镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-06 06:26:47 +00:00
* ✨ feat(request_llms and config.py): ChatGLM4 Deployment Add support for local deployment of ChatGLM4 model * 🦄 refactor(bridge_chatglm3.py): ChatGLM3 model path Added ChatGLM3 path customization (in config.py). Removed useless quantization model options that have been annotated --------- Co-authored-by: MarkDeia <17290550+MarkDeia@users.noreply.github.com>
82 行
3.5 KiB
Python
82 行
3.5 KiB
Python
model_name = "ChatGLM4"
|
|
cmd_to_install = """
|
|
`pip install -r request_llms/requirements_chatglm4.txt`
|
|
`pip install modelscope`
|
|
`modelscope download --model ZhipuAI/glm-4-9b-chat --local_dir ./THUDM/glm-4-9b-chat`
|
|
"""
|
|
|
|
|
|
from toolbox import get_conf, ProxyNetworkActivate
|
|
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
|
|
|
|
|
|
# ------------------------------------------------------------------------------------------------------------------------
|
|
# 🔌💻 Local Model
|
|
# ------------------------------------------------------------------------------------------------------------------------
|
|
class GetGLM4Handle(LocalLLMHandle):
|
|
|
|
def load_model_info(self):
|
|
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
|
self.model_name = model_name
|
|
self.cmd_to_install = cmd_to_install
|
|
|
|
def load_model_and_tokenizer(self):
|
|
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
|
import torch
|
|
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
|
|
import os
|
|
|
|
LOCAL_MODEL_PATH, device = get_conf("CHATGLM_LOCAL_MODEL_PATH", "LOCAL_MODEL_DEVICE")
|
|
model_path = LOCAL_MODEL_PATH
|
|
chatglm_tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
chatglm_model = AutoModelForCausalLM.from_pretrained(
|
|
model_path,
|
|
torch_dtype=torch.bfloat16,
|
|
low_cpu_mem_usage=True,
|
|
trust_remote_code=True,
|
|
device=device
|
|
).eval().to(device)
|
|
self._model = chatglm_model
|
|
self._tokenizer = chatglm_tokenizer
|
|
return self._model, self._tokenizer
|
|
|
|
|
|
def llm_stream_generator(self, **kwargs):
|
|
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
|
def adaptor(kwargs):
|
|
query = kwargs["query"]
|
|
max_length = kwargs["max_length"]
|
|
top_p = kwargs["top_p"]
|
|
temperature = kwargs["temperature"]
|
|
history = kwargs["history"]
|
|
return query, max_length, top_p, temperature, history
|
|
|
|
query, max_length, top_p, temperature, history = adaptor(kwargs)
|
|
inputs = self._tokenizer.apply_chat_template([{"role": "user", "content": query}],
|
|
add_generation_prompt=True,
|
|
tokenize=True,
|
|
return_tensors="pt",
|
|
return_dict=True
|
|
).to(self._model.device)
|
|
gen_kwargs = {"max_length": max_length, "do_sample": True, "top_k": top_p}
|
|
|
|
outputs = self._model.generate(**inputs, **gen_kwargs)
|
|
outputs = outputs[:, inputs['input_ids'].shape[1]:]
|
|
response = self._tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
yield response
|
|
|
|
def try_to_import_special_deps(self, **kwargs):
|
|
# import something that will raise error if the user does not install requirement_*.txt
|
|
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
|
import importlib
|
|
|
|
# importlib.import_module('modelscope')
|
|
|
|
|
|
# ------------------------------------------------------------------------------------------------------------------------
|
|
# 🔌💻 GPT-Academic Interface
|
|
# ------------------------------------------------------------------------------------------------------------------------
|
|
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(
|
|
GetGLM4Handle, model_name, history_format="chatglm3"
|
|
)
|