文件
gpt_academic/crazy_functions/Rag_Interface.py
2024-09-08 15:19:03 +00:00

83 行
3.7 KiB
Python

from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
from crazy_functions.crazy_utils import input_clipping
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
VECTOR_STORE_TYPE = "Milvus"
if VECTOR_STORE_TYPE == "Simple":
from crazy_functions.rag_fns.llama_index_worker import LlamaIndexRagWorker
if VECTOR_STORE_TYPE == "Milvus":
from crazy_functions.rag_fns.milvus_worker import MilvusRagWorker as LlamaIndexRagWorker
RAG_WORKER_REGISTER = {}
MAX_HISTORY_ROUND = 5
MAX_CONTEXT_TOKEN_LIMIT = 4096
REMEMBER_PREVIEW = 1000
@CatchException
def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
# 1. we retrieve rag worker from global context
user_name = chatbot.get_user()
if user_name in RAG_WORKER_REGISTER:
rag_worker = RAG_WORKER_REGISTER[user_name]
else:
rag_worker = RAG_WORKER_REGISTER[user_name] = LlamaIndexRagWorker(
user_name,
llm_kwargs,
checkpoint_dir=get_log_folder(user_name, plugin_name='experimental_rag'),
auto_load_checkpoint=True)
chatbot.append([txt, '正在召回知识 ...'])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 2. clip history to reduce token consumption
# 2-1. reduce chat round
txt_origin = txt
if len(history) > MAX_HISTORY_ROUND * 2:
history = history[-(MAX_HISTORY_ROUND * 2):]
txt_clip, history, flags = input_clipping(txt, history, max_token_limit=MAX_CONTEXT_TOKEN_LIMIT, return_clip_flags=True)
input_is_clipped_flag = (flags["original_input_len"] != flags["clipped_input_len"])
# 2-2. if input is clipped, add input to vector store before retrieve
if input_is_clipped_flag:
yield from update_ui_lastest_msg('检测到长输入, 正在向量化 ...', chatbot, history, delay=0) # 刷新界面
# save input to vector store
rag_worker.add_text_to_vector_store(txt_origin)
yield from update_ui_lastest_msg('向量化完成 ...', chatbot, history, delay=0) # 刷新界面
if len(txt_origin) > REMEMBER_PREVIEW:
HALF = REMEMBER_PREVIEW//2
i_say_to_remember = txt[:HALF] + f" ...\n...(省略{len(txt_origin)-REMEMBER_PREVIEW}字)...\n... " + txt[-HALF:]
if (flags["original_input_len"] - flags["clipped_input_len"]) > HALF:
txt_clip = txt_clip + f" ...\n...(省略{len(txt_origin)-len(txt_clip)-HALF}字)...\n... " + txt[-HALF:]
else:
pass
i_say = txt_clip
else:
i_say_to_remember = i_say = txt_clip
else:
i_say_to_remember = i_say = txt_clip
# 3. we search vector store and build prompts
nodes = rag_worker.retrieve_from_store_with_query(i_say)
prompt = rag_worker.build_prompt(query=i_say, nodes=nodes)
# 4. it is time to query llms
if len(chatbot) != 0: chatbot.pop(-1) # pop temp chat, because we are going to add them again inside `request_gpt_model_in_new_thread_with_ui_alive`
model_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=prompt, inputs_show_user=i_say,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
sys_prompt=system_prompt,
retry_times_at_unknown_error=0
)
# 5. remember what has been asked / answered
yield from update_ui_lastest_msg(model_say + '</br></br>' + '对话记忆中, 请稍等 ...', chatbot, history, delay=0.5) # 刷新界面
rag_worker.remember_qa(i_say_to_remember, model_say)
history.extend([i_say, model_say])
yield from update_ui_lastest_msg(model_say, chatbot, history, delay=0) # 刷新界面