比较提交

...

50 次代码提交

作者 SHA1 备注 提交日期
binary-husky
50a1ea83ef control whether to allow sharing translation results with GPTAC academic cloud. 2024-10-18 18:05:50 +00:00
binary-husky
a9c86a7fb8 pre 2024-10-18 14:16:24 +00:00
binary-husky
2b299cf579 Merge branch 'master' into frontier 2024-10-16 15:22:27 +00:00
wsg1873
310122f5a7 solve the concatenate error. (#2011) 2024-10-16 00:56:24 +08:00
binary-husky
0121cacc84 Merge branch 'master' into frontier 2024-10-15 09:10:36 +00:00
binary-husky
c83bf214d0 change arxiv download attempt url order 2024-10-15 09:09:24 +00:00
binary-husky
e34c49dce5 compat: deal with arxiv url change 2024-10-15 09:07:39 +00:00
binary-husky
f2dcd6ad55 compat: arxiv translation src shift 2024-10-15 09:06:57 +00:00
binary-husky
42d9712f20 Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-10-15 08:24:01 +00:00
binary-husky
3890467c84 replace rm with rm -f 2024-10-15 07:32:29 +00:00
binary-husky
074b3c9828 explicitly declare default value 2024-10-15 06:41:12 +00:00
Nextstrain
b8e8457a01 关于o1系列模型无法正常请求的修复,多模型轮询KeyError: 'finish_reason'的修复 (#1992)
* Update bridge_all.py

* Update bridge_chatgpt.py

* Update bridge_chatgpt.py

* Update bridge_all.py

* Update bridge_all.py
2024-10-15 14:36:51 +08:00
binary-husky
2c93a24d7e fix dockerfile: try align python 2024-10-15 06:35:35 +00:00
binary-husky
e9af6ef3a0 fix: github action glitch 2024-10-15 06:32:47 +00:00
wsg1873
5ae8981dbb add the '/Fit' destination (#2009) 2024-10-14 22:50:56 +08:00
Boyin Liu
7f0ffa58f0 Boyin rag (#1983)
* first_version

* rag document support

* RAG interactive prompts added, issues resolved

* Resolve conflicts

* Resolve conflicts

* Resolve conflicts

* more file format support

* move import

* Resolve LlamaIndexRagWorker bug

* new resolve

* Address import  LlamaIndexRagWorker problem

* change import order

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-10-14 22:48:24 +08:00
binary-husky
adbed044e4 fix o1 compat problem 2024-10-13 17:02:07 +00:00
Menghuan1918
2fe5febaf0 为build-with-latex版本Docker构建新增arm64支持 (#1994)
* Add arm64 support

* Bug fix

* Some build bug fix

* Add arm support

* 分离arm和x86构建

* 改进构建文档

* update tags

* Update build-with-latex-arm.yml

* Revert "Update build-with-latex-arm.yml"

This reverts commit 9af92549b5.

* Update

* Add

* httpx

* Addison

* Update GithubAction+NoLocal+Latex

* Update docker-compose.yml and GithubAction+NoLocal+Latex

* Update README.md

* test math anim generation

* solve the pdf concatenate error. (#2006)

* solve the pdf concatenate error.

* add legacy fallback option

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>
Co-authored-by: binary-husky <qingxu.fu@outlook.com>
Co-authored-by: wsg1873 <wsg0326@163.com>
2024-10-14 00:25:28 +08:00
binary-husky
5888d038aa move import 2024-10-13 16:17:10 +00:00
binary-husky
ee8213e936 Merge branch 'boyin_rag' into frontier 2024-10-13 16:12:51 +00:00
binary-husky
a57dcbcaeb Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-10-13 08:26:06 +00:00
binary-husky
b812392a9d Merge branch 'master' into frontier 2024-10-13 08:25:47 +00:00
wsg1873
f54d8e559a solve the pdf concatenate error. (#2006)
* solve the pdf concatenate error.

* add legacy fallback option

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-10-13 16:16:51 +08:00
lbykkkk
fce4fa1ec7 more file format support 2024-10-12 18:25:33 +00:00
Boyin Liu
d13f1e270c Merge branch 'master' into boyin_rag 2024-10-11 22:31:07 +08:00
lbykkkk
85cf3d08eb Resolve conflicts 2024-10-11 22:29:56 +08:00
lbykkkk
584e747565 Resolve conflicts 2024-10-11 22:27:57 +08:00
lbykkkk
02ba653c19 Resolve conflicts 2024-10-11 22:21:53 +08:00
lbykkkk
2d12b5b27d RAG interactive prompts added, issues resolved 2024-10-11 01:06:17 +08:00
binary-husky
a4bcd262f9 Merge branch 'master' into frontier 2024-10-07 05:20:49 +00:00
Boyin Liu
748e31102f Merge branch 'master' into boyin_rag 2024-10-05 23:58:43 +08:00
binary-husky
97eef45ab7 Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-10-01 11:59:14 +00:00
binary-husky
0c0e2acb9b remove logging extra 2024-10-01 11:57:47 +00:00
Ren Lifei
9fba8e0142 Added some modules to support openrouter (#1975)
* Added some modules for supporting openrouter model

