镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-06 06:26:47 +00:00
up
这个提交包含在:
65
crazy_functions/Arxiv_论文对话.py
普通文件
65
crazy_functions/Arxiv_论文对话.py
普通文件
@@ -0,0 +1,65 @@
|
||||
from toolbox import CatchException, update_ui
|
||||
from crazy_functions.rag_essay_fns.paper_processing import ArxivPaperProcessor
|
||||
from crazy_functions.rag_essay_fns.rag_handler import RagHandler
|
||||
import asyncio
|
||||
|
||||
@CatchException
|
||||
def Rag论文对话(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
"""
|
||||
txt: 用户输入,通常是arxiv论文链接
|
||||
功能:RAG论文总结和对话
|
||||
"""
|
||||
# 初始化处理器
|
||||
processor = ArxivPaperProcessor()
|
||||
rag_handler = RagHandler()
|
||||
|
||||
# Step 1: 下载和提取论文
|
||||
download_result = processor.download_and_extract(txt, chatbot, history)
|
||||
project_folder, arxiv_id = None, None
|
||||
|
||||
for result in download_result:
|
||||
if isinstance(result, tuple) and len(result) == 2:
|
||||
project_folder, arxiv_id = result
|
||||
break
|
||||
|
||||
if not project_folder or not arxiv_id:
|
||||
return
|
||||
|
||||
# Step 2: 合并TEX文件
|
||||
paper_content = processor.merge_tex_files(project_folder, chatbot, history)
|
||||
if not paper_content:
|
||||
return
|
||||
|
||||
# Step 3: RAG处理
|
||||
chatbot.append(["正在构建知识图谱...", "处理中..."])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 处理论文内容
|
||||
rag_handler.process_paper_content(paper_content)
|
||||
|
||||
# 生成初始摘要
|
||||
summary = rag_handler.query("请总结这篇论文的主要内容,包括研究目的、方法、结果和结论。")
|
||||
chatbot.append(["论文摘要", summary])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 交互式问答
|
||||
chatbot.append(["知识图谱构建完成", "您可以开始提问了。支持以下类型的问题:\n1. 论文的具体内容\n2. 研究方法的细节\n3. 实验结果分析\n4. 与其他工作的比较"])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 等待用户提问并回答
|
||||
while True:
|
||||
question = yield from wait_user_input()
|
||||
if not question:
|
||||
break
|
||||
|
||||
# 根据问题类型选择不同的查询模式
|
||||
if "比较" in question or "关系" in question:
|
||||
mode = "global" # 使用全局模式处理比较类问题
|
||||
elif "具体" in question or "细节" in question:
|
||||
mode = "local" # 使用局部模式处理细节问题
|
||||
else:
|
||||
mode = "hybrid" # 默认使用混合模式
|
||||
|
||||
response = rag_handler.query(question, mode=mode)
|
||||
chatbot.append([question, response])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
@@ -0,0 +1,312 @@
|
||||
from typing import Tuple, Optional, Generator, List
|
||||
from toolbox import update_ui, update_ui_lastest_msg, get_conf
|
||||
import os, tarfile, requests, time, re
|
||||
|
||||
class ArxivPaperProcessor:
|
||||
"""Arxiv论文处理器类"""
|
||||
|
||||
def __init__(self):
|
||||
self.supported_encodings = ['utf-8', 'latin1', 'gbk', 'gb2312', 'ascii']
|
||||
self.arxiv_cache_dir = get_conf("ARXIV_CACHE_DIR")
|
||||
|
||||
def download_and_extract(self, txt: str, chatbot, history) -> Generator[Optional[Tuple[str, str]], None, None]:
|
||||
"""
|
||||
Step 1: 下载和提取arxiv论文
|
||||
返回: 生成器: (project_folder, arxiv_id)
|
||||
"""
|
||||
try:
|
||||
if txt == "":
|
||||
chatbot.append(("", "请输入arxiv论文链接或ID"))
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
return
|
||||
|
||||
project_folder, arxiv_id = self.arxiv_download(txt, chatbot, history)
