镜像自地址
https://github.com/xming521/CTAI.git
已同步 2025-12-05 22:26:49 +00:00
init flask
这个提交包含在:
200
CTAI_flask/core/get_feature.py
普通文件
200
CTAI_flask/core/get_feature.py
普通文件
@@ -0,0 +1,200 @@
|
||||
import inspect
|
||||
|
||||
import SimpleITK as sitk
|
||||
import cv2
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from numba import jit
|
||||
|
||||
np.set_printoptions(suppress=True) # 输出时禁止科学表示法,直接输出小数值
|
||||
|
||||
column_all_c = ['面积', '周长', '重心x', '重心y', '似圆度', '灰度均值', '灰度方差', '灰度偏度',
|
||||
'灰度峰态', '小梯度优势', '大梯度优势', '灰度分布不均匀性', '梯度分布不均匀性', '能量', '灰度平均', '梯度平均',
|
||||
'灰度均方差', '梯度均方差', '相关', '灰度熵', '梯度熵', '混合熵', '惯性', '逆差矩']
|
||||
|
||||
features_list = ['area', 'perimeter', 'focus_x', 'focus_y', 'ellipse', 'mean', 'std', 'piandu', 'fengdu',
|
||||
'small_grads_dominance',
|
||||
'big_grads_dominance', 'gray_asymmetry', 'grads_asymmetry', 'energy', 'gray_mean', 'grads_mean',
|
||||
'gray_variance', 'grads_variance', 'corelation', 'gray_entropy', 'grads_entropy', 'entropy', 'inertia',
|
||||
'differ_moment']
|
||||
|
||||
|
||||
# 最后俩偏度 峰度
|
||||
|
||||
|
||||
# 获取变量的名
|
||||
def get_variable_name(variable):
|
||||
callers_local_vars = inspect.currentframe().f_back.f_locals.items()
|
||||
return [var_name for var_name, var_val in callers_local_vars if var_val is variable]
|
||||
|
||||
|
||||
def glcm(img_gray, ngrad=16, ngray=16):
|
||||
'''Gray Level-Gradient Co-occurrence Matrix,取归一化后的灰度值、梯度值分别为16、16'''
|
||||
# 利用sobel算子分别计算x-y方向上的梯度值
|
||||
gsx = cv2.Sobel(img_gray, cv2.CV_64F, 1, 0, ksize=3)
|
||||
gsy = cv2.Sobel(img_gray, cv2.CV_64F, 0, 1, ksize=3)
|
||||
height, width = img_gray.shape
|
||||
grad = (gsx ** 2 + gsy ** 2) ** 0.5 # 计算梯度值
|
||||
grad = np.asarray(1.0 * grad * (ngrad - 1) / grad.max(), dtype=np.int16)
|
||||
gray = np.asarray(1.0 * img_gray * (ngray - 1) / img_gray.max(), dtype=np.int16) # 0-255变换为0-15
|
||||
gray_grad = np.zeros([ngray, ngrad]) # 灰度梯度共生矩阵
|
||||
for i in range(height):
|
||||
for j in range(width):
|
||||
gray_value = gray[i][j]
|
||||
grad_value = grad[i][j]
|
||||
gray_grad[gray_value][grad_value] += 1
|
||||
gray_grad = 1.0 * gray_grad / (height * width) # 归一化灰度梯度矩阵,减少计算量
|
||||
get_glcm_features(gray_grad)
|
||||
|
||||
|
||||
@jit
|
||||
def get_gray_feature():
|
||||
# 灰度特征提取算法
|
||||
hist = cv2.calcHist([image_ROI_uint8[index]], [0], None, [256], [0, 256])
|
||||
# 假的 还没用灰度直方图
|
||||
|
||||
c_features['mean'].append(np.mean(image_ROI[index]))
|
||||
c_features['std'].append(np.std(image_ROI[index]))
|
||||
|
||||
s = pd.Series(image_ROI[index])
|
||||
c_features['piandu'].append(s.skew())
|
||||
c_features['fengdu'].append(s.kurt())
|
||||
|
||||
|
||||
def get_glcm_features(mat):
|
||||
'''根据灰度梯度共生矩阵计算纹理特征量,包括小梯度优势,大梯度优势,灰度分布不均匀性,梯度分布不均匀性,能量,灰度平均,梯度平均,
|
||||
灰度方差,梯度方差,相关,灰度熵,梯度熵,混合熵,惯性,逆差矩'''
|
||||
sum_mat = mat.sum()
|
||||
small_grads_dominance = big_grads_dominance = gray_asymmetry = grads_asymmetry = energy = gray_mean = grads_mean = 0
|
||||
gray_variance = grads_variance = corelation = gray_entropy = grads_entropy = entropy = inertia = differ_moment = 0
|
||||
for i in range(mat.shape[0]):
|
||||
gray_variance_temp = 0
|
||||
for j in range(mat.shape[1]):
|
||||
small_grads_dominance += mat[i][j] / ((j + 1) ** 2)
|
||||
big_grads_dominance += mat[i][j] * j ** 2
|
||||
energy += mat[i][j] ** 2
|
||||
if mat[i].sum() != 0:
|
||||
gray_entropy -= mat[i][j] * np.log(mat[i].sum())
|
||||
if mat[:, j].sum() != 0:
|
||||
grads_entropy -= mat[i][j] * np.log(mat[:, j].sum())
|
||||
if mat[i][j] != 0:
|
||||
entropy -= mat[i][j] * np.log(mat[i][j])
|
||||
inertia += (i - j) ** 2 * np.log(mat[i][j])
|
||||
differ_moment += mat[i][j] / (1 + (i - j) ** 2)
|
||||
gray_variance_temp += mat[i][j] ** 0.5
|
||||
|
||||
gray_asymmetry += mat[i].sum() ** 2
|
||||
gray_mean += i * mat[i].sum() ** 2
|
||||
gray_variance += (i - gray_mean) ** 2 * gray_variance_temp
|
||||
for j in range(mat.shape[1]):
|
||||
grads_variance_temp = 0
|
||||