Added some modules for supporting openrouter model

* Update config.py

* Update .gitignore

* Update bridge_openrouter.py

* Not changed actually

* Refactor logging in bridge_openrouter.py

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2024-09-28 18:05:34 +08:00
binary-husky
7d7867fb64 remove comment 2024-09-23 15:16:13 +00:00
lbykkkk
7ea791d83a rag document support 2024-09-22 21:37:57 +08:00
binary-husky
f9dbaa39fb Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier 2024-09-21 15:40:24 +00:00
binary-husky
bbc2288c5b relax llama index version 2024-09-21 15:40:10 +00:00
Steven Moder
64ab916838 fix: loguru argument error with proxy enabled (#1977) 2024-09-21 23:32:00 +08:00
binary-husky
8fe559da9f update translation matrix 2024-09-21 14:56:10 +00:00
binary-husky
09fd22091a fix: console output 2024-09-21 14:41:36 +00:00
lbykkkk
df717f8bba first_version 2024-09-20 00:06:59 +08:00
binary-husky
e296719b23 Merge branch 'purge_print' into frontier 2024-09-16 09:56:25 +00:00
binary-husky
2f343179a2 logging -> loguru: final stage 2024-09-15 15:51:51 +00:00
binary-husky
4d9604f2e9 update social helper 2024-09-15 15:16:36 +00:00
binary-husky
bbf9e9f868 logging -> loguru stage 4 2024-09-14 16:00:09 +00:00
binary-husky
aa1f967dd7 support o1-preview and o1-mini 2024-09-13 03:11:53 +00:00
binary-husky
0d082327c8 logging -> loguru: stage 3 2024-09-11 08:49:55 +00:00
binary-husky
80acd9c875 import loguru: stage 2 2024-09-11 08:18:01 +00:00
binary-husky
17cd4f8210 logging sys to loguru: stage 1 complete 2024-09-11 03:30:30 +00:00
共有 12 个文件被更改,包括 590 次插入82 次删除

查看文件

@@ -0,0 +1,51 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: build-with-latex-arm
on:
push:
branches:
- "master"
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}_with_latex_arm
jobs:
build-and-push-image:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Checkout repository
uses: actions/checkout@v4
- name: Log in to the Container registry
uses: docker/login-action@v3
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v4
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
- name: Build and push Docker image
uses: docker/build-push-action@v6
with:
context: .
push: true
platforms: linux/arm64
file: docs/GithubAction+NoLocal+Latex+Arm
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}

查看文件

@@ -3,7 +3,7 @@ from toolbox import CatchException, report_exception, update_ui_lastest_msg, zip
from functools import partial from functools import partial
from loguru import logger from loguru import logger
import glob, os, requests, time, json, tarfile import glob, os, requests, time, json, tarfile, threading
pj = os.path.join pj = os.path.join
ARXIV_CACHE_DIR = get_conf("ARXIV_CACHE_DIR") ARXIV_CACHE_DIR = get_conf("ARXIV_CACHE_DIR")
@@ -138,25 +138,43 @@ def arxiv_download(chatbot, history, txt, allow_cache=True):
cached_translation_pdf = check_cached_translation_pdf(arxiv_id) cached_translation_pdf = check_cached_translation_pdf(arxiv_id)
if cached_translation_pdf and allow_cache: return cached_translation_pdf, arxiv_id if cached_translation_pdf and allow_cache: return cached_translation_pdf, arxiv_id
url_tar = url_.replace('/abs/', '/e-print/')
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'e-print')
extract_dst = pj(ARXIV_CACHE_DIR, arxiv_id, 'extract') extract_dst = pj(ARXIV_CACHE_DIR, arxiv_id, 'extract')
os.makedirs(translation_dir, exist_ok=True) translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'e-print')
# <-------------- download arxiv source file ------------->
dst = pj(translation_dir, arxiv_id + '.tar') dst = pj(translation_dir, arxiv_id + '.tar')
if os.path.exists(dst): os.makedirs(translation_dir, exist_ok=True)
yield from update_ui_lastest_msg("调用缓存", chatbot=chatbot, history=history) # 刷新界面 # <-------------- download arxiv source file ------------->
def fix_url_and_download():
# for url_tar in [url_.replace('/abs/', '/e-print/'), url_.replace('/abs/', '/src/')]:
for url_tar in [url_.replace('/abs/', '/src/'), url_.replace('/abs/', '/e-print/')]:
proxies = get_conf('proxies')
r = requests.get(url_tar, proxies=proxies)
if r.status_code == 200:
with open(dst, 'wb+') as f:
f.write(r.content)
return True
return False
if os.path.exists(dst) and allow_cache:
yield from update_ui_lastest_msg(f"调用缓存 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
success = True
else: else:
yield from update_ui_lastest_msg("开始下载", chatbot=chatbot, history=history) # 刷新界面 yield from update_ui_lastest_msg(f"开始下载 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
proxies = get_conf('proxies') success = fix_url_and_download()
r = requests.get(url_tar, proxies=proxies) yield from update_ui_lastest_msg(f"下载完成 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
with open(dst, 'wb+') as f:
f.write(r.content)
if not success:
yield from update_ui_lastest_msg(f"下载失败 {arxiv_id}", chatbot=chatbot, history=history)
raise tarfile.ReadError(f"论文下载失败 {arxiv_id}")
# <-------------- extract file -------------> # <-------------- extract file ------------->
yield from update_ui_lastest_msg("下载完成", chatbot=chatbot, history=history) # 刷新界面
from toolbox import extract_archive from toolbox import extract_archive
extract_archive(file_path=dst, dest_dir=extract_dst) try:
extract_archive(file_path=dst, dest_dir=extract_dst)
except tarfile.ReadError:
os.remove(dst)
raise tarfile.ReadError(f"论文下载失败")
return extract_dst, arxiv_id return extract_dst, arxiv_id
@@ -320,11 +338,17 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
# <-------------- more requirements -------------> # <-------------- more requirements ------------->
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg") if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
more_req = plugin_kwargs.get("advanced_arg", "") more_req = plugin_kwargs.get("advanced_arg", "")
no_cache = more_req.startswith("--no-cache")
if no_cache: more_req.lstrip("--no-cache") no_cache = ("--no-cache" in more_req)
if no_cache: more_req = more_req.replace("--no-cache", "").strip()
allow_gptac_cloud_io = ("--allow-cloudio" in more_req) # 从云端下载翻译结果,以及上传翻译结果到云端
if allow_gptac_cloud_io: more_req = more_req.replace("--allow-cloudio", "").strip()
allow_cache = not no_cache allow_cache = not no_cache
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req) _switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
# <-------------- check deps -------------> # <-------------- check deps ------------->
try: try:
import glob, os, time, subprocess import glob, os, time, subprocess
@@ -351,6 +375,20 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return return
# #################################################################
if allow_gptac_cloud_io and arxiv_id:
# 访问 GPTAC学术云,查询云端是否存在该论文的翻译版本
from crazy_functions.latex_fns.latex_actions import check_gptac_cloud
success, downloaded = check_gptac_cloud(arxiv_id, chatbot)
if success:
chatbot.append([
f"检测到GPTAC云端存在翻译版本, 如果不满意翻译结果, 请禁用云端分享, 然后重新执行。",
None
])
yield from update_ui(chatbot=chatbot, history=history)
return
#################################################################
if os.path.exists(txt): if os.path.exists(txt):
project_folder = txt project_folder = txt
else: else:
@@ -388,14 +426,21 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
# <-------------- zip PDF -------------> # <-------------- zip PDF ------------->
zip_res = zip_result(project_folder) zip_res = zip_result(project_folder)
if success: if success:
if allow_gptac_cloud_io and arxiv_id:
# 如果用户允许,我们将翻译好的arxiv论文PDF上传到GPTAC学术云
from crazy_functions.latex_fns.latex_actions import upload_to_gptac_cloud_if_user_allow
threading.Thread(target=upload_to_gptac_cloud_if_user_allow,
args=(chatbot, arxiv_id), daemon=True).start()
chatbot.append((f"成功啦", '请查收结果(压缩包)...')) chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
yield from update_ui(chatbot=chatbot, history=history); yield from update_ui(chatbot=chatbot, history=history)
time.sleep(1) # 刷新界面 time.sleep(1) # 刷新界面
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot) promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
else: else:
chatbot.append((f"失败了", chatbot.append((f"失败了",
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体见Github wiki ...')) '虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体见Github wiki ...'))
yield from update_ui(chatbot=chatbot, history=history); yield from update_ui(chatbot=chatbot, history=history)
time.sleep(1) # 刷新界面 time.sleep(1) # 刷新界面
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot) promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)

