镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-06 06:26:47 +00:00
192 行
7.2 KiB
Python
192 行
7.2 KiB
Python
# encoding: utf-8
|
|
# @Time : 2023/12/25
|
|
# @Author : Spike
|
|
# @Descr :
|
|
import json
|
|
import os
|
|
import re
|
|
import requests
|
|
from typing import List, Dict, Tuple
|
|
from toolbox import get_conf, encode_image, get_pictures_list
|
|
|
|
proxies, TIMEOUT_SECONDS = get_conf('proxies', 'TIMEOUT_SECONDS')
|
|
|
|
"""
|
|
========================================================================
|
|
第五部分 一些文件处理方法
|
|
files_filter_handler 根据type过滤文件
|
|
input_encode_handler 提取input中的文件,并解析
|
|
file_manifest_filter_html 根据type过滤文件, 并解析为html or md 文本
|
|
link_mtime_to_md 文件增加本地时间参数,避免下载到缓存文件
|
|
html_view_blank 超链接
|
|
html_local_file 本地文件取相对路径
|
|
to_markdown_tabs 文件list 转换为 md tab
|
|
"""
|
|
|
|
|
|
def files_filter_handler(file_list):
|
|
new_list = []
|
|
filter_ = ['png', 'jpg', 'jpeg', 'bmp', 'svg', 'webp', 'ico', 'tif', 'tiff', 'raw', 'eps']
|
|
for file in file_list:
|
|
file = str(file).replace('file=', '')
|
|
if os.path.exists(file):
|
|
if str(os.path.basename(file)).split('.')[-1] in filter_:
|
|
new_list.append(file)
|
|
return new_list
|
|
|
|
|
|
def input_encode_handler(inputs, llm_kwargs):
|
|
if llm_kwargs['most_recent_uploaded'].get('path'):
|
|
image_paths = get_pictures_list(llm_kwargs['most_recent_uploaded']['path'])
|
|
md_encode = []
|
|
for md_path in image_paths:
|
|
md_encode.append({
|
|
"data": encode_image(md_path),
|
|
"type": os.path.splitext(md_path)[1].replace('.', '')
|
|
})
|
|
return inputs, md_encode
|
|
|
|
|
|
def file_manifest_filter_html(file_list, filter_: list = None, md_type=False):
|
|
new_list = []
|
|
if not filter_:
|
|
filter_ = ['png', 'jpg', 'jpeg', 'bmp', 'svg', 'webp', 'ico', 'tif', 'tiff', 'raw', 'eps']
|
|
for file in file_list:
|
|
if str(os.path.basename(file)).split('.')[-1] in filter_:
|
|
new_list.append(html_local_img(file, md=md_type))
|
|
elif os.path.exists(file):
|
|
new_list.append(link_mtime_to_md(file))
|
|
else:
|
|
new_list.append(file)
|
|
return new_list
|
|
|
|
|
|
def link_mtime_to_md(file):
|
|
link_local = html_local_file(file)
|
|
link_name = os.path.basename(file)
|
|
a = f"[{link_name}]({link_local}?{os.path.getmtime(file)})"
|
|
return a
|
|
|
|
|
|
def html_local_file(file):
|
|
base_path = os.path.dirname(__file__) # 项目目录
|
|
if os.path.exists(str(file)):
|
|
file = f'file={file.replace(base_path, ".")}'
|
|
return file
|
|
|
|
|
|
def html_local_img(__file, layout='left', max_width=None, max_height=None, md=True):
|
|
style = ''
|
|
if max_width is not None:
|
|
style += f"max-width: {max_width};"
|
|
if max_height is not None:
|
|
style += f"max-height: {max_height};"
|
|
__file = html_local_file(__file)
|
|
a = f'<div align="{layout}"><img src="{__file}" style="{style}"></div>'
|
|
if md:
|
|
a = f''
|
|
return a
|
|
|
|
|
|
def to_markdown_tabs(head: list, tabs: list, alignment=':---:', column=False):
|
|
"""
|
|
Args:
|
|
head: 表头:[]
|
|
tabs: 表值:[[列1], [列2], [列3], [列4]]
|
|
alignment: :--- 左对齐, :---: 居中对齐, ---: 右对齐
|
|
column: True to keep data in columns, False to keep data in rows (default).
|
|
Returns:
|
|
A string representation of the markdown table.
