文件
gpt_academic/crazy_functions/review_fns/data_sources/adsabs_source.py
binary-husky 8042750d41 Master 4.0 (#2210)
* stage academic conversation

* stage document conversation

* fix buggy gradio version

* file dynamic load

* merge more academic plugins

* accelerate nltk

* feat: 为predict函数添加文件和URL读取功能
- 添加URL检测和网页内容提取功能,支持自动提取网页文本
- 添加文件路径识别和文件内容读取功能,支持private_upload路径格式
- 集成WebTextExtractor处理网页内容提取
- 集成TextContentLoader处理本地文件读取
- 支持文件路径与问题组合的智能处理

* back

* block unstable

---------

Co-authored-by: XiaoBoAI <liuboyin2019@ia.ac.cn>
2025-08-23 15:59:22 +08:00

279 行
9.4 KiB
Python

此文件含有模棱两可的 Unicode 字符

此文件含有可能会与其他字符混淆的 Unicode 字符。 如果您是想特意这样的,可以安全地忽略该警告。 使用 Escape 按钮显示他们。

from typing import List, Optional, Dict, Union
from datetime import datetime
import aiohttp
import asyncio
from crazy_functions.review_fns.data_sources.base_source import DataSource, PaperMetadata
import json
from tqdm import tqdm
import random
class AdsabsSource(DataSource):
"""ADS (Astrophysics Data System) API实现"""
# 定义API密钥列表
API_KEYS = [
"xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
"xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
"xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
]
def __init__(self, api_key: str = None):
"""初始化
Args:
api_key: ADS API密钥,如果不提供则从预定义列表中随机选择
"""
self.api_key = api_key or random.choice(self.API_KEYS) # 随机选择一个API密钥
self._initialize()
def _initialize(self) -> None:
"""初始化基础URL和请求头"""
self.base_url = "https://api.adsabs.harvard.edu/v1"
self.headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
async def _make_request(self, url: str, method: str = "GET", data: dict = None) -> Optional[dict]:
"""发送HTTP请求
Args:
url: 请求URL
method: HTTP方法
data: POST请求数据
Returns:
响应内容
"""
try:
async with aiohttp.ClientSession(headers=self.headers) as session:
if method == "GET":
async with session.get(url) as response:
if response.status == 200:
return await response.json()
elif method == "POST":
async with session.post(url, json=data) as response:
if response.status == 200:
return await response.json()
return None
except Exception as e:
print(f"请求发生错误: {str(e)}")
return None
def _parse_paper(self, doc: dict) -> PaperMetadata:
"""解析ADS文献数据
Args:
doc: ADS文献数据
Returns:
解析后的论文数据
"""
try:
return PaperMetadata(
title=doc.get('title', [''])[0] if doc.get('title') else '',
authors=doc.get('author', []),
abstract=doc.get('abstract', ''),
year=doc.get('year'),
doi=doc.get('doi', [''])[0] if doc.get('doi') else None,
url=f"https://ui.adsabs.harvard.edu/abs/{doc.get('bibcode')}/abstract" if doc.get('bibcode') else None,
citations=doc.get('citation_count'),
venue=doc.get('pub', ''),
institutions=doc.get('aff', []),
venue_type="journal",
venue_name=doc.get('pub', ''),
venue_info={
'volume': doc.get('volume'),
'issue': doc.get('issue'),
'pub_date': doc.get('pubdate', '')
},
source='adsabs'
)
except Exception as e:
print(f"解析文章时发生错误: {str(e)}")
return None
async def search(
self,
query: str,
limit: int = 100,
sort_by: str = "relevance",
start_year: int = None
) -> List[PaperMetadata]:
"""搜索论文
Args:
query: 搜索关键词
limit: 返回结果数量限制
sort_by: 排序方式 ('relevance', 'date', 'citations')
start_year: 起始年份
Returns:
论文列表
"""
try:
# 构建查询
if start_year:
query = f"{query} year:{start_year}-"
# 设置排序
sort_mapping = {
'relevance': 'score desc',
'date': 'date desc',
'citations': 'citation_count desc'
}
sort = sort_mapping.get(sort_by, 'score desc')
# 构建搜索请求
search_url = f"{self.base_url}/search/query"
params = {
"q": query,
"rows": limit,
"sort": sort,
"fl": "title,author,abstract,year,doi,bibcode,citation_count,pub,aff,volume,issue,pubdate"
}
response = await self._make_request(f"{search_url}?{self._build_query_string(params)}")
if not response or 'response' not in response:
