd, remain = %d, size = %zd\n", msg_id, remain, size);
if (!que->force_push(
clear_message<typename queue_t::value_t>,
info->cc_id_, msg_id, remain, data, size)) {
return false;
}
}
info->rd_waiter_.broadcast();
return true;
};
}, h, data, size);
}
static bool try_send(ipc::handle_t h, void const * data, std::size_t size, std::uint64_t tm) {
return send([tm](auto info, auto que, auto msg_id) {
return [tm, info, que, msg_id](std::int32_t remain, void const * data, std::size_t size) {
if (!wait_for(info->wt_waiter_, [&] {
return !que->push(
[](void*) { return true; },
info->cc_id_, msg_id, remain, data, size);
}, tm)) {
return false;
}
info->rd_waiter_.broadcast();
return true;
};
}, h, data, size);
}
static ipc::buff_t recv(ipc::handle_t h, std::uint64_t tm) {
auto que = queue_of(h);
if (que == nullptr) {
ipc::error("fail: recv, queue_of(h) == nullptr\n");
return {};
}
if (!que->connected()) {
// hasn't connected yet, just return.
return {};
}
auto& rc = info_of(h)->recv_cache();
for (;;) {
// pop a new message
typename queue_t::value_t msg;
if (!wait_for(info_of(h)->rd_waiter_, [que, &msg] {
return !que->pop(msg);
}, tm)) {
// pop failed, just return.
return {};
}
info_of(h)->wt_waiter_.broadcast();
if ((info_of(h)->acc() != nullptr) && (msg.cc_id_ == info_of(h)->cc_id_)) {
continue; // ignore message to self
}
// msg.remain_ may minus & abs(msg.remain_) < data_length
std::int32_t r_size = static_cast<std::int32_t>(ipc::data_length) + msg.remain_;
if (r_size <= 0) {
ipc::error("fail: recv, r_size = %d\n", (int)r_size);
return {};
}
std::size_t msg_size = static_cast<std::size_t>(r_size);
// large message
if (msg.storage_) {
ipc::storage_id_t buf_id = *reinterpret_cast<ipc::storage_id_t*>(&msg.data_);
void* buf = find_storage(buf_id, msg_size);
if (buf != nullptr) {
struct recycle_t {
ipc::storage_id_t storage_id;
ipc::circ::cc_t curr_conns;
ipc::circ::cc_t conn_id;
} *r_info = ipc::mem::alloc<recycle_t>(recycle_t{
buf_id, que->elems()->connections(std::memory_order_relaxed), que->connected_id()
});
if (r_info == nullptr) {
ipc::log("fail: ipc::mem::alloc<recycle_t>.\n");
return ipc::buff_t{buf, msg_size}; // no recycle
} else {
return ipc::buff_t{buf, msg_size, [](void* p_info, std::size_t size) {
auto r_info = static_cast<recycle_t *>(p_info);
IPC_UNUSED_ auto finally = ipc::guard([r_info] {
ipc::mem::free(r_info);
});
recycle_storage<flag_t>(r_info->storage_id, size, r_info->curr_conns, r_info->conn_id);
}, r_info};
}
} else {
ipc::log("fail: shm::handle for large message. msg_id: %zd, buf_id: %zd, size: %zd\n", msg.id_, buf_id, msg_size);
continue;
}
}
// find cache with msg.id_
auto cac_it = rc.find(msg.id_);
if (cac_it == rc.end()) {
if (msg_size <= ipc::data_length) {
return make_cache(msg.data_, msg_size);
}
// gc
if (rc.size() > 1024) {
std::vector<msg_id_t> need_del;
for (auto const & pair : rc) {
auto cmp = std::minmax(msg.id_, pair.first);
if (cmp.second - cmp.first > 8192) {
need_del.push_back(pair.first);
}
}
for (auto id : need_del) rc.erase(id);
}
// cache the first message fragment
rc.emplace(msg.id_, cache_t { ipc::data_length, make_cache(msg.data_, msg_size) });
}
// has cached before this message
else {
auto& cac = cac_it->second;
// this is the last message fragment
if (msg.remain_ <= 0) {
cac.append(&(msg.data_), msg_size);
// finish this message, erase it from cache
auto buff = std::move(cac.buff_);
rc.erase(cac_it);
return buff;
}
// there are remain datas after this message
cac.append(&(msg.data_), ipc::data_length);
}
}
}
static ipc::buff_t try_recv(ipc::handle_t h) {
return recv(h, 0);
}
}; // detail_impl<Policy>
template <typename Flag>
using policy_t = ipc::policy::choose<ipc::circ::elem_array, Flag>;
} // internal-linkage
namespace ipc {
template <typename Flag>
ipc::handle_t chan_impl<Flag>::inited() {
ipc::detail::waiter::init();
return nullptr;
}
template <typename Flag>
bool chan_impl<Flag>::connect(ipc::handle_t * ph, char const * name, unsigned mode) {
return detail_impl<policy_t<Flag>>::connect(ph, name, mode & receiver);
}
template <typename Flag>
bool chan_impl<Flag>::reconnect(ipc::handle_t * ph, unsigned mode) {
return detail_impl<policy_t<Flag>>::reconnect(ph, mode & receiver);
}
template <typename Flag>
void chan_impl<Flag>::disconnect(ipc::handle_t h) {
detail_impl<policy_t<Flag>>::disconnect(h);
}
template <typename Flag>
void chan_impl<Flag>::destroy(ipc::handle_t h) {
detail_impl<policy_t<Flag>>::destroy(h);
}
template <typename Flag>
char const * chan_impl<Flag>::name(ipc::handle_t h) {
auto info = detail_impl<policy_t<Flag>>::info_of(h);
return (info == nullptr) ? nullptr : info->name_.c_str();
}
template <typename Flag>
std::size_t chan_impl<Flag>::recv_count(ipc::handle_t h) {
return detail_impl<policy_t<Flag>>::recv_count(h);
}
template <typename Flag>
bool chan_impl<Flag>::wait_for_recv(ipc::handle_t h, std::size_t r_count, std::uint64_t tm) {
return detail_impl<policy_t<Flag>>::wait_for_recv(h, r_count, tm);
}
template <typename Flag>
bool chan_impl<Flag>::send(ipc::handle_t h, void const * data, std::size_t size, std::uint64_t tm) {
return detail_impl<policy_t<Flag>>::send(h, data, size, tm);
}
template <typename Flag>
buff_t chan_impl<Flag>::recv(ipc::handle_t h, std::uint64_t tm) {
return detail_impl<policy_t<Flag>>::recv(h, tm);
}
template <typename Flag>
bool chan_impl<Flag>::try_send(ipc::handle_t h, void const * data, std::size_t size, std::uint64_t tm) {
return detail_impl<policy_t<Flag>>::try_send(h, data, size, tm);
}
template <typename Flag>
buff_t chan_impl<Flag>::try_recv(ipc::handle_t h) {
return detail_impl<policy_t<Flag>>::try_recv(h);
}
template struct chan_impl<ipc::wr<relat::single, relat::single, trans::unicast >>;
// template struct chan_impl<ipc::wr<relat::single, relat::multi , trans::unicast >>; // TBD
// template struct chan_impl<ipc::wr<relat::multi , relat::multi , trans::unicast >>; // TBD
template struct chan_impl<ipc::wr<relat::single, relat::multi , trans::broadcast>>;
template struct chan_impl<ipc::wr<relat::multi , relat::multi , trans::broadcast>>;
} // namespace ipc

查看文件

@@ -1,25 +0,0 @@
#pragma once
#include <type_traits>
#include "libipc/def.h"
#include "libipc/prod_cons.h"
#include "libipc/circ/elem_array.h"
namespace ipc {
namespace policy {
template <template <typename, std::size_t...> class Elems, typename Flag>
struct choose;
template <typename Flag>
struct choose<circ::elem_array, Flag> {
using flag_t = Flag;
template <std::size_t DataSize, std::size_t AlignSize>
using elems_t = circ::elem_array<ipc::prod_cons_impl<flag_t>, DataSize, AlignSize>;
};
} // namespace policy
} // namespace ipc

查看文件

@@ -1,17 +0,0 @@
#include "libipc/pool_alloc.h"
#include "libipc/memory/resource.h"
namespace ipc {
namespace mem {
void* pool_alloc::alloc(std::size_t size) {
return async_pool_alloc::alloc(size);
}
void pool_alloc::free(void* p, std::size_t size) {
async_pool_alloc::free(p, size);
}
} // namespace mem
} // namespace ipc

查看文件

@@ -1,433 +0,0 @@
#pragma once
#include <atomic>
#include <utility>
#include <cstring>
#include <type_traits>
#include <cstdint>
#include "libipc/def.h"
#include "libipc/platform/detail.h"
#include "libipc/circ/elem_def.h"
#include "libipc/utility/log.h"
#include "libipc/utility/utility.h"
namespace ipc {
////////////////////////////////////////////////////////////////
/// producer-consumer implementation
////////////////////////////////////////////////////////////////
template <typename Flag>
struct prod_cons_impl;
template <>
struct prod_cons_impl<wr<relat::single, relat::single, trans::unicast>> {
template <std::size_t DataSize, std::size_t AlignSize>
struct elem_t {
std::aligned_storage_t<DataSize, AlignSize> data_ {};
};
alignas(cache_line_size) std::atomic<circ::u2_t> rd_; // read index
alignas(cache_line_size) std::atomic<circ::u2_t> wt_; // write index
constexpr circ::u2_t cursor() const noexcept {
return 0;
}
template <typename W, typename F, typename E>
bool push(W* /*wrapper*/, F&& f, E* elems) {
auto cur_wt = circ::index_of(wt_.load(std::memory_order_relaxed));
if (cur_wt == circ::index_of(rd_.load(std::memory_order_acquire) - 1)) {
return false; // full
}
std::forward<F>(f)(&(elems[cur_wt].data_));
wt_.fetch_add(1, std::memory_order_release);
return true;
}
/**
* In single-single-unicast, 'force_push' means 'no reader' or 'the only one reader is dead'.
* So we could just disconnect all connections of receiver, and return false.
*/
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&&, E*) {
wrapper->elems()->disconnect_receiver(~static_cast<circ::cc_t>(0u));
return false;
}
template <typename W, typename F, typename R, typename E>
bool pop(W* /*wrapper*/, circ::u2_t& /*cur*/, F&& f, R&& out, E* elems) {
auto cur_rd = circ::index_of(rd_.load(std::memory_order_relaxed));
if (cur_rd == circ::index_of(wt_.load(std::memory_order_acquire))) {
return false; // empty
}
std::forward<F>(f)(&(elems[cur_rd].data_));
std::forward<R>(out)(true);
rd_.fetch_add(1, std::memory_order_release);
return true;
}
};
template <>
struct prod_cons_impl<wr<relat::single, relat::multi , trans::unicast>>
: prod_cons_impl<wr<relat::single, relat::single, trans::unicast>> {
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&&, E*) {
wrapper->elems()->disconnect_receiver(1);
return false;
}
template <typename W, typename F, typename R,
template <std::size_t, std::size_t> class E, std::size_t DS, std::size_t AS>
bool pop(W* /*wrapper*/, circ::u2_t& /*cur*/, F&& f, R&& out, E<DS, AS>* elems) {
byte_t buff[DS];
for (unsigned k = 0;;) {
auto cur_rd = rd_.load(std::memory_order_relaxed);
if (circ::index_of(cur_rd) ==
circ::index_of(wt_.load(std::memory_order_acquire))) {
return false; // empty
}
std::memcpy(buff, &(elems[circ::index_of(cur_rd)].data_), sizeof(buff));
if (rd_.compare_exchange_weak(cur_rd, cur_rd + 1, std::memory_order_release)) {
std::forward<F>(f)(buff);
std::forward<R>(out)(true);
return true;
}
ipc::yield(k);
}
}
};
template <>
struct prod_cons_impl<wr<relat::multi , relat::multi, trans::unicast>>
: prod_cons_impl<wr<relat::single, relat::multi, trans::unicast>> {
using flag_t = std::uint64_t;
template <std::size_t DataSize, std::size_t AlignSize>
struct elem_t {
std::aligned_storage_t<DataSize, AlignSize> data_ {};
std::atomic<flag_t> f_ct_ { 0 }; // commit flag
};
alignas(cache_line_size) std::atomic<circ::u2_t> ct_; // commit index
template <typename W, typename F, typename E>
bool push(W* /*wrapper*/, F&& f, E* elems) {
circ::u2_t cur_ct, nxt_ct;
for (unsigned k = 0;;) {
cur_ct = ct_.load(std::memory_order_relaxed);
if (circ::index_of(nxt_ct = cur_ct + 1) ==
circ::index_of(rd_.load(std::memory_order_acquire))) {
return false; // full
}
if (ct_.compare_exchange_weak(cur_ct, nxt_ct, std::memory_order_acq_rel)) {
break;
}
ipc::yield(k);
}
auto* el = elems + circ::index_of(cur_ct);
std::forward<F>(f)(&(el->data_));
// set flag & try update wt
el->f_ct_.store(~static_cast<flag_t>(cur_ct), std::memory_order_release);
while (1) {
auto cac_ct = el->f_ct_.load(std::memory_order_acquire);
if (cur_ct != wt_.load(std::memory_order_relaxed)) {
return true;
}
if ((~cac_ct) != cur_ct) {
return true;
}
if (!el->f_ct_.compare_exchange_strong(cac_ct, 0, std::memory_order_relaxed)) {
return true;
}
wt_.store(nxt_ct, std::memory_order_release);
cur_ct = nxt_ct;
nxt_ct = cur_ct + 1;
el = elems + circ::index_of(cur_ct);
}
return true;
}
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&&, E*) {
wrapper->elems()->disconnect_receiver(1);
return false;
}
template <typename W, typename F, typename R,
template <std::size_t, std::size_t> class E, std::size_t DS, std::size_t AS>
bool pop(W* /*wrapper*/, circ::u2_t& /*cur*/, F&& f, R&& out, E<DS, AS>* elems) {
byte_t buff[DS];
for (unsigned k = 0;;) {
auto cur_rd = rd_.load(std::memory_order_relaxed);
auto cur_wt = wt_.load(std::memory_order_acquire);
auto id_rd = circ::index_of(cur_rd);
auto id_wt = circ::index_of(cur_wt);
if (id_rd == id_wt) {
auto* el = elems + id_wt;
auto cac_ct = el->f_ct_.load(std::memory_order_acquire);
if ((~cac_ct) != cur_wt) {
return false; // empty
}
if (el->f_ct_.compare_exchange_weak(cac_ct, 0, std::memory_order_relaxed)) {
wt_.store(cur_wt + 1, std::memory_order_release);
}
k = 0;
}
else {
std::memcpy(buff, &(elems[circ::index_of(cur_rd)].data_), sizeof(buff));
if (rd_.compare_exchange_weak(cur_rd, cur_rd + 1, std::memory_order_release)) {
std::forward<F>(f)(buff);
std::forward<R>(out)(true);
return true;
}
ipc::yield(k);
}
}
}
};
template <>
struct prod_cons_impl<wr<relat::single, relat::multi, trans::broadcast>> {
using rc_t = std::uint64_t;
enum : rc_t {
ep_mask = 0x00000000ffffffffull,
ep_incr = 0x0000000100000000ull
};
template <std::size_t DataSize, std::size_t AlignSize>
struct elem_t {
std::aligned_storage_t<DataSize, AlignSize> data_ {};
std::atomic<rc_t> rc_ { 0 }; // read-counter
};
alignas(cache_line_size) std::atomic<circ::u2_t> wt_; // write index
alignas(cache_line_size) rc_t epoch_ { 0 }; // only one writer
circ::u2_t cursor() const noexcept {
return wt_.load(std::memory_order_acquire);
}
template <typename W, typename F, typename E>
bool push(W* wrapper, F&& f, E* elems) {
E* el;
for (unsigned k = 0;;) {
circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
if (cc == 0) return false; // no reader
el = elems + circ::index_of(wt_.load(std::memory_order_relaxed));
// check all consumers have finished reading this element
auto cur_rc = el->rc_.load(std::memory_order_acquire);
circ::cc_t rem_cc = cur_rc & ep_mask;
if ((cc & rem_cc) && ((cur_rc & ~ep_mask) == epoch_)) {
return false; // has not finished yet
}
// consider rem_cc to be 0 here
if (el->rc_.compare_exchange_weak(
cur_rc, epoch_ | static_cast<rc_t>(cc), std::memory_order_release)) {
break;
}
ipc::yield(k);
}
std::forward<F>(f)(&(el->data_));
wt_.fetch_add(1, std::memory_order_release);
return true;
}
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&& f, E* elems) {
E* el;
epoch_ += ep_incr;
for (unsigned k = 0;;) {
circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
if (cc == 0) return false; // no reader
el = elems + circ::index_of(wt_.load(std::memory_order_relaxed));
// check all consumers have finished reading this element
auto cur_rc = el->rc_.load(std::memory_order_acquire);
circ::cc_t rem_cc = cur_rc & ep_mask;
if (cc & rem_cc) {
ipc::log("force_push: k = %u, cc = %u, rem_cc = %u\n", k, cc, rem_cc);
cc = wrapper->elems()->disconnect_receiver(rem_cc); // disconnect all invalid readers
if (cc == 0) return false; // no reader
}
// just compare & exchange
if (el->rc_.compare_exchange_weak(
cur_rc, epoch_ | static_cast<rc_t>(cc), std::memory_order_release)) {
break;
}
ipc::yield(k);
}
std::forward<F>(f)(&(el->data_));
wt_.fetch_add(1, std::memory_order_release);
return true;
}
template <typename W, typename F, typename R, typename E>
bool pop(W* wrapper, circ::u2_t& cur, F&& f, R&& out, E* elems) {
if (cur == cursor()) return false; // acquire
auto* el = elems + circ::index_of(cur++);
std::forward<F>(f)(&(el->data_));
for (unsigned k = 0;;) {
auto cur_rc = el->rc_.load(std::memory_order_acquire);
if ((cur_rc & ep_mask) == 0) {
std::forward<R>(out)(true);
return true;
}
auto nxt_rc = cur_rc & ~static_cast<rc_t>(wrapper->connected_id());
if (el->rc_.compare_exchange_weak(cur_rc, nxt_rc, std::memory_order_release)) {
std::forward<R>(out)((nxt_rc & ep_mask) == 0);
return true;
}
ipc::yield(k);
}
}
};
template <>
struct prod_cons_impl<wr<relat::multi, relat::multi, trans::broadcast>> {
using rc_t = std::uint64_t;
using flag_t = std::uint64_t;
enum : rc_t {
rc_mask = 0x00000000ffffffffull,
ep_mask = 0x00ffffffffffffffull,
ep_incr = 0x0100000000000000ull,
ic_mask = 0xff000000ffffffffull,
ic_incr = 0x0000000100000000ull
};
template <std::size_t DataSize, std::size_t AlignSize>
struct elem_t {
std::aligned_storage_t<DataSize, AlignSize> data_ {};
std::atomic<rc_t > rc_ { 0 }; // read-counter
std::atomic<flag_t> f_ct_ { 0 }; // commit flag
};
alignas(cache_line_size) std::atomic<circ::u2_t> ct_; // commit index
alignas(cache_line_size) std::atomic<rc_t> epoch_ { 0 };
circ::u2_t cursor() const noexcept {
return ct_.load(std::memory_order_acquire);
}
constexpr static rc_t inc_rc(rc_t rc) noexcept {
return (rc & ic_mask) | ((rc + ic_incr) & ~ic_mask);
}
constexpr static rc_t inc_mask(rc_t rc) noexcept {
return inc_rc(rc) & ~rc_mask;
}
template <typename W, typename F, typename E>
bool push(W* wrapper, F&& f, E* elems) {
E* el;
circ::u2_t cur_ct;
rc_t epoch = epoch_.load(std::memory_order_acquire);
for (unsigned k = 0;;) {
circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
if (cc == 0) return false; // no reader
el = elems + circ::index_of(cur_ct = ct_.load(std::memory_order_relaxed));
// check all consumers have finished reading this element
auto cur_rc = el->rc_.load(std::memory_order_relaxed);
circ::cc_t rem_cc = cur_rc & rc_mask;
if ((cc & rem_cc) && ((cur_rc & ~ep_mask) == epoch)) {
return false; // has not finished yet
}
else if (!rem_cc) {
auto cur_fl = el->f_ct_.load(std::memory_order_acquire);
if ((cur_fl != cur_ct) && cur_fl) {
return false; // full
}
}
// consider rem_cc to be 0 here
if (el->rc_.compare_exchange_weak(
cur_rc, inc_mask(epoch | (cur_rc & ep_mask)) | static_cast<rc_t>(cc), std::memory_order_relaxed) &&
epoch_.compare_exchange_weak(epoch, epoch, std::memory_order_acq_rel)) {
break;
}
ipc::yield(k);
}
// only one thread/process would touch here at one time
ct_.store(cur_ct + 1, std::memory_order_release);
std::forward<F>(f)(&(el->data_));
// set flag & try update wt
el->f_ct_.store(~static_cast<flag_t>(cur_ct), std::memory_order_release);
return true;
}
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&& f, E* elems) {
E* el;
circ::u2_t cur_ct;
rc_t epoch = epoch_.fetch_add(ep_incr, std::memory_order_release) + ep_incr;
for (unsigned k = 0;;) {
circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
if (cc == 0) return false; // no reader
el = elems + circ::index_of(cur_ct = ct_.load(std::memory_order_relaxed));
// check all consumers have finished reading this element
auto cur_rc = el->rc_.load(std::memory_order_acquire);
circ::cc_t rem_cc = cur_rc & rc_mask;
if (cc & rem_cc) {
ipc::log("force_push: k = %u, cc = %u, rem_cc = %u\n", k, cc, rem_cc);
cc = wrapper->elems()->disconnect_receiver(rem_cc); // disconnect all invalid readers
if (cc == 0) return false; // no reader
}
// just compare & exchange
if (el->rc_.compare_exchange_weak(
cur_rc, inc_mask(epoch | (cur_rc & ep_mask)) | static_cast<rc_t>(cc), std::memory_order_relaxed)) {
if (epoch == epoch_.load(std::memory_order_acquire)) {
break;
}
else if (push(wrapper, std::forward<F>(f), elems)) {
return true;
}
epoch = epoch_.fetch_add(ep_incr, std::memory_order_release) + ep_incr;
}
ipc::yield(k);
}
// only one thread/process would touch here at one time
ct_.store(cur_ct + 1, std::memory_order_release);
std::forward<F>(f)(&(el->data_));
// set flag & try update wt
el->f_ct_.store(~static_cast<flag_t>(cur_ct), std::memory_order_release);
return true;
}
template <typename W, typename F, typename R, typename E, std::size_t N>
bool pop(W* wrapper, circ::u2_t& cur, F&& f, R&& out, E(& elems)[N]) {
auto* el = elems + circ::index_of(cur);
auto cur_fl = el->f_ct_.load(std::memory_order_acquire);
if (cur_fl != ~static_cast<flag_t>(cur)) {
return false; // empty
}
++cur;
std::forward<F>(f)(&(el->data_));
for (unsigned k = 0;;) {
auto cur_rc = el->rc_.load(std::memory_order_acquire);
if ((cur_rc & rc_mask) == 0) {
std::forward<R>(out)(true);
el->f_ct_.store(cur + N - 1, std::memory_order_release);
return true;
}
auto nxt_rc = inc_rc(cur_rc) & ~static_cast<rc_t>(wrapper->connected_id());
bool last_one = false;
if ((last_one = (nxt_rc & rc_mask) == 0)) {
el->f_ct_.store(cur + N - 1, std::memory_order_release);
}
if (el->rc_.compare_exchange_weak(cur_rc, nxt_rc, std::memory_order_release)) {
std::forward<R>(out)(last_one);
return true;
}
ipc::yield(k);
}
}
};
} // namespace ipc

查看文件

@@ -1,216 +0,0 @@
#pragma once
#include <type_traits>
#include <new>
#include <utility> // [[since C++14]]: std::exchange
#include <algorithm>
#include <atomic>
#include <tuple>
#include <thread>
#include <chrono>
#include <string>
#include <cassert> // assert
#include "libipc/def.h"
#include "libipc/shm.h"
#include "libipc/rw_lock.h"
#include "libipc/utility/log.h"
#include "libipc/platform/detail.h"
#include "libipc/circ/elem_def.h"
namespace ipc {
namespace detail {
class queue_conn {
protected:
circ::cc_t connected_ = 0;
shm::handle elems_h_;
template <typename Elems>
Elems* open(char const * name) {
if (name == nullptr || name[0] == '\0') {
ipc::error("fail open waiter: name is empty!\n");
return nullptr;
}
if (!elems_h_.acquire(name, sizeof(Elems))) {
return nullptr;
}
auto elems = static_cast<Elems*>(elems_h_.get());
if (elems == nullptr) {
ipc::error("fail acquire elems: %s\n", name);
return nullptr;
}
elems->init();
return elems;
}
void close() {
elems_h_.release();
}
public:
queue_conn() = default;
queue_conn(const queue_conn&) = delete;
queue_conn& operator=(const queue_conn&) = delete;
bool connected() const noexcept {
return connected_ != 0;
}
circ::cc_t connected_id() const noexcept {
return connected_;
}
template <typename Elems>
auto connect(Elems* elems) noexcept
/*needs 'optional' here*/
-> std::tuple<bool, bool, decltype(std::declval<Elems>().cursor())> {
if (elems == nullptr) return {};
// if it's already connected, just return
if (connected()) return {connected(), false, 0};
connected_ = elems->connect_receiver();
return {connected(), true, elems->cursor()};
}
template <typename Elems>
bool disconnect(Elems* elems) noexcept {
if (elems == nullptr) return false;
// if it's already disconnected, just return false
if (!connected()) return false;
elems->disconnect_receiver(std::exchange(connected_, 0));
return true;
}
};
template <typename Elems>
class queue_base : public queue_conn {
using base_t = queue_conn;
public:
using elems_t = Elems;
using policy_t = typename elems_t::policy_t;
protected:
elems_t * elems_ = nullptr;
decltype(std::declval<elems_t>().cursor()) cursor_ = 0;
bool sender_flag_ = false;
public:
using base_t::base_t;
queue_base() = default;
explicit queue_base(char const * name)
: queue_base{} {
elems_ = open<elems_t>(name);
}
explicit queue_base(elems_t * elems) noexcept
: queue_base{} {
assert(elems != nullptr);
elems_ = elems;
}
/* not virtual */ ~queue_base() {
base_t::close();
}
elems_t * elems() noexcept { return elems_; }
elems_t const * elems() const noexcept { return elems_; }
bool ready_sending() noexcept {
if (elems_ == nullptr) return false;
return sender_flag_ || (sender_flag_ = elems_->connect_sender());
}
void shut_sending() noexcept {
if (elems_ == nullptr) return;
if (!sender_flag_) return;
elems_->disconnect_sender();
}
bool connect() noexcept {
auto tp = base_t::connect(elems_);
if (std::get<0>(tp) && std::get<1>(tp)) {
cursor_ = std::get<2>(tp);
return true;
}
return std::get<0>(tp);
}
bool disconnect() noexcept {
return base_t::disconnect(elems_);
}
std::size_t conn_count() const noexcept {
return (elems_ == nullptr) ? static_cast<std::size_t>(invalid_value) : elems_->conn_count();
}
bool valid() const noexcept {
return elems_ != nullptr;
}
bool empty() const noexcept {
return !valid() || (cursor_ == elems_->cursor());
}
template <typename T, typename F, typename... P>
bool push(F&& prep, P&&... params) {
if (elems_ == nullptr) return false;
return elems_->push(this, [&](void* p) {
if (prep(p)) ::new (p) T(std::forward<P>(params)...);
});
}
template <typename T, typename F, typename... P>
bool force_push(F&& prep, P&&... params) {
if (elems_ == nullptr) return false;
return elems_->force_push(this, [&](void* p) {
if (prep(p)) ::new (p) T(std::forward<P>(params)...);
});
}
template <typename T, typename F>
bool pop(T& item, F&& out) {
if (elems_ == nullptr) {
return false;
}
return elems_->pop(this, &(this->cursor_), [&item](void* p) {
::new (&item) T(std::move(*static_cast<T*>(p)));
}, std::forward<F>(out));
}
};
} // namespace detail
template <typename T, typename Policy>
class queue final : public detail::queue_base<typename Policy::template elems_t<sizeof(T), alignof(T)>> {
using base_t = detail::queue_base<typename Policy::template elems_t<sizeof(T), alignof(T)>>;
public:
using value_t = T;
using base_t::base_t;
template <typename... P>
bool push(P&&... params) {
return base_t::template push<T>(std::forward<P>(params)...);
}
template <typename... P>
bool force_push(P&&... params) {
return base_t::template force_push<T>(std::forward<P>(params)...);
}
bool pop(T& item) {
return base_t::pop(item, [](bool) {});
}
template <typename F>
bool pop(T& item, F&& out) {
return base_t::pop(item, std::forward<F>(out));
}
};
} // namespace ipc

查看文件

@@ -1,103 +0,0 @@
#include <string>
#include <utility>
#include "libipc/shm.h"
#include "libipc/utility/pimpl.h"
#include "libipc/memory/resource.h"
namespace ipc {
namespace shm {
class handle::handle_ : public pimpl<handle_> {
public:
shm::id_t id_ = nullptr;
void* m_ = nullptr;
ipc::string n_;
std::size_t s_ = 0;
};
handle::handle()
: p_(p_->make()) {
}
handle::handle(char const * name, std::size_t size, unsigned mode)
: handle() {
acquire(name, size, mode);
}
handle::handle(handle&& rhs)
: handle() {
swap(rhs);
}
handle::~handle() {
release();
p_->clear();
}
void handle::swap(handle& rhs) {
std::swap(p_, rhs.p_);
}
handle& handle::operator=(handle rhs) {
swap(rhs);
return *this;
}
bool handle::valid() const noexcept {
return impl(p_)->m_ != nullptr;
}
std::size_t handle::size() const noexcept {
return impl(p_)->s_;
}
char const * handle::name() const noexcept {
return impl(p_)->n_.c_str();
}
std::int32_t handle::ref() const noexcept {
return shm::get_ref(impl(p_)->id_);
}
void handle::sub_ref() noexcept {
shm::sub_ref(impl(p_)->id_);
}
bool handle::acquire(char const * name, std::size_t size, unsigned mode) {
release();
impl(p_)->id_ = shm::acquire((impl(p_)->n_ = name).c_str(), size, mode);
impl(p_)->m_ = shm::get_mem(impl(p_)->id_, &(impl(p_)->s_));
return valid();
}
std::int32_t handle::release() {
if (impl(p_)->id_ == nullptr) return -1;
return shm::release(detach());
}
void* handle::get() const {
return impl(p_)->m_;
}
void handle::attach(id_t id) {
if (id == nullptr) return;
release();
impl(p_)->id_ = id;
impl(p_)->m_ = shm::get_mem(impl(p_)->id_, &(impl(p_)->s_));
}
id_t handle::detach() {
auto old = impl(p_)->id_;
impl(p_)->id_ = nullptr;
impl(p_)->m_ = nullptr;
impl(p_)->s_ = 0;
impl(p_)->n_.clear();
return old;
}
} // namespace shm
} // namespace ipc

查看文件

@@ -1,83 +0,0 @@
#pragma once
#include <utility>
#include <string>
#include <mutex>
#include <atomic>
#include "libipc/def.h"
#include "libipc/mutex.h"
#include "libipc/condition.h"
#include "libipc/platform/detail.h"
namespace ipc {
namespace detail {
class waiter {
ipc::sync::condition cond_;
ipc::sync::mutex lock_;
std::atomic<bool> quit_ {false};
public:
static void init();
waiter() = default;
waiter(char const *name) {
open(name);
}
~waiter() {
close();
}
bool valid() const noexcept {
return cond_.valid() && lock_.valid();
}
bool open(char const *name) noexcept {
quit_.store(false, std::memory_order_relaxed);
if (!cond_.open((std::string{"_waiter_cond_"} + name).c_str())) {
return false;
}
if (!lock_.open((std::string{"_waiter_lock_"} + name).c_str())) {
cond_.close();
return false;
}
return valid();
}
void close() noexcept {
cond_.close();
lock_.close();
}
template <typename F>
bool wait_if(F &&pred, std::uint64_t tm = ipc::invalid_value) noexcept {
IPC_UNUSED_ std::lock_guard<ipc::sync::mutex> guard {lock_};
while ([this, &pred] {
return !quit_.load(std::memory_order_relaxed)
&& std::forward<F>(pred)();
}()) {
if (!cond_.wait(lock_, tm)) return false;
}
return true;
}
bool notify() noexcept {
std::lock_guard<ipc::sync::mutex>{lock_}; // barrier
return cond_.notify(lock_);
}
bool broadcast() noexcept {
std::lock_guard<ipc::sync::mutex>{lock_}; // barrier
return cond_.broadcast(lock_);
}
bool quit_waiting() {
quit_.store(true, std::memory_order_release);
return broadcast();
}
};
} // namespace detail
} // namespace ipc

查看文件

@@ -1,3 +0,0 @@
https://github.com/mutouyun/cpp-ipc
A high-performance inter-process communication library using shared memory on Linux/Windows.

