这个提交包含在:
binary-husky
2023-12-26 23:59:36 +08:00
父节点 15f14f51ff
当前提交 8dd4d48474
共有 43 个文件被更改,包括 1343 次插入618 次删除

107
README.md
查看文件

@@ -14,41 +14,69 @@ pinned: false
>
> 2023.11.12: 某些依赖包尚不兼容python 3.12,推荐python 3.11。
>
> 2023.11.7: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目开源免费,近期发现有人蔑视开源协议并利用本项目违规圈钱,请提高警惕,谨防上当受骗
> 2023.12.26: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目完全开源免费,您可通过订阅[在线服务](https://github.com/binary-husky/gpt_academic/wiki/online)的方式鼓励本项目的发展
<br>
<div align=center>
<h1 aligh="center">
<img src="docs/logo.png" width="40"> GPT 学术优化 (GPT Academic)
</h1>
[![Github][Github-image]][Github-url]
[![License][License-image]][License-url]
[![Releases][Releases-image]][Releases-url]
[![Installation][Installation-image]][Installation-url]
[![Wiki][Wiki-image]][Wiki-url]
[![PR][PRs-image]][PRs-url]
[Github-image]: https://img.shields.io/badge/github-12100E.svg?style=flat-square
[License-image]: https://img.shields.io/github/license/binary-husky/gpt_academic?label=License&style=flat-square&color=orange
[Releases-image]: https://img.shields.io/github/release/binary-husky/gpt_academic?label=Release&style=flat-square&color=blue
[Installation-image]: https://img.shields.io/badge/dynamic/json?color=blue&url=https://raw.githubusercontent.com/binary-husky/gpt_academic/master/version&query=$.version&label=Installation&style=flat-square
[Wiki-image]: https://img.shields.io/badge/wiki-项目文档-black?style=flat-square
[PRs-image]: https://img.shields.io/badge/PRs-welcome-pink?style=flat-square
[Github-url]: https://github.com/binary-husky/gpt_academic
[License-url]: https://github.com/binary-husky/gpt_academic/blob/master/LICENSE
[Releases-url]: https://github.com/binary-husky/gpt_academic/releases
[Installation-url]: https://github.com/binary-husky/gpt_academic#installation
[Wiki-url]: https://github.com/binary-husky/gpt_academic/wiki
[PRs-url]: https://github.com/binary-husky/gpt_academic/pulls
# <div align=center><img src="docs/logo.png" width="40"> GPT 学术优化 (GPT Academic)</div>
</div>
<br>
**如果喜欢这个项目,请给它一个Star;如果您发明了好用的快捷键或插件,欢迎发pull requests**
If you like this project, please give it a Star. We also have a README in [English|](docs/README.English.md)[日本語|](docs/README.Japanese.md)[한국어|](docs/README.Korean.md)[Русский|](docs/README.Russian.md)[Français](docs/README.French.md) translated by this project itself.
To translate this project to arbitrary language with GPT, read and run [`multi_language.py`](multi_language.py) (experimental).
If you like this project, please give it a Star.
Read this in [English](docs/README.English.md) | [日本語](docs/README.Japanese.md) | [한국어](docs/README.Korean.md) | [Русский](docs/README.Russian.md) | [Français](docs/README.French.md). All translations have been provided by the project itself. To translate this project to arbitrary language with GPT, read and run [`multi_language.py`](multi_language.py) (experimental).
<br>
> **Note**
>
> 1.请注意只有 **高亮** 标识的插件(按钮)才支持读取文件,部分插件位于插件区的**下拉菜单**中。另外我们以**最高优先级**欢迎和处理任何新插件的PR。
>
> 2.本项目中每个文件的功能都在[自译解报告`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/GPTAcademic项目自译解报告)详细说明。随着版本的迭代,您也可以随时自行点击相关函数插件,调用GPT重新生成项目的自我解析报告。常见问题[`wiki`](https://github.com/binary-husky/gpt_academic/wiki)。[常规安装方法](#installation) | [一键安装脚本](https://github.com/binary-husky/gpt_academic/releases) | [配置说明](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)
> 2.本项目中每个文件的功能都在[自译解报告](https://github.com/binary-husky/gpt_academic/wiki/GPTAcademic项目自译解报告)`self_analysis.md`详细说明。随着版本的迭代,您也可以随时自行点击相关函数插件,调用GPT重新生成项目的自我解析报告。常见问题请查阅wiki
> [![常规安装方法](https://img.shields.io/static/v1?label=&message=常规安装方法&color=gray)](#installation) [![一键安装脚本](https://img.shields.io/static/v1?label=&message=一键安装脚本&color=gray)](https://github.com/binary-husky/gpt_academic/releases) [![配置说明](https://img.shields.io/static/v1?label=&message=配置说明&color=gray)](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明) [![wiki](https://img.shields.io/static/v1?label=&message=wiki&color=gray)]([https://github.com/binary-husky/gpt_academic/wiki/项目配置说明](https://github.com/binary-husky/gpt_academic/wiki))
>
> 3.本项目兼容并鼓励尝试国产大语言模型ChatGLM等。支持多个api-key共存,可在配置文件中填写如`API_KEY="openai-key1,openai-key2,azure-key3,api2d-key4"`。需要临时更换`API_KEY`时,在输入区输入临时的`API_KEY`然后回车键提交即可生效。
> 3.本项目兼容并鼓励尝试国产大语言模型ChatGLM等。支持多个api-key共存,可在配置文件中填写如`API_KEY="openai-key1,openai-key2,azure-key3,api2d-key4"`。需要临时更换`API_KEY`时,在输入区输入临时的`API_KEY`然后回车键提交即可生效。
<br><br>
<div align="center">
功能(⭐= 近期新增功能) | 描述
--- | ---
⭐[接入新模型](https://github.com/binary-husky/gpt_academic/wiki/%E5%A6%82%E4%BD%95%E5%88%87%E6%8D%A2%E6%A8%A1%E5%9E%8B) | 百度[千帆](https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu)与文心一言, 通义千问[Qwen](https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary),上海AI-Lab[书生](https://github.com/InternLM/InternLM),讯飞[星火](https://xinghuo.xfyun.cn/),[LLaMa2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf),[智谱API](https://open.bigmodel.cn/),DALLE3, [DeepseekCoder](https://coder.deepseek.com/)
⭐[接入新模型](https://github.com/binary-husky/gpt_academic/wiki/%E5%A6%82%E4%BD%95%E5%88%87%E6%8D%A2%E6%A8%A1%E5%9E%8B) | 百度[千帆](https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu)与文心一言, 通义千问[Qwen](https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary),上海AI-Lab[书生](https://github.com/InternLM/InternLM),讯飞[星火](https://xinghuo.xfyun.cn/),[LLaMa2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf),[智谱API](https://open.bigmodel.cn/),DALLE3, [DeepseekCoder](https://coder.deepseek.com/)
润色、翻译、代码解释 | 一键润色、翻译、查找论文语法错误、解释代码
[自定义快捷键](https://www.bilibili.com/video/BV14s4y1E7jN) | 支持自定义快捷键
模块化设计 | 支持自定义强大的[插件](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions),插件支持[热更新](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[程序剖析](https://www.bilibili.com/video/BV1cj411A7VW) | [插件] 一键可以剖析Python/C/C++/Java/Lua/...项目树 或 [自我剖析](https://www.bilibili.com/video/BV1cj411A7VW)
[程序剖析](https://www.bilibili.com/video/BV1cj411A7VW) | [插件] 一键剖析Python/C/C++/Java/Lua/...项目树 或 [自我剖析](https://www.bilibili.com/video/BV1cj411A7VW)
读论文、[翻译](https://www.bilibili.com/video/BV1KT411x7Wn)论文 | [插件] 一键解读latex/pdf论文全文并生成摘要
Latex全文[翻译](https://www.bilibili.com/video/BV1nk4y1Y7Js/)、[润色](https://www.bilibili.com/video/BV1FT411H7c5/) | [插件] 一键翻译或润色latex论文
批量注释生成 | [插件] 一键批量生成函数注释
Markdown[中英互译](https://www.bilibili.com/video/BV1yo4y157jV/) | [插件] 看到上面5种语言的[README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md)了吗?
Markdown[中英互译](https://www.bilibili.com/video/BV1yo4y157jV/) | [插件] 看到上面5种语言的[README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md)了吗?就是出自他的手笔
chat分析报告生成 | [插件] 运行后自动生成总结汇报
[PDF论文全文翻译功能](https://www.bilibili.com/video/BV1KT411x7Wn) | [插件] PDF论文提取题目&摘要+翻译全文(多线程)
[Arxiv小助手](https://www.bilibili.com/video/BV1LM4y1279X) | [插件] 输入arxiv文章url即可一键翻译摘要+下载PDF
@@ -60,22 +88,22 @@ Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼
公式/图片/表格显示 | 可以同时显示公式的[tex形式和渲染形式](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png),支持公式、代码高亮
⭐AutoGen多智能体插件 | [插件] 借助微软AutoGen,探索多Agent的智能涌现可能
启动暗色[主题](https://github.com/binary-husky/gpt_academic/issues/173) | 在浏览器url后面添加```/?__theme=dark```可以切换dark主题
[多LLM模型](https://www.bilibili.com/video/BV1wT411p7yf)支持 | 同时被GPT3.5、GPT4、[清华ChatGLM2](https://github.com/THUDM/ChatGLM2-6B)、[复旦MOSS](https://github.com/OpenLMLab/MOSS)同时伺候的感觉一定会很不错吧?
[多LLM模型](https://www.bilibili.com/video/BV1wT411p7yf)支持 | 同时被GPT3.5、GPT4、[清华ChatGLM2](https://github.com/THUDM/ChatGLM2-6B)、[复旦MOSS](https://github.com/OpenLMLab/MOSS)伺候的感觉一定会很不错吧?
⭐ChatGLM2微调模型 | 支持加载ChatGLM2微调模型,提供ChatGLM2微调辅助插件
更多LLM模型接入,支持[huggingface部署](https://huggingface.co/spaces/qingxu98/gpt-academic) | 加入Newbing接口(新必应),引入清华[Jittorllms](https://github.com/Jittor/JittorLLMs)支持[LLaMA](https://github.com/facebookresearch/llama)和[盘古α](https://openi.org.cn/pangu/)
⭐[void-terminal](https://github.com/binary-husky/void-terminal) pip包 | 脱离GUI,在Python中直接调用本项目的所有函数插件开发中
⭐虚空终端插件 | [插件] 用自然语言直接调度本项目其他插件
⭐虚空终端插件 | [插件] 能够使用自然语言直接调度本项目其他插件
更多新功能展示 (图像生成等) …… | 见本文档结尾处 ……
</div>
- 新界面(修改`config.py`中的LAYOUT选项即可实现“左右布局”和“上下布局”的切换
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/d81137c3-affd-4cd1-bb5e-b15610389762" width="700" >
<img src="https://user-images.githubusercontent.com/96192199/279702205-d81137c3-affd-4cd1-bb5e-b15610389762.gif" width="700" >
</div>
- 所有按钮都通过读取functional.py动态生成,可随意加自定义功能,解放贴板
- 所有按钮都通过读取functional.py动态生成,可随意加自定义功能,解放贴板
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231975334-b4788e91-4887-412f-8b43-2b9c5f41d248.gif" width="700" >
</div>
@@ -85,21 +113,23 @@ Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼
<img src="https://user-images.githubusercontent.com/96192199/231980294-f374bdcb-3309-4560-b424-38ef39f04ebd.gif" width="700" >
</div>
- 如果输出包含公式,会同时以tex形式和渲染形式显示,方便复制和阅读
- 如果输出包含公式,会以tex形式和渲染形式同时显示,方便复制和阅读
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700" >
</div>
- 懒得看项目代码?整个工程直接给chatgpt炫嘴里
- 懒得看项目代码?直接把整个工程炫ChatGPT嘴里
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700" >
</div>
- 多种大语言模型混合调用ChatGLM + OpenAI-GPT3.5 + [API2D](https://api2d.com/)-GPT4
- 多种大语言模型混合调用ChatGLM + OpenAI-GPT3.5 + GPT4
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700" >
</div>
<br><br>
# Installation
### 安装方法I直接运行 (Windows, Linux or MacOS)
@@ -110,13 +140,13 @@ Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼
cd gpt_academic
```
2. 配置API_KEY
2. 配置API_KEY等变量
在`config.py`中,配置API KEY等设置,[点击查看特殊网络环境设置方法](https://github.com/binary-husky/gpt_academic/issues/1)[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。
在`config.py`中,配置API KEY等变量。[特殊网络环境设置方法](https://github.com/binary-husky/gpt_academic/issues/1)[Wiki-项目配置说明](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。
「 程序会优先检查是否存在名为`config_private.py`的私密配置文件,并用其中的配置覆盖`config.py`的同名配置。如您能理解读取逻辑,我们强烈建议您在`config.py`旁边创建一个名为`config_private.py`的新配置文件,并把`config.py`中的配置转移(复制)到`config_private.py`中(仅复制您修改过的配置条目即可)。
「 程序会优先检查是否存在名为`config_private.py`的私密配置文件,并用其中的配置覆盖`config.py`的同名配置。如您能理解以上读取逻辑,我们强烈建议您在`config.py`同路径下创建一个名为`config_private.py`的新配置文件,并使用`config_private.py`配置项目,以确保更新或其他用户无法轻易查看您的私有配置
「 支持通过`环境变量`配置项目,环境变量的书写格式参考`docker-compose.yml`文件或者我们的[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。配置读取优先级: `环境变量` > `config_private.py` > `config.py`
「 支持通过`环境变量`配置项目,环境变量的书写格式参考`docker-compose.yml`文件或者我们的[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。配置读取优先级: `环境变量` > `config_private.py` > `config.py` 」
3. 安装依赖
@@ -149,6 +179,14 @@ git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss #
# 【可选步骤IV】确保config.py配置文件的AVAIL_LLM_MODELS包含了期望的模型,目前支持的全部模型如下(jittorllms系列目前仅支持docker方案)
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
# 【可选步骤V】支持本地模型INT8,INT4量化这里所指的模型本身不是量化版本,目前deepseek-coder支持,后面测试后会加入更多模型量化选择
pip install bitsandbyte
# windows用户安装bitsandbytes需要使用下面bitsandbytes-windows-webui
python -m pip install bitsandbytes --prefer-binary --extra-index-url=https://jllllll.github.io/bitsandbytes-windows-webui
pip install -U git+https://github.com/huggingface/transformers.git
pip install -U git+https://github.com/huggingface/accelerate.git
pip install peft
```
</p>
@@ -163,7 +201,7 @@ AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-
### 安装方法II使用Docker
0. 部署项目的全部能力这个是包含cuda和latex的大型镜像。但如果您网速慢、硬盘小,则不推荐使用这个
0. 部署项目的全部能力这个是包含cuda和latex的大型镜像。但如果您网速慢、硬盘小,则不推荐该方法部署完整项目
[![fullcapacity](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml)
``` sh
@@ -192,26 +230,26 @@ P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以
```
### 安装方法III其他部署姿势
### 安装方法III其他部署方法
1. **Windows一键运行脚本**。
完全不熟悉python环境的Windows用户可以下载[Release](https://github.com/binary-husky/gpt_academic/releases)中发布的一键运行脚本安装无本地模型的版本。
脚本的贡献来源是[oobabooga](https://github.com/oobabooga/one-click-installers)。
完全不熟悉python环境的Windows用户可以下载[Release](https://github.com/binary-husky/gpt_academic/releases)中发布的一键运行脚本安装无本地模型的版本。脚本贡献来源:[oobabooga](https://github.com/oobabooga/one-click-installers)。
2. 使用第三方API、Azure等、文心一言、星火等,见[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)
3. 云服务器远程部署避坑指南。
请访问[云服务器远程部署wiki](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
4. 一些新型的部署平台或方法
4. 在其他平台部署&二级网址部署
- 使用Sealos[一键部署](https://github.com/binary-husky/gpt_academic/issues/993)。
- 使用WSL2Windows Subsystem for Linux 子系统)。请访问[部署wiki-2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
- 如何在二级网址(如`http://localhost/subpath`)下运行。请访问[FastAPI运行说明](docs/WithFastapi.md)
<br><br>
# Advanced Usage
### I自定义新的便捷按钮学术快捷键
任意文本编辑器打开`core_functional.py`,添加条目如下,然后重启程序。(如按钮已存在,那么前缀、后缀都支持热修改,无需重启程序即可生效。)
任意文本编辑器打开`core_functional.py`,添加如下条目,然后重启程序。(如按钮已存在,那么可以直接修改(前缀、后缀都支持热修改,无需重启程序即可生效。)
例如
```python
@@ -233,6 +271,7 @@ P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以
本项目的插件编写、调试难度很低,只要您具备一定的python基础知识,就可以仿照我们提供的模板实现自己的插件功能。
详情请参考[函数插件指南](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)。
<br><br>
# Updates
### I动态
@@ -332,7 +371,7 @@ GPT Academic开发者QQ群`610599535`
- 已知问题
- 某些浏览器翻译插件干扰此软件前端的运行
- 官方Gradio目前有很多兼容性Bug,请务必使用`requirement.txt`安装Gradio
- 官方Gradio目前有很多兼容性问题,请**务必使用`requirement.txt`安装Gradio**
### III主题
可以通过修改`THEME`选项config.py变更主题
@@ -343,8 +382,8 @@ GPT Academic开发者QQ群`610599535`
1. `master` 分支: 主分支,稳定版
2. `frontier` 分支: 开发分支,测试版
3. 如何接入其他大模型:[接入其他大模型](request_llms/README.md)
3. 如何[接入其他大模型](request_llms/README.md)
4. 访问GPT-Academic的[在线服务并支持我们](https://github.com/binary-husky/gpt_academic/wiki/online)
### V参考与学习

125
app.py
查看文件

@@ -1,6 +1,17 @@
import os; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
import pickle
import base64
help_menu_description = \
"""Github源代码开源和更新[地址🚀](https://github.com/binary-husky/gpt_academic),
感谢热情的[开发者们❤️](https://github.com/binary-husky/gpt_academic/graphs/contributors).
