镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-06 22:46:48 +00:00
比较提交
40 次代码提交
version3.5
...
version3.5
| 作者 | SHA1 | 提交日期 | |
|---|---|---|---|
|
|
87ccd1a89a | ||
|
|
87b9734986 | ||
|
|
d2d5665c37 | ||
|
|
0844b6e9cf | ||
|
|
9cb05e5724 | ||
|
|
80b209fa0c | ||
|
|
8d4cb05738 | ||
|
|
31f4069563 | ||
|
|
8ba6fc062e | ||
|
|
c0c2d14e3d | ||
|
|
f0a5c49a9c | ||
|
|
9333570ab7 | ||
|
|
d6eaaad962 | ||
|
|
e24f077b68 | ||
|
|
dc5bb9741a | ||
|
|
b383b45191 | ||
|
|
2d8f37baba | ||
|
|
409927ef8e | ||
|
|
5b231e0170 | ||
|
|
87f629bb37 | ||
|
|
3672c97a06 | ||
|
|
b6ee3e9807 | ||
|
|
d56bc280e9 | ||
|
|
d5fd00c15d | ||
|
|
5e647ff149 | ||
|
|
868faf00cc | ||
|
|
a0286c39b9 | ||
|
|
9cced321f1 | ||
|
|
3073935e24 | ||
|
|
ef6631b280 | ||
|
|
0801e4d881 | ||
|
|
ae08cfbcae | ||
|
|
1c0d5361ea | ||
|
|
278464bfb7 | ||
|
|
2a6996f5d0 | ||
|
|
84b11016c6 | ||
|
|
7e74d3d699 | ||
|
|
2cad8e2694 | ||
|
|
e765ec1223 | ||
|
|
471a369bb8 |
32
README.md
32
README.md
@@ -101,9 +101,11 @@ cd gpt_academic
|
|||||||
|
|
||||||
2. 配置API_KEY
|
2. 配置API_KEY
|
||||||
|
|
||||||
在`config.py`中,配置API KEY等设置,[点击查看特殊网络环境设置方法](https://github.com/binary-husky/gpt_academic/issues/1) 。
|
在`config.py`中,配置API KEY等设置,[点击查看特殊网络环境设置方法](https://github.com/binary-husky/gpt_academic/issues/1) 。[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/%E9%A1%B9%E7%9B%AE%E9%85%8D%E7%BD%AE%E8%AF%B4%E6%98%8E)。
|
||||||
|
|
||||||
(P.S. 程序运行时会优先检查是否存在名为`config_private.py`的私密配置文件,并用其中的配置覆盖`config.py`的同名配置。因此,如果您能理解我们的配置读取逻辑,我们强烈建议您在`config.py`旁边创建一个名为`config_private.py`的新配置文件,并把`config.py`中的配置转移(复制)到`config_private.py`中(仅复制您修改过的配置条目即可)。`config_private.py`不受git管控,可以让您的隐私信息更加安全。P.S.项目同样支持通过`环境变量`配置大多数选项,环境变量的书写格式参考`docker-compose`文件。读取优先级: `环境变量` > `config_private.py` > `config.py`)
|
「 程序会优先检查是否存在名为`config_private.py`的私密配置文件,并用其中的配置覆盖`config.py`的同名配置。如您能理解该读取逻辑,我们强烈建议您在`config.py`旁边创建一个名为`config_private.py`的新配置文件,并把`config.py`中的配置转移(复制)到`config_private.py`中(仅复制您修改过的配置条目即可)。 」
|
||||||
|
|
||||||
|
「 支持通过`环境变量`配置项目,环境变量的书写格式参考`docker-compose.yml`文件或者我们的[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/%E9%A1%B9%E7%9B%AE%E9%85%8D%E7%BD%AE%E8%AF%B4%E6%98%8E)。配置读取优先级: `环境变量` > `config_private.py` > `config.py`。 」
|
||||||
|
|
||||||
|
|
||||||
3. 安装依赖
|
3. 安装依赖
|
||||||
@@ -111,7 +113,7 @@ cd gpt_academic
|
|||||||
# (选择I: 如熟悉python)(python版本3.9以上,越新越好),备注:使用官方pip源或者阿里pip源,临时换源方法:python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
|
# (选择I: 如熟悉python)(python版本3.9以上,越新越好),备注:使用官方pip源或者阿里pip源,临时换源方法:python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
|
||||||
python -m pip install -r requirements.txt
|
python -m pip install -r requirements.txt
|
||||||
|
|
||||||
# (选择II: 如不熟悉python)使用anaconda,步骤也是类似的 (https://www.bilibili.com/video/BV1rc411W7Dr):
|
# (选择II: 使用Anaconda)步骤也是类似的 (https://www.bilibili.com/video/BV1rc411W7Dr):
|
||||||
conda create -n gptac_venv python=3.11 # 创建anaconda环境
|
conda create -n gptac_venv python=3.11 # 创建anaconda环境
|
||||||
conda activate gptac_venv # 激活anaconda环境
|
conda activate gptac_venv # 激活anaconda环境
|
||||||
python -m pip install -r requirements.txt # 这个步骤和pip安装一样的步骤
|
python -m pip install -r requirements.txt # 这个步骤和pip安装一样的步骤
|
||||||
@@ -149,26 +151,25 @@ python main.py
|
|||||||
|
|
||||||
### 安装方法II:使用Docker
|
### 安装方法II:使用Docker
|
||||||
|
|
||||||
|
0. 部署项目的全部能力(这个是包含cuda和latex的大型镜像。如果您网速慢、硬盘小或没有显卡,则不推荐使用这个,建议使用方案1)(需要熟悉[Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian)运行时)
|
||||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
|
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
|
||||||
|
|
||||||
1. 仅ChatGPT(推荐大多数人选择,等价于docker-compose方案1)
|
``` sh
|
||||||
|
# 修改docker-compose.yml,保留方案0并删除其他方案。修改docker-compose.yml中方案0的配置,参考其中注释即可
|
||||||
|
docker-compose up
|
||||||
|
```
|
||||||
|
|
||||||
|
1. 仅ChatGPT+文心一言+spark等在线模型(推荐大多数人选择)
|
||||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml)
|
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml)
|
||||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml)
|
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml)
|
||||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
|
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
|
||||||
|
|
||||||
|
|
||||||
``` sh
|
``` sh
|
||||||
git clone --depth=1 https://github.com/binary-husky/gpt_academic.git # 下载项目
|
# 修改docker-compose.yml,保留方案1并删除其他方案。修改docker-compose.yml中方案1的配置,参考其中注释即可
|
||||||
cd gpt_academic # 进入路径
|
docker-compose up
|
||||||
nano config.py # 用任意文本编辑器编辑config.py, 配置 “Proxy”, “API_KEY” 以及 “WEB_PORT” (例如50923) 等
|
|
||||||
docker build -t gpt-academic . # 安装
|
|
||||||
|
|
||||||
#(最后一步-Linux操作系统)用`--net=host`更方便快捷
|
|
||||||
docker run --rm -it --net=host gpt-academic
|
|
||||||
#(最后一步-MacOS/Windows操作系统)只能用-p选项将容器上的端口(例如50923)暴露给主机上的端口
|
|
||||||
docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic
|
|
||||||
```
|
```
|
||||||
P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以直接使用docker-compose获取Latex功能(修改docker-compose.yml,保留方案4并删除其他方案)。
|
|
||||||
|
P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以直接使用方案4或者方案0获取Latex功能。
|
||||||
|
|
||||||
2. ChatGPT + ChatGLM2 + MOSS + LLAMA2 + 通义千问(需要熟悉[Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian)运行时)
|
2. ChatGPT + ChatGLM2 + MOSS + LLAMA2 + 通义千问(需要熟悉[Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian)运行时)
|
||||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml)
|
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml)
|
||||||
@@ -309,6 +310,7 @@ Tip:不指定文件直接点击 `载入对话历史存档` 可以查看历史h
|
|||||||
|
|
||||||
### II:版本:
|
### II:版本:
|
||||||
- version 3.60(todo): 优化虚空终端,引入code interpreter和更多插件
|
- version 3.60(todo): 优化虚空终端,引入code interpreter和更多插件
|
||||||
|
- version 3.53: 支持动态选择不同界面主题,提高稳定性&解决多用户冲突问题
|
||||||
- version 3.50: 使用自然语言调用本项目的所有函数插件(虚空终端),支持插件分类,改进UI,设计新主题
|
- version 3.50: 使用自然语言调用本项目的所有函数插件(虚空终端),支持插件分类,改进UI,设计新主题
|
||||||
- version 3.49: 支持百度千帆平台和文心一言
|
- version 3.49: 支持百度千帆平台和文心一言
|
||||||
- version 3.48: 支持阿里达摩院通义千问,上海AI-Lab书生,讯飞星火
|
- version 3.48: 支持阿里达摩院通义千问,上海AI-Lab书生,讯飞星火
|
||||||
|
|||||||
@@ -155,11 +155,13 @@ def auto_update(raise_error=False):
|
|||||||
|
|
||||||
def warm_up_modules():
|
def warm_up_modules():
|
||||||
print('正在执行一些模块的预热...')
|
print('正在执行一些模块的预热...')