文件差异内容过多而无法显示 加载差异

查看文件

@@ -1,316 +0,0 @@
// jpgd.h - C++ class for JPEG decompression.
// Public domain, Rich Geldreich <richgel99@gmail.com>
#ifndef JPEG_DECODER_H
#define JPEG_DECODER_H
#include <stdlib.h>
#include <stdio.h>
#include <setjmp.h>
namespace jpgd
{
typedef unsigned char uint8;
typedef signed short int16;
typedef unsigned short uint16;
typedef unsigned int uint;
typedef signed int int32;
// Loads a JPEG image from a memory buffer or a file.
// req_comps can be 1 (grayscale), 3 (RGB), or 4 (RGBA).
// On return, width/height will be set to the image's dimensions, and actual_comps will be set to the either 1 (grayscale) or 3 (RGB).
// Notes: For more control over where and how the source data is read, see the decompress_jpeg_image_from_stream() function below, or call the jpeg_decoder class directly.
// Requesting a 8 or 32bpp image is currently a little faster than 24bpp because the jpeg_decoder class itself currently always unpacks to either 8 or 32bpp.
// BEGIN EPIC MOD
//unsigned char *decompress_jpeg_image_from_memory(const unsigned char *pSrc_data, int src_data_size, int *width, int *height, int *actual_comps, int req_comps);
unsigned char *decompress_jpeg_image_from_memory(const unsigned char *pSrc_data, int src_data_size, int *width, int *height, int *actual_comps, int req_comps, int format);
// END EPIC MOD
unsigned char *decompress_jpeg_image_from_file(const char *pSrc_filename, int *width, int *height, int *actual_comps, int req_comps);
// Success/failure error codes.
enum jpgd_status
{
JPGD_SUCCESS = 0, JPGD_FAILED = -1, JPGD_DONE = 1,
JPGD_BAD_DHT_COUNTS = -256, JPGD_BAD_DHT_INDEX, JPGD_BAD_DHT_MARKER, JPGD_BAD_DQT_MARKER, JPGD_BAD_DQT_TABLE,
JPGD_BAD_PRECISION, JPGD_BAD_HEIGHT, JPGD_BAD_WIDTH, JPGD_TOO_MANY_COMPONENTS,
JPGD_BAD_SOF_LENGTH, JPGD_BAD_VARIABLE_MARKER, JPGD_BAD_DRI_LENGTH, JPGD_BAD_SOS_LENGTH,
JPGD_BAD_SOS_COMP_ID, JPGD_W_EXTRA_BYTES_BEFORE_MARKER, JPGD_NO_ARITHMITIC_SUPPORT, JPGD_UNEXPECTED_MARKER,
JPGD_NOT_JPEG, JPGD_UNSUPPORTED_MARKER, JPGD_BAD_DQT_LENGTH, JPGD_TOO_MANY_BLOCKS,
JPGD_UNDEFINED_QUANT_TABLE, JPGD_UNDEFINED_HUFF_TABLE, JPGD_NOT_SINGLE_SCAN, JPGD_UNSUPPORTED_COLORSPACE,
JPGD_UNSUPPORTED_SAMP_FACTORS, JPGD_DECODE_ERROR, JPGD_BAD_RESTART_MARKER, JPGD_ASSERTION_ERROR,
JPGD_BAD_SOS_SPECTRAL, JPGD_BAD_SOS_SUCCESSIVE, JPGD_STREAM_READ, JPGD_NOTENOUGHMEM
};
// Input stream interface.
// Derive from this class to read input data from sources other than files or memory. Set m_eof_flag to true when no more data is available.
// The decoder is rather greedy: it will keep on calling this method until its internal input buffer is full, or until the EOF flag is set.
// It the input stream contains data after the JPEG stream's EOI (end of image) marker it will probably be pulled into the internal buffer.
// Call the get_total_bytes_read() method to determine the actual size of the JPEG stream after successful decoding.
class jpeg_decoder_stream
{
public:
jpeg_decoder_stream() { }
virtual ~jpeg_decoder_stream() { }
// The read() method is called when the internal input buffer is empty.
// Parameters:
// pBuf - input buffer
// max_bytes_to_read - maximum bytes that can be written to pBuf
// pEOF_flag - set this to true if at end of stream (no more bytes remaining)
// Returns -1 on error, otherwise return the number of bytes actually written to the buffer (which may be 0).
// Notes: This method will be called in a loop until you set *pEOF_flag to true or the internal buffer is full.
virtual int read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag) = 0;
};
// stdio FILE stream class.
class jpeg_decoder_file_stream : public jpeg_decoder_stream
{
jpeg_decoder_file_stream(const jpeg_decoder_file_stream &);
jpeg_decoder_file_stream &operator =(const jpeg_decoder_file_stream &);
FILE *m_pFile;
bool m_eof_flag, m_error_flag;
public:
jpeg_decoder_file_stream();
virtual ~jpeg_decoder_file_stream();
bool open(const char *Pfilename);
void close();
virtual int read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag);
};
// Memory stream class.
class jpeg_decoder_mem_stream : public jpeg_decoder_stream
{
const uint8 *m_pSrc_data;
uint m_ofs, m_size;
public:
jpeg_decoder_mem_stream() : m_pSrc_data(NULL), m_ofs(0), m_size(0) { }
jpeg_decoder_mem_stream(const uint8 *pSrc_data, uint size) : m_pSrc_data(pSrc_data), m_ofs(0), m_size(size) { }
virtual ~jpeg_decoder_mem_stream() { }
bool open(const uint8 *pSrc_data, uint size);
void close() { m_pSrc_data = NULL; m_ofs = 0; m_size = 0; }
virtual int read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag);
};
// Loads JPEG file from a jpeg_decoder_stream.
unsigned char *decompress_jpeg_image_from_stream(jpeg_decoder_stream *pStream, int *width, int *height, int *actual_comps, int req_comps);
enum
{
JPGD_IN_BUF_SIZE = 8192, JPGD_MAX_BLOCKS_PER_MCU = 10, JPGD_MAX_HUFF_TABLES = 8, JPGD_MAX_QUANT_TABLES = 4,
JPGD_MAX_COMPONENTS = 4, JPGD_MAX_COMPS_IN_SCAN = 4, JPGD_MAX_BLOCKS_PER_ROW = 8192, JPGD_MAX_HEIGHT = 16384, JPGD_MAX_WIDTH = 16384
};
typedef int16 jpgd_quant_t;
typedef int16 jpgd_block_t;
class jpeg_decoder
{
public:
// Call get_error_code() after constructing to determine if the stream is valid or not. You may call the get_width(), get_height(), etc.
// methods after the constructor is called. You may then either destruct the object, or begin decoding the image by calling begin_decoding(), then decode() on each scanline.
jpeg_decoder(jpeg_decoder_stream *pStream);
~jpeg_decoder();
// Call this method after constructing the object to begin decompression.
// If JPGD_SUCCESS is returned you may then call decode() on each scanline.
int begin_decoding();
// Returns the next scan line.
// For grayscale images, pScan_line will point to a buffer containing 8-bit pixels (get_bytes_per_pixel() will return 1).
// Otherwise, it will always point to a buffer containing 32-bit RGBA pixels (A will always be 255, and get_bytes_per_pixel() will return 4).
// Returns JPGD_SUCCESS if a scan line has been returned.
// Returns JPGD_DONE if all scan lines have been returned.
// Returns JPGD_FAILED if an error occurred. Call get_error_code() for a more info.
int decode(const void** pScan_line, uint* pScan_line_len);
inline jpgd_status get_error_code() const { return m_error_code; }
inline int get_width() const { return m_image_x_size; }
inline int get_height() const { return m_image_y_size; }
inline int get_num_components() const { return m_comps_in_frame; }
inline int get_bytes_per_pixel() const { return m_dest_bytes_per_pixel; }
inline int get_bytes_per_scan_line() const { return m_image_x_size * get_bytes_per_pixel(); }
// Returns the total number of bytes actually consumed by the decoder (which should equal the actual size of the JPEG file).
inline int get_total_bytes_read() const { return m_total_bytes_read; }
private:
jpeg_decoder(const jpeg_decoder &);
jpeg_decoder &operator =(const jpeg_decoder &);
typedef void (*pDecode_block_func)(jpeg_decoder *, int, int, int);
struct huff_tables
{
bool ac_table;
uint look_up[256];
uint look_up2[256];
uint8 code_size[256];
uint tree[512];
};
struct coeff_buf
{
uint8 *pData;
int block_num_x, block_num_y;
int block_len_x, block_len_y;
int block_size;
};
struct mem_block
{
mem_block *m_pNext;
size_t m_used_count;
size_t m_size;
char m_data[1];
};
jmp_buf m_jmp_state;
mem_block *m_pMem_blocks;
int m_image_x_size;
int m_image_y_size;
jpeg_decoder_stream *m_pStream;
int m_progressive_flag;
uint8 m_huff_ac[JPGD_MAX_HUFF_TABLES];
uint8* m_huff_num[JPGD_MAX_HUFF_TABLES]; // pointer to number of Huffman codes per bit size
uint8* m_huff_val[JPGD_MAX_HUFF_TABLES]; // pointer to Huffman codes per bit size
jpgd_quant_t* m_quant[JPGD_MAX_QUANT_TABLES]; // pointer to quantization tables
int m_scan_type; // Gray, Yh1v1, Yh1v2, Yh2v1, Yh2v2 (CMYK111, CMYK4114 no longer supported)
int m_comps_in_frame; // # of components in frame
int m_comp_h_samp[JPGD_MAX_COMPONENTS]; // component's horizontal sampling factor
int m_comp_v_samp[JPGD_MAX_COMPONENTS]; // component's vertical sampling factor
int m_comp_quant[JPGD_MAX_COMPONENTS]; // component's quantization table selector
int m_comp_ident[JPGD_MAX_COMPONENTS]; // component's ID
int m_comp_h_blocks[JPGD_MAX_COMPONENTS];
int m_comp_v_blocks[JPGD_MAX_COMPONENTS];
int m_comps_in_scan; // # of components in scan
int m_comp_list[JPGD_MAX_COMPS_IN_SCAN]; // components in this scan
int m_comp_dc_tab[JPGD_MAX_COMPONENTS]; // component's DC Huffman coding table selector
int m_comp_ac_tab[JPGD_MAX_COMPONENTS]; // component's AC Huffman coding table selector
int m_spectral_start; // spectral selection start
int m_spectral_end; // spectral selection end
int m_successive_low; // successive approximation low
int m_successive_high; // successive approximation high
int m_max_mcu_x_size; // MCU's max. X size in pixels
int m_max_mcu_y_size; // MCU's max. Y size in pixels
int m_blocks_per_mcu;
int m_max_blocks_per_row;
int m_mcus_per_row, m_mcus_per_col;
int m_mcu_org[JPGD_MAX_BLOCKS_PER_MCU];
int m_total_lines_left; // total # lines left in image
int m_mcu_lines_left; // total # lines left in this MCU
int m_real_dest_bytes_per_scan_line;
int m_dest_bytes_per_scan_line; // rounded up
int m_dest_bytes_per_pixel; // 4 (RGB) or 1 (Y)
huff_tables* m_pHuff_tabs[JPGD_MAX_HUFF_TABLES];
coeff_buf* m_dc_coeffs[JPGD_MAX_COMPONENTS];
coeff_buf* m_ac_coeffs[JPGD_MAX_COMPONENTS];
int m_eob_run;
int m_block_y_mcu[JPGD_MAX_COMPONENTS];
uint8* m_pIn_buf_ofs;
int m_in_buf_left;
int m_tem_flag;
bool m_eof_flag;
uint8 m_in_buf_pad_start[128];
uint8 m_in_buf[JPGD_IN_BUF_SIZE + 128];
uint8 m_in_buf_pad_end[128];
int m_bits_left;
uint m_bit_buf;
int m_restart_interval;
int m_restarts_left;
int m_next_restart_num;
int m_max_mcus_per_row;
int m_max_blocks_per_mcu;
int m_expanded_blocks_per_mcu;
int m_expanded_blocks_per_row;
int m_expanded_blocks_per_component;
bool m_freq_domain_chroma_upsample;
int m_max_mcus_per_col;
uint m_last_dc_val[JPGD_MAX_COMPONENTS];
jpgd_block_t* m_pMCU_coefficients;
int m_mcu_block_max_zag[JPGD_MAX_BLOCKS_PER_MCU];
uint8* m_pSample_buf;
int m_crr[256];
int m_cbb[256];
int m_crg[256];
int m_cbg[256];
uint8* m_pScan_line_0;
uint8* m_pScan_line_1;
jpgd_status m_error_code;
bool m_ready_flag;
int m_total_bytes_read;
void free_all_blocks();
// BEGIN EPIC MOD
UE_NORETURN void stop_decoding(jpgd_status status);
// END EPIC MOD
void *alloc(size_t n, bool zero = false);
void word_clear(void *p, uint16 c, uint n);
void prep_in_buffer();
void read_dht_marker();
void read_dqt_marker();
void read_sof_marker();
void skip_variable_marker();
void read_dri_marker();
void read_sos_marker();
int next_marker();
int process_markers();
void locate_soi_marker();
void locate_sof_marker();
int locate_sos_marker();
void init(jpeg_decoder_stream * pStream);
void create_look_ups();
void fix_in_buffer();
void transform_mcu(int mcu_row);
void transform_mcu_expand(int mcu_row);
coeff_buf* coeff_buf_open(int block_num_x, int block_num_y, int block_len_x, int block_len_y);
inline jpgd_block_t *coeff_buf_getp(coeff_buf *cb, int block_x, int block_y);
void load_next_row();
void decode_next_row();
void make_huff_table(int index, huff_tables *pH);
void check_quant_tables();
void check_huff_tables();
void calc_mcu_block_order();
int init_scan();
void init_frame();
void process_restart();
void decode_scan(pDecode_block_func decode_block_func);
void init_progressive();
void init_sequential();
void decode_start();
void decode_init(jpeg_decoder_stream * pStream);
void H2V2Convert();
void H2V1Convert();
void H1V2Convert();
void H1V1Convert();
void gray_convert();
void expanded_convert();
void find_eoi();
inline uint get_char();
inline uint get_char(bool *pPadding_flag);
inline void stuff_char(uint8 q);
inline uint8 get_octet();
inline uint get_bits(int num_bits);
inline uint get_bits_no_markers(int numbits);
inline int huff_decode(huff_tables *pH);
inline int huff_decode(huff_tables *pH, int& extrabits);
static inline uint8 clamp(int i);
static void decode_block_dc_first(jpeg_decoder *pD, int component_id, int block_x, int block_y);
static void decode_block_dc_refine(jpeg_decoder *pD, int component_id, int block_x, int block_y);
static void decode_block_ac_first(jpeg_decoder *pD, int component_id, int block_x, int block_y);
static void decode_block_ac_refine(jpeg_decoder *pD, int component_id, int block_x, int block_y);
};
} // namespace jpgd
#endif // JPEG_DECODER_H

文件差异内容过多而无法显示 加载差异

查看文件

@@ -1,172 +0,0 @@
// jpge.h - C++ class for JPEG compression.
// Public domain, Rich Geldreich <richgel99@gmail.com>
// Alex Evans: Added RGBA support, linear memory allocator.
#ifndef JPEG_ENCODER_H
#define JPEG_ENCODER_H
#include <stdint.h>
namespace jpge
{
typedef unsigned char uint8;
typedef signed short int16;
typedef signed int int32;
typedef unsigned short uint16;
typedef unsigned int uint32;
typedef unsigned int uint;
// JPEG chroma subsampling factors. Y_ONLY (grayscale images) and H2V2 (color images) are the most common.
enum subsampling_t { Y_ONLY = 0, H1V1 = 1, H2V1 = 2, H2V2 = 3 };
// JPEG compression parameters structure.
struct params
{
inline params() : m_quality(85), m_subsampling(H2V2), m_no_chroma_discrim_flag(false), m_two_pass_flag(false) { }
inline bool check_valid() const
{
if ((m_quality < 1) || (m_quality > 100)) return false;
if ((uint)m_subsampling > (uint)H2V2) return false;
return true;
}
// Quality: 1-100, higher is better. Typical values are around 50-95.
int m_quality;
// m_subsampling:
// 0 = Y (grayscale) only
// 1 = YCbCr, no subsampling (H1V1, YCbCr 1x1x1, 3 blocks per MCU)
// 2 = YCbCr, H2V1 subsampling (YCbCr 2x1x1, 4 blocks per MCU)
// 3 = YCbCr, H2V2 subsampling (YCbCr 4x1x1, 6 blocks per MCU-- very common)
subsampling_t m_subsampling;
// Disables CbCr discrimination - only intended for testing.
// If true, the Y quantization table is also used for the CbCr channels.
bool m_no_chroma_discrim_flag;
bool m_two_pass_flag;
};
// Writes JPEG image to a file.
// num_channels must be 1 (Y) or 3 (RGB), image pitch must be width*num_channels.
bool compress_image_to_jpeg_file(const char *pFilename, int64_t width, int64_t height, int64_t num_channels, const uint8 *pImage_data, const params &comp_params = params());
// Writes JPEG image to memory buffer.
// On entry, buf_size is the size of the output buffer pointed at by pBuf, which should be at least ~1024 bytes.
// If return value is true, buf_size will be set to the size of the compressed data.
bool compress_image_to_jpeg_file_in_memory(void *pBuf, int64_t &buf_size, int64_t width, int64_t height, int64_t num_channels, const uint8 *pImage_data, const params &comp_params = params());
// Output stream abstract class - used by the jpeg_encoder class to write to the output stream.
// put_buf() is generally called with len==JPGE_OUT_BUF_SIZE bytes, but for headers it'll be called with smaller amounts.
class output_stream
{
public:
virtual ~output_stream() { };
virtual bool put_buf(const void* Pbuf, int64_t len) = 0;
template<class T> inline bool put_obj(const T& obj) { return put_buf(&obj, sizeof(T)); }
};
// Lower level jpeg_encoder class - useful if more control is needed than the above helper functions.
class jpeg_encoder
{
public:
jpeg_encoder();
~jpeg_encoder();
// Initializes the compressor.
// pStream: The stream object to use for writing compressed data.
// params - Compression parameters structure, defined above.
// width, height - Image dimensions.
// channels - May be 1, or 3. 1 indicates grayscale, 3 indicates RGB source data.
// Returns false on out of memory or if a stream write fails.
bool init(output_stream *pStream, int64_t width, int64_t height, int64_t src_channels, const params &comp_params = params());
const params &get_params() const { return m_params; }
// Deinitializes the compressor, freeing any allocated memory. May be called at any time.
void deinit();
uint get_total_passes() const { return m_params.m_two_pass_flag ? 2 : 1; }
inline uint get_cur_pass() { return m_pass_num; }
// Call this method with each source scanline.
// width * src_channels bytes per scanline is expected (RGB or Y format).
// You must call with NULL after all scanlines are processed to finish compression.
// Returns false on out of memory or if a stream write fails.
bool process_scanline(const void* pScanline);
private:
jpeg_encoder(const jpeg_encoder &);
jpeg_encoder &operator =(const jpeg_encoder &);
typedef int32 sample_array_t;
output_stream *m_pStream;
params m_params;
uint8 m_num_components;
uint8 m_comp_h_samp[3], m_comp_v_samp[3];
int m_image_x, m_image_y, m_image_bpp, m_image_bpl;
int m_image_x_mcu, m_image_y_mcu;
int m_image_bpl_xlt, m_image_bpl_mcu;
int m_mcus_per_row;
int m_mcu_x, m_mcu_y;
uint8 *m_mcu_lines[16];
uint8 m_mcu_y_ofs;
sample_array_t m_sample_array[64];
int16 m_coefficient_array[64];
int32 m_quantization_tables[2][64];
uint m_huff_codes[4][256];
uint8 m_huff_code_sizes[4][256];
uint8 m_huff_bits[4][17];
uint8 m_huff_val[4][256];
uint32 m_huff_count[4][256];
int m_last_dc_val[3];
enum { JPGE_OUT_BUF_SIZE = 2048 };
uint8 m_out_buf[JPGE_OUT_BUF_SIZE];
uint8 *m_pOut_buf;
uint m_out_buf_left;
uint32 m_bit_buffer;
uint m_bits_in;
uint8 m_pass_num;
bool m_all_stream_writes_succeeded;
void optimize_huffman_table(int table_num, int table_len);
void emit_byte(uint8 i);
void emit_word(uint i);
void emit_marker(int marker);
void emit_jfif_app0();
void emit_dqt();
void emit_sof();
void emit_dht(uint8 *bits, uint8 *val, int index, bool ac_flag);
void emit_dhts();
void emit_sos();
void emit_markers();
void compute_huffman_table(uint *codes, uint8 *code_sizes, uint8 *bits, uint8 *val);
void compute_quant_table(int32 *dst, int16 *src);
void adjust_quant_table(int32 *dst, int32 *src);
void first_pass_init();
bool second_pass_init();
bool jpg_open(int p_x_res, int p_y_res, int src_channels);
void load_block_8_8_grey(int x);
void load_block_8_8(int x, int y, int c);
void load_block_16_8(int x, int c);
void load_block_16_8_8(int x, int c);
void load_quantized_coefficients(int component_num);
void flush_output_buffer();
void put_bits(uint bits, uint len);
void code_coefficients_pass_one(int component_num);
void code_coefficients_pass_two(int component_num);
void code_block(int component_num);
void process_mcu_row();
bool terminate_pass_one();
bool terminate_pass_two();
bool process_end_of_image();
void load_mcu(const void* src);
void clear();
void init();
};
} // namespace jpge
#endif // JPEG_ENCODER

查看文件

@@ -1,3 +0,0 @@
jpge.h - C++ class for JPEG compression.
Public domain, Rich Geldreich <richgel99@gmail.com>
Alex Evans: Added RGBA support, linear memory allocator.

查看文件

@@ -1,433 +0,0 @@
#pragma once
#include <atomic>
#include <utility>
#include <cstring>
#include <type_traits>
#include <cstdint>
#include "libipc/def.h"
#include "libipc/platform/detail.h"
#include "libipc/circ/elem_def.h"
#include "libipc/utility/log.h"
#include "libipc/utility/utility.h"
namespace ipc {
////////////////////////////////////////////////////////////////
/// producer-consumer implementation
////////////////////////////////////////////////////////////////
template <typename Flag>
struct prod_cons_impl;
template <>
struct prod_cons_impl<wr<relat::single, relat::single, trans::unicast>> {
template <std::size_t DataSize, std::size_t AlignSize>
struct elem_t {
std::aligned_storage_t<DataSize, AlignSize> data_ {};
};
alignas(cache_line_size) std::atomic<circ::u2_t> rd_; // read index
alignas(cache_line_size) std::atomic<circ::u2_t> wt_; // write index
constexpr circ::u2_t cursor() const noexcept {
return 0;
}
template <typename W, typename F, typename E>
bool push(W* /*wrapper*/, F&& f, E* elems) {
auto cur_wt = circ::index_of(wt_.load(std::memory_order_relaxed));
if (cur_wt == circ::index_of(rd_.load(std::memory_order_acquire) - 1)) {
return false; // full
}
std::forward<F>(f)(&(elems[cur_wt].data_));
wt_.fetch_add(1, std::memory_order_release);
return true;
}
/**
* In single-single-unicast, 'force_push' means 'no reader' or 'the only one reader is dead'.
* So we could just disconnect all connections of receiver, and return false.
*/
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&&, E*) {
wrapper->elems()->disconnect_receiver(~static_cast<circ::cc_t>(0u));
return false;
}
template <typename W, typename F, typename R, typename E>
bool pop(W* /*wrapper*/, circ::u2_t& /*cur*/, F&& f, R&& out, E* elems) {
auto cur_rd = circ::index_of(rd_.load(std::memory_order_relaxed));
if (cur_rd == circ::index_of(wt_.load(std::memory_order_acquire))) {
return false; // empty
}
std::forward<F>(f)(&(elems[cur_rd].data_));
std::forward<R>(out)(true);
rd_.fetch_add(1, std::memory_order_release);
return true;
}
};
template <>
struct prod_cons_impl<wr<relat::single, relat::multi , trans::unicast>>
: prod_cons_impl<wr<relat::single, relat::single, trans::unicast>> {
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&&, E*) {
wrapper->elems()->disconnect_receiver(1);
return false;
}
template <typename W, typename F, typename R,
template <std::size_t, std::size_t> class E, std::size_t DS, std::size_t AS>
bool pop(W* /*wrapper*/, circ::u2_t& /*cur*/, F&& f, R&& out, E<DS, AS>* elems) {
byte_t buff[DS];
for (unsigned k = 0;;) {
auto cur_rd = rd_.load(std::memory_order_relaxed);
if (circ::index_of(cur_rd) ==
circ::index_of(wt_.load(std::memory_order_acquire))) {
return false; // empty
}
std::memcpy(buff, &(elems[circ::index_of(cur_rd)].data_), sizeof(buff));
if (rd_.compare_exchange_weak(cur_rd, cur_rd + 1, std::memory_order_release)) {
std::forward<F>(f)(buff);
std::forward<R>(out)(true);
return true;
}
ipc::yield(k);
}
}
};
template <>
struct prod_cons_impl<wr<relat::multi , relat::multi, trans::unicast>>
: prod_cons_impl<wr<relat::single, relat::multi, trans::unicast>> {
using flag_t = std::uint64_t;
template <std::size_t DataSize, std::size_t AlignSize>
struct elem_t {
std::aligned_storage_t<DataSize, AlignSize> data_ {};
std::atomic<flag_t> f_ct_ { 0 }; // commit flag
};
alignas(cache_line_size) std::atomic<circ::u2_t> ct_; // commit index
template <typename W, typename F, typename E>
bool push(W* /*wrapper*/, F&& f, E* elems) {
circ::u2_t cur_ct, nxt_ct;
for (unsigned k = 0;;) {
cur_ct = ct_.load(std::memory_order_relaxed);
if (circ::index_of(nxt_ct = cur_ct + 1) ==
circ::index_of(rd_.load(std::memory_order_acquire))) {
return false; // full
}
if (ct_.compare_exchange_weak(cur_ct, nxt_ct, std::memory_order_acq_rel)) {
break;
}
ipc::yield(k);
}
auto* el = elems + circ::index_of(cur_ct);
std::forward<F>(f)(&(el->data_));
// set flag & try update wt
el->f_ct_.store(~static_cast<flag_t>(cur_ct), std::memory_order_release);
while (1) {
auto cac_ct = el->f_ct_.load(std::memory_order_acquire);
if (cur_ct != wt_.load(std::memory_order_relaxed)) {
return true;
}
if ((~cac_ct) != cur_ct) {
return true;
}
if (!el->f_ct_.compare_exchange_strong(cac_ct, 0, std::memory_order_relaxed)) {
return true;
}
wt_.store(nxt_ct, std::memory_order_release);
cur_ct = nxt_ct;
nxt_ct = cur_ct + 1;
el = elems + circ::index_of(cur_ct);
}
return true;
}
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&&, E*) {
wrapper->elems()->disconnect_receiver(1);
return false;
}
template <typename W, typename F, typename R,
template <std::size_t, std::size_t> class E, std::size_t DS, std::size_t AS>
bool pop(W* /*wrapper*/, circ::u2_t& /*cur*/, F&& f, R&& out, E<DS, AS>* elems) {
byte_t buff[DS];
for (unsigned k = 0;;) {
auto cur_rd = rd_.load(std::memory_order_relaxed);
auto cur_wt = wt_.load(std::memory_order_acquire);
auto id_rd = circ::index_of(cur_rd);
auto id_wt = circ::index_of(cur_wt);
if (id_rd == id_wt) {
auto* el = elems + id_wt;
auto cac_ct = el->f_ct_.load(std::memory_order_acquire);
if ((~cac_ct) != cur_wt) {
return false; // empty
}
if (el->f_ct_.compare_exchange_weak(cac_ct, 0, std::memory_order_relaxed)) {
wt_.store(cur_wt + 1, std::memory_order_release);
}
k = 0;
}
else {
std::memcpy(buff, &(elems[circ::index_of(cur_rd)].data_), sizeof(buff));
if (rd_.compare_exchange_weak(cur_rd, cur_rd + 1, std::memory_order_release)) {
std::forward<F>(f)(buff);
std::forward<R>(out)(true);
return true;
}
ipc::yield(k);
}
}
}
};
template <>
struct prod_cons_impl<wr<relat::single, relat::multi, trans::broadcast>> {
using rc_t = std::uint64_t;
enum : rc_t {
ep_mask = 0x00000000ffffffffull,
ep_incr = 0x0000000100000000ull
};
template <std::size_t DataSize, std::size_t AlignSize>
struct elem_t {
std::aligned_storage_t<DataSize, AlignSize> data_ {};
std::atomic<rc_t> rc_ { 0 }; // read-counter
};
alignas(cache_line_size) std::atomic<circ::u2_t> wt_; // write index
alignas(cache_line_size) rc_t epoch_ { 0 }; // only one writer
circ::u2_t cursor() const noexcept {
return wt_.load(std::memory_order_acquire);
}
template <typename W, typename F, typename E>
bool push(W* wrapper, F&& f, E* elems) {
E* el;
for (unsigned k = 0;;) {
circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
if (cc == 0) return false; // no reader
el = elems + circ::index_of(wt_.load(std::memory_order_relaxed));
// check all consumers have finished reading this element
auto cur_rc = el->rc_.load(std::memory_order_acquire);
circ::cc_t rem_cc = cur_rc & ep_mask;
if ((cc & rem_cc) && ((cur_rc & ~ep_mask) == epoch_)) {
return false; // has not finished yet
}
// consider rem_cc to be 0 here
if (el->rc_.compare_exchange_weak(
cur_rc, epoch_ | static_cast<rc_t>(cc), std::memory_order_release)) {
break;
}
ipc::yield(k);
}
std::forward<F>(f)(&(el->data_));
wt_.fetch_add(1, std::memory_order_release);
return true;
}
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&& f, E* elems) {
E* el;
epoch_ += ep_incr;
for (unsigned k = 0;;) {
circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
if (cc == 0) return false; // no reader
el = elems + circ::index_of(wt_.load(std::memory_order_relaxed));
// check all consumers have finished reading this element
auto cur_rc = el->rc_.load(std::memory_order_acquire);
circ::cc_t rem_cc = cur_rc & ep_mask;
if (cc & rem_cc) {
ipc::log("force_push: k = %u, cc = %u, rem_cc = %u\n", k, cc, rem_cc);
cc = wrapper->elems()->disconnect_receiver(rem_cc); // disconnect all invalid readers
if (cc == 0) return false; // no reader
}
// just compare & exchange
if (el->rc_.compare_exchange_weak(
cur_rc, epoch_ | static_cast<rc_t>(cc), std::memory_order_release)) {
break;
}
ipc::yield(k);
}
std::forward<F>(f)(&(el->data_));
wt_.fetch_add(1, std::memory_order_release);
return true;
}
template <typename W, typename F, typename R, typename E>
bool pop(W* wrapper, circ::u2_t& cur, F&& f, R&& out, E* elems) {
if (cur == cursor()) return false; // acquire
auto* el = elems + circ::index_of(cur++);
std::forward<F>(f)(&(el->data_));
for (unsigned k = 0;;) {
auto cur_rc = el->rc_.load(std::memory_order_acquire);
if ((cur_rc & ep_mask) == 0) {
std::forward<R>(out)(true);
return true;
}
auto nxt_rc = cur_rc & ~static_cast<rc_t>(wrapper->connected_id());
if (el->rc_.compare_exchange_weak(cur_rc, nxt_rc, std::memory_order_release)) {
std::forward<R>(out)((nxt_rc & ep_mask) == 0);
return true;
}
ipc::yield(k);
}
}
};
template <>
struct prod_cons_impl<wr<relat::multi, relat::multi, trans::broadcast>> {
using rc_t = std::uint64_t;
using flag_t = std::uint64_t;
enum : rc_t {
rc_mask = 0x00000000ffffffffull,
ep_mask = 0x00ffffffffffffffull,
ep_incr = 0x0100000000000000ull,
ic_mask = 0xff000000ffffffffull,
ic_incr = 0x0000000100000000ull
};
template <std::size_t DataSize, std::size_t AlignSize>
struct elem_t {
std::aligned_storage_t<DataSize, AlignSize> data_ {};
std::atomic<rc_t > rc_ { 0 }; // read-counter
std::atomic<flag_t> f_ct_ { 0 }; // commit flag
};
alignas(cache_line_size) std::atomic<circ::u2_t> ct_; // commit index
alignas(cache_line_size) std::atomic<rc_t> epoch_ { 0 };
circ::u2_t cursor() const noexcept {
return ct_.load(std::memory_order_acquire);
}
constexpr static rc_t inc_rc(rc_t rc) noexcept {
return (rc & ic_mask) | ((rc + ic_incr) & ~ic_mask);
}
constexpr static rc_t inc_mask(rc_t rc) noexcept {
return inc_rc(rc) & ~rc_mask;
}
template <typename W, typename F, typename E>
bool push(W* wrapper, F&& f, E* elems) {
E* el;
circ::u2_t cur_ct;
rc_t epoch = epoch_.load(std::memory_order_acquire);
for (unsigned k = 0;;) {
circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
if (cc == 0) return false; // no reader
el = elems + circ::index_of(cur_ct = ct_.load(std::memory_order_relaxed));
// check all consumers have finished reading this element
auto cur_rc = el->rc_.load(std::memory_order_relaxed);
circ::cc_t rem_cc = cur_rc & rc_mask;
if ((cc & rem_cc) && ((cur_rc & ~ep_mask) == epoch)) {
return false; // has not finished yet
}
else if (!rem_cc) {
auto cur_fl = el->f_ct_.load(std::memory_order_acquire);
if ((cur_fl != cur_ct) && cur_fl) {
return false; // full
}
}
// consider rem_cc to be 0 here
if (el->rc_.compare_exchange_weak(
cur_rc, inc_mask(epoch | (cur_rc & ep_mask)) | static_cast<rc_t>(cc), std::memory_order_relaxed) &&
epoch_.compare_exchange_weak(epoch, epoch, std::memory_order_acq_rel)) {
break;
}
ipc::yield(k);
}
// only one thread/process would touch here at one time
ct_.store(cur_ct + 1, std::memory_order_release);
std::forward<F>(f)(&(el->data_));
// set flag & try update wt
el->f_ct_.store(~static_cast<flag_t>(cur_ct), std::memory_order_release);
return true;
}
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&& f, E* elems) {
E* el;
circ::u2_t cur_ct;
rc_t epoch = epoch_.fetch_add(ep_incr, std::memory_order_release) + ep_incr;
for (unsigned k = 0;;) {
circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
if (cc == 0) return false; // no reader
el = elems + circ::index_of(cur_ct = ct_.load(std::memory_order_relaxed));
// check all consumers have finished reading this element
auto cur_rc = el->rc_.load(std::memory_order_acquire);
circ::cc_t rem_cc = cur_rc & rc_mask;
if (cc & rem_cc) {
ipc::log("force_push: k = %u, cc = %u, rem_cc = %u\n", k, cc, rem_cc);
cc = wrapper->elems()->disconnect_receiver(rem_cc); // disconnect all invalid readers
if (cc == 0) return false; // no reader
}
// just compare & exchange
if (el->rc_.compare_exchange_weak(
cur_rc, inc_mask(epoch | (cur_rc & ep_mask)) | static_cast<rc_t>(cc), std::memory_order_relaxed)) {
if (epoch == epoch_.load(std::memory_order_acquire)) {
break;
}
else if (push(wrapper, std::forward<F>(f), elems)) {
return true;
}
epoch = epoch_.fetch_add(ep_incr, std::memory_order_release) + ep_incr;
}
ipc::yield(k);
}
// only one thread/process would touch here at one time
ct_.store(cur_ct + 1, std::memory_order_release);
std::forward<F>(f)(&(el->data_));
// set flag & try update wt
el->f_ct_.store(~static_cast<flag_t>(cur_ct), std::memory_order_release);
return true;
}
template <typename W, typename F, typename R, typename E, std::size_t N>
bool pop(W* wrapper, circ::u2_t& cur, F&& f, R&& out, E(& elems)[N]) {
auto* el = elems + circ::index_of(cur);
auto cur_fl = el->f_ct_.load(std::memory_order_acquire);
if (cur_fl != ~static_cast<flag_t>(cur)) {
return false; // empty
}
++cur;
std::forward<F>(f)(&(el->data_));
for (unsigned k = 0;;) {
auto cur_rc = el->rc_.load(std::memory_order_acquire);
if ((cur_rc & rc_mask) == 0) {
std::forward<R>(out)(true);
el->f_ct_.store(cur + N - 1, std::memory_order_release);
return true;
}
auto nxt_rc = inc_rc(cur_rc) & ~static_cast<rc_t>(wrapper->connected_id());
bool last_one = false;
if ((last_one = (nxt_rc & rc_mask) == 0)) {
el->f_ct_.store(cur + N - 1, std::memory_order_release);
}
if (el->rc_.compare_exchange_weak(cur_rc, nxt_rc, std::memory_order_release)) {
std::forward<R>(out)(last_one);
return true;
}
ipc::yield(k);
}
}
};
} // namespace ipc

查看文件

@@ -1,58 +0,0 @@
The goal of reducing sequential computation also forms the foundation of the Extended Neural GPU \citep{extendedngpu}, ByteNet \citep{NalBytenet2017} and ConvS2S \citep{JonasFaceNet2017}, all of which use convolutional neural networks as basic building block, computing hidden representations in parallel for all input and output positions. In these models, the number of operations required to relate signals from two arbitrary input or output positions grows in the distance between positions, linearly for ConvS2S and logarithmically for ByteNet. This makes it more difficult to learn dependencies between distant positions \citep{hochreiter2001gradient}. In the Transformer this is reduced to a constant number of operations, albeit at the cost of reduced effective resolution due to averaging attention-weighted positions, an effect we counteract with Multi-Head Attention as described in section~\ref{sec:attention}.
Self-attention, sometimes called intra-attention is an attention mechanism relating different positions of a single sequence in order to compute a representation of the sequence. Self-attention has been used successfully in a variety of tasks including reading comprehension, abstractive summarization, textual entailment and learning task-independent sentence representations \citep{cheng2016long, decomposableAttnModel, paulus2017deep, lin2017structured}.
End-to-end memory networks are based on a recurrent attention mechanism instead of sequence-aligned recurrence and have been shown to perform well on simple-language question answering and language modeling tasks \citep{sukhbaatar2015}.
To the best of our knowledge, however, the Transformer is the first transduction model relying entirely on self-attention to compute representations of its input and output without using sequence-aligned RNNs or convolution.
In the following sections, we will describe the Transformer, motivate self-attention and discuss its advantages over models such as \citep{neural_gpu, NalBytenet2017} and \citep{JonasFaceNet2017}.
%\citep{JonasFaceNet2017} report new SOTA on machine translation for English-to-German (EnDe), Enlish-to-French (EnFr) and English-to-Romanian language pairs.
%For example,! in MT, we must draw information from both input and previous output words to translate an output word accurately. An attention layer \citep{bahdanau2014neural} can connect a very large number of positions at low computation cost, making it an essential ingredient in competitive recurrent models for machine translation.
%A natural question to ask then is, "Could we replace recurrence with attention?". \marginpar{Don't know if it's the most natural question to ask given the previous statements. Also, need to say that the complexity table summarizes these statements} Such a model would be blessed with the computational efficiency of attention and the power of cross-positional communication. In this work, show that pure attention models work remarkably well for MT, achieving new SOTA results on EnDe and EnFr, and can be trained in under $2$ days on xyz architecture.
%After the seminal models introduced in \citep{sutskever14, bahdanau2014neural, cho2014learning}, recurrent models have become the dominant solution for both sequence modeling and sequence-to-sequence transduction. Many efforts such as \citep{wu2016google,luong2015effective,jozefowicz2016exploring} have pushed the boundaries of machine translation (MT) and language modeling with recurrent endoder-decoder and recurrent language models. Recent effort \citep{shazeer2017outrageously} has successfully combined the power of conditional computation with sequence models to train very large models for MT, pushing SOTA at lower computational cost.
%Recurrent models compute a vector of hidden states $h_t$, for each time step $t$ of computation. $h_t$ is a function of both the input at time $t$ and the previous hidden state $h_t$. This dependence on the previous hidden state precludes processing all timesteps at once, instead requiring long sequences of sequential operations. In practice, this results in greatly reduced computational efficiency, as on modern computing hardware, a single operation on a large batch is much faster than a large number of operations on small batches. The problem gets worse at longer sequence lengths. Although sequential computation is not a severe bottleneck at inference time, as autoregressively generating each output requires all previous outputs, the inability to compute scores at all output positions at once hinders us from rapidly training our models over large datasets. Although impressive work such as \citep{Kuchaiev2017Factorization} is able to significantly accelerate the training of LSTMs with factorization tricks, we are still bound by the linear dependence on sequence length.
%If the model could compute hidden states at each time step using only the inputs and outputs, it would be liberated from the dependence on results from previous time steps during training. This line of thought is the foundation of recent efforts such as the Markovian neural GPU \citep{neural_gpu}, ByteNet \citep{NalBytenet2017} and ConvS2S \citep{JonasFaceNet2017}, all of which use convolutional neural networks as a building block to compute hidden representations simultaneously for all timesteps, resulting in $O(1)$ sequential time complexity. \citep{JonasFaceNet2017} report new SOTA on machine translation for English-to-German (EnDe), Enlish-to-French (EnFr) and English-to-Romanian language pairs.
%A crucial component for accurate sequence prediction is modeling cross-positional communication. For example, in MT, we must draw information from both input and previous output words to translate an output word accurately. An attention layer \citep{bahdanau2014neural} can connect a very large number of positions at a low computation cost, also $O(1)$ sequential time complexity, making it an essential ingredient in recurrent encoder-decoder architectures for MT. A natural question to ask then is, "Could we replace recurrence with attention?". \marginpar{Don't know if it's the most natural question to ask given the previous statements. Also, need to say that the complexity table summarizes these statements} Such a model would be blessed with the computational efficiency of attention and the power of cross-positional communication. In this work, show that pure attention models work remarkably well for MT, achieving new SOTA results on EnDe and EnFr, and can be trained in under $2$ days on xyz architecture.
%Note: Facebook model is no better than RNNs in this regard, since it requires a number of layers proportional to the distance you want to communicate. Bytenet is more promising, since it requires a logarithmnic number of layers (does bytenet have SOTA results)?
%Note: An attention layer can connect a very large number of positions at a low computation cost in O(1) sequential operations. This is why encoder-decoder attention has been so successful in seq-to-seq models so far. It is only natural, then, to also use attention to connect the timesteps of the same sequence.
%Note: I wouldn't say that long sequences are not a problem during inference. It would be great if we could infer with no long sequences. We could just say later on that, while our training graph is constant-depth, our model still requires sequential operations in the decoder part during inference due to the autoregressive nature of the model.
%\begin{table}[h!]
%\caption{Attention models are quite efficient for cross-positional communications when sequence length is smaller than channel depth. $n$ represents the sequence length and $d$ represents the channel depth.}
%\label{tab:op_complexities}
%\begin{center}
%\vspace{-5pt}
%\scalebox{0.75}{
%\begin{tabular}{l|c|c|c}
%\hline \hline
%Layer Type & Receptive & Complexity & Sequential \\
% & Field & & Operations \\
%\hline
%Pointwise Feed-Forward & $1$ & $O(n \cdot d^2)$ & $O(1)$ \\
%\hline
%Recurrent & $n$ & $O(n \cdot d^2)$ & $O(n)$ \\
%\hline
%Convolutional & $r$ & $O(r \cdot n \cdot d^2)$ & $O(1)$ \\
%\hline
%Convolutional (separable) & $r$ & $O(r \cdot n \cdot d + n %\cdot d^2)$ & $O(1)$ \\
%\hline
%Attention & $r$ & $O(r \cdot n \cdot d)$ & $O(1)$ \\
%\hline \hline
%\end{tabular}
%}
%\end{center}
%\end{table}

