镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-06 06:26:47 +00:00
* logging sys to loguru: stage 1 complete * import loguru: stage 2 * logging -> loguru: stage 3 * support o1-preview and o1-mini * logging -> loguru stage 4 * update social helper * logging -> loguru: final stage * fix: console output * update translation matrix * fix: loguru argument error with proxy enabled (#1977) * relax llama index version * remove comment * Added some modules to support openrouter (#1975) * Added some modules for supporting openrouter model Added some modules for supporting openrouter model * Update config.py * Update .gitignore * Update bridge_openrouter.py * Not changed actually * Refactor logging in bridge_openrouter.py --------- Co-authored-by: binary-husky <qingxu.fu@outlook.com> * remove logging extra --------- Co-authored-by: Steven Moder <java20131114@gmail.com> Co-authored-by: Ren Lifei <2602264455@qq.com>
176 行
8.2 KiB
Python
176 行
8.2 KiB
Python
from toolbox import update_ui, promote_file_to_downloadzone
|
|
from toolbox import CatchException, report_exception, write_history_to_file
|
|
from loguru import logger
|
|
|
|
class PaperFileGroup():
|
|
def __init__(self):
|
|
self.file_paths = []
|
|
self.file_contents = []
|
|
self.sp_file_contents = []
|
|
self.sp_file_index = []
|
|
self.sp_file_tag = []
|
|
|
|
# count_token
|
|
from request_llms.bridge_all import model_info
|
|
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
|
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
|
self.get_token_num = get_token_num
|
|
|
|
def run_file_split(self, max_token_limit=1900):
|
|
"""
|
|
将长文本分离开来
|
|
"""
|
|
for index, file_content in enumerate(self.file_contents):
|
|
if self.get_token_num(file_content) < max_token_limit:
|
|
self.sp_file_contents.append(file_content)
|
|
self.sp_file_index.append(index)
|
|
self.sp_file_tag.append(self.file_paths[index])
|
|
else:
|
|
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
|
segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
|
|
for j, segment in enumerate(segments):
|
|
self.sp_file_contents.append(segment)
|
|
self.sp_file_index.append(index)
|
|
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
|
|
|
|
logger.info('Segmentation: done')
|
|
|
|
def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
|
|
import time, os, re
|
|
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
|
|
|
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
|
|
pfg = PaperFileGroup()
|
|
|
|
for index, fp in enumerate(file_manifest):
|
|
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
|
file_content = f.read()
|
|
# 定义注释的正则表达式
|
|
comment_pattern = r'(?<!\\)%.*'
|
|
# 使用正则表达式查找注释,并替换为空字符串
|
|
clean_tex_content = re.sub(comment_pattern, '', file_content)
|
|
# 记录删除注释后的文本
|
|
pfg.file_paths.append(fp)
|
|
pfg.file_contents.append(clean_tex_content)
|
|
|
|
# <-------- 拆分过长的latex文件 ---------->
|
|
pfg.run_file_split(max_token_limit=1024)
|
|
n_split = len(pfg.sp_file_contents)
|
|
|
|
# <-------- 抽取摘要 ---------->
|
|
# if language == 'en':
|
|
# abs_extract_inputs = f"Please write an abstract for this paper"
|
|
|
|
# # 单线,获取文章meta信息
|
|
# paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
|
# inputs=abs_extract_inputs,
|
|
# inputs_show_user=f"正在抽取摘要信息。",
|
|
# llm_kwargs=llm_kwargs,
|
|
# chatbot=chatbot, history=[],
|
|
# sys_prompt="Your job is to collect information from materials。",
|
|
# )
|
|
|
|
# <-------- 多线程润色开始 ---------->
|
|
if language == 'en->zh':
|
|
inputs_array = ["Below is a section from an English academic paper, translate it into Chinese, do not modify any latex command such as \section, \cite and equations:" +
|
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
|
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
|
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
|
elif language == 'zh->en':
|
|
inputs_array = [f"Below is a section from a Chinese academic paper, translate it into English, do not modify any latex command such as \section, \cite and equations:" +
|
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
|
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
|
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
|
|
|
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
|
inputs_array=inputs_array,
|
|
inputs_show_user_array=inputs_show_user_array,
|
|
llm_kwargs=llm_kwargs,
|
|
chatbot=chatbot,
|
|
history_array=[[""] for _ in range(n_split)],
|
|
sys_prompt_array=sys_prompt_array,
|
|
# max_workers=5, # OpenAI所允许的最大并行过载
|
|
scroller_max_len = 80
|
|
)
|
|
|
|
# <-------- 整理结果,退出 ---------->
|
|
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
|
|
res = write_history_to_file(gpt_response_collection, create_report_file_name)
|
|
promote_file_to_downloadzone(res, chatbot=chatbot)
|
|
history = gpt_response_collection
|
|
chatbot.append((f"{fp}完成了吗?", res))
|
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
|
|
|
|
|
|
|
|
|
|
@CatchException
|
|
def Latex英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
# 基本信息:功能、贡献者
|
|
chatbot.append([
|
|
"函数插件功能?",
|
|
"对整个Latex项目进行翻译。函数插件贡献者: Binary-Husky"])
|
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
|
|
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
|
try:
|
|
import tiktoken
|
|
except:
|
|
report_exception(chatbot, history,
|
|
a=f"解析项目: {txt}",
|
|
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
|
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
return
|
|
history = [] # 清空历史,以免输入溢出
|
|
import glob, os
|
|
if os.path.exists(txt):
|
|
project_folder = txt
|
|
else:
|
|
if txt == "": txt = '空空如也的输入栏'
|
|
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
return
|
|
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
|
if len(file_manifest) == 0:
|
|
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
|
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
return
|
|
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en->zh')
|
|
|
|
|
|
|
|
|
|
|
|
@CatchException
|
|
def Latex中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
# 基本信息:功能、贡献者
|
|
chatbot.append([
|
|
"函数插件功能?",
|
|
"对整个Latex项目进行翻译。函数插件贡献者: Binary-Husky"])
|
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
|
|
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
|
try:
|
|
import tiktoken
|
|
except:
|
|
report_exception(chatbot, history,
|
|
a=f"解析项目: {txt}",
|
|
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
|
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
return
|
|
history = [] # 清空历史,以免输入溢出
|
|
import glob, os
|
|
if os.path.exists(txt):
|
|
project_folder = txt
|
|
else:
|
|
if txt == "": txt = '空空如也的输入栏'
|
|
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
return
|
|
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
|
if len(file_manifest) == 0:
|
|
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
|
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
return
|
|
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh->en') |