镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-06 06:26:47 +00:00
218 行
8.8 KiB
Python
218 行
8.8 KiB
Python
import markdown, mdtex2html, threading
|
|
from show_math import convert as convert_math
|
|
from functools import wraps
|
|
|
|
def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]):
|
|
"""
|
|
调用简单的predict_no_ui接口,但是依然保留了些许界面心跳功能,当对话太长时,会自动采用二分法截断
|
|
"""
|
|
import time
|
|
try: from config_private import TIMEOUT_SECONDS, MAX_RETRY
|
|
except: from config import TIMEOUT_SECONDS, MAX_RETRY
|
|
from predict import predict_no_ui
|
|
# 多线程的时候,需要一个mutable结构在不同线程之间传递信息
|
|
# list就是最简单的mutable结构,我们第一个位置放gpt输出,第二个位置传递报错信息
|
|
mutable = [None, '']
|
|
# multi-threading worker
|
|
def mt(i_say, history):
|
|
while True:
|
|
try:
|
|
mutable[0] = predict_no_ui(inputs=i_say, top_p=top_p, temperature=temperature, history=history)
|
|
break
|
|
except ConnectionAbortedError as e:
|
|
if len(history) > 0:
|
|
history = [his[len(his)//2:] for his in history if his is not None]
|
|
mutable[1] = 'Warning! History conversation is too long, cut into half. '
|
|
else:
|
|
i_say = i_say[:len(i_say)//2]
|
|
mutable[1] = 'Warning! Input file is too long, cut into half. '
|
|
except TimeoutError as e:
|
|
mutable[0] = '[Local Message] Failed with timeout'
|
|
# 创建新线程发出http请求
|
|
thread_name = threading.Thread(target=mt, args=(i_say, history)); thread_name.start()
|
|
# 原来的线程则负责持续更新UI,实现一个超时倒计时,并等待新线程的任务完成
|
|
cnt = 0
|
|
while thread_name.is_alive():
|
|
cnt += 1
|
|
chatbot[-1] = (i_say_show_user, f"[Local Message] {mutable[1]}waiting gpt response {cnt}/{TIMEOUT_SECONDS*2*(MAX_RETRY+1)}"+''.join(['.']*(cnt%4)))
|
|
yield chatbot, history, '正常'
|
|
time.sleep(1)
|
|
# 把gpt的输出从mutable中取出来
|
|
gpt_say = mutable[0]
|
|
return gpt_say
|
|
|
|
def write_results_to_file(history, file_name=None):
|
|
"""
|
|
将对话记录history以Markdown格式写入文件中。如果没有指定文件名,则使用当前时间生成文件名。
|
|
"""
|
|
import os, time
|
|
if file_name is None:
|
|
# file_name = time.strftime("chatGPT分析报告%Y-%m-%d-%H-%M-%S", time.localtime()) + '.md'
|
|
file_name = 'chatGPT分析报告' + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.md'
|
|
os.makedirs('./gpt_log/', exist_ok=True)
|
|
with open(f'./gpt_log/{file_name}', 'w', encoding = 'utf8') as f:
|
|
f.write('# chatGPT 分析报告\n')
|
|
for i, content in enumerate(history):
|
|
if i%2==0: f.write('## ')
|
|
f.write(content)
|
|
f.write('\n\n')
|
|
res = '以上材料已经被写入' + os.path.abspath(f'./gpt_log/{file_name}')
|
|
print(res)
|
|
return res
|
|
|
|
def regular_txt_to_markdown(text):
|
|
"""
|
|
将普通文本转换为Markdown格式的文本。
|
|
"""
|
|
text = text.replace('\n', '\n\n')
|
|
text = text.replace('\n\n\n', '\n\n')
|
|
text = text.replace('\n\n\n', '\n\n')
|
|
return text
|
|
|
|
def CatchException(f):
|
|
"""
|
|
装饰器函数,捕捉函数f中的异常并封装到一个生成器中返回,并显示到聊天当中。
|
|
"""
|
|
@wraps(f)
|
|
def decorated(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
|
|
try:
|
|
yield from f(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT)
|
|
except Exception as e:
|
|
import traceback
|
|
from check_proxy import check_proxy
|
|
try: from config_private import proxies
|
|
except: from config import proxies
|
|
tb_str = regular_txt_to_markdown(traceback.format_exc())
|
|
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 实验性函数调用出错: \n\n {tb_str} \n\n 当前代理可用性: \n\n {check_proxy(proxies)}")
|
|
yield chatbot, history, f'异常 {e}'
|
|
return decorated
|
|
|
|
def report_execption(chatbot, history, a, b):
|
|
"""
|
|
向chatbot中添加错误信息
|
|
"""
|
|
chatbot.append((a, b))
|
|
history.append(a); history.append(b)
|
|
|
|
def text_divide_paragraph(text):
|
|
"""
|
|
将文本按照段落分隔符分割开,生成带有段落标签的HTML代码。
|
|
"""
|
|
if '```' in text:
|
|
# careful input
|
|
return text
|
|
else:
|
|
# wtf input
|
|
lines = text.split("\n")
|
|
for i, line in enumerate(lines):
|
|