查看文件

@@ -1,18 +0,0 @@
Recurrent neural networks, long short-term memory \citep{hochreiter1997} and gated recurrent \citep{gruEval14} neural networks in particular, have been firmly established as state of the art approaches in sequence modeling and transduction problems such as language modeling and machine translation \citep{sutskever14, bahdanau2014neural, cho2014learning}. Numerous efforts have since continued to push the boundaries of recurrent language models and encoder-decoder architectures \citep{wu2016google,luong2015effective,jozefowicz2016exploring}.
Recurrent models typically factor computation along the symbol positions of the input and output sequences. Aligning the positions to steps in computation time, they generate a sequence of hidden states $h_t$, as a function of the previous hidden state $h_{t-1}$ and the input for position $t$. This inherently sequential nature precludes parallelization within training examples, which becomes critical at longer sequence lengths, as memory constraints limit batching across examples.
%\marginpar{not sure if the memory constraints are understandable here}
Recent work has achieved significant improvements in computational efficiency through factorization tricks \citep{Kuchaiev2017Factorization} and conditional computation \citep{shazeer2017outrageously}, while also improving model performance in case of the latter. The fundamental constraint of sequential computation, however, remains.
%\marginpar{@all: there is work on analyzing what attention really does in seq2seq models, couldn't find it right away}
Attention mechanisms have become an integral part of compelling sequence modeling and transduction models in various tasks, allowing modeling of dependencies without regard to their distance in the input or output sequences \citep{bahdanau2014neural, structuredAttentionNetworks}. In all but a few cases \citep{decomposableAttnModel}, however, such attention mechanisms are used in conjunction with a recurrent network.
%\marginpar{not sure if "cross-positional communication" is understandable without explanation}
%\marginpar{insert exact training times and stats for the model that reaches sota earliest, maybe even a single GPU model?}
In this work we propose the Transformer, a model architecture eschewing recurrence and instead relying entirely on an attention mechanism to draw global dependencies between input and output. The Transformer allows for significantly more parallelization and can reach a new state of the art in translation quality after being trained for as little as twelve hours on eight P100 GPUs.
%\marginpar{you removed the constant number of repetitions part. I wrote it because I wanted to make it clear that the model does not only perform attention once, while it's also not recurrent. I thought that might be important to get across early.}
% Just a standard paragraph with citations, rewrite.
%After the seminal papers of \citep{sutskever14}, \citep{bahdanau2014neural}, and \citep{cho2014learning}, recurrent models have become the dominant solution for both sequence modeling and sequence-to-sequence transduction. Many efforts such as \citep{wu2016google,luong2015effective,jozefowicz2016exploring} have pushed the boundaries of machine translation and language modeling with recurrent sequence models. Recent effort \citep{shazeer2017outrageously} has combined the power of conditional computation with sequence models to train very large models for machine translation, pushing SOTA at lower computational cost. Recurrent models compute a vector of hidden states $h_t$, for each time step $t$ of computation. $h_t$ is a function of both the input at time $t$ and the previous hidden state $h_t$. This dependence on the previous hidden state encumbers recurrnet models to process multiple inputs at once, and their time complexity is a linear function of the length of the input and output, both during training and inference. [What I want to say here is that although this is fine during decoding, at training time, we are given both input and output and this linear nature does not allow the RNN to process all inputs and outputs simultaneously and haven't been used on datasets that are the of the scale of the web. What's the largest dataset we have ? . Talk about Nividia and possibly other's effors to speed up things, and possibly other efforts that alleviate this, but are still limited by it's comptuational nature]. Rest of the intro: What if you could construct the state based on the actual inputs and outputs, then you could construct them all at once. This has been the foundation of many promising recent efforts, bytenet,facenet (Also talk about quasi rnn here). Now we talk about attention!! Along with cell architectures such as long short-term meory (LSTM) \citep{hochreiter1997}, and gated recurrent units (GRUs) \citep{cho2014learning}, attention has emerged as an essential ingredient in successful sequence models, in particular for machine translation. In recent years, many, if not all, state-of-the-art (SOTA) results in machine translation have been achieved with attention-based sequence models \citep{wu2016google,luong2015effective,jozefowicz2016exploring}. Talk about the neon work on how it played with attention to do self attention! Then talk about what we do.

查看文件

@@ -1,155 +0,0 @@
\begin{figure}
\centering
\includegraphics[scale=0.6]{Figures/ModalNet-21}
\caption{The Transformer - model architecture.}
\label{fig:model-arch}
\end{figure}
% Although the primary workhorse of our model is attention,
%Our model maintains the encoder-decoder structure that is common to many so-called sequence-to-sequence models \citep{bahdanau2014neural,sutskever14}. As in all such architectures, the encoder computes a representation of the input sequence, and the decoder consumes these representations along with the output tokens to autoregressively produce the output sequence. Where, traditionally, the encoder and decoder contain stacks of recurrent or convolutional layers, our encoder and decoder stacks are composed of attention layers and position-wise feed-forward layers (Figure~\ref{fig:model-arch}). The following sections describe the gross architecture and these particular components in detail.
Most competitive neural sequence transduction models have an encoder-decoder structure \citep{cho2014learning,bahdanau2014neural,sutskever14}. Here, the encoder maps an input sequence of symbol representations $(x_1, ..., x_n)$ to a sequence of continuous representations $\mathbf{z} = (z_1, ..., z_n)$. Given $\mathbf{z}$, the decoder then generates an output sequence $(y_1,...,y_m)$ of symbols one element at a time. At each step the model is auto-regressive \citep{graves2013generating}, consuming the previously generated symbols as additional input when generating the next.
The Transformer follows this overall architecture using stacked self-attention and point-wise, fully connected layers for both the encoder and decoder, shown in the left and right halves of Figure~\ref{fig:model-arch}, respectively.
\subsection{Encoder and Decoder Stacks}
\paragraph{Encoder:}The encoder is composed of a stack of $N=6$ identical layers. Each layer has two sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-wise fully connected feed-forward network. We employ a residual connection \citep{he2016deep} around each of the two sub-layers, followed by layer normalization \cite{layernorm2016}. That is, the output of each sub-layer is $\mathrm{LayerNorm}(x + \mathrm{Sublayer}(x))$, where $\mathrm{Sublayer}(x)$ is the function implemented by the sub-layer itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding layers, produce outputs of dimension $\dmodel=512$.
\paragraph{Decoder:}The decoder is also composed of a stack of $N=6$ identical layers. In addition to the two sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head attention over the output of the encoder stack. Similar to the encoder, we employ residual connections around each of the sub-layers, followed by layer normalization. We also modify the self-attention sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This masking, combined with fact that the output embeddings are offset by one position, ensures that the predictions for position $i$ can depend only on the known outputs at positions less than $i$.
% In our model (Figure~\ref{fig:model-arch}), the encoder and decoder are composed of stacks of alternating self-attention layers (for cross-positional communication) and position-wise feed-forward layers (for in-place computation). In addition, the decoder stack contains encoder-decoder attention layers. Since attention is agnostic to the distances between words, our model requires a "positional encoding" to be added to the encoder and decoder input. The following sections describe all of these components in detail.
\subsection{Attention} \label{sec:attention}
An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is computed as a weighted sum of the values, where the weight assigned to each value is computed by a compatibility function of the query with the corresponding key.
\subsubsection{Scaled Dot-Product Attention} \label{sec:scaled-dot-prod}
% \begin{figure}
% \centering
% \includegraphics[scale=0.6]{Figures/ModalNet-19}
% \caption{Scaled Dot-Product Attention.}
% \label{fig:multi-head-att}
% \end{figure}
We call our particular attention "Scaled Dot-Product Attention" (Figure~\ref{fig:multi-head-att}). The input consists of queries and keys of dimension $d_k$, and values of dimension $d_v$. We compute the dot products of the query with all keys, divide each by $\sqrt{d_k}$, and apply a softmax function to obtain the weights on the values.
In practice, we compute the attention function on a set of queries simultaneously, packed together into a matrix $Q$. The keys and values are also packed together into matrices $K$ and $V$. We compute the matrix of outputs as:
\begin{equation}
\mathrm{Attention}(Q, K, V) = \mathrm{softmax}(\frac{QK^T}{\sqrt{d_k}})V
\end{equation}
The two most commonly used attention functions are additive attention \citep{bahdanau2014neural}, and dot-product (multiplicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor of $\frac{1}{\sqrt{d_k}}$. Additive attention computes the compatibility function using a feed-forward network with a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is much faster and more space-efficient in practice, since it can be implemented using highly optimized matrix multiplication code.
%We scale the dot products by $1/\sqrt{d_k}$ to limit the magnitude of the dot products, which works well in practice. Otherwise, we found applying the softmax to often result in weights very close to 0 or 1, and hence minuscule gradients.
% Already described in the subsequent section
%When used as part of decoder self-attention, an optional mask function is applied just before the softmax to prevent positions from attending to subsequent positions. This mask simply sets the logits corresponding to all illegal connections (those outside of the lower triangle) to $-\infty$.
%\paragraph{Comparison to Additive Attention: } We choose dot product attention over additive attention \citep{bahdanau2014neural} since it can be computed using highly optimized matrix multiplication code. This optimization is particularly important to us, as we employ many attention layers in our model.
While for small values of $d_k$ the two mechanisms perform similarly, additive attention outperforms dot product attention without scaling for larger values of $d_k$ \citep{DBLP:journals/corr/BritzGLL17}. We suspect that for large values of $d_k$, the dot products grow large in magnitude, pushing the softmax function into regions where it has extremely small gradients \footnote{To illustrate why the dot products get large, assume that the components of $q$ and $k$ are independent random variables with mean $0$ and variance $1$. Then their dot product, $q \cdot k = \sum_{i=1}^{d_k} q_ik_i$, has mean $0$ and variance $d_k$.}. To counteract this effect, we scale the dot products by $\frac{1}{\sqrt{d_k}}$.
%We suspect this to be caused by the dot products growing too large in magnitude to result in useful gradients after applying the softmax function. To counteract this, we scale the dot product by $1/\sqrt{d_k}$.
\subsubsection{Multi-Head Attention} \label{sec:multihead}
\begin{figure}
\begin{minipage}[t]{0.5\textwidth}
\centering
Scaled Dot-Product Attention \\
\vspace{0.5cm}
\includegraphics[scale=0.6]{Figures/ModalNet-19}
\end{minipage}
\begin{minipage}[t]{0.5\textwidth}
\centering
Multi-Head Attention \\
\vspace{0.1cm}
\includegraphics[scale=0.6]{Figures/ModalNet-20}
\end{minipage}
% \centering
\caption{(left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers running in parallel.}
\label{fig:multi-head-att}
\end{figure}
Instead of performing a single attention function with $\dmodel$-dimensional keys, values and queries, we found it beneficial to linearly project the queries, keys and values $h$ times with different, learned linear projections to $d_k$, $d_k$ and $d_v$ dimensions, respectively.
On each of these projected versions of queries, keys and values we then perform the attention function in parallel, yielding $d_v$-dimensional output values. These are concatenated and once again projected, resulting in the final values, as depicted in Figure~\ref{fig:multi-head-att}.
Multi-head attention allows the model to jointly attend to information from different representation subspaces at different positions. With a single attention head, averaging inhibits this.
\begin{align*}
\mathrm{MultiHead}(Q, K, V) &= \mathrm{Concat}(\mathrm{head_1}, ..., \mathrm{head_h})W^O\\
% \mathrm{where} \mathrm{head_i} &= \mathrm{Attention}(QW_Q_i^{\dmodel \times d_q}, KW_K_i^{\dmodel \times d_k}, VW^V_i^{\dmodel \times d_v})\\
\text{where}~\mathrm{head_i} &= \mathrm{Attention}(QW^Q_i, KW^K_i, VW^V_i)\\
\end{align*}
Where the projections are parameter matrices $W^Q_i \in \mathbb{R}^{\dmodel \times d_k}$, $W^K_i \in \mathbb{R}^{\dmodel \times d_k}$, $W^V_i \in \mathbb{R}^{\dmodel \times d_v}$ and $W^O \in \mathbb{R}^{hd_v \times \dmodel}$.
%find it better (and no more expensive) to have multiple parallel attention layers (each over the full set of positions) with proportionally lower-dimensional keys, values and queries. We call this "Multi-Head Attention" (Figure~\ref{fig:multi-head-att}). The keys, values, and queries for each of these parallel attention layers are computed by learned linear transformations of the inputs to the multi-head attention. We use different linear transformations across different parallel attention layers. The output of the parallel attention layers are concatenated, and then passed through a final learned linear transformation.
In this work we employ $h=8$ parallel attention layers, or heads. For each of these we use $d_k=d_v=\dmodel/h=64$.
Due to the reduced dimension of each head, the total computational cost is similar to that of single-head attention with full dimensionality.
\subsubsection{Applications of Attention in our Model}
The Transformer uses multi-head attention in three different ways:
\begin{itemize}
\item In "encoder-decoder attention" layers, the queries come from the previous decoder layer, and the memory keys and values come from the output of the encoder. This allows every position in the decoder to attend over all positions in the input sequence. This mimics the typical encoder-decoder attention mechanisms in sequence-to-sequence models such as \citep{wu2016google, bahdanau2014neural,JonasFaceNet2017}.
\item The encoder contains self-attention layers. In a self-attention layer all of the keys, values and queries come from the same place, in this case, the output of the previous layer in the encoder. Each position in the encoder can attend to all positions in the previous layer of the encoder.
\item Similarly, self-attention layers in the decoder allow each position in the decoder to attend to all positions in the decoder up to and including that position. We need to prevent leftward information flow in the decoder to preserve the auto-regressive property. We implement this inside of scaled dot-product attention by masking out (setting to $-\infty$) all values in the input of the softmax which correspond to illegal connections. See Figure~\ref{fig:multi-head-att}.
\end{itemize}
\subsection{Position-wise Feed-Forward Networks}\label{sec:ffn}
In addition to attention sub-layers, each of the layers in our encoder and decoder contains a fully connected feed-forward network, which is applied to each position separately and identically. This consists of two linear transformations with a ReLU activation in between.
\begin{equation}
\mathrm{FFN}(x)=\max(0, xW_1 + b_1) W_2 + b_2
\end{equation}
While the linear transformations are the same across different positions, they use different parameters from layer to layer. Another way of describing this is as two convolutions with kernel size 1. The dimensionality of input and output is $\dmodel=512$, and the inner-layer has dimensionality $d_{ff}=2048$.
%In the appendix, we describe how the position-wise feed-forward network can also be seen as a form of attention.
%from Jakob: The number of operations required for the model to relate signals from two arbitrary input or output positions grows in the distance between positions in input or output, linearly for ConvS2S and logarithmically for ByteNet, making it harder to learn dependencies between these positions \citep{hochreiter2001gradient}. In the transformer this is reduced to a constant number of operations, albeit at the cost of effective resolution caused by averaging attention-weighted positions, an effect we aim to counteract with multi-headed attention.
%Figure~\ref{fig:simple-att} presents a simple attention function, $A$, with a single head, that forms the basis of our multi-head attention. $A$ takes a query key vector $\kq$, matrices of memory keys $\km$ and memory values $\vm$ ,and produces a query value vector $\vq$ as
%\begin{equation*} \label{eq:attention}
% A(\kq, \km, \vm) = {\vm}^T (Softmax(\km \kq).
%\end{equation*}
%We linearly transform $\kq,\,\km$, and $\vm$ with learned matrices ${\Wkq \text{,} \, \Wkm}$, and ${\Wvm}$ before calling the attention function, and transform the output query with $\Wvq$ before handing it to the feed forward layer. Each attention layer has it's own set of transformation matrices, which are shared across all query positions. $A$ is applied in parallel for each query position, and is implemented very efficiently as a batch of matrix multiplies. The self-attention and encoder-decoder attention layers use $A$, but with different arguments. For example, in encdoder self-attention, queries in encoder layer $i$ attention to memories in encoder layer $i-1$. To ensure that decoder self-attention layers do not look at future words, we add $- \inf$ to the softmax logits in positions $j+1$ to query length for query position $l$.
%In simple attention, the query value is a weighted combination of the memory values where the attention weights sum to one. Although this function performs well in practice, the constraint on attention weights can restrict the amount of information that flows from memories to queries because the query cannot focus on multiple memory positions at once, which might be desirable when translating long sequences. \marginpar{@usz, could you think of an example of this ?} We remedy this by maintaining multiple attention heads at each query position that attend to all memory positions in parallel, with a different set of parameters per attention head $h$.
%\marginpar{}
\subsection{Embeddings and Softmax}
Similarly to other sequence transduction models, we use learned embeddings to convert the input tokens and output tokens to vectors of dimension $\dmodel$. We also use the usual learned linear transformation and softmax function to convert the decoder output to predicted next-token probabilities. In our model, we share the same weight matrix between the two embedding layers and the pre-softmax linear transformation, similar to \citep{press2016using}. In the embedding layers, we multiply those weights by $\sqrt{\dmodel}$.
\subsection{Positional Encoding}
Since our model contains no recurrence and no convolution, in order for the model to make use of the order of the sequence, we must inject some information about the relative or absolute position of the tokens in the sequence. To this end, we add "positional encodings" to the input embeddings at the bottoms of the encoder and decoder stacks. The positional encodings have the same dimension $\dmodel$ as the embeddings, so that the two can be summed. There are many choices of positional encodings, learned and fixed \citep{JonasFaceNet2017}.
In this work, we use sine and cosine functions of different frequencies:
\begin{align*}
PE_{(pos,2i)} = sin(pos / 10000^{2i/\dmodel}) \\
PE_{(pos,2i+1)} = cos(pos / 10000^{2i/\dmodel})
\end{align*}
where $pos$ is the position and $i$ is the dimension. That is, each dimension of the positional encoding corresponds to a sinusoid. The wavelengths form a geometric progression from $2\pi$ to $10000 \cdot 2\pi$. We chose this function because we hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset $k$, $PE_{pos+k}$ can be represented as a linear function of $PE_{pos}$.
We also experimented with using learned positional embeddings \citep{JonasFaceNet2017} instead, and found that the two versions produced nearly identical results (see Table~\ref{tab:variations} row (E)). We chose the sinusoidal version because it may allow the model to extrapolate to sequence lengths longer than the ones encountered during training.

查看文件

@@ -1,45 +0,0 @@
\pagebreak
\section*{Two Feed-Forward Layers = Attention over Parameters}\label{sec:parameter_attention}
In addition to attention layers, our model contains position-wise feed-forward networks (Section \ref{sec:ffn}), which consist of two linear transformations with a ReLU activation in between. In fact, these networks too can be seen as a form of attention. Compare the formula for such a network with the formula for a simple dot-product attention layer (biases and scaling factors omitted):
\begin{align*}
FFN(x, W_1, W_2) = ReLU(xW_1)W_2 \\
A(q, K, V) = Softmax(qK^T)V
\end{align*}
Based on the similarity of these formulae, the two-layer feed-forward network can be seen as a kind of attention, where the keys and values are the rows of the trainable parameter matrices $W_1$ and $W_2$, and where we use ReLU instead of Softmax in the compatibility function.
%the compatablity function is $compat(q, k_i) = ReLU(q \cdot k_i)$ instead of $Softmax(qK_T)_i$.
Given this similarity, we experimented with replacing the position-wise feed-forward networks with attention layers similar to the ones we use everywhere else our model. The multi-head-attention-over-parameters sublayer is identical to the multi-head attention described in \ref{sec:multihead}, except that the "keys" and "values" inputs to each attention head are trainable model parameters, as opposed to being linear projections of a previous layer. These parameters are scaled up by a factor of $\sqrt{d_{model}}$ in order to be more similar to activations.
In our first experiment, we replaced each position-wise feed-forward network with a multi-head-attention-over-parameters sublayer with $h_p=8$ heads, key-dimensionality $d_{pk}=64$, and value-dimensionality $d_{pv}=64$, using $n_p=1536$ key-value pairs for each attention head. The sublayer has a total of $2097152$ parameters, including the parameters in the query projection and the output projection. This matches the number of parameters in the position-wise feed-forward network that we replaced. While the theoretical amount of computation is also the same, in practice, the attention version caused the step times to be about 30\% longer.
In our second experiment, we used $h_p=8$ heads, and $n_p=512$ key-value pairs for each attention head, again matching the total number of parameters in the base model.
Results for the first experiment were slightly worse than for the base model, and results for the second experiment were slightly better, see Table~\ref{tab:parameter_attention}.
\begin{table}[h]
\caption{Replacing the position-wise feed-forward networks with multihead-attention-over-parameters produces similar results to the base model. All metrics are on the English-to-German translation development set, newstest2013.}
\label{tab:parameter_attention}
\begin{center}
\vspace{-2mm}
%\scalebox{1.0}{
\begin{tabular}{c|cccccc|cccc}
\hline\rule{0pt}{2.0ex}
& \multirow{2}{*}{$\dmodel$} & \multirow{2}{*}{$\dff$} &
\multirow{2}{*}{$h_p$} & \multirow{2}{*}{$d_{pk}$} & \multirow{2}{*}{$d_{pv}$} &
\multirow{2}{*}{$n_p$} &
PPL & BLEU & params & training\\
& & & & & & & (dev) & (dev) & $\times10^6$ & time \\
\hline\rule{0pt}{2.0ex}
base & 512 & 2048 & & & & & 4.92 & 25.8 & 65 & 12 hours\\
\hline\rule{0pt}{2.0ex}
AOP$_1$ & 512 & & 8 & 64 & 64 & 1536 & 4.92& 25.5 & 65 & 16 hours\\
AOP$_2$ & 512 & & 16 & 64 & 64 & 512 & \textbf{4.86} & \textbf{25.9} & 65 & 16 hours \\
\hline
\end{tabular}
%}
\end{center}
\end{table}

查看文件

@@ -1,8 +0,0 @@
chatgpt的老祖宗《Attention is all you need》
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin
真实的摘要如下
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.
https://arxiv.org/abs/1706.03762

查看文件

@@ -1,2 +0,0 @@
from stable_baselines3.dqn.dqn import DQN
from stable_baselines3.dqn.policies import CnnPolicy, MlpPolicy

查看文件

@@ -1,245 +0,0 @@
from typing import Any, Dict, List, Optional, Tuple, Type, Union
import gym
import numpy as np
import torch as th
from torch.nn import functional as F
from stable_baselines3.common import logger
from stable_baselines3.common.off_policy_algorithm import OffPolicyAlgorithm
from stable_baselines3.common.preprocessing import maybe_transpose
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule
from stable_baselines3.common.utils import get_linear_fn, is_vectorized_observation, polyak_update
from stable_baselines3.dqn.policies import DQNPolicy
class DQN(OffPolicyAlgorithm):
"""
Deep Q-Network (DQN)
Paper: https://arxiv.org/abs/1312.5602, https://www.nature.com/articles/nature14236
Default hyperparameters are taken from the nature paper,
except for the optimizer and learning rate that were taken from Stable Baselines defaults.
:param policy: The policy model to use (MlpPolicy, CnnPolicy, ...)
:param env: The environment to learn from (if registered in Gym, can be str)
:param learning_rate: The learning rate, it can be a function
of the current progress remaining (from 1 to 0)
:param buffer_size: size of the replay buffer
:param learning_starts: how many steps of the model to collect transitions for before learning starts
:param batch_size: Minibatch size for each gradient update
:param tau: the soft update coefficient ("Polyak update", between 0 and 1) default 1 for hard update
:param gamma: the discount factor
:param train_freq: Update the model every ``train_freq`` steps. Alternatively pass a tuple of frequency and unit
like ``(5, "step")`` or ``(2, "episode")``.
:param gradient_steps: How many gradient steps to do after each rollout (see ``train_freq``)
Set to ``-1`` means to do as many gradient steps as steps done in the environment
during the rollout.
:param optimize_memory_usage: Enable a memory efficient variant of the replay buffer
at a cost of more complexity.
See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195
:param target_update_interval: update the target network every ``target_update_interval``
environment steps.
:param exploration_fraction: fraction of entire training period over which the exploration rate is reduced
:param exploration_initial_eps: initial value of random action probability
:param exploration_final_eps: final value of random action probability
:param max_grad_norm: The maximum value for the gradient clipping
:param tensorboard_log: the log location for tensorboard (if None, no logging)
:param create_eval_env: Whether to create a second environment that will be
used for evaluating the agent periodically. (Only available when passing string for the environment)
:param policy_kwargs: additional arguments to be passed to the policy on creation
:param verbose: the verbosity level: 0 no output, 1 info, 2 debug
:param seed: Seed for the pseudo random generators
:param device: Device (cpu, cuda, ...) on which the code should be run.
Setting it to auto, the code will be run on the GPU if possible.
:param _init_setup_model: Whether or not to build the network at the creation of the instance
"""
def __init__(
self,
policy: Union[str, Type[DQNPolicy]],
env: Union[GymEnv, str],
learning_rate: Union[float, Schedule] = 1e-4,
buffer_size: int = 1000000,
learning_starts: int = 50000,
batch_size: Optional[int] = 32,
tau: float = 1.0,
gamma: float = 0.99,
train_freq: Union[int, Tuple[int, str]] = 4,
gradient_steps: int = 1,
optimize_memory_usage: bool = False,
target_update_interval: int = 10000,
exploration_fraction: float = 0.1,
exploration_initial_eps: float = 1.0,
exploration_final_eps: float = 0.05,
max_grad_norm: float = 10,
tensorboard_log: Optional[str] = None,
create_eval_env: bool = False,
policy_kwargs: Optional[Dict[str, Any]] = None,
verbose: int = 0,
seed: Optional[int] = None,
device: Union[th.device, str] = "auto",
_init_setup_model: bool = True,
):
super(DQN, self).__init__(
policy,
env,
DQNPolicy,
learning_rate,
buffer_size,
learning_starts,
batch_size,
tau,
gamma,
train_freq,
gradient_steps,
action_noise=None, # No action noise
policy_kwargs=policy_kwargs,
tensorboard_log=tensorboard_log,
verbose=verbose,
device=device,
create_eval_env=create_eval_env,
seed=seed,
sde_support=False,
optimize_memory_usage=optimize_memory_usage,
supported_action_spaces=(gym.spaces.Discrete,),
)
self.exploration_initial_eps = exploration_initial_eps
self.exploration_final_eps = exploration_final_eps
self.exploration_fraction = exploration_fraction
self.target_update_interval = target_update_interval
self.max_grad_norm = max_grad_norm
# "epsilon" for the epsilon-greedy exploration
self.exploration_rate = 0.0
# Linear schedule will be defined in `_setup_model()`
self.exploration_schedule = None
self.q_net, self.q_net_target = None, None
if _init_setup_model:
self._setup_model()
def _setup_model(self) -> None:
super(DQN, self)._setup_model()
self._create_aliases()
self.exploration_schedule = get_linear_fn(
self.exploration_initial_eps, self.exploration_final_eps, self.exploration_fraction
)
def _create_aliases(self) -> None:
self.q_net = self.policy.q_net
self.q_net_target = self.policy.q_net_target
def _on_step(self) -> None:
"""
Update the exploration rate and target network if needed.
This method is called in ``collect_rollouts()`` after each step in the environment.
"""
if self.num_timesteps % self.target_update_interval == 0:
polyak_update(self.q_net.parameters(), self.q_net_target.parameters(), self.tau)
self.exploration_rate = self.exploration_schedule(self._current_progress_remaining)
logger.record("rollout/exploration rate", self.exploration_rate)
def train(self, gradient_steps: int, batch_size: int = 100) -> None:
# Update learning rate according to schedule
self._update_learning_rate(self.policy.optimizer)
losses = []
for _ in range(gradient_steps):
# Sample replay buffer
replay_data = self.replay_buffer.sample(batch_size, env=self._vec_normalize_env)
with th.no_grad():
# Compute the next Q-values using the target network
next_q_values = self.q_net_target(replay_data.next_observations)
# Follow greedy policy: use the one with the highest value
next_q_values, _ = next_q_values.max(dim=1)
# Avoid potential broadcast issue
next_q_values = next_q_values.reshape(-1, 1)
# 1-step TD target
target_q_values = replay_data.rewards + (1 - replay_data.dones) * self.gamma * next_q_values
# Get current Q-values estimates
current_q_values = self.q_net(replay_data.observations)
# Retrieve the q-values for the actions from the replay buffer
current_q_values = th.gather(current_q_values, dim=1, index=replay_data.actions.long())
# Compute Huber loss (less sensitive to outliers)
loss = F.smooth_l1_loss(current_q_values, target_q_values)
losses.append(loss.item())
# Optimize the policy
self.policy.optimizer.zero_grad()
loss.backward()
# Clip gradient norm
th.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm)
self.policy.optimizer.step()
# Increase update counter
self._n_updates += gradient_steps
logger.record("train/n_updates", self._n_updates, exclude="tensorboard")
logger.record("train/loss", np.mean(losses))
def predict(
self,
observation: np.ndarray,
state: Optional[np.ndarray] = None,
mask: Optional[np.ndarray] = None,
deterministic: bool = False,
) -> Tuple[np.ndarray, Optional[np.ndarray]]:
"""
Overrides the base_class predict function to include epsilon-greedy exploration.
:param observation: the input observation
:param state: The last states (can be None, used in recurrent policies)
:param mask: The last masks (can be None, used in recurrent policies)
:param deterministic: Whether or not to return deterministic actions.
:return: the model's action and the next state
(used in recurrent policies)
"""
if not deterministic and np.random.rand() < self.exploration_rate:
if is_vectorized_observation(maybe_transpose(observation, self.observation_space), self.observation_space):
n_batch = observation.shape[0]
action = np.array([self.action_space.sample() for _ in range(n_batch)])
else:
action = np.array(self.action_space.sample())
else:
action, state = self.policy.predict(observation, state, mask, deterministic)
return action, state
def learn(
self,
total_timesteps: int,
callback: MaybeCallback = None,
log_interval: int = 4,
eval_env: Optional[GymEnv] = None,
eval_freq: int = -1,
n_eval_episodes: int = 5,
tb_log_name: str = "DQN",
eval_log_path: Optional[str] = None,
reset_num_timesteps: bool = True,
) -> OffPolicyAlgorithm:
return super(DQN, self).learn(
total_timesteps=total_timesteps,
callback=callback,
log_interval=log_interval,
eval_env=eval_env,
eval_freq=eval_freq,
n_eval_episodes=n_eval_episodes,
tb_log_name=tb_log_name,
eval_log_path=eval_log_path,
reset_num_timesteps=reset_num_timesteps,
)
def _excluded_save_params(self) -> List[str]:
return super(DQN, self)._excluded_save_params() + ["q_net", "q_net_target"]
def _get_torch_save_params(self) -> Tuple[List[str], List[str]]:
state_dicts = ["policy", "policy.optimizer"]
return state_dicts, []

查看文件

@@ -1,237 +0,0 @@
from typing import Any, Dict, List, Optional, Type
import gym
import torch as th
from torch import nn
from stable_baselines3.common.policies import BasePolicy, register_policy
from stable_baselines3.common.torch_layers import BaseFeaturesExtractor, FlattenExtractor, NatureCNN, create_mlp
from stable_baselines3.common.type_aliases import Schedule
class QNetwork(BasePolicy):
"""
Action-Value (Q-Value) network for DQN
:param observation_space: Observation space
:param action_space: Action space
:param net_arch: The specification of the policy and value networks.
:param activation_fn: Activation function
:param normalize_images: Whether to normalize images or not,
dividing by 255.0 (True by default)
"""
def __init__(
self,
observation_space: gym.spaces.Space,
action_space: gym.spaces.Space,
features_extractor: nn.Module,
features_dim: int,
net_arch: Optional[List[int]] = None,
activation_fn: Type[nn.Module] = nn.ReLU,
normalize_images: bool = True,
):
super(QNetwork, self).__init__(
observation_space,
action_space,
features_extractor=features_extractor,
normalize_images=normalize_images,
)
if net_arch is None:
net_arch = [64, 64]
self.net_arch = net_arch
self.activation_fn = activation_fn
self.features_extractor = features_extractor
self.features_dim = features_dim
self.normalize_images = normalize_images
action_dim = self.action_space.n # number of actions
q_net = create_mlp(self.features_dim, action_dim, self.net_arch, self.activation_fn)
self.q_net = nn.Sequential(*q_net)
def forward(self, obs: th.Tensor) -> th.Tensor:
"""
Predict the q-values.
:param obs: Observation
:return: The estimated Q-Value for each action.
"""
return self.q_net(self.extract_features(obs))
def _predict(self, observation: th.Tensor, deterministic: bool = True) -> th.Tensor:
q_values = self.forward(observation)
# Greedy action
action = q_values.argmax(dim=1).reshape(-1)
return action
def _get_constructor_parameters(self) -> Dict[str, Any]:
data = super()._get_constructor_parameters()
data.update(
dict(
net_arch=self.net_arch,
features_dim=self.features_dim,
activation_fn=self.activation_fn,
features_extractor=self.features_extractor,
)
)
return data
class DQNPolicy(BasePolicy):
"""
Policy class with Q-Value Net and target net for DQN
:param observation_space: Observation space
:param action_space: Action space
:param lr_schedule: Learning rate schedule (could be constant)
:param net_arch: The specification of the policy and value networks.
:param activation_fn: Activation function
:param features_extractor_class: Features extractor to use.
:param features_extractor_kwargs: Keyword arguments
to pass to the features extractor.
:param normalize_images: Whether to normalize images or not,
dividing by 255.0 (True by default)
:param optimizer_class: The optimizer to use,
``th.optim.Adam`` by default
:param optimizer_kwargs: Additional keyword arguments,
excluding the learning rate, to pass to the optimizer
"""
def __init__(
self,
observation_space: gym.spaces.Space,
action_space: gym.spaces.Space,
lr_schedule: Schedule,
net_arch: Optional[List[int]] = None,
activation_fn: Type[nn.Module] = nn.ReLU,
features_extractor_class: Type[BaseFeaturesExtractor] = FlattenExtractor,
features_extractor_kwargs: Optional[Dict[str, Any]] = None,
normalize_images: bool = True,
optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam,
optimizer_kwargs: Optional[Dict[str, Any]] = None,
):
super(DQNPolicy, self).__init__(
observation_space,
action_space,
features_extractor_class,
features_extractor_kwargs,
optimizer_class=optimizer_class,
optimizer_kwargs=optimizer_kwargs,
)
if net_arch is None:
if features_extractor_class == FlattenExtractor:
net_arch = [64, 64]
else:
net_arch = []
self.net_arch = net_arch
self.activation_fn = activation_fn
self.normalize_images = normalize_images
self.net_args = {
"observation_space": self.observation_space,
"action_space": self.action_space,
"net_arch": self.net_arch,
"activation_fn": self.activation_fn,
"normalize_images": normalize_images,
}
self.q_net, self.q_net_target = None, None
self._build(lr_schedule)
def _build(self, lr_schedule: Schedule) -> None:
"""
Create the network and the optimizer.
:param lr_schedule: Learning rate schedule
lr_schedule(1) is the initial learning rate
"""
self.q_net = self.make_q_net()
self.q_net_target = self.make_q_net()
self.q_net_target.load_state_dict(self.q_net.state_dict())
# Setup optimizer with initial learning rate
self.optimizer = self.optimizer_class(self.parameters(), lr=lr_schedule(1), **self.optimizer_kwargs)
def make_q_net(self) -> QNetwork:
# Make sure we always have separate networks for features extractors etc
net_args = self._update_features_extractor(self.net_args, features_extractor=None)
return QNetwork(**net_args).to(self.device)
def forward(self, obs: th.Tensor, deterministic: bool = True) -> th.Tensor:
return self._predict(obs, deterministic=deterministic)
def _predict(self, obs: th.Tensor, deterministic: bool = True) -> th.Tensor:
return self.q_net._predict(obs, deterministic=deterministic)
def _get_constructor_parameters(self) -> Dict[str, Any]:
data = super()._get_constructor_parameters()
data.update(
dict(
net_arch=self.net_args["net_arch"],
activation_fn=self.net_args["activation_fn"],
lr_schedule=self._dummy_schedule, # dummy lr schedule, not needed for loading policy alone
optimizer_class=self.optimizer_class,
optimizer_kwargs=self.optimizer_kwargs,
features_extractor_class=self.features_extractor_class,
features_extractor_kwargs=self.features_extractor_kwargs,
)
)
return data
MlpPolicy = DQNPolicy
class CnnPolicy(DQNPolicy):
"""
Policy class for DQN when using images as input.
:param observation_space: Observation space
:param action_space: Action space
:param lr_schedule: Learning rate schedule (could be constant)
:param net_arch: The specification of the policy and value networks.
:param activation_fn: Activation function
:param features_extractor_class: Features extractor to use.
:param normalize_images: Whether to normalize images or not,
dividing by 255.0 (True by default)
:param optimizer_class: The optimizer to use,
``th.optim.Adam`` by default
:param optimizer_kwargs: Additional keyword arguments,
excluding the learning rate, to pass to the optimizer
"""
def __init__(
self,
observation_space: gym.spaces.Space,
action_space: gym.spaces.Space,
lr_schedule: Schedule,
net_arch: Optional[List[int]] = None,
activation_fn: Type[nn.Module] = nn.ReLU,
features_extractor_class: Type[BaseFeaturesExtractor] = NatureCNN,
features_extractor_kwargs: Optional[Dict[str, Any]] = None,
normalize_images: bool = True,
optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam,
optimizer_kwargs: Optional[Dict[str, Any]] = None,
):
super(CnnPolicy, self).__init__(
observation_space,
action_space,
lr_schedule,
net_arch,
activation_fn,
features_extractor_class,
features_extractor_kwargs,
normalize_images,
optimizer_class,
optimizer_kwargs,
)
register_policy("MlpPolicy", MlpPolicy)
register_policy("CnnPolicy", CnnPolicy)