|
||||
if project_folder is None or arxiv_id is None:
|
||||
return
|
||||
|
||||
if not os.path.exists(project_folder):
|
||||
chatbot.append((txt, f"找不到项目文件夹: {project_folder}"))
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
return
|
||||
|
||||
# 期望的返回值
|
||||
yield project_folder, arxiv_id
|
||||
|
||||
except Exception as e:
|
||||
print(e)
|
||||
# yield from update_ui_lastest_msg(
|
||||
# "下载失败,请手动下载latex源码:请前往arxiv打开此论文下载页面,点other Formats,然后download source。",
|
||||
# chatbot=chatbot, history=history)
|
||||
return
|
||||
|
||||
def arxiv_download(self, txt: str, chatbot, history) -> Tuple[str, str]:
|
||||
"""
|
||||
下载arxiv论文并提取
|
||||
返回: (project_folder, arxiv_id)
|
||||
"""
|
||||
def is_float(s: str) -> bool:
|
||||
try:
|
||||
float(s)
|
||||
return True
|
||||
except ValueError:
|
||||
return False
|
||||
|
||||
if txt.startswith('https://arxiv.org/pdf/'):
|
||||
arxiv_id = txt.split('/')[-1] # 2402.14207v2.pdf
|
||||
txt = arxiv_id.split('v')[0] # 2402.14207
|
||||
|
||||
if ('.' in txt) and ('/' not in txt) and is_float(txt): # is arxiv ID
|
||||
txt = 'https://arxiv.org/abs/' + txt.strip()
|
||||
if ('.' in txt) and ('/' not in txt) and is_float(txt[:10]): # is arxiv ID
|
||||
txt = 'https://arxiv.org/abs/' + txt[:10]
|
||||
|
||||
if not txt.startswith('https://arxiv.org'):
|
||||
chatbot.append((txt, "不是有效的arxiv链接或ID"))
|
||||
# yield from update_ui(chatbot=chatbot, history=history)
|
||||
return None, None # 返回两个值,即使其中一个为None
|
||||
|
||||
chatbot.append([f"检测到arxiv文档连接", '尝试下载 ...'])
|
||||
# yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
url_ = txt # https://arxiv.org/abs/1707.06690
|
||||
|
||||
if not txt.startswith('https://arxiv.org/abs/'):
|
||||
msg = f"解析arxiv网址失败, 期望格式例如: https://arxiv.org/abs/1707.06690。实际得到格式: {url_}。"
|
||||
# yield from update_ui_lastest_msg(msg, chatbot=chatbot, history=history) # 刷新界面
|
||||
return None, None # 返回两个值,即使其中一个为None
|
||||
|
||||
arxiv_id = url_.split('/')[-1].split('v')[0]
|
||||
|
||||
dst = os.path.join(self.arxiv_cache_dir, arxiv_id, f'{arxiv_id}.tar.gz')
|
||||
project_folder = os.path.join(self.arxiv_cache_dir, arxiv_id)
|
||||
|
||||
success = self.download_arxiv_paper(url_, dst, chatbot, history)
|
||||
|
||||
# if os.path.exists(dst) and get_conf('allow_cache'):
|
||||
# # yield from update_ui_lastest_msg(f"调用缓存 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
||||
# success = True
|
||||
# else:
|
||||
# # yield from update_ui_lastest_msg(f"开始下载 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
||||
# success = self.download_arxiv_paper(url_, dst, chatbot, history)
|
||||
# # yield from update_ui_lastest_msg(f"下载完成 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
if not success:
|
||||
# chatbot.append([f"下载失败 {arxiv_id}", ""])
|
||||
# yield from update_ui(chatbot=chatbot, history=history)
|
||||
raise tarfile.ReadError(f"论文下载失败 {arxiv_id}")
|
||||
|
||||
# yield from update_ui_lastest_msg(f"开始解压 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
||||
extract_dst = self.extract_tar_file(dst, project_folder, chatbot, history)
|
||||
