model_name = "ChatGLM4" cmd_to_install = """ `pip install -r request_llms/requirements_chatglm4.txt` `pip install modelscope` `modelscope download --model ZhipuAI/glm-4-9b-chat --local_dir ./THUDM/glm-4-9b-chat` """ from toolbox import get_conf, ProxyNetworkActivate from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns # ------------------------------------------------------------------------------------------------------------------------ # πŸ”ŒπŸ’» Local Model # ------------------------------------------------------------------------------------------------------------------------ class GetGLM4Handle(LocalLLMHandle): def load_model_info(self): # πŸƒβ€β™‚οΈπŸƒβ€β™‚οΈπŸƒβ€β™‚οΈ ε­θΏ›η¨‹ζ‰§θ‘Œ self.model_name = model_name self.cmd_to_install = cmd_to_install def load_model_and_tokenizer(self): # πŸƒβ€β™‚οΈπŸƒβ€β™‚οΈπŸƒβ€β™‚οΈ ε­θΏ›η¨‹ζ‰§θ‘Œ import torch from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer import os LOCAL_MODEL_PATH, device = get_conf("CHATGLM_LOCAL_MODEL_PATH", "LOCAL_MODEL_DEVICE") model_path = LOCAL_MODEL_PATH chatglm_tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) chatglm_model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True, device=device ).eval().to(device) self._model = chatglm_model self._tokenizer = chatglm_tokenizer return self._model, self._tokenizer def llm_stream_generator(self, **kwargs): # πŸƒβ€β™‚οΈπŸƒβ€β™‚οΈπŸƒβ€β™‚οΈ ε­θΏ›η¨‹ζ‰§θ‘Œ def adaptor(kwargs): query = kwargs["query"] max_length = kwargs["max_length"] top_p = kwargs["top_p"] temperature = kwargs["temperature"] history = kwargs["history"] return query, max_length, top_p, temperature, history query, max_length, top_p, temperature, history = adaptor(kwargs) inputs = self._tokenizer.apply_chat_template([{"role": "user", "content": query}], add_generation_prompt=True, tokenize=True, return_tensors="pt", return_dict=True ).to(self._model.device) gen_kwargs = {"max_length": max_length, "do_sample": True, "top_k": top_p} outputs = self._model.generate(**inputs, **gen_kwargs) outputs = outputs[:, inputs['input_ids'].shape[1]:] response = self._tokenizer.decode(outputs[0], skip_special_tokens=True) yield response def try_to_import_special_deps(self, **kwargs): # import something that will raise error if the user does not install requirement_*.txt # πŸƒβ€β™‚οΈπŸƒβ€β™‚οΈπŸƒβ€β™‚οΈ δΈ»θΏ›η¨‹ζ‰§θ‘Œ import importlib # importlib.import_module('modelscope') # ------------------------------------------------------------------------------------------------------------------------ # πŸ”ŒπŸ’» GPT-Academic Interface # ------------------------------------------------------------------------------------------------------------------------ predict_no_ui_long_connection, predict = get_local_llm_predict_fns( GetGLM4Handle, model_name, history_format="chatglm3" )