diff --git a/README.md b/README.md
index 3167cf9a..922cb229 100644
--- a/README.md
+++ b/README.md
@@ -14,41 +14,69 @@ pinned: false
>
> 2023.11.12: 某些依赖包尚不兼容python 3.12,推荐python 3.11。
>
-> 2023.11.7: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目开源免费,近期发现有人蔑视开源协议并利用本项目违规圈钱,请提高警惕,谨防上当受骗。
+> 2023.12.26: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目完全开源免费,您可通过订阅[在线服务](https://github.com/binary-husky/gpt_academic/wiki/online)的方式鼓励本项目的发展。
+
+
+
+
+
+
GPT 学术优化 (GPT Academic)
+
+
+[![Github][Github-image]][Github-url]
+[![License][License-image]][License-url]
+[![Releases][Releases-image]][Releases-url]
+[![Installation][Installation-image]][Installation-url]
+[![Wiki][Wiki-image]][Wiki-url]
+[![PR][PRs-image]][PRs-url]
+
+[Github-image]: https://img.shields.io/badge/github-12100E.svg?style=flat-square
+[License-image]: https://img.shields.io/github/license/binary-husky/gpt_academic?label=License&style=flat-square&color=orange
+[Releases-image]: https://img.shields.io/github/release/binary-husky/gpt_academic?label=Release&style=flat-square&color=blue
+[Installation-image]: https://img.shields.io/badge/dynamic/json?color=blue&url=https://raw.githubusercontent.com/binary-husky/gpt_academic/master/version&query=$.version&label=Installation&style=flat-square
+[Wiki-image]: https://img.shields.io/badge/wiki-项目文档-black?style=flat-square
+[PRs-image]: https://img.shields.io/badge/PRs-welcome-pink?style=flat-square
+
+[Github-url]: https://github.com/binary-husky/gpt_academic
+[License-url]: https://github.com/binary-husky/gpt_academic/blob/master/LICENSE
+[Releases-url]: https://github.com/binary-husky/gpt_academic/releases
+[Installation-url]: https://github.com/binary-husky/gpt_academic#installation
+[Wiki-url]: https://github.com/binary-husky/gpt_academic/wiki
+[PRs-url]: https://github.com/binary-husky/gpt_academic/pulls
-
-#

GPT 学术优化 (GPT Academic)
+
+
**如果喜欢这个项目,请给它一个Star;如果您发明了好用的快捷键或插件,欢迎发pull requests!**
-If you like this project, please give it a Star. We also have a README in [English|](docs/README.English.md)[日本語|](docs/README.Japanese.md)[한국어|](docs/README.Korean.md)[Русский|](docs/README.Russian.md)[Français](docs/README.French.md) translated by this project itself.
-To translate this project to arbitrary language with GPT, read and run [`multi_language.py`](multi_language.py) (experimental).
+If you like this project, please give it a Star.
+Read this in [English](docs/README.English.md) | [日本語](docs/README.Japanese.md) | [한국어](docs/README.Korean.md) | [Русский](docs/README.Russian.md) | [Français](docs/README.French.md). All translations have been provided by the project itself. To translate this project to arbitrary language with GPT, read and run [`multi_language.py`](multi_language.py) (experimental).
+
+
-> **Note**
->
> 1.请注意只有 **高亮** 标识的插件(按钮)才支持读取文件,部分插件位于插件区的**下拉菜单**中。另外我们以**最高优先级**欢迎和处理任何新插件的PR。
>
-> 2.本项目中每个文件的功能都在[自译解报告`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/GPT‐Academic项目自译解报告)详细说明。随着版本的迭代,您也可以随时自行点击相关函数插件,调用GPT重新生成项目的自我解析报告。常见问题[`wiki`](https://github.com/binary-husky/gpt_academic/wiki)。[常规安装方法](#installation) | [一键安装脚本](https://github.com/binary-husky/gpt_academic/releases) | [配置说明](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。
+> 2.本项目中每个文件的功能都在[自译解报告](https://github.com/binary-husky/gpt_academic/wiki/GPT‐Academic项目自译解报告)`self_analysis.md`详细说明。随着版本的迭代,您也可以随时自行点击相关函数插件,调用GPT重新生成项目的自我解析报告。常见问题请查阅wiki。
+> [](#installation) [](https://github.com/binary-husky/gpt_academic/releases) [](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明) []([https://github.com/binary-husky/gpt_academic/wiki/项目配置说明](https://github.com/binary-husky/gpt_academic/wiki))
>
-> 3.本项目兼容并鼓励尝试国产大语言模型ChatGLM等。支持多个api-key共存,可在配置文件中填写如`API_KEY="openai-key1,openai-key2,azure-key3,api2d-key4"`。需要临时更换`API_KEY`时,在输入区输入临时的`API_KEY`然后回车键提交后即可生效。
+> 3.本项目兼容并鼓励尝试国产大语言模型ChatGLM等。支持多个api-key共存,可在配置文件中填写如`API_KEY="openai-key1,openai-key2,azure-key3,api2d-key4"`。需要临时更换`API_KEY`时,在输入区输入临时的`API_KEY`然后回车键提交即可生效。
-
-
+
功能(⭐= 近期新增功能) | 描述
--- | ---
-⭐[接入新模型](https://github.com/binary-husky/gpt_academic/wiki/%E5%A6%82%E4%BD%95%E5%88%87%E6%8D%A2%E6%A8%A1%E5%9E%8B)! | 百度[千帆](https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu)与文心一言, 通义千问[Qwen](https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary),上海AI-Lab[书生](https://github.com/InternLM/InternLM),讯飞[星火](https://xinghuo.xfyun.cn/),[LLaMa2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf),[智谱API](https://open.bigmodel.cn/),DALLE3, [DeepseekCoder](https://coder.deepseek.com/)
+⭐[接入新模型](https://github.com/binary-husky/gpt_academic/wiki/%E5%A6%82%E4%BD%95%E5%88%87%E6%8D%A2%E6%A8%A1%E5%9E%8B) | 百度[千帆](https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu)与文心一言, 通义千问[Qwen](https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary),上海AI-Lab[书生](https://github.com/InternLM/InternLM),讯飞[星火](https://xinghuo.xfyun.cn/),[LLaMa2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf),[智谱API](https://open.bigmodel.cn/),DALLE3, [DeepseekCoder](https://coder.deepseek.com/)
润色、翻译、代码解释 | 一键润色、翻译、查找论文语法错误、解释代码
[自定义快捷键](https://www.bilibili.com/video/BV14s4y1E7jN) | 支持自定义快捷键
模块化设计 | 支持自定义强大的[插件](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions),插件支持[热更新](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
-[程序剖析](https://www.bilibili.com/video/BV1cj411A7VW) | [插件] 一键可以剖析Python/C/C++/Java/Lua/...项目树 或 [自我剖析](https://www.bilibili.com/video/BV1cj411A7VW)
+[程序剖析](https://www.bilibili.com/video/BV1cj411A7VW) | [插件] 一键剖析Python/C/C++/Java/Lua/...项目树 或 [自我剖析](https://www.bilibili.com/video/BV1cj411A7VW)
读论文、[翻译](https://www.bilibili.com/video/BV1KT411x7Wn)论文 | [插件] 一键解读latex/pdf论文全文并生成摘要
Latex全文[翻译](https://www.bilibili.com/video/BV1nk4y1Y7Js/)、[润色](https://www.bilibili.com/video/BV1FT411H7c5/) | [插件] 一键翻译或润色latex论文
批量注释生成 | [插件] 一键批量生成函数注释
-Markdown[中英互译](https://www.bilibili.com/video/BV1yo4y157jV/) | [插件] 看到上面5种语言的[README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md)了吗?
+Markdown[中英互译](https://www.bilibili.com/video/BV1yo4y157jV/) | [插件] 看到上面5种语言的[README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md)了吗?就是出自他的手笔
chat分析报告生成 | [插件] 运行后自动生成总结汇报
[PDF论文全文翻译功能](https://www.bilibili.com/video/BV1KT411x7Wn) | [插件] PDF论文提取题目&摘要+翻译全文(多线程)
[Arxiv小助手](https://www.bilibili.com/video/BV1LM4y1279X) | [插件] 输入arxiv文章url即可一键翻译摘要+下载PDF
@@ -60,22 +88,22 @@ Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼
公式/图片/表格显示 | 可以同时显示公式的[tex形式和渲染形式](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png),支持公式、代码高亮
⭐AutoGen多智能体插件 | [插件] 借助微软AutoGen,探索多Agent的智能涌现可能!
启动暗色[主题](https://github.com/binary-husky/gpt_academic/issues/173) | 在浏览器url后面添加```/?__theme=dark```可以切换dark主题
-[多LLM模型](https://www.bilibili.com/video/BV1wT411p7yf)支持 | 同时被GPT3.5、GPT4、[清华ChatGLM2](https://github.com/THUDM/ChatGLM2-6B)、[复旦MOSS](https://github.com/OpenLMLab/MOSS)同时伺候的感觉一定会很不错吧?
+[多LLM模型](https://www.bilibili.com/video/BV1wT411p7yf)支持 | 同时被GPT3.5、GPT4、[清华ChatGLM2](https://github.com/THUDM/ChatGLM2-6B)、[复旦MOSS](https://github.com/OpenLMLab/MOSS)伺候的感觉一定会很不错吧?
⭐ChatGLM2微调模型 | 支持加载ChatGLM2微调模型,提供ChatGLM2微调辅助插件
更多LLM模型接入,支持[huggingface部署](https://huggingface.co/spaces/qingxu98/gpt-academic) | 加入Newbing接口(新必应),引入清华[Jittorllms](https://github.com/Jittor/JittorLLMs)支持[LLaMA](https://github.com/facebookresearch/llama)和[盘古α](https://openi.org.cn/pangu/)
⭐[void-terminal](https://github.com/binary-husky/void-terminal) pip包 | 脱离GUI,在Python中直接调用本项目的所有函数插件(开发中)
-⭐虚空终端插件 | [插件] 用自然语言,直接调度本项目其他插件
+⭐虚空终端插件 | [插件] 能够使用自然语言直接调度本项目其他插件
更多新功能展示 (图像生成等) …… | 见本文档结尾处 ……
- 新界面(修改`config.py`中的LAYOUT选项即可实现“左右布局”和“上下布局”的切换)
-

+
-- 所有按钮都通过读取functional.py动态生成,可随意加自定义功能,解放粘贴板
+- 所有按钮都通过读取functional.py动态生成,可随意加自定义功能,解放剪贴板
@@ -85,21 +113,23 @@ Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼
-- 如果输出包含公式,会同时以tex形式和渲染形式显示,方便复制和阅读
+- 如果输出包含公式,会以tex形式和渲染形式同时显示,方便复制和阅读
-- 懒得看项目代码?整个工程直接给chatgpt炫嘴里
+- 懒得看项目代码?直接把整个工程炫ChatGPT嘴里
-- 多种大语言模型混合调用(ChatGLM + OpenAI-GPT3.5 + [API2D](https://api2d.com/)-GPT4)
+- 多种大语言模型混合调用(ChatGLM + OpenAI-GPT3.5 + GPT4)
+
+
# Installation
### 安装方法I:直接运行 (Windows, Linux or MacOS)
@@ -110,13 +140,13 @@ Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼
cd gpt_academic
```
-2. 配置API_KEY
+2. 配置API_KEY等变量
- 在`config.py`中,配置API KEY等设置,[点击查看特殊网络环境设置方法](https://github.com/binary-husky/gpt_academic/issues/1) 。[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。
+ 在`config.py`中,配置API KEY等变量。[特殊网络环境设置方法](https://github.com/binary-husky/gpt_academic/issues/1)、[Wiki-项目配置说明](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。
- 「 程序会优先检查是否存在名为`config_private.py`的私密配置文件,并用其中的配置覆盖`config.py`的同名配置。如您能理解该读取逻辑,我们强烈建议您在`config.py`旁边创建一个名为`config_private.py`的新配置文件,并把`config.py`中的配置转移(复制)到`config_private.py`中(仅复制您修改过的配置条目即可)。 」
+ 「 程序会优先检查是否存在名为`config_private.py`的私密配置文件,并用其中的配置覆盖`config.py`的同名配置。如您能理解以上读取逻辑,我们强烈建议您在`config.py`同路径下创建一个名为`config_private.py`的新配置文件,并使用`config_private.py`配置项目,以确保更新或其他用户无法轻易查看您的私有配置 」。
- 「 支持通过`环境变量`配置项目,环境变量的书写格式参考`docker-compose.yml`文件或者我们的[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。配置读取优先级: `环境变量` > `config_private.py` > `config.py`。 」
+ 「 支持通过`环境变量`配置项目,环境变量的书写格式参考`docker-compose.yml`文件或者我们的[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。配置读取优先级: `环境变量` > `config_private.py` > `config.py` 」。
3. 安装依赖
@@ -149,6 +179,14 @@ git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss #
# 【可选步骤IV】确保config.py配置文件的AVAIL_LLM_MODELS包含了期望的模型,目前支持的全部模型如下(jittorllms系列目前仅支持docker方案):
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
+
+# 【可选步骤V】支持本地模型INT8,INT4量化(这里所指的模型本身不是量化版本,目前deepseek-coder支持,后面测试后会加入更多模型量化选择)
+pip install bitsandbyte
+# windows用户安装bitsandbytes需要使用下面bitsandbytes-windows-webui
+python -m pip install bitsandbytes --prefer-binary --extra-index-url=https://jllllll.github.io/bitsandbytes-windows-webui
+pip install -U git+https://github.com/huggingface/transformers.git
+pip install -U git+https://github.com/huggingface/accelerate.git
+pip install peft
```
@@ -163,7 +201,7 @@ AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-
### 安装方法II:使用Docker
-0. 部署项目的全部能力(这个是包含cuda和latex的大型镜像。但如果您网速慢、硬盘小,则不推荐使用这个)
+0. 部署项目的全部能力(这个是包含cuda和latex的大型镜像。但如果您网速慢、硬盘小,则不推荐该方法部署完整项目)
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml)
``` sh
@@ -192,26 +230,26 @@ P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以
```
-### 安装方法III:其他部署姿势
+### 安装方法III:其他部署方法
1. **Windows一键运行脚本**。
-完全不熟悉python环境的Windows用户可以下载[Release](https://github.com/binary-husky/gpt_academic/releases)中发布的一键运行脚本安装无本地模型的版本。
-脚本的贡献来源是[oobabooga](https://github.com/oobabooga/one-click-installers)。
+完全不熟悉python环境的Windows用户可以下载[Release](https://github.com/binary-husky/gpt_academic/releases)中发布的一键运行脚本安装无本地模型的版本。脚本贡献来源:[oobabooga](https://github.com/oobabooga/one-click-installers)。
2. 使用第三方API、Azure等、文心一言、星火等,见[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)
3. 云服务器远程部署避坑指南。
请访问[云服务器远程部署wiki](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
-4. 一些新型的部署平台或方法
+4. 在其他平台部署&二级网址部署
- 使用Sealos[一键部署](https://github.com/binary-husky/gpt_academic/issues/993)。
- 使用WSL2(Windows Subsystem for Linux 子系统)。请访问[部署wiki-2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
- 如何在二级网址(如`http://localhost/subpath`)下运行。请访问[FastAPI运行说明](docs/WithFastapi.md)
+
# Advanced Usage
### I:自定义新的便捷按钮(学术快捷键)
-任意文本编辑器打开`core_functional.py`,添加条目如下,然后重启程序。(如按钮已存在,那么前缀、后缀都支持热修改,无需重启程序即可生效。)
+任意文本编辑器打开`core_functional.py`,添加如下条目,然后重启程序。(如果按钮已存在,那么可以直接修改(前缀、后缀都已支持热修改),无需重启程序即可生效。)
例如
```python
@@ -233,6 +271,7 @@ P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以
本项目的插件编写、调试难度很低,只要您具备一定的python基础知识,就可以仿照我们提供的模板实现自己的插件功能。
详情请参考[函数插件指南](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)。
+
# Updates
### I:动态
@@ -332,7 +371,7 @@ GPT Academic开发者QQ群:`610599535`
- 已知问题
- 某些浏览器翻译插件干扰此软件前端的运行
- - 官方Gradio目前有很多兼容性Bug,请务必使用`requirement.txt`安装Gradio
+ - 官方Gradio目前有很多兼容性问题,请**务必使用`requirement.txt`安装Gradio**
### III:主题
可以通过修改`THEME`选项(config.py)变更主题
@@ -343,8 +382,8 @@ GPT Academic开发者QQ群:`610599535`
1. `master` 分支: 主分支,稳定版
2. `frontier` 分支: 开发分支,测试版
-3. 如何接入其他大模型:[接入其他大模型](request_llms/README.md)
-
+3. 如何[接入其他大模型](request_llms/README.md)
+4. 访问GPT-Academic的[在线服务并支持我们](https://github.com/binary-husky/gpt_academic/wiki/online)
### V:参考与学习
diff --git a/app.py b/app.py
index 841ab9a0..4a15e07e 100644
--- a/app.py
+++ b/app.py
@@ -1,6 +1,17 @@
import os; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
-import pickle
-import base64
+
+help_menu_description = \
+"""Github源代码开源和更新[地址🚀](https://github.com/binary-husky/gpt_academic),
+感谢热情的[开发者们❤️](https://github.com/binary-husky/gpt_academic/graphs/contributors).
+常见问题请查阅[项目Wiki](https://github.com/binary-husky/gpt_academic/wiki),
+如遇到Bug请前往[Bug反馈](https://github.com/binary-husky/gpt_academic/issues).