# yield from update_ui_lastest_msg(f"解压完成 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
return extract_dst, arxiv_id
|
||||
|
||||
def download_arxiv_paper(self, url_: str, dst: str, chatbot, history) -> bool:
|
||||
"""下载arxiv论文"""
|
||||
try:
|
||||
proxies = get_conf('proxies')
|
||||
for url_tar in [url_.replace('/abs/', '/src/'), url_.replace('/abs/', '/e-print/')]:
|
||||
r = requests.get(url_tar, proxies=proxies)
|
||||
if r.status_code == 200:
|
||||
with open(dst, 'wb+') as f:
|
||||
f.write(r.content)
|
||||
return True
|
||||
return False
|
||||
except requests.RequestException as e:
|
||||
# chatbot.append((f"下载失败 {url_}", str(e)))
|
||||
# yield from update_ui(chatbot=chatbot, history=history)
|
||||
return False
|
||||
|
||||
def extract_tar_file(self, file_path: str, dest_dir: str, chatbot, history) -> str:
|
||||
"""解压arxiv论文"""
|
||||
try:
|
||||
with tarfile.open(file_path, 'r:gz') as tar:
|
||||
tar.extractall(path=dest_dir)
|
||||
return dest_dir
|
||||
except tarfile.ReadError as e:
|
||||
chatbot.append((f"解压失败 {file_path}", str(e)))
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
raise e
|
||||
|
||||
def find_main_tex_file(self, tex_files: list) -> str:
|
||||
"""查找主TEX文件"""
|
||||
for tex_file in tex_files:
|
||||
with open(tex_file, 'r', encoding='utf-8', errors='ignore') as f:
|
||||
content = f.read()
|
||||
if r'\documentclass' in content:
|
||||
return tex_file
|
||||
return max(tex_files, key=lambda x: os.path.getsize(x))
|
||||
|
||||
def read_file_with_encoding(self, file_path: str) -> Optional[str]:
|
||||
"""使用多种编码尝试读取文件"""
|
||||
for encoding in self.supported_encodings:
|
||||
try:
|
||||
with open(file_path, 'r', encoding=encoding) as f:
|
||||
return f.read()
|
||||
except UnicodeDecodeError:
|
||||
continue
|
||||
return None
|
||||
|
||||
def process_tex_content(self, content: str, base_path: str, processed_files=None) -> str:
|
||||
"""处理TEX内容,包括递归处理包含的文件"""
|
||||
if processed_files is None:
|
||||
processed_files = set()
|
||||
|
||||
include_patterns = [
|
||||
r'\\input{([^}]+)}',
|
||||
r'\\include{([^}]+)}',
|
||||
r'\\subfile{([^}]+)}',
|
||||
r'\\input\s+([^\s{]+)',
|
||||
]
|
||||
|
||||
for pattern in include_patterns:
|
||||
matches = re.finditer(pattern, content)
|
||||
for match in matches:
|
||||
include_file = match.group(1)
|
||||
if not include_file.endswith('.tex'):
|
||||
include_file += '.tex'
|
||||
|
||||
include_path = os.path.join(base_path, include_file)
|
||||
include_path = os.path.normpath(include_path)
|
||||
|
||||
if include_path in processed_files:
|
||||
continue
|
||||
processed_files.add(include_path)
|
||||
|
||||
if os.path.exists(include_path):
|
||||
included_content = self.read_file_with_encoding(include_path)
|
||||
if included_content:
|
||||
included_content = self.process_tex_content(
|
||||
included_content,
|
||||
os.path.dirname(include_path),
|
||||
processed_files
|
||||
)
|
||||
content = content.replace(match.group(0), included_content)
|
||||
|
||||
return content
|
||||
|
||||
def merge_tex_files(self, folder_path: str, chatbot, history) -> Optional[str]:
|
||||
"""
|
||||
Step 2: 合并TEX文件
|
||||
返回: 合并后的内容
|
||||
"""
|
||||
try:
|
||||
tex_files = []