查看文件

@@ -30,6 +30,9 @@ class Arxiv_Localize(GptAcademicPluginTemplate):
default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步 default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步
"allow_cache": "allow_cache":
ArgProperty(title="是否允许从缓存中调取结果", options=["允许缓存", "从头执行"], default_value="允许缓存", description="", type="dropdown").model_dump_json(), ArgProperty(title="是否允许从缓存中调取结果", options=["允许缓存", "从头执行"], default_value="允许缓存", description="", type="dropdown").model_dump_json(),
"allow_cloudio":
ArgProperty(title="是否允许向GPTAC学术云共享翻译结果", options=["允许", "禁止"], default_value="禁止", description="人人为我,我为人人", type="dropdown").model_dump_json(),
} }
return gui_definition return gui_definition
@@ -38,9 +41,14 @@ class Arxiv_Localize(GptAcademicPluginTemplate):
执行插件 执行插件
""" """
allow_cache = plugin_kwargs["allow_cache"] allow_cache = plugin_kwargs["allow_cache"]
allow_cloudio = plugin_kwargs["allow_cloudio"]
advanced_arg = plugin_kwargs["advanced_arg"] advanced_arg = plugin_kwargs["advanced_arg"]
if allow_cache == "从头执行": plugin_kwargs["advanced_arg"] = "--no-cache " + plugin_kwargs["advanced_arg"] if allow_cache == "从头执行": plugin_kwargs["advanced_arg"] = "--no-cache " + plugin_kwargs["advanced_arg"]
# 从云端下载翻译结果,以及上传翻译结果到云端;人人为我,我为人人。
if allow_cloudio == "允许": plugin_kwargs["advanced_arg"] = "--allow-cloudio " + plugin_kwargs["advanced_arg"]
yield from Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request) yield from Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)