|
||||||
|
from toolbox import ProxyNetworkActivate
|
||||||
from request_llm.bridge_all import model_info
|
from request_llm.bridge_all import model_info
|
||||||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
with ProxyNetworkActivate("Warmup_Modules"):
|
||||||
enc.encode("模块预热", disallowed_special=())
|
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||||||
enc = model_info["gpt-4"]['tokenizer']
|
enc.encode("模块预热", disallowed_special=())
|
||||||
enc.encode("模块预热", disallowed_special=())
|
enc = model_info["gpt-4"]['tokenizer']
|
||||||
|
enc.encode("模块预热", disallowed_special=())
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
import os
|
import os
|
||||||
|
|||||||
@@ -46,7 +46,7 @@ DEFAULT_WORKER_NUM = 3
|
|||||||
# 色彩主题, 可选 ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast"]
|
# 色彩主题, 可选 ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast"]
|
||||||
# 更多主题, 请查阅Gradio主题商店: https://huggingface.co/spaces/gradio/theme-gallery 可选 ["Gstaff/Xkcd", "NoCrypt/Miku", ...]
|
# 更多主题, 请查阅Gradio主题商店: https://huggingface.co/spaces/gradio/theme-gallery 可选 ["Gstaff/Xkcd", "NoCrypt/Miku", ...]
|
||||||
THEME = "Default"
|
THEME = "Default"
|
||||||
|
AVAIL_THEMES = ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast", "Gstaff/Xkcd", "NoCrypt/Miku"]
|
||||||
|
|
||||||
# 对话窗的高度 (仅在LAYOUT="TOP-DOWN"时生效)
|
# 对话窗的高度 (仅在LAYOUT="TOP-DOWN"时生效)
|
||||||
CHATBOT_HEIGHT = 1115
|
CHATBOT_HEIGHT = 1115
|
||||||
@@ -74,13 +74,13 @@ MAX_RETRY = 2
|
|||||||
|
|
||||||
|
|
||||||
# 插件分类默认选项
|
# 插件分类默认选项
|
||||||
DEFAULT_FN_GROUPS = ['对话', '编程', '学术']
|
DEFAULT_FN_GROUPS = ['对话', '编程', '学术', '智能体']
|
||||||
|
|
||||||
|
|
||||||
# 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
|
# 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
|
||||||
LLM_MODEL = "gpt-3.5-turbo" # 可选 ↓↓↓
|
LLM_MODEL = "gpt-3.5-turbo" # 可选 ↓↓↓
|
||||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5", "api2d-gpt-3.5-turbo",
|
AVAIL_LLM_MODELS = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5", "api2d-gpt-3.5-turbo",
|
||||||
"gpt-4", "api2d-gpt-4", "chatglm", "moss", "newbing", "stack-claude"]
|
"gpt-4", "gpt-4-32k", "azure-gpt-4", "api2d-gpt-4", "chatglm", "moss", "newbing", "stack-claude"]
|
||||||
# P.S. 其他可用的模型还包括 ["qianfan", "llama2", "qwen", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613",
|
# P.S. 其他可用的模型还包括 ["qianfan", "llama2", "qwen", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613",
|
||||||
# "spark", "sparkv2", "chatglm_onnx", "claude-1-100k", "claude-2", "internlm", "jittorllms_pangualpha", "jittorllms_llama"]
|
# "spark", "sparkv2", "chatglm_onnx", "claude-1-100k", "claude-2", "internlm", "jittorllms_pangualpha", "jittorllms_llama"]
|
||||||
|
|
||||||
@@ -183,6 +183,9 @@ ALLOW_RESET_CONFIG = False
|
|||||||
PATH_PRIVATE_UPLOAD = "private_upload"
|
PATH_PRIVATE_UPLOAD = "private_upload"
|
||||||
# 日志文件夹的位置,请勿修改
|
# 日志文件夹的位置,请勿修改
|
||||||
PATH_LOGGING = "gpt_log"
|
PATH_LOGGING = "gpt_log"
|
||||||
|
# 除了连接OpenAI之外,还有哪些场合允许使用代理,请勿修改
|
||||||
|
WHEN_TO_USE_PROXY = ["Download_LLM", "Download_Gradio_Theme", "Connect_Grobid", "Warmup_Modules"]
|
||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
在线大模型配置关联关系示意图
|
在线大模型配置关联关系示意图
|
||||||
|
|||||||
@@ -11,7 +11,8 @@ def get_core_functions():
|
|||||||
# 前缀,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等
|
# 前缀,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等
|
||||||
"Prefix": r"Below is a paragraph from an academic paper. Polish the writing to meet the academic style, " +
|
"Prefix": r"Below is a paragraph from an academic paper. Polish the writing to meet the academic style, " +
|
||||||
r"improve the spelling, grammar, clarity, concision and overall readability. When necessary, rewrite the whole sentence. " +
|
r"improve the spelling, grammar, clarity, concision and overall readability. When necessary, rewrite the whole sentence. " +
|
||||||
r"Furthermore, list all modification and explain the reasons to do so in markdown table." + "\n\n",
|
r"Firstly, you should provide the polished paragraph. "
|
||||||
|
r"Secondly, you should list all your modification and explain the reasons to do so in markdown table." + "\n\n",
|
||||||
# 后缀,会被加在你的输入之后。例如,配合前缀可以把你的输入内容用引号圈起来
|
# 后缀,会被加在你的输入之后。例如,配合前缀可以把你的输入内容用引号圈起来
|
||||||
"Suffix": r"",
|
"Suffix": r"",
|
||||||
# 按钮颜色 (默认 secondary)
|
# 按钮颜色 (默认 secondary)
|
||||||
@@ -27,17 +28,18 @@ def get_core_functions():
|
|||||||
"Suffix": r"",
|
"Suffix": r"",
|
||||||
},
|
},
|
||||||
"查找语法错误": {
|
"查找语法错误": {
|
||||||
"Prefix": r"Can you help me ensure that the grammar and the spelling is correct? " +
|
"Prefix": r"Help me ensure that the grammar and the spelling is correct. "
|
||||||
r"Do not try to polish the text, if no mistake is found, tell me that this paragraph is good." +
|
r"Do not try to polish the text, if no mistake is found, tell me that this paragraph is good. "
|
||||||
r"If you find grammar or spelling mistakes, please list mistakes you find in a two-column markdown table, " +
|
r"If you find grammar or spelling mistakes, please list mistakes you find in a two-column markdown table, "
|
||||||
r"put the original text the first column, " +
|
r"put the original text the first column, "
|
||||||
r"put the corrected text in the second column and highlight the key words you fixed.""\n"
|
r"put the corrected text in the second column and highlight the key words you fixed. "
|
||||||
|
r"Finally, please provide the proofreaded text.""\n\n"
|
||||||
r"Example:""\n"
|
r"Example:""\n"
|
||||||
r"Paragraph: How is you? Do you knows what is it?""\n"
|
r"Paragraph: How is you? Do you knows what is it?""\n"
|
||||||
r"| Original sentence | Corrected sentence |""\n"
|
r"| Original sentence | Corrected sentence |""\n"
|
||||||
r"| :--- | :--- |""\n"
|
r"| :--- | :--- |""\n"
|
||||||
r"| How **is** you? | How **are** you? |""\n"
|
r"| How **is** you? | How **are** you? |""\n"
|
||||||
r"| Do you **knows** what **is** **it**? | Do you **know** what **it** **is** ? |""\n"
|
r"| Do you **knows** what **is** **it**? | Do you **know** what **it** **is** ? |""\n\n"
|
||||||
r"Below is a paragraph from an academic paper. "
|
r"Below is a paragraph from an academic paper. "
|
||||||
r"You need to report all grammar and spelling mistakes as the example before."
|
r"You need to report all grammar and spelling mistakes as the example before."