|
||||
for root, _, files in os.walk(folder_path):
|
||||
tex_files.extend([os.path.join(root, f) for f in files if f.endswith('.tex')])
|
||||
|
||||
if not tex_files:
|
||||
chatbot.append(("", "未找到任何TEX文件"))
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
return None
|
||||
|
||||
main_tex_file = self.find_main_tex_file(tex_files)
|
||||
chatbot.append(("", f"找到主TEX文件:{os.path.basename(main_tex_file)}"))
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
tex_content = self.read_file_with_encoding(main_tex_file)
|
||||
if tex_content is None:
|
||||
chatbot.append(("", "无法读取TEX文件,可能是编码问题"))
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
return None
|
||||
|
||||
full_content = self.process_tex_content(
|
||||
tex_content,
|
||||
os.path.dirname(main_tex_file)
|
||||
)
|
||||
|
||||
cleaned_content = self.clean_tex_content(full_content)
|
||||
|
||||
chatbot.append(("",
|
||||
f"成功处理所有TEX文件:\n"
|
||||
f"- 原始内容大小:{len(full_content)}字符\n"
|
||||
f"- 清理后内容大小:{len(cleaned_content)}字符"
|
||||
))
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 添加标题和摘要提取
|
||||
title = ""
|
||||
abstract = ""
|
||||
if tex_content:
|
||||
# 提取标题
|
||||
title_match = re.search(r'\\title{([^}]*)}', tex_content)
|
||||
if title_match:
|
||||
title = title_match.group(1)
|
||||
|
||||
# 提取摘要
|
||||
abstract_match = re.search(r'\\begin{abstract}(.*?)\\end{abstract}',
|
||||
tex_content, re.DOTALL)
|
||||
if abstract_match:
|
||||
abstract = abstract_match.group(1)
|
||||
|
||||
# 按token限制分段
|
||||
def split_by_token_limit(text: str, token_limit: int = 1024) -> List[str]:
|
||||
segments = []
|
||||
current_segment = []
|
||||
current_tokens = 0
|
||||
|
||||
for line in text.split('\n'):
|
||||
line_tokens = len(line.split())
|
||||
if current_tokens + line_tokens > token_limit:
|
||||
segments.append('\n'.join(current_segment))
|
||||
current_segment = [line]
|
||||
current_tokens = line_tokens
|
||||
else:
|
||||
current_segment.append(line)
|
||||
current_tokens += line_tokens
|
||||
|
||||
if current_segment:
|
||||
segments.append('\n'.join(current_segment))
|
||||
|
||||
return segments
|
||||
|
||||
text_segments = split_by_token_limit(cleaned_content)
|
||||
|
||||
return {
|
||||
'title': title,
|
||||
'abstract': abstract,
|
||||
'segments': text_segments
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
chatbot.append(("", f"处理TEX文件时发生错误:{str(e)}"))
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
return None
|
||||
|
||||
@staticmethod
|
||||
def clean_tex_content(content: str) -> str:
|
||||
"""清理TEX内容"""
|
||||
content = re.sub(r'(?m)%.*$', '', content) # 移除注释
|
||||
content = re.sub(r'\\cite{[^}]*}', '', content) # 移除引用
|
||||
content = re.sub(r'\\label{[^}]*}', '', content) # 移除标签
|
||||
content = re.sub(r'\s+', ' ', content) # 规范化空白
|
||||
return content.strip()
|
||||
|
||||
if __name__ == "__main__":
|
||||
# 测试 arxiv_download 函数
|
||||
processor = ArxivPaperProcessor()
|
||||
chatbot = []
|
||||
history = []
|
||||
|
||||
# 测试不同格式的输入
|
||||
test_inputs = [
|
||||
"https://arxiv.org/abs/2402.14207", # 标准格式
|
||||
"https://arxiv.org/pdf/2402.14207.pdf", # PDF链接格式
|
||||