</br></br>常见问题请查阅[项目Wiki](https://github.com/binary-husky/gpt_academic/wiki),
如遇到Bug请前往[Bug反馈](https://github.com/binary-husky/gpt_academic/issues).
</br></br>普通对话使用说明: 1. 输入问题; 2. 点击提交
</br></br>基础功能区使用说明: 1. 输入文本; 2. 点击任意基础功能区按钮
</br></br>函数插件区使用说明: 1. 输入路径/问题, 或者上传文件; 2. 点击任意函数插件区按钮
</br></br>虚空终端使用说明: 点击虚空终端, 然后根据提示输入指令, 再次点击虚空终端
</br></br>如何保存对话: 点击保存当前的对话按钮
</br></br>如何语音对话: 请阅读Wiki
</br></br>如何临时更换API_KEY: 在输入区输入临时API_KEY后提交网页刷新后失效"""
def main():
import subprocess, sys
@@ -10,7 +21,7 @@ def main():
raise ModuleNotFoundError("使用项目内置Gradio获取最优体验! 请运行 `pip install -r requirements.txt` 指令安装内置Gradio及其他依赖, 详情信息见requirements.txt.")
from request_llms.bridge_all import predict
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, load_chat_cookies, DummyWith
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION = get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION')
CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = get_conf('CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
ENABLE_AUDIO, AUTO_CLEAR_TXT, PATH_LOGGING, AVAIL_THEMES, THEME = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'PATH_LOGGING', 'AVAIL_THEMES', 'THEME')
@@ -20,21 +31,11 @@ def main():
# 如果WEB_PORT是-1, 则随机选取WEB端口
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
from check_proxy import get_current_version
from themes.theme import adjust_theme, advanced_css, theme_declaration, load_dynamic_theme
from themes.theme import adjust_theme, advanced_css, theme_declaration
from themes.theme import js_code_for_css_changing, js_code_for_darkmode_init, js_code_for_toggle_darkmode, js_code_for_persistent_cookie_init
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, init_cookie
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
description = "Github源代码开源和更新[地址🚀](https://github.com/binary-husky/gpt_academic), "
description += "感谢热情的[开发者们❤️](https://github.com/binary-husky/gpt_academic/graphs/contributors)."
description += "</br></br>常见问题请查阅[项目Wiki](https://github.com/binary-husky/gpt_academic/wiki), "
description += "如遇到Bug请前往[Bug反馈](https://github.com/binary-husky/gpt_academic/issues)."
description += "</br></br>普通对话使用说明: 1. 输入问题; 2. 点击提交"
description += "</br></br>基础功能区使用说明: 1. 输入文本; 2. 点击任意基础功能区按钮"
description += "</br></br>函数插件区使用说明: 1. 输入路径/问题, 或者上传文件; 2. 点击任意函数插件区按钮"
description += "</br></br>虚空终端使用说明: 点击虚空终端, 然后根据提示输入指令, 再次点击虚空终端"
description += "</br></br>如何保存对话: 点击保存当前的对话按钮"
description += "</br></br>如何语音对话: 请阅读Wiki"
description += "</br></br>如何临时更换API_KEY: 在输入区输入临时API_KEY后提交网页刷新后失效"
# 问询记录, python 版本建议3.9+(越新越好)
import logging, uuid
os.makedirs(PATH_LOGGING, exist_ok=True)
@@ -88,7 +89,7 @@ def main():
with gr_L2(scale=1, elem_id="gpt-panel"):
with gr.Accordion("输入区", open=True, elem_id="input-panel") as area_input_primary:
with gr.Row():
txt = gr.Textbox(show_label=False, lines=2, placeholder="输入问题或API密钥,输入多个密钥时,用英文逗号间隔。支持OpenAI密钥和API2D密钥共存。").style(container=False)
txt = gr.Textbox(show_label=False, lines=2, placeholder="输入问题或API密钥,输入多个密钥时,用英文逗号间隔。支持多个OpenAI密钥共存。").style(container=False)
with gr.Row():
submitBtn = gr.Button("提交", elem_id="elem_submit", variant="primary")
with gr.Row():
@@ -149,7 +150,7 @@ def main():
with gr.Row():
with gr.Tab("上传文件", elem_id="interact-panel"):
gr.Markdown("请上传本地文件/压缩包供“函数插件区”功能调用。请注意: 上传文件后会自动把输入区修改为相应路径。")
file_upload_2 = gr.Files(label="任何文件, 推荐上传压缩文件(zip, tar)", file_count="multiple")
file_upload_2 = gr.Files(label="任何文件, 推荐上传压缩文件(zip, tar)", file_count="multiple", elem_id="elem_upload_float")
with gr.Tab("更换模型 & Prompt", elem_id="interact-panel"):
md_dropdown = gr.Dropdown(AVAIL_LLM_MODELS, value=LLM_MODEL, label="更换LLM模型/请求源").style(container=False)
@@ -165,39 +166,24 @@ def main():
checkboxes_2 = gr.CheckboxGroup(["自定义菜单"],
value=[], label="显示/隐藏自定义菜单", elem_id='cbs').style(container=False)
dark_mode_btn = gr.Button("切换界面明暗 ☀", variant="secondary").style(size="sm")
dark_mode_btn.click(None, None, None, _js="""() => {
if (document.querySelectorAll('.dark').length) {
document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
} else {
document.querySelector('body').classList.add('dark');
}
}""",
dark_mode_btn.click(None, None, None, _js=js_code_for_toggle_darkmode,
)
with gr.Tab("帮助", elem_id="interact-panel"):
gr.Markdown(description)
gr.Markdown(help_menu_description)
with gr.Floating(init_x="20%", init_y="50%", visible=False, width="40%", drag="top") as area_input_secondary:
with gr.Accordion("浮动输入区", open=True, elem_id="input-panel2"):
with gr.Row() as row:
row.style(equal_height=True)
with gr.Column(scale=10):
txt2 = gr.Textbox(show_label=False, placeholder="Input question here.", lines=8, label="输入区2").style(container=False)
txt2 = gr.Textbox(show_label=False, placeholder="Input question here.",
elem_id='user_input_float', lines=8, label="输入区2").style(container=False)
with gr.Column(scale=1, min_width=40):
submitBtn2 = gr.Button("提交", variant="primary"); submitBtn2.style(size="sm")
resetBtn2 = gr.Button("重置", variant="secondary"); resetBtn2.style(size="sm")
stopBtn2 = gr.Button("停止", variant="secondary"); stopBtn2.style(size="sm")
clearBtn2 = gr.Button("清除", variant="secondary", visible=False); clearBtn2.style(size="sm")
def to_cookie_str(d):
# Pickle the dictionary and encode it as a string
pickled_dict = pickle.dumps(d)
cookie_value = base64.b64encode(pickled_dict).decode('utf-8')
return cookie_value
def from_cookie_str(c):
# Decode the base64-encoded string and unpickle it into a dictionary
pickled_dict = base64.b64decode(c.encode('utf-8'))
return pickle.loads(pickled_dict)
with gr.Floating(init_x="20%", init_y="50%", visible=False, width="40%", drag="top") as area_customize:
with gr.Accordion("自定义菜单", open=True, elem_id="edit-panel"):
@@ -229,11 +215,11 @@ def main():
else:
ret.update({predefined_btns[basic_btn_dropdown_]: gr.update(visible=True, value=basic_fn_title)})
ret.update({cookies: cookies_})
try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
except: persistent_cookie_ = {}
persistent_cookie_["custom_bnt"] = customize_fn_overwrite_ # dict update new value
persistent_cookie_ = to_cookie_str(persistent_cookie_) # persistent cookie to dict
ret.update({persistent_cookie: persistent_cookie_}) # write persistent cookie
persistent_cookie_["custom_bnt"] = customize_fn_overwrite_ # dict update new value
persistent_cookie_ = to_cookie_str(persistent_cookie_) # persistent cookie to dict
ret.update({persistent_cookie: persistent_cookie_}) # write persistent cookie
return ret
def reflesh_btn(persistent_cookie_, cookies_):
@@ -254,10 +240,11 @@ def main():
else: ret.update({predefined_btns[k]: gr.update(visible=True, value=v['Title'])})
return ret
basic_fn_load.click(reflesh_btn, [persistent_cookie, cookies],[cookies, *customize_btns.values(), *predefined_btns.values()])
basic_fn_load.click(reflesh_btn, [persistent_cookie, cookies], [cookies, *customize_btns.values(), *predefined_btns.values()])
h = basic_fn_confirm.click(assign_btn, [persistent_cookie, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix],
[persistent_cookie, cookies, *customize_btns.values(), *predefined_btns.values()])
h.then(None, [persistent_cookie], None, _js="""(persistent_cookie)=>{setCookie("persistent_cookie", persistent_cookie, 5);}""") # save persistent cookie
# save persistent cookie
h.then(None, [persistent_cookie], None, _js="""(persistent_cookie)=>{setCookie("persistent_cookie", persistent_cookie, 5);}""")
# 功能区显示开关与功能区的互动
def fn_area_visibility(a):
@@ -307,8 +294,8 @@ def main():
click_handle = btn.click(fn=ArgsGeneralWrapper(predict), inputs=[*input_combo, gr.State(True), gr.State(btn.value)], outputs=output_combo)
cancel_handles.append(click_handle)
# 文件上传区,接收文件后与chatbot的互动
file_upload.upload(on_file_uploaded, [file_upload, chatbot, txt, txt2, checkboxes, cookies], [chatbot, txt, txt2, cookies])
file_upload_2.upload(on_file_uploaded, [file_upload_2, chatbot, txt, txt2, checkboxes, cookies], [chatbot, txt, txt2, cookies])
file_upload.upload(on_file_uploaded, [file_upload, chatbot, txt, txt2, checkboxes, cookies], [chatbot, txt, txt2, cookies]).then(None, None, None, _js=r"()=>{toast_push('上传完毕 ...'); cancel_loading_status();}")
file_upload_2.upload(on_file_uploaded, [file_upload_2, chatbot, txt, txt2, checkboxes, cookies], [chatbot, txt, txt2, cookies]).then(None, None, None, _js=r"()=>{toast_push('上传完毕 ...'); cancel_loading_status();}")
# 函数插件-固定按钮区
for k in plugins:
if not plugins[k].get("AsButton", True): continue
@@ -344,18 +331,7 @@ def main():
None,
[secret_css],
None,
_js="""(css) => {
var existingStyles = document.querySelectorAll("style[data-loaded-css]");
for (var i = 0; i < existingStyles.length; i++) {
var style = existingStyles[i];
style.parentNode.removeChild(style);
}
var styleElement = document.createElement('style');
styleElement.setAttribute('data-loaded-css', css);
styleElement.innerHTML = css;
document.head.appendChild(styleElement);
}
"""
_js=js_code_for_css_changing
)
# 随变按钮的回调函数注册
def route(request: gr.Request, k, *args, **kwargs):
@@ -387,27 +363,10 @@ def main():
rad.feed(cookies['uuid'].hex, audio)
audio_mic.stream(deal_audio, inputs=[audio_mic, cookies])
def init_cookie(cookies, chatbot):
# 为每一位访问的用户赋予一个独一无二的uuid编码
cookies.update({'uuid': uuid.uuid4()})
return cookies
demo.load(init_cookie, inputs=[cookies, chatbot], outputs=[cookies])
darkmode_js = """(dark) => {
dark = dark == "True";
if (document.querySelectorAll('.dark').length) {
if (!dark){
document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
}
} else {
if (dark){
document.querySelector('body').classList.add('dark');
}
}
}"""
load_cookie_js = """(persistent_cookie) => {
return getCookie("persistent_cookie");
}"""
demo.load(None, inputs=None, outputs=[persistent_cookie], _js=load_cookie_js)
darkmode_js = js_code_for_darkmode_init
demo.load(None, inputs=None, outputs=[persistent_cookie], _js=js_code_for_persistent_cookie_init)
demo.load(None, inputs=[dark_mode], outputs=None, _js=darkmode_js) # 配置暗色主题或亮色主题
demo.load(None, inputs=[gr.Textbox(LAYOUT, visible=False)], outputs=None, _js='(LAYOUT)=>{GptAcademicJavaScriptInit(LAYOUT);}')
@@ -418,8 +377,18 @@ def main():
if DARK_MODE: print(f"\t「暗色主题已启用(支持动态切换主题)」: http://localhost:{PORT}")
else: print(f"\t「亮色主题已启用(支持动态切换主题)」: http://localhost:{PORT}")
def auto_updates(): time.sleep(0); auto_update()
def open_browser(): time.sleep(2); webbrowser.open_new_tab(f"http://localhost:{PORT}")
def warm_up_mods(): time.sleep(6); warm_up_modules()
threading.Thread(target=auto_updates, name="self-upgrade", daemon=True).start() # 查看自动更新
threading.Thread(target=open_browser, name="open-browser", daemon=True).start() # 打开浏览器页面
threading.Thread(target=warm_up_mods, name="warm-up", daemon=True).start() # 预热tiktoken模块
run_delayed_tasks()
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(server_name="0.0.0.0", share=False, favicon_path="docs/logo.png", blocked_paths=["config.py","config_private.py","docker-compose.yml","Dockerfile"])
# 如果需要在二级路径下运行
# CUSTOM_PATH = get_conf('CUSTOM_PATH')
# if CUSTOM_PATH != "/":

查看文件

@@ -159,7 +159,15 @@ def warm_up_modules():
enc.encode("模块预热", disallowed_special=())
enc = model_info["gpt-4"]['tokenizer']
enc.encode("模块预热", disallowed_special=())
def warm_up_vectordb():
print('正在执行一些模块的预热 ...')