+普通对话使用说明: 1. 输入问题; 2. 点击提交
+基础功能区使用说明: 1. 输入文本; 2. 点击任意基础功能区按钮
+函数插件区使用说明: 1. 输入路径/问题, 或者上传文件; 2. 点击任意函数插件区按钮
+虚空终端使用说明: 点击虚空终端, 然后根据提示输入指令, 再次点击虚空终端
+如何保存对话: 点击保存当前的对话按钮
+如何语音对话: 请阅读Wiki
+如何临时更换API_KEY: 在输入区输入临时API_KEY后提交(网页刷新后失效)"""
def main():
import subprocess, sys
@@ -10,7 +21,7 @@ def main():
raise ModuleNotFoundError("使用项目内置Gradio获取最优体验! 请运行 `pip install -r requirements.txt` 指令安装内置Gradio及其他依赖, 详情信息见requirements.txt.")
from request_llms.bridge_all import predict
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, load_chat_cookies, DummyWith
- # 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
+ # 建议您复制一个config_private.py放自己的秘密, 如API和代理网址
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION = get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION')
CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = get_conf('CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
ENABLE_AUDIO, AUTO_CLEAR_TXT, PATH_LOGGING, AVAIL_THEMES, THEME = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'PATH_LOGGING', 'AVAIL_THEMES', 'THEME')
@@ -20,21 +31,11 @@ def main():
# 如果WEB_PORT是-1, 则随机选取WEB端口
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
from check_proxy import get_current_version
- from themes.theme import adjust_theme, advanced_css, theme_declaration, load_dynamic_theme
-
+ from themes.theme import adjust_theme, advanced_css, theme_declaration
+ from themes.theme import js_code_for_css_changing, js_code_for_darkmode_init, js_code_for_toggle_darkmode, js_code_for_persistent_cookie_init
+ from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, init_cookie
title_html = f"GPT 学术优化 {get_current_version()}
{theme_declaration}"
- description = "Github源代码开源和更新[地址🚀](https://github.com/binary-husky/gpt_academic), "
- description += "感谢热情的[开发者们❤️](https://github.com/binary-husky/gpt_academic/graphs/contributors)."
- description += "常见问题请查阅[项目Wiki](https://github.com/binary-husky/gpt_academic/wiki), "
- description += "如遇到Bug请前往[Bug反馈](https://github.com/binary-husky/gpt_academic/issues)."
- description += "普通对话使用说明: 1. 输入问题; 2. 点击提交"
- description += "基础功能区使用说明: 1. 输入文本; 2. 点击任意基础功能区按钮"
- description += "函数插件区使用说明: 1. 输入路径/问题, 或者上传文件; 2. 点击任意函数插件区按钮"
- description += "虚空终端使用说明: 点击虚空终端, 然后根据提示输入指令, 再次点击虚空终端"
- description += "如何保存对话: 点击保存当前的对话按钮"
- description += "如何语音对话: 请阅读Wiki"
- description += "如何临时更换API_KEY: 在输入区输入临时API_KEY后提交(网页刷新后失效)"
-
+
# 问询记录, python 版本建议3.9+(越新越好)
import logging, uuid
os.makedirs(PATH_LOGGING, exist_ok=True)
@@ -88,7 +89,7 @@ def main():
with gr_L2(scale=1, elem_id="gpt-panel"):
with gr.Accordion("输入区", open=True, elem_id="input-panel") as area_input_primary:
with gr.Row():
- txt = gr.Textbox(show_label=False, lines=2, placeholder="输入问题或API密钥,输入多个密钥时,用英文逗号间隔。支持OpenAI密钥和API2D密钥共存。").style(container=False)
+ txt = gr.Textbox(show_label=False, lines=2, placeholder="输入问题或API密钥,输入多个密钥时,用英文逗号间隔。支持多个OpenAI密钥共存。").style(container=False)
with gr.Row():
submitBtn = gr.Button("提交", elem_id="elem_submit", variant="primary")
with gr.Row():
@@ -149,7 +150,7 @@ def main():
with gr.Row():
with gr.Tab("上传文件", elem_id="interact-panel"):
gr.Markdown("请上传本地文件/压缩包供“函数插件区”功能调用。请注意: 上传文件后会自动把输入区修改为相应路径。")
- file_upload_2 = gr.Files(label="任何文件, 推荐上传压缩文件(zip, tar)", file_count="multiple")
+ file_upload_2 = gr.Files(label="任何文件, 推荐上传压缩文件(zip, tar)", file_count="multiple", elem_id="elem_upload_float")
with gr.Tab("更换模型 & Prompt", elem_id="interact-panel"):
md_dropdown = gr.Dropdown(AVAIL_LLM_MODELS, value=LLM_MODEL, label="更换LLM模型/请求源").style(container=False)
@@ -165,39 +166,24 @@ def main():
checkboxes_2 = gr.CheckboxGroup(["自定义菜单"],
value=[], label="显示/隐藏自定义菜单", elem_id='cbs').style(container=False)
dark_mode_btn = gr.Button("切换界面明暗 ☀", variant="secondary").style(size="sm")
- dark_mode_btn.click(None, None, None, _js="""() => {
- if (document.querySelectorAll('.dark').length) {
- document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
- } else {
- document.querySelector('body').classList.add('dark');
- }
- }""",
+ dark_mode_btn.click(None, None, None, _js=js_code_for_toggle_darkmode,
)
with gr.Tab("帮助", elem_id="interact-panel"):
- gr.Markdown(description)
+ gr.Markdown(help_menu_description)
with gr.Floating(init_x="20%", init_y="50%", visible=False, width="40%", drag="top") as area_input_secondary:
with gr.Accordion("浮动输入区", open=True, elem_id="input-panel2"):
with gr.Row() as row:
row.style(equal_height=True)
with gr.Column(scale=10):
- txt2 = gr.Textbox(show_label=False, placeholder="Input question here.", lines=8, label="输入区2").style(container=False)
+ txt2 = gr.Textbox(show_label=False, placeholder="Input question here.",
+ elem_id='user_input_float', lines=8, label="输入区2").style(container=False)
with gr.Column(scale=1, min_width=40):
submitBtn2 = gr.Button("提交", variant="primary"); submitBtn2.style(size="sm")
resetBtn2 = gr.Button("重置", variant="secondary"); resetBtn2.style(size="sm")
stopBtn2 = gr.Button("停止", variant="secondary"); stopBtn2.style(size="sm")
clearBtn2 = gr.Button("清除", variant="secondary", visible=False); clearBtn2.style(size="sm")
- def to_cookie_str(d):
- # Pickle the dictionary and encode it as a string
- pickled_dict = pickle.dumps(d)
- cookie_value = base64.b64encode(pickled_dict).decode('utf-8')
- return cookie_value
-
- def from_cookie_str(c):
- # Decode the base64-encoded string and unpickle it into a dictionary
- pickled_dict = base64.b64decode(c.encode('utf-8'))
- return pickle.loads(pickled_dict)
with gr.Floating(init_x="20%", init_y="50%", visible=False, width="40%", drag="top") as area_customize:
with gr.Accordion("自定义菜单", open=True, elem_id="edit-panel"):
@@ -229,11 +215,11 @@ def main():
else:
ret.update({predefined_btns[basic_btn_dropdown_]: gr.update(visible=True, value=basic_fn_title)})
ret.update({cookies: cookies_})
- try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
+ try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
except: persistent_cookie_ = {}
- persistent_cookie_["custom_bnt"] = customize_fn_overwrite_ # dict update new value
- persistent_cookie_ = to_cookie_str(persistent_cookie_) # persistent cookie to dict
- ret.update({persistent_cookie: persistent_cookie_}) # write persistent cookie
+ persistent_cookie_["custom_bnt"] = customize_fn_overwrite_ # dict update new value
+ persistent_cookie_ = to_cookie_str(persistent_cookie_) # persistent cookie to dict
+ ret.update({persistent_cookie: persistent_cookie_}) # write persistent cookie
return ret
def reflesh_btn(persistent_cookie_, cookies_):
@@ -254,10 +240,11 @@ def main():
else: ret.update({predefined_btns[k]: gr.update(visible=True, value=v['Title'])})
return ret
- basic_fn_load.click(reflesh_btn, [persistent_cookie, cookies],[cookies, *customize_btns.values(), *predefined_btns.values()])
+ basic_fn_load.click(reflesh_btn, [persistent_cookie, cookies], [cookies, *customize_btns.values(), *predefined_btns.values()])
h = basic_fn_confirm.click(assign_btn, [persistent_cookie, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix],
[persistent_cookie, cookies, *customize_btns.values(), *predefined_btns.values()])
- h.then(None, [persistent_cookie], None, _js="""(persistent_cookie)=>{setCookie("persistent_cookie", persistent_cookie, 5);}""") # save persistent cookie
+ # save persistent cookie
+ h.then(None, [persistent_cookie], None, _js="""(persistent_cookie)=>{setCookie("persistent_cookie", persistent_cookie, 5);}""")
# 功能区显示开关与功能区的互动
def fn_area_visibility(a):
@@ -307,8 +294,8 @@ def main():
click_handle = btn.click(fn=ArgsGeneralWrapper(predict), inputs=[*input_combo, gr.State(True), gr.State(btn.value)], outputs=output_combo)
cancel_handles.append(click_handle)
# 文件上传区,接收文件后与chatbot的互动
- file_upload.upload(on_file_uploaded, [file_upload, chatbot, txt, txt2, checkboxes, cookies], [chatbot, txt, txt2, cookies])
- file_upload_2.upload(on_file_uploaded, [file_upload_2, chatbot, txt, txt2, checkboxes, cookies], [chatbot, txt, txt2, cookies])
+ file_upload.upload(on_file_uploaded, [file_upload, chatbot, txt, txt2, checkboxes, cookies], [chatbot, txt, txt2, cookies]).then(None, None, None, _js=r"()=>{toast_push('上传完毕 ...'); cancel_loading_status();}")
+ file_upload_2.upload(on_file_uploaded, [file_upload_2, chatbot, txt, txt2, checkboxes, cookies], [chatbot, txt, txt2, cookies]).then(None, None, None, _js=r"()=>{toast_push('上传完毕 ...'); cancel_loading_status();}")
# 函数插件-固定按钮区
for k in plugins:
if not plugins[k].get("AsButton", True): continue
@@ -344,18 +331,7 @@ def main():
None,
[secret_css],
None,
- _js="""(css) => {
- var existingStyles = document.querySelectorAll("style[data-loaded-css]");
- for (var i = 0; i < existingStyles.length; i++) {
- var style = existingStyles[i];
- style.parentNode.removeChild(style);
- }
- var styleElement = document.createElement('style');
- styleElement.setAttribute('data-loaded-css', css);
- styleElement.innerHTML = css;
- document.head.appendChild(styleElement);
- }
- """
+ _js=js_code_for_css_changing
)
# 随变按钮的回调函数注册
def route(request: gr.Request, k, *args, **kwargs):
@@ -387,27 +363,10 @@ def main():
rad.feed(cookies['uuid'].hex, audio)
audio_mic.stream(deal_audio, inputs=[audio_mic, cookies])
- def init_cookie(cookies, chatbot):
- # 为每一位访问的用户赋予一个独一无二的uuid编码
- cookies.update({'uuid': uuid.uuid4()})
- return cookies
+
demo.load(init_cookie, inputs=[cookies, chatbot], outputs=[cookies])
- darkmode_js = """(dark) => {
- dark = dark == "True";
- if (document.querySelectorAll('.dark').length) {
- if (!dark){
- document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
- }
- } else {
- if (dark){
- document.querySelector('body').classList.add('dark');
- }
- }
- }"""
- load_cookie_js = """(persistent_cookie) => {
- return getCookie("persistent_cookie");
- }"""
- demo.load(None, inputs=None, outputs=[persistent_cookie], _js=load_cookie_js)
+ darkmode_js = js_code_for_darkmode_init
+ demo.load(None, inputs=None, outputs=[persistent_cookie], _js=js_code_for_persistent_cookie_init)
demo.load(None, inputs=[dark_mode], outputs=None, _js=darkmode_js) # 配置暗色主题或亮色主题
demo.load(None, inputs=[gr.Textbox(LAYOUT, visible=False)], outputs=None, _js='(LAYOUT)=>{GptAcademicJavaScriptInit(LAYOUT);}')
@@ -418,8 +377,18 @@ def main():
if DARK_MODE: print(f"\t「暗色主题已启用(支持动态切换主题)」: http://localhost:{PORT}")
else: print(f"\t「亮色主题已启用(支持动态切换主题)」: http://localhost:{PORT}")
+ def auto_updates(): time.sleep(0); auto_update()
+ def open_browser(): time.sleep(2); webbrowser.open_new_tab(f"http://localhost:{PORT}")
+ def warm_up_mods(): time.sleep(6); warm_up_modules()
+
+ threading.Thread(target=auto_updates, name="self-upgrade", daemon=True).start() # 查看自动更新
+ threading.Thread(target=open_browser, name="open-browser", daemon=True).start() # 打开浏览器页面
+ threading.Thread(target=warm_up_mods, name="warm-up", daemon=True).start() # 预热tiktoken模块
+
+ run_delayed_tasks()
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(server_name="0.0.0.0", share=False, favicon_path="docs/logo.png", blocked_paths=["config.py","config_private.py","docker-compose.yml","Dockerfile"])
+
# 如果需要在二级路径下运行
# CUSTOM_PATH = get_conf('CUSTOM_PATH')
# if CUSTOM_PATH != "/":
diff --git a/check_proxy.py b/check_proxy.py
index e2ba3f1a..2df81855 100644
--- a/check_proxy.py
+++ b/check_proxy.py
@@ -159,7 +159,15 @@ def warm_up_modules():
enc.encode("模块预热", disallowed_special=())
enc = model_info["gpt-4"]['tokenizer']
enc.encode("模块预热", disallowed_special=())
+
+def warm_up_vectordb():
+ print('正在执行一些模块的预热 ...')
