from toolbox import get_log_folder from toolbox import update_ui, promote_file_to_downloadzone from toolbox import write_history_to_file, promote_file_to_downloadzone from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency from crazy_functions.crazy_utils import read_and_clean_pdf_text from shared_utils.colorful import * from loguru import logger import os def 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt): """ 注意:此函数已经弃用!!新函数位于:crazy_functions/pdf_fns/parse_pdf.py """ import copy TOKEN_LIMIT_PER_FRAGMENT = 1024 generated_conclusion_files = [] generated_html_files = [] from crazy_functions.pdf_fns.report_gen_html import construct_html for index, fp in enumerate(file_manifest): # 读取PDF文件 file_content, page_one = read_and_clean_pdf_text(fp) file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars # 递归地切割PDF文件 from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model']) page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=page_one, limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model']) # 为了更好的效果,我们剥离Introduction之后的部分(如果有) paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0] # 单线,获取文章meta信息 paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive( inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}", inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。", llm_kwargs=llm_kwargs, chatbot=chatbot, history=[], sys_prompt="Your job is to collect information from materials。", ) # 多线,翻译 gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency( inputs_array=[ f"你需要翻译以下内容:\n{frag}" for frag in paper_fragments], inputs_show_user_array=[f"\n---\n 原文: \n\n {frag.replace('#', '')} \n---\n 翻译:\n " for frag in paper_fragments], llm_kwargs=llm_kwargs, chatbot=chatbot, history_array=[[paper_meta] for _ in paper_fragments], sys_prompt_array=[ "请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" + plugin_kwargs.get("additional_prompt", "") for _ in paper_fragments], # max_workers=5 # OpenAI所允许的最大并行过载 ) gpt_response_collection_md = copy.deepcopy(gpt_response_collection) # 整理报告的格式 for i,k in enumerate(gpt_response_collection_md): if i%2==0: gpt_response_collection_md[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection_md)//2}]: \n\n {paper_fragments[i//2].replace('#', '')} \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection_md)//2}]:\n " else: gpt_response_collection_md[i] = gpt_response_collection_md[i] final = ["一、论文概况\n\n---\n\n", paper_meta_info.replace('# ', '### ') + '\n\n---\n\n', "二、论文翻译", ""] final.extend(gpt_response_collection_md) create_report_file_name = f"{os.path.basename(fp)}.trans.md" res = write_history_to_file(final, create_report_file_name) promote_file_to_downloadzone(res, chatbot=chatbot) # 更新UI generated_conclusion_files.append(f'{get_log_folder()}/{create_report_file_name}') chatbot.append((f"{fp}完成了吗?", res)) yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # write html try: ch = construct_html() orig = "" trans = "" gpt_response_collection_html = copy.deepcopy(gpt_response_collection) for i,k in enumerate(gpt_response_collection_html): if i%2==0: gpt_response_collection_html[i] = paper_fragments[i//2].replace('#', '') else: gpt_response_collection_html[i] = gpt_response_collection_html[i] final = ["论文概况", paper_meta_info.replace('# ', '### '), "二、论文翻译", ""] final.extend(gpt_response_collection_html) for i, k in enumerate(final): if i%2==0: orig = k if i%2==1: trans = k ch.add_row(a=orig, b=trans) create_report_file_name = f"{os.path.basename(fp)}.trans.html" generated_html_files.append(ch.save_file(create_report_file_name)) except: from toolbox import trimmed_format_exc logger.error('writing html result failed:', trimmed_format_exc()) # 准备文件的下载 for pdf_path in generated_conclusion_files: # 重命名文件 rename_file = f'翻译-{os.path.basename(pdf_path)}' promote_file_to_downloadzone(pdf_path, rename_file=rename_file, chatbot=chatbot) for html_path in generated_html_files: # 重命名文件 rename_file = f'翻译-{os.path.basename(html_path)}' promote_file_to_downloadzone(html_path, rename_file=rename_file, chatbot=chatbot) chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files))) yield from update_ui(chatbot=chatbot, history=history) # 刷新界面