这个提交包含在:
XiaoBoAI
2025-07-21 02:18:46 +08:00
父节点 6813ba88bb
当前提交 91f28c2721

查看文件

@@ -1554,110 +1554,19 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot,
additional_fn:str=None # 基础功能区按钮的附加功能
):
"""
import os
import re
from toolbox import update_ui
inputs = apply_gpt_academic_string_mask(inputs, mode="show_llm")
if llm_kwargs['llm_model'] not in model_info:
from toolbox import update_ui
chatbot.append([inputs, f"很抱歉,模型 '{llm_kwargs['llm_model']}' 暂不支持<br/>(1) 检查config中的AVAIL_LLM_MODELS选项<br/>(2) 检查request_llms/bridge_all.py中的模型路由"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"] # 如果这里报错,检查config中的AVAIL_LLM_MODELS选项
if additional_fn: # 根据基础功能区 ModelOverride 参数调整模型类型
llm_kwargs, additional_fn, method = execute_model_override(llm_kwargs, additional_fn, method)
# 检查是否为URL或文件路径
def is_url(text):
from urllib.parse import urlparse
try:
text = text.strip(',.!?,。!? \t\n\r')
words = text.split()
if len(words) != 1:
return False
result = urlparse(text)
return all([result.scheme, result.netloc])
except:
return False
def extract_file_path(text):
# 匹配以 private_upload 开头,包含时间戳格式的路径
pattern = r'(private_upload/[^\s]+?/\d{4}-\d{2}-\d{2}-\d{2}-\d{2}-\d{2})'
match = re.search(pattern, text)
if match and os.path.exists(match.group(1)):
return match.group(1)
return None
if is_url(inputs):
# 处理URL
try:
from crazy_functions.doc_fns.read_fns.web_reader import WebTextExtractor, WebExtractorConfig
extractor = WebTextExtractor(WebExtractorConfig())
# 添加正在处理的提示信息
chatbot.append(["提示", "正在提取网页内容,请稍作等待..."])
yield from update_ui(chatbot=chatbot, history=history)
web_content = extractor.extract_text(inputs)
# 移除提示信息
chatbot.pop()
# 显示提取的内容
chatbot.append([f"网页{inputs}的文本内容如下:", web_content])
history.extend([f"网页{inputs}的文本内容如下:", web_content])
yield from update_ui(chatbot=chatbot, history=history)
return
except Exception as e:
# 如果出错,移除提示信息(如果存在)
if len(chatbot) > 0 and chatbot[-1][0] == "提示":
chatbot.pop()
chatbot.append([inputs, f"网页内容提取失败: {str(e)}"])
yield from update_ui(chatbot=chatbot, history=history)
return
else:
# 检查是否包含文件路径
file_path = extract_file_path(inputs)
if os.path.exists(inputs):
# 处理普通文件路径
try:
from crazy_functions.doc_fns.text_content_loader import TextContentLoader
loader = TextContentLoader(chatbot, history)
yield from loader.execute(inputs)
return
except Exception as e:
chatbot.append([inputs, f"文件读取失败: {str(e)}"])
yield from update_ui(chatbot=chatbot, history=history)
return
elif file_path:
try:
from crazy_functions.doc_fns.text_content_loader import TextContentLoader
loader = TextContentLoader(chatbot, history)
# 先读取文件内容
content_generator = loader.execute(file_path)
# 消费生成器获取文件内容
for _ in content_generator:
pass
# 构建新的输入,包含用户的原始问题和文件引用
original_question = inputs.replace(file_path, '').strip()
if not original_question:
original_question = f"请分析上述文件内容"
else:
original_question = f"基于上述文件内容,{original_question}"
# 使用最新的历史记录(包含文件内容)继续对话
yield from method(original_question, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, stream, additional_fn)
return
except Exception as e:
chatbot.append([inputs, f"文件处理失败: {str(e)}"])
yield from update_ui(chatbot=chatbot, history=history)
return
# 兼容原有的URL和文件处理逻辑
if start_with_url(inputs):
yield from load_web_content(inputs, chatbot, history)
return