|
||||||
+ "\n\n",
|
+ "\n\n",
|
||||||
|
|||||||
@@ -6,6 +6,7 @@ def get_crazy_functions():
|
|||||||
from crazy_functions.生成函数注释 import 批量生成函数注释
|
from crazy_functions.生成函数注释 import 批量生成函数注释
|
||||||
from crazy_functions.解析项目源代码 import 解析项目本身
|
from crazy_functions.解析项目源代码 import 解析项目本身
|
||||||
from crazy_functions.解析项目源代码 import 解析一个Python项目
|
from crazy_functions.解析项目源代码 import 解析一个Python项目
|
||||||
|
from crazy_functions.解析项目源代码 import 解析一个Matlab项目
|
||||||
from crazy_functions.解析项目源代码 import 解析一个C项目的头文件
|
from crazy_functions.解析项目源代码 import 解析一个C项目的头文件
|
||||||
from crazy_functions.解析项目源代码 import 解析一个C项目
|
from crazy_functions.解析项目源代码 import 解析一个C项目
|
||||||
from crazy_functions.解析项目源代码 import 解析一个Golang项目
|
from crazy_functions.解析项目源代码 import 解析一个Golang项目
|
||||||
@@ -38,7 +39,7 @@ def get_crazy_functions():
|
|||||||
|
|
||||||
function_plugins = {
|
function_plugins = {
|
||||||
"虚空终端": {
|
"虚空终端": {
|
||||||
"Group": "对话|编程|学术",
|
"Group": "对话|编程|学术|智能体",
|
||||||
"Color": "stop",
|
"Color": "stop",
|
||||||
"AsButton": True,
|
"AsButton": True,
|
||||||
"Function": HotReload(虚空终端)
|
"Function": HotReload(虚空终端)
|
||||||
@@ -77,6 +78,13 @@ def get_crazy_functions():
|
|||||||
"Info": "批量总结word文档 | 输入参数为路径",
|
"Info": "批量总结word文档 | 输入参数为路径",
|
||||||
"Function": HotReload(总结word文档)
|
"Function": HotReload(总结word文档)
|
||||||
},
|
},
|
||||||
|
"解析整个Matlab项目": {
|
||||||
|
"Group": "编程",
|
||||||
|
"Color": "stop",
|
||||||
|
"AsButton": False,
|
||||||
|
"Info": "解析一个Matlab项目的所有源文件(.m) | 输入参数为路径",
|
||||||
|
"Function": HotReload(解析一个Matlab项目)
|
||||||
|
},
|
||||||
"解析整个C++项目头文件": {
|
"解析整个C++项目头文件": {
|
||||||
"Group": "编程",
|
"Group": "编程",
|
||||||
"Color": "stop",
|
"Color": "stop",
|
||||||
@@ -243,20 +251,23 @@ def get_crazy_functions():
|
|||||||
"Info": "对中文Latex项目全文进行润色处理 | 输入参数为路径或上传压缩包",
|
"Info": "对中文Latex项目全文进行润色处理 | 输入参数为路径或上传压缩包",
|
||||||
"Function": HotReload(Latex中文润色)
|
"Function": HotReload(Latex中文润色)
|
||||||
},
|
},
|
||||||
"Latex项目全文中译英(输入路径或上传压缩包)": {
|
|
||||||
"Group": "学术",
|
# 被新插件取代
|
||||||
"Color": "stop",
|
# "Latex项目全文中译英(输入路径或上传压缩包)": {
|
||||||
"AsButton": False, # 加入下拉菜单中
|
# "Group": "学术",
|
||||||
"Info": "对Latex项目全文进行中译英处理 | 输入参数为路径或上传压缩包",
|
# "Color": "stop",
|
||||||
"Function": HotReload(Latex中译英)
|
# "AsButton": False, # 加入下拉菜单中
|
||||||
},
|
# "Info": "对Latex项目全文进行中译英处理 | 输入参数为路径或上传压缩包",
|
||||||
"Latex项目全文英译中(输入路径或上传压缩包)": {
|
# "Function": HotReload(Latex中译英)
|
||||||
"Group": "学术",
|
# },
|
||||||
"Color": "stop",
|
# "Latex项目全文英译中(输入路径或上传压缩包)": {
|
||||||
"AsButton": False, # 加入下拉菜单中
|
# "Group": "学术",
|
||||||
"Info": "对Latex项目全文进行英译中处理 | 输入参数为路径或上传压缩包",
|
# "Color": "stop",
|
||||||
"Function": HotReload(Latex英译中)
|
# "AsButton": False, # 加入下拉菜单中
|
||||||
},
|
# "Info": "对Latex项目全文进行英译中处理 | 输入参数为路径或上传压缩包",
|
||||||
|
# "Function": HotReload(Latex英译中)
|
||||||
|
# },
|
||||||
|
|
||||||
"批量Markdown中译英(输入路径或上传压缩包)": {
|
"批量Markdown中译英(输入路径或上传压缩包)": {
|
||||||
"Group": "编程",
|
"Group": "编程",
|
||||||
"Color": "stop",
|
"Color": "stop",
|
||||||
@@ -513,6 +524,18 @@ def get_crazy_functions():
|
|||||||
except:
|
except:
|
||||||
print('Load function plugin failed')
|
print('Load function plugin failed')
|
||||||
|
|
||||||
|
try:
|
||||||
|
from crazy_functions.函数动态生成 import 函数动态生成
|
||||||
|
function_plugins.update({
|
||||||
|
"动态代码解释器(CodeInterpreter)": {
|
||||||
|
"Group": "智能体",
|
||||||
|
"Color": "stop",
|
||||||
|
"AsButton": False,
|
||||||
|
"Function": HotReload(函数动态生成)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
except:
|
||||||
|
print('Load function plugin failed')
|
||||||
|
|
||||||
# try:
|
# try:
|
||||||
# from crazy_functions.CodeInterpreter import 虚空终端CodeInterpreter
|
# from crazy_functions.CodeInterpreter import 虚空终端CodeInterpreter
|
||||||
|
|||||||
@@ -53,14 +53,14 @@ def 知识库问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
|||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
print('Checking Text2vec ...')
|
print('Checking Text2vec ...')
|
||||||
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
||||||
with ProxyNetworkActivate(): # 临时地激活代理网络
|
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
|
||||||
HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
|
HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
|
||||||
|
|
||||||
# < -------------------构建知识库--------------- >
|
# < -------------------构建知识库--------------- >
|
||||||
chatbot.append(['<br/>'.join(file_manifest), "正在构建知识库..."])
|
chatbot.append(['<br/>'.join(file_manifest), "正在构建知识库..."])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
print('Establishing knowledge archive ...')
|
print('Establishing knowledge archive ...')
|
||||||
with ProxyNetworkActivate(): # 临时地激活代理网络
|
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
|
||||||
kai = knowledge_archive_interface()
|
kai = knowledge_archive_interface()
|
||||||
kai.feed_archive(file_manifest=file_manifest, id=kai_id)
|
kai.feed_archive(file_manifest=file_manifest, id=kai_id)
|
||||||
kai_files = kai.get_loaded_file()
|
kai_files = kai.get_loaded_file()
|
||||||
|
|||||||
@@ -79,7 +79,7 @@ def move_project(project_folder, arxiv_id=None):
|
|||||||
shutil.copytree(src=project_folder, dst=new_workfolder)
|
shutil.copytree(src=project_folder, dst=new_workfolder)
|
||||||
return new_workfolder
|
return new_workfolder
|
||||||
|
|
||||||
def arxiv_download(chatbot, history, txt):
|
def arxiv_download(chatbot, history, txt, allow_cache=True):
|
||||||
def check_cached_translation_pdf(arxiv_id):
|
def check_cached_translation_pdf(arxiv_id):
|
||||||
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'translation')
|
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'translation')
|
||||||
if not os.path.exists(translation_dir):
|
if not os.path.exists(translation_dir):
|
||||||
@@ -116,7 +116,7 @@ def arxiv_download(chatbot, history, txt):
|
|||||||
arxiv_id = url_.split('/abs/')[-1]
|
arxiv_id = url_.split('/abs/')[-1]
|
||||||
if 'v' in arxiv_id: arxiv_id = arxiv_id[:10]
|
if 'v' in arxiv_id: arxiv_id = arxiv_id[:10]
|
||||||
cached_translation_pdf = check_cached_translation_pdf(arxiv_id)
|
cached_translation_pdf = check_cached_translation_pdf(arxiv_id)
|
||||||
if cached_translation_pdf: return cached_translation_pdf, arxiv_id
|
if cached_translation_pdf and allow_cache: return cached_translation_pdf, arxiv_id
|
||||||
|
|
||||||
url_tar = url_.replace('/abs/', '/e-print/')
|
url_tar = url_.replace('/abs/', '/e-print/')
|
||||||
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'e-print')
|
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'e-print')
|
||||||
@@ -228,6 +228,9 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
# <-------------- more requirements ------------->
|
# <-------------- more requirements ------------->
|
||||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||||
more_req = plugin_kwargs.get("advanced_arg", "")
|
more_req = plugin_kwargs.get("advanced_arg", "")
|
||||||
|
no_cache = more_req.startswith("--no-cache")
|
||||||
|
if no_cache: more_req.lstrip("--no-cache")
|
||||||
|
allow_cache = not no_cache
|
||||||
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
|
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
|
||||||
|
|
||||||
# <-------------- check deps ------------->
|
# <-------------- check deps ------------->
|
||||||
@@ -244,7 +247,7 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
|
|
||||||
# <-------------- clear history and read input ------------->
|
# <-------------- clear history and read input ------------->
|
||||||
history = []
|
history = []
|
||||||
txt, arxiv_id = yield from arxiv_download(chatbot, history, txt)
|
txt, arxiv_id = yield from arxiv_download(chatbot, history, txt, allow_cache)
|
||||||
if txt.endswith('.pdf'):
|
if txt.endswith('.pdf'):
|
||||||
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"发现已经存在翻译好的PDF文档")
|
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"发现已经存在翻译好的PDF文档")
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|||||||
@@ -651,7 +651,7 @@ class knowledge_archive_interface():
|
|||||||
from toolbox import ProxyNetworkActivate
|
from toolbox import ProxyNetworkActivate
|
||||||
print('Checking Text2vec ...')
|
print('Checking Text2vec ...')