"2402.14207", # 纯ID格式
|
||||
"2402.14207v1", # 带版本号的ID格式
|
||||
"https://invalid.url", # 无效URL测试
|
||||
]
|
||||
|
||||
for input_url in test_inputs:
|
||||
print(f"\n测试输入: {input_url}")
|
||||
try:
|
||||
project_folder, arxiv_id = processor.arxiv_download(input_url, chatbot, history)
|
||||
if project_folder and arxiv_id:
|
||||
print(f"下载成功:")
|
||||
print(f"- 项目文件夹: {project_folder}")
|
||||
print(f"- Arxiv ID: {arxiv_id}")
|
||||
print(f"- 文件夹是否存在: {os.path.exists(project_folder)}")
|
||||
else:
|
||||
print("下载失败: 返回值为 None")
|
||||
except Exception as e:
|
||||
print(f"发生错误: {str(e)}")
|
||||
@@ -0,0 +1,85 @@
|
||||
from typing import Dict, List, Optional
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
import os
|
||||
from toolbox import get_conf
|
||||
import openai
|
||||
|
||||
class RagHandler:
|
||||
def __init__(self):
|
||||
# 初始化工作目录
|
||||
self.working_dir = os.path.join(get_conf('ARXIV_CACHE_DIR'), 'rag_cache')
|
||||
if not os.path.exists(self.working_dir):
|
||||
os.makedirs(self.working_dir)
|
||||
|
||||
# 初始化 LightRAG
|
||||
self.rag = LightRAG(
|
||||
working_dir=self.working_dir,
|
||||
llm_model_func=self._llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=1536, # OpenAI embedding 维度
|
||||
max_token_size=8192,
|
||||
func=self._embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
async def _llm_model_func(self, prompt: str, system_prompt: str = None,
|
||||
history_messages: List = None, **kwargs) -> str:
|
||||
"""LLM 模型函数"""
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
if history_messages:
|
||||
messages.extend(history_messages)
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
|
||||
response = await openai.ChatCompletion.acreate(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=messages,
|
||||
temperature=kwargs.get("temperature", 0),
|
||||
max_tokens=kwargs.get("max_tokens", 1000)
|
||||
)
|
||||
return response.choices[0].message.content
|
||||
|
||||
async def _embedding_func(self, texts: List[str]) -> np.ndarray:
|
||||
"""Embedding 函数"""
|
||||
response = await openai.Embedding.acreate(
|
||||
model="text-embedding-ada-002",
|
||||
input=texts
|
||||
)
|
||||
embeddings = [item["embedding"] for item in response["data"]]
|
||||
return np.array(embeddings)
|
||||
|
||||
def process_paper_content(self, paper_content: Dict) -> None:
|
||||
"""处理论文内容,构建知识图谱"""
|
||||
# 处理标题和摘要
|
||||
content_list = []
|
||||
if paper_content['title']:
|
||||
content_list.append(f"Title: {paper_content['title']}")
|
||||
if paper_content['abstract']:
|
||||
content_list.append(f"Abstract: {paper_content['abstract']}")
|
||||
|
||||
# 添加分段内容
|
||||
content_list.extend(paper_content['segments'])
|
||||
|
||||
# 插入到 RAG 系统
|
||||
self.rag.insert(content_list)
|
||||
|
||||
def query(self, question: str, mode: str = "hybrid") -> str:
|
||||
"""查询论文内容
|
||||
mode: 查询模式,可选 naive/local/global/hybrid
|
||||
"""
|
||||
try:
|
||||
response = self.rag.query(
|
||||
question,
|
||||
param=QueryParam(
|
||||
mode=mode,
|
||||
top_k=5, # 返回相关度最高的5个结果
|
||||
max_token_for_text_unit=2048, # 每个文本单元的最大token数
|
||||
response_type="detailed" # 返回详细回答
|
||||
)