查看文件

@@ -1,4 +1,11 @@
import os,glob
from typing import List
from shared_utils.fastapi_server import validate_path_safety
from toolbox import report_exception
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
from shared_utils.fastapi_server import validate_path_safety
from crazy_functions.crazy_utils import input_clipping from crazy_functions.crazy_utils import input_clipping
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
@@ -7,6 +14,37 @@ MAX_HISTORY_ROUND = 5
MAX_CONTEXT_TOKEN_LIMIT = 4096 MAX_CONTEXT_TOKEN_LIMIT = 4096
REMEMBER_PREVIEW = 1000 REMEMBER_PREVIEW = 1000
@CatchException
def handle_document_upload(files: List[str], llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request, rag_worker):
"""
Handles document uploads by extracting text and adding it to the vector store.
"""
from llama_index.core import Document
from crazy_functions.rag_fns.rag_file_support import extract_text, supports_format
user_name = chatbot.get_user()
checkpoint_dir = get_log_folder(user_name, plugin_name='experimental_rag')
for file_path in files:
try:
validate_path_safety(file_path, user_name)
text = extract_text(file_path)
if text is None:
chatbot.append(
[f"上传文件: {os.path.basename(file_path)}", f"文件解析失败,无法提取文本内容,请更换文件。失败原因可能为1.文档格式过于复杂;2. 不支持的文件格式,支持的文件格式后缀有:" + ", ".join(supports_format)])
else:
chatbot.append(
[f"上传文件: {os.path.basename(file_path)}", f"上传文件前50个字符为:{text[:50]}"])
document = Document(text=text, metadata={"source": file_path})
rag_worker.add_documents_to_vector_store([document])
chatbot.append([f"上传文件: {os.path.basename(file_path)}", "文件已成功添加到知识库。"])
except Exception as e:
report_exception(chatbot, history, a=f"处理文件: {file_path}", b=str(e))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# Main Q&A function with document upload support
@CatchException @CatchException
def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request): def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
@@ -23,28 +61,48 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
# 1. we retrieve rag worker from global context # 1. we retrieve rag worker from global context
user_name = chatbot.get_user() user_name = chatbot.get_user()
checkpoint_dir = get_log_folder(user_name, plugin_name='experimental_rag') checkpoint_dir = get_log_folder(user_name, plugin_name='experimental_rag')
if user_name in RAG_WORKER_REGISTER: if user_name in RAG_WORKER_REGISTER:
rag_worker = RAG_WORKER_REGISTER[user_name] rag_worker = RAG_WORKER_REGISTER[user_name]
else: else:
rag_worker = RAG_WORKER_REGISTER[user_name] = LlamaIndexRagWorker( rag_worker = RAG_WORKER_REGISTER[user_name] = LlamaIndexRagWorker(
user_name, user_name,
llm_kwargs, llm_kwargs,
checkpoint_dir=checkpoint_dir, checkpoint_dir=checkpoint_dir,
auto_load_checkpoint=True) auto_load_checkpoint=True
)
current_context = f"{VECTOR_STORE_TYPE} @ {checkpoint_dir}" current_context = f"{VECTOR_STORE_TYPE} @ {checkpoint_dir}"
tip = "提示输入“清空向量数据库”可以清空RAG向量数据库" tip = "提示输入“清空向量数据库”可以清空RAG向量数据库"
if txt == "清空向量数据库":
chatbot.append([txt, f'正在清空 ({current_context}) ...']) # 2. Handle special commands
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 if os.path.exists(txt) and os.path.isdir(txt):
rag_worker.purge() project_folder = txt
yield from update_ui_lastest_msg('已清空', chatbot, history, delay=0) # 刷新界面 validate_path_safety(project_folder, chatbot.get_user())
# Extract file paths from the user input
# Assuming the user inputs file paths separated by commas after the command
file_paths = [f for f in glob.glob(f'{project_folder}/**/*', recursive=True)]
chatbot.append([txt, f'正在处理上传的文档 ({current_context}) ...'])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
yield from handle_document_upload(file_paths, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request, rag_worker)
return return
chatbot.append([txt, f'正在召回知识 ({current_context}) ...']) elif txt == "清空向量数据库":
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 chatbot.append([txt, f'正在清空 ({current_context}) ...'])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
rag_worker.purge_vector_store()
yield from update_ui_lastest_msg('已清空', chatbot, history, delay=0) # 刷新界面
return
# 2. clip history to reduce token consumption else:
# 2-1. reduce chat round report_exception(chatbot, history, a=f"上传文件路径错误: {txt}", b="请检查并提供正确路径。")
# 3. Normal Q&A processing
chatbot.append([txt, f'正在召回知识 ({current_context}) ...'])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 4. Clip history to reduce token consumption
txt_origin = txt txt_origin = txt
if len(history) > MAX_HISTORY_ROUND * 2: if len(history) > MAX_HISTORY_ROUND * 2:
@@ -52,41 +110,47 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
txt_clip, history, flags = input_clipping(txt, history, max_token_limit=MAX_CONTEXT_TOKEN_LIMIT, return_clip_flags=True) txt_clip, history, flags = input_clipping(txt, history, max_token_limit=MAX_CONTEXT_TOKEN_LIMIT, return_clip_flags=True)
input_is_clipped_flag = (flags["original_input_len"] != flags["clipped_input_len"]) input_is_clipped_flag = (flags["original_input_len"] != flags["clipped_input_len"])
# 2-2. if input is clipped, add input to vector store before retrieve # 5. If input is clipped, add input to vector store before retrieve
if input_is_clipped_flag: if input_is_clipped_flag:
yield from update_ui_lastest_msg('检测到长输入, 正在向量化 ...', chatbot, history, delay=0) # 刷新界面 yield from update_ui_lastest_msg('检测到长输入, 正在向量化 ...', chatbot, history, delay=0) # 刷新界面
# save input to vector store # Save input to vector store
rag_worker.add_text_to_vector_store(txt_origin) rag_worker.add_text_to_vector_store(txt_origin)
yield from update_ui_lastest_msg('向量化完成 ...', chatbot, history, delay=0) # 刷新界面 yield from update_ui_lastest_msg('向量化完成 ...', chatbot, history, delay=0) # 刷新界面
if len(txt_origin) > REMEMBER_PREVIEW: if len(txt_origin) > REMEMBER_PREVIEW:
HALF = REMEMBER_PREVIEW//2 HALF = REMEMBER_PREVIEW // 2
i_say_to_remember = txt[:HALF] + f" ...\n...(省略{len(txt_origin)-REMEMBER_PREVIEW}字)...\n... " + txt[-HALF:] i_say_to_remember = txt[:HALF] + f" ...\n...(省略{len(txt_origin)-REMEMBER_PREVIEW}字)...\n... " + txt[-HALF:]
if (flags["original_input_len"] - flags["clipped_input_len"]) > HALF: if (flags["original_input_len"] - flags["clipped_input_len"]) > HALF:
txt_clip = txt_clip + f" ...\n...(省略{len(txt_origin)-len(txt_clip)-HALF}字)...\n... " + txt[-HALF:] txt_clip = txt_clip + f" ...\n...(省略{len(txt_origin)-len(txt_clip)-HALF}字)...\n... " + txt[-HALF:]
else:
pass
i_say = txt_clip
else: else:
i_say_to_remember = i_say = txt_clip i_say_to_remember = i_say = txt_clip
else: else:
i_say_to_remember = i_say = txt_clip i_say_to_remember = i_say = txt_clip
# 3. we search vector store and build prompts # 6. Search vector store and build prompts
nodes = rag_worker.retrieve_from_store_with_query(i_say) nodes = rag_worker.retrieve_from_store_with_query(i_say)
prompt = rag_worker.build_prompt(query=i_say, nodes=nodes) prompt = rag_worker.build_prompt(query=i_say, nodes=nodes)
# 7. Query language model
if len(chatbot) != 0:
chatbot.pop(-1) # Pop temp chat, because we are going to add them again inside `request_gpt_model_in_new_thread_with_ui_alive`
# 4. it is time to query llms
if len(chatbot) != 0: chatbot.pop(-1) # pop temp chat, because we are going to add them again inside `request_gpt_model_in_new_thread_with_ui_alive`
model_say = yield from request_gpt_model_in_new_thread_with_ui_alive( model_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=prompt, inputs_show_user=i_say, inputs=prompt,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history, inputs_show_user=i_say,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=history,
sys_prompt=system_prompt, sys_prompt=system_prompt,
retry_times_at_unknown_error=0 retry_times_at_unknown_error=0
) )
# 5. remember what has been asked / answered # 8. Remember Q&A
yield from update_ui_lastest_msg(model_say + '</br></br>' + f'对话记忆中, 请稍等 ({current_context}) ...', chatbot, history, delay=0.5) # 刷新界面 yield from update_ui_lastest_msg(
model_say + '</br></br>' + f'对话记忆中, 请稍等 ({current_context}) ...',
chatbot, history, delay=0.5
)
rag_worker.remember_qa(i_say_to_remember, model_say) rag_worker.remember_qa(i_say_to_remember, model_say)
history.extend([i_say, model_say]) history.extend([i_say, model_say])
yield from update_ui_lastest_msg(model_say, chatbot, history, delay=0, msg=tip) # 刷新界面 # 9. Final UI Update
yield from update_ui_lastest_msg(model_say, chatbot, history, delay=0, msg=tip)