if i!=0: lines[i] = "<p>"+lines[i].replace(" ", " ")+"</p>"
|
|
text = "".join(lines)
|
|
return text
|
|
|
|
def markdown_convertion(txt):
|
|
"""
|
|
将Markdown格式的文本转换为HTML格式。如果包含数学公式,则先将公式转换为HTML格式。
|
|
"""
|
|
if ('$' in txt) and ('```' not in txt):
|
|
return markdown.markdown(txt,extensions=['fenced_code','tables']) + '<br><br>' + \
|
|
markdown.markdown(convert_math(txt, splitParagraphs=False),extensions=['fenced_code','tables'])
|
|
else:
|
|
return markdown.markdown(txt,extensions=['fenced_code','tables'])
|
|
|
|
|
|
def format_io(self, y):
|
|
"""
|
|
将输入和输出解析为HTML格式。将y中最后一项的输入部分段落化,并将输出部分的Markdown和数学公式转换为HTML格式。
|
|
"""
|
|
if y is None: return []
|
|
i_ask, gpt_reply = y[-1]
|
|
i_ask = text_divide_paragraph(i_ask) # 输入部分太自由,预处理一波
|
|
y[-1] = (
|
|
None if i_ask is None else markdown.markdown(i_ask, extensions=['fenced_code','tables']),
|
|
None if gpt_reply is None else markdown_convertion(gpt_reply)
|
|
)
|
|
return y
|
|
|
|
|
|
def find_free_port():
|
|
"""
|
|
返回当前系统中可用的未使用端口。
|
|
"""
|
|
import socket
|
|
from contextlib import closing
|
|
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:
|
|
s.bind(('', 0))
|
|
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
|
return s.getsockname()[1]
|
|
|
|
|
|
def extract_archive(file_path, dest_dir):
|
|
import zipfile
|
|
import tarfile
|
|
import os
|
|
# Get the file extension of the input file
|
|
file_extension = os.path.splitext(file_path)[1]
|
|
|
|
# Extract the archive based on its extension
|
|
if file_extension == '.zip':
|
|
with zipfile.ZipFile(file_path, 'r') as zipobj:
|
|
zipobj.extractall(path=dest_dir)
|
|
print("Successfully extracted zip archive to {}".format(dest_dir))
|
|
|
|
elif file_extension in ['.tar', '.gz', '.bz2']:
|
|
with tarfile.open(file_path, 'r:*') as tarobj:
|
|
tarobj.extractall(path=dest_dir)
|
|
print("Successfully extracted tar archive to {}".format(dest_dir))
|
|
else:
|
|
return
|
|
|
|
def find_recent_files(directory):
|
|
"""
|
|
me: find files that is created with in one minutes under a directory with python, write a function
|
|
gpt: here it is!
|
|
"""
|
|
import os
|
|
import time
|
|
current_time = time.time()
|
|
one_minute_ago = current_time - 60
|
|
recent_files = []
|
|
|
|
for filename in os.listdir(directory):
|
|
file_path = os.path.join(directory, filename)
|
|
if file_path.endswith('.log'): continue
|
|
created_time = os.path.getctime(file_path)
|
|
if created_time >= one_minute_ago:
|
|
recent_files.append(file_path)
|
|
|
|
return recent_files
|
|
|
|
|
|
def on_file_uploaded(files, chatbot, txt):
|
|
if len(files) == 0: return chatbot, txt
|
|
import shutil, os, time, glob
|
|
from toolbox import extract_archive
|
|
try: shutil.rmtree('./private_upload/')
|
|
except: pass
|
|
time_tag = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
|
|
os.makedirs(f'private_upload/{time_tag}', exist_ok=True)
|
|
for file in files:
|
|
file_origin_name = os.path.basename(file.orig_name)
|
|
shutil.copy(file.name, f'private_upload/{time_tag}/{file_origin_name}')
|
|
extract_archive(f'private_upload/{time_tag}/{file_origin_name}',
|
|
dest_dir=f'private_upload/{time_tag}/{file_origin_name}.extract')
|
|
moved_files = [fp for fp in glob.glob('private_upload/**/*', recursive=True)]
|
|
txt = f'private_upload/{time_tag}'
|
|
moved_files_str = '\t\n\n'.join(moved_files)
|
|
chatbot.append(['我上传了文件,请查收',
|
|
f'[Local Message] 收到以下文件: \n\n{moved_files_str}\n\n调用路径参数已自动修正到: \n\n{txt}\n\n现在您可以直接选择任意实现性功能'])
|
|
return chatbot, txt
|
|
|
|
|
|
def on_report_generated(files, chatbot):
|
|
from toolbox import find_recent_files
|
|
report_files = find_recent_files('gpt_log')
|
|
if len(report_files) == 0: return report_files, chatbot
|
|
# files.extend(report_files)
|
|
chatbot.append(['汇总报告如何远程获取?', '汇总报告已经添加到右侧文件上传区,请查收。'])
|
|
return report_files, chatbot
|