Resolve conflicts

这个提交包含在:
lbykkkk
2024-10-11 22:27:57 +08:00
父节点 02ba653c19
当前提交 584e747565

查看文件

@@ -3,10 +3,12 @@ from typing import List
from llama_index.core import Document
from shared_utils.fastapi_server import validate_path_safety
from crazy_functions.crazy_utils import input_clipping, request_gpt_model_in_new_thread_with_ui_alive
from toolbox import CatchException, update_ui, get_log_folder, update_ui_lastest_msg
from toolbox import report_exception
from crazy_functions.rag_fns.rag_file_support import extract_text
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
from crazy_functions.crazy_utils import input_clipping
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
RAG_WORKER_REGISTER = {}
MAX_HISTORY_ROUND = 5
@@ -61,21 +63,9 @@ def handle_document_upload(files: List[str], llm_kwargs, plugin_kwargs, chatbot,
# Main Q&A function with document upload support
@CatchException
def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
Handles RAG-based Q&A, including special commands and document uploads.
Args:
txt (str): User input text.
llm_kwargs: Language model keyword arguments.
plugin_kwargs: Plugin keyword arguments.
chatbot: Chatbot instance.
history: Chat history.
system_prompt: System prompt.
user_request: User request.
"""
# import vector store lib
VECTOR_STORE_TYPE = "Milvus"
if VECTOR_STORE_TYPE == "Milvus":
try:
from crazy_functions.rag_fns.milvus_worker import MilvusRagWorker as LlamaIndexRagWorker
@@ -85,7 +75,6 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
if VECTOR_STORE_TYPE == "Simple":
from crazy_functions.rag_fns.llama_index_worker import LlamaIndexRagWorker
# Define commands
CLEAR_VECTOR_DB_CMD = "清空向量数据库"
# 1. Retrieve RAG worker from global context
user_name = chatbot.get_user()
@@ -117,7 +106,7 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
yield from handle_document_upload(file_paths, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
return
elif txt == CLEAR_VECTOR_DB_CMD:
elif txt == "清空向量数据库":
chatbot.append([txt, f'正在清空 ({current_context}) ...'])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
rag_worker.purge_vector_store()