+ from toolbox import ProxyNetworkActivate
+ with ProxyNetworkActivate("Warmup_Modules"):
+ import nltk
+ with ProxyNetworkActivate("Warmup_Modules"): nltk.download("punkt")
+
if __name__ == '__main__':
import os
os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
diff --git a/config.py b/config.py
index 46d1d90d..48366bfc 100644
--- a/config.py
+++ b/config.py
@@ -19,13 +19,13 @@ API_KEY = "此处填API密钥" # 可同时填写多个API-KEY,用英文逗
USE_PROXY = False
if USE_PROXY:
"""
+ 代理网络的地址,打开你的代理软件查看代理协议(socks5h / http)、地址(localhost)和端口(11284)
填写格式是 [协议]:// [地址] :[端口],填写之前不要忘记把USE_PROXY改成True,如果直接在海外服务器部署,此处不修改
<配置教程&视频教程> https://github.com/binary-husky/gpt_academic/issues/1>
[协议] 常见协议无非socks5h/http; 例如 v2**y 和 ss* 的默认本地协议是socks5h; 而cl**h 的默认本地协议是http
- [地址] 懂的都懂,不懂就填localhost或者127.0.0.1肯定错不了(localhost意思是代理软件安装在本机上)
+ [地址] 填localhost或者127.0.0.1(localhost意思是代理软件安装在本机上)
[端口] 在代理软件的设置里找。虽然不同的代理软件界面不一样,但端口号都应该在最显眼的位置上
"""
- # 代理网络的地址,打开你的*学*网软件查看代理的协议(socks5h / http)、地址(localhost)和端口(11284)
proxies = {
# [协议]:// [地址] :[端口]
"http": "socks5h://localhost:11284", # 再例如 "http": "http://127.0.0.1:7890",
@@ -70,7 +70,7 @@ LAYOUT = "LEFT-RIGHT" # "LEFT-RIGHT"(左右布局) # "TOP-DOWN"(上下
# 暗色模式 / 亮色模式
-DARK_MODE = True
+DARK_MODE = False
# 发送请求到OpenAI后,等待多久判定为超时
@@ -99,14 +99,25 @@ AVAIL_LLM_MODELS = ["gpt-3.5-turbo-1106","gpt-4-1106-preview","gpt-4-vision-prev
"api2d-gpt-3.5-turbo", 'api2d-gpt-3.5-turbo-16k',
"gpt-4", "gpt-4-32k", "azure-gpt-4", "api2d-gpt-4",
"chatglm3", "moss", "claude-2"]
-# P.S. 其他可用的模型还包括 ["zhipuai", "qianfan", "deepseekcoder", "llama2", "qwen", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-random"
-# "spark", "sparkv2", "sparkv3", "chatglm_onnx", "claude-1-100k", "claude-2", "internlm", "jittorllms_pangualpha", "jittorllms_llama"]
+# P.S. 其他可用的模型还包括 ["zhipuai", "qianfan", "deepseekcoder", "llama2", "qwen-local", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-random"
+# "spark", "sparkv2", "sparkv3", "chatglm_onnx", "claude-1-100k", "claude-2", "internlm", "jittorllms_pangualpha", "jittorllms_llama"
+# “qwen-turbo", "qwen-plus", "qwen-max"]
# 定义界面上“询问多个GPT模型”插件应该使用哪些模型,请从AVAIL_LLM_MODELS中选择,并在不同模型之间用`&`间隔,例如"gpt-3.5-turbo&chatglm3&azure-gpt-4"
MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
+# 选择本地模型变体(只有当AVAIL_LLM_MODELS包含了对应本地模型时,才会起作用)
+# 如果你选择Qwen系列的模型,那么请在下面的QWEN_MODEL_SELECTION中指定具体的模型
+# 也可以是具体的模型路径
+QWEN_LOCAL_MODEL_SELECTION = "Qwen/Qwen-1_8B-Chat-Int8"
+
+
+# 接入通义千问在线大模型 https://dashscope.console.aliyun.com/
+DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY
+
+
# 百度千帆(LLM_MODEL="qianfan")
BAIDU_CLOUD_API_KEY = ''
BAIDU_CLOUD_SECRET_KEY = ''
@@ -121,7 +132,6 @@ CHATGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
LOCAL_MODEL_QUANT = "FP16" # 默认 "FP16" "INT4" 启用量化INT4版本 "INT8" 启用量化INT8版本
-
# 设置gradio的并行线程数(不需要修改)
CONCURRENT_COUNT = 100
@@ -239,6 +249,10 @@ WHEN_TO_USE_PROXY = ["Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
BLOCK_INVALID_APIKEY = False
+# 启用插件热加载
+PLUGIN_HOT_RELOAD = False
+
+
# 自定义按钮的最大数量限制
NUM_CUSTOM_BASIC_BTN = 4
@@ -282,6 +296,9 @@ NUM_CUSTOM_BASIC_BTN = 4
│ ├── ZHIPUAI_API_KEY
│ └── ZHIPUAI_MODEL
│
+├── "qwen-turbo" 等通义千问大模型
+│ └── DASHSCOPE_API_KEY
+│
└── "newbing" Newbing接口不再稳定,不推荐使用
├── NEWBING_STYLE
└── NEWBING_COOKIES
@@ -298,7 +315,7 @@ NUM_CUSTOM_BASIC_BTN = 4
├── "jittorllms_pangualpha"
├── "jittorllms_llama"
├── "deepseekcoder"
-├── "qwen"
+├── "qwen-local"
├── RWKV的支持见Wiki
└── "llama2"
diff --git a/crazy_functional.py b/crazy_functional.py
index 3d4df718..c323dc32 100644
--- a/crazy_functional.py
+++ b/crazy_functional.py
@@ -345,7 +345,7 @@ def get_crazy_functions():
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
- "ArgsReminder": "支持任意数量的llm接口,用&符号分隔。例如chatglm&gpt-3.5-turbo&api2d-gpt-4", # 高级参数输入区的显示提示
+ "ArgsReminder": "支持任意数量的llm接口,用&符号分隔。例如chatglm&gpt-3.5-turbo&gpt-4", # 高级参数输入区的显示提示
"Function": HotReload(同时问询_指定模型)
},
})
@@ -354,9 +354,9 @@ def get_crazy_functions():
print('Load function plugin failed')
try:
- from crazy_functions.图片生成 import 图片生成_DALLE2, 图片生成_DALLE3
+ from crazy_functions.图片生成 import 图片生成_DALLE2, 图片生成_DALLE3, 图片修改_DALLE2
function_plugins.update({
- "图片生成_DALLE2 (先切换模型到openai或api2d)": {
+ "图片生成_DALLE2 (先切换模型到gpt-*)": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
@@ -367,16 +367,26 @@ def get_crazy_functions():
},
})
function_plugins.update({
- "图片生成_DALLE3 (先切换模型到openai或api2d)": {
+ "图片生成_DALLE3 (先切换模型到gpt-*)": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
- "ArgsReminder": "在这里输入分辨率, 如1024x1024(默认),支持 1024x1024, 1792x1024, 1024x1792。如需生成高清图像,请输入 1024x1024-HD, 1792x1024-HD, 1024x1792-HD。", # 高级参数输入区的显示提示
+ "ArgsReminder": "在这里输入自定义参数「分辨率-质量(可选)-风格(可选)」, 参数示例「1024x1024-hd-vivid」 || 分辨率支持 「1024x1024」(默认) /「1792x1024」/「1024x1792」 || 质量支持 「-standard」(默认) /「-hd」 || 风格支持 「-vivid」(默认) /「-natural」", # 高级参数输入区的显示提示
"Info": "使用DALLE3生成图片 | 输入参数字符串,提供图像的内容",
"Function": HotReload(图片生成_DALLE3)
},
})
+ function_plugins.update({
+ "图片修改_DALLE2 (先切换模型到gpt-*)": {
+ "Group": "对话",
+ "Color": "stop",
+ "AsButton": False,
+ "AdvancedArgs": False, # 调用时,唤起高级参数输入区(默认False)
+ # "Info": "使用DALLE2修改图片 | 输入参数字符串,提供图像的内容",
+ "Function": HotReload(图片修改_DALLE2)
+ },
+ })
except:
print(trimmed_format_exc())
print('Load function plugin failed')
@@ -430,7 +440,7 @@ def get_crazy_functions():
print('Load function plugin failed')
try:
- from crazy_functions.Langchain知识库 import 知识库问答
+ from crazy_functions.知识库问答 import 知识库文件注入
function_plugins.update({
"构建知识库(先上传文件素材,再运行此插件)": {
"Group": "对话",
@@ -438,7 +448,7 @@ def get_crazy_functions():
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": "此处待注入的知识库名称id, 默认为default。文件进入知识库后可长期保存。可以通过再次调用本插件的方式,向知识库追加更多文档。",
- "Function": HotReload(知识库问答)
+ "Function": HotReload(知识库文件注入)
}
})
except:
@@ -446,9 +456,9 @@ def get_crazy_functions():
print('Load function plugin failed')
try:
- from crazy_functions.Langchain知识库 import 读取知识库作答
+ from crazy_functions.知识库问答 import 读取知识库作答
function_plugins.update({
- "知识库问答(构建知识库后,再运行此插件)": {
+ "知识库文件注入(构建知识库后,再运行此插件)": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
@@ -489,7 +499,7 @@ def get_crazy_functions():
})
from crazy_functions.Latex输出PDF结果 import Latex翻译中文并重新编译PDF
function_plugins.update({
- "Arixv论文精细翻译(输入arxivID)[需Latex]": {
+ "Arxiv论文精细翻译(输入arxivID)[需Latex]": {
"Group": "学术",
"Color": "stop",
"AsButton": False,
@@ -580,6 +590,20 @@ def get_crazy_functions():
print(trimmed_format_exc())
print('Load function plugin failed')
+ try:
+ from crazy_functions.互动小游戏 import 随机小游戏
+ function_plugins.update({
+ "随机互动小游戏(仅供测试)": {
+ "Group": "智能体",
+ "Color": "stop",
+ "AsButton": False,
+ "Function": HotReload(随机小游戏)
+ }
+ })
+ except:
+ print(trimmed_format_exc())
+ print('Load function plugin failed')
+
# try:
# from crazy_functions.chatglm微调工具 import 微调数据集生成
# function_plugins.update({
diff --git a/crazy_functions/Latex全文润色.py b/crazy_functions/Latex全文润色.py
index 0bc7d401..b736fe89 100644
--- a/crazy_functions/Latex全文润色.py
+++ b/crazy_functions/Latex全文润色.py
@@ -26,8 +26,8 @@ class PaperFileGroup():
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
- from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
- segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit)
+ from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
+ segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)
diff --git a/crazy_functions/Latex全文翻译.py b/crazy_functions/Latex全文翻译.py
index 846bd80d..49470c86 100644
--- a/crazy_functions/Latex全文翻译.py
+++ b/crazy_functions/Latex全文翻译.py
@@ -26,8 +26,8 @@ class PaperFileGroup():
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
- from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
- segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit)
+ from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
+ segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)
diff --git a/crazy_functions/Latex输出PDF结果.py b/crazy_functions/Latex输出PDF结果.py
index f3919edc..18a8d1ba 100644
--- a/crazy_functions/Latex输出PDF结果.py
+++ b/crazy_functions/Latex输出PDF结果.py
@@ -88,6 +88,9 @@ def arxiv_download(chatbot, history, txt, allow_cache=True):
target_file = pj(translation_dir, 'translate_zh.pdf')
if os.path.exists(target_file):
promote_file_to_downloadzone(target_file, rename_file=None, chatbot=chatbot)
+ target_file_compare = pj(translation_dir, 'comparison.pdf')
+ if os.path.exists(target_file_compare):
+ promote_file_to_downloadzone(target_file_compare, rename_file=None, chatbot=chatbot)
return target_file
return False
def is_float(s):
diff --git a/crazy_functions/crazy_utils.py b/crazy_functions/crazy_utils.py
index afe079f4..4d3b1953 100644
--- a/crazy_functions/crazy_utils.py
+++ b/crazy_functions/crazy_utils.py
@@ -1,4 +1,4 @@
-from toolbox import update_ui, get_conf, trimmed_format_exc, get_max_token
+from toolbox import update_ui, get_conf, trimmed_format_exc, get_max_token, Singleton
import threading
import os
import logging
@@ -139,6 +139,8 @@ def can_multi_process(llm):
if llm.startswith('gpt-'): return True
if llm.startswith('api2d-'): return True
if llm.startswith('azure-'): return True
+ if llm.startswith('spark'): return True
+ if llm.startswith('zhipuai'): return True
return False
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
@@ -312,95 +314,6 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
return gpt_response_collection
-def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
- def cut(txt_tocut, must_break_at_empty_line): # 递归
- if get_token_fn(txt_tocut) <= limit:
- return [txt_tocut]
- else:
- lines = txt_tocut.split('\n')
- estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
- estimated_line_cut = int(estimated_line_cut)
- for cnt in reversed(range(estimated_line_cut)):
- if must_break_at_empty_line:
- if lines[cnt] != "":
- continue
- print(cnt)
- prev = "\n".join(lines[:cnt])
- post = "\n".join(lines[cnt:])
- if get_token_fn(prev) < limit:
- break
- if cnt == 0:
- raise RuntimeError("存在一行极长的文本!")
- # print(len(post))
- # 列表递归接龙
- result = [prev]
- result.extend(cut(post, must_break_at_empty_line))
- return result
- try:
- return cut(txt, must_break_at_empty_line=True)
- except RuntimeError:
- return cut(txt, must_break_at_empty_line=False)
-
-
-def force_breakdown(txt, limit, get_token_fn):
- """
- 当无法用标点、空行分割时,我们用最暴力的方法切割
- """
- for i in reversed(range(len(txt))):
- if get_token_fn(txt[:i]) < limit:
- return txt[:i], txt[i:]
- return "Tiktoken未知错误", "Tiktoken未知错误"
-
-def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
- # 递归
- def cut(txt_tocut, must_break_at_empty_line, break_anyway=False):
- if get_token_fn(txt_tocut) <= limit:
- return [txt_tocut]
- else:
- lines = txt_tocut.split('\n')
- estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
- estimated_line_cut = int(estimated_line_cut)
- cnt = 0
- for cnt in reversed(range(estimated_line_cut)):
- if must_break_at_empty_line:
- if lines[cnt] != "":
- continue
- prev = "\n".join(lines[:cnt])
- post = "\n".join(lines[cnt:])
- if get_token_fn(prev) < limit:
- break
- if cnt == 0:
- if break_anyway:
- prev, post = force_breakdown(txt_tocut, limit, get_token_fn)
- else:
- raise RuntimeError(f"存在一行极长的文本!{txt_tocut}")
- # print(len(post))
- # 列表递归接龙
- result = [prev]
- result.extend(cut(post, must_break_at_empty_line, break_anyway=break_anyway))
- return result
- try:
- # 第1次尝试,将双空行(\n\n)作为切分点
- return cut(txt, must_break_at_empty_line=True)
- except RuntimeError:
- try:
- # 第2次尝试,将单空行(\n)作为切分点
- return cut(txt, must_break_at_empty_line=False)
- except RuntimeError:
- try:
- # 第3次尝试,将英文句号(.)作为切分点
- res = cut(txt.replace('.', '。\n'), must_break_at_empty_line=False) # 这个中文的句号是故意的,作为一个标识而存在
- return [r.replace('。\n', '.') for r in res]
- except RuntimeError as e:
- try:
- # 第4次尝试,将中文句号(。)作为切分点
- res = cut(txt.replace('。', '。。\n'), must_break_at_empty_line=False)
- return [r.replace('。。\n', '。') for r in res]
- except RuntimeError as e:
- # 第5次尝试,没办法了,随便切一下敷衍吧
- return cut(txt, must_break_at_empty_line=False, break_anyway=True)
-
-
def read_and_clean_pdf_text(fp):
"""
@@ -631,90 +544,6 @@ def get_files_from_everything(txt, type): # type='.md'
-
-def Singleton(cls):
- _instance = {}
-
- def _singleton(*args, **kargs):
- if cls not in _instance:
- _instance[cls] = cls(*args, **kargs)
- return _instance[cls]
-
- return _singleton
-
-
-@Singleton
-class knowledge_archive_interface():
- def __init__(self) -> None:
- self.threadLock = threading.Lock()
- self.current_id = ""
- self.kai_path = None
- self.qa_handle = None
- self.text2vec_large_chinese = None
-
- def get_chinese_text2vec(self):
- if self.text2vec_large_chinese is None:
- # < -------------------预热文本向量化模组--------------- >
- from toolbox import ProxyNetworkActivate
- print('Checking Text2vec ...')
- from langchain.embeddings.huggingface import HuggingFaceEmbeddings
- with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
- self.text2vec_large_chinese = HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
-
- return self.text2vec_large_chinese
-
-
- def feed_archive(self, file_manifest, id="default"):
- self.threadLock.acquire()
- # import uuid
- self.current_id = id
- from zh_langchain import construct_vector_store
- self.qa_handle, self.kai_path = construct_vector_store(
- vs_id=self.current_id,
- files=file_manifest,
- sentence_size=100,
- history=[],
- one_conent="",
- one_content_segmentation="",
- text2vec = self.get_chinese_text2vec(),
- )
- self.threadLock.release()
-
- def get_current_archive_id(self):
- return self.current_id
-
- def get_loaded_file(self):
- return self.qa_handle.get_loaded_file()
-
- def answer_with_archive_by_id(self, txt, id):
- self.threadLock.acquire()
- if not self.current_id == id:
- self.current_id = id
- from zh_langchain import construct_vector_store
- self.qa_handle, self.kai_path = construct_vector_store(
- vs_id=self.current_id,
- files=[],
- sentence_size=100,
- history=[],
- one_conent="",
- one_content_segmentation="",
- text2vec = self.get_chinese_text2vec(),
- )
- VECTOR_SEARCH_SCORE_THRESHOLD = 0
- VECTOR_SEARCH_TOP_K = 4
- CHUNK_SIZE = 512
- resp, prompt = self.qa_handle.get_knowledge_based_conent_test(
- query = txt,
- vs_path = self.kai_path,
- score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
- vector_search_top_k=VECTOR_SEARCH_TOP_K,
- chunk_conent=True,
- chunk_size=CHUNK_SIZE,
- text2vec = self.get_chinese_text2vec(),
- )
- self.threadLock.release()
- return resp, prompt
-
@Singleton
class nougat_interface():
def __init__(self):
diff --git a/crazy_functions/latex_fns/latex_actions.py b/crazy_functions/latex_fns/latex_actions.py
index 74e8757e..8772f5e1 100644
--- a/crazy_functions/latex_fns/latex_actions.py
+++ b/crazy_functions/latex_fns/latex_actions.py
@@ -175,7 +175,6 @@ class LatexPaperFileGroup():
self.sp_file_contents = []
self.sp_file_index = []
self.sp_file_tag = []
-
# count_token
from request_llms.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
@@ -192,13 +191,12 @@ class LatexPaperFileGroup():
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
- from ..crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
- segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit)
+ from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
+ segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
- print('Segmentation: done')
def merge_result(self):
self.file_result = ["" for _ in range(len(self.file_paths))]
@@ -404,7 +402,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
result_pdf = pj(work_folder_modified, f'merge_diff.pdf') # get pdf path
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
if modified_pdf_success:
- yield from update_ui_lastest_msg(f'转化PDF编译已经成功, 即将退出 ...', chatbot, history) # 刷新Gradio前端界面
+ yield from update_ui_lastest_msg(f'转化PDF编译已经成功, 正在尝试生成对比PDF, 请稍候 ...', chatbot, history) # 刷新Gradio前端界面
result_pdf = pj(work_folder_modified, f'{main_file_modified}.pdf') # get pdf path
origin_pdf = pj(work_folder_original, f'{main_file_original}.pdf') # get pdf path
if os.path.exists(pj(work_folder, '..', 'translation')):
@@ -416,8 +414,11 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
from .latex_toolbox import merge_pdfs
concat_pdf = pj(work_folder_modified, f'comparison.pdf')
merge_pdfs(origin_pdf, result_pdf, concat_pdf)
+ if os.path.exists(pj(work_folder, '..', 'translation')):
+ shutil.copyfile(concat_pdf, pj(work_folder, '..', 'translation', 'comparison.pdf'))
promote_file_to_downloadzone(concat_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
except Exception as e:
+ print(e)
pass
return True # 成功啦
else:
diff --git a/crazy_functions/latex_fns/latex_toolbox.py b/crazy_functions/latex_fns/latex_toolbox.py
index 4555ff18..0a6a873b 100644
--- a/crazy_functions/latex_fns/latex_toolbox.py
+++ b/crazy_functions/latex_fns/latex_toolbox.py
@@ -493,11 +493,38 @@ def compile_latex_with_timeout(command, cwd, timeout=60):
return False
return True
+def run_in_subprocess_wrapper_func(func, args, kwargs, return_dict, exception_dict):
+ import sys
+ try:
+ result = func(*args, **kwargs)
+ return_dict['result'] = result
+ except Exception as e:
+ exc_info = sys.exc_info()
+ exception_dict['exception'] = exc_info
+def run_in_subprocess(func):
+ import multiprocessing
+ def wrapper(*args, **kwargs):
+ return_dict = multiprocessing.Manager().dict()
+ exception_dict = multiprocessing.Manager().dict()
+ process = multiprocessing.Process(target=run_in_subprocess_wrapper_func,
+ args=(func, args, kwargs, return_dict, exception_dict))
+ process.start()
+ process.join()
+ process.close()
+ if 'exception' in exception_dict:
+ # ooops, the subprocess ran into an exception
+ exc_info = exception_dict['exception']
+ raise exc_info[1].with_traceback(exc_info[2])
+ if 'result' in return_dict.keys():
+ # If the subprocess ran successfully, return the result
+ return return_dict['result']
+ return wrapper
-def merge_pdfs(pdf1_path, pdf2_path, output_path):
- import PyPDF2
+def _merge_pdfs(pdf1_path, pdf2_path, output_path):
+ import PyPDF2 # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放
Percent = 0.95
+ # raise RuntimeError('PyPDF2 has a serious memory leak problem, please use other tools to merge PDF files.')