查看文件

@@ -1,2 +0,0 @@
github stablebaseline3
https://github.com/DLR-RM/stable-baselines3

查看文件

@@ -1,27 +0,0 @@
"In practice, we found that a high-entropy initial state is more likely to increase the speed of training.
The entropy is calculated by:
$$H=-\sum_{k= 1}^{n_k} p(k) \cdot \log p(k), p(k)=\frac{|A_k|}{|\mathcal{A}|}$$
where $H$ is the entropy, $|A_k|$ is the number of agent nodes in $k$-th cluster, $|\mathcal{A}|$ is the total number of agents.
To ensure the Cooperation Graph initialization has higher entropy,
we will randomly generate multiple initial states,
rank by their entropy and then pick the one with maximum $H$."
```
FROM ubuntu:latest
RUN apt-get update && \
apt-get install -y python3 python3-pip && \
rm -rf /var/lib/apt/lists/*
RUN echo '[global]' > /etc/pip.conf && \
echo 'index-url = https://mirrors.aliyun.com/pypi/simple/' >> /etc/pip.conf && \
echo 'trusted-host = mirrors.aliyun.com' >> /etc/pip.conf
RUN pip3 install gradio requests[socks] mdtex2html
COPY . /gpt
WORKDIR /gpt
CMD ["python3", "main.py"]
```

查看文件

@@ -130,7 +130,7 @@ def get_name(_url_):
@CatchException
def 下载arxiv论文并翻译摘要(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 下载arxiv论文并翻译摘要(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
CRAZY_FUNCTION_INFO = "下载arxiv论文并翻译摘要,函数插件作者[binary-husky]。正在提取摘要并下载PDF文档……"
import glob

查看文件

@@ -5,7 +5,7 @@ from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.game_fns.game_utils import get_code_block, is_same_thing
@CatchException
def 随机小游戏(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 随机小游戏(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
from crazy_functions.game_fns.game_interactive_story import MiniGame_ResumeStory
# 清空历史
history = []
@@ -23,7 +23,7 @@ def 随机小游戏(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_
@CatchException
def 随机小游戏1(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 随机小游戏1(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
from crazy_functions.game_fns.game_ascii_art import MiniGame_ASCII_Art
# 清空历史
history = []

查看文件

@@ -3,7 +3,7 @@ from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
@CatchException
def 交互功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 交互功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数, 如温度和top_p等, 一般原样传递下去就行
@@ -11,7 +11,7 @@ def 交互功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
chatbot.append(("这是什么功能?", "交互功能函数模板。在执行完成之后, 可以将自身的状态存储到cookie中, 等待用户的再次调用。"))

查看文件

@@ -1,138 +0,0 @@
import threading
from request_llm.bridge_all import predict_no_ui_long_connection
from toolbox import update_ui
from toolbox import CatchException, write_results_to_file, report_execption
from .crazy_utils import breakdown_txt_to_satisfy_token_limit
def extract_code_block_carefully(txt):
splitted = txt.split('```')
n_code_block_seg = len(splitted) - 1
if n_code_block_seg <= 1: return txt
# 剩下的情况都开头除去 ``` 结尾除去一次 ```
txt_out = '```'.join(splitted[1:-1])
return txt_out
def break_txt_into_half_at_some_linebreak(txt):
lines = txt.split('\n')
n_lines = len(lines)
pre = lines[:(n_lines//2)]
post = lines[(n_lines//2):]
return "\n".join(pre), "\n".join(post)
@CatchException
def 全项目切换英文(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys_prompt, web_port):
# 第1步清空历史,以免输入溢出
history = []
# 第2步尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
except:
report_execption(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 第3步集合文件
import time, glob, os, shutil, re
os.makedirs('gpt_log/generated_english_version', exist_ok=True)
os.makedirs('gpt_log/generated_english_version/crazy_functions', exist_ok=True)
file_manifest = [f for f in glob.glob('./*.py') if ('test_project' not in f) and ('gpt_log' not in f)] + \
[f for f in glob.glob('./crazy_functions/*.py') if ('test_project' not in f) and ('gpt_log' not in f)]
# file_manifest = ['./toolbox.py']
i_say_show_user_buffer = []
# 第4步随便显示点什么防止卡顿的感觉
for index, fp in enumerate(file_manifest):
# if 'test_project' in fp: continue
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
i_say_show_user =f'[{index}/{len(file_manifest)}] 接下来请将以下代码中包含的所有中文转化为英文,只输出转化后的英文代码,请用代码块输出代码: {os.path.abspath(fp)}'
i_say_show_user_buffer.append(i_say_show_user)
chatbot.append((i_say_show_user, "[Local Message] 等待多线程操作,中间过程不予显示."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 第5步Token限制下的截断与处理
MAX_TOKEN = 3000
from request_llm.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_fn(txt): return len(enc.encode(txt, disallowed_special=()))
# 第6步任务函数
mutable_return = [None for _ in file_manifest]
observe_window = [[""] for _ in file_manifest]
def thread_worker(fp,index):
if index > 10:
time.sleep(60)
print('Openai 限制免费用户每分钟20次请求,降低请求频率中。')
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
i_say_template = lambda fp, file_content: f'接下来请将以下代码中包含的所有中文转化为英文,只输出代码,文件名是{fp},文件代码是 ```{file_content}```'
try:
gpt_say = ""
# 分解代码文件
file_content_breakdown = breakdown_txt_to_satisfy_token_limit(file_content, get_token_fn, MAX_TOKEN)
for file_content_partial in file_content_breakdown:
i_say = i_say_template(fp, file_content_partial)
# # ** gpt request **
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=observe_window[index])
gpt_say_partial = extract_code_block_carefully(gpt_say_partial)
gpt_say += gpt_say_partial
mutable_return[index] = gpt_say
except ConnectionAbortedError as token_exceed_err:
print('至少一个线程任务Token溢出而失败', e)
except Exception as e:
print('至少一个线程任务意外失败', e)
# 第7步所有线程同时开始执行任务函数
handles = [threading.Thread(target=thread_worker, args=(fp,index)) for index, fp in enumerate(file_manifest)]
for h in handles:
h.daemon = True
h.start()
chatbot.append(('开始了吗?', f'多线程操作已经开始'))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 第8步循环轮询各个线程是否执行完毕
cnt = 0
while True:
cnt += 1
time.sleep(0.2)
th_alive = [h.is_alive() for h in handles]
if not any(th_alive): break
# 更好的UI视觉效果
observe_win = []
for thread_index, alive in enumerate(th_alive):
observe_win.append("[ ..."+observe_window[thread_index][0][-60:].replace('\n','').replace('```','...').replace(' ','.').replace('<br/>','.....').replace('$','.')+"... ]")
stat = [f'执行中: {obs}\n\n' if alive else '已完成\n\n' for alive, obs in zip(th_alive, observe_win)]
stat_str = ''.join(stat)
chatbot[-1] = (chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt%10+1)))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 第9步把结果写入文件
for index, h in enumerate(handles):
h.join() # 这里其实不需要join了,肯定已经都结束了
fp = file_manifest[index]
gpt_say = mutable_return[index]
i_say_show_user = i_say_show_user_buffer[index]
where_to_relocate = f'gpt_log/generated_english_version/{fp}'
if gpt_say is not None:
with open(where_to_relocate, 'w+', encoding='utf-8') as f:
f.write(gpt_say)
else: # 失败
shutil.copyfile(file_manifest[index], where_to_relocate)
chatbot.append((i_say_show_user, f'[Local Message] 已完成{os.path.abspath(fp)}的转化,\n\n存入{os.path.abspath(where_to_relocate)}'))
history.append(i_say_show_user); history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
time.sleep(1)
# 第10步备份一个文件
res = write_results_to_file(history)
chatbot.append(("生成一份任务执行报告", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

查看文件

@@ -139,7 +139,7 @@ def get_recent_file_prompt_support(chatbot):
return path
@CatchException
def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
@@ -147,7 +147,7 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
web_port 当前软件运行的端口号
"""
# 清空历史

查看文件

@@ -4,7 +4,7 @@ from .crazy_utils import input_clipping
import copy, json
@CatchException
def 命令行助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 命令行助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本, 例如需要翻译的一段话, 再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数, 如温度和top_p等, 一般原样传递下去就行
@@ -12,7 +12,7 @@ def 命令行助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
chatbot 聊天显示框的句柄, 用于显示给用户
history 聊天历史, 前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
web_port 当前软件运行的端口号
"""
# 清空历史, 以免输入溢出
history = []

查看文件

@@ -93,7 +93,7 @@ def edit_image(llm_kwargs, prompt, image_path, resolution="1024x1024", model="da
@CatchException
def 图片生成_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 图片生成_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
@@ -101,7 +101,7 @@ def 图片生成_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, sys
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
if prompt.strip() == "":
@@ -123,7 +123,7 @@ def 图片生成_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, sys
@CatchException
def 图片生成_DALLE3(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 图片生成_DALLE3(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
if prompt.strip() == "":
chatbot.append((prompt, "[Local Message] 图像生成提示为空白,请在“输入区”输入图像生成提示。"))
@@ -209,7 +209,7 @@ class ImageEditState(GptAcademicState):
return all([x['value'] is not None for x in self.req])
@CatchException
def 图片修改_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 图片修改_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 尚未完成
history = [] # 清空历史
state = ImageEditState.get_state(chatbot, ImageEditState)

查看文件

@@ -21,7 +21,7 @@ def remove_model_prefix(llm):
@CatchException
def 多智能体终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 多智能体终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
@@ -29,7 +29,7 @@ def 多智能体终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
web_port 当前软件运行的端口号
"""
# 检查当前的模型是否符合要求
supported_llms = [
@@ -50,7 +50,14 @@ def 多智能体终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
return
if model_info[llm_kwargs['llm_model']]["endpoint"] is not None: # 如果不是本地模型,加载API_KEY
llm_kwargs['api_key'] = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
# 检查当前的模型是否符合要求
API_URL_REDIRECT = get_conf('API_URL_REDIRECT')
if len(API_URL_REDIRECT) > 0:
chatbot.append([f"处理任务: {txt}", f"暂不支持中转."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import autogen
@@ -89,7 +96,7 @@ def 多智能体终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
history = []
chatbot.append(["正在启动: 多智能体终端", "插件动态生成, 执行开始, 作者 Microsoft & Binary-Husky."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
executor = AutoGenMath(llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
executor = AutoGenMath(llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port)
persistent_class_multi_user_manager.set(persistent_key, executor)
exit_reason = yield from executor.main_process_ui_control(txt, create_or_resume="create")

查看文件

@@ -69,7 +69,7 @@ def read_file_to_chat(chatbot, history, file_name):
return chatbot, history
@CatchException
def 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
@@ -77,7 +77,7 @@ def 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
web_port 当前软件运行的端口号
"""
chatbot.append(("保存当前对话",
@@ -91,7 +91,7 @@ def hide_cwd(str):
return str.replace(current_path, replace_path)
@CatchException
def 载入对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 载入对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
@@ -99,7 +99,7 @@ def 载入对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
web_port 当前软件运行的端口号
"""
from .crazy_utils import get_files_from_everything
success, file_manifest, _ = get_files_from_everything(txt, type='.html')
@@ -126,7 +126,7 @@ def 载入对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
return
@CatchException
def 删除所有本地对话历史记录(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 删除所有本地对话历史记录(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
@@ -134,7 +134,7 @@ def 删除所有本地对话历史记录(txt, llm_kwargs, plugin_kwargs, chatbot
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
web_port 当前软件运行的端口号
"""
import glob, os

查看文件

@@ -79,7 +79,7 @@ def 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot
@CatchException
def 总结word文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 总结word文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
import glob, os
# 基本信息:功能、贡献者

查看文件

@@ -153,7 +153,7 @@ def get_files_from_everything(txt, preference=''):
@CatchException
def Markdown英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def Markdown英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
@@ -193,7 +193,7 @@ def Markdown英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
@CatchException
def Markdown中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def Markdown中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
@@ -226,7 +226,7 @@ def Markdown中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
@CatchException
def Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",

查看文件

@@ -101,7 +101,7 @@ do not have too much repetitive information, numerical values using the original
@CatchException
def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
import glob, os
# 基本信息:功能、贡献者

查看文件

@@ -124,7 +124,7 @@ def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbo
@CatchException
def 批量总结PDF文档pdfminer(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 批量总结PDF文档pdfminer(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os

查看文件

@@ -48,7 +48,7 @@ def markdown_to_dict(article_content):
@CatchException
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
disable_auto_promotion(chatbot)
# 基本信息:功能、贡献者

查看文件

@@ -10,7 +10,7 @@ import os
@CatchException
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
disable_auto_promotion(chatbot)
# 基本信息:功能、贡献者

查看文件

@@ -1,7 +1,6 @@
import os
from toolbox import CatchException, update_ui, gen_time_str, promote_file_to_downloadzone
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from crazy_functions.crazy_utils import input_clipping
from toolbox import CatchException, update_ui, gen_time_str
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import input_clipping
def inspect_dependency(chatbot, history):
# 尝试导入依赖,如果缺少依赖,则给出安装建议
@@ -28,10 +27,9 @@ def eval_manim(code):
class_name = get_class_name(code)
try:
time_str = gen_time_str()
subprocess.check_output([sys.executable, '-c', f"from gpt_log.MyAnimation import {class_name}; {class_name}().render()"])
shutil.move(f'media/videos/1080p60/{class_name}.mp4', f'gpt_log/{class_name}-{time_str}.mp4')
return f'gpt_log/{time_str}.mp4'
shutil.move('media/videos/1080p60/{class_name}.mp4', f'gpt_log/{class_name}-{gen_time_str()}.mp4')
return f'gpt_log/{gen_time_str()}.mp4'
except subprocess.CalledProcessError as e:
output = e.output.decode()
print(f"Command returned non-zero exit status {e.returncode}: {output}.")
@@ -50,7 +48,7 @@ def get_code_block(reply):
return matches[0].strip('python') # code block
@CatchException
def 动画生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 动画生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
@@ -58,7 +56,7 @@ def 动画生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
web_port 当前软件运行的端口号
"""
# 清空历史,以免输入溢出
history = []
@@ -96,8 +94,6 @@ def 动画生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
res = eval_manim(code)
chatbot.append(("生成的视频文件路径", res))
if os.path.exists(res):
promote_file_to_downloadzone(res, chatbot=chatbot)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
# 在这里放一些网上搜集的demo,辅助gpt生成代码

查看文件

@@ -63,7 +63,7 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
@CatchException
def 理解PDF文档内容标准文件输入(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 理解PDF文档内容标准文件输入(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
import glob, os
# 基本信息:功能、贡献者

查看文件

@@ -36,7 +36,7 @@ def 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
@CatchException
def 批量生成函数注释(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 批量生成函数注释(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):

查看文件

@@ -1,296 +0,0 @@
from toolbox import CatchException, update_ui, report_exception
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
import datetime
#以下是每类图表的PROMPT
SELECT_PROMPT = """
{subject}
=============
以上是从文章中提取的摘要,将会使用这些摘要绘制图表。请你选择一个合适的图表类型:
1 流程图
2 序列图
3 类图
4 饼图
5 甘特图
6 状态图
7 实体关系图
8 象限提示图
不需要解释原因,仅需要输出单个不带任何标点符号的数字。
"""
#没有思维导图!!!测试发现模型始终会优先选择思维导图
#流程图
PROMPT_1 = """
请你给出围绕“{subject}”的逻辑关系图,使用mermaid语法,mermaid语法举例
```mermaid
graph TD
P(编程) --> L1(Python)
P(编程) --> L2(C)
P(编程) --> L3(C++)
P(编程) --> L4(Javascipt)
P(编程) --> L5(PHP)
```
"""
#序列图
PROMPT_2 = """
请你给出围绕“{subject}”的序列图,使用mermaid语法,mermaid语法举例
```mermaid
sequenceDiagram
participant A as 用户
participant B as 系统
A->>B: 登录请求
B->>A: 登录成功
A->>B: 获取数据
B->>A: 返回数据
```
"""
#类图
PROMPT_3 = """
请你给出围绕“{subject}”的类图,使用mermaid语法,mermaid语法举例
```mermaid
classDiagram
Class01 <|-- AveryLongClass : Cool
Class03 *-- Class04
Class05 o-- Class06
Class07 .. Class08
Class09 --> C2 : Where am i?
Class09 --* C3
Class09 --|> Class07
Class07 : equals()
Class07 : Object[] elementData
Class01 : size()
Class01 : int chimp
Class01 : int gorilla
Class08 <--> C2: Cool label
```
"""
#饼图
PROMPT_4 = """
请你给出围绕“{subject}”的饼图,使用mermaid语法,mermaid语法举例
```mermaid
pie title Pets adopted by volunteers
"" : 386
"" : 85
"兔子" : 15
```
"""
#甘特图
PROMPT_5 = """
请你给出围绕“{subject}”的甘特图,使用mermaid语法,mermaid语法举例
```mermaid
gantt
title 项目开发流程
dateFormat YYYY-MM-DD
section 设计
需求分析 :done, des1, 2024-01-06,2024-01-08
原型设计 :active, des2, 2024-01-09, 3d
UI设计 : des3, after des2, 5d
section 开发
前端开发 :2024-01-20, 10d
后端开发 :2024-01-20, 10d
```
"""
#状态图
PROMPT_6 = """
请你给出围绕“{subject}”的状态图,使用mermaid语法,mermaid语法举例
```mermaid
stateDiagram-v2
[*] --> Still
Still --> [*]
Still --> Moving
Moving --> Still
Moving --> Crash
Crash --> [*]
```
"""
#实体关系图
PROMPT_7 = """
请你给出围绕“{subject}”的实体关系图,使用mermaid语法,mermaid语法举例
```mermaid
erDiagram
CUSTOMER ||--o{ ORDER : places
ORDER ||--|{ LINE-ITEM : contains
CUSTOMER {
string name
string id
}
ORDER {
string orderNumber
date orderDate
string customerID
}
LINE-ITEM {
number quantity
string productID
}
```
"""
#象限提示图
PROMPT_8 = """
请你给出围绕“{subject}”的象限图,使用mermaid语法,mermaid语法举例
```mermaid
graph LR
A[Hard skill] --> B(Programming)
A[Hard skill] --> C(Design)
D[Soft skill] --> E(Coordination)
D[Soft skill] --> F(Communication)
```
"""
#思维导图
PROMPT_9 = """
{subject}
==========
请给出上方内容的思维导图,充分考虑其之间的逻辑,使用mermaid语法,mermaid语法举例
```mermaid
mindmap
root((mindmap))
Origins
Long history
::icon(fa fa-book)
Popularisation
British popular psychology author Tony Buzan
Research
On effectiveness<br/>and features
On Automatic creation
Uses
Creative techniques
Strategic planning
Argument mapping
Tools
Pen and paper
Mermaid
```
"""
def 解析历史输入(history,llm_kwargs,file_manifest,chatbot,plugin_kwargs):
############################## <第 0 步,切割输入> ##################################
# 借用PDF切割中的函数对文本进行切割
TOKEN_LIMIT_PER_FRAGMENT = 2500
txt = str(history).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
txt = breakdown_text_to_satisfy_token_limit(txt=txt, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
############################## <第 1 步,迭代地历遍整个文章,提取精炼信息> ##################################
results = []
MAX_WORD_TOTAL = 4096
n_txt = len(txt)
last_iteration_result = "从以下文本中提取摘要。"
if n_txt >= 20: print('文章极长,不能达到预期效果')
for i in range(n_txt):
NUM_OF_WORD = MAX_WORD_TOTAL // n_txt
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words in Chinese: {txt[i]}"
i_say_show_user = f"[{i+1}/{n_txt}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {txt[i][:200]} ...."
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
llm_kwargs, chatbot,
history=["The main content of the previous section is?", last_iteration_result], # 迭代上一次的结果
sys_prompt="Extracts the main content from the text section where it is located for graphing purposes, answer me with Chinese." # 提示
)
results.append(gpt_say)
last_iteration_result = gpt_say
############################## <第 2 步,根据整理的摘要选择图表类型> ##################################
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
gpt_say = plugin_kwargs.get("advanced_arg", "") #将图表类型参数赋值为插件参数
results_txt = '\n'.join(results) #合并摘要
if gpt_say not in ['1','2','3','4','5','6','7','8','9']: #如插件参数不正确则使用对话模型判断
i_say_show_user = f'接下来将判断适合的图表类型,如连续3次判断失败将会使用流程图进行绘制'; gpt_say = "[Local Message] 收到。" # 用户提示
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=[]) # 更新UI
i_say = SELECT_PROMPT.format(subject=results_txt)
i_say_show_user = f'请判断适合使用的流程图类型,其中数字对应关系为:1-流程图,2-序列图,3-类图,4-饼图,5-甘特图,6-状态图,7-实体关系图,8-象限提示图。由于不管提供文本是什么,模型大概率认为"思维导图"最合适,因此思维导图仅能通过参数调用。'
for i in range(3):
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say_show_user,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
sys_prompt=""
)
if gpt_say in ['1','2','3','4','5','6','7','8','9']: #判断返回是否正确
break
if gpt_say not in ['1','2','3','4','5','6','7','8','9']:
gpt_say = '1'
############################## <第 3 步,根据选择的图表类型绘制图表> ##################################
if gpt_say == '1':
i_say = PROMPT_1.format(subject=results_txt)
elif gpt_say == '2':
i_say = PROMPT_2.format(subject=results_txt)
elif gpt_say == '3':
i_say = PROMPT_3.format(subject=results_txt)
elif gpt_say == '4':
i_say = PROMPT_4.format(subject=results_txt)
elif gpt_say == '5':
i_say = PROMPT_5.format(subject=results_txt)
elif gpt_say == '6':
i_say = PROMPT_6.format(subject=results_txt)
elif gpt_say == '7':
i_say = PROMPT_7.replace("{subject}", results_txt) #由于实体关系图用到了{}符号
elif gpt_say == '8':
i_say = PROMPT_8.format(subject=results_txt)
elif gpt_say == '9':
i_say = PROMPT_9.format(subject=results_txt)
i_say_show_user = f'请根据判断结果绘制相应的图表。如需绘制思维导图请使用参数调用,同时过大的图表可能需要复制到在线编辑器中进行渲染。'
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say_show_user,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
sys_prompt=""
)
history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
@CatchException
def 生成多种Mermaid图表(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数,用于灵活调整复杂功能的各种参数
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
import os
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"根据当前聊天历史或指定的路径文件(文件内容优先)绘制多种mermaid图表,将会由对话模型首先判断适合的图表类型,随后绘制图表。\
\n您也可以使用插件参数指定绘制的图表类型,函数插件贡献者: Menghuan1918"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if os.path.exists(txt): #如输入区无内容则直接解析历史记录
from crazy_functions.pdf_fns.parse_word import extract_text_from_files
file_exist, final_result, page_one, file_manifest, excption = extract_text_from_files(txt, chatbot, history)
else:
file_exist = False
excption = ""
file_manifest = []
if excption != "":
if excption == "word":
report_exception(chatbot, history,
a = f"解析项目: {txt}",
b = f"找到了.doc文件,但是该文件格式不被支持,请先转化为.docx格式。")
elif excption == "pdf":
report_exception(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
elif excption == "word_pip":
report_exception(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade python-docx pywin32```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
else:
if not file_exist:
history.append(txt) #如输入区不是文件则将输入区内容加入历史记录
i_say_show_user = f'首先你从历史记录中提取摘要。'; gpt_say = "[Local Message] 收到。" # 用户提示
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=history) # 更新UI
yield from 解析历史输入(history,llm_kwargs,file_manifest,chatbot,plugin_kwargs)
else:
file_num = len(file_manifest)
for i in range(file_num): #依次处理文件
i_say_show_user = f"[{i+1}/{file_num}]处理文件{file_manifest[i]}"; gpt_say = "[Local Message] 收到。" # 用户提示
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=history) # 更新UI
history = [] #如输入区内容为文件则清空历史记录
history.append(final_result[i])
yield from 解析历史输入(history,llm_kwargs,file_manifest,chatbot,plugin_kwargs)

查看文件

@@ -13,7 +13,7 @@ install_msg ="""
"""
@CatchException
def 知识库文件注入(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 知识库文件注入(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数, 如温度和top_p等, 一般原样传递下去就行
@@ -21,7 +21,7 @@ def 知识库文件注入(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
@@ -84,7 +84,7 @@ def 知识库文件注入(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
@CatchException
def 读取知识库作答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request=-1):
def 读取知识库作答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port=-1):
# resolve deps
try:
# from zh_langchain import construct_vector_store

查看文件

@@ -55,7 +55,7 @@ def scrape_text(url, proxies) -> str:
return text
@CatchException
def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
@@ -63,7 +63,7 @@ def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
chatbot.append((f"请结合互联网信息回答以下问题:{txt}",

查看文件

@@ -55,7 +55,7 @@ def scrape_text(url, proxies) -> str:
return text
@CatchException
def 连接bing搜索回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 连接bing搜索回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
@@ -63,7 +63,7 @@ def 连接bing搜索回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, histor
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
chatbot.append((f"请结合互联网信息回答以下问题:{txt}",

查看文件

@@ -104,7 +104,7 @@ def analyze_intention_with_simple_rules(txt):
@CatchException
def 虚空终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 虚空终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
disable_auto_promotion(chatbot=chatbot)
# 获取当前虚空终端状态
state = VoidTerminalState.get_state(chatbot)
@@ -121,7 +121,7 @@ def 虚空终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
state.set_state(chatbot=chatbot, key='has_provided_explaination', value=True)
state.unlock_plugin(chatbot=chatbot)
yield from update_ui(chatbot=chatbot, history=history)
yield from 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
yield from 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port)
return
else:
# 如果意图模糊,提示
@@ -133,7 +133,7 @@ def 虚空终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
def 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = []
chatbot.append(("虚空终端状态: ", f"正在执行任务: {txt}"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

查看文件

@@ -12,12 +12,6 @@ class PaperFileGroup():
self.sp_file_index = []
self.sp_file_tag = []
# count_token
from request_llms.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
self.get_token_num = get_token_num
def run_file_split(self, max_token_limit=1900):
"""
将长文本分离开来
@@ -60,7 +54,7 @@ def parseNotebook(filename, enable_markdown=1):
Code += f"This is {idx+1}th code block: \n"
Code += code+"\n"
return Code
return Code
def ipynb解释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
@@ -115,7 +109,7 @@ def ipynb解释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbo
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@CatchException
def 解析ipynb文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 解析ipynb文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
chatbot.append([
"函数插件功能?",
"对IPynb文件进行解析。Contributor: codycjy."])

查看文件

@@ -83,8 +83,7 @@ def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
history=this_iteration_history_feed, # 迭代之前的分析
sys_prompt="你是一个程序架构分析师,正在分析一个项目的源代码。" + sys_prompt_additional)
diagram_code = make_diagram(this_iteration_files, result, this_iteration_history_feed)
summary = "请用一句话概括这些文件的整体功能。\n\n" + diagram_code
summary = "请用一句话概括这些文件的整体功能"
summary_result = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=summary,
inputs_show_user=summary,
@@ -105,12 +104,9 @@ def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
chatbot.append(("完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history_to_return) # 刷新界面
def make_diagram(this_iteration_files, result, this_iteration_history_feed):
from crazy_functions.diagram_fns.file_tree import build_file_tree_mermaid_diagram
return build_file_tree_mermaid_diagram(this_iteration_history_feed[0::2], this_iteration_history_feed[1::2], "项目示意图")
@CatchException
def 解析项目本身(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 解析项目本身(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob
file_manifest = [f for f in glob.glob('./*.py')] + \
@@ -123,7 +119,7 @@ def 解析项目本身(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 解析一个Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -141,7 +137,7 @@ def 解析一个Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个Matlab项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 解析一个Matlab项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -159,7 +155,7 @@ def 解析一个Matlab项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个C项目的头文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 解析一个C项目的头文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -179,7 +175,7 @@ def 解析一个C项目的头文件(txt, llm_kwargs, plugin_kwargs, chatbot, his
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个C项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 解析一个C项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -201,7 +197,7 @@ def 解析一个C项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system
@CatchException
def 解析一个Java项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 解析一个Java项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -223,7 +219,7 @@ def 解析一个Java项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys
@CatchException
def 解析一个前端项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 解析一个前端项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -252,7 +248,7 @@ def 解析一个前端项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
@CatchException
def 解析一个Golang项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 解析一个Golang项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -273,7 +269,7 @@ def 解析一个Golang项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个Rust项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 解析一个Rust项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -293,7 +289,7 @@ def 解析一个Rust项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个Lua项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 解析一个Lua项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -315,7 +311,7 @@ def 解析一个Lua项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
@CatchException
def 解析一个CSharp项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 解析一个CSharp项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -335,7 +331,7 @@ def 解析一个CSharp项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
@CatchException
def 解析任意code项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 解析任意code项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
txt_pattern = plugin_kwargs.get("advanced_arg")
txt_pattern = txt_pattern.replace("", ",")
# 将要匹配的模式(例如: *.c, *.cpp, *.py, config.toml)

查看文件

@@ -2,7 +2,7 @@ from toolbox import CatchException, update_ui, get_conf
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
import datetime
@CatchException
def 同时问询(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 同时问询(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
@@ -10,7 +10,7 @@ def 同时问询(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
MULTI_QUERY_LLM_MODELS = get_conf('MULTI_QUERY_LLM_MODELS')
@@ -32,7 +32,7 @@ def 同时问询(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
@CatchException
def 同时问询_指定模型(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 同时问询_指定模型(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
@@ -40,7 +40,7 @@ def 同时问询_指定模型(txt, llm_kwargs, plugin_kwargs, chatbot, history,
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出

查看文件

@@ -166,7 +166,7 @@ class InterviewAssistant(AliyunASR):
@CatchException
def 语音助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 语音助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# pip install -U openai-whisper
chatbot.append(["对话助手函数插件:使用时,双手离开鼠标键盘吧", "音频助手, 正在听您讲话(点击“停止”键可终止程序)..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

查看文件

@@ -44,7 +44,7 @@ def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbo
@CatchException
def 读文章写摘要(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 读文章写摘要(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):

查看文件

@@ -132,7 +132,7 @@ def get_meta_information(url, chatbot, history):
return profile
@CatchException
def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
disable_auto_promotion(chatbot=chatbot)
# 基本信息:功能、贡献者
chatbot.append([

查看文件

@@ -11,7 +11,7 @@ import os
@CatchException
def 猜你想问(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 猜你想问(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
if txt:
show_say = txt
prompt = txt+'\n回答完问题后,再列出用户可能提出的三个问题。'
@@ -32,7 +32,7 @@ def 猜你想问(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
@CatchException
def 清除缓存(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 清除缓存(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
chatbot.append(['清除本地缓存数据', '执行中. 删除数据'])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

查看文件

@@ -1,28 +0,0 @@
# encoding: utf-8
# @Time : 2023/4/19
# @Author : Spike
# @Descr :
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
@CatchException
def 猜你想问(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
if txt:
show_say = txt
prompt = txt+'\n回答完问题后,再列出用户可能提出的三个问题。'
else:
prompt = history[-1]+"\n分析上述回答,再列出用户可能提出的三个问题。"
show_say = '分析上述回答,再列出用户可能提出的三个问题。'
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=prompt,
inputs_show_user=show_say,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=history,
sys_prompt=system_prompt
)
chatbot[-1] = (show_say, gpt_say)
history.extend([show_say, gpt_say])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

查看文件

@@ -1,47 +1,19 @@
from toolbox import CatchException, update_ui
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
import datetime
高阶功能模板函数示意图 = f"""
```mermaid
flowchart TD
%% <gpt_academic_hide_mermaid_code> 一个特殊标记,用于在生成mermaid图表时隐藏代码块
subgraph 函数调用["函数调用过程"]
AA["输入栏用户输入的文本(txt)"] --> BB["gpt模型参数(llm_kwargs)"]
BB --> CC["插件模型参数(plugin_kwargs)"]
CC --> DD["对话显示框的句柄(chatbot)"]
DD --> EE["对话历史(history)"]
EE --> FF["系统提示词(system_prompt)"]
FF --> GG["当前用户信息(web_port)"]
A["开始(查询5天历史事件)"]
A --> B["获取当前月份和日期"]
B --> C["生成历史事件查询提示词"]
C --> D["调用大模型"]
D --> E["更新界面"]
E --> F["记录历史"]
F --> |"下一天"| B
end
```
"""
@CatchException
def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
# 高阶功能模板函数示意图https://mermaid.live/edit#pako:eNptk1tvEkEYhv8KmattQpvlvOyFCcdeeaVXuoYssBwie8gyhCIlqVoLhrbbtAWNUpEGUkyMEDW2Fmn_DDOL_8LZHdOwxrnamX3f7_3mmZk6yKhZCfAgV1KrmYKoQ9fDuKC4yChX0nld1Aou1JzjznQ5fWmejh8LYHW6vG2a47YAnlCLNSIRolnenKBXI_zRIBrcuqRT890u7jZx7zMDt-AaMbnW1--5olGiz2sQjwfoQxsZL0hxplSSU0-rop4vrzmKR6O2JxYjHmwcL2Y_HDatVMkXlf86YzHbGY9bO5j8XE7O8Nsbc3iNB3ukL2SMcH-XIQBgWoVOZzxuOxOJOyc63EPGV6ZQLENVrznViYStTiaJ2vw2M2d9bByRnOXkgCnXylCSU5quyto_IcmkbdvctELmJ-j1ASW3uB3g5xOmKqVTmqr_Na3AtuS_dtBFm8H90XJyHkDDT7S9xXWb4HGmRChx64AOL5HRpUm411rM5uh4H78Z4V7fCZzytjZz2seto9XaNPFue07clLaVZF8UNLygJ-VES8lah_n-O-5Ozc7-77NzJ0-K0yr0ZYrmHdqAk50t2RbA4qq9uNohBASw7YpSgaRkLWCCAtxAlnRZLGbJba9bPwUAC5IsCYAnn1kpJ1ZKUACC0iBSsQLVBzUlA3ioVyQ3qGhZEUrxokiehAz4nFgqk1VNVABfB1uAD_g2_AGPl-W8nMcbCvsDblADfNCz4feyobDPy3rYEMtxwYYbPFNVUoHdCPmDHBv2cP4AMfrCbiBli-Q-3afv0X6WdsIjW2-10fgDy1SAig
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数,用于灵活调整复杂功能的各种参数
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
chatbot.append((
"您正在调用插件:历史上的今天",
"[Local Message] 请注意,您正在调用一个[函数插件]的模板,该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板该函数只有20多行代码。此外我们也提供可同步处理大量文件的多线程Demo供您参考。您若希望分享新的功能模组,请不吝PR" + 高阶功能模板函数示意图))
chatbot.append(("这是什么功能?", "[Local Message] 请注意,您正在调用一个[函数插件]的模板,该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板该函数只有20多行代码。此外我们也提供可同步处理大量文件的多线程Demo供您参考。您若希望分享新的功能模组,请不吝PR"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
for i in range(5):
currentMonth = (datetime.date.today() + datetime.timedelta(days=i)).month
@@ -54,46 +26,4 @@ def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
)
chatbot[-1] = (i_say, gpt_say)
history.append(i_say);history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
PROMPT = """
请你给出围绕“{subject}”的逻辑关系图,使用mermaid语法,mermaid语法举例
```mermaid
graph TD
P(编程) --> L1(Python)
P(编程) --> L2(C)
P(编程) --> L3(C++)
P(编程) --> L4(Javascipt)
P(编程) --> L5(PHP)
```
"""
@CatchException
def 测试图表渲染(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数,用于灵活调整复杂功能的各种参数
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
"""
history = [] # 清空历史,以免输入溢出
chatbot.append(("这是什么功能?", "一个测试mermaid绘制图表的功能,您可以在输入框中输入一些关键词,然后使用mermaid+llm绘制图表。"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
if txt == "": txt = "空白的输入栏" # 调皮一下
i_say_show_user = f'请绘制有关“{txt}”的逻辑关系图。'
i_say = PROMPT.format(subject=txt)
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say_show_user,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
sys_prompt=""
)
history.append(i_say); history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新