|
|
"""
|
|
if column:
|
|
transposed_tabs = list(map(list, zip(*tabs)))
|
|
else:
|
|
transposed_tabs = tabs
|
|
# Find the maximum length among the columns
|
|
max_len = max(len(column) for column in transposed_tabs)
|
|
|
|
tab_format = "| %s "
|
|
tabs_list = "".join([tab_format % i for i in head]) + '|\n'
|
|
tabs_list += "".join([tab_format % alignment for i in head]) + '|\n'
|
|
|
|
for i in range(max_len):
|
|
row_data = [tab[i] if i < len(tab) else '' for tab in transposed_tabs]
|
|
row_data = file_manifest_filter_html(row_data, filter_=None)
|
|
tabs_list += "".join([tab_format % i for i in row_data]) + '|\n'
|
|
|
|
return tabs_list
|
|
|
|
|
|
class GoogleChatInit:
|
|
|
|
def __init__(self):
|
|
self.url_gemini = 'https://generativelanguage.googleapis.com/v1beta/models/%m:streamGenerateContent?key=%k'
|
|
|
|
def generate_chat(self, inputs, llm_kwargs, history, system_prompt):
|
|
headers, payload = self.generate_message_payload(inputs, llm_kwargs, history, system_prompt)
|
|
response = requests.post(url=self.url_gemini, headers=headers, data=json.dumps(payload),
|
|
stream=True, proxies=proxies, timeout=TIMEOUT_SECONDS)
|
|
return response.iter_lines()
|
|
|
|
def __conversation_user(self, user_input, llm_kwargs):
|
|
what_i_have_asked = {"role": "user", "parts": []}
|
|
if 'vision' not in self.url_gemini:
|
|
input_ = user_input
|
|
encode_img = []
|
|
else:
|
|
input_, encode_img = input_encode_handler(user_input, llm_kwargs=llm_kwargs)
|
|
what_i_have_asked['parts'].append({'text': input_})
|
|
if encode_img:
|
|
for data in encode_img:
|
|
what_i_have_asked['parts'].append(
|
|
{'inline_data': {
|
|
"mime_type": f"image/{data['type']}",
|
|
"data": data['data']
|
|
}})
|
|
return what_i_have_asked
|
|
|
|
def __conversation_history(self, history, llm_kwargs):
|
|
messages = []
|
|
conversation_cnt = len(history) // 2
|
|
if conversation_cnt:
|
|
for index in range(0, 2 * conversation_cnt, 2):
|
|
what_i_have_asked = self.__conversation_user(history[index], llm_kwargs)
|
|
what_gpt_answer = {
|
|
"role": "model",
|
|
"parts": [{"text": history[index + 1]}]
|
|
}
|
|
messages.append(what_i_have_asked)
|
|
messages.append(what_gpt_answer)
|
|
return messages
|
|
|
|
def generate_message_payload(self, inputs, llm_kwargs, history, system_prompt) -> Tuple[Dict, Dict]:
|
|
messages = [
|
|
# {"role": "system", "parts": [{"text": system_prompt}]}, # gemini 不允许对话轮次为偶数,所以这个没有用,看后续支持吧。。。
|
|
# {"role": "user", "parts": [{"text": ""}]},
|
|
# {"role": "model", "parts": [{"text": ""}]}
|
|
]
|
|
self.url_gemini = self.url_gemini.replace(
|
|
'%m', llm_kwargs['llm_model']).replace(
|
|
'%k', get_conf('GEMINI_API_KEY')
|
|
)
|
|
header = {'Content-Type': 'application/json'}
|
|
if 'vision' not in self.url_gemini: # 不是vision 才处理history
|
|
messages.extend(self.__conversation_history(history, llm_kwargs)) # 处理 history
|
|
messages.append(self.__conversation_user(inputs, llm_kwargs)) # 处理用户对话
|
|
payload = {
|
|
"contents": messages,
|
|
"generationConfig": {
|
|
# "maxOutputTokens": 800,
|
|
"stopSequences": str(llm_kwargs.get('stop', '')).split(' '),
|
|
"temperature": llm_kwargs.get('temperature', 1),
|
|
"topP": llm_kwargs.get('top_p', 0.8),
|
|
"topK": 10
|
|
}
|
|
}
|
|
return header, payload
|
|
|
|
|
|
if __name__ == '__main__':
|
|
google = GoogleChatInit()
|
|
# print(gootle.generate_message_payload('你好呀', {}, ['123123', '3123123'], ''))
|
|
# gootle.input_encode_handle('123123[123123](./123123), ') |