# Open the first PDF file
with open(pdf1_path, 'rb') as pdf1_file:
pdf1_reader = PyPDF2.PdfFileReader(pdf1_file)
@@ -531,3 +558,5 @@ def merge_pdfs(pdf1_path, pdf2_path, output_path):
# Save the merged PDF file
with open(output_path, 'wb') as output_file:
output_writer.write(output_file)
+
+merge_pdfs = run_in_subprocess(_merge_pdfs) # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放
diff --git a/crazy_functions/multi_stage/multi_stage_utils.py b/crazy_functions/multi_stage/multi_stage_utils.py
index 60f07783..1395e79f 100644
--- a/crazy_functions/multi_stage/multi_stage_utils.py
+++ b/crazy_functions/multi_stage/multi_stage_utils.py
@@ -1,6 +1,7 @@
from pydantic import BaseModel, Field
from typing import List
from toolbox import update_ui_lastest_msg, disable_auto_promotion
+from toolbox import CatchException, update_ui, get_conf, select_api_key, get_log_folder
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
import time
@@ -21,11 +22,7 @@ class GptAcademicState():
def reset(self):
pass
- def lock_plugin(self, chatbot):
- chatbot._cookies['plugin_state'] = pickle.dumps(self)
-
- def unlock_plugin(self, chatbot):
- self.reset()
+ def dump_state(self, chatbot):
chatbot._cookies['plugin_state'] = pickle.dumps(self)
def set_state(self, chatbot, key, value):
@@ -40,6 +37,57 @@ class GptAcademicState():
state.chatbot = chatbot
return state
-class GatherMaterials():
- def __init__(self, materials) -> None:
- materials = ['image', 'prompt']
\ No newline at end of file
+
+class GptAcademicGameBaseState():
+ """
+ 1. first init: __init__ ->
+ """
+ def init_game(self, chatbot, lock_plugin):
+ self.plugin_name = None
+ self.callback_fn = None
+ self.delete_game = False
+ self.step_cnt = 0
+
+ def lock_plugin(self, chatbot):
+ if self.callback_fn is None:
+ raise ValueError("callback_fn is None")
+ chatbot._cookies['lock_plugin'] = self.callback_fn
+ self.dump_state(chatbot)
+
+ def get_plugin_name(self):
+ if self.plugin_name is None:
+ raise ValueError("plugin_name is None")
+ return self.plugin_name
+
+ def dump_state(self, chatbot):
+ chatbot._cookies[f'plugin_state/{self.get_plugin_name()}'] = pickle.dumps(self)
+
+ def set_state(self, chatbot, key, value):
+ setattr(self, key, value)
+ chatbot._cookies[f'plugin_state/{self.get_plugin_name()}'] = pickle.dumps(self)
+
+ @staticmethod
+ def sync_state(chatbot, llm_kwargs, cls, plugin_name, callback_fn, lock_plugin=True):
+ state = chatbot._cookies.get(f'plugin_state/{plugin_name}', None)
+ if state is not None:
+ state = pickle.loads(state)
+ else:
+ state = cls()
+ state.init_game(chatbot, lock_plugin)
+ state.plugin_name = plugin_name
+ state.llm_kwargs = llm_kwargs
+ state.chatbot = chatbot
+ state.callback_fn = callback_fn
+ return state
+
+ def continue_game(self, prompt, chatbot, history):
+ # 游戏主体
+ yield from self.step(prompt, chatbot, history)
+ self.step_cnt += 1
+ # 保存状态,收尾
+ self.dump_state(chatbot)
+ # 如果游戏结束,清理
+ if self.delete_game:
+ chatbot._cookies['lock_plugin'] = None
+ chatbot._cookies[f'plugin_state/{self.get_plugin_name()}'] = None
+ yield from update_ui(chatbot=chatbot, history=history)
diff --git a/crazy_functions/pdf_fns/parse_pdf.py b/crazy_functions/pdf_fns/parse_pdf.py
index 51f8811f..fa27de51 100644
--- a/crazy_functions/pdf_fns/parse_pdf.py
+++ b/crazy_functions/pdf_fns/parse_pdf.py
@@ -74,7 +74,7 @@ def produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chat
def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG):
from crazy_functions.pdf_fns.report_gen_html import construct_html
- from crazy_functions.crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
+ from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
@@ -116,7 +116,7 @@ def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_fi
# find a smooth token limit to achieve even seperation
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
token_limit_smooth = raw_token_num // count + count
- return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)
+ return breakdown_text_to_satisfy_token_limit(txt, limit=token_limit_smooth, llm_model=llm_kwargs['llm_model'])
for section in article_dict.get('sections'):
if len(section['text']) == 0: continue
diff --git a/crazy_functions/图片生成.py b/crazy_functions/图片生成.py
index 642a9e22..9751e164 100644
--- a/crazy_functions/图片生成.py
+++ b/crazy_functions/图片生成.py
@@ -2,7 +2,7 @@ from toolbox import CatchException, update_ui, get_conf, select_api_key, get_log
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicState
-def gen_image(llm_kwargs, prompt, resolution="1024x1024", model="dall-e-2", quality=None):
+def gen_image(llm_kwargs, prompt, resolution="1024x1024", model="dall-e-2", quality=None, style=None):
import requests, json, time, os
from request_llms.bridge_all import model_info
@@ -25,7 +25,10 @@ def gen_image(llm_kwargs, prompt, resolution="1024x1024", model="dall-e-2", qual
'model': model,
'response_format': 'url'
}
- if quality is not None: data.update({'quality': quality})
+ if quality is not None:
+ data['quality'] = quality
+ if style is not None:
+ data['style'] = style
response = requests.post(url, headers=headers, json=data, proxies=proxies)
print(response.content)
try:
@@ -54,19 +57,25 @@ def edit_image(llm_kwargs, prompt, image_path, resolution="1024x1024", model="da
img_endpoint = chat_endpoint.replace('chat/completions','images/edits')
# # Generate the image
url = img_endpoint
+ n = 1
headers = {
'Authorization': f"Bearer {api_key}",
- 'Content-Type': 'application/json'
}
- data = {
- 'image': open(image_path, 'rb'),
- 'prompt': prompt,
- 'n': 1,
- 'size': resolution,
- 'model': model,
- 'response_format': 'url'
- }
- response = requests.post(url, headers=headers, json=data, proxies=proxies)
+ make_transparent(image_path, image_path+'.tsp.png')
+ make_square_image(image_path+'.tsp.png', image_path+'.tspsq.png')
+ resize_image(image_path+'.tspsq.png', image_path+'.ready.png', max_size=1024)
+ image_path = image_path+'.ready.png'
+ with open(image_path, 'rb') as f:
+ file_content = f.read()
+ files = {
+ 'image': (os.path.basename(image_path), file_content),
+ # 'mask': ('mask.png', open('mask.png', 'rb'))
+ 'prompt': (None, prompt),
+ "n": (None, str(n)),
+ 'size': (None, resolution),
+ }
+
+ response = requests.post(url, headers=headers, files=files, proxies=proxies)
print(response.content)
try:
image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
@@ -95,7 +104,11 @@ def 图片生成_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, sys
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
- chatbot.append(("您正在调用“图像生成”插件。", "[Local Message] 生成图像, 请先把模型切换至gpt-*或者api2d-*。如果中文Prompt效果不理想, 请尝试英文Prompt。正在处理中 ....."))
+ if prompt.strip() == "":
+ chatbot.append((prompt, "[Local Message] 图像生成提示为空白,请在“输入区”输入图像生成提示。"))
+ yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
+ return
+ chatbot.append(("您正在调用“图像生成”插件。", "[Local Message] 生成图像, 请先把模型切换至gpt-*。如果中文Prompt效果不理想, 请尝试英文Prompt。正在处理中 ....."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 由于请求gpt需要一段时间,我们先及时地做一次界面更新
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
resolution = plugin_kwargs.get("advanced_arg", '1024x1024')
@@ -112,16 +125,25 @@ def 图片生成_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, sys
@CatchException
def 图片生成_DALLE3(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
- chatbot.append(("您正在调用“图像生成”插件。", "[Local Message] 生成图像, 请先把模型切换至gpt-*或者api2d-*。如果中文Prompt效果不理想, 请尝试英文Prompt。正在处理中 ....."))
+ if prompt.strip() == "":
+ chatbot.append((prompt, "[Local Message] 图像生成提示为空白,请在“输入区”输入图像生成提示。"))
+ yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
+ return
+ chatbot.append(("您正在调用“图像生成”插件。", "[Local Message] 生成图像, 请先把模型切换至gpt-*。如果中文Prompt效果不理想, 请尝试英文Prompt。正在处理中 ....."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 由于请求gpt需要一段时间,我们先及时地做一次界面更新
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
- resolution = plugin_kwargs.get("advanced_arg", '1024x1024').lower()
- if resolution.endswith('-hd'):
- resolution = resolution.replace('-hd', '')
- quality = 'hd'
- else:
- quality = 'standard'
- image_url, image_path = gen_image(llm_kwargs, prompt, resolution, model="dall-e-3", quality=quality)
+ resolution_arg = plugin_kwargs.get("advanced_arg", '1024x1024-standard-vivid').lower()
+ parts = resolution_arg.split('-')
+ resolution = parts[0] # 解析分辨率
+ quality = 'standard' # 质量与风格默认值
+ style = 'vivid'
+ # 遍历检查是否有额外参数
+ for part in parts[1:]:
+ if part in ['hd', 'standard']:
+ quality = part
+ elif part in ['vivid', 'natural']:
+ style = part
+ image_url, image_path = gen_image(llm_kwargs, prompt, resolution, model="dall-e-3", quality=quality, style=style)
chatbot.append([prompt,
f'图像中转网址:
`{image_url}`
'+
f'中转网址预览:
'
@@ -130,6 +152,7 @@ def 图片生成_DALLE3(prompt, llm_kwargs, plugin_kwargs, chatbot, history, sys
])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
+
class ImageEditState(GptAcademicState):
# 尚未完成
def get_image_file(self, x):
@@ -142,18 +165,27 @@ class ImageEditState(GptAcademicState):
file = None if not confirm else file_manifest[0]
return confirm, file
+ def lock_plugin(self, chatbot):
+ chatbot._cookies['lock_plugin'] = 'crazy_functions.图片生成->图片修改_DALLE2'
+ self.dump_state(chatbot)
+
+ def unlock_plugin(self, chatbot):
+ self.reset()
+ chatbot._cookies['lock_plugin'] = None
+ self.dump_state(chatbot)
+
def get_resolution(self, x):
return (x in ['256x256', '512x512', '1024x1024']), x
-
+
def get_prompt(self, x):
confirm = (len(x)>=5) and (not self.get_resolution(x)[0]) and (not self.get_image_file(x)[0])
return confirm, x
-
+
def reset(self):
self.req = [
- {'value':None, 'description': '请先上传图像(必须是.png格式), 然后再次点击本插件', 'verify_fn': self.get_image_file},
- {'value':None, 'description': '请输入分辨率,可选:256x256, 512x512 或 1024x1024', 'verify_fn': self.get_resolution},
- {'value':None, 'description': '请输入修改需求,建议您使用英文提示词', 'verify_fn': self.get_prompt},
+ {'value':None, 'description': '请先上传图像(必须是.png格式), 然后再次点击本插件', 'verify_fn': self.get_image_file},
+ {'value':None, 'description': '请输入分辨率,可选:256x256, 512x512 或 1024x1024, 然后再次点击本插件', 'verify_fn': self.get_resolution},
+ {'value':None, 'description': '请输入修改需求,建议您使用英文提示词, 然后再次点击本插件', 'verify_fn': self.get_prompt},
]
self.info = ""
@@ -163,7 +195,7 @@ class ImageEditState(GptAcademicState):
confirm, res = r['verify_fn'](prompt)
if confirm:
r['value'] = res
- self.set_state(chatbot, 'dummy_key', 'dummy_value')
+ self.dump_state(chatbot)
break
return self
@@ -182,23 +214,63 @@ def 图片修改_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, sys
history = [] # 清空历史
state = ImageEditState.get_state(chatbot, ImageEditState)
state = state.feed(prompt, chatbot)
+ state.lock_plugin(chatbot)
if not state.already_obtained_all_materials():
- chatbot.append(["图片修改(先上传图片,再输入修改需求,最后输入分辨率)", state.next_req()])
+ chatbot.append(["图片修改\n\n1. 上传图片(图片中需要修改的位置用橡皮擦擦除为纯白色,即RGB=255,255,255)\n2. 输入分辨率 \n3. 输入修改需求", state.next_req()])
yield from update_ui(chatbot=chatbot, history=history)
return
- image_path = state.req[0]
- resolution = state.req[1]
- prompt = state.req[2]
+ image_path = state.req[0]['value']
+ resolution = state.req[1]['value']
+ prompt = state.req[2]['value']
chatbot.append(["图片修改, 执行中", f"图片:`{image_path}`
分辨率:`{resolution}`
修改需求:`{prompt}`"])
yield from update_ui(chatbot=chatbot, history=history)
-
image_url, image_path = edit_image(llm_kwargs, prompt, image_path, resolution)
- chatbot.append([state.prompt,
+ chatbot.append([prompt,
f'图像中转网址:
`{image_url}`
'+
f'中转网址预览:
'
f'本地文件地址:
`{image_path}`
'+
f'本地文件预览:
'
])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
+ state.unlock_plugin(chatbot)
+def make_transparent(input_image_path, output_image_path):
+ from PIL import Image
+ image = Image.open(input_image_path)
+ image = image.convert("RGBA")
+ data = image.getdata()
+ new_data = []
+ for item in data:
+ if item[0] == 255 and item[1] == 255 and item[2] == 255:
+ new_data.append((255, 255, 255, 0))
+ else:
+ new_data.append(item)
+ image.putdata(new_data)
+ image.save(output_image_path, "PNG")
+
+def resize_image(input_path, output_path, max_size=1024):
+ from PIL import Image
+ with Image.open(input_path) as img:
+ width, height = img.size
+ if width > max_size or height > max_size:
+ if width >= height:
+ new_width = max_size
+ new_height = int((max_size / width) * height)
+ else:
+ new_height = max_size
+ new_width = int((max_size / height) * width)
+
+ resized_img = img.resize(size=(new_width, new_height))
+ resized_img.save(output_path)
+ else:
+ img.save(output_path)
+
+def make_square_image(input_path, output_path):
+ from PIL import Image
+ with Image.open(input_path) as img:
+ width, height = img.size
+ size = max(width, height)
+ new_img = Image.new("RGBA", (size, size), color="black")
+ new_img.paste(img, ((size - width) // 2, (size - height) // 2))
+ new_img.save(output_path)
diff --git a/crazy_functions/总结word文档.py b/crazy_functions/总结word文档.py
index b3923071..01ee1e6b 100644
--- a/crazy_functions/总结word文档.py
+++ b/crazy_functions/总结word文档.py
@@ -29,17 +29,12 @@ def 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot
except:
raise RuntimeError('请先将.doc文档转换为.docx文档。')
- print(file_content)
# private_upload里面的文件名在解压zip后容易出现乱码(rar和7z格式正常),故可以只分析文章内容,不输入文件名
- from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
+ from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
from request_llms.bridge_all import model_info
max_token = model_info[llm_kwargs['llm_model']]['max_token']
TOKEN_LIMIT_PER_FRAGMENT = max_token * 3 // 4
- paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
- txt=file_content,
- get_token_fn=model_info[llm_kwargs['llm_model']]['token_cnt'],
- limit=TOKEN_LIMIT_PER_FRAGMENT
- )
+ paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
this_paper_history = []
for i, paper_frag in enumerate(paper_fragments):
i_say = f'请对下面的文章片段用中文做概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{paper_frag}```'
diff --git a/crazy_functions/批量Markdown翻译.py b/crazy_functions/批量Markdown翻译.py
index 12b4ef09..8665d6df 100644
--- a/crazy_functions/批量Markdown翻译.py
+++ b/crazy_functions/批量Markdown翻译.py
@@ -28,8 +28,8 @@ class PaperFileGroup():
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
- from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
- segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit)
+ from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
+ segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)
diff --git a/crazy_functions/批量总结PDF文档.py b/crazy_functions/批量总结PDF文档.py
index 7fc3e415..e289c47b 100644
--- a/crazy_functions/批量总结PDF文档.py
+++ b/crazy_functions/批量总结PDF文档.py
@@ -20,14 +20,9 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
TOKEN_LIMIT_PER_FRAGMENT = 2500
- from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
- from request_llms.bridge_all import model_info
- enc = model_info["gpt-3.5-turbo"]['tokenizer']
- def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
- paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
- txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
- page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
- txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
+ from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
+ paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
+ page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=str(page_one), limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model'])
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
diff --git a/crazy_functions/批量翻译PDF文档_多线程.py b/crazy_functions/批量翻译PDF文档_多线程.py
index 73cf5920..a1f0f312 100644
--- a/crazy_functions/批量翻译PDF文档_多线程.py
+++ b/crazy_functions/批量翻译PDF文档_多线程.py
@@ -91,14 +91,9 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
# 递归地切割PDF文件
- from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
- from request_llms.bridge_all import model_info
- enc = model_info["gpt-3.5-turbo"]['tokenizer']
- def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
- paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
- txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
- page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
- txt=page_one, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
+ from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
+ paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
+ page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=page_one, limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model'])
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
diff --git a/crazy_functions/理解PDF文档内容.py b/crazy_functions/理解PDF文档内容.py
index ef967889..439d78ea 100644
--- a/crazy_functions/理解PDF文档内容.py
+++ b/crazy_functions/理解PDF文档内容.py
@@ -18,14 +18,9 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
TOKEN_LIMIT_PER_FRAGMENT = 2500
- from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
- from request_llms.bridge_all import model_info
- enc = model_info["gpt-3.5-turbo"]['tokenizer']
- def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
- paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
- txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
- page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
- txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
+ from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
+ paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
+ page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=str(page_one), limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model'])
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
@@ -45,7 +40,7 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
for i in range(n_fragment):
NUM_OF_WORD = MAX_WORD_TOTAL // n_fragment
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i]}"
- i_say_show_user = f"[{i+1}/{n_fragment}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i][:200]}"
+ i_say_show_user = f"[{i+1}/{n_fragment}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i][:200]} ...."