查看文件

@@ -13,7 +13,7 @@ COPY . .
RUN pip3 install -r requirements.txt
# 安装语音插件的额外依赖
RUN pip3 install aliyun-python-sdk-core==2.13.3 pyOpenSSL webrtcvad scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
RUN pip3 install pyOpenSSL scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
# 可选步骤,用于预热模块
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'

查看文件

@@ -10,9 +10,6 @@ ENV PATH "$PATH:/usr/local/texlive/2024/bin/x86_64-linux"
ENV PATH "$PATH:/usr/local/texlive/2025/bin/x86_64-linux"
ENV PATH "$PATH:/usr/local/texlive/2026/bin/x86_64-linux"
# 删除文档文件以节约空间
RUN rm -rf /usr/local/texlive/2023/texmf-dist/doc
# 指定路径
WORKDIR /gpt

查看文件

@@ -1,307 +0,0 @@
> **Hinweis**
>
> Bei der Installation von Abhängigkeiten sollten nur die in **requirements.txt** **angegebenen Versionen** streng ausgewählt werden.
>
> `pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/`
# <img src="docs/logo.png" width="40" > GPT Akademisch optimiert (GPT Academic)
**Wenn Ihnen dieses Projekt gefällt, geben Sie ihm bitte einen Stern; wenn Sie bessere Tastenkombinationen oder Funktions-Plugins entwickelt haben, können Sie gerne einen Pull Request eröffnen.**
Wenn Sie dieses Projekt mögen, geben Sie ihm bitte einen Stern. Wenn Sie weitere nützliche wissenschaftliche Abkürzungen oder funktionale Plugins entwickelt haben, können Sie gerne ein Problem oder eine Pull-Anforderung öffnen. Wir haben auch ein README in [Englisch|](docs/README_EN.md)[日本語|](docs/README_JP.md)[한국어|](https://github.com/mldljyh/ko_gpt_academic)[Русский|](docs/README_RS.md)[Français](docs/README_FR.md), das von diesem Projekt selbst übersetzt wurde.
Um dieses Projekt in eine beliebige Sprache mit GPT zu übersetzen, lesen Sie `multi_language.py` (experimentell).
> **Hinweis**
>
> 1. Beachten Sie bitte, dass nur Funktionserweiterungen (Schaltflächen) mit **roter Farbe** Dateien lesen können und einige Erweiterungen im **Dropdown-Menü** des Erweiterungsbereichs zu finden sind. Außerdem begrüßen wir jede neue Funktionserweiterung mit **höchster Priorität** und bearbeiten sie.
>
> 2. Die Funktionalität jeder Datei in diesem Projekt wird in der Selbstanalyse [`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A) detailliert beschrieben. Mit der Weiterentwicklung der Versionen können Sie jederzeit die zugehörigen Funktions-Erweiterungen aufrufen, um durch Aufruf von GPT einen Selbstanalysebericht des Projekts zu erstellen. Häufig gestellte Fragen finden Sie in der [`Wiki`](https://github.com/binary-husky/gpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98). [Installationsanweisungen](#Installation).
>
> 3. Dieses Projekt ist kompatibel und fördert die Verwendung von inländischen Sprachmodellen wie ChatGLM und RWKV, Pangu, etc. Es unterstützt das Vorhandensein mehrerer api-keys, die in der Konfigurationsdatei wie folgt angegeben werden können: `API_KEY="openai-key1,openai-key2,api2d-key3"`. Wenn ein `API_KEY` temporär geändert werden muss, geben Sie den temporären `API_KEY` im Eingabebereich ein und drücken Sie dann die Eingabetaste, um ihn zu übernehmen.Funktion | Beschreibung
--- | ---
Ein-Klick-Polieren | Unterstützt ein-Klick-Polieren und ein-Klick-Suche nach grammatikalischen Fehlern in wissenschaftlichen Arbeiten
Ein-Klick Chinesisch-Englisch Übersetzung | Ein-Klick Chinesisch-Englisch Übersetzung
Ein-Klick-Code-Erklärung | Zeigt Code, erklärt Code, erzeugt Code und fügt Kommentare zum Code hinzu
[Benutzerdefinierte Tastenkombinationen](https://www.bilibili.com/video/BV14s4y1E7jN) | Unterstützt benutzerdefinierte Tastenkombinationen
Modulare Gestaltung | Unterstützt leistungsstarke individuelle [Funktions-Plugins](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions). Plugins unterstützen [Hot-Updates](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[Selbstprogramm-Analyse](https://www.bilibili.com/video/BV1cj411A7VW) | [Funktions-Plugin] [Ein-Klick Verstehen](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A) der Quellcode dieses Projekts
[Programmanalyse](https://www.bilibili.com/video/BV1cj411A7VW) | [Funktions-Plugin] Ein-Klick-Analyse des Projektbaums anderer Python/C/C++/Java/Lua/...-Projekte
Lesen von Papieren, [Übersetzen](https://www.bilibili.com/video/BV1KT411x7Wn) von Papieren | [Funktions-Plugin] Ein-Klick Erklärung des gesamten LaTeX/PDF-Artikels und Erstellung einer Zusammenfassung
LaTeX-Volltext-Übersetzung und [Polieren](https://www.bilibili.com/video/BV1FT411H7c5/) | [Funktions-Plugin] Ein-Klick-Übersetzung oder-Polieren des LaTeX-Artikels
Bulk-Kommentargenerierung | [Funktions-Plugin] Ein-Klick Massenerstellung von Funktionskommentaren
Markdown [Chinesisch-Englisch Übersetzung](https://www.bilibili.com/video/BV1yo4y157jV/) | [Funktions-Plugin] Haben Sie die [README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md) in den oben genannten 5 Sprachen gesehen?
Analyse-Berichtserstellung von chat | [Funktions-Plugin] Automatische Zusammenfassung nach der Ausführung
[Funktion zur vollständigen Übersetzung von PDF-Artikeln](https://www.bilibili.com/video/BV1KT411x7Wn) | [Funktions-Plugin] Extrahiert Titel und Zusammenfassung der PDF-Artikel und übersetzt den gesamten Text (mehrere Threads)
[Arxiv-Assistent](https://www.bilibili.com/video/BV1LM4y1279X) | [Funktions-Plugin] Geben Sie die Arxiv-Artikel-URL ein und klicken Sie auf Eine-Klick-Übersetzung-Zusammenfassung + PDF-Download
[Google Scholar Integrations-Assistent](https://www.bilibili.com/video/BV19L411U7ia) | [Funktions-Plugin] Geben Sie eine beliebige Google Scholar Such-URL ein und lassen Sie gpt Ihnen bei der Erstellung von [relatedworks](https://www.bilibili.com/video/BV1GP411U7Az/) helfen
Internet-Informationen Aggregation + GPT | [Funktions-Plugin] Lassen Sie GPT eine Frage beantworten, indem es [zuerst Informationen aus dem Internet](https://www.bilibili.com/video/BV1om4y127ck/) sammelt und so die Informationen nie veralten
Anzeige von Formeln / Bildern / Tabellen | Zeigt Formeln in beiden Formen, [TeX-Format und gerendeter Form](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png), unterstützt Formeln und Code-Highlights
Unterstützung von PlugIns mit mehreren Threads | Unterstützt den Aufruf mehrerer Threads in Chatgpt, um Text oder Programme [Batch zu verarbeiten](https://www.bilibili.com/video/BV1FT411H7c5/)
Starten Sie das dunkle Gradio-[Thema](https://github.com/binary-husky/gpt_academic/issues/173) | Fügen Sie ```/?__theme=dark``` an das Ende der Browser-URL an, um das dunkle Thema zu aktivieren
[Unterstützung für mehrere LLM-Modelle](https://www.bilibili.com/video/BV1wT411p7yf), [API2D](https://api2d.com/) Interface-Unterstützung | Das Gefühl, gleichzeitig von GPT3.5, GPT4, [Tshinghua ChatGLM](https://github.com/THUDM/ChatGLM-6B), [Fudan MOSS](https://github.com/OpenLMLab/MOSS) bedient zu werden, muss toll sein, oder?
Zugriff auf weitere LLM-Modelle, Unterstützung von [huggingface deployment](https://huggingface.co/spaces/qingxu98/gpt-academic) | Hinzufügen der Newbing-Schnittstelle (neues Bing), Einführung der Unterstützung von [Jittorllms](https://github.com/Jittor/JittorLLMs) der Tsinghua-Universität, [LLaMA](https://github.com/facebookresearch/llama), [RWKV](https://github.com/BlinkDL/ChatRWKV) und [Pangu alpha](https://openi.org.cn/pangu/)
Weitere neue Funktionen (wie Bildgenerierung) …… | Siehe Ende dieses Dokuments ……
- Neue Oberfläche (Ändern Sie die LAYOUT-Option in `config.py`, um zwischen "Seitenlayout" und "Oben-unten-Layout" zu wechseln)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230361456-61078362-a966-4eb5-b49e-3c62ef18b860.gif" width="700" >
</div>- All buttons are dynamically generated by reading `functional.py`, and custom functions can be easily added, freeing up the clipboard.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231975334-b4788e91-4887-412f-8b43-2b9c5f41d248.gif" width="700" >
</div>
- Proofreading/Correcting
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231980294-f374bdcb-3309-4560-b424-38ef39f04ebd.gif" width="700" >
</div>
- If the output contains formulas, they will be displayed in both tex format and rendered format for easy copying and reading.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700" >
</div>
- Don't feel like reading the project code? Show off the entire project to chatgpt.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700" >
</div>
- Multiple large language models are mixed and called together (ChatGLM + OpenAI-GPT3.5 + [API2D](https://api2d.com/)-GPT4).
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700" >
</div>
---
# Installation
## Installation-Method 1: Run directly (Windows, Linux or MacOS)
1. Download the project
```sh
git clone https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. Configure API_KEY
Configure API KEY and other settings in `config.py`. [Special Network Environment Settings](https://github.com/binary-husky/gpt_academic/issues/1).
(P.S. When the program is running, it will first check whether there is a "config_private.py" private configuration file, and use the configuration defined in it to override the configuration of "config.py". Therefore, if you understand our configuration reading logic, we strongly recommend that you create a new configuration file named "config_private.py" next to "config.py" and transfer (copy) the configurations in "config.py" to "config_private.py". "config_private.py" is not controlled by git, which can make your privacy information more secure. P.S. The project also supports configuring most options through `environment variables`, and the writing format of environment variables refers to the `docker-compose` file. Reading priority: `environment variable` > `config_private.py` >`config.py`)
3. Install dependencies
```sh
# (Option I: If familar with Python) (Python version 3.9 or above, the newer the better), Note: Use the official pip source or Ali pip source, temporary switching method: python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
python -m pip install -r requirements.txt
# (Option II: If not familiar with Python) Use anaconda with similar steps (https://www.bilibili.com/video/BV1rc411W7Dr):
conda create -n gptac_venv python=3.11 # Create an anaconda environment
conda activate gptac_venv # Activate the anaconda environment
python -m pip install -r requirements.txt # Same step as pip installation
```
<details><summary>Click to expand if supporting Tsinghua ChatGLM/Fudan MOSS as backend</summary>
<p>
[Optional Step] If supporting Tsinghua ChatGLM/Fudan MOSS as backend, additional dependencies need to be installed (Prerequisites: Familiar with Python + Used Pytorch + Sufficient computer configuration):
```sh
# [Optional Step I] Support Tsinghua ChatGLM. Remark: If encountering "Call ChatGLM fail Cannot load ChatGLM parameters", please refer to the following: 1: The above default installation is torch+cpu version. To use cuda, uninstall torch and reinstall torch+cuda; 2: If the model cannot be loaded due to insufficient machine configuration, you can modify the model precision in `request_llm/bridge_chatglm.py`, and modify all AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llm/requirements_chatglm.txt
# [Optional Step II] Support Fudan MOSS
python -m pip install -r request_llm/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # When executing this line of code, you must be in the project root path
# [Optional Step III] Make sure the AVAIL_LLM_MODELS in the config.py configuration file contains the expected models. Currently supported models are as follows (jittorllms series currently only supports docker solutions):
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
```
</p>
</details>
4. Run
```sh
python main.py
```5. Testing Function Plugin
```
- Test function plugin template function (requires gpt to answer what happened today in history), you can use this function as a template to implement more complex functions
Click "[Function Plugin Template Demo] Today in History"
```
## Installation-Method 2: Using Docker
1. Only ChatGPT (Recommended for most people)
``` sh
git clone https://github.com/binary-husky/gpt_academic.git # Download the project
cd gpt_academic # Enter the path
nano config.py # Edit config.py with any text editor, Configure "Proxy","API_KEY"and"WEB_PORT" (e.g 50923) etc.
docker build -t gpt-academic . # Install
# (Last step-option 1) Under Linux environment, use `--net=host` is more convenient and quick
docker run --rm -it --net=host gpt-academic
# (Last step-option 2) Under macOS/windows environment, can only use the -p option to expose the container's port(eg.50923) to the port on the host.
docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic
```
2. ChatGPT + ChatGLM + MOSS (Requires familiarity with Docker)
``` sh
# Modify docker-compose.yml, delete solution 1 and solution 3, and retain solution 2. Modify the configuration of solution 2 in docker-compose.yml, referring to the comments in it.
docker-compose up
```
3. ChatGPT+LLAMA+Pangu+RWKV(Requires familiarity with Docker)
``` sh
# Modify docker-compose.yml, delete solution 1 and solution 2, and retain solution 3. Modify the configuration of solution 3 in docker-compose.yml, referring to the comments in it.
docker-compose up
```
## Installation-Method 3: Other Deployment Options
1. How to use reverse proxy URL/Microsoft Azure API
Configure API_URL_REDIRECT according to the instructions in `config.py`.
2. Remote cloud server deployment (requires cloud server knowledge and experience)
Please visit [Deployment wiki-1](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
3. Using WSL 2 (Windows subsystem for Linux)
Please visit [Deployment wiki-2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
4. How to run at a secondary URL (such as `http://localhost/subpath`)
Please visit [FastAPI operating instructions](docs/WithFastapi.md)
5. Use docker-compose to run
Please read docker-compose.yml and follow the prompts to operate.
---
# Advanced Usage
## Customize new convenience buttons / custom function plugins.
1. Customize new convenience buttons (Academic Shortcut Keys)
Open `core_functional.py` with any text editor, add an entry as follows, and then restart the program. (If the button has been added successfully and is visible, then the prefix and suffix can be hot-modified, and it will take effect without restarting the program.)
For example
```
"Super English to Chinese": {
# Prefix, will be added before your input. For example, used to describe your requirements, such as translation, explaining code, polishing, etc.
"Prefix": "Please translate the following content into Chinese, and then use a markdown table to explain the proper nouns that appear in the text one by one:\n\n",
# Suffix, will be added after your input. For example, combined with prefix, you can enclose your input content in quotes.
"Suffix": "",
},
```
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226899272-477c2134-ed71-4326-810c-29891fe4a508.png" width="500" >
</div>
2. Custom function plugins
Write powerful function plugins to perform any task you want and can't think of.
The difficulty of plugin writing and debugging is very low in this project. As long as you have a certain knowledge of Python, you can implement your own plugin functions by imitating the template we provided.
For more information, please refer to the [Function Plugin Guide](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
---
# Latest Update
## New feature dynamics1. Funktion zur Speicherung von Dialogen. Rufen Sie im Bereich der Funktions-Plugins "Aktuellen Dialog speichern" auf, um den aktuellen Dialog als lesbares und wiederherstellbares HTML-Datei zu speichern. Darüber hinaus können Sie im Funktions-Plugin-Bereich (Dropdown-Menü) "Laden von Dialogverlauf" aufrufen, um den vorherigen Dialog wiederherzustellen. Tipp: Wenn Sie keine Datei angeben und stattdessen direkt auf "Laden des Dialogverlaufs" klicken, können Sie das HTML-Cache-Archiv anzeigen. Durch Klicken auf "Löschen aller lokalen Dialogverlaufsdatensätze" können alle HTML-Archiv-Caches gelöscht werden.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/235222390-24a9acc0-680f-49f5-bc81-2f3161f1e049.png" width="500" >
</div>
2. Berichterstellung. Die meisten Plugins generieren nach Abschluss der Ausführung einen Arbeitsbericht.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/227503770-fe29ce2c-53fd-47b0-b0ff-93805f0c2ff4.png" height="300" >
<img src="https://user-images.githubusercontent.com/96192199/227504617-7a497bb3-0a2a-4b50-9a8a-95ae60ea7afd.png" height="300" >
<img src="https://user-images.githubusercontent.com/96192199/227504005-efeaefe0-b687-49d0-bf95-2d7b7e66c348.png" height="300" >
</div>
3. Modularisierte Funktionsgestaltung, einfache Schnittstellen mit leistungsstarken Funktionen.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/229288270-093643c1-0018-487a-81e6-1d7809b6e90f.png" height="400" >
<img src="https://user-images.githubusercontent.com/96192199/227504931-19955f78-45cd-4d1c-adac-e71e50957915.png" height="400" >
</div>
4. Dies ist ein Open-Source-Projekt, das sich "selbst übersetzen" kann.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226936850-c77d7183-0749-4c1c-9875-fd4891842d0c.png" width="500" >
</div>
5. Die Übersetzung anderer Open-Source-Projekte ist kein Problem.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="500" >
</div>
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226969067-968a27c1-1b9c-486b-8b81-ab2de8d3f88a.png" width="500" >
</div>
6. Dekorieren Sie [`live2d`](https://github.com/fghrsh/live2d_demo) mit kleinen Funktionen (standardmäßig deaktiviert, Änderungen an `config.py` erforderlich).
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236432361-67739153-73e8-43fe-8111-b61296edabd9.png" width="500" >
</div>
7. Neue MOSS-Sprachmodellunterstützung.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236639178-92836f37-13af-4fdd-984d-b4450fe30336.png" width="500" >
</div>
8. OpenAI-Bildgenerierung.
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/bc7ab234-ad90-48a0-8d62-f703d9e74665" width="500" >
</div>
9. OpenAI-Audio-Analyse und Zusammenfassung.
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/709ccf95-3aee-498a-934a-e1c22d3d5d5b" width="500" >
</div>
10. Latex-Proofreading des gesamten Textes.
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/651ccd98-02c9-4464-91e1-77a6b7d1b033" width="500" >
</div>
## Version:
- Version 3.5 (Todo): Rufen Sie alle Funktionserweiterungen dieses Projekts mit natürlicher Sprache auf (hohe Priorität).
- Version 3.4 (Todo): Verbesserte Unterstützung mehrerer Threads für Local Large Model (LLM).
- Version 3.3: + Internet-Informationssynthese-Funktion
- Version 3.2: Funktionserweiterungen unterstützen mehr Parameter-Schnittstellen (Speicherung von Dialogen, Interpretation beliebigen Sprachcodes + gleichzeitige Abfrage jeder LLM-Kombination)
- Version 3.1: Unterstützung mehrerer GPT-Modelle gleichzeitig! Unterstützung für API2D, Unterstützung für Lastenausgleich von mehreren API-Schlüsseln.
- Version 3.0: Unterstützung von Chatglm und anderen kleinen LLMs
- Version 2.6: Umstrukturierung der Plugin-Struktur zur Verbesserung der Interaktivität, Einführung weiterer Plugins
- Version 2.5: Automatische Aktualisierung, Problembehebung bei Quelltexten großer Projekte, wenn der Text zu lang ist oder Token überlaufen.
- Version 2.4: (1) Neue Funktion zur Übersetzung des gesamten PDF-Texts; (2) Neue Funktion zum Wechseln der Position des Eingabebereichs; (3) Neue Option für vertikales Layout; (4) Optimierung von Multithread-Funktions-Plugins.
- Version 2.3: Verbesserte Interaktivität mit mehreren Threads
- Version 2.2: Funktionserweiterungen unterstützen "Hot-Reload"
- Version 2.1: Faltbares Layout
- Version 2.0: Einführung von modularisierten Funktionserweiterungen
- Version 1.0: Grundlegende Funktionengpt_academic Entwickler QQ-Gruppe-2: 610599535
- Bekannte Probleme
- Einige Browser-Übersetzungs-Plugins können die Frontend-Ausführung dieser Software stören.
- Sowohl eine zu hohe als auch eine zu niedrige Version von Gradio führt zu verschiedenen Ausnahmen.
## Referenz und Lernen
```
Der Code bezieht sich auf viele Designs von anderen herausragenden Projekten, insbesondere:
# Projekt 1: ChatGLM-6B der Tsinghua Universität:
https://github.com/THUDM/ChatGLM-6B
# Projekt 2: JittorLLMs der Tsinghua Universität:
https://github.com/Jittor/JittorLLMs
# Projekt 3: Edge-GPT:
https://github.com/acheong08/EdgeGPT
# Projekt 4: ChuanhuChatGPT:
https://github.com/GaiZhenbiao/ChuanhuChatGPT
# Projekt 5: ChatPaper:
https://github.com/kaixindelele/ChatPaper
# Mehr:
https://github.com/gradio-app/gradio
https://github.com/fghrsh/live2d_demo
```

查看文件

@@ -1,316 +0,0 @@
> **Nota**
>
> Durante l'installazione delle dipendenze, selezionare rigorosamente le **versioni specificate** nel file requirements.txt.
>
> ` pip install -r requirements.txt`
# <img src="logo.png" width="40" > GPT Ottimizzazione Accademica (GPT Academic)
**Se ti piace questo progetto, ti preghiamo di dargli una stella. Se hai sviluppato scorciatoie accademiche o plugin funzionali più utili, non esitare ad aprire una issue o pull request. Abbiamo anche una README in [Inglese|](README_EN.md)[Giapponese|](README_JP.md)[Coreano|](https://github.com/mldljyh/ko_gpt_academic)[Russo|](README_RS.md)[Francese](README_FR.md) tradotta da questo stesso progetto.
Per tradurre questo progetto in qualsiasi lingua con GPT, leggere e eseguire [`multi_language.py`](multi_language.py) (sperimentale).
> **Nota**
>
> 1. Si prega di notare che solo i plugin (pulsanti) contrassegnati in **rosso** supportano la lettura di file, alcuni plugin sono posizionati nel **menu a discesa** nella zona dei plugin. Accettiamo e gestiamo PR per qualsiasi nuovo plugin con **massima priorità**!
>
> 2. Le funzionalità di ogni file di questo progetto sono descritte dettagliatamente nella propria analisi di autotraduzione [`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A). Con l'iterazione delle versioni, è possibile fare clic sui plugin funzionali correlati in qualsiasi momento per richiamare GPT e generare nuovamente il rapporto di analisi automatica del progetto. Le domande frequenti sono riassunte nella [`wiki`](https://github.com/binary-husky/gpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98). [Metodo di installazione] (#installazione).
>
> 3. Questo progetto è compatibile e incoraggia l'utilizzo di grandi modelli di linguaggio di produzione nazionale come chatglm, RWKV, Pangu ecc. Supporta la coesistenza di più api-key e può essere compilato nel file di configurazione come `API_KEY="openai-key1,openai-key2,api2d-key3"`. Per sostituire temporaneamente `API_KEY`, inserire `API_KEY` temporaneo nell'area di input e premere Invio per renderlo effettivo.
<div align="center">
Funzione | Descrizione
--- | ---
Correzione immediata | Supporta correzione immediata e ricerca degli errori di grammatica del documento con un solo clic
Traduzione cinese-inglese immediata | Traduzione cinese-inglese immediata con un solo clic
Spiegazione del codice immediata | Visualizzazione del codice, spiegazione del codice, generazione del codice, annotazione del codice con un solo clic
[Scorciatoie personalizzate](https://www.bilibili.com/video/BV14s4y1E7jN) | Supporta scorciatoie personalizzate
Design modularizzato | Supporta potenti [plugin di funzioni](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions) personalizzati, i plugin supportano l'[aggiornamento in tempo reale](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[Auto-profiling del programma](https://www.bilibili.com/video/BV1cj411A7VW) | [Plugin di funzioni] [Comprensione immediata](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A) del codice sorgente di questo progetto
[Analisi del programma](https://www.bilibili.com/video/BV1cj411A7VW) | [Plugin di funzioni] Un clic può analizzare l'albero di altri progetti Python/C/C++/Java/Lua/...
Lettura del documento, [traduzione](https://www.bilibili.com/video/BV1KT411x7Wn) del documento | [Plugin di funzioni] La lettura immediata dell'intero documento latex/pdf di un documento e la generazione di un riassunto
Traduzione completa di un documento Latex, [correzione immediata](https://www.bilibili.com/video/BV1FT411H7c5/) | [Plugin di funzioni] Una traduzione o correzione immediata di un documento Latex
Generazione di annotazioni in batch | [Plugin di funzioni] Generazione automatica delle annotazioni di funzione con un solo clic
[Traduzione cinese-inglese di Markdown](https://www.bilibili.com/video/BV1yo4y157jV/) | [Plugin di funzioni] Hai letto il [README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md) delle cinque lingue sopra?
Generazione di report di analisi di chat | [Plugin di funzioni] Generazione automatica di un rapporto di sintesi dopo l'esecuzione
[Funzione di traduzione di tutto il documento PDF](https://www.bilibili.com/video/BV1KT411x7Wn) | [Plugin di funzioni] Estrarre il titolo e il sommario dell'articolo PDF + tradurre l'intero testo (multithreading)
[Assistente di Arxiv](https://www.bilibili.com/video/BV1LM4y1279X) | [Plugin di funzioni] Inserire l'URL dell'articolo di Arxiv e tradurre il sommario con un clic + scaricare il PDF
[Assistente integrato di Google Scholar](https://www.bilibili.com/video/BV19L411U7ia) | [Plugin di funzioni] Con qualsiasi URL di pagina di ricerca di Google Scholar, lascia che GPT ti aiuti a scrivere il tuo [relatedworks](https://www.bilibili.com/video/BV1GP411U7Az/)
Aggregazione delle informazioni su Internet + GPT | [Plugin di funzioni] Fai in modo che GPT rilevi le informazioni su Internet prima di rispondere alle domande, senza mai diventare obsolete
Visualizzazione di formule/img/tabelle | È possibile visualizzare un'equazione in forma [tex e render](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png) contemporaneamente, supporta equazioni e evidenziazione del codice
Supporto per plugin di funzioni multithreading | Supporto per chiamata multithreaded di chatgpt, elaborazione con un clic di grandi quantità di testo o di un programma
Avvia il tema di gradio [scuro](https://github.com/binary-husky/gpt_academic/issues/173) | Aggiungere ```/?__theme=dark``` dopo l'URL del browser per passare a un tema scuro
Supporto per maggiori modelli LLM, supporto API2D | Sentirsi serviti simultaneamente da GPT3.5, GPT4, [Tsinghua ChatGLM](https://github.com/THUDM/ChatGLM-6B), [Fudan MOSS](https://github.com/OpenLMLab/MOSS) deve essere una grande sensazione, giusto?
Ulteriori modelli LLM supportat,i supporto per l'implementazione di Huggingface | Aggiunta di un'interfaccia Newbing (Nuovo Bing), introdotta la compatibilità con Tsinghua [Jittorllms](https://github.com/Jittor/JittorLLMs), [LLaMA](https://github.com/facebookresearch/llama), [RWKV](https://github.com/BlinkDL/ChatRWKV) e [PanGu-α](https://openi.org.cn/pangu/)
Ulteriori dimostrazioni di nuove funzionalità (generazione di immagini, ecc.)... | Vedere la fine di questo documento...
</div>
- Nuova interfaccia (modificare l'opzione LAYOUT in `config.py` per passare dal layout a sinistra e a destra al layout superiore e inferiore)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230361456-61078362-a966-4eb5-b49e-3c62ef18b860.gif" width="700" >
</div>Sei un traduttore professionista di paper accademici.
- Tutti i pulsanti vengono generati dinamicamente leggendo il file functional.py, e aggiungerci nuove funzionalità è facile, liberando la clipboard.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231975334-b4788e91-4887-412f-8b43-2b9c5f41d248.gif" width="700" >
</div>
- Revisione/Correzione
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231980294-f374bdcb-3309-4560-b424-38ef39f04ebd.gif" width="700" >
</div>
- Se l'output contiene una formula, viene visualizzata sia come testo che come formula renderizzata, per facilitare la copia e la visualizzazione.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700" >
</div>
- Non hai tempo di leggere il codice del progetto? Passa direttamente a chatgpt e chiedi informazioni.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700" >
</div>
- Chiamata mista di vari modelli di lingua di grandi dimensioni (ChatGLM + OpenAI-GPT3.5 + [API2D](https://api2d.com/)-GPT4)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700" >
</div>
---
# Installazione
## Installazione - Metodo 1: Esecuzione diretta (Windows, Linux o MacOS)
1. Scarica il progetto
```sh
git clone https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. Configura API_KEY
In `config.py`, configura la tua API KEY e altre impostazioni, [configs for special network environments](https://github.com/binary-husky/gpt_academic/issues/1).
(N.B. Quando il programma viene eseguito, verifica prima se esiste un file di configurazione privato chiamato `config_private.py` e sovrascrive le stesse configurazioni in `config.py`. Pertanto, se capisci come funziona la nostra logica di lettura della configurazione, ti consigliamo vivamente di creare un nuovo file di configurazione chiamato `config_private.py` accanto a `config.py`, e spostare (copiare) le configurazioni di `config.py` in `config_private.py`. 'config_private.py' non è sotto la gestione di git e può proteggere ulteriormente le tue informazioni personali. NB Il progetto supporta anche la configurazione della maggior parte delle opzioni tramite "variabili d'ambiente". La sintassi della variabile d'ambiente è descritta nel file `docker-compose`. Priorità di lettura: "variabili d'ambiente" > "config_private.py" > "config.py")
3. Installa le dipendenze
```sh
# (Scelta I: se sei familiare con python) (python 3.9 o superiore, più nuovo è meglio), N.B.: utilizza il repository ufficiale pip o l'aliyun pip repository, metodo temporaneo per cambiare il repository: python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
python -m pip install -r requirements.txt
# (Scelta II: se non conosci Python) utilizza anaconda, il processo è simile (https://www.bilibili.com/video/BV1rc411W7Dr):
conda create -n gptac_venv python=3.11 # crea l'ambiente anaconda
conda activate gptac_venv # attiva l'ambiente anaconda
python -m pip install -r requirements.txt # questo passaggio funziona allo stesso modo dell'installazione con pip
```
<details><summary>Se si desidera supportare ChatGLM di Tsinghua/MOSS di Fudan come backend, fare clic qui per espandere</summary>
<p>
【Passaggio facoltativo】 Se si desidera supportare ChatGLM di Tsinghua/MOSS di Fudan come backend, è necessario installare ulteriori dipendenze (prerequisiti: conoscenza di Python, esperienza con Pytorch e computer sufficientemente potente):
```sh
# 【Passaggio facoltativo I】 Supporto a ChatGLM di Tsinghua. Note su ChatGLM di Tsinghua: in caso di errore "Call ChatGLM fail 不能正常加载ChatGLM的参数" , fare quanto segue: 1. Per impostazione predefinita, viene installata la versione di torch + cpu; per usare CUDA, è necessario disinstallare torch e installare nuovamente torch + cuda; 2. Se non è possibile caricare il modello a causa di una configurazione insufficiente del computer, è possibile modificare la precisione del modello in request_llm/bridge_chatglm.py, cambiando AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) in AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llm/requirements_chatglm.txt
# 【Passaggio facoltativo II】 Supporto a MOSS di Fudan
python -m pip install -r request_llm/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # Si prega di notare che quando si esegue questa riga di codice, si deve essere nella directory radice del progetto
# 【Passaggio facoltativo III】 Assicurati che il file di configurazione config.py includa tutti i modelli desiderati, al momento tutti i modelli supportati sono i seguenti (i modelli della serie jittorllms attualmente supportano solo la soluzione docker):
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
```
</p>
</details>
4. Esegui
```sh
python main.py
```5. Plugin di test delle funzioni
```
- Funzione plugin di test (richiede una risposta gpt su cosa è successo oggi in passato), puoi utilizzare questa funzione come template per implementare funzionalità più complesse
Clicca su "[Demo del plugin di funzione] Oggi nella storia"
```
## Installazione - Metodo 2: Utilizzo di Docker
1. Solo ChatGPT (consigliato per la maggior parte delle persone)
``` sh
git clone https://github.com/binary-husky/gpt_academic.git # scarica il progetto
cd gpt_academic # entra nel percorso
nano config.py # con un qualsiasi editor di testo, modifica config.py configurando "Proxy", "API_KEY" e "WEB_PORT" (ad esempio 50923)
docker build -t gpt-academic . # installa
#(ultimo passaggio - selezione 1) In un ambiente Linux, utilizzare '--net=host' è più conveniente e veloce
docker run --rm -it --net=host gpt-academic
#(ultimo passaggio - selezione 2) In un ambiente MacOS/Windows, l'opzione -p può essere utilizzata per esporre la porta del contenitore (ad es. 50923) alla porta della macchina
docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic
```
2. ChatGPT + ChatGLM + MOSS (richiede familiarità con Docker)
``` sh
# Modifica docker-compose.yml, elimina i piani 1 e 3, mantieni il piano 2. Modifica la configurazione del piano 2 in docker-compose.yml, si prega di fare riferimento alle relative annotazioni
docker-compose up
```
3. ChatGPT + LLAMA + Pangu + RWKV (richiede familiarità con Docker)
``` sh
# Modifica docker-compose.yml, elimina i piani 1 e 2, mantieni il piano 3. Modifica la configurazione del piano 3 in docker-compose.yml, si prega di fare riferimento alle relative annotazioni
docker-compose up
```
## Installazione - Metodo 3: Altre modalità di distribuzione
1. Come utilizzare un URL di reindirizzamento / AzureAPI Cloud Microsoft
Configura API_URL_REDIRECT seguendo le istruzioni nel file `config.py`.
2. Distribuzione su un server cloud remoto (richiede conoscenze ed esperienza di server cloud)
Si prega di visitare [wiki di distribuzione-1] (https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
3. Utilizzo di WSL2 (Windows Subsystem for Linux)
Si prega di visitare [wiki di distribuzione-2] (https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
4. Come far funzionare ChatGPT all'interno di un sottodominio (ad es. `http://localhost/subpath`)
Si prega di visitare [Istruzioni per l'esecuzione con FastAPI] (docs/WithFastapi.md)
5. Utilizzo di docker-compose per l'esecuzione
Si prega di leggere il file docker-compose.yml e seguire le istruzioni fornite.
---
# Uso avanzato
## Personalizzazione dei pulsanti / Plugin di funzione personalizzati
1. Personalizzazione dei pulsanti (scorciatoie accademiche)
Apri `core_functional.py` con qualsiasi editor di testo e aggiungi la voce seguente, quindi riavvia il programma (se il pulsante è già stato aggiunto con successo e visibile, il prefisso e il suffisso supportano la modifica in tempo reale, senza bisogno di riavviare il programma).
ad esempio
```
"超级英译中": {
# Prefisso, verrà aggiunto prima del tuo input. Ad esempio, descrivi la tua richiesta, come tradurre, spiegare il codice, correggere errori, ecc.
"Prefix": "Per favore traduci questo testo in Cinese, e poi spiega tutti i termini tecnici nel testo con una tabella markdown:\n\n",
# Suffisso, verrà aggiunto dopo il tuo input. Ad esempio, con il prefisso puoi circondare il tuo input con le virgolette.
"Suffix": "",
},
```
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226899272-477c2134-ed71-4326-810c-29891fe4a508.png" width="500" >
</div>
2. Plugin di funzione personalizzati
Scrivi plugin di funzione personalizzati e esegui tutte le attività che desideri o non hai mai pensato di fare.
La difficoltà di scrittura e debug dei plugin del nostro progetto è molto bassa. Se si dispone di una certa conoscenza di base di Python, è possibile realizzare la propria funzione del plugin seguendo il nostro modello. Per maggiori dettagli, consultare la [guida al plugin per funzioni](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
---
# Ultimo aggiornamento
## Nuove funzionalità dinamiche
1. Funzionalità di salvataggio della conversazione. Nell'area dei plugin della funzione, fare clic su "Salva la conversazione corrente" per salvare la conversazione corrente come file html leggibile e ripristinabile, inoltre, nell'area dei plugin della funzione (menu a discesa), fare clic su "Carica la cronologia della conversazione archiviata" per ripristinare la conversazione precedente. Suggerimento: fare clic su "Carica la cronologia della conversazione archiviata" senza specificare il file consente di visualizzare la cache degli archivi html di cronologia, fare clic su "Elimina tutti i record di cronologia delle conversazioni locali" per eliminare tutte le cache degli archivi html.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/235222390-24a9acc0-680f-49f5-bc81-2f3161f1e049.png" width="500" >
</div>
2. Generazione di rapporti. La maggior parte dei plugin genera un rapporto di lavoro dopo l'esecuzione.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/227503770-fe29ce2c-53fd-47b0-b0ff-93805f0c2ff4.png" height="300" >
<img src="https://user-images.githubusercontent.com/96192199/227504617-7a497bb3-0a2a-4b50-9a8a-95ae60ea7afd.png" height="300" >
<img src="https://user-images.githubusercontent.com/96192199/227504005-efeaefe0-b687-49d0-bf95-2d7b7e66c348.png" height="300" >
</div>
3. Progettazione modulare delle funzioni, semplici interfacce ma in grado di supportare potenti funzionalità.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/229288270-093643c1-0018-487a-81e6-1d7809b6e90f.png" height="400" >
<img src="https://user-images.githubusercontent.com/96192199/227504931-19955f78-45cd-4d1c-adac-e71e50957915.png" height="400" >
</div>
4. Questo è un progetto open source che può "tradursi da solo".
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226936850-c77d7183-0749-4c1c-9875-fd4891842d0c.png" width="500" >
</div>
5. Tradurre altri progetti open source è semplice.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="500" >
</div>
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226969067-968a27c1-1b9c-486b-8b81-ab2de8d3f88a.png" width="500" >
</div>
6. Piccola funzione decorativa per [live2d](https://github.com/fghrsh/live2d_demo) (disattivata per impostazione predefinita, è necessario modificare `config.py`).
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236432361-67739153-73e8-43fe-8111-b61296edabd9.png" width="500" >
</div>
7. Supporto del grande modello linguistico MOSS
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236639178-92836f37-13af-4fdd-984d-b4450fe30336.png" width="500" >
</div>
8. Generazione di immagini OpenAI
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/bc7ab234-ad90-48a0-8d62-f703d9e74665" width="500" >
</div>
9. Analisi e sintesi audio OpenAI
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/709ccf95-3aee-498a-934a-e1c22d3d5d5b" width="500" >
</div>
10. Verifica completa dei testi in LaTeX
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/651ccd98-02c9-4464-91e1-77a6b7d1b033" width="500" >
</div>
## Versione:
- versione 3.5(Todo): utilizzo del linguaggio naturale per chiamare tutti i plugin di funzioni del progetto (alta priorità)
- versione 3.4(Todo): supporto multi-threading per il grande modello linguistico locale Chatglm
- versione 3.3: +funzionalità di sintesi delle informazioni su Internet
- versione 3.2: i plugin di funzioni supportano più interfacce dei parametri (funzionalità di salvataggio della conversazione, lettura del codice in qualsiasi lingua + richiesta simultanea di qualsiasi combinazione di LLM)
- versione 3.1: supporto per interrogare contemporaneamente più modelli gpt! Supporto api2d, bilanciamento del carico per più apikey
- versione 3.0: supporto per Chatglm e altri piccoli LLM
- versione 2.6: ristrutturazione della struttura del plugin, miglioramento dell'interattività, aggiunta di più plugin
- versione 2.5: auto-aggiornamento, risoluzione del problema di testo troppo lungo e overflow del token durante la sintesi di grandi progetti di ingegneria
- versione 2.4: (1) funzionalità di traduzione dell'intero documento in formato PDF aggiunta; (2) funzionalità di scambio dell'area di input aggiunta; (3) opzione di layout verticale aggiunta; (4) ottimizzazione della funzione di plugin multi-threading.
- versione 2.3: miglioramento dell'interattività multi-threading
- versione 2.2: i plugin di funzioni supportano l'hot-reload
- versione 2.1: layout ripiegabile
- versione 2.0: introduzione di plugin di funzioni modulari
- versione 1.0: funzione di basegpt_academic sviluppatori gruppo QQ-2: 610599535
- Problemi noti
- Alcuni plugin di traduzione del browser interferiscono con l'esecuzione del frontend di questo software
- La versione di gradio troppo alta o troppo bassa può causare diversi malfunzionamenti
## Riferimenti e apprendimento
```
Il codice fa riferimento a molte altre eccellenti progettazioni di progetti, principalmente:
# Progetto 1: ChatGLM-6B di Tsinghua:
https://github.com/THUDM/ChatGLM-6B
# Progetto 2: JittorLLMs di Tsinghua:
https://github.com/Jittor/JittorLLMs
# Progetto 3: Edge-GPT:
https://github.com/acheong08/EdgeGPT
# Progetto 4: ChuanhuChatGPT:
https://github.com/GaiZhenbiao/ChuanhuChatGPT
# Progetto 5: ChatPaper:
https://github.com/kaixindelele/ChatPaper
# Altro:
https://github.com/gradio-app/gradio
https://github.com/fghrsh/live2d_demo
```