查看文件

@@ -3,7 +3,7 @@ import re
import shutil import shutil
import numpy as np import numpy as np
from loguru import logger from loguru import logger
from toolbox import update_ui, update_ui_lastest_msg, get_log_folder from toolbox import update_ui, update_ui_lastest_msg, get_log_folder, gen_time_str
from toolbox import get_conf, promote_file_to_downloadzone from toolbox import get_conf, promote_file_to_downloadzone
from crazy_functions.latex_fns.latex_toolbox import PRESERVE, TRANSFORM from crazy_functions.latex_fns.latex_toolbox import PRESERVE, TRANSFORM
from crazy_functions.latex_fns.latex_toolbox import set_forbidden_text, set_forbidden_text_begin_end, set_forbidden_text_careful_brace from crazy_functions.latex_fns.latex_toolbox import set_forbidden_text, set_forbidden_text_begin_end, set_forbidden_text_careful_brace
@@ -423,6 +423,9 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
except Exception as e: except Exception as e:
logger.error(e) logger.error(e)
pass pass
return True # 成功啦 return True # 成功啦
else: else:
if n_fix>=max_try: break if n_fix>=max_try: break
@@ -468,3 +471,66 @@ def write_html(sp_file_contents, sp_file_result, chatbot, project_folder):
except: except:
from toolbox import trimmed_format_exc from toolbox import trimmed_format_exc
logger.error('writing html result failed:', trimmed_format_exc()) logger.error('writing html result failed:', trimmed_format_exc())
def upload_to_gptac_cloud_if_user_allow(chatbot, arxiv_id):
try:
# 如果用户允许,我们将arxiv论文PDF上传到GPTAC学术云
from toolbox import map_file_to_sha256
# 检查是否顺利,如果没有生成预期的文件,则跳过
is_result_good = False
for file_path in chatbot._cookies.get("files_to_promote", []):
if file_path.endswith('translate_zh.pdf'):
is_result_good = True
if not is_result_good:
return
# 上传文件
for file_path in chatbot._cookies.get("files_to_promote", []):
align_name = None
# normalized name
for name in ['translate_zh.pdf', 'comparison.pdf']:
if file_path.endswith(name): align_name = name
# if match any align name
if align_name:
logger.info(f'Uploading to GPTAC cloud as the user has set `allow_cloud_io`: {file_path}')
with open(file_path, 'rb') as f:
import requests
url = 'https://cloud-2.agent-matrix.com/upload'
files = {'file': (align_name, f, 'application/octet-stream')}
data = {
'arxiv_id': arxiv_id,
'file_hash': map_file_to_sha256(file_path),
}
resp = requests.post(url=url, files=files, data=data, timeout=30)
logger.info(f'Uploading terminate ({resp.status_code})`: {file_path}')
except:
# 如果上传失败,不会中断程序,因为这是次要功能
pass
def check_gptac_cloud(arxiv_id, chatbot):
import requests
success = False
downloaded = []
try:
for pdf_target in ['translate_zh.pdf', 'comparison.pdf']:
url = 'https://cloud-2.agent-matrix.com/paper_exist'
data = {
'arxiv_id': arxiv_id,
'name': pdf_target,
}
resp = requests.post(url=url, data=data)
cache_hit_result = resp.text.strip('"')
if cache_hit_result.startswith("http"):
url = cache_hit_result
logger.info(f'Downloading from GPTAC cloud: {url}')
resp = requests.get(url=url, timeout=30)
target = os.path.join(get_log_folder(plugin_name='gptac_cloud'), gen_time_str(), pdf_target)
os.makedirs(os.path.dirname(target), exist_ok=True)
with open(target, 'wb') as f:
f.write(resp.content)
new_path = promote_file_to_downloadzone(target, chatbot=chatbot)
success = True
downloaded.append(new_path)
except:
pass
return success, downloaded

