init flask

这个提交包含在:
小铭
2020-02-17 16:04:55 +08:00
提交者 GitHub
父节点 8c361a09b5
当前提交 983f77e86f
共有 2 个文件被更改,包括 215 次插入0 次删除

查看文件

@@ -0,0 +1,200 @@
import inspect
import SimpleITK as sitk
import cv2
import numpy as np
import pandas as pd
from numba import jit
np.set_printoptions(suppress=True) # 输出时禁止科学表示法,直接输出小数值
column_all_c = ['面积', '周长', '重心x', '重心y', '似圆度', '灰度均值', '灰度方差', '灰度偏度',
'灰度峰态', '小梯度优势', '大梯度优势', '灰度分布不均匀性', '梯度分布不均匀性', '能量', '灰度平均', '梯度平均',
'灰度均方差', '梯度均方差', '相关', '灰度熵', '梯度熵', '混合熵', '惯性', '逆差矩']
features_list = ['area', 'perimeter', 'focus_x', 'focus_y', 'ellipse', 'mean', 'std', 'piandu', 'fengdu',
'small_grads_dominance',
'big_grads_dominance', 'gray_asymmetry', 'grads_asymmetry', 'energy', 'gray_mean', 'grads_mean',
'gray_variance', 'grads_variance', 'corelation', 'gray_entropy', 'grads_entropy', 'entropy', 'inertia',
'differ_moment']
# 最后俩偏度 峰度
# 获取变量的名
def get_variable_name(variable):
callers_local_vars = inspect.currentframe().f_back.f_locals.items()
return [var_name for var_name, var_val in callers_local_vars if var_val is variable]
def glcm(img_gray, ngrad=16, ngray=16):
'''Gray Level-Gradient Co-occurrence Matrix,取归一化后的灰度值、梯度值分别为16、16'''
# 利用sobel算子分别计算x-y方向上的梯度值
gsx = cv2.Sobel(img_gray, cv2.CV_64F, 1, 0, ksize=3)
gsy = cv2.Sobel(img_gray, cv2.CV_64F, 0, 1, ksize=3)
height, width = img_gray.shape
grad = (gsx ** 2 + gsy ** 2) ** 0.5 # 计算梯度值
grad = np.asarray(1.0 * grad * (ngrad - 1) / grad.max(), dtype=np.int16)
gray = np.asarray(1.0 * img_gray * (ngray - 1) / img_gray.max(), dtype=np.int16) # 0-255变换为0-15
gray_grad = np.zeros([ngray, ngrad]) # 灰度梯度共生矩阵
for i in range(height):
for j in range(width):
gray_value = gray[i][j]
grad_value = grad[i][j]
gray_grad[gray_value][grad_value] += 1
gray_grad = 1.0 * gray_grad / (height * width) # 归一化灰度梯度矩阵,减少计算量
get_glcm_features(gray_grad)
@jit
def get_gray_feature():
# 灰度特征提取算法
hist = cv2.calcHist([image_ROI_uint8[index]], [0], None, [256], [0, 256])
# 假的 还没用灰度直方图
c_features['mean'].append(np.mean(image_ROI[index]))
c_features['std'].append(np.std(image_ROI[index]))
s = pd.Series(image_ROI[index])
c_features['piandu'].append(s.skew())
c_features['fengdu'].append(s.kurt())
def get_glcm_features(mat):
'''根据灰度梯度共生矩阵计算纹理特征量,包括小梯度优势,大梯度优势,灰度分布不均匀性,梯度分布不均匀性,能量,灰度平均,梯度平均,
灰度方差,梯度方差,相关,灰度熵,梯度熵,混合熵,惯性,逆差矩'''
sum_mat = mat.sum()
small_grads_dominance = big_grads_dominance = gray_asymmetry = grads_asymmetry = energy = gray_mean = grads_mean = 0
gray_variance = grads_variance = corelation = gray_entropy = grads_entropy = entropy = inertia = differ_moment = 0
for i in range(mat.shape[0]):
gray_variance_temp = 0
for j in range(mat.shape[1]):
small_grads_dominance += mat[i][j] / ((j + 1) ** 2)
big_grads_dominance += mat[i][j] * j ** 2
energy += mat[i][j] ** 2
if mat[i].sum() != 0:
gray_entropy -= mat[i][j] * np.log(mat[i].sum())
if mat[:, j].sum() != 0:
grads_entropy -= mat[i][j] * np.log(mat[:, j].sum())
if mat[i][j] != 0:
entropy -= mat[i][j] * np.log(mat[i][j])
inertia += (i - j) ** 2 * np.log(mat[i][j])
differ_moment += mat[i][j] / (1 + (i - j) ** 2)
gray_variance_temp += mat[i][j] ** 0.5
gray_asymmetry += mat[i].sum() ** 2
gray_mean += i * mat[i].sum() ** 2
