文件
gpt_academic/request_llms/bridge_jittorllms_llama.py
binary-husky c3140ce344 merge frontier branch (#1620)
* Zhipu sdk update 适配最新的智谱SDK,支持GLM4v (#1502)

* 适配 google gemini 优化为从用户input中提取文件

* 适配最新的智谱SDK、支持glm-4v

* requirements.txt fix

* pending history check

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* Update "生成多种Mermaid图表" plugin: Separate out the file reading function (#1520)

* Update crazy_functional.py with new functionality deal with PDF

* Update crazy_functional.py and Mermaid.py for plugin_kwargs

* Update crazy_functional.py with new chart type: mind map

* Update SELECT_PROMPT and i_say_show_user messages

* Update ArgsReminder message in get_crazy_functions() function

* Update with read md file and update PROMPTS

* Return the PROMPTS as the test found that the initial version worked best

* Update Mermaid chart generation function

* version 3.71

* 解决issues #1510

* Remove unnecessary text from sys_prompt in 解析历史输入 function

* Remove sys_prompt message in 解析历史输入 function

* Update bridge_all.py: supports gpt-4-turbo-preview (#1517)

* Update bridge_all.py: supports gpt-4-turbo-preview

supports gpt-4-turbo-preview

* Update bridge_all.py

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* Update config.py: supports gpt-4-turbo-preview (#1516)

* Update config.py: supports gpt-4-turbo-preview

supports gpt-4-turbo-preview

* Update config.py

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* Refactor 解析历史输入 function to handle file input

* Update Mermaid chart generation functionality

* rename files and functions

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
Co-authored-by: hongyi-zhao <hongyi.zhao@gmail.com>
Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* 接入mathpix ocr功能 (#1468)

* Update Latex输出PDF结果.py

借助mathpix实现了PDF翻译中文并重新编译PDF

* Update config.py

add mathpix appid & appkey

* Add 'PDF翻译中文并重新编译PDF' feature to plugins.

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* fix zhipuai

* check picture

* remove glm-4 due to bug

* 修改config

* 检查MATHPIX_APPID

* Remove unnecessary code and update
function_plugins dictionary

* capture non-standard token overflow

* bug fix #1524

* change mermaid style

* 支持mermaid 滚动放大缩小重置,鼠标滚动和拖拽 (#1530)

* 支持mermaid 滚动放大缩小重置,鼠标滚动和拖拽

* 微调未果 先stage一下

* update

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* ver 3.72

* change live2d

* save the status of ``clear btn` in cookie

* 前端选择保持

* js ui bug fix

* reset btn bug fix

* update live2d tips

* fix missing get_token_num method

* fix live2d toggle switch

* fix persistent custom btn with cookie

* fix zhipuai feedback with core functionality

* Refactor button update and clean up functions

* tailing space removal

* Fix missing MATHPIX_APPID and MATHPIX_APPKEY
configuration

* Prompt fix、脑图提示词优化 (#1537)

* 适配 google gemini 优化为从用户input中提取文件

* 脑图提示词优化

* Fix missing MATHPIX_APPID and MATHPIX_APPKEY
configuration

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* 优化“PDF翻译中文并重新编译PDF”插件 (#1602)

* Add gemini_endpoint to API_URL_REDIRECT (#1560)

* Add gemini_endpoint to API_URL_REDIRECT

* Update gemini-pro and gemini-pro-vision model_info
endpoints

* Update to support new claude models (#1606)

* Add anthropic library and update claude models

* 更新bridge_claude.py文件,添加了对图片输入的支持。修复了一些bug。

* 添加Claude_3_Models变量以限制图片数量

* Refactor code to improve readability and
maintainability

* minor claude bug fix

* more flexible one-api support

* reformat config

* fix one-api new access bug

* dummy

* compat non-standard api

* version 3.73

---------

Co-authored-by: XIao <46100050+Kilig947@users.noreply.github.com>
Co-authored-by: Menghuan1918 <menghuan2003@outlook.com>
Co-authored-by: hongyi-zhao <hongyi.zhao@gmail.com>
Co-authored-by: Hao Ma <893017927@qq.com>
Co-authored-by: zeyuan huang <599012428@qq.com>
2024-03-11 17:26:09 +08:00