return []
# 解析结果
papers = []
for doc in response['response']['docs']:
paper = self._parse_paper(doc)
if paper:
papers.append(paper)
return papers
except Exception as e:
print(f"搜索论文时发生错误: {str(e)}")
return []
def _build_query_string(self, params: dict) -> str:
"""构建查询字符串"""
return "&".join([f"{k}={v}" for k, v in params.items()])
async def get_paper_details(self, bibcode: str) -> Optional[PaperMetadata]:
"""获取指定bibcode的论文详情"""
search_url = f"{self.base_url}/search/query"
params = {
"q": f"identifier:{bibcode}",
"fl": "title,author,abstract,year,doi,bibcode,citation_count,pub,aff,volume,issue,pubdate"
}
response = await self._make_request(f"{search_url}?{self._build_query_string(params)}")
if response and 'response' in response and response['response']['docs']:
return self._parse_paper(response['response']['docs'][0])
return None
async def get_related_papers(self, bibcode: str, limit: int = 100) -> List[PaperMetadata]:
"""获取相关论文"""
url = f"{self.base_url}/search/query"
params = {
"q": f"citations(identifier:{bibcode}) OR references(identifier:{bibcode})",
"rows": limit,
"fl": "title,author,abstract,year,doi,bibcode,citation_count,pub,aff,volume,issue,pubdate"
}
response = await self._make_request(f"{url}?{self._build_query_string(params)}")
if not response or 'response' not in response:
return []
papers = []
for doc in response['response']['docs']:
paper = self._parse_paper(doc)
if paper:
papers.append(paper)
return papers
async def search_by_author(
self,
author: str,
limit: int = 100,
start_year: int = None
) -> List[PaperMetadata]:
"""按作者搜索论文"""
query = f"author:\"{author}\""
return await self.search(query, limit=limit, start_year=start_year)
async def search_by_journal(
self,
journal: str,
limit: int = 100,
start_year: int = None
) -> List[PaperMetadata]:
"""按期刊搜索论文"""
query = f"pub:\"{journal}\""
return await self.search(query, limit=limit, start_year=start_year)
async def get_latest_papers(
self,
days: int = 7,
limit: int = 100
) -> List[PaperMetadata]:
"""获取最新论文"""
query = f"entdate:[NOW-{days}DAYS TO NOW]"
return await self.search(query, limit=limit, sort_by="date")
async def get_citations(self, bibcode: str) -> List[PaperMetadata]:
"""获取引用该论文的文献"""
url = f"{self.base_url}/search/query"
params = {
"q": f"citations(identifier:{bibcode})",
"fl": "title,author,abstract,year,doi,bibcode,citation_count,pub,aff,volume,issue,pubdate"
}
response = await self._make_request(f"{url}?{self._build_query_string(params)}")
if not response or 'response' not in response:
return []
papers = []
for doc in response['response']['docs']:
paper = self._parse_paper(doc)
if paper:
papers.append(paper)
return papers
async def get_references(self, bibcode: str) -> List[PaperMetadata]:
"""获取该论文引用的文献"""
url = f"{self.base_url}/search/query"
params = {
"q": f"references(identifier:{bibcode})",
"fl": "title,author,abstract,year,doi,bibcode,citation_count,pub,aff,volume,issue,pubdate"
}
response = await self._make_request(f"{url}?{self._build_query_string(params)}")
if not response or 'response' not in response:
return []
papers = []
for doc in response['response']['docs']:
paper = self._parse_paper(doc)
if paper:
papers.append(paper)
return papers
async def example_usage():
"""AdsabsSource使用示例"""
ads = AdsabsSource()
try:
# 示例1基本搜索
print("\n=== 示例1搜索黑洞相关论文 ===")
papers = await ads.search("black hole", limit=3)
for i, paper in enumerate(papers, 1):
print(f"\n--- 论文 {i} ---")
print(f"标题: {paper.title}")
print(f"作者: {', '.join(paper.authors)}")
print(f"发表年份: {paper.year}")
print(f"DOI: {paper.doi}")
# 其他示例...
except Exception as e:
print(f"发生错误: {str(e)}")
if __name__ == "__main__":
# python -m crazy_functions.review_fns.data_sources.adsabs_source
asyncio.run(example_usage())