diff --git a/request_llms/bridge_all.py b/request_llms/bridge_all.py
index b975f8d1..4562c9f1 100644
--- a/request_llms/bridge_all.py
+++ b/request_llms/bridge_all.py
@@ -1554,110 +1554,19 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot,
additional_fn:str=None # 基础功能区按钮的附加功能
):
"""
- import os
- import re
- from toolbox import update_ui
inputs = apply_gpt_academic_string_mask(inputs, mode="show_llm")
if llm_kwargs['llm_model'] not in model_info:
+ from toolbox import update_ui
chatbot.append([inputs, f"很抱歉,模型 '{llm_kwargs['llm_model']}' 暂不支持
(1) 检查config中的AVAIL_LLM_MODELS选项
(2) 检查request_llms/bridge_all.py中的模型路由"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
- return
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"] # 如果这里报错,检查config中的AVAIL_LLM_MODELS选项
if additional_fn: # 根据基础功能区 ModelOverride 参数调整模型类型
llm_kwargs, additional_fn, method = execute_model_override(llm_kwargs, additional_fn, method)
- # 检查是否为URL或文件路径
- def is_url(text):
- from urllib.parse import urlparse
- try:
- text = text.strip(',.!?,。!? \t\n\r')
- words = text.split()
- if len(words) != 1:
- return False
- result = urlparse(text)
- return all([result.scheme, result.netloc])
- except:
- return False
-
- def extract_file_path(text):
- # 匹配以 private_upload 开头,包含时间戳格式的路径
- pattern = r'(private_upload/[^\s]+?/\d{4}-\d{2}-\d{2}-\d{2}-\d{2}-\d{2})'
- match = re.search(pattern, text)
- if match and os.path.exists(match.group(1)):
- return match.group(1)
- return None
-
- if is_url(inputs):
- # 处理URL
- try:
- from crazy_functions.doc_fns.read_fns.web_reader import WebTextExtractor, WebExtractorConfig
- extractor = WebTextExtractor(WebExtractorConfig())
-
- # 添加正在处理的提示信息
- chatbot.append(["提示", "正在提取网页内容,请稍作等待..."])
- yield from update_ui(chatbot=chatbot, history=history)
-
- web_content = extractor.extract_text(inputs)
-
- # 移除提示信息
- chatbot.pop()
-
- # 显示提取的内容
- chatbot.append([f"网页{inputs}的文本内容如下:", web_content])
- history.extend([f"网页{inputs}的文本内容如下:", web_content])
- yield from update_ui(chatbot=chatbot, history=history)
- return
- except Exception as e:
- # 如果出错,移除提示信息(如果存在)
- if len(chatbot) > 0 and chatbot[-1][0] == "提示":
- chatbot.pop()
- chatbot.append([inputs, f"网页内容提取失败: {str(e)}"])
- yield from update_ui(chatbot=chatbot, history=history)
- return
- else:
- # 检查是否包含文件路径
- file_path = extract_file_path(inputs)
- if os.path.exists(inputs):
- # 处理普通文件路径
- try:
- from crazy_functions.doc_fns.text_content_loader import TextContentLoader
- loader = TextContentLoader(chatbot, history)
- yield from loader.execute(inputs)
- return
- except Exception as e:
- chatbot.append([inputs, f"文件读取失败: {str(e)}"])
- yield from update_ui(chatbot=chatbot, history=history)
- return
- elif file_path:
- try:
- from crazy_functions.doc_fns.text_content_loader import TextContentLoader
- loader = TextContentLoader(chatbot, history)
- # 先读取文件内容
- content_generator = loader.execute(file_path)
- # 消费生成器获取文件内容
- for _ in content_generator:
- pass
-
- # 构建新的输入,包含用户的原始问题和文件引用
- original_question = inputs.replace(file_path, '').strip()
- if not original_question:
- original_question = f"请分析上述文件内容"
- else:
- original_question = f"基于上述文件内容,{original_question}"
-
- # 使用最新的历史记录(包含文件内容)继续对话
- yield from method(original_question, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, stream, additional_fn)
- return
- except Exception as e:
- chatbot.append([inputs, f"文件处理失败: {str(e)}"])
- yield from update_ui(chatbot=chatbot, history=history)
- return
-
- # 兼容原有的URL和文件处理逻辑
if start_with_url(inputs):
yield from load_web_content(inputs, chatbot, history)
return