from toolbox import ProxyNetworkActivate
with ProxyNetworkActivate("Warmup_Modules"):
import nltk
with ProxyNetworkActivate("Warmup_Modules"): nltk.download("punkt")
if __name__ == '__main__':
import os
os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染

查看文件

@@ -19,13 +19,13 @@ API_KEY = "此处填API密钥" # 可同时填写多个API-KEY,用英文逗
USE_PROXY = False
if USE_PROXY:
"""
代理网络的地址,打开你的代理软件查看代理协议(socks5h / http)、地址(localhost)和端口(11284)
填写格式是 [协议]:// [地址] :[端口],填写之前不要忘记把USE_PROXY改成True,如果直接在海外服务器部署,此处不修改
<配置教程&视频教程> https://github.com/binary-husky/gpt_academic/issues/1>
[协议] 常见协议无非socks5h/http; 例如 v2**y 和 ss* 的默认本地协议是socks5h; 而cl**h 的默认本地协议是http
[地址] 懂的都懂,不懂就填localhost或者127.0.0.1肯定错不了localhost意思是代理软件安装在本机上
[地址] 填localhost或者127.0.0.1localhost意思是代理软件安装在本机上
[端口] 在代理软件的设置里找。虽然不同的代理软件界面不一样,但端口号都应该在最显眼的位置上
"""
# 代理网络的地址,打开你的*学*网软件查看代理的协议(socks5h / http)、地址(localhost)和端口(11284)
proxies = {
# [协议]:// [地址] :[端口]
"http": "socks5h://localhost:11284", # 再例如 "http": "http://127.0.0.1:7890",
@@ -70,7 +70,7 @@ LAYOUT = "LEFT-RIGHT" # "LEFT-RIGHT"(左右布局) # "TOP-DOWN"(上下
# 暗色模式 / 亮色模式
DARK_MODE = True
DARK_MODE = False
# 发送请求到OpenAI后,等待多久判定为超时
@@ -99,14 +99,25 @@ AVAIL_LLM_MODELS = ["gpt-3.5-turbo-1106","gpt-4-1106-preview","gpt-4-vision-prev
"api2d-gpt-3.5-turbo", 'api2d-gpt-3.5-turbo-16k',
"gpt-4", "gpt-4-32k", "azure-gpt-4", "api2d-gpt-4",
"chatglm3", "moss", "claude-2"]
# P.S. 其他可用的模型还包括 ["zhipuai", "qianfan", "deepseekcoder", "llama2", "qwen", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-random"
# "spark", "sparkv2", "sparkv3", "chatglm_onnx", "claude-1-100k", "claude-2", "internlm", "jittorllms_pangualpha", "jittorllms_llama"]
# P.S. 其他可用的模型还包括 ["zhipuai", "qianfan", "deepseekcoder", "llama2", "qwen-local", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-random"
# "spark", "sparkv2", "sparkv3", "chatglm_onnx", "claude-1-100k", "claude-2", "internlm", "jittorllms_pangualpha", "jittorllms_llama"
# “qwen-turbo", "qwen-plus", "qwen-max"]
# 定义界面上“询问多个GPT模型”插件应该使用哪些模型,请从AVAIL_LLM_MODELS中选择,并在不同模型之间用`&`间隔,例如"gpt-3.5-turbo&chatglm3&azure-gpt-4"
MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
# 选择本地模型变体只有当AVAIL_LLM_MODELS包含了对应本地模型时,才会起作用
# 如果你选择Qwen系列的模型,那么请在下面的QWEN_MODEL_SELECTION中指定具体的模型
# 也可以是具体的模型路径
QWEN_LOCAL_MODEL_SELECTION = "Qwen/Qwen-1_8B-Chat-Int8"
# 接入通义千问在线大模型 https://dashscope.console.aliyun.com/
DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY
# 百度千帆LLM_MODEL="qianfan"
BAIDU_CLOUD_API_KEY = ''
BAIDU_CLOUD_SECRET_KEY = ''
@@ -121,7 +132,6 @@ CHATGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
LOCAL_MODEL_QUANT = "FP16" # 默认 "FP16" "INT4" 启用量化INT4版本 "INT8" 启用量化INT8版本
# 设置gradio的并行线程数不需要修改
CONCURRENT_COUNT = 100
@@ -239,6 +249,10 @@ WHEN_TO_USE_PROXY = ["Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
BLOCK_INVALID_APIKEY = False
# 启用插件热加载
PLUGIN_HOT_RELOAD = False
# 自定义按钮的最大数量限制
NUM_CUSTOM_BASIC_BTN = 4
@@ -282,6 +296,9 @@ NUM_CUSTOM_BASIC_BTN = 4
│ ├── ZHIPUAI_API_KEY
│ └── ZHIPUAI_MODEL
├── "qwen-turbo" 等通义千问大模型
│ └── DASHSCOPE_API_KEY
└── "newbing" Newbing接口不再稳定,不推荐使用
├── NEWBING_STYLE
└── NEWBING_COOKIES
@@ -298,7 +315,7 @@ NUM_CUSTOM_BASIC_BTN = 4
├── "jittorllms_pangualpha"
├── "jittorllms_llama"
├── "deepseekcoder"
├── "qwen"
├── "qwen-local"
├── RWKV的支持见Wiki
└── "llama2"

查看文件

@@ -345,7 +345,7 @@ def get_crazy_functions():
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区默认False
"ArgsReminder": "支持任意数量的llm接口,用&符号分隔。例如chatglm&gpt-3.5-turbo&api2d-gpt-4", # 高级参数输入区的显示提示
"ArgsReminder": "支持任意数量的llm接口,用&符号分隔。例如chatglm&gpt-3.5-turbo&gpt-4", # 高级参数输入区的显示提示
"Function": HotReload(同时问询_指定模型)
},
})
@@ -354,9 +354,9 @@ def get_crazy_functions():
print('Load function plugin failed')
try:
from crazy_functions.图片生成 import 图片生成_DALLE2, 图片生成_DALLE3
from crazy_functions.图片生成 import 图片生成_DALLE2, 图片生成_DALLE3, 图片修改_DALLE2
function_plugins.update({
"图片生成_DALLE2 (先切换模型到openai或api2d": {
"图片生成_DALLE2 (先切换模型到gpt-*": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
@@ -367,16 +367,26 @@ def get_crazy_functions():
},
})
function_plugins.update({
"图片生成_DALLE3 (先切换模型到openai或api2d": {
"图片生成_DALLE3 (先切换模型到gpt-*": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区默认False
"ArgsReminder": "在这里输入分辨率, 如1024x1024默认支持 1024x1024, 1792x1024, 1024x1792。如需生成高清图像,请输入 1024x1024-HD, 1792x1024-HD, 1024x1792-HD。", # 高级参数输入区的显示提示
"ArgsReminder": "在这里输入自定义参数「分辨率-质量(可选)-风格(可选)」, 参数示例「1024x1024-hd-vivid」 || 分辨率支持 1024x1024」(默认) /「1792x1024」/「1024x1792」 || 质量支持 「-standard」(默认) /「-hd」 || 风格支持 「-vivid」(默认) /「-natural」", # 高级参数输入区的显示提示
"Info": "使用DALLE3生成图片 | 输入参数字符串,提供图像的内容",
"Function": HotReload(图片生成_DALLE3)
},
})
function_plugins.update({
"图片修改_DALLE2 先切换模型到gpt-*": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": False, # 调用时,唤起高级参数输入区默认False
# "Info": "使用DALLE2修改图片 | 输入参数字符串,提供图像的内容",
"Function": HotReload(图片修改_DALLE2)
},
})
except:
print(trimmed_format_exc())
print('Load function plugin failed')
@@ -430,7 +440,7 @@ def get_crazy_functions():
print('Load function plugin failed')
try:
from crazy_functions.Langchain知识库 import 知识库问答
from crazy_functions.知识库问答 import 知识库文件注入
function_plugins.update({
"构建知识库(先上传文件素材,再运行此插件)": {
"Group": "对话",
@@ -438,7 +448,7 @@ def get_crazy_functions():
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": "此处待注入的知识库名称id, 默认为default。文件进入知识库后可长期保存。可以通过再次调用本插件的方式,向知识库追加更多文档。",
"Function": HotReload(知识库问答)
"Function": HotReload(知识库文件注入)
}
})
except:
@@ -446,9 +456,9 @@ def get_crazy_functions():
print('Load function plugin failed')
try:
from crazy_functions.Langchain知识库 import 读取知识库作答
from crazy_functions.知识库问答 import 读取知识库作答
function_plugins.update({
"知识库问答(构建知识库后,再运行此插件)": {
"知识库文件注入(构建知识库后,再运行此插件)": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
@@ -489,7 +499,7 @@ def get_crazy_functions():
})
from crazy_functions.Latex输出PDF结果 import Latex翻译中文并重新编译PDF
function_plugins.update({
"Arixv论文精细翻译输入arxivID[需Latex]": {
"Arxiv论文精细翻译输入arxivID[需Latex]": {
"Group": "学术",
"Color": "stop",
"AsButton": False,
@@ -580,6 +590,20 @@ def get_crazy_functions():
print(trimmed_format_exc())
print('Load function plugin failed')
try:
from crazy_functions.互动小游戏 import 随机小游戏
function_plugins.update({
"随机互动小游戏(仅供测试)": {
"Group": "智能体",
"Color": "stop",
"AsButton": False,
"Function": HotReload(随机小游戏)
}
})
except:
print(trimmed_format_exc())
print('Load function plugin failed')
# try:
# from crazy_functions.chatglm微调工具 import 微调数据集生成
# function_plugins.update({

查看文件

@@ -26,8 +26,8 @@ class PaperFileGroup():
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit)
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)

查看文件

@@ -26,8 +26,8 @@ class PaperFileGroup():
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit)
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)

查看文件

@@ -88,6 +88,9 @@ def arxiv_download(chatbot, history, txt, allow_cache=True):
target_file = pj(translation_dir, 'translate_zh.pdf')
if os.path.exists(target_file):
promote_file_to_downloadzone(target_file, rename_file=None, chatbot=chatbot)
target_file_compare = pj(translation_dir, 'comparison.pdf')
if os.path.exists(target_file_compare):
promote_file_to_downloadzone(target_file_compare, rename_file=None, chatbot=chatbot)
return target_file
return False
def is_float(s):

查看文件

@@ -1,4 +1,4 @@
from toolbox import update_ui, get_conf, trimmed_format_exc, get_max_token
from toolbox import update_ui, get_conf, trimmed_format_exc, get_max_token, Singleton
import threading
import os
import logging
@@ -139,6 +139,8 @@ def can_multi_process(llm):
if llm.startswith('gpt-'): return True
if llm.startswith('api2d-'): return True
if llm.startswith('azure-'): return True
if llm.startswith('spark'): return True
if llm.startswith('zhipuai'): return True
return False
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
@@ -312,95 +314,6 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
return gpt_response_collection
def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
def cut(txt_tocut, must_break_at_empty_line): # 递归
if get_token_fn(txt_tocut) <= limit:
return [txt_tocut]
else:
lines = txt_tocut.split('\n')
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
estimated_line_cut = int(estimated_line_cut)
for cnt in reversed(range(estimated_line_cut)):
if must_break_at_empty_line:
if lines[cnt] != "":
continue
print(cnt)
prev = "\n".join(lines[:cnt])
post = "\n".join(lines[cnt:])
if get_token_fn(prev) < limit:
break
if cnt == 0:
raise RuntimeError("存在一行极长的文本!")
# print(len(post))
# 列表递归接龙
result = [prev]
result.extend(cut(post, must_break_at_empty_line))
return result
try:
return cut(txt, must_break_at_empty_line=True)
except RuntimeError:
return cut(txt, must_break_at_empty_line=False)
def force_breakdown(txt, limit, get_token_fn):
"""
当无法用标点、空行分割时,我们用最暴力的方法切割
"""
for i in reversed(range(len(txt))):
if get_token_fn(txt[:i]) < limit:
return txt[:i], txt[i:]
return "Tiktoken未知错误", "Tiktoken未知错误"
def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
# 递归
def cut(txt_tocut, must_break_at_empty_line, break_anyway=False):
if get_token_fn(txt_tocut) <= limit:
return [txt_tocut]
else:
lines = txt_tocut.split('\n')
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
estimated_line_cut = int(estimated_line_cut)
cnt = 0
for cnt in reversed(range(estimated_line_cut)):
if must_break_at_empty_line:
if lines[cnt] != "":
continue
prev = "\n".join(lines[:cnt])
post = "\n".join(lines[cnt:])
if get_token_fn(prev) < limit:
break
if cnt == 0:
if break_anyway:
prev, post = force_breakdown(txt_tocut, limit, get_token_fn)
else:
raise RuntimeError(f"存在一行极长的文本!{txt_tocut}")
# print(len(post))
# 列表递归接龙
result = [prev]
result.extend(cut(post, must_break_at_empty_line, break_anyway=break_anyway))
return result
try:
# 第1次尝试,将双空行\n\n作为切分点
return cut(txt, must_break_at_empty_line=True)
except RuntimeError:
try:
# 第2次尝试,将单空行\n作为切分点
return cut(txt, must_break_at_empty_line=False)
except RuntimeError:
try:
# 第3次尝试,将英文句号.)作为切分点
res = cut(txt.replace('.', '\n'), must_break_at_empty_line=False) # 这个中文的句号是故意的,作为一个标识而存在
return [r.replace('\n', '.') for r in res]
except RuntimeError as e:
try:
# 第4次尝试,将中文句号作为切分点
res = cut(txt.replace('', '。。\n'), must_break_at_empty_line=False)
return [r.replace('。。\n', '') for r in res]
except RuntimeError as e:
# 第5次尝试,没办法了,随便切一下敷衍吧
return cut(txt, must_break_at_empty_line=False, break_anyway=True)
def read_and_clean_pdf_text(fp):
"""
@@ -631,90 +544,6 @@ def get_files_from_everything(txt, type): # type='.md'
def Singleton(cls):
_instance = {}
def _singleton(*args, **kargs):
if cls not in _instance:
_instance[cls] = cls(*args, **kargs)
return _instance[cls]
return _singleton
@Singleton
class knowledge_archive_interface():
def __init__(self) -> None:
self.threadLock = threading.Lock()
self.current_id = ""
self.kai_path = None
self.qa_handle = None
self.text2vec_large_chinese = None
def get_chinese_text2vec(self):
if self.text2vec_large_chinese is None:
# < -------------------预热文本向量化模组--------------- >
from toolbox import ProxyNetworkActivate
print('Checking Text2vec ...')