查看文件

@@ -644,6 +644,216 @@ def run_in_subprocess(func):
def _merge_pdfs(pdf1_path, pdf2_path, output_path): def _merge_pdfs(pdf1_path, pdf2_path, output_path):
try:
logger.info("Merging PDFs using _merge_pdfs_ng")
_merge_pdfs_ng(pdf1_path, pdf2_path, output_path)
except:
logger.info("Merging PDFs using _merge_pdfs_legacy")
_merge_pdfs_legacy(pdf1_path, pdf2_path, output_path)
def _merge_pdfs_ng(pdf1_path, pdf2_path, output_path):
import PyPDF2 # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放
from PyPDF2.generic import NameObject, TextStringObject, ArrayObject, FloatObject, NumberObject
Percent = 1
# raise RuntimeError('PyPDF2 has a serious memory leak problem, please use other tools to merge PDF files.')
# Open the first PDF file
with open(pdf1_path, "rb") as pdf1_file:
pdf1_reader = PyPDF2.PdfFileReader(pdf1_file)
# Open the second PDF file
with open(pdf2_path, "rb") as pdf2_file:
pdf2_reader = PyPDF2.PdfFileReader(pdf2_file)
# Create a new PDF file to store the merged pages
output_writer = PyPDF2.PdfFileWriter()
# Determine the number of pages in each PDF file
num_pages = max(pdf1_reader.numPages, pdf2_reader.numPages)
# Merge the pages from the two PDF files
for page_num in range(num_pages):
# Add the page from the first PDF file
if page_num < pdf1_reader.numPages:
page1 = pdf1_reader.getPage(page_num)
else:
page1 = PyPDF2.PageObject.createBlankPage(pdf1_reader)
# Add the page from the second PDF file
if page_num < pdf2_reader.numPages:
page2 = pdf2_reader.getPage(page_num)
else:
page2 = PyPDF2.PageObject.createBlankPage(pdf1_reader)
# Create a new empty page with double width
new_page = PyPDF2.PageObject.createBlankPage(
width=int(
int(page1.mediaBox.getWidth())
+ int(page2.mediaBox.getWidth()) * Percent
),
height=max(page1.mediaBox.getHeight(), page2.mediaBox.getHeight()),
)
new_page.mergeTranslatedPage(page1, 0, 0)
new_page.mergeTranslatedPage(
page2,
int(
int(page1.mediaBox.getWidth())
- int(page2.mediaBox.getWidth()) * (1 - Percent)
),
0,
)
if "/Annots" in new_page:
annotations = new_page["/Annots"]
for i, annot in enumerate(annotations):
annot_obj = annot.get_object()
# 检查注释类型是否是链接(/Link
if annot_obj.get("/Subtype") == "/Link":
# 检查是否为内部链接跳转(/GoTo或外部URI链接/URI
action = annot_obj.get("/A")
if action:
if "/S" in action and action["/S"] == "/GoTo":
# 内部链接:跳转到文档中的某个页面
dest = action.get("/D") # 目标页或目标位置
# if dest and annot.idnum in page2_annot_id:
# if dest in pdf2_reader.named_destinations:
if dest and page2.annotations:
if annot in page2.annotations:
# 获取原始文件中跳转信息,包括跳转页面
destination = pdf2_reader.named_destinations[
dest
]
page_number = (
pdf2_reader.get_destination_page_number(
destination
)
)
# 更新跳转信息,跳转到对应的页面和,指定坐标 (100, 150),缩放比例为 100%
# “/D”:[10,'/XYZ',100,100,0]
if destination.dest_array[1] == "/XYZ":
annot_obj["/A"].update(
{
NameObject("/D"): ArrayObject(
[
NumberObject(page_number),
destination.dest_array[1],
FloatObject(
destination.dest_array[
2
]
+ int(
page1.mediaBox.getWidth()
)
),
destination.dest_array[3],
destination.dest_array[4],
]
) # 确保键和值是 PdfObject
}
)
else:
annot_obj["/A"].update(
{
NameObject("/D"): ArrayObject(
[
NumberObject(page_number),
destination.dest_array[1],
]
) # 确保键和值是 PdfObject
}
)
rect = annot_obj.get("/Rect")
# 更新点击坐标
rect = ArrayObject(
[
FloatObject(
rect[0]
+ int(page1.mediaBox.getWidth())
),
rect[1],
FloatObject(
rect[2]
+ int(page1.mediaBox.getWidth())
),
rect[3],
]
)
annot_obj.update(
{
NameObject(
"/Rect"
): rect # 确保键和值是 PdfObject
}
)
# if dest and annot.idnum in page1_annot_id:
# if dest in pdf1_reader.named_destinations:
if dest and page1.annotations:
if annot in page1.annotations:
# 获取原始文件中跳转信息,包括跳转页面
destination = pdf1_reader.named_destinations[
dest
]
page_number = (
pdf1_reader.get_destination_page_number(
destination
)
)
# 更新跳转信息,跳转到对应的页面和,指定坐标 (100, 150),缩放比例为 100%
# “/D”:[10,'/XYZ',100,100,0]
if destination.dest_array[1] == "/XYZ":
annot_obj["/A"].update(
{
NameObject("/D"): ArrayObject(
[
NumberObject(page_number),
destination.dest_array[1],
FloatObject(
destination.dest_array[
2
]
),
destination.dest_array[3],
destination.dest_array[4],
]
) # 确保键和值是 PdfObject
}
)
else:
annot_obj["/A"].update(
{
NameObject("/D"): ArrayObject(
[
NumberObject(page_number),
destination.dest_array[1],
]
) # 确保键和值是 PdfObject
}
)
rect = annot_obj.get("/Rect")
rect = ArrayObject(
[
FloatObject(rect[0]),
rect[1],
FloatObject(rect[2]),
rect[3],
]
)
annot_obj.update(
{
NameObject(
"/Rect"
): rect # 确保键和值是 PdfObject
}
)
elif "/S" in action and action["/S"] == "/URI":
# 外部链接跳转到某个URI
uri = action.get("/URI")
output_writer.addPage(new_page)
# Save the merged PDF file
with open(output_path, "wb") as output_file:
output_writer.write(output_file)
def _merge_pdfs_legacy(pdf1_path, pdf2_path, output_path):
import PyPDF2 # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放 import PyPDF2 # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放
Percent = 0.95 Percent = 0.95