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
return f"查询出错: {str(e)}"
|
||||
192
instruction.txt
普通文件
192
instruction.txt
普通文件
@@ -0,0 +1,192 @@
|
||||
|
||||
1、GPT Academic 项目结构
|
||||
.
|
||||
├── Dockerfile
|
||||
├── LICENSE
|
||||
├── README.md
|
||||
├── check_proxy.py
|
||||
├── config.py
|
||||
├── config_private.py
|
||||
├── core_functional.py
|
||||
├── crazy_functional.py
|
||||
├── crazy_functions
|
||||
│ ├── Arxiv_论文对话.py
|
||||
│ ├── Conversation_To_File.py
|
||||
│ ├── Image_Generate.py
|
||||
│ ├── Image_Generate_Wrap.py
|
||||
│ ├── Internet_GPT.py
|
||||
│ ├── Internet_GPT_Wrap.py
|
||||
│ ├── Latex_Function.py
|
||||
│ ├── Latex_Function_Wrap.py
|
||||
│ ├── Latex全文润色.py
|
||||
│ ├── Latex全文翻译.py
|
||||
│ ├── Markdown_Translate.py
|
||||
│ ├── PDF_Translate.py
|
||||
│ ├── PDF_Translate_Wrap.py
|
||||
│ ├── Rag_Interface.py
|
||||
│ ├── Social_Helper.py
|
||||
│ ├── SourceCode_Analyse.py
|
||||
│ ├── SourceCode_Comment.py
|
||||
│ ├── SourceCode_Comment_Wrap.py
|
||||
│ ├── __init__.py
|
||||
│ │ ├── auto_agent.py
|
||||
│ │ ├── echo_agent.py
|
||||
│ │ ├── general.py
|
||||
│ │ ├── persistent.py
|
||||
│ │ ├── pipe.py
|
||||
│ │ ├── python_comment_agent.py
|
||||
│ │ ├── python_comment_compare.html
|
||||
│ │ └── watchdog.py
|
||||
│ ├── ast_fns
|
||||
│ │ └── comment_remove.py
|
||||
│ ├── chatglm微调工具.py
|
||||
│ ├── crazy_utils.py
|
||||
│ ├── diagram_fns
|
||||
│ │ └── file_tree.py
|
||||
│ ├── game_fns
|
||||
│ │ ├── game_ascii_art.py
|
||||
│ │ ├── game_interactive_story.py
|
||||
│ │ └── game_utils.py
|
||||
│ ├── gen_fns
|
||||
│ │ └── gen_fns_shared.py
|
||||
│ ├── ipc_fns
|
||||
│ │ └── mp.py
|
||||
│ ├── json_fns
|
||||
│ │ ├── pydantic_io.py
|
||||
│ │ └── select_tool.py
|
||||
│ ├── latex_fns
|
||||
│ │ ├── latex_actions.py
|
||||
│ │ ├── latex_pickle_io.py
|
||||
│ │ └── latex_toolbox.py
|
||||
│ ├── live_audio
|
||||
│ │ ├── aliyunASR.py
|
||||
│ │ └── audio_io.py
|
||||
│ ├── multi_stage
|
||||
│ │ └── multi_stage_utils.py
|
||||
│ ├── rag_essay_fns
|
||||
│ │ └── multi_stage_utils.py
|
||||
│ ├── pdf_fns
|
||||
│ │ ├── breakdown_txt.py
|
||||
│ │ ├── parse_pdf.py
|
||||
│ │ ├── parse_pdf_grobid.py
|
||||
│ │ ├── parse_pdf_legacy.py
|
||||
│ │ ├── parse_pdf_via_doc2x.py
|
||||
│ │ ├── parse_word.py
|
||||
│ │ ├── report_gen_html.py
|
||||
│ │ ├── report_template.html
|
||||
│ │ └── report_template_v2.html
|
||||
│ ├── plugin_template
|
||||
│ │ └── plugin_class_template.py
|
||||
│ ├── prompts
|
||||
│ │ └── internet.py
|
||||
│ ├── rag_fns
|
||||
│ │ ├── llama_index_worker.py
|
||||
│ │ ├── milvus_worker.py
|
||||
│ │ ├── rag_file_support.py
|
||||
│ │ └── vector_store_index.py
|
||||
│ ├── vector_fns
|
||||
│ │ ├── __init__.py
|
||||
│ │ ├── general_file_loader.py
|
||||
│ │ └── vector_database.py
|
||||
│ ├── vt_fns
|
||||
│ │ ├── vt_call_plugin.py
|
||||
│ │ ├── vt_modify_config.py
|
||||
│ │ └── vt_state.py
|
||||
│ ├── 下载arxiv论文翻译摘要.py
|
||||
│ ├── 互动小游戏.py
|
||||
│ ├── 交互功能函数模板.py
|
||||
│ ├── 函数动态生成.py
|
||||
│ ├── 命令行助手.py
|
||||
│ ├── 多智能体.py
|
||||
│ ├── 总结word文档.py
|
||||
│ ├── 总结音视频.py
|
||||
│ ├── 批量总结PDF文档.py
|
||||
│ ├── 批量总结PDF文档pdfminer.py
|
||||