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
self.text2vec_large_chinese = HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
return self.text2vec_large_chinese
def feed_archive(self, file_manifest, id="default"):
self.threadLock.acquire()
# import uuid
self.current_id = id
from zh_langchain import construct_vector_store
self.qa_handle, self.kai_path = construct_vector_store(
vs_id=self.current_id,
files=file_manifest,
sentence_size=100,
history=[],
one_conent="",
one_content_segmentation="",
text2vec = self.get_chinese_text2vec(),
)
self.threadLock.release()
def get_current_archive_id(self):
return self.current_id
def get_loaded_file(self):
return self.qa_handle.get_loaded_file()
def answer_with_archive_by_id(self, txt, id):
self.threadLock.acquire()
if not self.current_id == id:
self.current_id = id
from zh_langchain import construct_vector_store
self.qa_handle, self.kai_path = construct_vector_store(
vs_id=self.current_id,
files=[],
sentence_size=100,
history=[],
one_conent="",
one_content_segmentation="",
text2vec = self.get_chinese_text2vec(),
)
VECTOR_SEARCH_SCORE_THRESHOLD = 0
VECTOR_SEARCH_TOP_K = 4
CHUNK_SIZE = 512
resp, prompt = self.qa_handle.get_knowledge_based_conent_test(
query = txt,
vs_path = self.kai_path,
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
vector_search_top_k=VECTOR_SEARCH_TOP_K,
chunk_conent=True,
chunk_size=CHUNK_SIZE,
text2vec = self.get_chinese_text2vec(),
)
self.threadLock.release()
return resp, prompt
@Singleton
class nougat_interface():
def __init__(self):

查看文件

@@ -175,7 +175,6 @@ class LatexPaperFileGroup():
self.sp_file_contents = []
self.sp_file_index = []
self.sp_file_tag = []
# count_token
from request_llms.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
@@ -192,13 +191,12 @@ class LatexPaperFileGroup():
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
from ..crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit)
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
print('Segmentation: done')
def merge_result(self):
self.file_result = ["" for _ in range(len(self.file_paths))]
@@ -404,7 +402,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
result_pdf = pj(work_folder_modified, f'merge_diff.pdf') # get pdf path
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
if modified_pdf_success:
yield from update_ui_lastest_msg(f'转化PDF编译已经成功, 即将退出 ...', chatbot, history) # 刷新Gradio前端界面
yield from update_ui_lastest_msg(f'转化PDF编译已经成功, 正在尝试生成对比PDF, 请稍候 ...', chatbot, history) # 刷新Gradio前端界面
result_pdf = pj(work_folder_modified, f'{main_file_modified}.pdf') # get pdf path
origin_pdf = pj(work_folder_original, f'{main_file_original}.pdf') # get pdf path
if os.path.exists(pj(work_folder, '..', 'translation')):
@@ -416,8 +414,11 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
from .latex_toolbox import merge_pdfs
concat_pdf = pj(work_folder_modified, f'comparison.pdf')
merge_pdfs(origin_pdf, result_pdf, concat_pdf)
if os.path.exists(pj(work_folder, '..', 'translation')):
shutil.copyfile(concat_pdf, pj(work_folder, '..', 'translation', 'comparison.pdf'))
promote_file_to_downloadzone(concat_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
except Exception as e:
print(e)
pass
return True # 成功啦
else:

查看文件

@@ -493,11 +493,38 @@ def compile_latex_with_timeout(command, cwd, timeout=60):
return False
return True
def run_in_subprocess_wrapper_func(func, args, kwargs, return_dict, exception_dict):
import sys
try:
result = func(*args, **kwargs)
return_dict['result'] = result
except Exception as e:
exc_info = sys.exc_info()
exception_dict['exception'] = exc_info
def run_in_subprocess(func):
import multiprocessing
def wrapper(*args, **kwargs):
return_dict = multiprocessing.Manager().dict()
exception_dict = multiprocessing.Manager().dict()
process = multiprocessing.Process(target=run_in_subprocess_wrapper_func,
args=(func, args, kwargs, return_dict, exception_dict))
process.start()
process.join()
process.close()
if 'exception' in exception_dict:
# ooops, the subprocess ran into an exception
exc_info = exception_dict['exception']
raise exc_info[1].with_traceback(exc_info[2])
if 'result' in return_dict.keys():
# If the subprocess ran successfully, return the result
return return_dict['result']
return wrapper
def merge_pdfs(pdf1_path, pdf2_path, output_path):
import PyPDF2
def _merge_pdfs(pdf1_path, pdf2_path, output_path):
import PyPDF2 # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放
Percent = 0.95
# raise RuntimeError('PyPDF2 has a serious memory leak problem, please use other tools to merge PDF files.')
# Open the first PDF file
with open(pdf1_path, 'rb') as pdf1_file:
pdf1_reader = PyPDF2.PdfFileReader(pdf1_file)
@@ -531,3 +558,5 @@ def merge_pdfs(pdf1_path, pdf2_path, output_path):
# Save the merged PDF file
with open(output_path, 'wb') as output_file:
output_writer.write(output_file)
merge_pdfs = run_in_subprocess(_merge_pdfs) # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放

查看文件

@@ -1,6 +1,7 @@
from pydantic import BaseModel, Field
from typing import List
from toolbox import update_ui_lastest_msg, disable_auto_promotion
from toolbox import CatchException, update_ui, get_conf, select_api_key, get_log_folder
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
import time
@@ -21,11 +22,7 @@ class GptAcademicState():
def reset(self):
pass
def lock_plugin(self, chatbot):
chatbot._cookies['plugin_state'] = pickle.dumps(self)
def unlock_plugin(self, chatbot):
self.reset()
def dump_state(self, chatbot):
chatbot._cookies['plugin_state'] = pickle.dumps(self)
def set_state(self, chatbot, key, value):
@@ -40,6 +37,57 @@ class GptAcademicState():
state.chatbot = chatbot
return state
class GatherMaterials():
def __init__(self, materials) -> None:
materials = ['image', 'prompt']
class GptAcademicGameBaseState():
"""
1. first init: __init__ ->
"""
def init_game(self, chatbot, lock_plugin):
self.plugin_name = None
self.callback_fn = None
self.delete_game = False
self.step_cnt = 0
def lock_plugin(self, chatbot):
if self.callback_fn is None:
raise ValueError("callback_fn is None")
chatbot._cookies['lock_plugin'] = self.callback_fn
self.dump_state(chatbot)
def get_plugin_name(self):
if self.plugin_name is None:
raise ValueError("plugin_name is None")
return self.plugin_name
def dump_state(self, chatbot):
chatbot._cookies[f'plugin_state/{self.get_plugin_name()}'] = pickle.dumps(self)
def set_state(self, chatbot, key, value):
setattr(self, key, value)
chatbot._cookies[f'plugin_state/{self.get_plugin_name()}'] = pickle.dumps(self)
@staticmethod
def sync_state(chatbot, llm_kwargs, cls, plugin_name, callback_fn, lock_plugin=True):
state = chatbot._cookies.get(f'plugin_state/{plugin_name}', None)
if state is not None:
state = pickle.loads(state)
else:
state = cls()
state.init_game(chatbot, lock_plugin)
state.plugin_name = plugin_name
state.llm_kwargs = llm_kwargs
state.chatbot = chatbot
state.callback_fn = callback_fn
return state
def continue_game(self, prompt, chatbot, history):
# 游戏主体
yield from self.step(prompt, chatbot, history)
self.step_cnt += 1
# 保存状态,收尾
self.dump_state(chatbot)
# 如果游戏结束,清理
if self.delete_game:
chatbot._cookies['lock_plugin'] = None
chatbot._cookies[f'plugin_state/{self.get_plugin_name()}'] = None
yield from update_ui(chatbot=chatbot, history=history)

查看文件

@@ -74,7 +74,7 @@ def produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chat
def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG):
from crazy_functions.pdf_fns.report_gen_html import construct_html
from crazy_functions.crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
@@ -116,7 +116,7 @@ def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_fi
# find a smooth token limit to achieve even seperation
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
token_limit_smooth = raw_token_num // count + count
return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)
return breakdown_text_to_satisfy_token_limit(txt, limit=token_limit_smooth, llm_model=llm_kwargs['llm_model'])
for section in article_dict.get('sections'):
if len(section['text']) == 0: continue

查看文件

@@ -2,7 +2,7 @@ from toolbox import CatchException, update_ui, get_conf, select_api_key, get_log
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicState
def gen_image(llm_kwargs, prompt, resolution="1024x1024", model="dall-e-2", quality=None):
def gen_image(llm_kwargs, prompt, resolution="1024x1024", model="dall-e-2", quality=None, style=None):
import requests, json, time, os
from request_llms.bridge_all import model_info
@@ -25,7 +25,10 @@ def gen_image(llm_kwargs, prompt, resolution="1024x1024", model="dall-e-2", qual
'model': model,
'response_format': 'url'
}
if quality is not None: data.update({'quality': quality})
if quality is not None:
data['quality'] = quality
if style is not None:
data['style'] = style
response = requests.post(url, headers=headers, json=data, proxies=proxies)
print(response.content)
try:
@@ -54,19 +57,25 @@ def edit_image(llm_kwargs, prompt, image_path, resolution="1024x1024", model="da
img_endpoint = chat_endpoint.replace('chat/completions','images/edits')
# # Generate the image
url = img_endpoint
n = 1
headers = {
'Authorization': f"Bearer {api_key}",
'Content-Type': 'application/json'
}
data = {
'image': open(image_path, 'rb'),
'prompt': prompt,
'n': 1,
'size': resolution,
'model': model,
'response_format': 'url'
}
response = requests.post(url, headers=headers, json=data, proxies=proxies)
make_transparent(image_path, image_path+'.tsp.png')
make_square_image(image_path+'.tsp.png', image_path+'.tspsq.png')
resize_image(image_path+'.tspsq.png', image_path+'.ready.png', max_size=1024)
image_path = image_path+'.ready.png'
with open(image_path, 'rb') as f:
file_content = f.read()
files = {
'image': (os.path.basename(image_path), file_content),
# 'mask': ('mask.png', open('mask.png', 'rb'))
'prompt': (None, prompt),
"n": (None, str(n)),
'size': (None, resolution),
}
response = requests.post(url, headers=headers, files=files, proxies=proxies)
print(response.content)
try:
image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
@@ -95,7 +104,11 @@ def 图片生成_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, sys
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
chatbot.append(("您正在调用“图像生成”插件。", "[Local Message] 生成图像, 请先把模型切换至gpt-*或者api2d-*。如果中文Prompt效果不理想, 请尝试英文Prompt。正在处理中 ....."))
if prompt.strip() == "":
chatbot.append((prompt, "[Local Message] 图像生成提示为空白,请在“输入区”输入图像生成提示。"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
return
chatbot.append(("您正在调用“图像生成”插件。", "[Local Message] 生成图像, 请先把模型切换至gpt-*。如果中文Prompt效果不理想, 请尝试英文Prompt。正在处理中 ....."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 由于请求gpt需要一段时间,我们先及时地做一次界面更新
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
resolution = plugin_kwargs.get("advanced_arg", '1024x1024')
@@ -112,16 +125,25 @@ def 图片生成_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, sys
@CatchException
def 图片生成_DALLE3(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
chatbot.append(("您正在调用“图像生成”插件。", "[Local Message] 生成图像, 请先把模型切换至gpt-*或者api2d-*。如果中文Prompt效果不理想, 请尝试英文Prompt。正在处理中 ....."))
if prompt.strip() == "":
chatbot.append((prompt, "[Local Message] 图像生成提示为空白,请在“输入区”输入图像生成提示。"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
return
chatbot.append(("您正在调用“图像生成”插件。", "[Local Message] 生成图像, 请先把模型切换至gpt-*。如果中文Prompt效果不理想, 请尝试英文Prompt。正在处理中 ....."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 由于请求gpt需要一段时间,我们先及时地做一次界面更新
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
resolution = plugin_kwargs.get("advanced_arg", '1024x1024').lower()
if resolution.endswith('-hd'):
resolution = resolution.replace('-hd', '')
quality = 'hd'
else:
quality = 'standard'
image_url, image_path = gen_image(llm_kwargs, prompt, resolution, model="dall-e-3", quality=quality)
resolution_arg = plugin_kwargs.get("advanced_arg", '1024x1024-standard-vivid').lower()
parts = resolution_arg.split('-')
resolution = parts[0] # 解析分辨率
quality = 'standard' # 质量与风格默认值
style = 'vivid'
# 遍历检查是否有额外参数
for part in parts[1:]:
if part in ['hd', 'standard']:
quality = part
elif part in ['vivid', 'natural']:
style = part
image_url, image_path = gen_image(llm_kwargs, prompt, resolution, model="dall-e-3", quality=quality, style=style)
chatbot.append([prompt,
f'图像中转网址: <br/>`{image_url}`<br/>'+
f'中转网址预览: <br/><div align="center"><img src="{image_url}"></div>'
@@ -130,6 +152,7 @@ def 图片生成_DALLE3(prompt, llm_kwargs, plugin_kwargs, chatbot, history, sys
])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
class ImageEditState(GptAcademicState):
# 尚未完成
def get_image_file(self, x):
@@ -142,18 +165,27 @@ class ImageEditState(GptAcademicState):
file = None if not confirm else file_manifest[0]
return confirm, file
def lock_plugin(self, chatbot):
chatbot._cookies['lock_plugin'] = 'crazy_functions.图片生成->图片修改_DALLE2'
self.dump_state(chatbot)
def unlock_plugin(self, chatbot):
self.reset()
chatbot._cookies['lock_plugin'] = None
self.dump_state(chatbot)
def get_resolution(self, x):
return (x in ['256x256', '512x512', '1024x1024']), x
def get_prompt(self, x):
confirm = (len(x)>=5) and (not self.get_resolution(x)[0]) and (not self.get_image_file(x)[0])
return confirm, x
def reset(self):
self.req = [
{'value':None, 'description': '请先上传图像(必须是.png格式, 然后再次点击本插件', 'verify_fn': self.get_image_file},
{'value':None, 'description': '请输入分辨率,可选256x256, 512x512 或 1024x1024', 'verify_fn': self.get_resolution},
{'value':None, 'description': '请输入修改需求,建议您使用英文提示词', 'verify_fn': self.get_prompt},
{'value':None, 'description': '请先上传图像(必须是.png格式, 然后再次点击本插件', 'verify_fn': self.get_image_file},
{'value':None, 'description': '请输入分辨率,可选256x256, 512x512 或 1024x1024, 然后再次点击本插件', 'verify_fn': self.get_resolution},
{'value':None, 'description': '请输入修改需求,建议您使用英文提示词, 然后再次点击本插件', 'verify_fn': self.get_prompt},
]
self.info = ""
@@ -163,7 +195,7 @@ class ImageEditState(GptAcademicState):
confirm, res = r['verify_fn'](prompt)
if confirm:
r['value'] = res
self.set_state(chatbot, 'dummy_key', 'dummy_value')
self.dump_state(chatbot)
break
return self
@@ -182,23 +214,63 @@ def 图片修改_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, sys
history = [] # 清空历史
state = ImageEditState.get_state(chatbot, ImageEditState)
state = state.feed(prompt, chatbot)
state.lock_plugin(chatbot)
if not state.already_obtained_all_materials():
chatbot.append(["图片修改(先上传图片,再输入修改需求,最后输入分辨率)", state.next_req()])
chatbot.append(["图片修改\n\n1. 上传图片图片中需要修改的位置用橡皮擦擦除为纯白色,即RGB=255,255,255\n2. 输入分辨率 \n3. 输入修改需求", state.next_req()])
yield from update_ui(chatbot=chatbot, history=history)
return
image_path = state.req[0]
resolution = state.req[1]
prompt = state.req[2]
image_path = state.req[0]['value']
resolution = state.req[1]['value']
prompt = state.req[2]['value']
chatbot.append(["图片修改, 执行中", f"图片:`{image_path}`<br/>分辨率:`{resolution}`<br/>修改需求:`{prompt}`"])
yield from update_ui(chatbot=chatbot, history=history)
image_url, image_path = edit_image(llm_kwargs, prompt, image_path, resolution)
chatbot.append([state.prompt,
chatbot.append([prompt,
f'图像中转网址: <br/>`{image_url}`<br/>'+
f'中转网址预览: <br/><div align="center"><img src="{image_url}"></div>'
f'本地文件地址: <br/>`{image_path}`<br/>'+
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
state.unlock_plugin(chatbot)
def make_transparent(input_image_path, output_image_path):
from PIL import Image
image = Image.open(input_image_path)
image = image.convert("RGBA")
data = image.getdata()
new_data = []
for item in data:
if item[0] == 255 and item[1] == 255 and item[2] == 255:
new_data.append((255, 255, 255, 0))
else:
new_data.append(item)
image.putdata(new_data)
image.save(output_image_path, "PNG")
def resize_image(input_path, output_path, max_size=1024):
from PIL import Image
with Image.open(input_path) as img:
width, height = img.size
if width > max_size or height > max_size:
if width >= height:
new_width = max_size
new_height = int((max_size / width) * height)
else:
new_height = max_size
new_width = int((max_size / height) * width)
resized_img = img.resize(size=(new_width, new_height))
resized_img.save(output_path)
else:
img.save(output_path)
def make_square_image(input_path, output_path):
from PIL import Image
with Image.open(input_path) as img:
width, height = img.size
size = max(width, height)
new_img = Image.new("RGBA", (size, size), color="black")
new_img.paste(img, ((size - width) // 2, (size - height) // 2))
new_img.save(output_path)

查看文件

@@ -29,17 +29,12 @@ def 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot
except:
raise RuntimeError('请先将.doc文档转换为.docx文档。')
print(file_content)
# private_upload里面的文件名在解压zip后容易出现乱码rar和7z格式正常,故可以只分析文章内容,不输入文件名
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
from request_llms.bridge_all import model_info
max_token = model_info[llm_kwargs['llm_model']]['max_token']
TOKEN_LIMIT_PER_FRAGMENT = max_token * 3 // 4
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=file_content,
get_token_fn=model_info[llm_kwargs['llm_model']]['token_cnt'],
limit=TOKEN_LIMIT_PER_FRAGMENT
)
paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
this_paper_history = []
for i, paper_frag in enumerate(paper_fragments):
i_say = f'请对下面的文章片段用中文做概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{paper_frag}```'

查看文件

@@ -28,8 +28,8 @@ class PaperFileGroup():
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit)
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)

查看文件

@@ -20,14 +20,9 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
TOKEN_LIMIT_PER_FRAGMENT = 2500
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
from request_llms.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=str(page_one), limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model'])
# 为了更好的效果,我们剥离Introduction之后的部分如果有
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]

查看文件

@@ -91,14 +91,9 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
# 递归地切割PDF文件
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
from request_llms.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=page_one, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=page_one, limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model'])
# 为了更好的效果,我们剥离Introduction之后的部分如果有
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]

查看文件

@@ -18,14 +18,9 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
TOKEN_LIMIT_PER_FRAGMENT = 2500
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
from request_llms.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=str(page_one), limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model'])
# 为了更好的效果,我们剥离Introduction之后的部分如果有
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
@@ -45,7 +40,7 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
for i in range(n_fragment):
NUM_OF_WORD = MAX_WORD_TOTAL // n_fragment
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i]}"
i_say_show_user = f"[{i+1}/{n_fragment}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i][:200]}"
i_say_show_user = f"[{i+1}/{n_fragment}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i][:200]} ...."