查看文件

@@ -1,270 +0,0 @@
> **노트**
>
> 의존성을 설치할 때는 반드시 requirements.txt에서 **지정된 버전**을 엄격하게 선택하십시오.
>
> `pip install -r requirements.txt`
# <img src="docs/logo.png" width="40" > GPT 학술 최적화 (GPT Academic)
**이 프로젝트가 마음에 드신다면 Star를 주세요. 추가로 유용한 학술 단축키나 기능 플러그인이 있다면 이슈나 pull request를 남기세요. 이 프로젝트에 대한 [영어 |](docs/README_EN.md)[일본어 |](docs/README_JP.md)[한국어 |](https://github.com/mldljyh/ko_gpt_academic)[러시아어 |](docs/README_RS.md)[프랑스어](docs/README_FR.md)로 된 README도 있습니다.
GPT를 이용하여 프로젝트를 임의의 언어로 번역하려면 [`multi_language.py`](multi_language.py)를 읽고 실행하십시오. (실험적)
> **노트**
>
> 1. 파일을 읽기 위해 **빨간색**으로 표시된 기능 플러그인 (버튼) 만 지원됩니다. 일부 플러그인은 플러그인 영역의 **드롭다운 메뉴**에 있습니다. 또한 새로운 플러그인은 **가장 높은 우선순위**로 환영하며 처리합니다!
>
> 2. 이 프로젝트의 각 파일의 기능을 [`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A)에서 자세히 설명합니다. 버전이 업데이트 됨에 따라 관련된 기능 플러그인을 클릭하고 GPT를 호출하여 프로젝트의 자체 분석 보고서를 다시 생성할 수도 있습니다. 자주 묻는 질문은 [`위키`](https://github.com/binary-husky/gpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98)에서 볼 수 있습니다. [설치 방법](#installation).
>
> 3. 이 프로젝트는 국내 언어 모델 chatglm과 RWKV, 판고 등의 시도와 호환 가능합니다. 여러 개의 api-key를 지원하며 설정 파일에 "API_KEY="openai-key1,openai-key2,api2d-key3""와 같이 작성할 수 있습니다. `API_KEY`를 임시로 변경해야하는 경우 입력 영역에 임시 `API_KEY`를 입력 한 후 엔터 키를 누르면 즉시 적용됩니다.
<div align="center">
기능 | 설명
--- | ---
원 키워드 | 원 키워드 및 논문 문법 오류를 찾는 기능 지원
한-영 키워드 | 한-영 키워드 지원
코드 설명 | 코드 표시, 코드 설명, 코드 생성, 코드에 주석 추가
[사용자 정의 바로 가기 키](https://www.bilibili.com/video/BV14s4y1E7jN) | 사용자 정의 바로 가기 키 지원
모듈식 설계 | 강력한[함수 플러그인](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions) 지원, 플러그인이 [램 업데이트](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)를 지원합니다.
[자체 프로그램 분석](https://www.bilibili.com/video/BV1cj411A7VW) | [함수 플러그인] [원 키 우드] 프로젝트 소스 코드의 내용을 이해하는 기능을 제공
[프로그램 분석](https://www.bilibili.com/video/BV1cj411A7VW) | [함수 플러그인] 프로젝트 트리를 분석할 수 있습니다 (Python/C/C++/Java/Lua/...)
논문 읽기, 번역 | [함수 플러그인] LaTex/PDF 논문의 전문을 읽고 요약을 생성합니다.
LaTeX 텍스트[번역](https://www.bilibili.com/video/BV1nk4y1Y7Js/), [원 키워드](https://www.bilibili.com/video/BV1FT411H7c5/) | [함수 플러그인] LaTeX 논문의 번역 또는 개량을 위해 일련의 모드를 번역할 수 있습니다.
대량의 주석 생성 | [함수 플러그인] 함수 코멘트를 대량으로 생성할 수 있습니다.
Markdown 한-영 번역 | [함수 플러그인] 위의 5 종 언어의 [README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md)를 볼 수 있습니다.
chat 분석 보고서 생성 | [함수 플러그인] 수행 후 요약 보고서를 자동으로 생성합니다.
[PDF 논문 번역](https://www.bilibili.com/video/BV1KT411x7Wn) | [함수 플러그인] PDF 논문이 제목 및 요약을 추출한 후 번역됩니다. (멀티 스레드)
[Arxiv 도우미](https://www.bilibili.com/video/BV1LM4y1279X) | [함수 플러그인] Arxiv 논문 URL을 입력하면 요약을 번역하고 PDF를 다운로드 할 수 있습니다.
[Google Scholar 통합 도우미](https://www.bilibili.com/video/BV19L411U7ia) | [함수 플러그인] Google Scholar 검색 페이지 URL을 제공하면 gpt가 [Related Works 작성](https://www.bilibili.com/video/BV1GP411U7Az/)을 도와줍니다.
인터넷 정보 집계+GPT | [함수 플러그인] 먼저 GPT가 인터넷에서 정보를 수집하고 질문에 대답 할 수 있도록합니다. 정보가 절대적으로 구식이 아닙니다.
수식/이미지/표 표시 | 급여, 코드 강조 기능 지원
멀티 스레드 함수 플러그인 지원 | Chatgpt를 여러 요청에서 실행하여 [대량의 텍스트](https://www.bilibili.com/video/BV1FT411H7c5/) 또는 프로그램을 처리 할 수 있습니다.
다크 그라디오 테마 시작 | 어둡게 주제를 변경하려면 브라우저 URL 끝에 ```/?__theme=dark```을 추가하면됩니다.
[다중 LLM 모델](https://www.bilibili.com/video/BV1wT411p7yf) 지원, [API2D](https://api2d.com/) 인터페이스 지원됨 | GPT3.5, GPT4, [Tsinghua ChatGLM](https://github.com/THUDM/ChatGLM-6B), [Fudan MOSS](https://github.com/OpenLMLab/MOSS)가 모두 동시에 작동하는 것처럼 느낄 수 있습니다!
LLM 모델 추가 및[huggingface 배치](https://huggingface.co/spaces/qingxu98/gpt-academic) 지원 | 새 Bing 인터페이스 (새 Bing) 추가, Clearing House [Jittorllms](https://github.com/Jittor/JittorLLMs) 지원 [LLaMA](https://github.com/facebookresearch/llama), [RWKV](https://github.com/BlinkDL/ChatRWKV) 및 [盘古α](https://openi.org.cn/pangu/)
기타 새로운 기능 (이미지 생성 등) ... | 이 문서의 끝부분을 참조하세요. ...- 모든 버튼은 functional.py를 동적으로 읽어와서 사용자 정의 기능을 자유롭게 추가할 수 있으며, 클립 보드를 해제합니다.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231975334-b4788e91-4887-412f-8b43-2b9c5f41d248.gif" width="700" >
</div>
- 검수/오타 교정
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231980294-f374bdcb-3309-4560-b424-38ef39f04ebd.gif" width="700" >
</div>
- 출력에 수식이 포함되어 있으면 텍스와 렌더링의 형태로 동시에 표시되어 복사 및 읽기가 용이합니다.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700" >
</div>
- 프로젝트 코드를 볼 시간이 없습니까? 전체 프로젝트를 chatgpt에 직접 표시하십시오
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700" >
</div>
- 다양한 대형 언어 모델 범용 요청 (ChatGLM + OpenAI-GPT3.5 + [API2D](https://api2d.com/)-GPT4)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700" >
</div>
---
# 설치
## Installation-Method 1: Run directly (Windows, Linux or MacOS)
1. 프로젝트 다운로드
```sh
git clone https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. API_KEY 구성
`config.py`에서 API KEY 등 설정을 구성합니다. [특별한 네트워크 환경 설정](https://github.com/binary-husky/gpt_academic/issues/1) .
(P.S. 프로그램이 실행될 때, 이름이 `config_private.py`인 기밀 설정 파일이 있는지 우선적으로 확인하고 해당 설정으로 `config.py`의 동일한 이름의 설정을 덮어씁니다. 따라서 구성 읽기 논리를 이해할 수 있다면, `config.py` 옆에 `config_private.py`라는 새 구성 파일을 만들고 `config.py`의 구성을 `config_private.py`로 이동(복사)하는 것이 좋습니다. `config_private.py`는 git으로 관리되지 않으며 개인 정보를 더 안전하게 보호할 수 있습니다. P.S. 프로젝트는 또한 대부분의 옵션을 `환경 변수`를 통해 설정할 수 있으며, `docker-compose` 파일을 참조하여 환경 변수 작성 형식을 확인할 수 있습니다. 우선순위: `환경 변수` > `config_private.py` > `config.py`)
3. 의존성 설치
```sh
# (I 선택: 기존 python 경험이 있다면) (python 버전 3.9 이상, 최신 버전이 좋습니다), 참고: 공식 pip 소스 또는 알리 pip 소스 사용, 일시적인 교체 방법: python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
python -m pip install -r requirements.txt
# (II 선택: Python에 익숙하지 않은 경우) anaconda 사용 방법은 비슷함(https://www.bilibili.com/video/BV1rc411W7Dr):
conda create -n gptac_venv python=3.11 # anaconda 환경 만들기
conda activate gptac_venv # anaconda 환경 활성화
python -m pip install -r requirements.txt # 이 단계도 pip install의 단계와 동일합니다.
```
<details><summary>추가지원을 위해 Tsinghua ChatGLM / Fudan MOSS를 사용해야하는 경우 지원을 클릭하여 이 부분을 확장하세요.</summary>
<p>
[Tsinghua ChatGLM] / [Fudan MOSS]를 백엔드로 사용하려면 추가적인 종속성을 설치해야합니다 (전제 조건 : Python을 이해하고 Pytorch를 사용한 적이 있으며, 컴퓨터가 충분히 강력한 경우) :
```sh
# [선택 사항 I] Tsinghua ChatGLM을 지원합니다. Tsinghua ChatGLM에 대한 참고사항 : "Call ChatGLM fail cannot load ChatGLM parameters normally" 오류 발생시 다음 참조:
# 1 : 기본 설치된 것들은 torch + cpu 버전입니다. cuda를 사용하려면 torch를 제거한 다음 torch + cuda를 다시 설치해야합니다.
# 2 : 모델을 로드할 수 없는 기계 구성 때문에, AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)를
# AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)로 변경합니다.
python -m pip install -r request_llm/requirements_chatglm.txt
# [선택 사항 II] Fudan MOSS 지원
python -m pip install -r request_llm/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # 다음 코드 줄을 실행할 때 프로젝트 루트 경로에 있어야합니다.
# [선택 사항III] AVAIL_LLM_MODELS config.py 구성 파일에 기대하는 모델이 포함되어 있는지 확인하십시오.
# 현재 지원되는 전체 모델 :
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
```
</p>
</details>
4. 실행
```sh
python main.py
```5. 테스트 함수 플러그인
```
- 테스트 함수 플러그인 템플릿 함수 (GPT에게 오늘의 역사에서 무슨 일이 일어났는지 대답하도록 요청)를 구현하는 데 사용할 수 있습니다. 이 함수를 기반으로 더 복잡한 기능을 구현할 수 있습니다.
"[함수 플러그인 템플릿 데모] 오늘의 역사"를 클릭하세요.
```
## 설치 - 방법 2 : 도커 사용
1. ChatGPT 만 (대부분의 사람들이 선택하는 것을 권장합니다.)
``` sh
git clone https://github.com/binary-husky/gpt_academic.git # 다운로드
cd gpt_academic # 경로 이동
nano config.py # 아무 텍스트 에디터로 config.py를 열고 "Proxy","API_KEY","WEB_PORT" (예 : 50923) 등을 구성합니다.
docker build -t gpt-academic . # 설치
#(마지막 단계-1 선택) Linux 환경에서는 --net=host를 사용하면 더 편리합니다.
docker run --rm -it --net=host gpt-academic
#(마지막 단계-2 선택) macOS / windows 환경에서는 -p 옵션을 사용하여 컨테이너의 포트 (예 : 50923)를 호스트의 포트로 노출해야합니다.
docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic
```
2. ChatGPT + ChatGLM + MOSS (Docker에 익숙해야합니다.)
``` sh
#docker-compose.yml을 수정하여 계획 1 및 계획 3을 삭제하고 계획 2를 유지합니다. docker-compose.yml에서 계획 2의 구성을 수정하면 됩니다. 주석을 참조하십시오.
docker-compose up
```
3. ChatGPT + LLAMA + Pangu + RWKV (Docker에 익숙해야합니다.)
``` sh
#docker-compose.yml을 수정하여 계획 1 및 계획 2을 삭제하고 계획 3을 유지합니다. docker-compose.yml에서 계획 3의 구성을 수정하면 됩니다. 주석을 참조하십시오.
docker-compose up
```
## 설치 - 방법 3 : 다른 배치 방법
1. 리버스 프록시 URL / Microsoft Azure API 사용 방법
API_URL_REDIRECT를 `config.py`에 따라 구성하면됩니다.
2. 원격 클라우드 서버 배치 (클라우드 서버 지식과 경험이 필요합니다.)
[배치위키-1](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)에 방문하십시오.
3. WSL2 사용 (Windows Subsystem for Linux 하위 시스템)
[배치 위키-2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)에 방문하십시오.
4. 2 차 URL (예 : `http : //localhost/subpath`)에서 실행하는 방법
[FastAPI 실행 설명서] (docs / WithFastapi.md)를 참조하십시오.
5. docker-compose 실행
docker-compose.yml을 읽은 후 지시 사항에 따라 작업하십시오.
---
# 고급 사용법
## 사용자 정의 바로 가기 버튼 / 사용자 정의 함수 플러그인
1. 사용자 정의 바로 가기 버튼 (학술 바로 가기)
임의의 텍스트 편집기로 'core_functional.py'를 엽니다. 엔트리 추가, 그런 다음 프로그램을 다시 시작하면됩니다. (버튼이 이미 추가되어 보이고 접두사, 접미사가 모두 변수가 효과적으로 수정되면 프로그램을 다시 시작하지 않아도됩니다.)
예 :
```
"超级英译中": {
# 접두사. 당신이 요구하는 것을 설명하는 데 사용됩니다. 예를 들어 번역, 코드를 설명, 다듬기 등
"Prefix": "下面翻译成中文,然后用一个 markdown 表格逐一解释文中出现的专有名词:\n\n",
# 접미사는 입력 내용 앞뒤에 추가됩니다. 예를 들어 전위를 사용하여 입력 내용을 따옴표로 묶는데 사용할 수 있습니다.
"Suffix": "",
},
```
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226899272-477c2134-ed71-4326-810c-29891fe4a508.png" width="500" >
</div>
2. 사용자 지정 함수 플러그인
강력한 함수 플러그인을 작성하여 원하는 작업을 수행하십시오.
이 프로젝트의 플러그인 작성 및 디버깅 난이도는 매우 낮으며, 일부 파이썬 기본 지식만 있으면 제공된 템플릿을 모방하여 플러그인 기능을 구현할 수 있습니다. 자세한 내용은 [함수 플러그인 가이드]를 참조하십시오. (https://github.com/binary -husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E 4%BB%B6%E6%8C%87%E5%8D%97).
---
# 최신 업데이트
## 새로운 기능 동향1. 대화 저장 기능.
1. 함수 플러그인 영역에서 '현재 대화 저장'을 호출하면 현재 대화를 읽을 수 있고 복원 가능한 HTML 파일로 저장할 수 있습니다. 또한 함수 플러그인 영역(드롭다운 메뉴)에서 '대화 기록 불러오기'를 호출하면 이전 대화를 복원할 수 있습니다. 팁: 파일을 지정하지 않고 '대화 기록 불러오기'를 클릭하면 기록된 HTML 캐시를 볼 수 있으며 '모든 로컬 대화 기록 삭제'를 클릭하면 모든 HTML 캐시를 삭제할 수 있습니다.
2. 보고서 생성. 대부분의 플러그인은 실행이 끝난 후 작업 보고서를 생성합니다.
3. 모듈화 기능 설계, 간단한 인터페이스로도 강력한 기능을 지원할 수 있습니다.
4. 자체 번역이 가능한 오픈 소스 프로젝트입니다.
5. 다른 오픈 소스 프로젝트를 번역하는 것은 어렵지 않습니다.
6. [live2d](https://github.com/fghrsh/live2d_demo) 장식 기능(기본적으로 비활성화되어 있으며 `config.py`를 수정해야 합니다.)
7. MOSS 대 언어 모델 지원 추가
8. OpenAI 이미지 생성
9. OpenAI 음성 분석 및 요약
10. LaTeX 전체적인 교정 및 오류 수정
## 버전:
- version 3.5 (TODO): 자연어를 사용하여 이 프로젝트의 모든 함수 플러그인을 호출하는 기능(우선순위 높음)
- version 3.4(TODO): 로컬 대 모듈의 다중 스레드 지원 향상
- version 3.3: 인터넷 정보 종합 기능 추가
- version 3.2: 함수 플러그인이 더 많은 인수 인터페이스를 지원합니다.(대화 저장 기능, 임의의 언어 코드 해석 및 동시에 임의의 LLM 조합을 확인하는 기능)
- version 3.1: 여러 개의 GPT 모델에 대한 동시 쿼리 지원! api2d 지원, 여러 개의 apikey 로드 밸런싱 지원
- version 3.0: chatglm 및 기타 소형 llm의 지원
- version 2.6: 플러그인 구조를 재구성하여 상호 작용성을 향상시켰습니다. 더 많은 플러그인을 추가했습니다.
- version 2.5: 자체 업데이트, 전체 프로젝트를 요약할 때 텍스트가 너무 길어지고 토큰이 오버플로우되는 문제를 해결했습니다.
- version 2.4: (1) PDF 전체 번역 기능 추가; (2) 입력 영역 위치 전환 기능 추가; (3) 수직 레이아웃 옵션 추가; (4) 다중 스레드 함수 플러그인 최적화.
- version 2.3: 다중 스레드 상호 작용성 강화
- version 2.2: 함수 플러그인 히트 리로드 지원
- version 2.1: 접는 레이아웃 지원
- version 2.0: 모듈화 함수 플러그인 도입
- version 1.0: 기본 기능
gpt_academic 개발자 QQ 그룹-2 : 610599535
- 알려진 문제
- 일부 브라우저 번역 플러그인이이 소프트웨어의 프론트 엔드 작동 방식을 방해합니다.
- gradio 버전이 너무 높거나 낮으면 여러 가지 이상이 발생할 수 있습니다.
## 참고 및 학습 자료
```
많은 우수 프로젝트의 디자인을 참고했습니다. 주요 항목은 다음과 같습니다.
# 프로젝트 1 : Tsinghua ChatGLM-6B :
https://github.com/THUDM/ChatGLM-6B
# 프로젝트 2 : Tsinghua JittorLLMs:
https://github.com/Jittor/JittorLLMs
# 프로젝트 3 : Edge-GPT :
https://github.com/acheong08/EdgeGPT
# 프로젝트 4 : ChuanhuChatGPT:
https://github.com/GaiZhenbiao/ChuanhuChatGPT
# 프로젝트 5 : ChatPaper :
https://github.com/kaixindelele/ChatPaper
# 더 많은 :
https://github.com/gradio-app/gradio
https://github.com/fghrsh/live2d_demo
```

查看文件

@@ -1,324 +0,0 @@
> **Nota**
>
> Ao instalar as dependências, por favor, selecione rigorosamente as versões **especificadas** no arquivo requirements.txt.
>
> `pip install -r requirements.txt`
>
# <img src="logo.png" width="40" > Otimização acadêmica GPT (GPT Academic)
**Se você gostou deste projeto, por favor dê um Star. Se você criou atalhos acadêmicos mais úteis ou plugins funcionais, sinta-se livre para abrir uma issue ou pull request. Nós também temos um README em [Inglês|](README_EN.md)[日本語|](README_JP.md)[한국어|](https://github.com/mldljyh/ko_gpt_academic)[Русский|](README_RS.md)[Français](README_FR.md) traduzidos por este próprio projeto.
Para traduzir este projeto para qualquer idioma com o GPT, leia e execute [`multi_language.py`](multi_language.py) (experimental).
> **Nota**
>
> 1. Por favor, preste atenção que somente os plugins de funções (botões) com a cor **vermelha** podem ler arquivos. Alguns plugins estão localizados no **menu suspenso** na área de plugins. Além disso, nós damos as boas-vindas com a **maior prioridade** e gerenciamos quaisquer novos plugins PR!
>
> 2. As funções de cada arquivo neste projeto são detalhadas em [`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A), auto-análises do projeto geradas pelo GPT também estão podem ser chamadas a qualquer momento ao clicar nos plugins relacionados. As perguntas frequentes estão resumidas no [`wiki`](https://github.com/binary-husky/gpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98). [Instruções de Instalação](#installation).
>
> 3. Este projeto é compatível com e incentiva o uso de modelos de linguagem nacionais, como chatglm e RWKV, Pangolin, etc. Suporta a coexistência de várias chaves de API e pode ser preenchido no arquivo de configuração como `API_KEY="openai-key1,openai-key2,api2d-key3"`. Quando precisar alterar temporariamente o `API_KEY`, basta digitar o `API_KEY` temporário na área de entrada e pressionar Enter para que ele entre em vigor.
<div align="center">
Funcionalidade | Descrição
--- | ---
Um clique de polimento | Suporte a um clique polimento, um clique encontrar erros de gramática no artigo
Tradução chinês-inglês de um clique | Tradução chinês-inglês de um clique
Explicação de código de um único clique | Exibir código, explicar código, gerar código, adicionar comentários ao código
[Teclas de atalho personalizadas](https://www.bilibili.com/video/BV14s4y1E7jN) | Suporte a atalhos personalizados
Projeto modular | Suporte para poderosos plugins[de função personalizada](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions), os plugins suportam[hot-reload](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[Análise automática do programa](https://www.bilibili.com/video/BV1cj411A7VW) | [Plugin de função][um clique para entender](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A) o código-fonte do projeto
[Análise do programa](https://www.bilibili.com/video/BV1cj411A7VW) | [Plugin de função] Um clique pode analisar a árvore de projetos do Python/C/C++/Java/Lua/...
Leitura de artigos, [tradução](https://www.bilibili.com/video/BV1KT411x7Wn) de artigos | [Plugin de função] um clique para interpretar o resumo de artigos LaTeX/PDF e gerar resumo
Tradução completa LATEX, polimento|[Plugin de função] Uma clique para traduzir ou polir um artigo LATEX
Geração em lote de comentários | [Plugin de função] Um clique gera comentários de função em lote
[Tradução chinês-inglês](https://www.bilibili.com/video/BV1yo4y157jV/) markdown | [Plugin de função] Você viu o README em 5 linguagens acima?
Relatório de análise de chat | [Plugin de função] Gera automaticamente um resumo após a execução
[Funcionalidade de tradução de artigos completos em PDF](https://www.bilibili.com/video/BV1KT411x7Wn) | [Plugin de função] Extrai o título e o resumo do artigo PDF e traduz o artigo completo (multithread)
Assistente arXiv | [Plugin de função] Insira o url do artigo arXiv para traduzir o resumo + baixar PDF
Assistente de integração acadêmica do Google | [Plugin de função] Dê qualquer URL de página de pesquisa acadêmica do Google e deixe o GPT escrever[trabalhos relacionados](https://www.bilibili.com/video/BV1GP411U7Az/)
Agregação de informações da Internet + GPT | [Plugin de função] Um clique para obter informações do GPT através da Internet e depois responde a perguntas para informações nunca ficarem desatualizadas
Exibição de fórmulas/imagem/tabela | Pode exibir simultaneamente a forma de renderização e[TEX] das fórmulas, suporte a fórmulas e realce de código
Suporte de plugins de várias linhas | Suporte a várias chamadas em linha do chatgpt, um clique para processamento[de massa de texto](https://www.bilibili.com/video/BV1FT411H7c5/) ou programa
Tema gradio escuro | Adicione ``` /?__theme=dark``` ao final da url do navegador para ativar o tema escuro
[Suporte para vários modelos LLM](https://www.bilibili.com/video/BV1wT411p7yf), suporte para a nova interface API2D | A sensação de ser atendido simultaneamente por GPT3.5, GPT4, [Chatglm THU](https://github.com/THUDM/ChatGLM-6B), [Moss Fudan](https://github.com/OpenLMLab/MOSS) deve ser ótima, certo?
Mais modelos LLM incorporados, suporte para a implantação[huggingface](https://huggingface.co/spaces/qingxu98/gpt-academic) | Adicione interface Newbing (New Bing), suporte [JittorLLMs](https://github.com/Jittor/JittorLLMs) THU Introdução ao suporte do LLaMA, RWKV e Pan Gu Alpha
Mais recursos novos mostrados (geração de imagens, etc.) ... | Consulte o final deste documento ...
</div>
- Nova interface (Modifique a opção LAYOUT em `config.py` para alternar entre o layout esquerdo/direito e o layout superior/inferior)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230361456-61078362-a966-4eb5-b49e-3c62ef18b860.gif" width="700" >
</div>- All buttons are dynamically generated by reading functional.py, and you can add custom functions at will, liberating the clipboard
<div align="center">
<img src = "https://user-images.githubusercontent.com/96192199/231975334-b4788e91-4887-412f-8b43-2b9c5f41d248.gif" width="700">
</div>
- Proofreading/errors correction
<div align="center">
<img src = "https://user-images.githubusercontent.com/96192199/231980294-f374bdcb-3309-4560-b424-38ef39f04ebd.gif" width="700">
</div>
- If the output contains formulas, it will be displayed in both tex and rendering format at the same time, which is convenient for copying and reading
<div align="center">
<img src = "https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700">
</div>
- Don't want to read the project code? Just show the whole project to chatgpt
<div align="center">
<img src = "https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700">
</div>
- Mix the use of multiple large language models (ChatGLM + OpenAI-GPT3.5 + [API2D](https://api2d.com/)-GPT4)
<div align="center">
<img src = "https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700">
</div>
---
# Instalação
## Installation-Method 1: Run directly (Windows, Linux or MacOS)
1. Download the project
```sh
git clone https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. Configure the API KEY
In `config.py`, configure API KEY and other settings, [Special Network Environment Settings] (https://github.com/binary-husky/gpt_academic/issues/1).
(P.S. When the program runs, it will first check whether there is a private configuration file named `config_private.py`, and use the configuration in it to cover the configuration with the same name in `config.py`. Therefore, if you can understand our configuration reading logic, we strongly recommend that you create a new configuration file named `config_private.py` next to `config.py`, and transfer (copy) the configuration in `config.py` to `config_private.py`. `config_private.py` is not controlled by git and can make your privacy information more secure. P.S. The project also supports configuring most options through `environment variables`. The writing format of environment variables is referenced to the `docker-compose` file. Reading priority: `environment variable` > `config_private.py` > `config.py`)
3. Install dependencies
```sh
# (Option I: for those familiar with python)(python version is 3.9 or above, the newer the better), note: use the official pip source or the Alibaba pip source. Temporary solution for changing source: python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
python -m pip install -r requirements.txt
# (Option II: for those who are unfamiliar with python) use anaconda, the steps are also similar (https://www.bilibili.com/video/BV1rc411W7Dr):
conda create -n gptac_venv python=3.11 # create anaconda environment
conda activate gptac_venv # activate anaconda environment
python -m pip install -r requirements.txt # This step is the same as the pip installation step
```
<details><summary>If you need to support Tsinghua ChatGLM / Fudan MOSS as the backend, click to expand here</summary>
<p>
[Optional Step] If you need to support Tsinghua ChatGLM / Fudan MOSS as the backend, you need to install more dependencies (prerequisite: familiar with Python + used Pytorch + computer configuration is strong):
```sh
# 【Optional Step I】support Tsinghua ChatGLM。Tsinghua ChatGLM Note: If you encounter a "Call ChatGLM fails cannot load ChatGLM parameters normally" error, refer to the following: 1: The default installed is torch+cpu version, and using cuda requires uninstalling torch and reinstalling torch+cuda; 2: If the model cannot be loaded due to insufficient computer configuration, you can modify the model accuracy in request_llm/bridge_chatglm.py and change AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llm/requirements_chatglm.txt
# 【Optional Step II】support Fudan MOSS
python -m pip install -r request_llm/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # Note: When executing this line of code, you must be in the project root path
# 【Optional Step III】Make sure that the AVAIL_LLM_MODELS in the config.py configuration file contains the expected model. Currently, all supported models are as follows (jittorllms series currently only supports docker solutions):
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
```
</p>
</details>
4. Run
```sh
python main.py
```5. Plugin de Função de Teste
```
- Função de modelo de plug-in de teste (exige que o GPT responda ao que aconteceu hoje na história), você pode usar esta função como modelo para implementar funções mais complexas
Clique em "[Função de plug-in de modelo de demonstração] O que aconteceu hoje na história?"
```
## Instalação - Método 2: Usando o Docker
1. Apenas ChatGPT (recomendado para a maioria das pessoas)
``` sh
git clone https://github.com/binary-husky/gpt_academic.git # Baixar o projeto
cd gpt_academic # Entrar no caminho
nano config.py # Editar config.py com qualquer editor de texto configurando "Proxy", "API_KEY" e "WEB_PORT" (por exemplo, 50923), etc.
docker build -t gpt-academic . # Instale
# (Ùltima etapa - escolha 1) Dentro do ambiente Linux, é mais fácil e rápido usar `--net=host`
docker run --rm -it --net=host gpt-academic
# (Última etapa - escolha 2) Em ambientes macOS/windows, você só pode usar a opção -p para expor a porta do contêiner (por exemplo, 50923) para a porta no host
docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic
```
2. ChatGPT + ChatGLM + MOSS (conhecimento de Docker necessário)
``` sh
# Edite o arquivo docker-compose.yml, remova as soluções 1 e 3, mantenha a solução 2, e siga as instruções nos comentários do arquivo
docker-compose up
```
3. ChatGPT + LLAMA + Pangu + RWKV (conhecimento de Docker necessário)
``` sh
# Edite o arquivo docker-compose.yml, remova as soluções 1 e 2, mantenha a solução 3, e siga as instruções nos comentários do arquivo
docker-compose up
```
## Instalação - Método 3: Outros Métodos de Implantação
1. Como usar URLs de proxy inverso/microsoft Azure API
Basta configurar o API_URL_REDIRECT de acordo com as instruções em `config.py`.
2. Implantação em servidores em nuvem remotos (requer conhecimento e experiência de servidores em nuvem)
Acesse [Wiki de implementação remota do servidor em nuvem](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
3. Usando a WSL2 (sub-sistema do Windows para Linux)
Acesse [Wiki da implantação da WSL2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
4. Como executar em um subdiretório (ex. `http://localhost/subpath`)
Acesse [Instruções de execução FastAPI](docs/WithFastapi.md)
5. Execute usando o docker-compose
Leia o arquivo docker-compose.yml e siga as instruções.
# Uso Avançado
## Customize novos botões de acesso rápido / plug-ins de função personalizados
1. Personalizar novos botões de acesso rápido (atalhos acadêmicos)
Abra `core_functional.py` em qualquer editor de texto e adicione os seguintes itens e reinicie o programa (Se o botão já foi adicionado e pode ser visto, prefixos e sufixos são compatíveis com modificações em tempo real e não exigem reinício do programa para ter efeito.)
Por exemplo,
```
"Super Eng:": {
  # Prefixo, será adicionado antes da sua entrada. Por exemplo, para descrever sua solicitação, como tradução, explicação de código, polimento, etc.
  "Prefix": "Por favor, traduza o seguinte conteúdo para chinês e use uma tabela em Markdown para explicar termos próprios no texto: \n \n",
  # Sufixo, será adicionado após a sua entrada. Por exemplo, emparelhado com o prefixo, pode colocar sua entrada entre aspas.
  "Suffix": "",
},
```
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226899272-477c2134-ed71-4326-810c-29891fe4a508.png" width="500" >
</div>
2. Personalizar plug-ins de função
Escreva plug-ins de função poderosos para executar tarefas que você deseja e não pensava possível.
A dificuldade geral de escrever e depurar plug-ins neste projeto é baixa e, se você tem algum conhecimento básico de python, pode implementar suas próprias funções sobre o modelo que fornecemos.
Para mais detalhes, consulte o [Guia do plug-in de função.](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
---
# Última atualização
## Novas funções dinâmicas.
1. Função de salvamento de diálogo. Ao chamar o plug-in de função "Salvar diálogo atual", é possível salvar o diálogo atual em um arquivo html legível e reversível. Além disso, ao chamar o plug-in de função "Carregar arquivo de histórico de diálogo" no menu suspenso da área de plug-in, é possível restaurar uma conversa anterior. Dica: clicar em "Carregar arquivo de histórico de diálogo" sem especificar um arquivo permite visualizar o cache do arquivo html de histórico. Clicar em "Excluir todo o registro de histórico de diálogo local" permite excluir todo o cache de arquivo html.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/235222390-24a9acc0-680f-49f5-bc81-2f3161f1e049.png" width="500" >
</div>
2. Geração de relatório. A maioria dos plug-ins gera um relatório de trabalho após a conclusão da execução.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/227503770-fe29ce2c-53fd-47b0-b0ff-93805f0c2ff4.png" height="300" >
<img src="https://user-images.githubusercontent.com/96192199/227504617-7a497bb3-0a2a-4b50-9a8a-95ae60ea7afd.png" height="300" >
<img src="https://user-images.githubusercontent.com/96192199/227504005-efeaefe0-b687-49d0-bf95-2d7b7e66c348.png" height="300" >
</div>
3. Design modular de funcionalidades, com interfaces simples, mas suporte a recursos poderosos
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/229288270-093643c1-0018-487a-81e6-1d7809b6e90f.png" height="400" >
<img src="https://user-images.githubusercontent.com/96192199/227504931-19955f78-45cd-4d1c-adac-e71e50957915.png" height="400" >
</div>
4. Este é um projeto de código aberto que é capaz de "auto-traduzir-se".
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226936850-c77d7183-0749-4c1c-9875-fd4891842d0c.png" width="500" >
</div>
5. A tradução de outros projetos de código aberto é simples.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="500" >
</div>
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226969067-968a27c1-1b9c-486b-8b81-ab2de8d3f88a.png" width="500" >
</div>
6. Recursos decorativos para o [live2d](https://github.com/fghrsh/live2d_demo) (desativados por padrão, é necessário modificar o arquivo `config.py`)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236432361-67739153-73e8-43fe-8111-b61296edabd9.png" width="500" >
</div>
7. Suporte ao modelo de linguagem MOSS
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236639178-92836f37-13af-4fdd-984d-b4450fe30336.png" width="500" >
</div>
8. Geração de imagens pelo OpenAI
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/bc7ab234-ad90-48a0-8d62-f703d9e74665" width="500" >
</div>
9. Análise e resumo de áudio pelo OpenAI
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/709ccf95-3aee-498a-934a-e1c22d3d5d5b" width="500" >
</div>
10. Revisão e correção de erros de texto em Latex.
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/651ccd98-02c9-4464-91e1-77a6b7d1b033" width="500" >
</div>
## Versão:
- Versão 3.5(Todo): Usar linguagem natural para chamar todas as funções do projeto (prioridade alta)
- Versão 3.4(Todo): Melhorar o suporte à multithread para o chatglm local
- Versão 3.3: +Funções integradas de internet
- Versão 3.2: Suporte a mais interfaces de parâmetros de plug-in (função de salvar diálogo, interpretação de códigos de várias linguagens, perguntas de combinações LLM arbitrárias ao mesmo tempo)
- Versão 3.1: Suporte a perguntas a vários modelos de gpt simultaneamente! Suporte para api2d e balanceamento de carga para várias chaves api
- Versão 3.0: Suporte ao chatglm e outros LLMs de pequeno porte
- Versão 2.6: Refatoração da estrutura de plug-in, melhoria da interatividade e adição de mais plug-ins
- Versão 2.5: Autoatualização, resolvendo problemas de token de texto excessivamente longo e estouro ao compilar grandes projetos
- Versão 2.4: (1) Adição de funcionalidade de tradução de texto completo em PDF; (2) Adição de funcionalidade de mudança de posição da área de entrada; (3) Adição de opção de layout vertical; (4) Otimização de plug-ins de multithread.
- Versão 2.3: Melhoria da interatividade de multithread
- Versão 2.2: Suporte à recarga a quente de plug-ins
- Versão 2.1: Layout dobrável
- Versão 2.0: Introdução de plug-ins de função modular
- Versão 1.0: Funcionalidades básicasgpt_academic desenvolvedores QQ grupo-2: 610599535
- Problemas conhecidos
- Extensões de tradução de alguns navegadores podem interferir na execução do front-end deste software
- Uma versão muito alta ou muito baixa do Gradio pode causar vários erros
## Referências e Aprendizado
```
Foi feita referência a muitos projetos excelentes em código, principalmente:
# Projeto1: ChatGLM-6B da Tsinghua:
https://github.com/THUDM/ChatGLM-6B
# Projeto2: JittorLLMs da Tsinghua:
https://github.com/Jittor/JittorLLMs
# Projeto3: Edge-GPT:
https://github.com/acheong08/EdgeGPT
# Projeto4: ChuanhuChatGPT:
https://github.com/GaiZhenbiao/ChuanhuChatGPT
# Projeto5: ChatPaper:
https://github.com/kaixindelele/ChatPaper
# Mais:
https://github.com/gradio-app/gradio
https://github.com/fghrsh/live2d_demo
```