|
||||||
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
||||||
with ProxyNetworkActivate(): # 临时地激活代理网络
|
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
|
||||||
self.text2vec_large_chinese = HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
|
self.text2vec_large_chinese = HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
|
||||||
|
|
||||||
return self.text2vec_large_chinese
|
return self.text2vec_large_chinese
|
||||||
@@ -807,3 +807,10 @@ class construct_html():
|
|||||||
with open(os.path.join(get_log_folder(), file_name), 'w', encoding='utf8') as f:
|
with open(os.path.join(get_log_folder(), file_name), 'w', encoding='utf8') as f:
|
||||||
f.write(self.html_string.encode('utf-8', 'ignore').decode())
|
f.write(self.html_string.encode('utf-8', 'ignore').decode())
|
||||||
return os.path.join(get_log_folder(), file_name)
|
return os.path.join(get_log_folder(), file_name)
|
||||||
|
|
||||||
|
|
||||||
|
def get_plugin_arg(plugin_kwargs, key, default):
|
||||||
|
# 如果参数是空的
|
||||||
|
if (key in plugin_kwargs) and (plugin_kwargs[key] == ""): plugin_kwargs.pop(key)
|
||||||
|
# 正常情况
|
||||||
|
return plugin_kwargs.get(key, default)
|
||||||
|
|||||||
@@ -0,0 +1,70 @@
|
|||||||
|
import time
|
||||||
|
import importlib
|
||||||
|
from toolbox import trimmed_format_exc, gen_time_str, get_log_folder
|
||||||
|
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, is_the_upload_folder
|
||||||
|
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_lastest_msg
|
||||||
|
import multiprocessing
|
||||||
|
|
||||||
|
def get_class_name(class_string):
|
||||||
|
import re
|
||||||
|
# Use regex to extract the class name
|
||||||
|
class_name = re.search(r'class (\w+)\(', class_string).group(1)
|
||||||
|
return class_name
|
||||||
|
|
||||||
|
def try_make_module(code, chatbot):
|
||||||
|
module_file = 'gpt_fn_' + gen_time_str().replace('-','_')
|
||||||
|
fn_path = f'{get_log_folder(plugin_name="gen_plugin_verify")}/{module_file}.py'
|
||||||
|
with open(fn_path, 'w', encoding='utf8') as f: f.write(code)
|
||||||
|
promote_file_to_downloadzone(fn_path, chatbot=chatbot)
|
||||||
|
class_name = get_class_name(code)
|
||||||
|
manager = multiprocessing.Manager()
|
||||||
|
return_dict = manager.dict()
|
||||||
|
p = multiprocessing.Process(target=is_function_successfully_generated, args=(fn_path, class_name, return_dict))
|
||||||
|
# only has 10 seconds to run
|
||||||
|
p.start(); p.join(timeout=10)
|
||||||
|
if p.is_alive(): p.terminate(); p.join()
|
||||||
|
p.close()
|
||||||
|
return return_dict["success"], return_dict['traceback']
|
||||||
|
|
||||||
|
# check is_function_successfully_generated
|
||||||
|
def is_function_successfully_generated(fn_path, class_name, return_dict):
|
||||||
|
return_dict['success'] = False
|
||||||
|
return_dict['traceback'] = ""
|
||||||
|
try:
|
||||||
|
# Create a spec for the module
|
||||||
|
module_spec = importlib.util.spec_from_file_location('example_module', fn_path)
|
||||||
|
# Load the module
|
||||||
|
example_module = importlib.util.module_from_spec(module_spec)
|
||||||
|
module_spec.loader.exec_module(example_module)
|
||||||
|
# Now you can use the module
|
||||||
|
some_class = getattr(example_module, class_name)
|
||||||
|
# Now you can create an instance of the class
|
||||||
|
instance = some_class()
|
||||||
|
return_dict['success'] = True
|
||||||
|
return
|
||||||
|
except:
|
||||||
|
return_dict['traceback'] = trimmed_format_exc()
|
||||||
|
return
|
||||||
|
|
||||||
|
def subprocess_worker(code, file_path, return_dict):
|
||||||
|
return_dict['result'] = None
|
||||||
|
return_dict['success'] = False
|
||||||
|
return_dict['traceback'] = ""
|
||||||
|
try:
|
||||||
|
module_file = 'gpt_fn_' + gen_time_str().replace('-','_')
|
||||||
|
fn_path = f'{get_log_folder(plugin_name="gen_plugin_run")}/{module_file}.py'
|
||||||
|
with open(fn_path, 'w', encoding='utf8') as f: f.write(code)
|
||||||
|
class_name = get_class_name(code)
|
||||||
|
# Create a spec for the module
|
||||||
|
module_spec = importlib.util.spec_from_file_location('example_module', fn_path)
|
||||||
|
# Load the module
|
||||||
|
example_module = importlib.util.module_from_spec(module_spec)
|
||||||
|
module_spec.loader.exec_module(example_module)
|
||||||
|
# Now you can use the module
|
||||||
|
some_class = getattr(example_module, class_name)
|
||||||
|
# Now you can create an instance of the class
|
||||||
|
instance = some_class()
|
||||||
|
return_dict['result'] = instance.run(file_path)
|
||||||
|
return_dict['success'] = True
|
||||||
|
except:
|
||||||
|
return_dict['traceback'] = trimmed_format_exc()
|
||||||
@@ -1,16 +1,26 @@
|
|||||||
|
from functools import lru_cache
|
||||||
|
from toolbox import gen_time_str
|
||||||
|
from toolbox import promote_file_to_downloadzone
|
||||||
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
|
from toolbox import get_conf
|
||||||
|
from toolbox import ProxyNetworkActivate
|
||||||
|
from colorful import *
|
||||||
import requests
|
import requests
|
||||||
import random
|
import random
|
||||||
from functools import lru_cache
|
import copy
|
||||||
|
import os
|
||||||
|
import math
|
||||||
|
|
||||||
class GROBID_OFFLINE_EXCEPTION(Exception): pass
|
class GROBID_OFFLINE_EXCEPTION(Exception): pass
|
||||||
|
|
||||||
def get_avail_grobid_url():
|
def get_avail_grobid_url():
|
||||||
from toolbox import get_conf
|
|
||||||
GROBID_URLS, = get_conf('GROBID_URLS')
|
GROBID_URLS, = get_conf('GROBID_URLS')
|
||||||
if len(GROBID_URLS) == 0: return None
|
if len(GROBID_URLS) == 0: return None
|
||||||
try:
|
try:
|
||||||
_grobid_url = random.choice(GROBID_URLS) # 随机负载均衡
|
_grobid_url = random.choice(GROBID_URLS) # 随机负载均衡
|
||||||
if _grobid_url.endswith('/'): _grobid_url = _grobid_url.rstrip('/')
|
if _grobid_url.endswith('/'): _grobid_url = _grobid_url.rstrip('/')
|
||||||
res = requests.get(_grobid_url+'/api/isalive')
|
with ProxyNetworkActivate('Connect_Grobid'):
|
||||||
|
res = requests.get(_grobid_url+'/api/isalive')
|
||||||
if res.text=='true': return _grobid_url
|
if res.text=='true': return _grobid_url
|
||||||
else: return None
|
else: return None
|
||||||
except:
|
except:
|
||||||
@@ -21,10 +31,141 @@ def parse_pdf(pdf_path, grobid_url):
|
|||||||
import scipdf # pip install scipdf_parser
|
import scipdf # pip install scipdf_parser
|
||||||
if grobid_url.endswith('/'): grobid_url = grobid_url.rstrip('/')
|
if grobid_url.endswith('/'): grobid_url = grobid_url.rstrip('/')
|
||||||
try:
|
try:
|
||||||
article_dict = scipdf.parse_pdf_to_dict(pdf_path, grobid_url=grobid_url)
|
with ProxyNetworkActivate('Connect_Grobid'):
|
||||||
|
article_dict = scipdf.parse_pdf_to_dict(pdf_path, grobid_url=grobid_url)
|
||||||
except GROBID_OFFLINE_EXCEPTION:
|
except GROBID_OFFLINE_EXCEPTION:
|
||||||
raise GROBID_OFFLINE_EXCEPTION("GROBID服务不可用,请修改config中的GROBID_URL,可修改成本地GROBID服务。")
|
raise GROBID_OFFLINE_EXCEPTION("GROBID服务不可用,请修改config中的GROBID_URL,可修改成本地GROBID服务。")
|
||||||
except:
|
except:
|
||||||
raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
|
raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
|
||||||
return article_dict
|
return article_dict
|
||||||
|
|
||||||
|
|
||||||
|
def produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files):
|
||||||
|
# -=-=-=-=-=-=-=-= 写出第1个文件:翻译前后混合 -=-=-=-=-=-=-=-=
|
||||||
|
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=f"{gen_time_str()}translated_and_original.md", file_fullname=None)
|
||||||
|
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(res_path)+'.md', chatbot=chatbot)
|
||||||
|
generated_conclusion_files.append(res_path)
|
||||||
|
|
||||||
|
# -=-=-=-=-=-=-=-= 写出第2个文件:仅翻译后的文本 -=-=-=-=-=-=-=-=
|
||||||
|
translated_res_array = []
|
||||||
|
# 记录当前的大章节标题:
|
||||||
|
last_section_name = ""
|
||||||
|
for index, value in enumerate(gpt_response_collection):
|
||||||
|
# 先挑选偶数序列号:
|
||||||
|
if index % 2 != 0:
|
||||||
|
# 先提取当前英文标题:
|
||||||
|
cur_section_name = gpt_response_collection[index-1].split('\n')[0].split(" Part")[0]
|
||||||
|
# 如果index是1的话,则直接使用first section name:
|
||||||
|
if cur_section_name != last_section_name:
|
||||||
|
cur_value = cur_section_name + '\n'
|
||||||
|
last_section_name = copy.deepcopy(cur_section_name)
|
||||||
|
else:
|
||||||
|
cur_value = ""
|
||||||
|
# 再做一个小修改:重新修改当前part的标题,默认用英文的
|
||||||
|
cur_value += value
|
||||||
|
translated_res_array.append(cur_value)
|
||||||
|
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + translated_res_array,
|
||||||
|
file_basename = f"{gen_time_str()}-translated_only.md",
|
||||||
|
file_fullname = None,
|
||||||
|
auto_caption = False)
|
||||||
|
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(res_path)+'.md', chatbot=chatbot)