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
llm_kwargs, chatbot,
history=["The main idea of the previous section is?", last_iteration_result], # 迭代上一次的结果

查看文件

@@ -12,13 +12,6 @@ class PaperFileGroup():
self.sp_file_index = []
self.sp_file_tag = []
# count_token
from request_llms.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(
enc.encode(txt, disallowed_special=()))
self.get_token_num = get_token_num
def run_file_split(self, max_token_limit=1900):
"""
将长文本分离开来
@@ -29,9 +22,8 @@ class PaperFileGroup():
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
segments = breakdown_txt_to_satisfy_token_limit_for_pdf(
file_content, self.get_token_num, max_token_limit)
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)

查看文件

@@ -923,7 +923,7 @@
"的第": "The",
"个片段": "fragment",
"总结文章": "Summarize the article",
"根据以上的对话": "According to the above dialogue",
"根据以上的对话": "According to the conversation above",
"的主要内容": "The main content of",
"所有文件都总结完成了吗": "Are all files summarized?",
"如果是.doc文件": "If it is a .doc file",
@@ -1501,7 +1501,7 @@
"发送请求到OpenAI后": "After sending the request to OpenAI",
"上下布局": "Vertical Layout",
"左右布局": "Horizontal Layout",
"对话窗的高度": "Height of the Dialogue Window",
"对话窗的高度": "Height of the Conversation Window",
"重试的次数限制": "Retry Limit",
"gpt4现在只对申请成功的人开放": "GPT-4 is now only open to those who have successfully applied",
"提高限制请查询": "Please check for higher limits",
@@ -2183,9 +2183,8 @@
"找不到合适插件执行该任务": "Cannot find a suitable plugin to perform this task",
"接驳VoidTerminal": "Connect to VoidTerminal",
"**很好": "**Very good",
"对话|编程": "Conversation|Programming",
"对话|编程|学术": "Conversation|Programming|Academic",
"4. 建议使用 GPT3.5 或更强的模型": "4. It is recommended to use GPT3.5 or a stronger model",
"对话|编程": "Conversation&ImageGenerating|Programming",
"对话|编程|学术": "Conversation&ImageGenerating|Programming|Academic", "4. 建议使用 GPT3.5 或更强的模型": "4. It is recommended to use GPT3.5 or a stronger model",
"「请调用插件翻译PDF论文": "Please call the plugin to translate the PDF paper",
"3. 如果您使用「调用插件xxx」、「修改配置xxx」、「请问」等关键词": "3. If you use keywords such as 'call plugin xxx', 'modify configuration xxx', 'please', etc.",
"以下是一篇学术论文的基本信息": "The following is the basic information of an academic paper",
@@ -2630,7 +2629,7 @@
"已经被记忆": "Already memorized",
"默认用英文的": "Default to English",
"错误追踪": "Error tracking",
"对话|编程|学术|智能体": "Dialogue|Programming|Academic|Intelligent agent",
"对话&编程|编程|学术|智能体": "Conversation&ImageGenerating|Programming|Academic|Intelligent agent",
"请检查": "Please check",
"检测到被滞留的缓存文档": "Detected cached documents being left behind",
"还有哪些场合允许使用代理": "What other occasions allow the use of proxies",
@@ -2864,7 +2863,7 @@
"加载API_KEY": "Loading API_KEY",
"协助您编写代码": "Assist you in writing code",
"我可以为您提供以下服务": "I can provide you with the following services",
"排队中请稍 ...": "Please wait in line ...",
"排队中请稍 ...": "Please wait in line ...",
"建议您使用英文提示词": "It is recommended to use English prompts",
"不能支撑AutoGen运行": "Cannot support AutoGen operation",
"帮助您解决编程问题": "Help you solve programming problems",
@@ -2903,5 +2902,107 @@
"高优先级": "High priority",
"请配置ZHIPUAI_API_KEY": "Please configure ZHIPUAI_API_KEY",
"单个azure模型": "Single Azure model",
"预留参数 context 未实现": "Reserved parameter 'context' not implemented"
}
"预留参数 context 未实现": "Reserved parameter 'context' not implemented",
"在输入区输入临时API_KEY后提交": "Submit after entering temporary API_KEY in the input area",
"鸟": "Bird",
"图片中需要修改的位置用橡皮擦擦除为纯白色": "Erase the areas in the image that need to be modified with an eraser to pure white",
"└── PDF文档精准解析": "└── Accurate parsing of PDF documents",
"└── ALLOW_RESET_CONFIG 是否允许通过自然语言描述修改本页的配置": "└── ALLOW_RESET_CONFIG Whether to allow modifying the configuration of this page through natural language description",
"等待指令": "Waiting for instructions",
"不存在": "Does not exist",
"选择游戏": "Select game",
"本地大模型示意图": "Local large model diagram",
"无视此消息即可": "You can ignore this message",
"即RGB=255": "That is, RGB=255",
"如需追问": "If you have further questions",
"也可以是具体的模型路径": "It can also be a specific model path",
"才会起作用": "Will take effect",
"下载失败": "Download failed",
"网页刷新后失效": "Invalid after webpage refresh",
"crazy_functions.互动小游戏-": "crazy_functions.Interactive mini game-",
"右对齐": "Right alignment",
"您可以调用下拉菜单中的“LoadConversationHistoryArchive”还原当下的对话": "You can use the 'LoadConversationHistoryArchive' in the drop-down menu to restore the current conversation",
"左对齐": "Left alignment",
"使用默认的 FP16": "Use default FP16",
"一小时": "One hour",
"从而方便内存的释放": "Thus facilitating memory release",
"如何临时更换API_KEY": "How to temporarily change API_KEY",
"请输入 1024x1024-HD": "Please enter 1024x1024-HD",
"使用 INT8 量化": "Use INT8 quantization",
"3. 输入修改需求": "3. Enter modification requirements",
"刷新界面 由于请求gpt需要一段时间": "Refreshing the interface takes some time due to the request for gpt",
"随机小游戏": "Random mini game",
"那么请在下面的QWEN_MODEL_SELECTION中指定具体的模型": "So please specify the specific model in QWEN_MODEL_SELECTION below",
"表值": "Table value",
"我画你猜": "I draw, you guess",
"狗": "Dog",
"2. 输入分辨率": "2. Enter resolution",
"鱼": "Fish",
"尚未完成": "Not yet completed",
"表头": "Table header",
"填localhost或者127.0.0.1": "Fill in localhost or 127.0.0.1",
"请上传jpg格式的图片": "Please upload images in jpg format",
"API_URL_REDIRECT填写格式是错误的": "The format of API_URL_REDIRECT is incorrect",
"├── RWKV的支持见Wiki": "Support for RWKV is available in the Wiki",
"如果中文Prompt效果不理想": "If the Chinese prompt is not effective",
"/SEAFILE_LOCAL/50503047/我的资料库/学位/paperlatex/aaai/Fu_8368_with_appendix": "/SEAFILE_LOCAL/50503047/My Library/Degree/paperlatex/aaai/Fu_8368_with_appendix",
"只有当AVAIL_LLM_MODELS包含了对应本地模型时": "Only when AVAIL_LLM_MODELS contains the corresponding local model",
"选择本地模型变体": "Choose the local model variant",
"如果您确信自己没填错": "If you are sure you haven't made a mistake",
"PyPDF2这个库有严重的内存泄露问题": "PyPDF2 library has serious memory leak issues",
"整理文件集合 输出消息": "Organize file collection and output message",
"没有检测到任何近期上传的图像文件": "No recently uploaded image files detected",
"游戏结束": "Game over",
"调用结束": "Call ended",
"猫": "Cat",
"请及时切换模型": "Please switch models in time",
"次中": "In the meantime",
"如需生成高清图像": "If you need to generate high-definition images",
"CPU 模式": "CPU mode",
"项目目录": "Project directory",
"动物": "Animal",
"居中对齐": "Center alignment",
"请注意拓展名需要小写": "Please note that the extension name needs to be lowercase",
"重试第": "Retry",
"实验性功能": "Experimental feature",
"猜错了": "Wrong guess",
"打开你的代理软件查看代理协议": "Open your proxy software to view the proxy agreement",
"您不需要再重复强调该文件的路径了": "You don't need to emphasize the file path again",
"请阅读": "Please read",
"请直接输入您的问题": "Please enter your question directly",
"API_URL_REDIRECT填错了": "API_URL_REDIRECT is filled incorrectly",
"谜底是": "The answer is",
"第一个模型": "The first model",
"你猜对了!": "You guessed it right!",
"已经接收到您上传的文件": "The file you uploaded has been received",
"您正在调用“图像生成”插件": "You are calling the 'Image Generation' plugin",
"刷新界面 界面更新": "Refresh the interface, interface update",
"如果之前已经初始化了游戏实例": "If the game instance has been initialized before",
"文件": "File",
"老鼠": "Mouse",
"列2": "Column 2",
"等待图片": "Waiting for image",
"使用 INT4 量化": "Use INT4 quantization",
"from crazy_functions.互动小游戏 import 随机小游戏": "TranslatedText",
"游戏主体": "TranslatedText",
"该模型不具备上下文对话能力": "TranslatedText",
"列3": "TranslatedText",
"清理": "TranslatedText",
"检查量化配置": "TranslatedText",
"如果游戏结束": "TranslatedText",
"蛇": "TranslatedText",
"则继续该实例;否则重新初始化": "TranslatedText",
"e.g. cat and 猫 are the same thing": "TranslatedText",
"第三个模型": "TranslatedText",
"如果你选择Qwen系列的模型": "TranslatedText",
"列4": "TranslatedText",
"输入“exit”获取答案": "TranslatedText",
"把它放到子进程中运行": "TranslatedText",
"列1": "TranslatedText",
"使用该模型需要额外依赖": "TranslatedText",
"再试试": "TranslatedText",
"1. 上传图片": "TranslatedText",
"保存状态": "TranslatedText",
"GPT-Academic对话存档": "TranslatedText",
"Arxiv论文精细翻译": "TranslatedText"
}

查看文件

@@ -1043,9 +1043,9 @@
"jittorllms响应异常": "jittorllms response exception",
"在项目根目录运行这两个指令": "Run these two commands in the project root directory",
"获取tokenizer": "Get tokenizer",
"chatbot 为WebUI中显示的对话列表": "chatbot is the list of dialogues displayed in WebUI",
"chatbot 为WebUI中显示的对话列表": "chatbot is the list of conversations displayed in WebUI",
"test_解析一个Cpp项目": "test_parse a Cpp project",
"将对话记录history以Markdown格式写入文件中": "Write the dialogue record history to a file in Markdown format",
"将对话记录history以Markdown格式写入文件中": "Write the conversations record history to a file in Markdown format",
"装饰器函数": "Decorator function",
"玫瑰色": "Rose color",
"将单空行": "刪除單行空白",
@@ -2270,4 +2270,4 @@
"标注节点的行数范围": "標註節點的行數範圍",
"默认 True": "默認 True",
"将两个PDF拼接": "將兩個PDF拼接"
}
}

查看文件

@@ -182,12 +182,12 @@ cached_translation = read_map_from_json(language=LANG)
def trans(word_to_translate, language, special=False):
if len(word_to_translate) == 0: return {}
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from toolbox import get_conf, ChatBotWithCookies
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY = \
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY')
from toolbox import get_conf, ChatBotWithCookies, load_chat_cookies
cookies = load_chat_cookies()
llm_kwargs = {
'api_key': API_KEY,
'llm_model': LLM_MODEL,
'api_key': cookies['api_key'],
'llm_model': cookies['llm_model'],
'top_p':1.0,
'max_length': None,
'temperature':0.4,
@@ -245,15 +245,15 @@ def trans(word_to_translate, language, special=False):
def trans_json(word_to_translate, language, special=False):
if len(word_to_translate) == 0: return {}
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from toolbox import get_conf, ChatBotWithCookies
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY = \
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY')
from toolbox import get_conf, ChatBotWithCookies, load_chat_cookies
cookies = load_chat_cookies()
llm_kwargs = {
'api_key': API_KEY,
'llm_model': LLM_MODEL,
'api_key': cookies['api_key'],
'llm_model': cookies['llm_model'],
'top_p':1.0,
'max_length': None,
'temperature':0.1,
'temperature':0.4,
}
import random
N_EACH_REQ = random.randint(16, 32)

查看文件

@@ -431,16 +431,48 @@ if "chatglm_onnx" in AVAIL_LLM_MODELS:
})
except:
print(trimmed_format_exc())
if "qwen" in AVAIL_LLM_MODELS:
if "qwen-local" in AVAIL_LLM_MODELS:
try:
from .bridge_qwen_local import predict_no_ui_long_connection as qwen_local_noui
from .bridge_qwen_local import predict as qwen_local_ui
model_info.update({
"qwen-local": {
"fn_with_ui": qwen_local_ui,
"fn_without_ui": qwen_local_noui,
"endpoint": None,
"max_token": 4096,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}
})
except:
print(trimmed_format_exc())
if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-max" in AVAIL_LLM_MODELS: # zhipuai
try:
from .bridge_qwen import predict_no_ui_long_connection as qwen_noui
from .bridge_qwen import predict as qwen_ui
model_info.update({
"qwen": {
"qwen-turbo": {
"fn_with_ui": qwen_ui,
"fn_without_ui": qwen_noui,
"endpoint": None,
"max_token": 4096,
"max_token": 6144,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"qwen-plus": {
"fn_with_ui": qwen_ui,
"fn_without_ui": qwen_noui,
"endpoint": None,
"max_token": 30720,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"qwen-max": {
"fn_with_ui": qwen_ui,
"fn_without_ui": qwen_noui,
"endpoint": None,
"max_token": 28672,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}
@@ -552,7 +584,7 @@ if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
"fn_with_ui": deepseekcoder_ui,
"fn_without_ui": deepseekcoder_noui,
"endpoint": None,
"max_token": 4096,
"max_token": 2048,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}

查看文件

@@ -51,7 +51,8 @@ def decode_chunk(chunk):
chunkjson = json.loads(chunk_decoded[6:])
has_choices = 'choices' in chunkjson
if has_choices: choice_valid = (len(chunkjson['choices']) > 0)
if has_choices and choice_valid: has_content = "content" in chunkjson['choices'][0]["delta"]
if has_choices and choice_valid: has_content = ("content" in chunkjson['choices'][0]["delta"])
if has_content: has_content = (chunkjson['choices'][0]["delta"]["content"] is not None)
if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"]
except:
pass
@@ -101,20 +102,25 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
result = ''
json_data = None
while True:
try: chunk = next(stream_response).decode()
try: chunk = next(stream_response)
except StopIteration:
break
except requests.exceptions.ConnectionError:
chunk = next(stream_response).decode() # 失败了,重试一次?再失败就没办法了。
if len(chunk)==0: continue
if not chunk.startswith('data:'):
error_msg = get_full_error(chunk.encode('utf8'), stream_response).decode()
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
if len(chunk_decoded)==0: continue
if not chunk_decoded.startswith('data:'):
error_msg = get_full_error(chunk, stream_response).decode()
if "reduce the length" in error_msg:
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
else:
raise RuntimeError("OpenAI拒绝了请求" + error_msg)
if ('data: [DONE]' in chunk): break # api2d 正常完成
json_data = json.loads(chunk.lstrip('data:'))['choices'][0]
if ('data: [DONE]' in chunk_decoded): break # api2d 正常完成
# 提前读取一些信息 (用于判断异常)
if has_choices and not choice_valid:
# 一些垃圾第三方接口的出现这样的错误
continue
json_data = chunkjson['choices'][0]
delta = json_data["delta"]
if len(delta) == 0: break
if "role" in delta: continue

查看文件

@@ -15,29 +15,16 @@ import requests
import base64
import os
import glob
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, is_the_upload_folder, \
update_ui_lastest_msg, get_max_token, encode_image, have_any_recent_upload_image_files
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, is_the_upload_folder, update_ui_lastest_msg, get_max_token
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
def have_any_recent_upload_image_files(chatbot):
_5min = 5 * 60
if chatbot is None: return False, None # chatbot is None