查看文件

@@ -1,322 +0,0 @@
> **Note**
>
> This English README is automatically generated by the markdown translation plugin in this project, and may not be 100% correct.
>
> When installing dependencies, **please strictly select the versions** specified in requirements.txt.
>
> `pip install -r requirements.txt`
# GPT Academic Optimization (GPT Academic)
**If you like this project, please give it a Star. If you've come up with more useful academic shortcuts or functional plugins, feel free to open an issue or pull request.
To translate this project to arbitary language with GPT, read and run [`multi_language.py`](multi_language.py) (experimental).**
> Note:
>
> 1. Please note that only the function plugins (buttons) marked in **red** support reading files. Some plugins are in the **drop-down menu** in the plugin area. We welcome and process any new plugins with the **highest priority**!
> 2. The function of each file in this project is detailed in the self-translation analysis [`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A). With version iteration, you can also click on related function plugins at any time to call GPT to regenerate the project's self-analysis report. Common questions are summarized in the [`wiki`](https://github.com/binary-husky/gpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98). [Installation method](#installation).
> 3. This project is compatible with and encourages trying domestic large language models such as chatglm, RWKV, Pangu, etc. Multiple API keys are supported and can be filled in the configuration file like `API_KEY="openai-key1,openai-key2,api2d-key3"`. When temporarily changing `API_KEY`, enter the temporary `API_KEY` in the input area and press enter to submit, which will take effect.
<div align="center">
Function | Description
--- | ---
One-click polishing | Supports one-click polishing and one-click searching for grammar errors in papers.
One-click Chinese-English translation | One-click Chinese-English translation.
One-click code interpretation | Displays, explains, generates, and adds comments to code.
[Custom shortcut keys](https://www.bilibili.com/video/BV14s4y1E7jN) | Supports custom shortcut keys.
Modular design | Supports custom powerful [function plug-ins](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions), plug-ins support [hot update](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
[Self-program profiling](https://www.bilibili.com/video/BV1cj411A7VW) | [Function plug-in] [One-click understanding](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A) of the source code of this project
[Program profiling](https://www.bilibili.com/video/BV1cj411A7VW) | [Function plug-in] One-click profiling of other project trees in Python/C/C++/Java/Lua/...
Reading papers, [translating](https://www.bilibili.com/video/BV1KT411x7Wn) papers | [Function Plug-in] One-click interpretation of latex/pdf full-text papers and generation of abstracts.
Latex full-text [translation](https://www.bilibili.com/video/BV1nk4y1Y7Js/), [polishing](https://www.bilibili.com/video/BV1FT411H7c5/) | [Function plug-in] One-click translation or polishing of latex papers.
Batch annotation generation | [Function plug-in] One-click batch generation of function annotations.
Markdown [Chinese-English translation](https://www.bilibili.com/video/BV1yo4y157jV/) | [Function plug-in] Have you seen the [README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md) in the five languages above?
Chat analysis report generation | [Function plug-in] Automatically generate summary reports after running.
[PDF full-text translation function](https://www.bilibili.com/video/BV1KT411x7Wn) | [Function plug-in] PDF paper extract title & summary + translate full text (multi-threaded)
[Arxiv Assistant](https://www.bilibili.com/video/BV1LM4y1279X) | [Function plug-in] Enter the arxiv article url and you can translate abstracts and download PDFs with one click.
[Google Scholar Integration Assistant](https://www.bilibili.com/video/BV19L411U7ia) | [Function plug-in] Given any Google Scholar search page URL, let GPT help you [write relatedworks](https://www.bilibili.com/video/BV1GP411U7Az/)
Internet information aggregation+GPT | [Function plug-in] One-click [let GPT get information from the Internet first](https://www.bilibili.com/video/BV1om4y127ck), then answer questions, and let the information never be outdated.
Formula/image/table display | Can display formulas in both [tex form and render form](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png), support formulas and code highlighting.
Multi-threaded function plug-in support | Supports multi-threaded calling of chatgpt, and can process [massive text](https://www.bilibili.com/video/BV1FT411H7c5/) or programs with one click.
Start Dark Gradio [theme](https://github.com/binary-husky/gpt_academic/issues/173) | Add ```/?__theme=dark``` after the browser URL to switch to the dark theme.
[Multiple LLM models](https://www.bilibili.com/video/BV1wT411p7yf) support, [API2D](https://api2d.com/) interface support | The feeling of being served by GPT3.5, GPT4, [Tsinghua ChatGLM](https://github.com/THUDM/ChatGLM-6B), and [Fudan MOSS](https://github.com/OpenLMLab/MOSS) at the same time must be great, right?
More LLM model access, support [huggingface deployment](https://huggingface.co/spaces/qingxu98/gpt-academic) | Add Newbing interface (New Bing), introduce Tsinghua [Jittorllms](https://github.com/Jittor/JittorLLMs) to support [LLaMA](https://github.com/facebookresearch/llama), [RWKV](https://github.com/BlinkDL/ChatRWKV) and [Panguα](https://openi.org.cn/pangu/)
More new feature displays (image generation, etc.)…… | See the end of this document for more...
</div>
- New interface (modify the LAYOUT option in `config.py` to switch between "left and right layout" and "up and down layout")
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230361456-61078362-a966-4eb5-b49e-3c62ef18b860.gif" width="700" >
</div>- All buttons are dynamically generated by reading `functional.py`, and you can add custom functions freely to unleash the power of clipboard.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231975334-b4788e91-4887-412f-8b43-2b9c5f41d248.gif" width="700" >
</div>
- polishing/correction
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231980294-f374bdcb-3309-4560-b424-38ef39f04ebd.gif" width="700" >
</div>
- If the output contains formulas, they will be displayed in both `tex` and render form, making it easy to copy and read.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700" >
</div>
- Tired of reading the project code? ChatGPT can explain it all.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700" >
</div>
- Multiple large language models are mixed, such as ChatGLM + OpenAI-GPT3.5 + [API2D](https://api2d.com/)-GPT4.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700" >
</div>
---
# Installation
## Method 1: Directly running (Windows, Linux or MacOS)
1. Download the project
```sh
git clone https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. Configure the API_KEY
Configure the API KEY in `config.py`, [special network environment settings](https://github.com/binary-husky/gpt_academic/issues/1).
(P.S. When the program is running, it will first check if there is a private configuration file named `config_private.py` and use the configurations in it to override the same configurations in `config.py`. Therefore, if you can understand our configuration reading logic, we strongly recommend that you create a new configuration file named `config_private.py` next to `config.py` and transfer (copy) the configurations in `config.py` to `config_private.py`. `config_private.py` is not controlled by git and can make your private information more secure. P.S. The project also supports configuring most options through `environment variables`. Please refer to the format of `docker-compose` file when writing. Reading priority: `environment variables` > `config_private.py` > `config.py`)
3. Install the dependencies
```sh
# (Option I: If familiar with python) (python version 3.9 or above, the newer the better), note: use official pip source or Ali pip source, temporary switching method: python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
python -m pip install -r requirements.txt
# (Option II: If not familiar with python) Use anaconda, the steps are similar (https://www.bilibili.com/video/BV1rc411W7Dr):
conda create -n gptac_venv python=3.11 # create anaconda environment
conda activate gptac_venv # activate anaconda environment
python -m pip install -r requirements.txt # this step is the same as pip installation
```
<details><summary>If you need to support Tsinghua ChatGLM/Fudan MOSS as a backend, click to expand</summary>
<p>
[Optional step] If you need to support Tsinghua ChatGLM/Fudan MOSS as a backend, you need to install more dependencies (prerequisites: familiar with Python + used Pytorch + computer configuration is strong enough):
```sh
# [Optional Step I] Support Tsinghua ChatGLM. Tsinghua ChatGLM remarks: if you encounter the "Call ChatGLM fail cannot load ChatGLM parameters" error, refer to this: 1: The default installation above is torch + cpu version, to use cuda, you need to uninstall torch and reinstall torch + cuda; 2: If the model cannot be loaded due to insufficient local configuration, you can modify the model accuracy in request_llm/bridge_chatglm.py, and change AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code = True)
python -m pip install -r request_llm/requirements_chatglm.txt
# [Optional Step II] Support Fudan MOSS
python -m pip install -r request_llm/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # When executing this line of code, you must be in the root directory of the project
# [Optional Step III] Make sure the AVAIL_LLM_MODELS in the config.py configuration file includes the expected models. Currently supported models are as follows (the jittorllms series only supports the docker solution for the time being):
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
```
</p>
</details>
4. Run it
```sh
python main.py
```5. Test Function Plugin
```
- Test function plugin template function (ask GPT what happened today in history), based on which you can implement more complex functions as a template
Click "[Function Plugin Template Demo] Today in History"
```
## Installation - Method 2: Using Docker
1. ChatGPT Only (Recommended for Most People)
``` sh
git clone https://github.com/binary-husky/gpt_academic.git # Download project
cd gpt_academic # Enter path
nano config.py # Edit config.py with any text editor, configure "Proxy", "API_KEY" and "WEB_PORT" (e.g. 50923), etc.
docker build -t gpt-academic . # Install
#(Last step - option 1) In a Linux environment, use `--net=host` for convenience and speed.
docker run --rm -it --net=host gpt-academic
#(Last step - option 2) On macOS/windows environment, only -p option can be used to expose the container's port (e.g. 50923) to the port of the main machine.
docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic
```
2. ChatGPT + ChatGLM + MOSS (Requires Docker Knowledge)
``` sh
# Modify docker-compose.yml, delete Plan 1 and Plan 3, and keep Plan 2. Modify the configuration of Plan 2 in docker-compose.yml, refer to the comments in it for configuration.
docker-compose up
```
3. ChatGPT + LLAMA + Pangu + RWKV (Requires Docker Knowledge)
``` sh
# Modify docker-compose.yml, delete Plan 1 and Plan 2, and keep Plan 3. Modify the configuration of Plan 3 in docker-compose.yml, refer to the comments in it for configuration.
docker-compose up
```
## Installation - Method 3: Other Deployment Options
1. How to Use Reverse Proxy URL/Microsoft Cloud Azure API
Configure API_URL_REDIRECT according to the instructions in 'config.py'.
2. Deploy to a Remote Server (Requires Knowledge and Experience with Cloud Servers)
Please visit [Deployment Wiki-1](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
3. Using WSL2 (Windows Subsystem for Linux)
Please visit [Deployment Wiki-2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
4. How to Run Under a Subdomain (e.g. `http://localhost/subpath`)
Please visit [FastAPI Running Instructions](docs/WithFastapi.md)
5. Using docker-compose to Run
Read the docker-compose.yml and follow the prompts.
---
# Advanced Usage
## Custom New Shortcut Buttons / Custom Function Plugins
1. Custom New Shortcut Buttons (Academic Hotkey)
Open `core_functional.py` with any text editor, add an entry as follows and restart the program. (If the button has been successfully added and is visible, the prefix and suffix can be hot-modified without having to restart the program.)
For example,
```
"Super English-to-Chinese": {
# Prefix, which will be added before your input. For example, used to describe your requests, such as translation, code explanation, polishing, etc.
"Prefix": "Please translate the following content into Chinese and then use a markdown table to explain the proprietary terms that appear in the text\n\n",
# Suffix, which is added after your input. For example, with the prefix, your input content can be surrounded by quotes.
"Suffix": "",
},
```
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226899272-477c2134-ed71-4326-810c-29891fe4a508.png" width="500" >
</div>
2. Custom Function Plugins
Write powerful function plugins to perform any task you can think of, even those you cannot think of.
The difficulty of plugin writing and debugging in this project is very low. As long as you have a certain knowledge of Python, you can implement your own plug-in functions based on the template we provide.
For details, please refer to the [Function Plugin Guide](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
---
# Latest Update
## New Feature Dynamics
1. Conversation saving function. Call `Save current conversation` in the function plugin area to save the current conversation as a readable and recoverable HTML file. In addition, call `Load conversation history archive` in the function plugin area (dropdown menu) to restore previous sessions. Tip: Clicking `Load conversation history archive` without specifying a file will display the cached history of HTML archives, and clicking `Delete all local conversation history` will delete all HTML archive caches.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/235222390-24a9acc0-680f-49f5-bc81-2f3161f1e049.png" width="500" >
</div>
2. Report generation. Most plugins will generate work reports after execution.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/227503770-fe29ce2c-53fd-47b0-b0ff-93805f0c2ff4.png" height="300" >
<img src="https://user-images.githubusercontent.com/96192199/227504617-7a497bb3-0a2a-4b50-9a8a-95ae60ea7afd.png" height="300" >
<img src="https://user-images.githubusercontent.com/96192199/227504005-efeaefe0-b687-49d0-bf95-2d7b7e66c348.png" height="300" >
</div>
3. Modular function design with simple interfaces that support powerful functions.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/229288270-093643c1-0018-487a-81e6-1d7809b6e90f.png" height="400" >
<img src="https://user-images.githubusercontent.com/96192199/227504931-19955f78-45cd-4d1c-adac-e71e50957915.png" height="400" >
</div>
4. This is an open-source project that can "self-translate".
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226936850-c77d7183-0749-4c1c-9875-fd4891842d0c.png" width="500" >
</div>
5. Translating other open-source projects is a piece of cake.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="500" >
</div>
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226969067-968a27c1-1b9c-486b-8b81-ab2de8d3f88a.png" width="500" >
</div>
6. A small feature decorated with [live2d](https://github.com/fghrsh/live2d_demo) (disabled by default, need to modify `config.py`).
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236432361-67739153-73e8-43fe-8111-b61296edabd9.png" width="500" >
</div>
7. Added MOSS large language model support.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236639178-92836f37-13af-4fdd-984d-b4450fe30336.png" width="500" >
</div>
8. OpenAI image generation.
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/bc7ab234-ad90-48a0-8d62-f703d9e74665" width="500" >
</div>
9. OpenAI audio parsing and summarization.
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/709ccf95-3aee-498a-934a-e1c22d3d5d5b" width="500" >
</div>
10. Full-text proofreading and error correction of LaTeX.
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/651ccd98-02c9-4464-91e1-77a6b7d1b033" width="500" >
</div>
## Versions:
- version 3.5(Todo): Use natural language to call all function plugins of this project (high priority).
- version 3.4(Todo): Improve multi-threading support for chatglm local large models.
- version 3.3: +Internet information integration function.
- version 3.2: Function plugin supports more parameter interfaces (save conversation function, interpretation of any language code + simultaneous inquiry of any LLM combination).
- version 3.1: Support simultaneous inquiry of multiple GPT models! Support api2d, and support load balancing of multiple apikeys.
- version 3.0: Support chatglm and other small LLM models.
- version 2.6: Refactored plugin structure, improved interactivity, and added more plugins.
- version 2.5: Self-updating, solving the problem of text overflow and token overflow when summarizing large engineering source codes.
- version 2.4: (1) Added PDF full-text translation function; (2) Added the function of switching the position of the input area; (3) Added vertical layout option; (4) Optimized multi-threading function plugins.
- version 2.3: Enhanced multi-threading interactivity.
- version 2.2: Function plugin supports hot reloading.
- version 2.1: Collapsible layout.
- version 2.0: Introduction of modular function plugins.
- version 1.0: Basic functions.
gpt_academic Developer QQ Group-2: 610599535
- Known Issues
- Some browser translation plugins interfere with the front-end operation of this software.
- Both high and low versions of gradio can lead to various exceptions.
## Reference and Learning
```
Many other excellent designs have been referenced in the code, mainly including:
# Project 1: THU ChatGLM-6B:
https://github.com/THUDM/ChatGLM-6B
# Project 2: THU JittorLLMs:
https://github.com/Jittor/JittorLLMs
# Project 3: Edge-GPT:
https://github.com/acheong08/EdgeGPT
# Project 4: ChuanhuChatGPT:
https://github.com/GaiZhenbiao/ChuanhuChatGPT
# Project 5: ChatPaper:
https://github.com/kaixindelele/ChatPaper
# More:
https://github.com/gradio-app/gradio
https://github.com/fghrsh/live2d_demo
```

查看文件

@@ -1,323 +0,0 @@
> **Note**
>
> Ce fichier README est généré automatiquement par le plugin de traduction markdown de ce projet et n'est peut - être pas correct à 100%.
>
> During installation, please strictly select the versions **specified** in requirements.txt.
>
> `pip install -r requirements.txt`
>
# <img src="logo.png" width="40" > Optimisation académique GPT (GPT Academic)
**Si vous aimez ce projet, veuillez lui donner une étoile. Si vous avez trouvé des raccourcis académiques ou des plugins fonctionnels plus utiles, n'hésitez pas à ouvrir une demande ou une pull request.
Pour traduire ce projet dans une langue arbitraire avec GPT, lisez et exécutez [`multi_language.py`](multi_language.py) (expérimental).
> **Note**
>
> 1. Veuillez noter que seuls les plugins de fonctions (boutons) **en rouge** prennent en charge la lecture de fichiers. Certains plugins se trouvent dans le **menu déroulant** de la zone de plugins. De plus, nous accueillons et traitons les nouvelles pull requests pour les plugins avec **la plus haute priorité**!
>
> 2. Les fonctions de chaque fichier de ce projet sont expliquées en détail dans l'auto-analyse [`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A). Avec l'itération des versions, vous pouvez également cliquer sur les plugins de fonctions pertinents et appeler GPT pour régénérer le rapport d'auto-analyse du projet à tout moment. Les FAQ sont résumées dans [le wiki](https://github.com/binary-husky/gpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98). [Méthode d'installation](#installation).
>
> 3. Ce projet est compatible avec et encourage l'utilisation de grands modèles de langage nationaux tels que chatglm, RWKV, Pangu, etc. La coexistence de plusieurs clés API est prise en charge et peut être remplie dans le fichier de configuration, tel que `API_KEY="openai-key1,openai-key2,api2d-key3"`. Lorsque vous souhaitez remplacer temporairement `API_KEY`, saisissez temporairement `API_KEY` dans la zone de saisie, puis appuyez sur Entrée pour soumettre et activer.
<div align="center">
Functionnalité | Description
--- | ---
Révision en un clic | prend en charge la révision en un clic et la recherche d'erreurs de syntaxe dans les articles
Traduction chinois-anglais en un clic | Traduction chinois-anglais en un clic
Explication de code en un clic | Affichage, explication, génération et ajout de commentaires de code
[Raccourcis personnalisés](https://www.bilibili.com/video/BV14s4y1E7jN) | prend en charge les raccourcis personnalisés
Conception modulaire | prend en charge de puissants plugins de fonction personnalisée, les plugins prennent en charge la [mise à jour à chaud](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[Autoscanner](https://www.bilibili.com/video/BV1cj411A7VW) | [Plug-in de fonction] [Compréhension instantanée](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A) du code source de ce projet
[Analyse de programme](https://www.bilibili.com/video/BV1cj411A7VW) | [Plug-in de fonction] Analyse en un clic de la structure d'autres projets Python / C / C ++ / Java / Lua / ...
Lecture d'articles, [traduction](https://www.bilibili.com/video/BV1KT411x7Wn) d'articles | [Plug-in de fonction] Compréhension instantanée de l'article latex / pdf complet et génération de résumés
[Traduction](https://www.bilibili.com/video/BV1nk4y1Y7Js/) et [révision](https://www.bilibili.com/video/BV1FT411H7c5/) complets en latex | [Plug-in de fonction] traduction ou révision en un clic d'articles en latex
Génération de commentaires en masse | [Plug-in de fonction] Génération en un clic de commentaires de fonction en masse
Traduction [chinois-anglais](https://www.bilibili.com/video/BV1yo4y157jV/) en Markdown | [Plug-in de fonction] avez-vous vu la [README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md) pour les 5 langues ci-dessus?
Génération de rapports d'analyse de chat | [Plug-in de fonction] Génère automatiquement un rapport de résumé après l'exécution
[Traduction intégrale en pdf](https://www.bilibili.com/video/BV1KT411x7Wn) | [Plug-in de fonction] Extraction de titre et de résumé de l'article pdf + traduction intégrale (multi-thread)
[Aide à arxiv](https://www.bilibili.com/video/BV1LM4y1279X) | [Plug-in de fonction] Entrer l'url de l'article arxiv pour traduire et télécharger le résumé en un clic
[Aide à la recherche Google Scholar](https://www.bilibili.com/video/BV19L411U7ia) | [Plug-in de fonction] Donnez l'URL de la page de recherche Google Scholar, laissez GPT vous aider à [écrire des ouvrages connexes](https://www.bilibili.com/video/BV1GP411U7Az/)
Aggrégation d'informations en ligne et GPT | [Plug-in de fonction] Permet à GPT de [récupérer des informations en ligne](https://www.bilibili.com/video/BV1om4y127ck), puis de répondre aux questions, afin que les informations ne soient jamais obsolètes
Affichage d'équations / images / tableaux | Fournit un affichage simultané de [la forme tex et de la forme rendue](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png), prend en charge les formules mathématiques et la coloration syntaxique du code
Prise en charge des plugins à plusieurs threads | prend en charge l'appel multithread de chatgpt, un clic pour traiter [un grand nombre d'articles](https://www.bilibili.com/video/BV1FT411H7c5/) ou de programmes
Thème gradio sombre en option de démarrage | Ajoutez```/?__theme=dark``` à la fin de l'URL du navigateur pour basculer vers le thème sombre
[Prise en charge de plusieurs modèles LLM](https://www.bilibili.com/video/BV1wT411p7yf), [API2D](https://api2d.com/) | Sera probablement très agréable d'être servi simultanément par GPT3.5, GPT4, [ChatGLM de Tsinghua](https://github.com/THUDM/ChatGLM-6B), [MOSS de Fudan](https://github.com/OpenLMLab/MOSS)
Plus de modèles LLM, déploiement de [huggingface](https://huggingface.co/spaces/qingxu98/gpt-academic) | Ajout prise en charge de l'interface Newbing (nouvelle bing), introduction du support de [Jittorllms de Tsinghua](https://github.com/Jittor/JittorLLMs), [LLaMA](https://github.com/facebookresearch/llama), [RWKV](https://github.com/BlinkDL/ChatRWKV) et [Panguα](https://openi.org.cn/pangu/)
Plus de nouvelles fonctionnalités (génération d'images, etc.) ... | Voir la fin de ce document pour plus de détails ...
</div>
- Nouvelle interface (modifier l'option LAYOUT de `config.py` pour passer d'une disposition ``gauche-droite`` à une disposition ``haut-bas``)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230361456-61078362-a966-4eb5-b49e-3c62ef18b860.gif" width="700" >
</div>- Tous les boutons sont générés dynamiquement en lisant functional.py et peuvent être facilement personnalisés pour ajouter des fonctionnalités personnalisées, ce qui facilite l'utilisation du presse-papiers.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231975334-b4788e91-4887-412f-8b43-2b9c5f41d248.gif" width="700" >
</div>
- Correction d'erreurs/lissage du texte.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231980294-f374bdcb-3309-4560-b424-38ef39f04ebd.gif" width="700" >
</div>
- Si la sortie contient des équations, elles sont affichées à la fois sous forme de tex et sous forme rendue pour faciliter la lecture et la copie.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700" >
</div>
- Pas envie de lire les codes de ce projet? Tout le projet est directement exposé par ChatGPT.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700" >
</div>
- Appel à une variété de modèles de langage de grande envergure (ChatGLM + OpenAI-GPT3.5 + [API2D] (https://api2d.com/)-GPT4).
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700" >
</div>
---
# Installation
## Installation-Method 1: running directly (Windows, Linux or MacOS)
1. Télécharger le projet
```sh
git clone https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. Configuration de la clé API
Dans `config.py`, configurez la clé API et d'autres paramètres. Consultez [Special network environment settings] (https://github.com/binary-husky/gpt_academic/issues/1).
(P.S. Lorsque le programme est exécuté, il vérifie en premier s'il existe un fichier de configuration privé nommé `config_private.py` et remplace les paramètres portant le même nom dans `config.py` par les paramètres correspondants dans `config_private.py`. Par conséquent, si vous comprenez la logique de lecture de nos configurations, nous vous recommandons vivement de créer un nouveau fichier de configuration nommé `config_private.py` à côté de `config.py` et de transférer (copier) les configurations de `config.py`. `config_private.py` n'est pas contrôlé par Git et peut garantir la sécurité de vos informations privées. P.S. Le projet prend également en charge la configuration de la plupart des options via "variables d'environnement", le format d'écriture des variables d'environnement est référencé dans le fichier `docker-compose`. Priorité de lecture: "variables d'environnement" > `config_private.py` > `config.py`)
3. Installer les dépendances
```sh
# (Option I: python users instalation) (Python version 3.9 or higher, the newer the better). Note: use official pip source or ali pip source. To temporarily change the source: python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
python -m pip install -r requirements.txt
# (Option II: non-python users instalation) Use Anaconda, the steps are similar (https://www.bilibili.com/video/BV1rc411W7Dr):
conda create -n gptac_venv python=3.11 # Create anaconda env
conda activate gptac_venv # Activate anaconda env
python -m pip install -r requirements.txt # Same step as pip instalation
```
<details><summary>Cliquez ici pour afficher le texte si vous souhaitez prendre en charge THU ChatGLM/FDU MOSS en tant que backend.</summary>
<p>
【Optional】 Si vous souhaitez prendre en charge THU ChatGLM/FDU MOSS en tant que backend, des dépendances supplémentaires doivent être installées (prérequis: compétent en Python + utilisez Pytorch + configuration suffisante de l'ordinateur):
```sh
# 【Optional Step I】 Support THU ChatGLM. Remarque sur THU ChatGLM: Si vous rencontrez l'erreur "Appel à ChatGLM échoué, les paramètres ChatGLM ne peuvent pas être chargés normalement", reportez-vous à ce qui suit: 1: La version par défaut installée est torch+cpu, si vous souhaitez utiliser cuda, vous devez désinstaller torch et réinstaller torch+cuda; 2: Si le modèle ne peut pas être chargé en raison d'une configuration insuffisante de l'ordinateur local, vous pouvez modifier la précision du modèle dans request_llm/bridge_chatglm.py, modifier AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) par AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llm/requirements_chatglm.txt
# 【Optional Step II】 Support FDU MOSS
python -m pip install -r request_llm/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # Note: When running this line of code, you must be in the project root path.
# 【Optional Step III】Make sure the AVAIL_LLM_MODELS in the config.py configuration file contains the desired model. Currently, all models supported are as follows (the jittorllms series currently only supports the docker scheme):
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
```
</p>
</details>
4. Exécution
```sh
python main.py
```5. Plugin de fonction de test
```
- Fonction de modèle de plugin de test (requiert que GPT réponde à ce qui s'est passé dans l'histoire aujourd'hui), vous pouvez utiliser cette fonction comme modèle pour mettre en œuvre des fonctionnalités plus complexes.
Cliquez sur "[Démo de modèle de plugin de fonction] Aujourd'hui dans l'histoire"
```
## Installation - Méthode 2: Utilisation de Docker
1. ChatGPT uniquement (recommandé pour la plupart des gens)
``` sh
git clone https://github.com/binary-husky/gpt_academic.git # Télécharger le projet
cd gpt_academic # Accéder au chemin
nano config.py # Editez config.py avec n'importe quel éditeur de texte en configurant "Proxy", "API_KEY" et "WEB_PORT" (p. ex. 50923)
docker build -t gpt-academic . # Installer
# (Dernière étape - choix1) Dans un environnement Linux, l'utilisation de `--net=host` est plus facile et rapide
docker run --rm -it --net=host gpt-academic
# (Dernière étape - choix 2) Dans un environnement macOS/Windows, seule l'option -p permet d'exposer le port du récipient (p.ex. 50923) au port de l'hôte.
docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic
```
2. ChatGPT + ChatGLM + MOSS (il faut connaître Docker)
``` sh
# Modifiez docker-compose.yml, supprimez la solution 1 et la solution 3, conservez la solution 2. Modifiez la configuration de la solution 2 dans docker-compose.yml en suivant les commentaires.
docker-compose up
```
3. ChatGPT + LLAMA + PanGu + RWKV (il faut connaître Docker)
``` sh
# Modifiez docker-compose.yml, supprimez la solution 1 et la solution 2, conservez la solution 3. Modifiez la configuration de la solution 3 dans docker-compose.yml en suivant les commentaires.
docker-compose up
```
## Installation - Méthode 3: Autres méthodes de déploiement
1. Comment utiliser une URL de proxy inversé / Microsoft Azure Cloud API
Configurez simplement API_URL_REDIRECT selon les instructions de config.py.
2. Déploiement distant sur un serveur cloud (connaissance et expérience des serveurs cloud requises)
Veuillez consulter [Wiki de déploiement-1] (https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97).
3. Utilisation de WSL2 (sous-système Windows pour Linux)
Veuillez consulter [Wiki de déploiement-2] (https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2).
4. Comment exécuter sous un sous-répertoire (tel que `http://localhost/subpath`)
Veuillez consulter les [instructions d'exécution de FastAPI] (docs/WithFastapi.md).
5. Utilisation de docker-compose
Veuillez lire docker-compose.yml, puis suivre les instructions fournies.
# Utilisation avancée
## Personnalisation de nouveaux boutons pratiques / Plugins de fonctions personnalisées
1. Personnalisation de nouveaux boutons pratiques (raccourcis académiques)
Ouvrez core_functional.py avec n'importe quel éditeur de texte, ajoutez une entrée comme suit, puis redémarrez le programme. (Si le bouton a été ajouté avec succès et est visible, le préfixe et le suffixe prennent en charge les modifications à chaud et ne nécessitent pas le redémarrage du programme pour prendre effet.)
Par exemple
```
"Super coller sens": {
# Préfixe, sera ajouté avant votre entrée. Par exemple, pour décrire votre demande, telle que traduire, expliquer du code, faire la mise en forme, etc.
"Prefix": "Veuillez traduire le contenu suivant en chinois, puis expliquer chaque terme proprement nommé qui y apparaît avec un tableau markdown:\n\n",
# Suffixe, sera ajouté après votre entrée. Par exemple, en utilisant le préfixe, vous pouvez entourer votre contenu d'entrée de guillemets.
"Suffix": "",
},
```
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226899272-477c2134-ed71-4326-810c-29891fe4a508.png" width="500" >
</div>
2. Plugins de fonctions personnalisées
Écrivez des plugins de fonctions puissants pour effectuer toutes les tâches que vous souhaitez ou que vous ne pouvez pas imaginer.
Les plugins de ce projet ont une difficulté de programmation et de débogage très faible. Si vous avez des connaissances de base en Python, vous pouvez simuler la fonctionnalité de votre propre plugin en suivant le modèle que nous avons fourni.
Veuillez consulter le [Guide du plugin de fonction] (https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97) pour plus de détails.
---
# Latest Update
## Nouvelles fonctionnalités en cours de déploiement.
1. Fonction de sauvegarde de la conversation.
Appelez simplement "Enregistrer la conversation actuelle" dans la zone de plugin de fonction pour enregistrer la conversation actuelle en tant que fichier html lisible et récupérable. De plus, dans la zone de plugin de fonction (menu déroulant), appelez "Charger une archive de l'historique de la conversation" pour restaurer la conversation précédente. Astuce : cliquer directement sur "Charger une archive de l'historique de la conversation" sans spécifier de fichier permet de consulter le cache d'archive html précédent. Cliquez sur "Supprimer tous les enregistrements locaux de l'historique de la conversation" pour supprimer le cache d'archive html.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/235222390-24a9acc0-680f-49f5-bc81-2f3161f1e049.png" width="500" >
</div>
2. Générer un rapport. La plupart des plugins génèrent un rapport de travail après l'exécution.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/227503770-fe29ce2c-53fd-47b0-b0ff-93805f0c2ff4.png" height="300" >
<img src="https://user-images.githubusercontent.com/96192199/227504617-7a497bb3-0a2a-4b50-9a8a-95ae60ea7afd.png" height="300" >
<img src="https://user-images.githubusercontent.com/96192199/227504005-efeaefe0-b687-49d0-bf95-2d7b7e66c348.png" height="300" >
</div>
3. Conception de fonctionnalités modulaires avec une interface simple mais capable d'une fonctionnalité puissante.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/229288270-093643c1-0018-487a-81e6-1d7809b6e90f.png" height="400" >
<img src="https://user-images.githubusercontent.com/96192199/227504931-19955f78-45cd-4d1c-adac-e71e50957915.png" height="400" >
</div>
4. C'est un projet open source qui peut "se traduire de lui-même".
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226936850-c77d7183-0749-4c1c-9875-fd4891842d0c.png" width="500" >
</div>
5. Traduire d'autres projets open source n'est pas un problème.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="500" >
</div>
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226969067-968a27c1-1b9c-486b-8b81-ab2de8d3f88a.png" width="500" >
</div>
6. Fonction de décoration de live2d (désactivée par défaut, nécessite une modification de config.py).
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236432361-67739153-73e8-43fe-8111-b61296edabd9.png" width="500" >
</div>
7. Prise en charge du modèle de langue MOSS.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236639178-92836f37-13af-4fdd-984d-b4450fe30336.png" width="500" >
</div>
8. Génération d'images OpenAI.
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/bc7ab234-ad90-48a0-8d62-f703d9e74665" width="500" >
</div>
9. Analyse et synthèse vocales OpenAI.
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/709ccf95-3aee-498a-934a-e1c22d3d5d5b" width="500" >
</div>
10. Correction de la totalité des erreurs de Latex.
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/651ccd98-02c9-4464-91e1-77a6b7d1b033" width="500" >
</div>
## Versions :
- version 3.5 (À faire) : appel de toutes les fonctions de plugin de ce projet en langage naturel (priorité élevée)
- version 3.4 (À faire) : amélioration du support multi-thread de chatglm en local
- version 3.3 : Fonctionnalité intégrée d'informations d'internet
- version 3.2 : La fonction du plugin de fonction prend désormais en charge des interfaces de paramètres plus nombreuses (fonction de sauvegarde, décodage de n'importe quel langage de code + interrogation simultanée de n'importe quelle combinaison de LLM)
- version 3.1 : Prise en charge de l'interrogation simultanée de plusieurs modèles GPT ! Support api2d, équilibrage de charge multi-clé api.
- version 3.0 : Prise en charge de chatglm et autres LLM de petite taille.
- version 2.6 : Refonte de la structure des plugins, amélioration de l'interactivité, ajout de plus de plugins.
- version 2.5 : Auto-mise à jour, résolution des problèmes de texte trop long et de dépassement de jetons lors de la compilation du projet global.
- version 2.4 : (1) Nouvelle fonction de traduction de texte intégral PDF ; (2) Nouvelle fonction de permutation de position de la zone d'entrée ; (3) Nouvelle option de mise en page verticale ; (4) Amélioration des fonctions multi-thread de plug-in.
- version 2.3 : Amélioration de l'interactivité multithread.
- version 2.2 : Les plugins de fonctions peuvent désormais être rechargés à chaud.
- version 2.1 : Disposition pliable
- version 2.0 : Introduction de plugins de fonctions modulaires
- version 1.0 : Fonctionnalités de base
gpt_academic développeur QQ groupe-2610599535
- Problèmes connus
- Certains plugins de traduction de navigateur perturbent le fonctionnement de l'interface frontend de ce logiciel
- Des versions gradio trop hautes ou trop basses provoquent de nombreuses anomalies
## Référence et apprentissage
```
De nombreux autres excellents projets ont été référencés dans le code, notamment :
# Projet 1 : ChatGLM-6B de Tsinghua :
https://github.com/THUDM/ChatGLM-6B
# Projet 2 : JittorLLMs de Tsinghua :
https://github.com/Jittor/JittorLLMs
# Projet 3 : Edge-GPT :
https://github.com/acheong08/EdgeGPT
# Projet 4 : ChuanhuChatGPT :
https://github.com/GaiZhenbiao/ChuanhuChatGPT
# Projet 5 : ChatPaper :
https://github.com/kaixindelele/ChatPaper
# Plus :
https://github.com/gradio-app/gradio
https://github.com/fghrsh/live2d_demo
```