|
||||||
|
generated_conclusion_files.append(res_path)
|
||||||
|
return res_path
|
||||||
|
|
||||||
|
def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG):
|
||||||
|
from crazy_functions.crazy_utils import construct_html
|
||||||
|
from crazy_functions.crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
||||||
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
|
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
|
|
||||||
|
prompt = "以下是一篇学术论文的基本信息:\n"
|
||||||
|
# title
|
||||||
|
title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
|
||||||
|
# authors
|
||||||
|
authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
|
||||||
|
# abstract
|
||||||
|
abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
|
||||||
|
# command
|
||||||
|
prompt += f"请将题目和摘要翻译为{DST_LANG}。"
|
||||||
|
meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ]
|
||||||
|
|
||||||
|
# 单线,获取文章meta信息
|
||||||
|
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
|
inputs=prompt,
|
||||||
|
inputs_show_user=prompt,
|
||||||
|
llm_kwargs=llm_kwargs,
|
||||||
|
chatbot=chatbot, history=[],
|
||||||
|
sys_prompt="You are an academic paper reader。",
|
||||||
|
)
|
||||||
|
|
||||||
|
# 多线,翻译
|
||||||
|
inputs_array = []
|
||||||
|
inputs_show_user_array = []
|
||||||
|
|
||||||
|
# get_token_num
|
||||||
|
from request_llm.bridge_all import model_info
|
||||||
|
enc = model_info[llm_kwargs['llm_model']]['tokenizer']
|
||||||
|
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||||
|
|
||||||
|
def break_down(txt):
|
||||||
|
raw_token_num = get_token_num(txt)
|
||||||
|
if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT:
|
||||||
|
return [txt]
|
||||||
|
else:
|
||||||
|
# raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
|
||||||
|
# find a smooth token limit to achieve even seperation
|
||||||
|
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
|
||||||
|
token_limit_smooth = raw_token_num // count + count
|
||||||
|
return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)
|
||||||
|
|
||||||
|
for section in article_dict.get('sections'):
|
||||||
|
if len(section['text']) == 0: continue
|
||||||
|
section_frags = break_down(section['text'])
|
||||||
|
for i, fragment in enumerate(section_frags):
|
||||||
|
heading = section['heading']
|
||||||
|
if len(section_frags) > 1: heading += f' Part-{i+1}'
|
||||||
|
inputs_array.append(
|
||||||
|
f"你需要翻译{heading}章节,内容如下: \n\n{fragment}"
|
||||||
|
)
|
||||||
|
inputs_show_user_array.append(
|
||||||
|
f"# {heading}\n\n{fragment}"
|
||||||
|
)
|
||||||
|
|
||||||
|
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||||
|
inputs_array=inputs_array,
|
||||||
|
inputs_show_user_array=inputs_show_user_array,
|
||||||
|
llm_kwargs=llm_kwargs,
|
||||||
|
chatbot=chatbot,
|
||||||
|
history_array=[meta for _ in inputs_array],
|
||||||
|
sys_prompt_array=[
|
||||||
|
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
|
||||||
|
)
|
||||||
|
# -=-=-=-=-=-=-=-= 写出Markdown文件 -=-=-=-=-=-=-=-=
|
||||||
|
produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files)
|
||||||
|
|
||||||
|
# -=-=-=-=-=-=-=-= 写出HTML文件 -=-=-=-=-=-=-=-=
|
||||||
|
ch = construct_html()
|
||||||
|
orig = ""
|
||||||
|
trans = ""
|
||||||
|
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
|
||||||
|
for i,k in enumerate(gpt_response_collection_html):
|
||||||
|
if i%2==0:
|
||||||
|
gpt_response_collection_html[i] = inputs_show_user_array[i//2]
|
||||||
|
else:
|
||||||
|
# 先提取当前英文标题:
|
||||||
|
cur_section_name = gpt_response_collection[i-1].split('\n')[0].split(" Part")[0]
|
||||||
|
cur_value = cur_section_name + "\n" + gpt_response_collection_html[i]
|
||||||
|
gpt_response_collection_html[i] = cur_value
|
||||||
|
|
||||||
|
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""]
|
||||||
|
final.extend(gpt_response_collection_html)
|
||||||
|
for i, k in enumerate(final):
|
||||||
|
if i%2==0:
|
||||||
|
orig = k
|
||||||
|
if i%2==1:
|
||||||
|
trans = k
|
||||||
|
ch.add_row(a=orig, b=trans)
|
||||||
|
create_report_file_name = f"{os.path.basename(fp)}.trans.html"
|
||||||
|
html_file = ch.save_file(create_report_file_name)
|
||||||
|
generated_conclusion_files.append(html_file)
|
||||||
|
promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot)
|
||||||
|
|||||||
252
crazy_functions/函数动态生成.py
普通文件
252
crazy_functions/函数动态生成.py
普通文件
@@ -0,0 +1,252 @@
|
|||||||
|
# 本源代码中, ⭐ = 关键步骤
|
||||||
|
"""
|
||||||
|
测试:
|
||||||
|
- 裁剪图像,保留下半部分
|
||||||
|
- 交换图像的蓝色通道和红色通道
|
||||||
|
- 将图像转为灰度图像
|
||||||
|
- 将csv文件转excel表格
|
||||||
|
|
||||||
|
Testing:
|
||||||
|
- Crop the image, keeping the bottom half.
|
||||||
|
- Swap the blue channel and red channel of the image.
|
||||||
|
- Convert the image to grayscale.
|
||||||
|
- Convert the CSV file to an Excel spreadsheet.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, is_the_upload_folder
|
||||||
|
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_lastest_msg
|
||||||
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_plugin_arg
|
||||||
|
from .crazy_utils import input_clipping, try_install_deps
|
||||||
|
from crazy_functions.gen_fns.gen_fns_shared import is_function_successfully_generated
|
||||||
|
from crazy_functions.gen_fns.gen_fns_shared import get_class_name
|
||||||
|
from crazy_functions.gen_fns.gen_fns_shared import subprocess_worker
|
||||||
|
from crazy_functions.gen_fns.gen_fns_shared import try_make_module
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
import glob
|
||||||
|
import multiprocessing
|
||||||
|
|
||||||
|
templete = """
|
||||||
|
```python
|
||||||
|
import ... # Put dependencies here, e.g. import numpy as np.
|
||||||
|
|
||||||
|
class TerminalFunction(object): # Do not change the name of the class, The name of the class must be `TerminalFunction`
|
||||||
|
|
||||||
|
def run(self, path): # The name of the function must be `run`, it takes only a positional argument.
|
||||||
|
# rewrite the function you have just written here
|
||||||
|
...
|
||||||
|
return generated_file_path
|
||||||
|
```
|
||||||
|
"""
|
||||||
|
|
||||||
|
def inspect_dependency(chatbot, history):
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return True
|
||||||
|
|
||||||
|
def get_code_block(reply):
|
||||||
|
import re
|
||||||
|
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
|
||||||
|
matches = re.findall(pattern, reply) # find all code blocks in text
|
||||||
|
if len(matches) == 1:
|
||||||
|
return matches[0].strip('python') # code block
|
||||||
|
for match in matches:
|
||||||
|
if 'class TerminalFunction' in match:
|
||||||
|
return match.strip('python') # code block
|
||||||
|
raise RuntimeError("GPT is not generating proper code.")
|
||||||
|
|
||||||
|
def gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history):
|
||||||
|
# 输入
|
||||||
|
prompt_compose = [
|
||||||
|
f'Your job:\n'
|
||||||
|
f'1. write a single Python function, which takes a path of a `{file_type}` file as the only argument and returns a `string` containing the result of analysis or the path of generated files. \n',
|
||||||
|
f"2. You should write this function to perform following task: " + txt + "\n",
|
||||||
|
f"3. Wrap the output python function with markdown codeblock."
|
||||||
|
]
|
||||||
|
i_say = "".join(prompt_compose)
|
||||||
|
demo = []
|
||||||
|
|
||||||
|
# 第一步
|
||||||
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
|
inputs=i_say, inputs_show_user=i_say,
|
||||||
|
llm_kwargs=llm_kwargs, chatbot=chatbot, history=demo,
|
||||||
|
sys_prompt= r"You are a world-class programmer."
|
||||||
|
)
|
||||||
|
history.extend([i_say, gpt_say])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||||
|
|
||||||
|
# 第二步
|
||||||
|
prompt_compose = [
|
||||||
|
"If previous stage is successful, rewrite the function you have just written to satisfy following templete: \n",
|
||||||
|
templete
|
||||||
|
]
|
||||||
|
i_say = "".join(prompt_compose); inputs_show_user = "If previous stage is successful, rewrite the function you have just written to satisfy executable templete. "
|
||||||
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
|
inputs=i_say, inputs_show_user=inputs_show_user,
|
||||||
|
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||||
|
sys_prompt= r"You are a programmer. You need to replace `...` with valid packages, do not give `...` in your answer!"
|
||||||
|
)
|
||||||
|
code_to_return = gpt_say
|
||||||
|
history.extend([i_say, gpt_say])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||||
|
|
||||||
|
# # 第三步
|
||||||
|
# i_say = "Please list to packages to install to run the code above. Then show me how to use `try_install_deps` function to install them."