查看文件

@@ -1,17 +1,13 @@
import llama_index
import os
import atexit import atexit
from loguru import logger from loguru import logger
from typing import List from typing import List
from llama_index.core import Document from llama_index.core import Document
from llama_index.core.schema import TextNode
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
from shared_utils.connect_void_terminal import get_chat_default_kwargs
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from crazy_functions.rag_fns.vector_store_index import GptacVectorStoreIndex
from llama_index.core.ingestion import run_transformations from llama_index.core.ingestion import run_transformations
from llama_index.core import PromptTemplate from llama_index.core.schema import TextNode
from llama_index.core.response_synthesizers import TreeSummarize
from crazy_functions.rag_fns.vector_store_index import GptacVectorStoreIndex
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
DEFAULT_QUERY_GENERATION_PROMPT = """\ DEFAULT_QUERY_GENERATION_PROMPT = """\
Now, you have context information as below: Now, you have context information as below:
@@ -63,7 +59,7 @@ class SaveLoad():
def purge(self): def purge(self):
import shutil import shutil
shutil.rmtree(self.checkpoint_dir, ignore_errors=True) shutil.rmtree(self.checkpoint_dir, ignore_errors=True)
self.vs_index = self.create_new_vs() self.vs_index = self.create_new_vs(self.checkpoint_dir)
class LlamaIndexRagWorker(SaveLoad): class LlamaIndexRagWorker(SaveLoad):
@@ -75,7 +71,7 @@ class LlamaIndexRagWorker(SaveLoad):
if auto_load_checkpoint: if auto_load_checkpoint:
self.vs_index = self.load_from_checkpoint(checkpoint_dir) self.vs_index = self.load_from_checkpoint(checkpoint_dir)
else: else:
self.vs_index = self.create_new_vs(checkpoint_dir) self.vs_index = self.create_new_vs()
atexit.register(lambda: self.save_to_checkpoint(checkpoint_dir)) atexit.register(lambda: self.save_to_checkpoint(checkpoint_dir))
def assign_embedding_model(self): def assign_embedding_model(self):
@@ -91,40 +87,52 @@ class LlamaIndexRagWorker(SaveLoad):
logger.info('oo --------inspect_vector_store end--------') logger.info('oo --------inspect_vector_store end--------')
return vector_store_preview return vector_store_preview
def add_documents_to_vector_store(self, document_list): def add_documents_to_vector_store(self, document_list: List[Document]):
documents = [Document(text=t) for t in document_list] """
Adds a list of Document objects to the vector store after processing.
"""
documents = document_list
documents_nodes = run_transformations( documents_nodes = run_transformations(
documents, # type: ignore documents, # type: ignore
self.vs_index._transformations, self.vs_index._transformations,
show_progress=True show_progress=True
) )
self.vs_index.insert_nodes(documents_nodes) self.vs_index.insert_nodes(documents_nodes)
if self.debug_mode: self.inspect_vector_store() if self.debug_mode:
self.inspect_vector_store()
def add_text_to_vector_store(self, text): def add_text_to_vector_store(self, text: str):
node = TextNode(text=text) node = TextNode(text=text)
documents_nodes = run_transformations( documents_nodes = run_transformations(
[node], [node],
self.vs_index._transformations, self.vs_index._transformations,
show_progress=True show_progress=True
) )
self.vs_index.insert_nodes(documents_nodes) self.vs_index.insert_nodes(documents_nodes)
if self.debug_mode: self.inspect_vector_store() if self.debug_mode:
self.inspect_vector_store()
def remember_qa(self, question, answer): def remember_qa(self, question, answer):
formatted_str = QUESTION_ANSWER_RECORD.format(question=question, answer=answer) formatted_str = QUESTION_ANSWER_RECORD.format(question=question, answer=answer)
self.add_text_to_vector_store(formatted_str) self.add_text_to_vector_store(formatted_str)
def retrieve_from_store_with_query(self, query): def retrieve_from_store_with_query(self, query):
if self.debug_mode: self.inspect_vector_store() if self.debug_mode:
self.inspect_vector_store()
retriever = self.vs_index.as_retriever() retriever = self.vs_index.as_retriever()
return retriever.retrieve(query) return retriever.retrieve(query)
def build_prompt(self, query, nodes): def build_prompt(self, query, nodes):
context_str = self.generate_node_array_preview(nodes) context_str = self.generate_node_array_preview(nodes)
return DEFAULT_QUERY_GENERATION_PROMPT.format(context_str=context_str, query_str=query) return DEFAULT_QUERY_GENERATION_PROMPT.format(context_str=context_str, query_str=query)
def generate_node_array_preview(self, nodes): def generate_node_array_preview(self, nodes):
buf = "\n".join(([f"(No.{i+1} | score {n.score:.3f}): {n.text}" for i, n in enumerate(nodes)])) buf = "\n".join(([f"(No.{i+1} | score {n.score:.3f}): {n.text}" for i, n in enumerate(nodes)]))
if self.debug_mode: logger.info(buf) if self.debug_mode: logger.info(buf)
return buf return buf
def purge_vector_store(self):
"""
Purges the current vector store and creates a new one.
"""
self.purge()