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
if not most_recent_uploaded: return False, None # most_recent_uploaded is None
if time.time() - most_recent_uploaded["time"] < _5min:
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
path = most_recent_uploaded['path']
file_manifest = [f for f in glob.glob(f'{path}/**/*.jpg', recursive=True)]
file_manifest += [f for f in glob.glob(f'{path}/**/*.jpeg', recursive=True)]
file_manifest += [f for f in glob.glob(f'{path}/**/*.png', recursive=True)]
if len(file_manifest) == 0: return False, None
return True, file_manifest # most_recent_uploaded is new
else:
return False, None # most_recent_uploaded is too old
def report_invalid_key(key):
if get_conf("BLOCK_INVALID_APIKEY"):
@@ -258,10 +245,6 @@ def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg,
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
return chatbot, history
# Function to encode the image
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths):
"""

查看文件

@@ -6,6 +6,7 @@ from toolbox import ProxyNetworkActivate
from toolbox import get_conf
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
from threading import Thread
import torch
def download_huggingface_model(model_name, max_retry, local_dir):
from huggingface_hub import snapshot_download
@@ -36,9 +37,46 @@ class GetCoderLMHandle(LocalLLMHandle):
# tokenizer = download_huggingface_model(model_name, max_retry=128, local_dir=local_dir)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
self._streamer = TextIteratorStreamer(tokenizer)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
device_map = {
"transformer.word_embeddings": 0,
"transformer.word_embeddings_layernorm": 0,
"lm_head": 0,
"transformer.h": 0,
"transformer.ln_f": 0,
"model.embed_tokens": 0,
"model.layers": 0,
"model.norm": 0,
}
# 检查量化配置
quantization_type = get_conf('LOCAL_MODEL_QUANT')
if get_conf('LOCAL_MODEL_DEVICE') != 'cpu':
model = model.cuda()
if quantization_type == "INT8":
from transformers import BitsAndBytesConfig
# 使用 INT8 量化
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, load_in_8bit=True,
device_map=device_map)
elif quantization_type == "INT4":
from transformers import BitsAndBytesConfig
# 使用 INT4 量化
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,
quantization_config=bnb_config, device_map=device_map)
else:
# 使用默认的 FP16
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,
torch_dtype=torch.bfloat16, device_map=device_map)
else:
# CPU 模式
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,
torch_dtype=torch.bfloat16)
return model, tokenizer
def llm_stream_generator(self, **kwargs):
@@ -54,7 +92,10 @@ class GetCoderLMHandle(LocalLLMHandle):
query, max_length, top_p, temperature, history = adaptor(kwargs)
history.append({ 'role': 'user', 'content': query})
messages = history
inputs = self._tokenizer.apply_chat_template(messages, return_tensors="pt").to(self._model.device)
inputs = self._tokenizer.apply_chat_template(messages, return_tensors="pt")
if inputs.shape[1] > max_length:
inputs = inputs[:, -max_length:]
inputs = inputs.to(self._model.device)
generation_kwargs = dict(
inputs=inputs,
max_new_tokens=max_length,

查看文件

@@ -1,67 +1,62 @@
model_name = "Qwen"
cmd_to_install = "`pip install -r request_llms/requirements_qwen.txt`"
from transformers import AutoModel, AutoTokenizer
import time
import threading
import importlib
from toolbox import update_ui, get_conf, ProxyNetworkActivate
from multiprocessing import Process, Pipe
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
import os
from toolbox import update_ui, get_conf, update_ui_lastest_msg
from toolbox import check_packages, report_exception
model_name = 'Qwen'
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
"""
⭐多线程方法
函数的说明请见 request_llms/bridge_all.py
"""
watch_dog_patience = 5
response = ""
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 Local Model
# ------------------------------------------------------------------------------------------------------------------------
class GetQwenLMHandle(LocalLLMHandle):
from .com_qwenapi import QwenRequestInstance
sri = QwenRequestInstance()
for response in sri.generate(inputs, llm_kwargs, history, sys_prompt):
if len(observe_window) >= 1:
observe_window[0] = response
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。")
return response
def load_model_info(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
self.model_name = model_name
self.cmd_to_install = cmd_to_install
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
⭐单线程方法
函数的说明请见 request_llms/bridge_all.py
"""
chatbot.append((inputs, ""))
yield from update_ui(chatbot=chatbot, history=history)
def load_model_and_tokenizer(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
import os, glob
import os
import platform
from modelscope import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
check_packages(["dashscope"])
except:
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade dashscope```。",
chatbot=chatbot, history=history, delay=0)
return
with ProxyNetworkActivate('Download_LLM'):
model_id = 'qwen/Qwen-7B-Chat'
self._tokenizer = AutoTokenizer.from_pretrained('Qwen/Qwen-7B-Chat', trust_remote_code=True, resume_download=True)
# use fp16
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True, fp16=True).eval()
model.generation_config = GenerationConfig.from_pretrained(model_id, trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
self._model = model
# 检查DASHSCOPE_API_KEY
if get_conf("DASHSCOPE_API_KEY") == "":
yield from update_ui_lastest_msg(f"请配置 DASHSCOPE_API_KEY。",
chatbot=chatbot, history=history, delay=0)
return
return self._model, self._tokenizer
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
def llm_stream_generator(self, **kwargs):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
def adaptor(kwargs):
query = kwargs['query']
max_length = kwargs['max_length']
top_p = kwargs['top_p']
temperature = kwargs['temperature']
history = kwargs['history']
return query, max_length, top_p, temperature, history
# 开始接收回复
from .com_qwenapi import QwenRequestInstance
sri = QwenRequestInstance()
for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)
query, max_length, top_p, temperature, history = adaptor(kwargs)
for response in self._model.chat(self._tokenizer, query, history=history, stream=True):
yield response
def try_to_import_special_deps(self, **kwargs):
# import something that will raise error if the user does not install requirement_*.txt
# 🏃‍♂️🏃‍♂️🏃‍♂️ 主进程执行
import importlib
importlib.import_module('modelscope')
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 GPT-Academic Interface
# ------------------------------------------------------------------------------------------------------------------------
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetQwenLMHandle, model_name)
# 总结输出
if response == f"[Local Message] 等待{model_name}响应中 ...":
response = f"[Local Message] {model_name}响应异常 ..."
history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history)

查看文件

@@ -26,7 +26,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
from .com_sparkapi import SparkRequestInstance
sri = SparkRequestInstance()
for response in sri.generate(inputs, llm_kwargs, history, sys_prompt):
for response in sri.generate(inputs, llm_kwargs, history, sys_prompt, use_image_api=False):
if len(observe_window) >= 1:
observe_window[0] = response
if len(observe_window) >= 2:
@@ -52,7 +52,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
# 开始接收回复
from .com_sparkapi import SparkRequestInstance
sri = SparkRequestInstance()
for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
for response in sri.generate(inputs, llm_kwargs, history, system_prompt, use_image_api=True):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)

查看文件

@@ -1,4 +1,4 @@
from toolbox import get_conf
from toolbox import get_conf, get_pictures_list, encode_image
import base64
import datetime
import hashlib
@@ -65,18 +65,19 @@ class SparkRequestInstance():
self.gpt_url = "ws://spark-api.xf-yun.com/v1.1/chat"
self.gpt_url_v2 = "ws://spark-api.xf-yun.com/v2.1/chat"
self.gpt_url_v3 = "ws://spark-api.xf-yun.com/v3.1/chat"
self.gpt_url_img = "wss://spark-api.cn-huabei-1.xf-yun.com/v2.1/image"
self.time_to_yield_event = threading.Event()
self.time_to_exit_event = threading.Event()
self.result_buf = ""
def generate(self, inputs, llm_kwargs, history, system_prompt):
def generate(self, inputs, llm_kwargs, history, system_prompt, use_image_api=False):
llm_kwargs = llm_kwargs
history = history
system_prompt = system_prompt
import _thread as thread
thread.start_new_thread(self.create_blocking_request, (inputs, llm_kwargs, history, system_prompt))
thread.start_new_thread(self.create_blocking_request, (inputs, llm_kwargs, history, system_prompt, use_image_api))
while True:
self.time_to_yield_event.wait(timeout=1)
if self.time_to_yield_event.is_set():
@@ -85,14 +86,20 @@ class SparkRequestInstance():
return self.result_buf
def create_blocking_request(self, inputs, llm_kwargs, history, system_prompt):
def create_blocking_request(self, inputs, llm_kwargs, history, system_prompt, use_image_api):
if llm_kwargs['llm_model'] == 'sparkv2':
gpt_url = self.gpt_url_v2
elif llm_kwargs['llm_model'] == 'sparkv3':
gpt_url = self.gpt_url_v3
else:
gpt_url = self.gpt_url
file_manifest = []
if use_image_api and llm_kwargs.get('most_recent_uploaded'):
if llm_kwargs['most_recent_uploaded'].get('path'):
file_manifest = get_pictures_list(llm_kwargs['most_recent_uploaded']['path'])
if len(file_manifest) > 0:
print('正在使用讯飞图片理解API')
gpt_url = self.gpt_url_img
wsParam = Ws_Param(self.appid, self.api_key, self.api_secret, gpt_url)
websocket.enableTrace(False)
wsUrl = wsParam.create_url()
@@ -101,9 +108,8 @@ class SparkRequestInstance():
def on_open(ws):
import _thread as thread
thread.start_new_thread(run, (ws,))
def run(ws, *args):
data = json.dumps(gen_params(ws.appid, *ws.all_args))
data = json.dumps(gen_params(ws.appid, *ws.all_args, file_manifest))
ws.send(data)
# 收到websocket消息的处理
@@ -142,9 +148,18 @@ class SparkRequestInstance():
ws.all_args = (inputs, llm_kwargs, history, system_prompt)
ws.run_forever(sslopt={"cert_reqs": ssl.CERT_NONE})
def generate_message_payload(inputs, llm_kwargs, history, system_prompt):
def generate_message_payload(inputs, llm_kwargs, history, system_prompt, file_manifest):
conversation_cnt = len(history) // 2
messages = [{"role": "system", "content": system_prompt}]
messages = []
if file_manifest:
base64_images = []
for image_path in file_manifest:
base64_images.append(encode_image(image_path))
for img_s in base64_images:
if img_s not in str(messages):
messages.append({"role": "user", "content": img_s, "content_type": "image"})
else:
messages = [{"role": "system", "content": system_prompt}]
if conversation_cnt:
for index in range(0, 2*conversation_cnt, 2):
what_i_have_asked = {}
@@ -167,7 +182,7 @@ def generate_message_payload(inputs, llm_kwargs, history, system_prompt):
return messages
def gen_params(appid, inputs, llm_kwargs, history, system_prompt):
def gen_params(appid, inputs, llm_kwargs, history, system_prompt, file_manifest):
"""
通过appid和用户的提问来生成请参数
"""
@@ -176,6 +191,8 @@ def gen_params(appid, inputs, llm_kwargs, history, system_prompt):
"sparkv2": "generalv2",
"sparkv3": "generalv3",
}
domains_select = domains[llm_kwargs['llm_model']]
if file_manifest: domains_select = 'image'
data = {
"header": {
"app_id": appid,
@@ -183,7 +200,7 @@ def gen_params(appid, inputs, llm_kwargs, history, system_prompt):
},
"parameter": {
"chat": {
"domain": domains[llm_kwargs['llm_model']],
"domain": domains_select,
"temperature": llm_kwargs["temperature"],
"random_threshold": 0.5,
"max_tokens": 4096,
@@ -192,7 +209,7 @@ def gen_params(appid, inputs, llm_kwargs, history, system_prompt):
},
"payload": {
"message": {
"text": generate_message_payload(inputs, llm_kwargs, history, system_prompt)
"text": generate_message_payload(inputs, llm_kwargs, history, system_prompt, file_manifest)
}
}
}

查看文件

@@ -183,11 +183,11 @@ class LocalLLMHandle(Process):
def stream_chat(self, **kwargs):
# ⭐run in main process
if self.get_state() == "`准备就绪`":
yield "`正在等待线程锁,排队中请稍 ...`"
yield "`正在等待线程锁,排队中请稍 ...`"
with self.threadLock:
if self.parent.poll():
yield "`排队中请稍 ...`"
yield "`排队中请稍 ...`"
self.clear_pending_messages()
self.parent.send(kwargs)
std_out = ""

查看文件

@@ -6,5 +6,3 @@ sentencepiece
numpy
onnxruntime
sentencepiece
streamlit
streamlit-chat

查看文件

@@ -5,5 +5,4 @@ accelerate
matplotlib
huggingface_hub
triton
streamlit

查看文件

@@ -1,2 +1 @@
modelscope
transformers_stream_generator
dashscope

查看文件

@@ -2,6 +2,7 @@ pydantic==1.10.11
pypdf2==2.12.1
tiktoken>=0.3.3
requests[socks]
protobuf==3.18
transformers>=4.27.1
scipdf_parser>=0.52
python-markdown-math

查看文件

@@ -16,8 +16,9 @@ if __name__ == "__main__":
# from request_llms.bridge_jittorllms_llama import predict_no_ui_long_connection
# from request_llms.bridge_claude import predict_no_ui_long_connection
# from request_llms.bridge_internlm import predict_no_ui_long_connection
from request_llms.bridge_deepseekcoder import predict_no_ui_long_connection
# from request_llms.bridge_qwen import predict_no_ui_long_connection
# from request_llms.bridge_deepseekcoder import predict_no_ui_long_connection
# from request_llms.bridge_qwen_7B import predict_no_ui_long_connection
from request_llms.bridge_qwen_local import predict_no_ui_long_connection
# from request_llms.bridge_spark import predict_no_ui_long_connection
# from request_llms.bridge_zhipu import predict_no_ui_long_connection
# from request_llms.bridge_chatglm3 import predict_no_ui_long_connection

查看文件

@@ -48,11 +48,11 @@ if __name__ == "__main__":
# for lang in ["English", "French", "Japanese", "Korean", "Russian", "Italian", "German", "Portuguese", "Arabic"]:
# plugin_test(plugin='crazy_functions.批量Markdown翻译->Markdown翻译指定语言', main_input="README.md", advanced_arg={"advanced_arg": lang})