|
||||||
|
# i_say += 'For instance. `try_install_deps(["opencv-python", "scipy", "numpy"])`'
|
||||||
|
# installation_advance = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
|
# inputs=i_say, inputs_show_user=inputs_show_user,
|
||||||
|
# llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||||
|
# sys_prompt= r"You are a programmer."
|
||||||
|
# )
|
||||||
|
|
||||||
|
# # # 第三步
|
||||||
|
# i_say = "Show me how to use `pip` to install packages to run the code above. "
|
||||||
|
# i_say += 'For instance. `pip install -r opencv-python scipy numpy`'
|
||||||
|
# installation_advance = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
|
# inputs=i_say, inputs_show_user=i_say,
|
||||||
|
# llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||||
|
# sys_prompt= r"You are a programmer."
|
||||||
|
# )
|
||||||
|
installation_advance = ""
|
||||||
|
|
||||||
|
return code_to_return, installation_advance, txt, file_type, llm_kwargs, chatbot, history
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def for_immediate_show_off_when_possible(file_type, fp, chatbot):
|
||||||
|
if file_type in ['png', 'jpg']:
|
||||||
|
image_path = os.path.abspath(fp)
|
||||||
|
chatbot.append(['这是一张图片, 展示如下:',
|
||||||
|
f'本地文件地址: <br/>`{image_path}`<br/>'+
|
||||||
|
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
|
||||||
|
])
|
||||||
|
return chatbot
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def have_any_recent_upload_files(chatbot):
|
||||||
|
_5min = 5 * 60
|
||||||
|
if not chatbot: return False # chatbot is None
|
||||||
|
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
|
||||||
|
if not most_recent_uploaded: return False # most_recent_uploaded is None
|
||||||
|
if time.time() - most_recent_uploaded["time"] < _5min: return True # most_recent_uploaded is new
|
||||||
|
else: return False # most_recent_uploaded is too old
|
||||||
|
|
||||||
|
def get_recent_file_prompt_support(chatbot):
|
||||||
|
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
|
||||||
|
path = most_recent_uploaded['path']
|
||||||
|
return path
|
||||||
|
|
||||||
|
@CatchException
|
||||||
|
def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||||
|
"""
|
||||||
|
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||||
|
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||||
|
plugin_kwargs 插件模型的参数,暂时没有用武之地
|
||||||
|
chatbot 聊天显示框的句柄,用于显示给用户
|
||||||
|
history 聊天历史,前情提要
|
||||||
|
system_prompt 给gpt的静默提醒
|
||||||
|
web_port 当前软件运行的端口号
|
||||||
|
"""
|
||||||
|
|
||||||
|
# 清空历史
|
||||||
|
history = []
|
||||||
|
|
||||||
|
# 基本信息:功能、贡献者
|
||||||
|
chatbot.append(["正在启动: 插件动态生成插件", "插件动态生成, 执行开始, 作者Binary-Husky."])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
|
# ⭐ 文件上传区是否有东西
|
||||||
|
# 1. 如果有文件: 作为函数参数
|
||||||
|
# 2. 如果没有文件:需要用GPT提取参数 (太懒了,以后再写,虚空终端已经实现了类似的代码)
|
||||||
|
file_list = []
|
||||||
|
if get_plugin_arg(plugin_kwargs, key="file_path_arg", default=False):
|
||||||
|
file_path = get_plugin_arg(plugin_kwargs, key="file_path_arg", default=None)
|
||||||
|
file_list.append(file_path)
|
||||||
|
yield from update_ui_lastest_msg(f"当前文件: {file_path}", chatbot, history, 1)
|
||||||
|
elif have_any_recent_upload_files(chatbot):
|
||||||
|
file_dir = get_recent_file_prompt_support(chatbot)
|
||||||
|
file_list = glob.glob(os.path.join(file_dir, '**/*'), recursive=True)
|
||||||
|
yield from update_ui_lastest_msg(f"当前文件处理列表: {file_list}", chatbot, history, 1)
|
||||||
|
else:
|
||||||
|
chatbot.append(["文件检索", "没有发现任何近期上传的文件。"])
|
||||||
|
yield from update_ui_lastest_msg("没有发现任何近期上传的文件。", chatbot, history, 1)
|
||||||
|
return # 2. 如果没有文件
|
||||||
|
if len(file_list) == 0:
|
||||||
|
chatbot.append(["文件检索", "没有发现任何近期上传的文件。"])
|
||||||
|
yield from update_ui_lastest_msg("没有发现任何近期上传的文件。", chatbot, history, 1)
|
||||||
|
return # 2. 如果没有文件
|
||||||
|
|
||||||
|
# 读取文件
|
||||||
|
file_type = file_list[0].split('.')[-1]
|
||||||
|
|
||||||
|
# 粗心检查
|
||||||
|
if is_the_upload_folder(txt):
|
||||||
|
yield from update_ui_lastest_msg(f"请在输入框内填写需求, 然后再次点击该插件! 至于您的文件,不用担心, 文件路径 {txt} 已经被记忆. ", chatbot, history, 1)
|
||||||
|
return
|
||||||
|
|
||||||
|
# 开始干正事
|
||||||
|
MAX_TRY = 3
|
||||||
|
for j in range(MAX_TRY): # 最多重试5次
|
||||||
|
traceback = ""
|
||||||
|
try:
|
||||||
|
# ⭐ 开始啦 !
|
||||||
|
code, installation_advance, txt, file_type, llm_kwargs, chatbot, history = \
|
||||||
|
yield from gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history)
|
||||||
|
chatbot.append(["代码生成阶段结束", ""])
|
||||||
|
yield from update_ui_lastest_msg(f"正在验证上述代码的有效性 ...", chatbot, history, 1)
|
||||||
|
# ⭐ 分离代码块
|
||||||
|
code = get_code_block(code)
|
||||||
|
# ⭐ 检查模块
|
||||||
|
ok, traceback = try_make_module(code, chatbot)
|
||||||
|
# 搞定代码生成
|
||||||
|
if ok: break
|
||||||
|
except Exception as e:
|
||||||
|
if not traceback: traceback = trimmed_format_exc()
|
||||||
|
# 处理异常
|
||||||
|
if not traceback: traceback = trimmed_format_exc()
|
||||||
|
yield from update_ui_lastest_msg(f"第 {j+1}/{MAX_TRY} 次代码生成尝试, 失败了~ 别担心, 我们5秒后再试一次... \n\n此次我们的错误追踪是\n```\n{traceback}\n```\n", chatbot, history, 5)
|
||||||
|
|
||||||
|
# 代码生成结束, 开始执行
|
||||||
|
TIME_LIMIT = 15
|
||||||
|
yield from update_ui_lastest_msg(f"开始创建新进程并执行代码! 时间限制 {TIME_LIMIT} 秒. 请等待任务完成... ", chatbot, history, 1)
|
||||||
|
manager = multiprocessing.Manager()
|
||||||
|
return_dict = manager.dict()
|
||||||
|
|
||||||
|
# ⭐ 到最后一步了,开始逐个文件进行处理
|
||||||
|
for file_path in file_list:
|
||||||
|
if os.path.exists(file_path):
|
||||||
|
chatbot.append([f"正在处理文件: {file_path}", f"请稍等..."])
|
||||||
|
chatbot = for_immediate_show_off_when_possible(file_type, file_path, chatbot)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||||
|
else:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# ⭐⭐⭐ subprocess_worker ⭐⭐⭐
|
||||||
|
p = multiprocessing.Process(target=subprocess_worker, args=(code, file_path, return_dict))
|
||||||
|
# ⭐ 开始执行,时间限制TIME_LIMIT
|
||||||
|
p.start(); p.join(timeout=TIME_LIMIT)
|
||||||
|
if p.is_alive(): p.terminate(); p.join()
|
||||||
|
p.close()
|
||||||
|
res = return_dict['result']
|
||||||
|
success = return_dict['success']
|
||||||
|
traceback = return_dict['traceback']
|
||||||
|
if not success:
|
||||||
|
if not traceback: traceback = trimmed_format_exc()
|
||||||
|
chatbot.append(["执行失败了", f"错误追踪\n```\n{trimmed_format_exc()}\n```\n"])
|
||||||
|
# chatbot.append(["如果是缺乏依赖,请参考以下建议", installation_advance])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# 顺利完成,收尾
|
||||||
|
res = str(res)
|
||||||
|
if os.path.exists(res):
|
||||||
|
chatbot.append(["执行成功了,结果是一个有效文件", "结果:" + res])
|
||||||
|
new_file_path = promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||||
|
chatbot = for_immediate_show_off_when_possible(file_type, new_file_path, chatbot)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||||
|
else:
|
||||||
|
chatbot.append(["执行成功了,结果是一个字符串", "结果:" + res])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||||
|
|
||||||
@@ -1,11 +1,12 @@
|
|||||||
from toolbox import CatchException, report_execption, gen_time_str
|
from toolbox import CatchException, report_execption, get_log_folder, gen_time_str
|
||||||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
||||||
from toolbox import write_history_to_file, get_log_folder
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
from .crazy_utils import read_and_clean_pdf_text
|
from .crazy_utils import read_and_clean_pdf_text
|
||||||
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url
|
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
|
||||||
from colorful import *
|
from colorful import *
|
||||||
|
import copy
|
||||||
import os
|
import os
|
||||||
import math
|
import math
|
||||||
import logging
|
import logging
|
||||||
@@ -92,7 +93,7 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
def 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
def 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
import copy
|
import copy
|
||||||
import tiktoken
|
import tiktoken
|
||||||
TOKEN_LIMIT_PER_FRAGMENT = 1280
|
TOKEN_LIMIT_PER_FRAGMENT = 1024
|
||||||
generated_conclusion_files = []
|
generated_conclusion_files = []
|
||||||
generated_html_files = []
|
generated_html_files = []
|
||||||
DST_LANG = "中文"
|
DST_LANG = "中文"
|
||||||
@@ -101,101 +102,12 @@ def 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwa
|
|||||||
for index, fp in enumerate(file_manifest):
|
for index, fp in enumerate(file_manifest):
|
||||||
chatbot.append(["当前进度:", f"正在解析论文,请稍候。(第一次运行时,需要花费较长时间下载NOUGAT参数)"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
chatbot.append(["当前进度:", f"正在解析论文,请稍候。(第一次运行时,需要花费较长时间下载NOUGAT参数)"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
fpp = yield from nougat_handle.NOUGAT_parse_pdf(fp, chatbot, history)
|
fpp = yield from nougat_handle.NOUGAT_parse_pdf(fp, chatbot, history)
|
||||||
|
promote_file_to_downloadzone(fpp, rename_file=os.path.basename(fpp)+'.nougat.mmd', chatbot=chatbot)
|
||||||
with open(fpp, 'r', encoding='utf8') as f:
|