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
llm_kwargs, chatbot,
history=["The main idea of the previous section is?", last_iteration_result], # 迭代上一次的结果
diff --git a/crazy_functions/解析JupyterNotebook.py b/crazy_functions/解析JupyterNotebook.py
index eeccadf7..3c2b5783 100644
--- a/crazy_functions/解析JupyterNotebook.py
+++ b/crazy_functions/解析JupyterNotebook.py
@@ -12,13 +12,6 @@ class PaperFileGroup():
self.sp_file_index = []
self.sp_file_tag = []
- # count_token
- from request_llms.bridge_all import model_info
- enc = model_info["gpt-3.5-turbo"]['tokenizer']
- def get_token_num(txt): return len(
- enc.encode(txt, disallowed_special=()))
- self.get_token_num = get_token_num
-
def run_file_split(self, max_token_limit=1900):
"""
将长文本分离开来
@@ -29,9 +22,8 @@ class PaperFileGroup():
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
- from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
- segments = breakdown_txt_to_satisfy_token_limit_for_pdf(
- file_content, self.get_token_num, max_token_limit)
+ from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
+ segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)
diff --git a/docs/translate_english.json b/docs/translate_english.json
index 955dcaf9..3920e1f6 100644
--- a/docs/translate_english.json
+++ b/docs/translate_english.json
@@ -923,7 +923,7 @@
"的第": "The",
"个片段": "fragment",
"总结文章": "Summarize the article",
- "根据以上的对话": "According to the above dialogue",
+ "根据以上的对话": "According to the conversation above",
"的主要内容": "The main content of",
"所有文件都总结完成了吗": "Are all files summarized?",
"如果是.doc文件": "If it is a .doc file",
@@ -1501,7 +1501,7 @@
"发送请求到OpenAI后": "After sending the request to OpenAI",
"上下布局": "Vertical Layout",
"左右布局": "Horizontal Layout",
- "对话窗的高度": "Height of the Dialogue Window",
+ "对话窗的高度": "Height of the Conversation Window",
"重试的次数限制": "Retry Limit",
"gpt4现在只对申请成功的人开放": "GPT-4 is now only open to those who have successfully applied",
"提高限制请查询": "Please check for higher limits",
@@ -2183,9 +2183,8 @@
"找不到合适插件执行该任务": "Cannot find a suitable plugin to perform this task",
"接驳VoidTerminal": "Connect to VoidTerminal",
"**很好": "**Very good",
- "对话|编程": "Conversation|Programming",
- "对话|编程|学术": "Conversation|Programming|Academic",
- "4. 建议使用 GPT3.5 或更强的模型": "4. It is recommended to use GPT3.5 or a stronger model",
+ "对话|编程": "Conversation&ImageGenerating|Programming",
+ "对话|编程|学术": "Conversation&ImageGenerating|Programming|Academic", "4. 建议使用 GPT3.5 或更强的模型": "4. It is recommended to use GPT3.5 or a stronger model",
"「请调用插件翻译PDF论文": "Please call the plugin to translate the PDF paper",
"3. 如果您使用「调用插件xxx」、「修改配置xxx」、「请问」等关键词": "3. If you use keywords such as 'call plugin xxx', 'modify configuration xxx', 'please', etc.",
"以下是一篇学术论文的基本信息": "The following is the basic information of an academic paper",
@@ -2630,7 +2629,7 @@
"已经被记忆": "Already memorized",
"默认用英文的": "Default to English",
"错误追踪": "Error tracking",
- "对话|编程|学术|智能体": "Dialogue|Programming|Academic|Intelligent agent",
+ "对话&编程|编程|学术|智能体": "Conversation&ImageGenerating|Programming|Academic|Intelligent agent",
"请检查": "Please check",
"检测到被滞留的缓存文档": "Detected cached documents being left behind",
"还有哪些场合允许使用代理": "What other occasions allow the use of proxies",
@@ -2864,7 +2863,7 @@
"加载API_KEY": "Loading API_KEY",
"协助您编写代码": "Assist you in writing code",
"我可以为您提供以下服务": "I can provide you with the following services",
- "排队中请稍后 ...": "Please wait in line ...",
+ "排队中请稍候 ...": "Please wait in line ...",
"建议您使用英文提示词": "It is recommended to use English prompts",
"不能支撑AutoGen运行": "Cannot support AutoGen operation",
"帮助您解决编程问题": "Help you solve programming problems",
@@ -2903,5 +2902,107 @@
"高优先级": "High priority",
"请配置ZHIPUAI_API_KEY": "Please configure ZHIPUAI_API_KEY",
"单个azure模型": "Single Azure model",
- "预留参数 context 未实现": "Reserved parameter 'context' not implemented"
-}
\ No newline at end of file
+ "预留参数 context 未实现": "Reserved parameter 'context' not implemented",
+ "在输入区输入临时API_KEY后提交": "Submit after entering temporary API_KEY in the input area",
+ "鸟": "Bird",
+ "图片中需要修改的位置用橡皮擦擦除为纯白色": "Erase the areas in the image that need to be modified with an eraser to pure white",
+ "└── PDF文档精准解析": "└── Accurate parsing of PDF documents",
+ "└── ALLOW_RESET_CONFIG 是否允许通过自然语言描述修改本页的配置": "└── ALLOW_RESET_CONFIG Whether to allow modifying the configuration of this page through natural language description",
+ "等待指令": "Waiting for instructions",
+ "不存在": "Does not exist",
+ "选择游戏": "Select game",
+ "本地大模型示意图": "Local large model diagram",
+ "无视此消息即可": "You can ignore this message",
+ "即RGB=255": "That is, RGB=255",
+ "如需追问": "If you have further questions",
+ "也可以是具体的模型路径": "It can also be a specific model path",
+ "才会起作用": "Will take effect",
+ "下载失败": "Download failed",
+ "网页刷新后失效": "Invalid after webpage refresh",
+ "crazy_functions.互动小游戏-": "crazy_functions.Interactive mini game-",
+ "右对齐": "Right alignment",
+ "您可以调用下拉菜单中的“LoadConversationHistoryArchive”还原当下的对话": "You can use the 'LoadConversationHistoryArchive' in the drop-down menu to restore the current conversation",
+ "左对齐": "Left alignment",
+ "使用默认的 FP16": "Use default FP16",
+ "一小时": "One hour",
+ "从而方便内存的释放": "Thus facilitating memory release",
+ "如何临时更换API_KEY": "How to temporarily change API_KEY",
+ "请输入 1024x1024-HD": "Please enter 1024x1024-HD",
+ "使用 INT8 量化": "Use INT8 quantization",
+ "3. 输入修改需求": "3. Enter modification requirements",
+ "刷新界面 由于请求gpt需要一段时间": "Refreshing the interface takes some time due to the request for gpt",
+ "随机小游戏": "Random mini game",
+ "那么请在下面的QWEN_MODEL_SELECTION中指定具体的模型": "So please specify the specific model in QWEN_MODEL_SELECTION below",
+ "表值": "Table value",
+ "我画你猜": "I draw, you guess",
+ "狗": "Dog",
+ "2. 输入分辨率": "2. Enter resolution",
+ "鱼": "Fish",
+ "尚未完成": "Not yet completed",
+ "表头": "Table header",
+ "填localhost或者127.0.0.1": "Fill in localhost or 127.0.0.1",
+ "请上传jpg格式的图片": "Please upload images in jpg format",
+ "API_URL_REDIRECT填写格式是错误的": "The format of API_URL_REDIRECT is incorrect",
+ "├── RWKV的支持见Wiki": "Support for RWKV is available in the Wiki",
+ "如果中文Prompt效果不理想": "If the Chinese prompt is not effective",
+ "/SEAFILE_LOCAL/50503047/我的资料库/学位/paperlatex/aaai/Fu_8368_with_appendix": "/SEAFILE_LOCAL/50503047/My Library/Degree/paperlatex/aaai/Fu_8368_with_appendix",
+ "只有当AVAIL_LLM_MODELS包含了对应本地模型时": "Only when AVAIL_LLM_MODELS contains the corresponding local model",
+ "选择本地模型变体": "Choose the local model variant",
+ "如果您确信自己没填错": "If you are sure you haven't made a mistake",
+ "PyPDF2这个库有严重的内存泄露问题": "PyPDF2 library has serious memory leak issues",
+ "整理文件集合 输出消息": "Organize file collection and output message",
+ "没有检测到任何近期上传的图像文件": "No recently uploaded image files detected",
+ "游戏结束": "Game over",
+ "调用结束": "Call ended",
+ "猫": "Cat",
+ "请及时切换模型": "Please switch models in time",
+ "次中": "In the meantime",
+ "如需生成高清图像": "If you need to generate high-definition images",
+ "CPU 模式": "CPU mode",
+ "项目目录": "Project directory",
+ "动物": "Animal",
+ "居中对齐": "Center alignment",
+ "请注意拓展名需要小写": "Please note that the extension name needs to be lowercase",
+ "重试第": "Retry",
+ "实验性功能": "Experimental feature",
+ "猜错了": "Wrong guess",
+ "打开你的代理软件查看代理协议": "Open your proxy software to view the proxy agreement",
+ "您不需要再重复强调该文件的路径了": "You don't need to emphasize the file path again",
+ "请阅读": "Please read",
+ "请直接输入您的问题": "Please enter your question directly",
+ "API_URL_REDIRECT填错了": "API_URL_REDIRECT is filled incorrectly",
+ "谜底是": "The answer is",
+ "第一个模型": "The first model",
+ "你猜对了!": "You guessed it right!",
+ "已经接收到您上传的文件": "The file you uploaded has been received",
+ "您正在调用“图像生成”插件": "You are calling the 'Image Generation' plugin",
+ "刷新界面 界面更新": "Refresh the interface, interface update",
+ "如果之前已经初始化了游戏实例": "If the game instance has been initialized before",
+ "文件": "File",
+ "老鼠": "Mouse",
+ "列2": "Column 2",
+ "等待图片": "Waiting for image",
+ "使用 INT4 量化": "Use INT4 quantization",
+ "from crazy_functions.互动小游戏 import 随机小游戏": "TranslatedText",
+ "游戏主体": "TranslatedText",
+ "该模型不具备上下文对话能力": "TranslatedText",
+ "列3": "TranslatedText",
+ "清理": "TranslatedText",
+ "检查量化配置": "TranslatedText",
+ "如果游戏结束": "TranslatedText",
+ "蛇": "TranslatedText",
+ "则继续该实例;否则重新初始化": "TranslatedText",
+ "e.g. cat and 猫 are the same thing": "TranslatedText",
+ "第三个模型": "TranslatedText",
+ "如果你选择Qwen系列的模型": "TranslatedText",
+ "列4": "TranslatedText",
+ "输入“exit”获取答案": "TranslatedText",
+ "把它放到子进程中运行": "TranslatedText",
+ "列1": "TranslatedText",
+ "使用该模型需要额外依赖": "TranslatedText",
+ "再试试": "TranslatedText",
+ "1. 上传图片": "TranslatedText",
+ "保存状态": "TranslatedText",
+ "GPT-Academic对话存档": "TranslatedText",
+ "Arxiv论文精细翻译": "TranslatedText"
+}
diff --git a/docs/translate_traditionalchinese.json b/docs/translate_traditionalchinese.json
index 9ca7cbaa..4edc65de 100644
--- a/docs/translate_traditionalchinese.json
+++ b/docs/translate_traditionalchinese.json
@@ -1043,9 +1043,9 @@
"jittorllms响应异常": "jittorllms response exception",
"在项目根目录运行这两个指令": "Run these two commands in the project root directory",
"获取tokenizer": "Get tokenizer",
- "chatbot 为WebUI中显示的对话列表": "chatbot is the list of dialogues displayed in WebUI",
+ "chatbot 为WebUI中显示的对话列表": "chatbot is the list of conversations displayed in WebUI",
"test_解析一个Cpp项目": "test_parse a Cpp project",
- "将对话记录history以Markdown格式写入文件中": "Write the dialogue record history to a file in Markdown format",
+ "将对话记录history以Markdown格式写入文件中": "Write the conversations record history to a file in Markdown format",
"装饰器函数": "Decorator function",
"玫瑰色": "Rose color",
"将单空行": "刪除單行空白",
@@ -2270,4 +2270,4 @@
"标注节点的行数范围": "標註節點的行數範圍",
"默认 True": "默認 True",
"将两个PDF拼接": "將兩個PDF拼接"
-}
\ No newline at end of file
+}
diff --git a/multi_language.py b/multi_language.py
index a20fb5af..a807dbd0 100644
--- a/multi_language.py
+++ b/multi_language.py
@@ -182,12 +182,12 @@ cached_translation = read_map_from_json(language=LANG)
def trans(word_to_translate, language, special=False):
if len(word_to_translate) == 0: return {}
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
- from toolbox import get_conf, ChatBotWithCookies
- proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY = \
- get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY')
+ from toolbox import get_conf, ChatBotWithCookies, load_chat_cookies
+
+ cookies = load_chat_cookies()
llm_kwargs = {
- 'api_key': API_KEY,
- 'llm_model': LLM_MODEL,
+ 'api_key': cookies['api_key'],
+ 'llm_model': cookies['llm_model'],
'top_p':1.0,
'max_length': None,
'temperature':0.4,
@@ -245,15 +245,15 @@ def trans(word_to_translate, language, special=False):
def trans_json(word_to_translate, language, special=False):
if len(word_to_translate) == 0: return {}
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
- from toolbox import get_conf, ChatBotWithCookies
- proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY = \
- get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY')
+ from toolbox import get_conf, ChatBotWithCookies, load_chat_cookies
+
+ cookies = load_chat_cookies()
llm_kwargs = {
- 'api_key': API_KEY,
- 'llm_model': LLM_MODEL,
+ 'api_key': cookies['api_key'],
+ 'llm_model': cookies['llm_model'],
'top_p':1.0,
'max_length': None,
- 'temperature':0.1,
+ 'temperature':0.4,
}
import random
N_EACH_REQ = random.randint(16, 32)
diff --git a/request_llms/bridge_all.py b/request_llms/bridge_all.py
index 8dece548..689b1f97 100644
--- a/request_llms/bridge_all.py
+++ b/request_llms/bridge_all.py
@@ -431,16 +431,48 @@ if "chatglm_onnx" in AVAIL_LLM_MODELS:
})
except:
print(trimmed_format_exc())
-if "qwen" in AVAIL_LLM_MODELS:
+if "qwen-local" in AVAIL_LLM_MODELS:
+ try:
+ from .bridge_qwen_local import predict_no_ui_long_connection as qwen_local_noui
+ from .bridge_qwen_local import predict as qwen_local_ui
+ model_info.update({
+ "qwen-local": {
+ "fn_with_ui": qwen_local_ui,
+ "fn_without_ui": qwen_local_noui,
+ "endpoint": None,
+ "max_token": 4096,
+ "tokenizer": tokenizer_gpt35,
+ "token_cnt": get_token_num_gpt35,
+ }
+ })
+ except:
+ print(trimmed_format_exc())
+if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-max" in AVAIL_LLM_MODELS: # zhipuai
try:
from .bridge_qwen import predict_no_ui_long_connection as qwen_noui
from .bridge_qwen import predict as qwen_ui
model_info.update({
- "qwen": {
+ "qwen-turbo": {
"fn_with_ui": qwen_ui,
"fn_without_ui": qwen_noui,
"endpoint": None,
- "max_token": 4096,
+ "max_token": 6144,
+ "tokenizer": tokenizer_gpt35,
+ "token_cnt": get_token_num_gpt35,
+ },
+ "qwen-plus": {
+ "fn_with_ui": qwen_ui,
+ "fn_without_ui": qwen_noui,
+ "endpoint": None,
+ "max_token": 30720,
+ "tokenizer": tokenizer_gpt35,
+ "token_cnt": get_token_num_gpt35,
+ },
+ "qwen-max": {
+ "fn_with_ui": qwen_ui,
+ "fn_without_ui": qwen_noui,
+ "endpoint": None,
+ "max_token": 28672,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}
@@ -552,7 +584,7 @@ if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
"fn_with_ui": deepseekcoder_ui,
"fn_without_ui": deepseekcoder_noui,
"endpoint": None,
- "max_token": 4096,
+ "max_token": 2048,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}
diff --git a/request_llms/bridge_chatgpt.py b/request_llms/bridge_chatgpt.py
index e55ad37a..faad6cfd 100644
--- a/request_llms/bridge_chatgpt.py
+++ b/request_llms/bridge_chatgpt.py
@@ -51,7 +51,8 @@ def decode_chunk(chunk):
chunkjson = json.loads(chunk_decoded[6:])
has_choices = 'choices' in chunkjson
if has_choices: choice_valid = (len(chunkjson['choices']) > 0)
- if has_choices and choice_valid: has_content = "content" in chunkjson['choices'][0]["delta"]
+ if has_choices and choice_valid: has_content = ("content" in chunkjson['choices'][0]["delta"])
+ if has_content: has_content = (chunkjson['choices'][0]["delta"]["content"] is not None)
if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"]
except:
pass
@@ -101,20 +102,25 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
result = ''
json_data = None
while True:
- try: chunk = next(stream_response).decode()
+ try: chunk = next(stream_response)
except StopIteration:
break
except requests.exceptions.ConnectionError:
- chunk = next(stream_response).decode() # 失败了,重试一次?再失败就没办法了。
- if len(chunk)==0: continue
- if not chunk.startswith('data:'):
- error_msg = get_full_error(chunk.encode('utf8'), stream_response).decode()
+ chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
+ chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
+ if len(chunk_decoded)==0: continue
+ if not chunk_decoded.startswith('data:'):
+ error_msg = get_full_error(chunk, stream_response).decode()
if "reduce the length" in error_msg:
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
else:
raise RuntimeError("OpenAI拒绝了请求:" + error_msg)
- if ('data: [DONE]' in chunk): break # api2d 正常完成
- json_data = json.loads(chunk.lstrip('data:'))['choices'][0]
+ if ('data: [DONE]' in chunk_decoded): break # api2d 正常完成
+ # 提前读取一些信息 (用于判断异常)
+ if has_choices and not choice_valid:
+ # 一些垃圾第三方接口的出现这样的错误
+ continue
+ json_data = chunkjson['choices'][0]
delta = json_data["delta"]
if len(delta) == 0: break
if "role" in delta: continue
diff --git a/request_llms/bridge_chatgpt_vision.py b/request_llms/bridge_chatgpt_vision.py
index e84bc0b7..ebcf9689 100644
--- a/request_llms/bridge_chatgpt_vision.py
+++ b/request_llms/bridge_chatgpt_vision.py
@@ -15,29 +15,16 @@ import requests
import base64
import os
import glob
+from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, is_the_upload_folder, \
+ update_ui_lastest_msg, get_max_token, encode_image, have_any_recent_upload_image_files
+
-from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, is_the_upload_folder, update_ui_lastest_msg, get_max_token
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
-def have_any_recent_upload_image_files(chatbot):
- _5min = 5 * 60
- if chatbot is None: return False, None # chatbot is None
- most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
- if not most_recent_uploaded: return False, None # most_recent_uploaded is None
- if time.time() - most_recent_uploaded["time"] < _5min:
- most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
- path = most_recent_uploaded['path']
- file_manifest = [f for f in glob.glob(f'{path}/**/*.jpg', recursive=True)]
- file_manifest += [f for f in glob.glob(f'{path}/**/*.jpeg', recursive=True)]
- file_manifest += [f for f in glob.glob(f'{path}/**/*.png', recursive=True)]
- if len(file_manifest) == 0: return False, None
- return True, file_manifest # most_recent_uploaded is new
- else:
- return False, None # most_recent_uploaded is too old
def report_invalid_key(key):
if get_conf("BLOCK_INVALID_APIKEY"):
@@ -258,10 +245,6 @@ def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg,
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
return chatbot, history
-# Function to encode the image
-def encode_image(image_path):
- with open(image_path, "rb") as image_file:
- return base64.b64encode(image_file.read()).decode('utf-8')
def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths):
"""
diff --git a/request_llms/bridge_deepseekcoder.py b/request_llms/bridge_deepseekcoder.py
index 2242eec7..89964abe 100644
--- a/request_llms/bridge_deepseekcoder.py
+++ b/request_llms/bridge_deepseekcoder.py
@@ -6,6 +6,7 @@ from toolbox import ProxyNetworkActivate
from toolbox import get_conf
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
from threading import Thread
+import torch
def download_huggingface_model(model_name, max_retry, local_dir):
from huggingface_hub import snapshot_download
@@ -36,9 +37,46 @@ class GetCoderLMHandle(LocalLLMHandle):
# tokenizer = download_huggingface_model(model_name, max_retry=128, local_dir=local_dir)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
self._streamer = TextIteratorStreamer(tokenizer)
- model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
+ device_map = {
+ "transformer.word_embeddings": 0,
+ "transformer.word_embeddings_layernorm": 0,
+ "lm_head": 0,
+ "transformer.h": 0,
+ "transformer.ln_f": 0,
+ "model.embed_tokens": 0,
+ "model.layers": 0,
+ "model.norm": 0,
+ }
+
+ # 检查量化配置
+ quantization_type = get_conf('LOCAL_MODEL_QUANT')
+
if get_conf('LOCAL_MODEL_DEVICE') != 'cpu':
- model = model.cuda()
+ if quantization_type == "INT8":
+ from transformers import BitsAndBytesConfig
+ # 使用 INT8 量化
+ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, load_in_8bit=True,
+ device_map=device_map)
+ elif quantization_type == "INT4":
+ from transformers import BitsAndBytesConfig
+ # 使用 INT4 量化
+ bnb_config = BitsAndBytesConfig(
+ load_in_4bit=True,
+ bnb_4bit_use_double_quant=True,
+ bnb_4bit_quant_type="nf4",
+ bnb_4bit_compute_dtype=torch.bfloat16
+ )
+ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,
+ quantization_config=bnb_config, device_map=device_map)
+ else:
+ # 使用默认的 FP16
+ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,
+ torch_dtype=torch.bfloat16, device_map=device_map)
+ else:
+ # CPU 模式
+ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,
+ torch_dtype=torch.bfloat16)
+
return model, tokenizer
def llm_stream_generator(self, **kwargs):
@@ -54,7 +92,10 @@ class GetCoderLMHandle(LocalLLMHandle):
query, max_length, top_p, temperature, history = adaptor(kwargs)
history.append({ 'role': 'user', 'content': query})
messages = history
- inputs = self._tokenizer.apply_chat_template(messages, return_tensors="pt").to(self._model.device)
+ inputs = self._tokenizer.apply_chat_template(messages, return_tensors="pt")
+ if inputs.shape[1] > max_length:
+ inputs = inputs[:, -max_length:]
+ inputs = inputs.to(self._model.device)
generation_kwargs = dict(
inputs=inputs,
max_new_tokens=max_length,
diff --git a/request_llms/bridge_qwen.py b/request_llms/bridge_qwen.py
index 85a4d80c..18877b94 100644
--- a/request_llms/bridge_qwen.py
+++ b/request_llms/bridge_qwen.py
@@ -1,67 +1,62 @@
-model_name = "Qwen"
-cmd_to_install = "`pip install -r request_llms/requirements_qwen.txt`"
-
-
-from transformers import AutoModel, AutoTokenizer
import time
-import threading
-import importlib
-from toolbox import update_ui, get_conf, ProxyNetworkActivate
-from multiprocessing import Process, Pipe
-from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
+import os
+from toolbox import update_ui, get_conf, update_ui_lastest_msg
+from toolbox import check_packages, report_exception
+model_name = 'Qwen'
+def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
+ """
+ ⭐多线程方法
+ 函数的说明请见 request_llms/bridge_all.py
+ """
+ watch_dog_patience = 5
+ response = ""
-# ------------------------------------------------------------------------------------------------------------------------
-# 🔌💻 Local Model
-# ------------------------------------------------------------------------------------------------------------------------
-class GetQwenLMHandle(LocalLLMHandle):
+ from .com_qwenapi import QwenRequestInstance
+ sri = QwenRequestInstance()
+ for response in sri.generate(inputs, llm_kwargs, history, sys_prompt):
+ if len(observe_window) >= 1:
+ observe_window[0] = response
+ if len(observe_window) >= 2:
+ if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。")
+ return response
- def load_model_info(self):
- # 🏃♂️🏃♂️🏃♂️ 子进程执行
- self.model_name = model_name
- self.cmd_to_install = cmd_to_install
+def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
+ """
+ ⭐单线程方法
+ 函数的说明请见 request_llms/bridge_all.py
+ """
+ chatbot.append((inputs, ""))
+ yield from update_ui(chatbot=chatbot, history=history)
- def load_model_and_tokenizer(self):
- # 🏃♂️🏃♂️🏃♂️ 子进程执行
- import os, glob
- import os
- import platform
- from modelscope import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
+ # 尝试导入依赖,如果缺少依赖,则给出安装建议
+ try:
+ check_packages(["dashscope"])
+ except:
+ yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade dashscope```。",
+ chatbot=chatbot, history=history, delay=0)
+ return
- with ProxyNetworkActivate('Download_LLM'):
- model_id = 'qwen/Qwen-7B-Chat'
- self._tokenizer = AutoTokenizer.from_pretrained('Qwen/Qwen-7B-Chat', trust_remote_code=True, resume_download=True)
- # use fp16
- model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True, fp16=True).eval()
- model.generation_config = GenerationConfig.from_pretrained(model_id, trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
- self._model = model
+ # 检查DASHSCOPE_API_KEY
+ if get_conf("DASHSCOPE_API_KEY") == "":
+ yield from update_ui_lastest_msg(f"请配置 DASHSCOPE_API_KEY。",
+ chatbot=chatbot, history=history, delay=0)
+ return
- return self._model, self._tokenizer
+ if additional_fn is not None:
+ from core_functional import handle_core_functionality
+ inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
- def llm_stream_generator(self, **kwargs):
- # 🏃♂️🏃♂️🏃♂️ 子进程执行
- def adaptor(kwargs):
- query = kwargs['query']
- max_length = kwargs['max_length']
- top_p = kwargs['top_p']
- temperature = kwargs['temperature']
- history = kwargs['history']
- return query, max_length, top_p, temperature, history
+ # 开始接收回复
+ from .com_qwenapi import QwenRequestInstance
+ sri = QwenRequestInstance()
+ for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
+ chatbot[-1] = (inputs, response)
+ yield from update_ui(chatbot=chatbot, history=history)
- query, max_length, top_p, temperature, history = adaptor(kwargs)
-
- for response in self._model.chat(self._tokenizer, query, history=history, stream=True):
- yield response
-
- def try_to_import_special_deps(self, **kwargs):
- # import something that will raise error if the user does not install requirement_*.txt
- # 🏃♂️🏃♂️🏃♂️ 主进程执行
- import importlib
- importlib.import_module('modelscope')
-
-
-# ------------------------------------------------------------------------------------------------------------------------
-# 🔌💻 GPT-Academic Interface
-# ------------------------------------------------------------------------------------------------------------------------
-predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetQwenLMHandle, model_name)
\ No newline at end of file
+ # 总结输出
+ if response == f"[Local Message] 等待{model_name}响应中 ...":
+ response = f"[Local Message] {model_name}响应异常 ..."
+ history.extend([inputs, response])
+ yield from update_ui(chatbot=chatbot, history=history)
\ No newline at end of file
diff --git a/request_llms/bridge_spark.py b/request_llms/bridge_spark.py
index 6ba39ee7..1fe31ce9 100644
--- a/request_llms/bridge_spark.py
+++ b/request_llms/bridge_spark.py
@@ -26,7 +26,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
from .com_sparkapi import SparkRequestInstance
sri = SparkRequestInstance()
- for response in sri.generate(inputs, llm_kwargs, history, sys_prompt):
+ for response in sri.generate(inputs, llm_kwargs, history, sys_prompt, use_image_api=False):
if len(observe_window) >= 1:
observe_window[0] = response
if len(observe_window) >= 2:
@@ -52,7 +52,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
# 开始接收回复
from .com_sparkapi import SparkRequestInstance
sri = SparkRequestInstance()
- for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
+ for response in sri.generate(inputs, llm_kwargs, history, system_prompt, use_image_api=True):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)
diff --git a/request_llms/com_sparkapi.py b/request_llms/com_sparkapi.py
index 5c1a3a44..3f667c18 100644
--- a/request_llms/com_sparkapi.py
+++ b/request_llms/com_sparkapi.py
@@ -1,4 +1,4 @@
-from toolbox import get_conf
+from toolbox import get_conf, get_pictures_list, encode_image
import base64
import datetime
import hashlib
@@ -65,18 +65,19 @@ class SparkRequestInstance():
self.gpt_url = "ws://spark-api.xf-yun.com/v1.1/chat"
self.gpt_url_v2 = "ws://spark-api.xf-yun.com/v2.1/chat"
self.gpt_url_v3 = "ws://spark-api.xf-yun.com/v3.1/chat"
+ self.gpt_url_img = "wss://spark-api.cn-huabei-1.xf-yun.com/v2.1/image"
self.time_to_yield_event = threading.Event()
self.time_to_exit_event = threading.Event()
self.result_buf = ""
- def generate(self, inputs, llm_kwargs, history, system_prompt):
+ def generate(self, inputs, llm_kwargs, history, system_prompt, use_image_api=False):
llm_kwargs = llm_kwargs
history = history
system_prompt = system_prompt
import _thread as thread
- thread.start_new_thread(self.create_blocking_request, (inputs, llm_kwargs, history, system_prompt))
+ thread.start_new_thread(self.create_blocking_request, (inputs, llm_kwargs, history, system_prompt, use_image_api))
while True:
self.time_to_yield_event.wait(timeout=1)
if self.time_to_yield_event.is_set():
@@ -85,14 +86,20 @@ class SparkRequestInstance():
return self.result_buf
- def create_blocking_request(self, inputs, llm_kwargs, history, system_prompt):
+ def create_blocking_request(self, inputs, llm_kwargs, history, system_prompt, use_image_api):
if llm_kwargs['llm_model'] == 'sparkv2':
gpt_url = self.gpt_url_v2
elif llm_kwargs['llm_model'] == 'sparkv3':
gpt_url = self.gpt_url_v3
else:
gpt_url = self.gpt_url
-
+ file_manifest = []
+ if use_image_api and llm_kwargs.get('most_recent_uploaded'):
+ if llm_kwargs['most_recent_uploaded'].get('path'):
+ file_manifest = get_pictures_list(llm_kwargs['most_recent_uploaded']['path'])
+ if len(file_manifest) > 0:
+ print('正在使用讯飞图片理解API')
+ gpt_url = self.gpt_url_img
wsParam = Ws_Param(self.appid, self.api_key, self.api_secret, gpt_url)
websocket.enableTrace(False)
wsUrl = wsParam.create_url()
@@ -101,9 +108,8 @@ class SparkRequestInstance():
def on_open(ws):
import _thread as thread
thread.start_new_thread(run, (ws,))
-
def run(ws, *args):
- data = json.dumps(gen_params(ws.appid, *ws.all_args))
+ data = json.dumps(gen_params(ws.appid, *ws.all_args, file_manifest))
ws.send(data)
# 收到websocket消息的处理
@@ -142,9 +148,18 @@ class SparkRequestInstance():
ws.all_args = (inputs, llm_kwargs, history, system_prompt)
ws.run_forever(sslopt={"cert_reqs": ssl.CERT_NONE})
-def generate_message_payload(inputs, llm_kwargs, history, system_prompt):
+def generate_message_payload(inputs, llm_kwargs, history, system_prompt, file_manifest):
conversation_cnt = len(history) // 2
- messages = [{"role": "system", "content": system_prompt}]
+ messages = []
+ if file_manifest:
+ base64_images = []
+ for image_path in file_manifest:
+ base64_images.append(encode_image(image_path))
+ for img_s in base64_images:
+ if img_s not in str(messages):
+ messages.append({"role": "user", "content": img_s, "content_type": "image"})
+ else:
+ messages = [{"role": "system", "content": system_prompt}]
if conversation_cnt:
for index in range(0, 2*conversation_cnt, 2):
what_i_have_asked = {}
@@ -167,7 +182,7 @@ def generate_message_payload(inputs, llm_kwargs, history, system_prompt):
return messages
-def gen_params(appid, inputs, llm_kwargs, history, system_prompt):
+def gen_params(appid, inputs, llm_kwargs, history, system_prompt, file_manifest):
"""
通过appid和用户的提问来生成请参数
"""
@@ -176,6 +191,8 @@ def gen_params(appid, inputs, llm_kwargs, history, system_prompt):
"sparkv2": "generalv2",
"sparkv3": "generalv3",
}
+ domains_select = domains[llm_kwargs['llm_model']]
+ if file_manifest: domains_select = 'image'
data = {
"header": {
"app_id": appid,
@@ -183,7 +200,7 @@ def gen_params(appid, inputs, llm_kwargs, history, system_prompt):
},
"parameter": {
"chat": {
- "domain": domains[llm_kwargs['llm_model']],
+ "domain": domains_select,
"temperature": llm_kwargs["temperature"],
"random_threshold": 0.5,
"max_tokens": 4096,
@@ -192,7 +209,7 @@ def gen_params(appid, inputs, llm_kwargs, history, system_prompt):
},
"payload": {
"message": {
- "text": generate_message_payload(inputs, llm_kwargs, history, system_prompt)
+ "text": generate_message_payload(inputs, llm_kwargs, history, system_prompt, file_manifest)
}
}
}
diff --git a/request_llms/local_llm_class.py b/request_llms/local_llm_class.py
index 413df03f..ec7cfd21 100644
--- a/request_llms/local_llm_class.py
+++ b/request_llms/local_llm_class.py
@@ -183,11 +183,11 @@ class LocalLLMHandle(Process):
def stream_chat(self, **kwargs):
# ⭐run in main process
if self.get_state() == "`准备就绪`":
- yield "`正在等待线程锁,排队中请稍后 ...`"
+ yield "`正在等待线程锁,排队中请稍候 ...`"
with self.threadLock:
if self.parent.poll():
- yield "`排队中请稍后 ...`"
+ yield "`排队中请稍候 ...`"
self.clear_pending_messages()
self.parent.send(kwargs)
std_out = ""
diff --git a/request_llms/requirements_chatglm_onnx.txt b/request_llms/requirements_chatglm_onnx.txt
index 54811472..2cd11f69 100644
--- a/request_llms/requirements_chatglm_onnx.txt
+++ b/request_llms/requirements_chatglm_onnx.txt
@@ -6,5 +6,3 @@ sentencepiece
numpy
onnxruntime
sentencepiece
-streamlit
-streamlit-chat
diff --git a/request_llms/requirements_moss.txt b/request_llms/requirements_moss.txt
index c27907c2..544b25f0 100644
--- a/request_llms/requirements_moss.txt
+++ b/request_llms/requirements_moss.txt
@@ -5,5 +5,4 @@ accelerate
matplotlib
huggingface_hub
triton
-streamlit
diff --git a/request_llms/requirements_qwen.txt b/request_llms/requirements_qwen.txt
index 3d7d62a0..5899464f 100644
--- a/request_llms/requirements_qwen.txt
+++ b/request_llms/requirements_qwen.txt
@@ -1,2 +1 @@
-modelscope
-transformers_stream_generator
\ No newline at end of file
+dashscope
\ No newline at end of file
diff --git a/requirements.txt b/requirements.txt
index fa78f6dd..52e851de 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -2,6 +2,7 @@ pydantic==1.10.11
pypdf2==2.12.1
tiktoken>=0.3.3
requests[socks]
+protobuf==3.18
transformers>=4.27.1
scipdf_parser>=0.52
python-markdown-math
diff --git a/tests/test_llms.py b/tests/test_llms.py
index 8b685972..347c6b99 100644
--- a/tests/test_llms.py
+++ b/tests/test_llms.py
@@ -16,8 +16,9 @@ if __name__ == "__main__":
# from request_llms.bridge_jittorllms_llama import predict_no_ui_long_connection
# from request_llms.bridge_claude import predict_no_ui_long_connection
# from request_llms.bridge_internlm import predict_no_ui_long_connection
- from request_llms.bridge_deepseekcoder import predict_no_ui_long_connection
- # from request_llms.bridge_qwen import predict_no_ui_long_connection
+ # from request_llms.bridge_deepseekcoder import predict_no_ui_long_connection
+ # from request_llms.bridge_qwen_7B import predict_no_ui_long_connection
+ from request_llms.bridge_qwen_local import predict_no_ui_long_connection
# from request_llms.bridge_spark import predict_no_ui_long_connection
# from request_llms.bridge_zhipu import predict_no_ui_long_connection
# from request_llms.bridge_chatglm3 import predict_no_ui_long_connection
diff --git a/tests/test_plugins.py b/tests/test_plugins.py
index 8470895d..13ec259e 100644
--- a/tests/test_plugins.py
+++ b/tests/test_plugins.py
@@ -48,11 +48,11 @@ if __name__ == "__main__":
# for lang in ["English", "French", "Japanese", "Korean", "Russian", "Italian", "German", "Portuguese", "Arabic"]:
# plugin_test(plugin='crazy_functions.批量Markdown翻译->Markdown翻译指定语言', main_input="README.md", advanced_arg={"advanced_arg": lang})
- # plugin_test(plugin='crazy_functions.Langchain知识库->知识库问答', main_input="./")
+ # plugin_test(plugin='crazy_functions.知识库文件注入->知识库文件注入', main_input="./")
- # plugin_test(plugin='crazy_functions.Langchain知识库->读取知识库作答', main_input="What is the installation method?")