# plugin_test(plugin='crazy_functions.Langchain知识库->知识库问答', main_input="./")
# plugin_test(plugin='crazy_functions.知识库文件注入->知识库文件注入', main_input="./")
# plugin_test(plugin='crazy_functions.Langchain知识库->读取知识库作答', main_input="What is the installation method?")
# plugin_test(plugin='crazy_functions.知识库文件注入->读取知识库作答', main_input="What is the installation method?")
# plugin_test(plugin='crazy_functions.Langchain知识库->读取知识库作答', main_input="远程云服务器部署?")
# plugin_test(plugin='crazy_functions.知识库文件注入->读取知识库作答', main_input="远程云服务器部署?")
# plugin_test(plugin='crazy_functions.Latex输出PDF结果->Latex翻译中文并重新编译PDF', main_input="2210.03629")

查看文件

@@ -56,11 +56,11 @@ vt.get_plugin_handle = silence_stdout_fn(get_plugin_handle)
vt.get_plugin_default_kwargs = silence_stdout_fn(get_plugin_default_kwargs)
vt.get_chat_handle = silence_stdout_fn(get_chat_handle)
vt.get_chat_default_kwargs = silence_stdout_fn(get_chat_default_kwargs)
vt.chat_to_markdown_str = chat_to_markdown_str
vt.chat_to_markdown_str = (chat_to_markdown_str)
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY = \
vt.get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY')
def plugin_test(main_input, plugin, advanced_arg=None):
def plugin_test(main_input, plugin, advanced_arg=None, debug=True):
from rich.live import Live
from rich.markdown import Markdown
@@ -72,7 +72,10 @@ def plugin_test(main_input, plugin, advanced_arg=None):
plugin_kwargs['main_input'] = main_input
if advanced_arg is not None:
plugin_kwargs['plugin_kwargs'] = advanced_arg
my_working_plugin = silence_stdout(plugin)(**plugin_kwargs)
if debug:
my_working_plugin = (plugin)(**plugin_kwargs)
else:
my_working_plugin = silence_stdout(plugin)(**plugin_kwargs)
with Live(Markdown(""), auto_refresh=False, vertical_overflow="visible") as live:
for cookies, chat, hist, msg in my_working_plugin:

查看文件

@@ -1,9 +1,13 @@
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
// 第 1 部分: 工具函数
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
function gradioApp() {
// https://github.com/GaiZhenbiao/ChuanhuChatGPT/tree/main/web_assets/javascript
const elems = document.getElementsByTagName('gradio-app');
const elem = elems.length == 0 ? document : elems[0];
if (elem !== document) {
elem.getElementById = function(id) {
elem.getElementById = function (id) {
return document.getElementById(id);
};
}
@@ -12,31 +16,76 @@ function gradioApp() {
function setCookie(name, value, days) {
var expires = "";
if (days) {
var date = new Date();
date.setTime(date.getTime() + (days * 24 * 60 * 60 * 1000));
expires = "; expires=" + date.toUTCString();
var date = new Date();
date.setTime(date.getTime() + (days * 24 * 60 * 60 * 1000));
expires = "; expires=" + date.toUTCString();
}
document.cookie = name + "=" + value + expires + "; path=/";
}
function getCookie(name) {
var decodedCookie = decodeURIComponent(document.cookie);
var cookies = decodedCookie.split(';');
for (var i = 0; i < cookies.length; i++) {
var cookie = cookies[i].trim();
if (cookie.indexOf(name + "=") === 0) {
return cookie.substring(name.length + 1, cookie.length);
}
var cookie = cookies[i].trim();
if (cookie.indexOf(name + "=") === 0) {
return cookie.substring(name.length + 1, cookie.length);
}
}
return null;
}
}
let toastCount = 0;
function toast_push(msg, duration) {
duration = isNaN(duration) ? 3000 : duration;
const existingToasts = document.querySelectorAll('.toast');
existingToasts.forEach(toast => {
toast.style.top = `${parseInt(toast.style.top, 10) - 70}px`;
});
const m = document.createElement('div');
m.innerHTML = msg;
m.classList.add('toast');
m.style.cssText = `font-size: var(--text-md) !important; color: rgb(255, 255, 255); background-color: rgba(0, 0, 0, 0.6); padding: 10px 15px; border-radius: 4px; position: fixed; top: ${50 + toastCount * 70}%; left: 50%; transform: translateX(-50%); width: auto; text-align: center; transition: top 0.3s;`;
document.body.appendChild(m);
setTimeout(function () {
m.style.opacity = '0';
setTimeout(function () {
document.body.removeChild(m);
toastCount--;
}, 500);
}, duration);
toastCount++;
}
function toast_up(msg) {
var m = document.getElementById('toast_up');
if (m) {
document.body.removeChild(m); // remove the loader from the body
}
m = document.createElement('div');
m.id = 'toast_up';
m.innerHTML = msg;
m.style.cssText = "font-size: var(--text-md) !important; color: rgb(255, 255, 255); background-color: rgba(0, 0, 100, 0.6); padding: 10px 15px; margin: 0 0 0 -60px; border-radius: 4px; position: fixed; top: 50%; left: 50%; width: auto; text-align: center;";
document.body.appendChild(m);
}
function toast_down() {
var m = document.getElementById('toast_up');
if (m) {
document.body.removeChild(m); // remove the loader from the body
}
}
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
// 第 2 部分: 复制按钮
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
function addCopyButton(botElement) {
// https://github.com/GaiZhenbiao/ChuanhuChatGPT/tree/main/web_assets/javascript
// Copy bot button
@@ -49,7 +98,7 @@ function addCopyButton(botElement) {
// messageBtnColumnElement.remove();
return;
}
var copyButton = document.createElement('button');
copyButton.classList.add('copy-bot-btn');
copyButton.setAttribute('aria-label', 'Copy');
@@ -98,47 +147,61 @@ function chatbotContentChanged(attempt = 1, force = false) {
}
}
function chatbotAutoHeight(){
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
// 第 3 部分: chatbot动态高度调整
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
function chatbotAutoHeight() {
// 自动调整高度
function update_height(){
var { panel_height_target, chatbot_height, chatbot } = get_elements(true);
if (panel_height_target!=chatbot_height)
{
var pixelString = panel_height_target.toString() + 'px';
chatbot.style.maxHeight = pixelString; chatbot.style.height = pixelString;
function update_height() {
var { height_target, chatbot_height, chatbot } = get_elements(true);
if (height_target != chatbot_height) {
var pixelString = height_target.toString() + 'px';
chatbot.style.maxHeight = pixelString; chatbot.style.height = pixelString;
}
}
function update_height_slow(){
var { panel_height_target, chatbot_height, chatbot } = get_elements();
if (panel_height_target!=chatbot_height)
{
new_panel_height = (panel_height_target - chatbot_height)*0.5 + chatbot_height;
if (Math.abs(new_panel_height - panel_height_target) < 10){
new_panel_height = panel_height_target;
function update_height_slow() {
var { height_target, chatbot_height, chatbot } = get_elements();
if (height_target != chatbot_height) {
new_panel_height = (height_target - chatbot_height) * 0.5 + chatbot_height;
if (Math.abs(new_panel_height - height_target) < 10) {
new_panel_height = height_target;
}
// console.log(chatbot_height, panel_height_target, new_panel_height);
// console.log(chatbot_height, height_target, new_panel_height);
var pixelString = new_panel_height.toString() + 'px';
chatbot.style.maxHeight = pixelString; chatbot.style.height = pixelString;
chatbot.style.maxHeight = pixelString; chatbot.style.height = pixelString;
}
}
monitoring_input_box()
update_height();
setInterval(function() {
setInterval(function () {
update_height_slow()
}, 50); // 每100毫秒执行一次
}, 50); // 每50毫秒执行一次
}
function GptAcademicJavaScriptInit(LAYOUT = "LEFT-RIGHT") {
chatbotIndicator = gradioApp().querySelector('#gpt-chatbot > div.wrap');
var chatbotObserver = new MutationObserver(() => {
chatbotContentChanged(1);
});
chatbotObserver.observe(chatbotIndicator, { attributes: true, childList: true, subtree: true });
if (LAYOUT === "LEFT-RIGHT") {chatbotAutoHeight();}
swapped = false;
function swap_input_area() {
// Get the elements to be swapped
var element1 = document.querySelector("#input-panel");
var element2 = document.querySelector("#basic-panel");
// Get the parent of the elements
var parent = element1.parentNode;
// Get the next sibling of element2
var nextSibling = element2.nextSibling;
// Swap the elements
parent.insertBefore(element2, element1);
parent.insertBefore(element1, nextSibling);
if (swapped) {swapped = false;}
else {swapped = true;}
}
function get_elements(consider_state_panel=false) {
function get_elements(consider_state_panel = false) {
var chatbot = document.querySelector('#gpt-chatbot > div.wrap.svelte-18telvq');
if (!chatbot) {
chatbot = document.querySelector('#gpt-chatbot');
@@ -147,17 +210,292 @@ function get_elements(consider_state_panel=false) {
const panel2 = document.querySelector('#basic-panel').getBoundingClientRect()
const panel3 = document.querySelector('#plugin-panel').getBoundingClientRect();
// const panel4 = document.querySelector('#interact-panel').getBoundingClientRect();
const panel5 = document.querySelector('#input-panel2').getBoundingClientRect();
const panel_active = document.querySelector('#state-panel').getBoundingClientRect();
if (consider_state_panel || panel_active.height < 25){
if (consider_state_panel || panel_active.height < 25) {
document.state_panel_height = panel_active.height;
}
// 25 是chatbot的label高度, 16 是右侧的gap
var panel_height_target = panel1.height + panel2.height + panel3.height + 0 + 0 - 25 + 16*2;
var height_target = panel1.height + panel2.height + panel3.height + 0 + 0 - 25 + 16 * 2;
// 禁止动态的state-panel高度影响
panel_height_target = panel_height_target + (document.state_panel_height-panel_active.height)
var panel_height_target = parseInt(panel_height_target);
height_target = height_target + (document.state_panel_height - panel_active.height)
var height_target = parseInt(height_target);
var chatbot_height = chatbot.style.height;
// 交换输入区位置,使得输入区始终可用
if (!swapped){
if (panel1.top!=0 && panel1.top < 0){ swap_input_area(); }
}
else if (swapped){
if (panel2.top!=0 && panel2.top > 0){ swap_input_area(); }
}
// 调整高度
const err_tor = 5;
if (Math.abs(panel1.left - chatbot.getBoundingClientRect().left) < err_tor){
// 是否处于窄屏模式
height_target = window.innerHeight * 0.6;
}else{
// 调整高度
const chatbot_height_exceed = 15;
const chatbot_height_exceed_m = 10;
b_panel = Math.max(panel1.bottom, panel2.bottom, panel3.bottom)
if (b_panel >= window.innerHeight - chatbot_height_exceed) {
height_target = window.innerHeight - chatbot.getBoundingClientRect().top - chatbot_height_exceed_m;
}
else if (b_panel < window.innerHeight * 0.75) {
height_target = window.innerHeight * 0.8;
}
}
var chatbot_height = parseInt(chatbot_height);
return { panel_height_target, chatbot_height, chatbot };
return { height_target, chatbot_height, chatbot };
}
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
// 第 4 部分: 粘贴、拖拽文件上传
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
var elem_upload = null;
var elem_upload_float = null;
var elem_input_main = null;
var elem_input_float = null;
var elem_chatbot = null;
var exist_file_msg = '⚠️请先删除上传区(左上方)中的历史文件,再尝试上传。'
function add_func_paste(input) {
let paste_files = [];
if (input) {
input.addEventListener("paste", async function (e) {
const clipboardData = e.clipboardData || window.clipboardData;
const items = clipboardData.items;
if (items) {
for (i = 0; i < items.length; i++) {
if (items[i].kind === "file") { // 确保是文件类型
const file = items[i].getAsFile();
// 将每一个粘贴的文件添加到files数组中
paste_files.push(file);
e.preventDefault(); // 避免粘贴文件名到输入框
}
}
if (paste_files.length > 0) {
// 按照文件列表执行批量上传逻辑
await upload_files(paste_files);
paste_files = []
}
}
});
}
}
function add_func_drag(elem) {
if (elem) {
const dragEvents = ["dragover"];
const leaveEvents = ["dragleave", "dragend", "drop"];
const onDrag = function (e) {
e.preventDefault();
e.stopPropagation();
if (elem_upload_float.querySelector("input[type=file]")) {
toast_up('⚠️释放以上传文件')
} else {
toast_up(exist_file_msg)
}
};
const onLeave = function (e) {
toast_down();
e.preventDefault();
e.stopPropagation();
};
dragEvents.forEach(event => {
elem.addEventListener(event, onDrag);
});
leaveEvents.forEach(event => {
elem.addEventListener(event, onLeave);
});
elem.addEventListener("drop", async function (e) {
const files = e.dataTransfer.files;
await upload_files(files);
});
}
}
async function upload_files(files) {
const uploadInputElement = elem_upload_float.querySelector("input[type=file]");
let totalSizeMb = 0
if (files && files.length > 0) {
// 执行具体的上传逻辑
if (uploadInputElement) {
for (let i = 0; i < files.length; i++) {
// 将从文件数组中获取的文件大小(单位为字节)转换为MB,
totalSizeMb += files[i].size / 1024 / 1024;
}
// 检查文件总大小是否超过20MB
if (totalSizeMb > 20) {
toast_push('⚠️文件夹大于 20MB 🚀上传文件中', 3000)
// return; // 如果超过了指定大小, 可以不进行后续上传操作
}
// 监听change事件, 原生Gradio可以实现
// uploadInputElement.addEventListener('change', function(){replace_input_string()});
let event = new Event("change");
Object.defineProperty(event, "target", { value: uploadInputElement, enumerable: true });
Object.defineProperty(event, "currentTarget", { value: uploadInputElement, enumerable: true });
Object.defineProperty(uploadInputElement, "files", { value: files, enumerable: true });
uploadInputElement.dispatchEvent(event);
} else {
toast_push(exist_file_msg, 3000)
}
}
}
function begin_loading_status() {
// Create the loader div and add styling
var loader = document.createElement('div');
loader.id = 'Js_File_Loading';
loader.style.position = "absolute";
loader.style.top = "50%";
loader.style.left = "50%";
loader.style.width = "60px";
loader.style.height = "60px";
loader.style.border = "16px solid #f3f3f3";
loader.style.borderTop = "16px solid #3498db";
loader.style.borderRadius = "50%";
loader.style.animation = "spin 2s linear infinite";
loader.style.transform = "translate(-50%, -50%)";
document.body.appendChild(loader); // Add the loader to the body
// Set the CSS animation keyframes
var styleSheet = document.createElement('style');
// styleSheet.type = 'text/css';
styleSheet.id = 'Js_File_Loading_Style'
styleSheet.innerText = `
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}`;
document.head.appendChild(styleSheet);
}
function cancel_loading_status() {
var loadingElement = document.getElementById('Js_File_Loading');
if (loadingElement) {