176 行
7.5 KiB
Python

此文件含有模棱两可的 Unicode 字符

此文件含有可能会与其他字符混淆的 Unicode 字符。 如果您是想特意这样的,可以安全地忽略该警告。 使用 Escape 按钮显示他们。

from transformers import AutoModel, AutoTokenizer
import time
import threading
import importlib
from toolbox import update_ui, get_conf
from multiprocessing import Process, Pipe
load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存CPU或显存GPU,也许会导致低配计算机卡死 ……"
#################################################################################
class GetGLMHandle(Process):
def __init__(self):
super().__init__(daemon=True)
self.parent, self.child = Pipe()
self.jittorllms_model = None
self.info = ""
self.local_history = []
self.success = True
self.check_dependency()
self.start()
self.threadLock = threading.Lock()
def check_dependency(self):
try:
import pandas
self.info = "依赖检测通过"
self.success = True
except:
from toolbox import trimmed_format_exc
self.info = r"缺少jittorllms的依赖,如果要使用jittorllms,除了基础的pip依赖以外,您还需要运行`pip install -r request_llms/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I`"+\
r"和`git clone https://gitlink.org.cn/jittor/JittorLLMs.git --depth 1 request_llms/jittorllms`两个指令来安装jittorllms的依赖在项目根目录运行这两个指令" +\
r"警告安装jittorllms依赖后将完全破坏现有的pytorch环境,建议使用docker环境" + trimmed_format_exc()
self.success = False
def ready(self):
return self.jittorllms_model is not None
def run(self):
# 子进程执行
# 第一次运行,加载参数
def validate_path():
import os, sys
dir_name = os.path.dirname(__file__)
env = os.environ.get("PATH", "")
os.environ["PATH"] = env.replace('/cuda/bin', '/x/bin')
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
os.chdir(root_dir_assume + '/request_llms/jittorllms')
sys.path.append(root_dir_assume + '/request_llms/jittorllms')
validate_path() # validate path so you can run from base directory
def load_model():
import types
try:
if self.jittorllms_model is None:
device = get_conf('LOCAL_MODEL_DEVICE')
from .jittorllms.models import get_model
# availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
args_dict = {'model': 'llama'}
print('self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))')
self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))
print('done get model')
except:
self.child.send('[Local Message] Call jittorllms fail 不能正常加载jittorllms的参数。')
raise RuntimeError("不能正常加载jittorllms的参数")
print('load_model')
load_model()
# 进入任务等待状态
print('进入任务等待状态')
while True:
# 进入任务等待状态
kwargs = self.child.recv()
query = kwargs['query']
history = kwargs['history']
# 是否重置
if len(self.local_history) > 0 and len(history)==0:
print('触发重置')
self.jittorllms_model.reset()
self.local_history.append(query)
print('收到消息,开始请求')
try:
for response in self.jittorllms_model.stream_chat(query, history):
print(response)
self.child.send(response)
except:
from toolbox import trimmed_format_exc
print(trimmed_format_exc())
self.child.send('[Local Message] Call jittorllms fail.')
# 请求处理结束,开始下一个循环
self.child.send('[Finish]')
def stream_chat(self, **kwargs):
# 主进程执行
self.threadLock.acquire()
self.parent.send(kwargs)
while True:
res = self.parent.recv()
if res != '[Finish]':
yield res
else:
break
self.threadLock.release()
global llama_glm_handle
llama_glm_handle = None
#################################################################################
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
"""
多线程方法
函数的说明请见 request_llms/bridge_all.py
"""
global llama_glm_handle
if llama_glm_handle is None:
llama_glm_handle = GetGLMHandle()
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + llama_glm_handle.info
if not llama_glm_handle.success:
error = llama_glm_handle.info
llama_glm_handle = None
raise RuntimeError(error)
# jittorllms 没有 sys_prompt 接口,因此把prompt加入 history
history_feedin = []
for i in range(len(history)//2):
history_feedin.append([history[2*i], history[2*i+1]] )
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
response = ""
for response in llama_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
print(response)
if len(observe_window) >= 1: observe_window[0] = response
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("程序终止。")
return response
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
单线程方法
函数的说明请见 request_llms/bridge_all.py
"""
chatbot.append((inputs, ""))
global llama_glm_handle
if llama_glm_handle is None:
llama_glm_handle = GetGLMHandle()
chatbot[-1] = (inputs, load_message + "\n\n" + llama_glm_handle.info)
yield from update_ui(chatbot=chatbot, history=[])
if not llama_glm_handle.success:
llama_glm_handle = None
return
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
# 处理历史信息
history_feedin = []
for i in range(len(history)//2):
history_feedin.append([history[2*i], history[2*i+1]] )
# 开始接收jittorllms的回复
response = "[Local Message] 等待jittorllms响应中 ..."
for response in llama_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)
# 总结输出
if response == "[Local Message] 等待jittorllms响应中 ...":
response = "[Local Message] jittorllms响应异常 ..."
history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history)