查看文件

@@ -0,0 +1,22 @@
import os
from llama_index.core import SimpleDirectoryReader
supports_format = ['.csv', '.docx', '.epub', '.ipynb', '.mbox', '.md', '.pdf', '.txt', '.ppt',
'.pptm', '.pptx']
# 修改后的 extract_text 函数,结合 SimpleDirectoryReader 和自定义解析逻辑
def extract_text(file_path):
_, ext = os.path.splitext(file_path.lower())
# 使用 SimpleDirectoryReader 处理它支持的文件格式
if ext in supports_format:
try:
reader = SimpleDirectoryReader(input_files=[file_path])
documents = reader.load_data()
if len(documents) > 0:
return documents[0].text
except Exception as e:
pass
return None

查看文件

@@ -0,0 +1,25 @@
# 此Dockerfile适用于“无本地模型”的环境构建,如果需要使用chatglm等本地模型,请参考 docs/Dockerfile+ChatGLM
# - 1 修改 `config.py`
# - 2 构建 docker build -t gpt-academic-nolocal-latex -f docs/GithubAction+NoLocal+Latex .
# - 3 运行 docker run -v /home/fuqingxu/arxiv_cache:/root/arxiv_cache --rm -it --net=host gpt-academic-nolocal-latex
FROM menghuan1918/ubuntu_uv_ctex:latest
ENV DEBIAN_FRONTEND=noninteractive
SHELL ["/bin/bash", "-c"]
WORKDIR /gpt
COPY . .
RUN /root/.cargo/bin/uv venv --seed \
&& source .venv/bin/activate \
&& /root/.cargo/bin/uv pip install openai numpy arxiv rich colorama Markdown pygments pymupdf python-docx pdfminer \
&& /root/.cargo/bin/uv pip install -r requirements.txt \
&& /root/.cargo/bin/uv clean
# 对齐python3
RUN rm -f /usr/bin/python3 && ln -s /gpt/.venv/bin/python /usr/bin/python3
RUN rm -f /usr/bin/python && ln -s /gpt/.venv/bin/python /usr/bin/python
# 可选步骤,用于预热模块
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
# 启动
CMD ["python3", "-u", "main.py"]

查看文件

@@ -256,6 +256,8 @@ model_info = {
"max_token": 128000, "max_token": 128000,
"tokenizer": tokenizer_gpt4, "tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4, "token_cnt": get_token_num_gpt4,
"openai_disable_system_prompt": True,
"openai_disable_stream": True,
}, },
"o1-mini": { "o1-mini": {
"fn_with_ui": chatgpt_ui, "fn_with_ui": chatgpt_ui,
@@ -264,6 +266,8 @@ model_info = {
"max_token": 128000, "max_token": 128000,
"tokenizer": tokenizer_gpt4, "tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4, "token_cnt": get_token_num_gpt4,
"openai_disable_system_prompt": True,
"openai_disable_stream": True,
}, },
"gpt-4-turbo": { "gpt-4-turbo": {
@@ -1281,4 +1285,3 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot,
# 更新一下llm_kwargs的参数,否则会出现参数不匹配的问题 # 更新一下llm_kwargs的参数,否则会出现参数不匹配的问题
yield from method(inputs, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, stream, additional_fn) yield from method(inputs, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, stream, additional_fn)

查看文件

@@ -202,10 +202,13 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
if (time.time()-observe_window[1]) > watch_dog_patience: if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("用户取消了程序。") raise RuntimeError("用户取消了程序。")
else: raise RuntimeError("意外Json结构"+delta) else: raise RuntimeError("意外Json结构"+delta)
if json_data and json_data['finish_reason'] == 'content_filter':
raise RuntimeError("由于提问含不合规内容被Azure过滤。") finish_reason = json_data.get('finish_reason', None) if json_data else None
if json_data and json_data['finish_reason'] == 'length': if finish_reason == 'content_filter':
raise RuntimeError("由于提问含不合规内容被过滤。")
if finish_reason == 'length':
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。") raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
return result return result
@@ -536,4 +539,3 @@ def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:st
return headers,payload return headers,payload

查看文件

@@ -19,4 +19,8 @@ if __name__ == "__main__":
plugin_test = importlib.import_module('test_utils').plugin_test plugin_test = importlib.import_module('test_utils').plugin_test
plugin_test(plugin='crazy_functions.Latex_Function->Latex翻译中文并重新编译PDF', main_input="2203.01927") # plugin_test(plugin='crazy_functions.Latex_Function->Latex翻译中文并重新编译PDF', main_input="2203.01927")
# plugin_test(plugin='crazy_functions.Latex_Function->Latex翻译中文并重新编译PDF', main_input="gpt_log/arxiv_cache/2203.01927/workfolder")
# plugin_test(plugin='crazy_functions.Latex_Function->Latex翻译中文并重新编译PDF', main_input="2410.05779")
plugin_test(plugin='crazy_functions.Latex_Function->Latex翻译中文并重新编译PDF', main_input="gpt_log/default_user/workfolder")