│ ├── 批量翻译PDF文档_NOUGAT.py
|
||||
│ ├── 数学动画生成manim.py
|
||||
│ ├── 理解PDF文档内容.py
|
||||
│ ├── 生成函数注释.py
|
||||
│ ├── 生成多种Mermaid图表.py
|
||||
│ ├── 知识库问答.py
|
||||
│ ├── 联网的ChatGPT.py
|
||||
│ ├── 联网的ChatGPT_bing版.py
|
||||
│ ├── 虚空终端.py
|
||||
│ ├── 解析JupyterNotebook.py
|
||||
│ ├── 询问多个大语言模型.py
|
||||
│ ├── 语音助手.py
|
||||
│ ├── 读文章写摘要.py
|
||||
│ ├── 谷歌检索小助手.py
|
||||
│ ├── 辅助功能.py
|
||||
│ └── 高级功能函数模板.py
|
||||
├── docker-compose.yml
|
||||
├── instruction.txt
|
||||
├── main.py
|
||||
├── multi_language.py
|
||||
├── requirements.txt
|
||||
├── shared_utils
|
||||
│ ├── advanced_markdown_format.py
|
||||
│ ├── char_visual_effect.py
|
||||
│ ├── colorful.py
|
||||
│ ├── config_loader.py
|
||||
│ ├── connect_void_terminal.py
|
||||
│ ├── cookie_manager.py
|
||||
│ ├── fastapi_server.py
|
||||
│ ├── handle_upload.py
|
||||
│ ├── key_pattern_manager.py
|
||||
│ ├── logging.py
|
||||
│ ├── map_names.py
|
||||
│ └── text_mask.py
|
||||
├── toolbox.py
|
||||
└── version
|
||||
|
||||
2、light_rag的实现方案路径为crazy_functions/rag_fns/LightRAG,主要功能实现文件为operate.py,rag使用到的其他文件为prompt.py、base.py、storage.py、utils.py,请参考实现方案实现插件功能。light_rag的使用案例可以参考crazy_functions/rag_fns/LightRAG/examples路径下的lightrag_hf_demo.py、lightrag_lmdeploy_demo.py:
|
||||
路径目录结构为
|
||||
|
||||
├── README.md
|
||||
├── examples
|
||||
│ ├── batch_eval.py
|
||||
│ ├── generate_query.py
|
||||
│ ├── graph_visual_with_html.py
|
||||
│ ├── graph_visual_with_neo4j.py
|
||||
│ ├── lightrag_azure_openai_demo.py
|
||||
│ ├── lightrag_bedrock_demo.py
|
||||
│ ├── lightrag_hf_demo.py
|
||||
│ ├── lightrag_ollama_demo.py
|
||||
│ ├── lightrag_openai_compatible_demo.py
|
||||
│ ├── lightrag_openai_demo.py
|
||||
│ └── vram_management_demo.py
|
||||
├── lightrag
|
||||
│ ├── __init__.py
|
||||
│ ├── base.py
|
||||
│ ├── lightrag.py
|
||||
│ ├── llm.py
|
||||
│ ├── operate.py
|
||||
│ ├── prompt.py
|
||||
│ ├── storage.py
|
||||
│ └── utils.py
|
||||
├── reproduce
|
||||
│ ├── Step_0.py
|
||||
│ ├── Step_1.py
|
||||
│ ├── Step_1_openai_compatible.py
|
||||
│ ├── Step_2.py
|
||||
│ ├── Step_3.py
|
||||
│ └── Step_3_openai_compatible.py
|
||||
├── requirements.txt
|
||||
└── setup.py
|
||||
|
||||
|
||||
3、我需要开发一个rag插件,请帮我实现一个插件,插件的名称是rag论文总结,插件主入口在crazy_functions/Arxiv_论文对话.py中的Rag论文对话函数,插件的功能步骤分为文件处理和RAG两个步骤
|
||||
文件处理步骤流程和要求按顺序如下,请参考gpt_academic已实现的功能复用现有函数即可:
|
||||
a. 支持从 arXiv 下载论文源码、检查本地项目路径、扫描 .tex 文件,此步骤可参考crazy_functions/Latex_Function.py。
|
||||
b、在项目中找到主要的 LaTeX 文件,将多个 TEX 文件合并成一个大的 TEX 文件,便于统一处理,此步骤可参考crazy_functions/Latex_Function.py。
|
||||
c、将合并后的文档进行精细切分,包括读取标题和摘要,此步骤可参考crazy_functions/Latex_Function.py。
|
||||
d、将文档按照 token 限制(1024)进行进一步分段,此步骤可参考crazy_functions/Latex_Function.py。
|
||||
|
||||
3、对于RAG,我希望采用light_rag的方案,参考已有方案其主要的功能实现是:
|
||||
主要功能包括:
|
||||
e 参考- `chunking_by_token_size`,利用`_handle_entity_relation_summary`函数对d步骤生成的文本块进行实体或关系的摘要。
|
||||
f 利用`_handle_single_entity_extraction` 和 `_handle_single_relationship_extraction`:从记录中提取单个实体或关系信息。
|
||||
g `_merge_nodes_then_upsert` 和 `_merge_edges_then_upsert`:合并并插入节点或边。
|
||||
h `extract_entities`:处理多个文本块,提取实体和关系,并存储在知识图谱和向量数据库中。
|
||||
i `local_query`:根据查询提取关键词并生成响应。
|
||||
|
||||
在新工单中引用
屏蔽一个用户