查看文件

@@ -1,329 +0,0 @@
> **Note**
>
> このReadmeファイルは、このプロジェクトのmarkdown翻訳プラグインによって自動的に生成されたもので、100%正確ではない可能性があります。
>
> When installing dependencies, please strictly choose the versions specified in `requirements.txt`.
>
> `pip install -r requirements.txt`
>
# <img src="logo.png" width="40" > GPT 学术优化 (GPT Academic)
**もしこのプロジェクトが好きなら、星をつけてください。もしあなたがより良いアカデミックショートカットまたは機能プラグインを思いついた場合、Issueをオープンするか pull request を送信してください。私たちはこのプロジェクト自体によって翻訳された[英語 |](README_EN.md)[日本語 |](README_JP.md)[한국어 |](https://github.com/mldljyh/ko_gpt_academic)[Русский |](README_RS.md)[Français](README_FR.md)のREADMEも用意しています。
GPTを使った任意の言語にこのプロジェクトを翻訳するには、[`multi_language.py`](multi_language.py)を読んで実行してください。 (experimental)。
> **注意**
>
> 1. **赤色**で表示された関数プラグイン(ボタン)のみ、ファイルの読み取りをサポートしています。一部のプラグインは、プラグインエリアの**ドロップダウンメニュー**内にあります。また、私たちはどんな新しいプラグインのPRでも、**最優先**で歓迎し、処理します!
>
> 2. このプロジェクトの各ファイルの機能は、自己解析の詳細説明書である[`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A)で説明されています。バージョンが進化するにつれて、関連する関数プラグインをいつでもクリックし、GPTを呼び出してプロジェクトの自己解析レポートを再生成することができます。よくある問題は[`wiki`](https://github.com/binary-husky/gpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98)にまとめられています。[インストール方法](#installation)。
> 3. このプロジェクトは、chatglmやRWKV、パンクなど、国内の大規模自然言語モデルを利用することをサポートし、試みることを奨励します。複数のAPIキーを共存することができ、設定ファイルに`API_KEY="openai-key1,openai-key2,api2d-key3"`のように記入することができます。`API_KEY`を一時的に変更する場合は、入力エリアに一時的な`API_KEY`を入力してEnterキーを押せば、それが有効になります。
<div align="center">
機能 | 説明
--- | ---
一键校正 | 一键で校正可能、論文の文法エラーを検索することができる
一键中英翻訳 | 一键で中英翻訳可能
一键コード解説 | コードを表示し、解説し、生成し、コードに注釈をつけることができる
[自分でカスタマイズ可能なショートカットキー](https://www.bilibili.com/video/BV14s4y1E7jN) | 自分でカスタマイズ可能なショートカットキーをサポートする
モジュール化された設計 | カスタマイズ可能な[強力な関数プラグイン](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions)をサポートし、プラグインは[ホットアップデート](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)に対応している
[自己プログラム解析](https://www.bilibili.com/video/BV1cj411A7VW) | [関数プラグイン] [一键読解](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A)このプロジェクトのソースコード
プログラム解析 | [関数プラグイン] 一鍵で他のPython/C/C++/Java/Lua/...プロジェクトを分析できる
論文の読み、[翻訳](https://www.bilibili.com/video/BV1KT411x7Wn) | [関数プラグイン] LaTex/ PDF論文の全文を一鍵で読み解き、要約を生成することができる
LaTex全文[翻訳](https://www.bilibili.com/video/BV1nk4y1Y7Js/)、[校正](https://www.bilibili.com/video/BV1FT411H7c5/) | [関数プラグイン] LaTex論文の翻訳または校正を一鍵で行うことができる
一括で注釈を生成 | [関数プラグイン] 一鍵で関数に注釈をつけることができる
Markdown[中英翻訳](https://www.bilibili.com/video/BV1yo4y157jV/) | [関数プラグイン] 上記の5種類の言語の[README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md)を見たことがありますか?
チャット分析レポート生成 | [関数プラグイン] 実行後、自動的に概要報告書を生成する
[PDF論文全文翻訳機能](https://www.bilibili.com/video/BV1KT411x7Wn) | [関数プラグイン] PDF論文からタイトルと要約を抽出し、全文を翻訳するマルチスレッド
[Arxivアシスタント](https://www.bilibili.com/video/BV1LM4y1279X) | [関数プラグイン] arxiv記事のURLを入力するだけで、要約を一鍵翻訳し、PDFをダウンロードできる
[Google Scholar 総合アシスタント](https://www.bilibili.com/video/BV19L411U7ia) | [関数プラグイン] 任意のGoogle Scholar検索ページURLを指定すると、gptが[related works](https://www.bilibili.com/video/BV1GP411U7Az/)を作成する
インターネット情報収集GPT | [関数プラグイン] まずGPTに[インターネットから情報を収集](https://www.bilibili.com/video/BV1om4y127ck)してから質問に回答させ、情報が常に最新であるようにする
数式/画像/表表示 | 数式の[tex形式とレンダリング形式](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png)を同時に表示し、数式、コードハイライトをサポートしている
マルチスレッド関数プラグインがサポートされている | chatgptをマルチスレッドで呼び出し、[大量のテキスト](https://www.bilibili.com/video/BV1FT411H7c5/)またはプログラムを一鍵で処理できる
ダークグラジオ[テーマの起動](https://github.com/binary-husky/gpt_academic/issues/173) | ブラウザのURLの後ろに```/?__theme=dark```を追加すると、ダークテーマを切り替えることができます。
[多数のLLMモデル](https://www.bilibili.com/video/BV1wT411p7yf)がサポートされ、[API2D](https://api2d.com/)がサポートされている | 同時にGPT3.5、GPT4、[清華ChatGLM](https://github.com/THUDM/ChatGLM-6B)、[復旦MOSS](https://github.com/OpenLMLab/MOSS)に対応
より多くのLLMモデルが接続され、[huggingfaceデプロイ](https://huggingface.co/spaces/qingxu98/gpt-academic)がサポートされている | NewbingインターフェイスNewbing、清華大学の[Jittorllm](https://github.com/Jittor/JittorLLMs)のサポート[LLaMA](https://github.com/facebookresearch/llama), [RWKV](https://github.com/BlinkDL/ChatRWKV)と[盘古α](https://openi.org.cn/pangu/)
さらに多くの新機能(画像生成など)を紹介する... | この文書の最後に示す...
</div>
- 新しいインターフェース(`config.py`のLAYOUTオプションを変更することで、「左右配置」と「上下配置」を切り替えることができます
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230361456-61078362-a966-4eb5-b49e-3c62ef18b860.gif" width="700" >
</div>- All buttons are dynamically generated by reading functional.py, and custom functions can be freely added to free the clipboard.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231975334-b4788e91-4887-412f-8b43-2b9c5f41d248.gif" width="700" >
</div>
- Polishing/Correction
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231980294-f374bdcb-3309-4560-b424-38ef39f04ebd.gif" width="700" >
</div>
- If the output contains formulas, they are displayed in both TeX and rendering forms, making it easy to copy and read.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700" >
</div>
- Don't feel like looking at the project code? Just ask chatgpt directly.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700" >
</div>
- Mixed calls of multiple large language models (ChatGLM + OpenAI-GPT3.5 + [API2D](https://api2d.com/)-GPT4
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700" >
</div>
---
# Installation
## Installation-Method 1: Directly run (Windows, Linux or MacOS)
1. Download the project.
```sh
git clone https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. Configure the API_KEY.
Configure the API KEY and other settings in `config.py` and [special network environment settings](https://github.com/binary-husky/gpt_academic/issues/1).
(P.S. When the program is running, it will first check if there is a private configuration file named `config_private.py`, and use the configuration in it to override the same name configuration in `config.py`. Therefore, if you can understand our configuration reading logic, we strongly recommend that you create a new configuration file named `config_private.py` next to `config.py`, and transfer (copy) the configuration in `config.py` to `config_private.py`. `config_private.py` is not controlled by git and can make your privacy information more secure. P.S. The project also supports configuring most options through `environment variables`, and the writing format of environment variables refers to the `docker-compose` file. Reading priority: `environment variables` > `config_private.py` > `config.py`)
3. Install dependencies.
```sh
# Choose I: If familiar with Python(Python version 3.9 or above, the newer the better) Note: Use the official pip source or Ali pip source. Temporary switching source method: python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
python -m pip install -r requirements.txt
# (Choose II: If not familiar with Python) Use anaconda, the steps are the same (https://www.bilibili.com/video/BV1rc411W7Dr):
conda create -n gptac_venv python=3.11 # Create anaconda environment.
conda activate gptac_venv # Activate the anaconda environment.
python -m pip install -r requirements.txt # This step is the same as the pip installation step.
```
<details><summary>If you need to support Tsinghua ChatGLM/Fudan MOSS as a backend, click to expand.</summary>
<p>
[Optional Steps] If you need to support Tsinghua ChatGLM/Fudan MOSS as a backend, you need to install more dependencies (precondition: familiar with Python + used Pytorch + computer configuration). Strong enough):
```sh
# Optional step I: support Tsinghua ChatGLM. Tsinghua ChatGLM remarks: If you encounter the error "Call ChatGLM fail cannot load ChatGLM parameters normally", refer to the following: 1: The version installed above is torch+cpu version, using cuda requires uninstalling torch and reinstalling torch+cuda; 2: If the model cannot be loaded due to insufficient local configuration, you can modify the model accuracy in request_llm/bridge_chatglm.py, and change AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True).
python -m pip install -r request_llm/requirements_chatglm.txt
# Optional Step II: Support Fudan MOSS.
python -m pip install -r request_llm/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # Note that when executing this line of code, it must be in the project root.
# 【Optional Step III】Ensure that the AVAIL_LLM_MODELS in the config.py configuration file contains the expected model. Currently, all supported models are as follows (jittorllms series currently only supports the docker solution):
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
```
</p>
</details>
4. Run.
```sh
python main.py
```5. Testing Function Plugin
```
- Test function plugin template function (requires gpt to answer what happened today in history), you can use this function as a template to implement more complex functions
Click "[Function Plugin Template Demo] Today in History"
```
## Installation-Methods 2: Using Docker
1. Only ChatGPT (recommended for most people)
``` sh
git clone https://github.com/binary-husky/gpt_academic.git # Download project
cd gpt_academic # Enter path
nano config.py # Edit config.py with any text editor configure "Proxy," "API_KEY," "WEB_PORT" (e.g., 50923) and more
docker build -t gpt-academic . # installation
#(Last step-Option 1) In a Linux environment, `--net=host` is more convenient and quick
docker run --rm -it --net=host gpt-academic
#(Last step-Option 2) In a macOS/windows environment, the -p option must be used to expose the container port (e.g., 50923) to the port on the host.
docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic
```
2. ChatGPT + ChatGLM + MOSS (requires familiarity with Docker)
``` sh
# Modify docker-compose.yml, delete plans 1 and 3, and retain plan 2. Modify the configuration of plan 2 in docker-compose.yml, and reference the comments for instructions.
docker-compose up
```
3. ChatGPT + LLAMA + Pangu + RWKV (requires familiarity with Docker)
``` sh
# Modify docker-compose.yml, delete plans 1 and 2, and retain plan 3. Modify the configuration of plan 3 in docker-compose.yml, and reference the comments for instructions.
docker-compose up
```
## Installation-Method 3: Other Deployment Methods
1. How to use proxy URL/Microsoft Azure API
Configure API_URL_REDIRECT according to the instructions in `config.py`.
2. Remote Cloud Server Deployment (requires cloud server knowledge and experience)
Please visit [Deployment Wiki-1](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
3. Using WSL2 (Windows Subsystem for Linux Subsystem)
Please visit [Deployment Wiki-2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
4. How to run on a secondary URL (such as `http://localhost/subpath`)
Please visit [FastAPI Running Instructions](docs/WithFastapi.md)
5. Run with docker-compose
Please read docker-compose.yml and follow the instructions provided therein.
---
# Advanced Usage
## Customize new convenience buttons/custom function plugins
1. Custom new convenience buttons (academic shortcut keys)
Open `core_functional.py` with any text editor, add the item as follows, and restart the program. (If the button has been added successfully and is visible, the prefix and suffix support hot modification without restarting the program.)
example:
```
"Super English to Chinese Translation": {
# Prefix, which will be added before your input. For example, used to describe your request, such as translation, code interpretation, polish, etc.
"Prefix": "Please translate the following content into Chinese, and explain the proper nouns in the text in a markdown table one by one:\n\n",
# Suffix, which will be added after your input. For example, in combination with the prefix, you can surround your input content with quotation marks.
"Suffix": "",
},
```
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226899272-477c2134-ed71-4326-810c-29891fe4a508.png" width="500" >
</div>
2. Custom function plugins
Write powerful function plugins to perform any task you can and cannot think of.
The difficulty of writing and debugging plugins in this project is low, and as long as you have a certain amount of python basic knowledge, you can follow the template provided by us to achieve your own plugin functions.
For details, please refer to the [Function Plugin Guide](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
---
# Latest Update
## New feature dynamics.
1. ダイアログの保存機能。関数プラグインエリアで '現在の会話を保存' を呼び出すと、現在のダイアログを読み取り可能で復元可能なHTMLファイルとして保存できます。さらに、関数プラグインエリアドロップダウンメニューで 'ダイアログの履歴保存ファイルを読み込む' を呼び出すことで、以前の会話を復元することができます。Tips:ファイルを指定せずに 'ダイアログの履歴保存ファイルを読み込む' をクリックすることで、過去のHTML保存ファイルのキャッシュを表示することができます。'すべてのローカルダイアログの履歴を削除' をクリックすることで、すべてのHTML保存ファイルのキャッシュを削除できます。
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/235222390-24a9acc0-680f-49f5-bc81-2f3161f1e049.png" width="500">
</div>
2. 報告書を生成します。ほとんどのプラグインは、実行が終了した後に作業報告書を生成します。
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/227503770-fe29ce2c-53fd-47b0-b0ff-93805f0c2ff4.png" height="300">
<img src="https://user-images.githubusercontent.com/96192199/227504617-7a497bb3-0a2a-4b50-9a8a-95ae60ea7afd.png" height="300">
<img src="https://user-images.githubusercontent.com/96192199/227504005-efeaefe0-b687-49d0-bf95-2d7b7e66c348.png" height="300">
</div>
3. モジュール化された機能設計、簡単なインターフェースで強力な機能をサポートする。
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/229288270-093643c1-0018-487a-81e6-1d7809b6e90f.png" height="400">
<img src="https://user-images.githubusercontent.com/96192199/227504931-19955f78-45cd-4d1c-adac-e71e50957915.png" height="400">
</div>
4. 自己解決可能なオープンソースプロジェクトです。
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226936850-c77d7183-0749-4c1c-9875-fd4891842d0c.png" width="500">
</div>
5. 他のオープンソースプロジェクトの解読、容易である。
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="500">
</div>
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226969067-968a27c1-1b9c-486b-8b81-ab2de8d3f88a.png" width="500">
</div>
6. [Live2D](https://github.com/fghrsh/live2d_demo)のデコレート小機能です。(デフォルトでは閉じてますが、 `config.py`を変更する必要があります。)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236432361-67739153-73e8-43fe-8111-b61296edabd9.png" width="500">
</div>
7. 新たにMOSS大言語モデルのサポートを追加しました。
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236639178-92836f37-13af-4fdd-984d-b4450fe30336.png" width="500">
</div>
8. OpenAI画像生成
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/bc7ab234-ad90-48a0-8d62-f703d9e74665" width="500">
</div>
9. OpenAIオーディオの解析とサマリー
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/709ccf95-3aee-498a-934a-e1c22d3d5d5b" width="500">
</div>
10. 全文校正されたLaTeX
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/651ccd98-02c9-4464-91e1-77a6b7d1b033" width="500">
</div>
## バージョン:
- version 3.5(作業中):すべての関数プラグインを自然言語で呼び出すことができるようにする(高い優先度)。
- version 3.4作業中chatglmのローカルモデルのマルチスレッドをサポートすることで、機能を改善する。
- version 3.3+Web情報の総合機能
- version 3.2:関数プラグインでさらに多くのパラメータインターフェイスをサポートする(ダイアログの保存機能、任意の言語コードの解読+同時に任意のLLM組み合わせに関する問い合わせ
- version 3.1複数のGPTモデルを同時に質問できるようになりました api2dをサポートし、複数のAPIキーを均等に負荷分散することができます。
- version 3.0chatglmとその他の小型LLMのサポート。
- version 2.6:プラグイン構造を再構築し、対話内容を高め、より多くのプラグインを追加しました。
- version 2.5:自己アップデートし、長文書やトークンのオーバーフローの問題を解決しました。
- version 2.41全文翻訳のPDF機能を追加しました。2入力エリアの位置切り替え機能を追加しました。3垂直レイアウトオプションを追加しました。4マルチスレッド関数プラグインを最適化しました。
- version 2.3:マルチスレッド性能の向上。
- version 2.2:関数プラグインのホットリロードをサポートする。
- version 2.1:折りたたみ式レイアウト。
- version 2.0:モジュール化された関数プラグインを導入。
- version 1.0:基本機能
gpt_academic開発者QQグループ-2610599535
- 既知の問題
- 一部のブラウザ翻訳プラグインが、このソフトウェアのフロントエンドの実行を妨害する
- gradioバージョンが高すぎるか低すぎると、多くの異常が引き起こされる
## 参考学習
```
コードの中には、他の優れたプロジェクトの設計から参考にしたものがたくさん含まれています:
# プロジェクト1清華ChatGLM-6B:
https://github.com/THUDM/ChatGLM-6B
# プロジェクト2清華JittorLLMs:
https://github.com/Jittor/JittorLLMs
# プロジェクト3Edge-GPT:
https://github.com/acheong08/EdgeGPT
# プロジェクト4ChuanhuChatGPT:
https://github.com/GaiZhenbiao/ChuanhuChatGPT
# プロジェクト5ChatPaper:
https://github.com/kaixindelele/ChatPaper
# その他:
https://github.com/gradio-app/gradio
https://github.com/fghrsh/live2d_demo
```

查看文件

@@ -1,278 +0,0 @@
> **Note**
>
> Этот файл самовыражения автоматически генерируется модулем перевода markdown в этом проекте и может быть не на 100% правильным.
>
# <img src="logo.png" width="40" > GPT Академическая оптимизация (GPT Academic)
**Если вам нравится этот проект, пожалуйста, поставьте ему звезду. Если вы придумали более полезные языковые ярлыки или функциональные плагины, не стесняйтесь открывать issue или pull request.
Чтобы перевести этот проект на произвольный язык с помощью GPT, ознакомьтесь и запустите [`multi_language.py`](multi_language.py) (экспериментальный).
> **Примечание**
>
> 1. Обратите внимание, что только функциональные плагины (кнопки), помеченные **красным цветом**, поддерживают чтение файлов, некоторые плагины находятся в **выпадающем меню** в области плагинов. Кроме того, мы с наивысшим приоритетом рады и обрабатываем pull requests для любых новых плагинов!
>
> 2. В каждом файле проекта функциональность описана в документе самоанализа [`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A). С каждой итерацией выполнения версии вы можете в любое время вызвать повторное создание отчета о самоанализе этого проекта, щелкнув соответствующий функциональный плагин и вызвав GPT. Вопросы сборки описаны в [`wiki`](https://github.com/binary-husky/gpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98). [Метод установки](#installation).
>
> 3. Этот проект совместим и поощряет использование китайских языковых моделей chatglm и RWKV, пангу и т. Д. Поддержка нескольких api-key, которые могут существовать одновременно, может быть указан в файле конфигурации, например `API_KEY="openai-key1,openai-key2,api2d-key3"`. Если требуется временно изменить `API_KEY`, введите временный `API_KEY` в области ввода и нажмите клавишу Enter, чтобы он вступил в силу.
> **Примечание**
>
> При установке зависимостей строго выбирайте версии, **указанные в файле requirements.txt**.
>
> `pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/`## Задание
Вы профессиональный переводчик научных статей.
Переведите этот файл в формате Markdown на русский язык. Не изменяйте существующие команды Markdown, ответьте только переведенными результатами.
## Результат
Функция | Описание
--- | ---
Однокнопочный стиль | Поддержка однокнопочного стиля и поиска грамматических ошибок в научных статьях
Однокнопочный перевод на английский и китайский | Однокнопочный перевод на английский и китайский
Однокнопочное объяснение кода | Показ кода, объяснение его, генерация кода, комментирование кода
[Настройка быстрых клавиш](https://www.bilibili.com/video/BV14s4y1E7jN) | Поддержка настройки быстрых клавиш
Модульный дизайн | Поддержка пользовательских функциональных плагинов мощных [функциональных плагинов](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions), плагины поддерживают [горячую замену](https://github.com/binary-husky/gpt_academic/wiki/Function-Plug-in-Guide)
[Анализ своей программы](https://www.bilibili.com/video/BV1cj411A7VW) | [Функциональный плагин] [Однокнопочный просмотр](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academicProject-Self-analysis-Report) исходного кода этого проекта
[Анализ программы](https://www.bilibili.com/video/BV1cj411A7VW) | [Функциональный плагин] Однокнопочный анализ дерева других проектов Python/C/C++/Java/Lua/...
Чтение статей, [перевод](https://www.bilibili.com/video/BV1KT411x7Wn) статей | [Функциональный плагин] Однокнопочное чтение полного текста научных статей и генерация резюме
Полный перевод [LaTeX](https://www.bilibili.com/video/BV1nk4y1Y7Js/) и совершенствование | [Функциональный плагин] Однокнопочный перевод или совершенствование LaTeX статьи
Автоматическое комментирование | [Функциональный плагин] Однокнопочное автоматическое генерирование комментариев функций
[Перевод](https://www.bilibili.com/video/BV1yo4y157jV/) Markdown на английский и китайский | [Функциональный плагин] Вы видели обе версии файлов [README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md) для этих 5 языков?
Отчет о чат-анализе | [Функциональный плагин] После запуска будет автоматически сгенерировано сводное извещение
Функция перевода полного текста [PDF-статьи](https://www.bilibili.com/video/BV1KT411x7Wn) | [Функциональный плагин] Извлечение заголовка и резюме [PDF-статьи](https://www.bilibili.com/video/BV1KT411x7Wn) и перевод всего документа (многопоточность)
[Arxiv Helper](https://www.bilibili.com/video/BV1LM4y1279X) | [Функциональный плагин] Введите URL статьи на arxiv и одним щелчком мыши переведите резюме и загрузите PDF
[Google Scholar Integration Helper](https://www.bilibili.com/video/BV19L411U7ia) | [Функциональный плагин] При заданном любом URL страницы поиска в Google Scholar позвольте gpt вам помочь [написать обзор](https://www.bilibili.com/video/BV1GP411U7Az/)
Сбор Интернет-информации + GPT | [Функциональный плагин] Однокнопочный [запрос информации из Интернета GPT](https://www.bilibili.com/video/BV1om4y127ck), затем ответьте на вопрос, чтобы информация не устарела никогда
Отображение формул / изображений / таблиц | Может одновременно отображать формулы в [формате Tex и рендеринге](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png), поддерживает формулы, подсвечивает код
Поддержка функций с многопоточностью | Поддержка многопоточного вызова chatgpt, однокнопочная обработка [больших объемов текста](https://www.bilibili.com/video/BV1FT411H7c5/) или программ
Темная тема gradio для запуска приложений | Добавьте ```/?__theme=dark``` после URL в браузере, чтобы переключиться на темную тему
[Поддержка нескольких моделей LLM](https://www.bilibili.com/video/BV1wT411p7yf), [API2D](https://api2d.com/) | Они одновременно обслуживаются GPT3.5, GPT4, [Clear ChatGLM](https://github.com/THUDM/ChatGLM-6B), [Fudan MOSS](https://github.com/OpenLMLab/MOSS)
Подключение нескольких новых моделей LLM, поддержка деплоя[huggingface](https://huggingface.co/spaces/qingxu98/gpt-academic) | Подключение интерфейса Newbing (новый Bing), подключение поддержки [LLaMA](https://github.com/facebookresearch/llama), поддержка [RWKV](https://github.com/BlinkDL/ChatRWKV) и [Pangu α](https://openi.org.cn/pangu/)
Больше новых функций (генерация изображения и т. д.) | См. на конце этого файла…- All buttons are dynamically generated by reading functional.py, and custom functions can be freely added to liberate the clipboard
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231975334-b4788e91-4887-412f-8b43-2b9c5f41d248.gif" width="700" >
</div>
- Revision/Correction
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231980294-f374bdcb-3309-4560-b424-38ef39f04ebd.gif" width="700" >
</div>
- If the output contains formulas, they will be displayed in both tex and rendered form for easy copying and reading
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700" >
</div>
- Don't feel like looking at project code? Show the entire project directly in chatgpt
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700" >
</div>
- Mixing multiple large language models (ChatGLM + OpenAI-GPT3.5 + [API2D](https://api2d.com/)-GPT4
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700" >
</div>
---
# Installation
## Installation-Method 1: Run directly (Windows, Linux or MacOS)
1. Download the project
```sh
git clone https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. Configure API_KEY
In `config.py`, configure API KEY and other settings, [special network environment settings] (https://github.com/binary-husky/gpt_academic/issues/1).
(P.S. When the program is running, it will first check whether there is a secret configuration file named `config_private.py` and use the configuration in it to replace the same name in` config.py`. Therefore, if you understand our configuration reading logic, we strongly recommend that you create a new configuration file named `config_private.py` next to `config.py`, and transfer (copy) the configuration in `config.py` to `config_private.py`. `config_private.py` is not controlled by git, which can make your privacy information more secure. P.S. The project also supports configuring most options through `environment variables`, and the writing format of environment variables refers to the `docker-compose` file. Priority of read: `environment variable`>`config_private.py`>`config.py`)
3. Install dependencies
```sh
# Option I: If familiar with Python(Python version 3.9 or above, the newer the better), note: use the official pip source or the aliyun pip source, temporary switching source method: python -m pip install -r requirements.txt - i https://mirrors.aliyun.com/pypi/simple/
python -m pip install -r requirements.txt
# Option II: If unfamiliar with PythonUse Anaconda, the steps are also similar (https://www.bilibili.com/video/BV1rc411W7Dr):
conda create -n gptac_venv python=3.11 # create an Anaconda environment
conda activate gptac_venv # activate Anaconda environment
python -m pip install -r requirements.txt # This step is the same as the pip installation
```
<details><summary> If you need to support Tsinghua ChatGLM/Fudan MOSS as backend, click here to expand </summary>
<p>
[Optional step] If you need to support Tsinghua ChatGLM/Fudan MOSS as backend, you need to install more dependencies (prerequisites: familiar with Python + have used Pytorch + computer configuration is strong):
```sh
# [Optional step I] Support Tsinghua ChatGLM. Tsinghua ChatGLM note: If you encounter the "Call ChatGLM fail cannot load ChatGLM parameters normally" error, refer to the following: 1: The default installation above is torch+cpu version, and cuda is used Need to uninstall torch and reinstall torch+cuda; 2: If you cannot load the model due to insufficient local configuration, you can modify the model accuracy in request_llm/bridge_chatglm.py, AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) Modify to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llm/requirements_chatglm.txt
# [Optional step II] Support Fudan MOSS
python -m pip install -r request_llm/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # Note that when executing this line of code, you must be in the project root path
# [Optional step III] Make sure the AVAIL_LLM_MODELS in the config.py configuration file contains the expected models. Currently, all supported models are as follows (the jittorllms series currently only supports the docker solution):
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
```
</p>
</details>
4. Run
```sh
python main.py
```5. Testing Function Plugin
```
- Testing function plugin template function (requires GPT to answer what happened in history today), you can use this function as a template to implement more complex functions
Click "[Function plugin Template Demo] On this day in history"
```
## Installation - Method 2: Using Docker
1. ChatGPT only (recommended for most people)
``` sh
git clone https://github.com/binary-husky/gpt_academic.git # download the project
cd gpt_academic # enter the path
nano config.py # edit config.py with any text editor to configure "Proxy", "API_KEY", and "WEB_PORT" (eg 50923)
docker build -t gpt-academic . # install
# (Last step-Option 1) In a Linux environment, using `--net=host` is more convenient and faster
docker run --rm -it --net=host gpt-academic
# (Last step-Option 2) In macOS/windows environment, only -p option can be used to expose the port on the container (eg 50923) to the port on the host
docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic
```
2. ChatGPT + ChatGLM + MOSS (requires familiarity with Docker)
``` sh
# Edit docker-compose.yml, delete solutions 1 and 3, and keep solution 2. Modify the configuration of solution 2 in docker-compose.yml, refer to the comments in it
docker-compose up
```
3. ChatGPT + LLAMA + PanGu + RWKV (requires familiarity with Docker)
``` sh
# Edit docker-compose.yml, delete solutions 1 and 2, and keep solution 3. Modify the configuration of solution 3 in docker-compose.yml, refer to the comments in it
docker-compose up
```
## Installation Method 3: Other Deployment Methods
1. How to use reverse proxy URL/Microsoft Azure API
Configure API_URL_REDIRECT according to the instructions in `config.py`.
2. Remote Cloud Server Deployment (Requires Knowledge and Experience of Cloud Servers)
Please visit [Deployment Wiki-1](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
3. Using WSL2 (Windows Subsystem for Linux subsystem)
Please visit [Deployment Wiki-2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
4. How to run at the secondary URL (such as `http://localhost/subpath`)
Please visit [FastAPI Operation Instructions](docs/WithFastapi.md)
5. Using docker-compose to run
Please read docker-compose.yml and follow the prompts to operate.
---
# Advanced Usage
## Customize new convenient buttons / custom function plugins
1. Customize new convenient buttons (academic shortcuts)
Open `core_functional.py` with any text editor, add an entry as follows, and then restart the program. (If the button has been added successfully and is visible, both prefixes and suffixes can be hot-modified without having to restart the program.)
For example:
```
"Super English to Chinese": {
# Prefix, will be added before your input. For example, describe your requirements, such as translation, code interpretation, polishing, etc.
"Prefix": "Please translate the following content into Chinese, and then explain each proper noun that appears in the text with a markdown table:\n\n",
# Suffix, will be added after your input. For example, with the prefix, you can enclose your input content in quotes.
"Suffix": "",
},
```
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226899272-477c2134-ed71-4326-810c-29891fe4a508.png" width="500" >
</div>
2. Custom function plugin
Write powerful function plugins to perform any task you can and can't imagine.
The difficulty of debugging and writing plugins in this project is very low. As long as you have a certain knowledge of python, you can implement your own plugin function by imitating the template we provide.
Please refer to the [Function Plugin Guide](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97) for details.
---
# Latest Update
## New feature dynamic
1. Сохранение диалогов. Вызовите "Сохранить текущий диалог" в разделе функций-плагина, чтобы сохранить текущий диалог как файл HTML, который можно прочитать и восстановить. Кроме того, вызовите «Загрузить архив истории диалога» в меню функций-плагина, чтобы восстановить предыдущую сессию. Совет: если нажать кнопку "Загрузить исторический архив диалога" без указания файла, можно просмотреть кэш исторических файлов HTML. Щелкните "Удалить все локальные записи истории диалогов", чтобы удалить все файловые кэши HTML.
2. Создание отчетов. Большинство плагинов создают рабочий отчет после завершения выполнения.
 
3. Модульный дизайн функций, простой интерфейс, но сильный функционал.
4. Это проект с открытым исходным кодом, который может «сам переводить себя».
5. Перевод других проектов с открытым исходным кодом - это не проблема.
6. Мелкие функции декорирования [live2d](https://github.com/fghrsh/live2d_demo) (по умолчанию отключены, нужно изменить `config.py`).
7. Поддержка большой языковой модели MOSS.
8. Генерация изображений с помощью OpenAI.
9. Анализ и подведение итогов аудиофайлов с помощью OpenAI.
10. Полный цикл проверки правописания с использованием LaTeX.
## Версии:
- Версия 3.5 (Todo): использование естественного языка для вызова функций-плагинов проекта (высокий приоритет)
- Версия 3.4 (Todo): улучшение многопоточной поддержки локальных больших моделей чата.
- Версия 3.3: добавлена функция объединения интернет-информации.
- Версия 3.2: функции-плагины поддерживают большое количество параметров (сохранение диалогов, анализирование любого языка программирования и одновременное запрос LLM-групп).
- Версия 3.1: поддержка одновременного запроса нескольких моделей GPT! Поддержка api2d, сбалансированное распределение нагрузки по нескольким ключам api.
- Версия 3.0: поддержка chatglm и других небольших LLM.
- Версия 2.6: перестройка структуры плагинов, улучшение интерактивности, добавлено больше плагинов.
- Версия 2.5: автоматическое обновление для решения проблемы длинного текста и переполнения токенов при обработке больших проектов.
- Версия 2.4: (1) добавлена функция полного перевода PDF; (2) добавлена функция переключения положения ввода; (3) добавлена опция вертикального макета; (4) оптимизация многопоточности плагинов.
- Версия 2.3: улучшение многопоточной интерактивности.
- Версия 2.2: функции-плагины поддерживают горячую перезагрузку.
- Версия 2.1: раскрывающийся макет.
- Версия 2.0: использование модульных функций-плагинов.
- Версия 1.0: базовые функции.
gpt_academic Разработчик QQ-группы-2: 610599535
- Известные проблемы
- Некоторые плагины перевода в браузерах мешают работе фронтенда этого программного обеспечения
- Высокая или низкая версия gradio может вызвать множество исключений
## Ссылки и учебные материалы
```
Мы использовали многие концепты кода из других отличных проектов, включая:
# Проект 1: Qinghua ChatGLM-6B:
https://github.com/THUDM/ChatGLM-6B
# Проект 2: Qinghua JittorLLMs:
https://github.com/Jittor/JittorLLMs
# Проект 3: Edge-GPT:
https://github.com/acheong08/EdgeGPT
# Проект 4: Chuanhu ChatGPT:
https://github.com/GaiZhenbiao/ChuanhuChatGPT
# Проект 5: ChatPaper:
https://github.com/kaixindelele/ChatPaper
# Больше:
https://github.com/gradio-app/gradio
https://github.com/fghrsh/live2d_demo
```

某些文件未显示,因为此 diff 中更改的文件太多 显示更多