+ # plugin_test(plugin='crazy_functions.知识库文件注入->读取知识库作答', main_input="What is the installation method?")
- # plugin_test(plugin='crazy_functions.Langchain知识库->读取知识库作答', main_input="远程云服务器部署?")
+ # plugin_test(plugin='crazy_functions.知识库文件注入->读取知识库作答', main_input="远程云服务器部署?")
# plugin_test(plugin='crazy_functions.Latex输出PDF结果->Latex翻译中文并重新编译PDF', main_input="2210.03629")
diff --git a/tests/test_utils.py b/tests/test_utils.py
index 1fdca1eb..c87908f6 100644
--- a/tests/test_utils.py
+++ b/tests/test_utils.py
@@ -56,11 +56,11 @@ vt.get_plugin_handle = silence_stdout_fn(get_plugin_handle)
vt.get_plugin_default_kwargs = silence_stdout_fn(get_plugin_default_kwargs)
vt.get_chat_handle = silence_stdout_fn(get_chat_handle)
vt.get_chat_default_kwargs = silence_stdout_fn(get_chat_default_kwargs)
-vt.chat_to_markdown_str = chat_to_markdown_str
+vt.chat_to_markdown_str = (chat_to_markdown_str)
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY = \
vt.get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY')
-def plugin_test(main_input, plugin, advanced_arg=None):
+def plugin_test(main_input, plugin, advanced_arg=None, debug=True):
from rich.live import Live
from rich.markdown import Markdown
@@ -72,7 +72,10 @@ def plugin_test(main_input, plugin, advanced_arg=None):
plugin_kwargs['main_input'] = main_input
if advanced_arg is not None:
plugin_kwargs['plugin_kwargs'] = advanced_arg
- my_working_plugin = silence_stdout(plugin)(**plugin_kwargs)
+ if debug:
+ my_working_plugin = (plugin)(**plugin_kwargs)
+ else:
+ my_working_plugin = silence_stdout(plugin)(**plugin_kwargs)
with Live(Markdown(""), auto_refresh=False, vertical_overflow="visible") as live:
for cookies, chat, hist, msg in my_working_plugin:
diff --git a/themes/common.js b/themes/common.js
index 849cb9a5..8743b3ca 100644
--- a/themes/common.js
+++ b/themes/common.js
@@ -1,9 +1,13 @@
+// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
+// 第 1 部分: 工具函数
+// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
+
function gradioApp() {
// https://github.com/GaiZhenbiao/ChuanhuChatGPT/tree/main/web_assets/javascript
const elems = document.getElementsByTagName('gradio-app');
const elem = elems.length == 0 ? document : elems[0];
if (elem !== document) {
- elem.getElementById = function(id) {
+ elem.getElementById = function (id) {
return document.getElementById(id);
};
}
@@ -12,31 +16,76 @@ function gradioApp() {
function setCookie(name, value, days) {
var expires = "";
-
+
if (days) {
- var date = new Date();
- date.setTime(date.getTime() + (days * 24 * 60 * 60 * 1000));
- expires = "; expires=" + date.toUTCString();
+ var date = new Date();
+ date.setTime(date.getTime() + (days * 24 * 60 * 60 * 1000));
+ expires = "; expires=" + date.toUTCString();
}
-
+
document.cookie = name + "=" + value + expires + "; path=/";
}
function getCookie(name) {
var decodedCookie = decodeURIComponent(document.cookie);
var cookies = decodedCookie.split(';');
-
+
for (var i = 0; i < cookies.length; i++) {
- var cookie = cookies[i].trim();
-
- if (cookie.indexOf(name + "=") === 0) {
- return cookie.substring(name.length + 1, cookie.length);
- }
+ var cookie = cookies[i].trim();
+
+ if (cookie.indexOf(name + "=") === 0) {
+ return cookie.substring(name.length + 1, cookie.length);
+ }
}
-
+
return null;
- }
-
+}
+
+let toastCount = 0;
+function toast_push(msg, duration) {
+ duration = isNaN(duration) ? 3000 : duration;
+ const existingToasts = document.querySelectorAll('.toast');
+ existingToasts.forEach(toast => {
+ toast.style.top = `${parseInt(toast.style.top, 10) - 70}px`;
+ });
+ const m = document.createElement('div');
+ m.innerHTML = msg;
+ m.classList.add('toast');
+ m.style.cssText = `font-size: var(--text-md) !important; color: rgb(255, 255, 255); background-color: rgba(0, 0, 0, 0.6); padding: 10px 15px; border-radius: 4px; position: fixed; top: ${50 + toastCount * 70}%; left: 50%; transform: translateX(-50%); width: auto; text-align: center; transition: top 0.3s;`;
+ document.body.appendChild(m);
+ setTimeout(function () {
+ m.style.opacity = '0';
+ setTimeout(function () {
+ document.body.removeChild(m);
+ toastCount--;
+ }, 500);
+ }, duration);
+ toastCount++;
+}
+
+function toast_up(msg) {
+ var m = document.getElementById('toast_up');
+ if (m) {
+ document.body.removeChild(m); // remove the loader from the body
+ }
+ m = document.createElement('div');
+ m.id = 'toast_up';
+ m.innerHTML = msg;
+ m.style.cssText = "font-size: var(--text-md) !important; color: rgb(255, 255, 255); background-color: rgba(0, 0, 100, 0.6); padding: 10px 15px; margin: 0 0 0 -60px; border-radius: 4px; position: fixed; top: 50%; left: 50%; width: auto; text-align: center;";
+ document.body.appendChild(m);
+}
+function toast_down() {
+ var m = document.getElementById('toast_up');
+ if (m) {
+ document.body.removeChild(m); // remove the loader from the body
+ }
+}
+
+
+// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
+// 第 2 部分: 复制按钮
+// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
+
function addCopyButton(botElement) {
// https://github.com/GaiZhenbiao/ChuanhuChatGPT/tree/main/web_assets/javascript
// Copy bot button
@@ -49,7 +98,7 @@ function addCopyButton(botElement) {
// messageBtnColumnElement.remove();
return;
}
-
+
var copyButton = document.createElement('button');
copyButton.classList.add('copy-bot-btn');
copyButton.setAttribute('aria-label', 'Copy');
@@ -98,47 +147,61 @@ function chatbotContentChanged(attempt = 1, force = false) {
}
}
-function chatbotAutoHeight(){
+
+
+// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
+// 第 3 部分: chatbot动态高度调整
+// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
+
+function chatbotAutoHeight() {
// 自动调整高度
- function update_height(){
- var { panel_height_target, chatbot_height, chatbot } = get_elements(true);
- if (panel_height_target!=chatbot_height)
- {
- var pixelString = panel_height_target.toString() + 'px';
- chatbot.style.maxHeight = pixelString; chatbot.style.height = pixelString;
+ function update_height() {
+ var { height_target, chatbot_height, chatbot } = get_elements(true);
+ if (height_target != chatbot_height) {
+ var pixelString = height_target.toString() + 'px';
+ chatbot.style.maxHeight = pixelString; chatbot.style.height = pixelString;
}
}
- function update_height_slow(){
- var { panel_height_target, chatbot_height, chatbot } = get_elements();
- if (panel_height_target!=chatbot_height)
- {
- new_panel_height = (panel_height_target - chatbot_height)*0.5 + chatbot_height;
- if (Math.abs(new_panel_height - panel_height_target) < 10){
- new_panel_height = panel_height_target;
+ function update_height_slow() {
+ var { height_target, chatbot_height, chatbot } = get_elements();
+ if (height_target != chatbot_height) {
+ new_panel_height = (height_target - chatbot_height) * 0.5 + chatbot_height;
+ if (Math.abs(new_panel_height - height_target) < 10) {
+ new_panel_height = height_target;
}
- // console.log(chatbot_height, panel_height_target, new_panel_height);
+ // console.log(chatbot_height, height_target, new_panel_height);
var pixelString = new_panel_height.toString() + 'px';
- chatbot.style.maxHeight = pixelString; chatbot.style.height = pixelString;
+ chatbot.style.maxHeight = pixelString; chatbot.style.height = pixelString;
}
}
-
+ monitoring_input_box()
update_height();
- setInterval(function() {
+ setInterval(function () {
update_height_slow()
- }, 50); // 每100毫秒执行一次
+ }, 50); // 每50毫秒执行一次
}
-function GptAcademicJavaScriptInit(LAYOUT = "LEFT-RIGHT") {
- chatbotIndicator = gradioApp().querySelector('#gpt-chatbot > div.wrap');
- var chatbotObserver = new MutationObserver(() => {
- chatbotContentChanged(1);
- });
- chatbotObserver.observe(chatbotIndicator, { attributes: true, childList: true, subtree: true });
- if (LAYOUT === "LEFT-RIGHT") {chatbotAutoHeight();}
+swapped = false;
+function swap_input_area() {
+ // Get the elements to be swapped
+ var element1 = document.querySelector("#input-panel");
+ var element2 = document.querySelector("#basic-panel");
+
+ // Get the parent of the elements
+ var parent = element1.parentNode;
+
+ // Get the next sibling of element2
+ var nextSibling = element2.nextSibling;
+
+ // Swap the elements
+ parent.insertBefore(element2, element1);
+ parent.insertBefore(element1, nextSibling);
+ if (swapped) {swapped = false;}
+ else {swapped = true;}
}
-function get_elements(consider_state_panel=false) {
+function get_elements(consider_state_panel = false) {
var chatbot = document.querySelector('#gpt-chatbot > div.wrap.svelte-18telvq');
if (!chatbot) {
chatbot = document.querySelector('#gpt-chatbot');
@@ -147,17 +210,292 @@ function get_elements(consider_state_panel=false) {
const panel2 = document.querySelector('#basic-panel').getBoundingClientRect()
const panel3 = document.querySelector('#plugin-panel').getBoundingClientRect();
// const panel4 = document.querySelector('#interact-panel').getBoundingClientRect();
- const panel5 = document.querySelector('#input-panel2').getBoundingClientRect();
const panel_active = document.querySelector('#state-panel').getBoundingClientRect();
- if (consider_state_panel || panel_active.height < 25){
+ if (consider_state_panel || panel_active.height < 25) {
document.state_panel_height = panel_active.height;
}
// 25 是chatbot的label高度, 16 是右侧的gap
- var panel_height_target = panel1.height + panel2.height + panel3.height + 0 + 0 - 25 + 16*2;
+ var height_target = panel1.height + panel2.height + panel3.height + 0 + 0 - 25 + 16 * 2;
// 禁止动态的state-panel高度影响
- panel_height_target = panel_height_target + (document.state_panel_height-panel_active.height)
- var panel_height_target = parseInt(panel_height_target);
+ height_target = height_target + (document.state_panel_height - panel_active.height)
+ var height_target = parseInt(height_target);
var chatbot_height = chatbot.style.height;
+ // 交换输入区位置,使得输入区始终可用
+ if (!swapped){
+ if (panel1.top!=0 && panel1.top < 0){ swap_input_area(); }
+ }
+ else if (swapped){
+ if (panel2.top!=0 && panel2.top > 0){ swap_input_area(); }
+ }
+ // 调整高度
+ const err_tor = 5;
+ if (Math.abs(panel1.left - chatbot.getBoundingClientRect().left) < err_tor){
+ // 是否处于窄屏模式
+ height_target = window.innerHeight * 0.6;
+ }else{
+ // 调整高度
+ const chatbot_height_exceed = 15;
+ const chatbot_height_exceed_m = 10;
+ b_panel = Math.max(panel1.bottom, panel2.bottom, panel3.bottom)
+ if (b_panel >= window.innerHeight - chatbot_height_exceed) {
+ height_target = window.innerHeight - chatbot.getBoundingClientRect().top - chatbot_height_exceed_m;
+ }
+ else if (b_panel < window.innerHeight * 0.75) {
+ height_target = window.innerHeight * 0.8;
+ }
+ }
var chatbot_height = parseInt(chatbot_height);
- return { panel_height_target, chatbot_height, chatbot };
+ return { height_target, chatbot_height, chatbot };
+}
+
+
+
+// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
+// 第 4 部分: 粘贴、拖拽文件上传
+// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
+
+var elem_upload = null;
+var elem_upload_float = null;
+var elem_input_main = null;
+var elem_input_float = null;
+var elem_chatbot = null;
+var exist_file_msg = '⚠️请先删除上传区(左上方)中的历史文件,再尝试上传。'
+
+function add_func_paste(input) {
+ let paste_files = [];
+ if (input) {
+ input.addEventListener("paste", async function (e) {
+ const clipboardData = e.clipboardData || window.clipboardData;
+ const items = clipboardData.items;
+ if (items) {
+ for (i = 0; i < items.length; i++) {
+ if (items[i].kind === "file") { // 确保是文件类型
+ const file = items[i].getAsFile();
+ // 将每一个粘贴的文件添加到files数组中
+ paste_files.push(file);
+ e.preventDefault(); // 避免粘贴文件名到输入框
+ }
+ }
+ if (paste_files.length > 0) {
+ // 按照文件列表执行批量上传逻辑
+ await upload_files(paste_files);
+ paste_files = []
+
+ }
+ }
+ });
+ }
+}
+
+function add_func_drag(elem) {
+ if (elem) {
+ const dragEvents = ["dragover"];
+ const leaveEvents = ["dragleave", "dragend", "drop"];
+
+ const onDrag = function (e) {
+ e.preventDefault();
+ e.stopPropagation();
+ if (elem_upload_float.querySelector("input[type=file]")) {
+ toast_up('⚠️释放以上传文件')
+ } else {
+ toast_up(exist_file_msg)
+ }
+ };
+
+ const onLeave = function (e) {
+ toast_down();
+ e.preventDefault();
+ e.stopPropagation();
+ };
+
+ dragEvents.forEach(event => {
+ elem.addEventListener(event, onDrag);
+ });
+
+ leaveEvents.forEach(event => {
+ elem.addEventListener(event, onLeave);
+ });
+
+ elem.addEventListener("drop", async function (e) {
+ const files = e.dataTransfer.files;
+ await upload_files(files);
+ });
+ }
+}
+
+async function upload_files(files) {
+ const uploadInputElement = elem_upload_float.querySelector("input[type=file]");
+ let totalSizeMb = 0
+ if (files && files.length > 0) {
+ // 执行具体的上传逻辑
+ if (uploadInputElement) {
+ for (let i = 0; i < files.length; i++) {
+ // 将从文件数组中获取的文件大小(单位为字节)转换为MB,
+ totalSizeMb += files[i].size / 1024 / 1024;
+ }
+ // 检查文件总大小是否超过20MB
+ if (totalSizeMb > 20) {
+ toast_push('⚠️文件夹大于 20MB 🚀上传文件中', 3000)
+ // return; // 如果超过了指定大小, 可以不进行后续上传操作
+ }
+ // 监听change事件, 原生Gradio可以实现
+ // uploadInputElement.addEventListener('change', function(){replace_input_string()});
+ let event = new Event("change");
+ Object.defineProperty(event, "target", { value: uploadInputElement, enumerable: true });
+ Object.defineProperty(event, "currentTarget", { value: uploadInputElement, enumerable: true });
+ Object.defineProperty(uploadInputElement, "files", { value: files, enumerable: true });
+ uploadInputElement.dispatchEvent(event);
+ } else {
+ toast_push(exist_file_msg, 3000)
+ }
+ }
+}
+
+function begin_loading_status() {
+ // Create the loader div and add styling
+ var loader = document.createElement('div');
+ loader.id = 'Js_File_Loading';
+ loader.style.position = "absolute";
+ loader.style.top = "50%";
+ loader.style.left = "50%";
+ loader.style.width = "60px";
+ loader.style.height = "60px";
+ loader.style.border = "16px solid #f3f3f3";
+ loader.style.borderTop = "16px solid #3498db";
+ loader.style.borderRadius = "50%";
+ loader.style.animation = "spin 2s linear infinite";
+ loader.style.transform = "translate(-50%, -50%)";
+ document.body.appendChild(loader); // Add the loader to the body
+ // Set the CSS animation keyframes
+ var styleSheet = document.createElement('style');
+ // styleSheet.type = 'text/css';
+ styleSheet.id = 'Js_File_Loading_Style'
+ styleSheet.innerText = `
+ @keyframes spin {
+ 0% { transform: rotate(0deg); }
+ 100% { transform: rotate(360deg); }
+ }`;
+ document.head.appendChild(styleSheet);
+}
+
+function cancel_loading_status() {
+ var loadingElement = document.getElementById('Js_File_Loading');
+ if (loadingElement) {
+ document.body.removeChild(loadingElement); // remove the loader from the body
+ }
+ var loadingStyle = document.getElementById('Js_File_Loading_Style');
+ if (loadingStyle) {
+ document.head.removeChild(loadingStyle);
+ }
+ let clearButton = document.querySelectorAll('div[id*="elem_upload"] button[aria-label="Clear"]');