document.body.removeChild(loadingElement); // remove the loader from the body
}
var loadingStyle = document.getElementById('Js_File_Loading_Style');
if (loadingStyle) {
document.head.removeChild(loadingStyle);
}
let clearButton = document.querySelectorAll('div[id*="elem_upload"] button[aria-label="Clear"]');
for (let button of clearButton) {
button.addEventListener('click', function () {
setTimeout(function () {
register_upload_event();
}, 50);
});
}
}
function register_upload_event() {
elem_upload_float = document.getElementById('elem_upload_float')
const upload_component = elem_upload_float.querySelector("input[type=file]");
if (upload_component) {
upload_component.addEventListener('change', function (event) {
toast_push('正在上传中,请稍等。', 2000);
begin_loading_status();
});
}
}
function monitoring_input_box() {
register_upload_event();
elem_upload = document.getElementById('elem_upload')
elem_upload_float = document.getElementById('elem_upload_float')
elem_input_main = document.getElementById('user_input_main')
elem_input_float = document.getElementById('user_input_float')
elem_chatbot = document.getElementById('gpt-chatbot')
if (elem_input_main) {
if (elem_input_main.querySelector("textarea")) {
add_func_paste(elem_input_main.querySelector("textarea"))
}
}
if (elem_input_float) {
if (elem_input_float.querySelector("textarea")) {
add_func_paste(elem_input_float.querySelector("textarea"))
}
}
if (elem_chatbot) {
add_func_drag(elem_chatbot)
}
}
// 监视页面变化
window.addEventListener("DOMContentLoaded", function () {
// const ga = document.getElementsByTagName("gradio-app");
gradioApp().addEventListener("render", monitoring_input_box);
});
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
// 第 5 部分: 音频按钮样式变化
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
function audio_fn_init() {
let audio_component = document.getElementById('elem_audio');
if (audio_component) {
let buttonElement = audio_component.querySelector('button');
let specificElement = audio_component.querySelector('.hide.sr-only');
specificElement.remove();
buttonElement.childNodes[1].nodeValue = '启动麦克风';
buttonElement.addEventListener('click', function (event) {
event.stopPropagation();
toast_push('您启动了麦克风!下一步请点击“实时语音对话”启动语音对话。');
});
// 查找语音插件按钮
let buttons = document.querySelectorAll('button');
let audio_button = null;
for (let button of buttons) {
if (button.textContent.includes('语音')) {
audio_button = button;
break;
}
}
if (audio_button) {
audio_button.addEventListener('click', function () {
toast_push('您点击了“实时语音对话”启动语音对话。');
});
let parent_element = audio_component.parentElement; // 将buttonElement移动到audio_button的内部
audio_button.appendChild(audio_component);
buttonElement.style.cssText = 'border-color: #00ffe0;border-width: 2px; height: 25px;'
parent_element.remove();
audio_component.style.cssText = 'width: 250px;right: 0px;display: inline-flex;flex-flow: row-reverse wrap;place-content: stretch space-between;align-items: center;background-color: #ffffff00;';
}
}
}
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
// 第 6 部分: JS初始化函数
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
function GptAcademicJavaScriptInit(LAYOUT = "LEFT-RIGHT") {
audio_fn_init();
chatbotIndicator = gradioApp().querySelector('#gpt-chatbot > div.wrap');
var chatbotObserver = new MutationObserver(() => {
chatbotContentChanged(1);
});
chatbotObserver.observe(chatbotIndicator, { attributes: true, childList: true, subtree: true });
if (LAYOUT === "LEFT-RIGHT") { chatbotAutoHeight(); }
}

查看文件

@@ -256,13 +256,13 @@ textarea.svelte-1pie7s6 {
max-height: 95% !important;
overflow-y: auto !important;
}*/
.app.svelte-1mya07g.svelte-1mya07g {
/* .app.svelte-1mya07g.svelte-1mya07g {
max-width: 100%;
position: relative;
padding: var(--size-4);
width: 100%;
height: 100%;
}
} */
.gradio-container-3-32-2 h1 {
font-weight: 700 !important;

查看文件

@@ -1,6 +1,14 @@
import gradio as gr
import pickle
import base64
import uuid
from toolbox import get_conf
THEME = get_conf('THEME')
"""
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
第 1 部分
加载主题相关的工具函数
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
"""
def load_dynamic_theme(THEME):
adjust_dynamic_theme = None
@@ -20,4 +28,91 @@ def load_dynamic_theme(THEME):
theme_declaration = ""
return adjust_theme, advanced_css, theme_declaration, adjust_dynamic_theme
adjust_theme, advanced_css, theme_declaration, _ = load_dynamic_theme(THEME)
adjust_theme, advanced_css, theme_declaration, _ = load_dynamic_theme(get_conf('THEME'))
"""
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
第 2 部分
cookie相关工具函数
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
"""
def init_cookie(cookies, chatbot):
# 为每一位访问的用户赋予一个独一无二的uuid编码
cookies.update({'uuid': uuid.uuid4()})
return cookies
def to_cookie_str(d):
# Pickle the dictionary and encode it as a string
pickled_dict = pickle.dumps(d)
cookie_value = base64.b64encode(pickled_dict).decode('utf-8')
return cookie_value
def from_cookie_str(c):
# Decode the base64-encoded string and unpickle it into a dictionary
pickled_dict = base64.b64decode(c.encode('utf-8'))
return pickle.loads(pickled_dict)
"""
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
第 3 部分
内嵌的javascript代码
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
"""
js_code_for_css_changing = """(css) => {
var existingStyles = document.querySelectorAll("body > gradio-app > div > style")
for (var i = 0; i < existingStyles.length; i++) {
var style = existingStyles[i];
style.parentNode.removeChild(style);
}
var existingStyles = document.querySelectorAll("style[data-loaded-css]");
for (var i = 0; i < existingStyles.length; i++) {
var style = existingStyles[i];
style.parentNode.removeChild(style);
}
var styleElement = document.createElement('style');
styleElement.setAttribute('data-loaded-css', 'placeholder');
styleElement.innerHTML = css;
document.body.appendChild(styleElement);
}
"""
js_code_for_darkmode_init = """(dark) => {
dark = dark == "True";
if (document.querySelectorAll('.dark').length) {
if (!dark){
document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
}
} else {
if (dark){
document.querySelector('body').classList.add('dark');
}
}
}
"""
js_code_for_toggle_darkmode = """() => {
if (document.querySelectorAll('.dark').length) {
document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
} else {
document.querySelector('body').classList.add('dark');
}
}"""
js_code_for_persistent_cookie_init = """(persistent_cookie) => {
return getCookie("persistent_cookie");
}
"""

查看文件

@@ -4,6 +4,7 @@ import time
import inspect
import re
import os
import base64
import gradio
import shutil
import glob
@@ -79,6 +80,7 @@ def ArgsGeneralWrapper(f):
'max_length': max_length,
'temperature':temperature,
'client_ip': request.client.host,
'most_recent_uploaded': cookies.get('most_recent_uploaded')
}
plugin_kwargs = {
"advanced_arg": plugin_advanced_arg,
@@ -178,12 +180,15 @@ def HotReload(f):
最后,使用yield from语句返回重新加载过的函数,并在被装饰的函数上执行。
最终,装饰器函数返回内部函数。这个内部函数可以将函数的原始定义更新为最新版本,并执行函数的新版本。
"""
@wraps(f)
def decorated(*args, **kwargs):
fn_name = f.__name__
f_hot_reload = getattr(importlib.reload(inspect.getmodule(f)), fn_name)
yield from f_hot_reload(*args, **kwargs)
return decorated
if get_conf('PLUGIN_HOT_RELOAD'):
@wraps(f)
def decorated(*args, **kwargs):
fn_name = f.__name__
f_hot_reload = getattr(importlib.reload(inspect.getmodule(f)), fn_name)
yield from f_hot_reload(*args, **kwargs)
return decorated
else:
return f
"""
@@ -561,7 +566,8 @@ def promote_file_to_downloadzone(file, rename_file=None, chatbot=None):
user_name = get_user(chatbot)
else:
user_name = default_user_name
if not os.path.exists(file):
raise FileNotFoundError(f'文件{file}不存在')
user_path = get_log_folder(user_name, plugin_name=None)
if file_already_in_downloadzone(file, user_path):
new_path = file
@@ -577,7 +583,8 @@ def promote_file_to_downloadzone(file, rename_file=None, chatbot=None):
if chatbot is not None:
if 'files_to_promote' in chatbot._cookies: current = chatbot._cookies['files_to_promote']
else: current = []
chatbot._cookies.update({'files_to_promote': [new_path] + current})
if new_path not in current: # 避免把同一个文件添加多次
chatbot._cookies.update({'files_to_promote': [new_path] + current})
return new_path
@@ -602,6 +609,64 @@ def del_outdated_uploads(outdate_time_seconds, target_path_base=None):
except: pass
return
def html_local_file(file):
base_path = os.path.dirname(__file__) # 项目目录
if os.path.exists(str(file)):
file = f'file={file.replace(base_path, ".")}'
return file
def html_local_img(__file, layout='left', max_width=None, max_height=None, md=True):
style = ''
if max_width is not None:
style += f"max-width: {max_width};"
if max_height is not None:
style += f"max-height: {max_height};"
__file = html_local_file(__file)
a = f'<div align="{layout}"><img src="{__file}" style="{style}"></div>'
if md:
a = f'![{__file}]({__file})'
return a
def file_manifest_filter_type(file_list, filter_: list = None):
new_list = []
if not filter_: filter_ = ['png', 'jpg', 'jpeg']
for file in file_list:
if str(os.path.basename(file)).split('.')[-1] in filter_:
new_list.append(html_local_img(file, md=False))
else:
new_list.append(file)
return new_list
def to_markdown_tabs(head: list, tabs: list, alignment=':---:', column=False):
"""
Args:
head: 表头:[]
tabs: 表值:[[列1], [列2], [列3], [列4]]
alignment: :--- 左对齐, :---: 居中对齐, ---: 右对齐
column: True to keep data in columns, False to keep data in rows (default).
Returns:
A string representation of the markdown table.
"""
if column:
transposed_tabs = list(map(list, zip(*tabs)))
else:
transposed_tabs = tabs
# Find the maximum length among the columns
max_len = max(len(column) for column in transposed_tabs)
tab_format = "| %s "
tabs_list = "".join([tab_format % i for i in head]) + '|\n'
tabs_list += "".join([tab_format % alignment for i in head]) + '|\n'
for i in range(max_len):
row_data = [tab[i] if i < len(tab) else '' for tab in transposed_tabs]
row_data = file_manifest_filter_type(row_data, filter_=None)
tabs_list += "".join([tab_format % i for i in row_data]) + '|\n'
return tabs_list
def on_file_uploaded(request: gradio.Request, files, chatbot, txt, txt2, checkboxes, cookies):
"""
当文件被上传时的回调函数
@@ -626,16 +691,15 @@ def on_file_uploaded(request: gradio.Request, files, chatbot, txt, txt2, checkbo
this_file_path = pj(target_path_base, file_origin_name)
shutil.move(file.name, this_file_path)
upload_msg += extract_archive(file_path=this_file_path, dest_dir=this_file_path+'.extract')
# 整理文件集合
moved_files = [fp for fp in glob.glob(f'{target_path_base}/**/*', recursive=True)]
if "浮动输入区" in checkboxes:
txt, txt2 = "", target_path_base
else:
txt, txt2 = target_path_base, ""
# 输出消息
moved_files_str = '\t\n\n'.join(moved_files)
# 整理文件集合 输出消息
moved_files = [fp for fp in glob.glob(f'{target_path_base}/**/*', recursive=True)]
moved_files_str = to_markdown_tabs(head=['文件'], tabs=[moved_files])
chatbot.append(['我上传了文件,请查收',
f'[Local Message] 收到以下文件: \n\n{moved_files_str}' +
f'\n\n调用路径参数已自动修正到: \n\n{txt}' +
@@ -856,7 +920,14 @@ def read_single_conf_with_lru_cache(arg):
@lru_cache(maxsize=128)
def get_conf(*args):
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
"""
本项目的所有配置都集中在config.py中。 修改配置有三种方法,您只需要选择其中一种即可:
- 直接修改config.py
- 创建并修改config_private.py
- 修改环境变量修改docker-compose.yml等价于修改容器内部的环境变量
注意如果您使用docker-compose部署,请修改docker-compose等价于修改容器内部的环境变量
"""
res = []
for arg in args:
r = read_single_conf_with_lru_cache(arg)
@@ -937,14 +1008,19 @@ def clip_history(inputs, history, tokenizer, max_token_limit):
def get_token_num(txt):
return len(tokenizer.encode(txt, disallowed_special=()))
input_token_num = get_token_num(inputs)
if max_token_limit < 5000: output_token_expect = 256 # 4k & 2k models
elif max_token_limit < 9000: output_token_expect = 512 # 8k models
else: output_token_expect = 1024 # 16k & 32k models
if input_token_num < max_token_limit * 3 / 4:
# 当输入部分的token占比小于限制的3/4时,裁剪时
# 1. 把input的余量留出来
max_token_limit = max_token_limit - input_token_num
# 2. 把输出用的余量留出来
max_token_limit = max_token_limit - 128
max_token_limit = max_token_limit - output_token_expect
# 3. 如果余量太小了,直接清除历史
if max_token_limit < 128:
if max_token_limit < output_token_expect:
history = []
return history
else:
@@ -1053,7 +1129,7 @@ def get_user(chatbotwithcookies):
class ProxyNetworkActivate():
"""
这段代码定义了一个名为TempProxy的空上下文管理器, 用于给一小段代码上代理
这段代码定义了一个名为ProxyNetworkActivate的空上下文管理器, 用于给一小段代码上代理
"""
def __init__(self, task=None) -> None:
self.task = task
@@ -1198,6 +1274,35 @@ def get_chat_default_kwargs():
return default_chat_kwargs
def get_pictures_list(path):
file_manifest = [f for f in glob.glob(f'{path}/**/*.jpg', recursive=True)]
file_manifest += [f for f in glob.glob(f'{path}/**/*.jpeg', recursive=True)]
file_manifest += [f for f in glob.glob(f'{path}/**/*.png', recursive=True)]
return file_manifest
def have_any_recent_upload_image_files(chatbot):
_5min = 5 * 60
if chatbot is None: return False, None # chatbot is None
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
if not most_recent_uploaded: return False, None # most_recent_uploaded is None
if time.time() - most_recent_uploaded["time"] < _5min:
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
path = most_recent_uploaded['path']
file_manifest = get_pictures_list(path)
if len(file_manifest) == 0: return False, None
return True, file_manifest # most_recent_uploaded is new
else:
return False, None # most_recent_uploaded is too old
# Function to encode the image
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def get_max_token(llm_kwargs):
from request_llms.bridge_all import model_info
return model_info[llm_kwargs['llm_model']]['max_token']

查看文件

@@ -1,5 +1,5 @@
{
"version": 3.61,
"version": 3.64,
"show_feature": true,
"new_feature": "修复潜在的多用户冲突问题 <-> 接入Deepseek Coder <-> AutoGen多智能体插件测试版 <-> 修复本地模型在Windows下的加载BUG <-> 支持文心一言v4和星火v3 <-> 支持GLM3和智谱的API <-> 解决本地模型并发BUG <-> 支持动态追加基础功能按钮"
"new_feature": "支持直接拖拽文件到上传区 <-> 支持将图片粘贴到输入区 <-> 修复若干隐蔽的内存BUG <-> 修复多用户冲突问题 <-> 接入Deepseek Coder <-> AutoGen多智能体插件测试版"
}