for i in range(mat.shape[0]):
|
||||
grads_variance_temp += mat[i][j] ** 0.5
|
||||
grads_asymmetry += mat[:, j].sum() ** 2
|
||||
grads_mean += j * mat[:, j].sum() ** 2
|
||||
grads_variance += (j - grads_mean) ** 2 * grads_variance_temp
|
||||
small_grads_dominance /= sum_mat
|
||||
big_grads_dominance /= sum_mat
|
||||
gray_asymmetry /= sum_mat
|
||||
grads_asymmetry /= sum_mat
|
||||
gray_variance = gray_variance ** 0.5
|
||||
grads_variance = grads_variance ** 0.5
|
||||
for i in range(mat.shape[0]):
|
||||
for j in range(mat.shape[1]):
|
||||
corelation += (i - gray_mean) * (j - grads_mean) * mat[i][j]
|
||||
glgcm_features = [small_grads_dominance, big_grads_dominance, gray_asymmetry, grads_asymmetry, energy, gray_mean,
|
||||
grads_mean,
|
||||
gray_variance, grads_variance, corelation, gray_entropy, grads_entropy, entropy, inertia,
|
||||
differ_moment]
|
||||
for i in range(len(glgcm_features)):
|
||||
t = get_variable_name(glgcm_features[i])[0]
|
||||
c_features[t].append(np.round(glgcm_features[i], 4))
|
||||
|
||||
|
||||
def get_geometry_feature():
|
||||
# 形态特征 分割mask获得一些特征
|
||||
im2, contours, x = cv2.findContours(mask_array.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
|
||||
tarea = []
|
||||
tperimeter = []
|
||||
for c in contours:
|
||||
# 生成矩
|
||||
try:
|
||||
M = cv2.moments(c)
|
||||
cx = int(M['m10'] / M['m00'])
|
||||
cy = int(M['m01'] / M['m00'])
|
||||
c_features['focus_x'].append(cx)
|
||||
c_features['focus_y'].append(cy)
|
||||
except:
|
||||
print('error')
|
||||
|
||||
# 椭圆拟合
|
||||
try:
|
||||
(x, y), (MA, ma), angle = cv2.fitEllipse(c)
|
||||
c_features['ellipse'].append((ma - MA))
|
||||
except:
|
||||
continue
|
||||
# 面积周长
|
||||
tarea.append(cv2.contourArea(c))
|
||||
tperimeter.append(cv2.arcLength(c, True))
|
||||
|
||||
# 将mask里的最大值追加 有黑洞
|
||||
try:
|
||||
c_features['area'].append(max(tarea))
|
||||
c_features['perimeter'].append(round(max(tperimeter), 4))
|
||||
except:
|
||||
print('area error')
|
||||
|
||||
|
||||
# 提取肿瘤特征
|
||||
def get_feature(image, mask):
|
||||
global w
|
||||
global image_ROI_uint8, index, image_ROI_mini, image_ROI, mask_array
|
||||
|
||||
mask_array = cv2.imread(mask, 0)
|
||||
image = sitk.ReadImage(image)
|
||||
image_arrary = sitk.GetArrayFromImage(image)[0, :, :]
|
||||
# 映射到CT获得特征
|
||||
image_ROI = np.zeros(shape=image_arrary.shape)
|
||||
index = np.nonzero(mask_array)
|
||||
if not index[0].any():
|
||||
# c_features['no'] = True
|
||||
return None
|
||||
image_ROI[index] = image_arrary[index]
|
||||
image_ROI_uint8 = np.uint8(image_ROI)
|
||||
# 获得只有肿瘤的图片
|
||||
x, y, w, h = cv2.boundingRect(mask_array)
|
||||
image_ROI_mini = np.uint8(image_arrary[y:y + h, x:x + w])
|
||||
w = image_ROI_mini
|
||||
|
||||
# 灰度梯度共生矩阵提取纹理特征
|
||||
|
||||
get_geometry_feature()
|
||||
|
||||
get_gray_feature()
|
||||
|
||||
glcm(image_ROI_mini, 15, 15)
|
||||
|
||||
return c_features
|
||||
|
||||
|
||||
def main(pid):
|
||||
global w
|
||||
|
||||
person_id = pid
|
||||
global c_features
|
||||
c_features = {}
|
||||
for i in range(len(features_list)):
|
||||
c_features[features_list[i]] = [column_all_c[i]]
|
||||
|
||||
get_feature(f'tmp/ct/{pid}.dcm', f'tmp/mask/{pid}_mask.png')
|
||||
|
||||
for j in c_features:
|
||||
if j == 'id':
|
||||
continue
|
||||
c_features[j][1] = np.round(np.mean(c_features[j][1]), 4)
|
||||
|
||||
return c_features
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
15
CTAI_flask/core/main.py
普通文件
15
CTAI_flask/core/main.py
普通文件
@@ -0,0 +1,15 @@
|
||||
from core import process, predict, get_feature
|
||||
|
||||
|
||||
def c_main(path,model):
|
||||
image_data = process.pre_process(path)
|
||||
# print(image_data)
|
||||
predict.predict(image_data,model)
|
||||
process.last_process(image_data[1])
|
||||
image_info = get_feature.main(image_data[1])
|
||||
|
||||
return image_data[1] + '.png', image_info
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
pass
|
||||
在新工单中引用
屏蔽一个用户