+ for (let button of clearButton) {
+ button.addEventListener('click', function () {
+ setTimeout(function () {
+ register_upload_event();
+ }, 50);
+ });
+ }
+}
+
+function register_upload_event() {
+ elem_upload_float = document.getElementById('elem_upload_float')
+ const upload_component = elem_upload_float.querySelector("input[type=file]");
+ if (upload_component) {
+ upload_component.addEventListener('change', function (event) {
+ toast_push('正在上传中,请稍等。', 2000);
+ begin_loading_status();
+ });
+ }
+}
+
+function monitoring_input_box() {
+ register_upload_event();
+
+ elem_upload = document.getElementById('elem_upload')
+ elem_upload_float = document.getElementById('elem_upload_float')
+ elem_input_main = document.getElementById('user_input_main')
+ elem_input_float = document.getElementById('user_input_float')
+ elem_chatbot = document.getElementById('gpt-chatbot')
+
+ if (elem_input_main) {
+ if (elem_input_main.querySelector("textarea")) {
+ add_func_paste(elem_input_main.querySelector("textarea"))
+ }
+ }
+ if (elem_input_float) {
+ if (elem_input_float.querySelector("textarea")) {
+ add_func_paste(elem_input_float.querySelector("textarea"))
+ }
+ }
+ if (elem_chatbot) {
+ add_func_drag(elem_chatbot)
+ }
+}
+
+
+// 监视页面变化
+window.addEventListener("DOMContentLoaded", function () {
+ // const ga = document.getElementsByTagName("gradio-app");
+ gradioApp().addEventListener("render", monitoring_input_box);
+});
+
+
+
+
+
+// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
+// 第 5 部分: 音频按钮样式变化
+// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
+
+function audio_fn_init() {
+ let audio_component = document.getElementById('elem_audio');
+ if (audio_component) {
+ let buttonElement = audio_component.querySelector('button');
+ let specificElement = audio_component.querySelector('.hide.sr-only');
+ specificElement.remove();
+
+ buttonElement.childNodes[1].nodeValue = '启动麦克风';
+ buttonElement.addEventListener('click', function (event) {
+ event.stopPropagation();
+ toast_push('您启动了麦克风!下一步请点击“实时语音对话”启动语音对话。');
+ });
+
+ // 查找语音插件按钮
+ let buttons = document.querySelectorAll('button');
+ let audio_button = null;
+ for (let button of buttons) {
+ if (button.textContent.includes('语音')) {
+ audio_button = button;
+ break;
+ }
+ }
+ if (audio_button) {
+ audio_button.addEventListener('click', function () {
+ toast_push('您点击了“实时语音对话”启动语音对话。');
+ });
+ let parent_element = audio_component.parentElement; // 将buttonElement移动到audio_button的内部
+ audio_button.appendChild(audio_component);
+ buttonElement.style.cssText = 'border-color: #00ffe0;border-width: 2px; height: 25px;'
+ parent_element.remove();
+ audio_component.style.cssText = 'width: 250px;right: 0px;display: inline-flex;flex-flow: row-reverse wrap;place-content: stretch space-between;align-items: center;background-color: #ffffff00;';
+ }
+
+ }
+}
+
+
+
+
+// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
+// 第 6 部分: JS初始化函数
+// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
+
+function GptAcademicJavaScriptInit(LAYOUT = "LEFT-RIGHT") {
+ audio_fn_init();
+ chatbotIndicator = gradioApp().querySelector('#gpt-chatbot > div.wrap');
+ var chatbotObserver = new MutationObserver(() => {
+ chatbotContentChanged(1);
+ });
+ chatbotObserver.observe(chatbotIndicator, { attributes: true, childList: true, subtree: true });
+ if (LAYOUT === "LEFT-RIGHT") { chatbotAutoHeight(); }
}
\ No newline at end of file
diff --git a/themes/green.css b/themes/green.css
index dd109d53..870af482 100644
--- a/themes/green.css
+++ b/themes/green.css
@@ -256,13 +256,13 @@ textarea.svelte-1pie7s6 {
max-height: 95% !important;
overflow-y: auto !important;
}*/
-.app.svelte-1mya07g.svelte-1mya07g {
+/* .app.svelte-1mya07g.svelte-1mya07g {
max-width: 100%;
position: relative;
padding: var(--size-4);
width: 100%;
height: 100%;
-}
+} */
.gradio-container-3-32-2 h1 {
font-weight: 700 !important;
diff --git a/themes/theme.py b/themes/theme.py
index f59db9f8..5664f737 100644
--- a/themes/theme.py
+++ b/themes/theme.py
@@ -1,6 +1,14 @@
-import gradio as gr
+import pickle
+import base64
+import uuid
from toolbox import get_conf
-THEME = get_conf('THEME')
+
+"""
+-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
+第 1 部分
+加载主题相关的工具函数
+-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
+"""
def load_dynamic_theme(THEME):
adjust_dynamic_theme = None
@@ -20,4 +28,91 @@ def load_dynamic_theme(THEME):
theme_declaration = ""
return adjust_theme, advanced_css, theme_declaration, adjust_dynamic_theme
-adjust_theme, advanced_css, theme_declaration, _ = load_dynamic_theme(THEME)
\ No newline at end of file
+adjust_theme, advanced_css, theme_declaration, _ = load_dynamic_theme(get_conf('THEME'))
+
+
+
+
+
+
+"""
+-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
+第 2 部分
+cookie相关工具函数
+-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
+"""
+
+def init_cookie(cookies, chatbot):
+ # 为每一位访问的用户赋予一个独一无二的uuid编码
+ cookies.update({'uuid': uuid.uuid4()})
+ return cookies
+
+def to_cookie_str(d):
+ # Pickle the dictionary and encode it as a string
+ pickled_dict = pickle.dumps(d)
+ cookie_value = base64.b64encode(pickled_dict).decode('utf-8')
+ return cookie_value
+
+def from_cookie_str(c):
+ # Decode the base64-encoded string and unpickle it into a dictionary
+ pickled_dict = base64.b64decode(c.encode('utf-8'))
+ return pickle.loads(pickled_dict)
+
+
+
+
+
+"""
+-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
+第 3 部分
+内嵌的javascript代码
+-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
+"""
+
+js_code_for_css_changing = """(css) => {
+ var existingStyles = document.querySelectorAll("body > gradio-app > div > style")
+ for (var i = 0; i < existingStyles.length; i++) {
+ var style = existingStyles[i];
+ style.parentNode.removeChild(style);
+ }
+ var existingStyles = document.querySelectorAll("style[data-loaded-css]");
+ for (var i = 0; i < existingStyles.length; i++) {
+ var style = existingStyles[i];
+ style.parentNode.removeChild(style);
+ }
+ var styleElement = document.createElement('style');
+ styleElement.setAttribute('data-loaded-css', 'placeholder');
+ styleElement.innerHTML = css;
+ document.body.appendChild(styleElement);
+}
+"""
+
+js_code_for_darkmode_init = """(dark) => {
+ dark = dark == "True";
+ if (document.querySelectorAll('.dark').length) {
+ if (!dark){
+ document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
+ }
+ } else {
+ if (dark){
+ document.querySelector('body').classList.add('dark');
+ }
+ }
+}
+"""
+
+js_code_for_toggle_darkmode = """() => {
+ if (document.querySelectorAll('.dark').length) {
+ document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
+ } else {
+ document.querySelector('body').classList.add('dark');
+ }
+}"""
+
+
+js_code_for_persistent_cookie_init = """(persistent_cookie) => {
+ return getCookie("persistent_cookie");
+}
+"""
+
+
diff --git a/toolbox.py b/toolbox.py
index 8747afdb..154b54ca 100644
--- a/toolbox.py
+++ b/toolbox.py
@@ -4,6 +4,7 @@ import time
import inspect
import re
import os
+import base64
import gradio
import shutil
import glob
@@ -79,6 +80,7 @@ def ArgsGeneralWrapper(f):
'max_length': max_length,
'temperature':temperature,
'client_ip': request.client.host,
+ 'most_recent_uploaded': cookies.get('most_recent_uploaded')
}
plugin_kwargs = {
"advanced_arg": plugin_advanced_arg,
@@ -178,12 +180,15 @@ def HotReload(f):
最后,使用yield from语句返回重新加载过的函数,并在被装饰的函数上执行。
最终,装饰器函数返回内部函数。这个内部函数可以将函数的原始定义更新为最新版本,并执行函数的新版本。
"""
- @wraps(f)
- def decorated(*args, **kwargs):
- fn_name = f.__name__
- f_hot_reload = getattr(importlib.reload(inspect.getmodule(f)), fn_name)
- yield from f_hot_reload(*args, **kwargs)
- return decorated
+ if get_conf('PLUGIN_HOT_RELOAD'):
+ @wraps(f)
+ def decorated(*args, **kwargs):
+ fn_name = f.__name__
+ f_hot_reload = getattr(importlib.reload(inspect.getmodule(f)), fn_name)
+ yield from f_hot_reload(*args, **kwargs)
+ return decorated
+ else:
+ return f
"""
@@ -561,7 +566,8 @@ def promote_file_to_downloadzone(file, rename_file=None, chatbot=None):
user_name = get_user(chatbot)
else:
user_name = default_user_name
-
+ if not os.path.exists(file):
+ raise FileNotFoundError(f'文件{file}不存在')
user_path = get_log_folder(user_name, plugin_name=None)
if file_already_in_downloadzone(file, user_path):
new_path = file
@@ -577,7 +583,8 @@ def promote_file_to_downloadzone(file, rename_file=None, chatbot=None):
if chatbot is not None:
if 'files_to_promote' in chatbot._cookies: current = chatbot._cookies['files_to_promote']
else: current = []
- chatbot._cookies.update({'files_to_promote': [new_path] + current})
+ if new_path not in current: # 避免把同一个文件添加多次
+ chatbot._cookies.update({'files_to_promote': [new_path] + current})
return new_path
@@ -602,6 +609,64 @@ def del_outdated_uploads(outdate_time_seconds, target_path_base=None):
except: pass
return
+
+def html_local_file(file):
+ base_path = os.path.dirname(__file__) # 项目目录
+ if os.path.exists(str(file)):
+ file = f'file={file.replace(base_path, ".")}'
+ return file
+
+
+def html_local_img(__file, layout='left', max_width=None, max_height=None, md=True):
+ style = ''
+ if max_width is not None:
+ style += f"max-width: {max_width};"
+ if max_height is not None:
+ style += f"max-height: {max_height};"
+ __file = html_local_file(__file)
+ a = f''
+ if md:
+ a = f''
+ return a
+
+def file_manifest_filter_type(file_list, filter_: list = None):
+ new_list = []
+ if not filter_: filter_ = ['png', 'jpg', 'jpeg']
+ for file in file_list:
+ if str(os.path.basename(file)).split('.')[-1] in filter_:
+ new_list.append(html_local_img(file, md=False))
+ else:
+ new_list.append(file)
+ return new_list
+
+def to_markdown_tabs(head: list, tabs: list, alignment=':---:', column=False):
+ """
+ Args:
+ head: 表头:[]
+ tabs: 表值:[[列1], [列2], [列3], [列4]]
+ alignment: :--- 左对齐, :---: 居中对齐, ---: 右对齐
+ column: True to keep data in columns, False to keep data in rows (default).
+ Returns:
+ A string representation of the markdown table.
+ """
+ if column:
+ transposed_tabs = list(map(list, zip(*tabs)))
+ else:
+ transposed_tabs = tabs
+ # Find the maximum length among the columns
+ max_len = max(len(column) for column in transposed_tabs)
+
+ tab_format = "| %s "
+ tabs_list = "".join([tab_format % i for i in head]) + '|\n'
+ tabs_list += "".join([tab_format % alignment for i in head]) + '|\n'
+
+ for i in range(max_len):
+ row_data = [tab[i] if i < len(tab) else '' for tab in transposed_tabs]
+ row_data = file_manifest_filter_type(row_data, filter_=None)
+ tabs_list += "".join([tab_format % i for i in row_data]) + '|\n'
+
+ return tabs_list
+
def on_file_uploaded(request: gradio.Request, files, chatbot, txt, txt2, checkboxes, cookies):
"""
当文件被上传时的回调函数
@@ -626,16 +691,15 @@ def on_file_uploaded(request: gradio.Request, files, chatbot, txt, txt2, checkbo
this_file_path = pj(target_path_base, file_origin_name)
shutil.move(file.name, this_file_path)
upload_msg += extract_archive(file_path=this_file_path, dest_dir=this_file_path+'.extract')
-
- # 整理文件集合
- moved_files = [fp for fp in glob.glob(f'{target_path_base}/**/*', recursive=True)]
+
if "浮动输入区" in checkboxes:
txt, txt2 = "", target_path_base
else:
txt, txt2 = target_path_base, ""
- # 输出消息
- moved_files_str = '\t\n\n'.join(moved_files)
+ # 整理文件集合 输出消息
+ moved_files = [fp for fp in glob.glob(f'{target_path_base}/**/*', recursive=True)]
+ moved_files_str = to_markdown_tabs(head=['文件'], tabs=[moved_files])
chatbot.append(['我上传了文件,请查收',
f'[Local Message] 收到以下文件: \n\n{moved_files_str}' +
f'\n\n调用路径参数已自动修正到: \n\n{txt}' +
@@ -856,7 +920,14 @@ def read_single_conf_with_lru_cache(arg):
@lru_cache(maxsize=128)
def get_conf(*args):
- # 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
+ """
+ 本项目的所有配置都集中在config.py中。 修改配置有三种方法,您只需要选择其中一种即可:
+ - 直接修改config.py
+ - 创建并修改config_private.py
+ - 修改环境变量(修改docker-compose.yml等价于修改容器内部的环境变量)
+
+ 注意:如果您使用docker-compose部署,请修改docker-compose(等价于修改容器内部的环境变量)
+ """
res = []
for arg in args:
r = read_single_conf_with_lru_cache(arg)
@@ -937,14 +1008,19 @@ def clip_history(inputs, history, tokenizer, max_token_limit):
def get_token_num(txt):
return len(tokenizer.encode(txt, disallowed_special=()))
input_token_num = get_token_num(inputs)
+
+ if max_token_limit < 5000: output_token_expect = 256 # 4k & 2k models
+ elif max_token_limit < 9000: output_token_expect = 512 # 8k models
+ else: output_token_expect = 1024 # 16k & 32k models
+
if input_token_num < max_token_limit * 3 / 4:
# 当输入部分的token占比小于限制的3/4时,裁剪时
# 1. 把input的余量留出来
max_token_limit = max_token_limit - input_token_num
# 2. 把输出用的余量留出来
- max_token_limit = max_token_limit - 128
+ max_token_limit = max_token_limit - output_token_expect
# 3. 如果余量太小了,直接清除历史
- if max_token_limit < 128:
+ if max_token_limit < output_token_expect:
history = []
return history
else:
@@ -1053,7 +1129,7 @@ def get_user(chatbotwithcookies):
class ProxyNetworkActivate():
"""
- 这段代码定义了一个名为TempProxy的空上下文管理器, 用于给一小段代码上代理
+ 这段代码定义了一个名为ProxyNetworkActivate的空上下文管理器, 用于给一小段代码上代理
"""
def __init__(self, task=None) -> None:
self.task = task
@@ -1198,6 +1274,35 @@ def get_chat_default_kwargs():
return default_chat_kwargs
+
+def get_pictures_list(path):
+ file_manifest = [f for f in glob.glob(f'{path}/**/*.jpg', recursive=True)]
+ file_manifest += [f for f in glob.glob(f'{path}/**/*.jpeg', recursive=True)]
+ file_manifest += [f for f in glob.glob(f'{path}/**/*.png', recursive=True)]
+ return file_manifest
+
+
+def have_any_recent_upload_image_files(chatbot):
+ _5min = 5 * 60
+ if chatbot is None: return False, None # chatbot is None
+ most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
+ if not most_recent_uploaded: return False, None # most_recent_uploaded is None
+ if time.time() - most_recent_uploaded["time"] < _5min:
+ most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
+ path = most_recent_uploaded['path']
+ file_manifest = get_pictures_list(path)
+ if len(file_manifest) == 0: return False, None
+ return True, file_manifest # most_recent_uploaded is new
+ else:
+ return False, None # most_recent_uploaded is too old
+
+
+# Function to encode the image
+def encode_image(image_path):
+ with open(image_path, "rb") as image_file:
+ return base64.b64encode(image_file.read()).decode('utf-8')
+
+
def get_max_token(llm_kwargs):
from request_llms.bridge_all import model_info
return model_info[llm_kwargs['llm_model']]['max_token']
diff --git a/version b/version
index 5f6de09c..62e6aa5c 100644
--- a/version
+++ b/version
@@ -1,5 +1,5 @@
{
- "version": 3.61,
+ "version": 3.64,
"show_feature": true,
- "new_feature": "修复潜在的多用户冲突问题 <-> 接入Deepseek Coder <-> AutoGen多智能体插件测试版 <-> 修复本地模型在Windows下的加载BUG <-> 支持文心一言v4和星火v3 <-> 支持GLM3和智谱的API <-> 解决本地模型并发BUG <-> 支持动态追加基础功能按钮"
+ "new_feature": "支持直接拖拽文件到上传区 <-> 支持将图片粘贴到输入区 <-> 修复若干隐蔽的内存BUG <-> 修复多用户冲突问题 <-> 接入Deepseek Coder <-> AutoGen多智能体插件测试版"
}