gray_variance += (i - gray_mean) ** 2 * gray_variance_temp
for j in range(mat.shape[1]):
grads_variance_temp = 0
for i in range(mat.shape[0]):
grads_variance_temp += mat[i][j] ** 0.5
grads_asymmetry += mat[:, j].sum() ** 2
grads_mean += j * mat[:, j].sum() ** 2
grads_variance += (j - grads_mean) ** 2 * grads_variance_temp
small_grads_dominance /= sum_mat
big_grads_dominance /= sum_mat
gray_asymmetry /= sum_mat
grads_asymmetry /= sum_mat
gray_variance = gray_variance ** 0.5
grads_variance = grads_variance ** 0.5
for i in range(mat.shape[0]):
for j in range(mat.shape[1]):
corelation += (i - gray_mean) * (j - grads_mean) * mat[i][j]
glgcm_features = [small_grads_dominance, big_grads_dominance, gray_asymmetry, grads_asymmetry, energy, gray_mean,
grads_mean,
gray_variance, grads_variance, corelation, gray_entropy, grads_entropy, entropy, inertia,
differ_moment]
for i in range(len(glgcm_features)):
t = get_variable_name(glgcm_features[i])[0]
c_features[t].append(np.round(glgcm_features[i], 4))
def get_geometry_feature():
# 形态特征 分割mask获得一些特征
im2, contours, x = cv2.findContours(mask_array.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
tarea = []
tperimeter = []
for c in contours:
# 生成矩
try:
M = cv2.moments(c)
cx = int(M['m10'] / M['m00'])
cy = int(M['m01'] / M['m00'])
c_features['focus_x'].append(cx)
c_features['focus_y'].append(cy)
except:
print('error')
# 椭圆拟合
try:
(x, y), (MA, ma), angle = cv2.fitEllipse(c)
c_features['ellipse'].append((ma - MA))
except:
continue
# 面积周长
tarea.append(cv2.contourArea(c))
tperimeter.append(cv2.arcLength(c, True))
# 将mask里的最大值追加 有黑洞
try:
c_features['area'].append(max(tarea))
c_features['perimeter'].append(round(max(tperimeter), 4))
except:
print('area error')
# 提取肿瘤特征
def get_feature(image, mask):
global w
global image_ROI_uint8, index, image_ROI_mini, image_ROI, mask_array
mask_array = cv2.imread(mask, 0)
image = sitk.ReadImage(image)
image_arrary = sitk.GetArrayFromImage(image)[0, :, :]
# 映射到CT获得特征
image_ROI = np.zeros(shape=image_arrary.shape)
index = np.nonzero(mask_array)
if not index[0].any():
# c_features['no'] = True
return None
image_ROI[index] = image_arrary[index]
image_ROI_uint8 = np.uint8(image_ROI)
# 获得只有肿瘤的图片
x, y, w, h = cv2.boundingRect(mask_array)
image_ROI_mini = np.uint8(image_arrary[y:y + h, x:x + w])
w = image_ROI_mini
# 灰度梯度共生矩阵提取纹理特征
get_geometry_feature()
get_gray_feature()
glcm(image_ROI_mini, 15, 15)
return c_features
def main(pid):
global w
person_id = pid
global c_features
c_features = {}
for i in range(len(features_list)):
c_features[features_list[i]] = [column_all_c[i]]
get_feature(f'tmp/ct/{pid}.dcm', f'tmp/mask/{pid}_mask.png')
for j in c_features:
if j == 'id':
continue
c_features[j][1] = np.round(np.mean(c_features[j][1]), 4)
return c_features
if __name__ == '__main__':
main()

15
CTAI_flask/core/main.py 普通文件
查看文件

@@ -0,0 +1,15 @@
from core import process, predict, get_feature
def c_main(path,model):
image_data = process.pre_process(path)
# print(image_data)
predict.predict(image_data,model)
process.last_process(image_data[1])
image_info = get_feature.main(image_data[1])
return image_data[1] + '.png', image_info
if __name__ == '__main__':
pass