with open(fpp, 'r', encoding='utf8') as f:
|
||||||
article_content = f.readlines()
|
article_content = f.readlines()
|
||||||
article_dict = markdown_to_dict(article_content)
|
article_dict = markdown_to_dict(article_content)
|
||||||
logging.info(article_dict)
|
logging.info(article_dict)
|
||||||
|
yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG)
|
||||||
prompt = "以下是一篇学术论文的基本信息:\n"
|
|
||||||
# title
|
|
||||||
title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
|
|
||||||
# authors
|
|
||||||
authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
|
|
||||||
# abstract
|
|
||||||
abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
|
|
||||||
# command
|
|
||||||
prompt += f"请将题目和摘要翻译为{DST_LANG}。"
|
|
||||||
meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ]
|
|
||||||
|
|
||||||
# 单线,获取文章meta信息
|
|
||||||
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
|
||||||
inputs=prompt,
|
|
||||||
inputs_show_user=prompt,
|
|
||||||
llm_kwargs=llm_kwargs,
|
|
||||||
chatbot=chatbot, history=[],
|
|
||||||
sys_prompt="You are an academic paper reader。",
|
|
||||||
)
|
|
||||||
|
|
||||||
# 多线,翻译
|
|
||||||
inputs_array = []
|
|
||||||
inputs_show_user_array = []
|
|
||||||
|
|
||||||
# get_token_num
|
|
||||||
from request_llm.bridge_all import model_info
|
|
||||||
enc = model_info[llm_kwargs['llm_model']]['tokenizer']
|
|
||||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
|
||||||
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
|
||||||
|
|
||||||
def break_down(txt):
|
|
||||||
raw_token_num = get_token_num(txt)
|
|
||||||
if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT:
|
|
||||||
return [txt]
|
|
||||||
else:
|
|
||||||
# raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
|
|
||||||
# find a smooth token limit to achieve even seperation
|
|
||||||
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
|
|
||||||
token_limit_smooth = raw_token_num // count + count
|
|
||||||
return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)
|
|
||||||
|
|
||||||
for section in article_dict.get('sections'):
|
|
||||||
if len(section['text']) == 0: continue
|
|
||||||
section_frags = break_down(section['text'])
|
|
||||||
for i, fragment in enumerate(section_frags):
|
|
||||||
heading = section['heading']
|
|
||||||
if len(section_frags) > 1: heading += f' Part-{i+1}'
|
|
||||||
inputs_array.append(
|
|
||||||
f"你需要翻译{heading}章节,内容如下: \n\n{fragment}"
|
|
||||||
)
|
|
||||||
inputs_show_user_array.append(
|
|
||||||
f"# {heading}\n\n{fragment}"
|
|
||||||
)
|
|
||||||
|
|
||||||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
|
||||||
inputs_array=inputs_array,
|
|
||||||
inputs_show_user_array=inputs_show_user_array,
|
|
||||||
llm_kwargs=llm_kwargs,
|
|
||||||
chatbot=chatbot,
|
|
||||||
history_array=[meta for _ in inputs_array],
|
|
||||||
sys_prompt_array=[
|
|
||||||
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
|
|
||||||
)
|
|
||||||
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=None, file_fullname=None)
|
|
||||||
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(fp)+'.md', chatbot=chatbot)
|
|
||||||
generated_conclusion_files.append(res_path)
|
|
||||||
|
|
||||||
ch = construct_html()
|
|
||||||
orig = ""
|
|
||||||
trans = ""
|
|
||||||
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
|
|
||||||
for i,k in enumerate(gpt_response_collection_html):
|
|
||||||
if i%2==0:
|
|
||||||
gpt_response_collection_html[i] = inputs_show_user_array[i//2]
|
|
||||||
else:
|
|
||||||
gpt_response_collection_html[i] = gpt_response_collection_html[i]
|
|
||||||
|
|
||||||
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""]
|
|
||||||
final.extend(gpt_response_collection_html)
|
|
||||||
for i, k in enumerate(final):
|
|
||||||
if i%2==0:
|
|
||||||
orig = k
|
|
||||||
if i%2==1:
|
|
||||||
trans = k
|
|
||||||
ch.add_row(a=orig, b=trans)
|
|
||||||
create_report_file_name = f"{os.path.basename(fp)}.trans.html"
|
|
||||||
html_file = ch.save_file(create_report_file_name)
|
|
||||||
generated_html_files.append(html_file)
|
|
||||||
promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot)
|
|
||||||
|
|
||||||
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|||||||
@@ -1,12 +1,12 @@
|
|||||||
from toolbox import CatchException, report_execption, get_log_folder
|
from toolbox import CatchException, report_execption, get_log_folder, gen_time_str
|
||||||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
from .crazy_utils import read_and_clean_pdf_text
|
from .crazy_utils import read_and_clean_pdf_text
|
||||||
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url
|
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
|
||||||
from colorful import *
|
from colorful import *
|
||||||
import glob
|
import copy
|
||||||
import os
|
import os
|
||||||
import math
|
import math
|
||||||
|
|
||||||
@@ -58,8 +58,8 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
|
|
||||||
|
|
||||||
def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url):
|
def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url):
|
||||||
import copy
|
import copy, json
|
||||||
TOKEN_LIMIT_PER_FRAGMENT = 1280
|
TOKEN_LIMIT_PER_FRAGMENT = 1024
|
||||||
generated_conclusion_files = []
|
generated_conclusion_files = []
|
||||||
generated_html_files = []
|
generated_html_files = []
|
||||||
DST_LANG = "中文"
|
DST_LANG = "中文"
|
||||||
@@ -67,104 +67,23 @@ def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwa
|
|||||||
for index, fp in enumerate(file_manifest):
|
for index, fp in enumerate(file_manifest):
|
||||||
chatbot.append(["当前进度:", f"正在连接GROBID服务,请稍候: {grobid_url}\n如果等待时间过长,请修改config中的GROBID_URL,可修改成本地GROBID服务。"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
chatbot.append(["当前进度:", f"正在连接GROBID服务,请稍候: {grobid_url}\n如果等待时间过长,请修改config中的GROBID_URL,可修改成本地GROBID服务。"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
article_dict = parse_pdf(fp, grobid_url)
|
article_dict = parse_pdf(fp, grobid_url)
|
||||||
|
grobid_json_res = os.path.join(get_log_folder(), gen_time_str() + "grobid.json")
|
||||||
|
with open(grobid_json_res, 'w+', encoding='utf8') as f:
|
||||||
|
f.write(json.dumps(article_dict, indent=4, ensure_ascii=False))
|
||||||
|
promote_file_to_downloadzone(grobid_json_res, chatbot=chatbot)
|
||||||
|
|
||||||
if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
|
if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
|
||||||
prompt = "以下是一篇学术论文的基本信息:\n"
|
yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG)
|
||||||
# title
|
|
||||||
title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
|
|
||||||
# authors
|
|
||||||
authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
|
|
||||||
# abstract
|
|
||||||
abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
|
|
||||||
# command
|
|
||||||
prompt += f"请将题目和摘要翻译为{DST_LANG}。"
|
|
||||||
meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ]
|
|
||||||
|
|
||||||
# 单线,获取文章meta信息
|
|
||||||
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
|
||||||
inputs=prompt,
|
|
||||||
inputs_show_user=prompt,
|
|
||||||
llm_kwargs=llm_kwargs,
|
|
||||||
chatbot=chatbot, history=[],
|
|
||||||
sys_prompt="You are an academic paper reader。",
|
|
||||||
)
|
|
||||||
|
|
||||||
# 多线,翻译
|
|
||||||
inputs_array = []
|
|
||||||
inputs_show_user_array = []
|
|
||||||
|
|
||||||
# get_token_num
|
|
||||||
from request_llm.bridge_all import model_info
|
|
||||||
enc = model_info[llm_kwargs['llm_model']]['tokenizer']
|
|
||||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
|
||||||
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
|
||||||
|
|
||||||
def break_down(txt):
|
|
||||||
raw_token_num = get_token_num(txt)
|
|
||||||
if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT:
|
|
||||||
return [txt]
|
|
||||||
else:
|
|
||||||
# raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
|
|
||||||
# find a smooth token limit to achieve even seperation
|
|
||||||
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
|
|
||||||
token_limit_smooth = raw_token_num // count + count
|
|
||||||
return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)
|
|
||||||
|
|
||||||
for section in article_dict.get('sections'):
|
|
||||||
if len(section['text']) == 0: continue
|
|
||||||
section_frags = break_down(section['text'])
|
|
||||||
for i, fragment in enumerate(section_frags):
|
|
||||||
heading = section['heading']
|
|
||||||
if len(section_frags) > 1: heading += f' Part-{i+1}'
|
|
||||||
inputs_array.append(
|
|
||||||
f"你需要翻译{heading}章节,内容如下: \n\n{fragment}"
|
|
||||||
)
|
|
||||||
inputs_show_user_array.append(
|
|
||||||
f"# {heading}\n\n{fragment}"
|
|
||||||
)
|
|
||||||
|
|
||||||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
|
||||||
inputs_array=inputs_array,
|
|
||||||
inputs_show_user_array=inputs_show_user_array,
|
|
||||||
llm_kwargs=llm_kwargs,
|
|
||||||
chatbot=chatbot,
|
|
||||||
history_array=[meta for _ in inputs_array],
|
|
||||||
sys_prompt_array=[
|
|
||||||
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
|
|
||||||
)
|
|
||||||
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=None, file_fullname=None)
|
|
||||||
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(fp)+'.md', chatbot=chatbot)
|
|
||||||
generated_conclusion_files.append(res_path)
|
|
||||||
|
|
||||||
ch = construct_html()
|
|
||||||
orig = ""
|
|
||||||
trans = ""
|
|
||||||
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
|
|
||||||
for i,k in enumerate(gpt_response_collection_html):
|
|
||||||
if i%2==0:
|
|
||||||
gpt_response_collection_html[i] = inputs_show_user_array[i//2]
|
|
||||||
else:
|
|
||||||
gpt_response_collection_html[i] = gpt_response_collection_html[i]
|
|
||||||
|
|
||||||
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""]
|
|
||||||
final.extend(gpt_response_collection_html)
|
|
||||||
for i, k in enumerate(final):
|
|
||||||
if i%2==0:
|
|
||||||
orig = k
|
|
||||||
if i%2==1:
|
|
||||||
trans = k
|
|
||||||
ch.add_row(a=orig, b=trans)
|
|
||||||
create_report_file_name = f"{os.path.basename(fp)}.trans.html"
|
|
||||||
html_file = ch.save_file(create_report_file_name)
|
|
||||||
generated_html_files.append(html_file)
|
|
||||||
promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot)
|
|
||||||
|
|
||||||
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
|
|
||||||
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
|
"""
|
||||||
|
此函数已经弃用
|
||||||
|
"""
|
||||||
import copy
|
import copy
|
||||||
TOKEN_LIMIT_PER_FRAGMENT = 1280
|
TOKEN_LIMIT_PER_FRAGMENT = 1024
|
||||||
generated_conclusion_files = []
|
generated_conclusion_files = []
|
||||||
generated_html_files = []
|
generated_html_files = []
|
||||||
from crazy_functions.crazy_utils import construct_html
|
from crazy_functions.crazy_utils import construct_html
|
||||||
|
|||||||
@@ -136,6 +136,23 @@ def 解析一个Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
return
|
return
|
||||||
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||||
|
|
||||||
|
@CatchException
|
||||||
|
def 解析一个Matlab项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||||
|
history = [] # 清空历史,以免输入溢出
|
||||||
|
import glob, os
|
||||||
|
if os.path.exists(txt):
|
||||||
|
project_folder = txt
|
||||||
|
else:
|
||||||
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
|
report_execption(chatbot, history, a = f"解析Matlab项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.m', recursive=True)]
|
||||||
|
if len(file_manifest) == 0:
|
||||||
|
report_execption(chatbot, history, a = f"解析Matlab项目: {txt}", b = f"找不到任何`.m`源文件: {txt}")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||||
|
|
||||||
@CatchException
|
@CatchException
|
||||||
def 解析一个C项目的头文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
def 解析一个C项目的头文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||||
|
|||||||
@@ -1,5 +1,54 @@
|
|||||||
#【请修改完参数后,删除此行】请在以下方案中选择一种,然后删除其他的方案,最后docker-compose up运行 | Please choose from one of these options below, delete other options as well as This Line
|
#【请修改完参数后,删除此行】请在以下方案中选择一种,然后删除其他的方案,最后docker-compose up运行 | Please choose from one of these options below, delete other options as well as This Line
|
||||||
|
|
||||||
|
## ===================================================
|
||||||
|
## 【方案零】 部署项目的全部能力(这个是包含cuda和latex的大型镜像。如果您网速慢、硬盘小或没有显卡,则不推荐使用这个)
|
||||||
|
## ===================================================
|
||||||
|
version: '3'
|
||||||
|
services:
|
||||||
|
gpt_academic_full_capability:
|
||||||
|
image: ghcr.io/binary-husky/gpt_academic_with_all_capacity:master
|
||||||
|
environment:
|
||||||
|
# 请查阅 `config.py`或者 github wiki 以查看所有的配置信息
|
||||||
|
API_KEY: ' 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 '
|
||||||
|
# USE_PROXY: ' True '
|
||||||
|
# proxies: ' { "http": "http://localhost:10881", "https": "http://localhost:10881", } '
|
||||||
|
LLM_MODEL: ' gpt-3.5-turbo '
|
||||||
|
AVAIL_LLM_MODELS: ' ["gpt-3.5-turbo", "gpt-4", "qianfan", "sparkv2", "spark", "chatglm"] '
|
||||||
|
BAIDU_CLOUD_API_KEY : ' bTUtwEAveBrQipEowUvDwYWq '
|
||||||
|
BAIDU_CLOUD_SECRET_KEY : ' jqXtLvXiVw6UNdjliATTS61rllG8Iuni '
|
||||||
|
XFYUN_APPID: ' 53a8d816 '
|
||||||
|
XFYUN_API_SECRET: ' MjMxNDQ4NDE4MzM0OSNlNjQ2NTlhMTkx '
|
||||||
|
XFYUN_API_KEY: ' 95ccdec285364869d17b33e75ee96447 '
|
||||||
|
ENABLE_AUDIO: ' False '
|
||||||
|
DEFAULT_WORKER_NUM: ' 20 '
|
||||||
|
WEB_PORT: ' 12345 '
|
||||||
|
ADD_WAIFU: ' False '
|
||||||
|
ALIYUN_APPKEY: ' RxPlZrM88DnAFkZK '
|
||||||
|
THEME: ' Chuanhu-Small-and-Beautiful '
|
||||||
|
ALIYUN_ACCESSKEY: ' LTAI5t6BrFUzxRXVGUWnekh1 '
|
||||||
|
ALIYUN_SECRET: ' eHmI20SVWIwQZxCiTD2bGQVspP9i68 '
|
||||||
|
# LOCAL_MODEL_DEVICE: ' cuda '
|
||||||
|
|
||||||
|
# 加载英伟达显卡运行时
|
||||||
|
# runtime: nvidia
|
||||||
|
# deploy:
|
||||||
|
# resources:
|
||||||
|
# reservations:
|
||||||
|
# devices:
|
||||||
|
# - driver: nvidia
|
||||||
|
# count: 1
|
||||||
|
# capabilities: [gpu]
|
||||||
|
|
||||||
|
# 与宿主的网络融合
|
||||||
|
network_mode: "host"
|
||||||
|
|
||||||
|
# 不使用代理网络拉取最新代码
|
||||||
|
command: >
|
||||||
|
bash -c "python3 -u main.py"
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## ===================================================
|
## ===================================================
|
||||||
## 【方案一】 如果不需要运行本地模型(仅 chatgpt, azure, 星火, 千帆, claude 等在线大模型服务)
|
## 【方案一】 如果不需要运行本地模型(仅 chatgpt, azure, 星火, 千帆, claude 等在线大模型服务)
|
||||||
## ===================================================
|
## ===================================================
|
||||||
|
|||||||
@@ -13,21 +13,20 @@ RUN python3 -m pip install openai numpy arxiv rich
|
|||||||
RUN python3 -m pip install colorama Markdown pygments pymupdf
|
RUN python3 -m pip install colorama Markdown pygments pymupdf
|
||||||
RUN python3 -m pip install python-docx moviepy pdfminer
|
RUN python3 -m pip install python-docx moviepy pdfminer
|
||||||
RUN python3 -m pip install zh_langchain==0.2.1 pypinyin
|
RUN python3 -m pip install zh_langchain==0.2.1 pypinyin
|
||||||
RUN python3 -m pip install nougat-ocr
|
|
||||||
RUN python3 -m pip install rarfile py7zr
|
RUN python3 -m pip install rarfile py7zr
|
||||||
RUN python3 -m pip install aliyun-python-sdk-core==2.13.3 pyOpenSSL scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
|
RUN python3 -m pip install aliyun-python-sdk-core==2.13.3 pyOpenSSL scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
|
||||||
# 下载分支
|
# 下载分支
|
||||||
WORKDIR /gpt
|
WORKDIR /gpt
|
||||||
RUN git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
|
RUN git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
|
||||||
WORKDIR /gpt/gpt_academic
|
WORKDIR /gpt/gpt_academic
|
||||||
RUN git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss
|
RUN git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llm/moss
|
||||||
|
|
||||||
RUN python3 -m pip install -r requirements.txt
|
RUN python3 -m pip install -r requirements.txt
|
||||||
RUN python3 -m pip install -r request_llm/requirements_moss.txt
|
RUN python3 -m pip install -r request_llm/requirements_moss.txt
|
||||||
RUN python3 -m pip install -r request_llm/requirements_qwen.txt
|
RUN python3 -m pip install -r request_llm/requirements_qwen.txt
|
||||||
RUN python3 -m pip install -r request_llm/requirements_chatglm.txt
|
RUN python3 -m pip install -r request_llm/requirements_chatglm.txt
|
||||||
RUN python3 -m pip install -r request_llm/requirements_newbing.txt
|
RUN python3 -m pip install -r request_llm/requirements_newbing.txt
|
||||||
|
RUN python3 -m pip install nougat-ocr
|
||||||
|
|
||||||
|
|
||||||
# 预热Tiktoken模块
|
# 预热Tiktoken模块
|
||||||
|
|||||||
@@ -107,6 +107,12 @@ AZURE_API_KEY = "填入azure openai api的密钥"
|
|||||||
AZURE_API_VERSION = "2023-05-15" # 默认使用 2023-05-15 版本,无需修改
|
AZURE_API_VERSION = "2023-05-15" # 默认使用 2023-05-15 版本,无需修改
|
||||||
AZURE_ENGINE = "填入部署名" # 见上述图片
|
AZURE_ENGINE = "填入部署名" # 见上述图片
|
||||||
|
|
||||||
|
|
||||||
|
# 例如
|
||||||
|
API_KEY = '6424e9d19e674092815cea1cb35e67a5'
|
||||||
|
AZURE_ENDPOINT = 'https://rhtjjjjjj.openai.azure.com/'
|
||||||
|
AZURE_ENGINE = 'qqwe'
|
||||||
|
LLM_MODEL = "azure-gpt-3.5" # 可选 ↓↓↓
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
40
main.py
40
main.py
@@ -8,12 +8,13 @@ def main():
|
|||||||
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
|
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
|
||||||
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION = get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION')
|
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION = get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION')
|
||||||
CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = get_conf('CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = get_conf('CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
||||||
ENABLE_AUDIO, AUTO_CLEAR_TXT, PATH_LOGGING = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'PATH_LOGGING')
|
ENABLE_AUDIO, AUTO_CLEAR_TXT, PATH_LOGGING, AVAIL_THEMES, THEME = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'PATH_LOGGING', 'AVAIL_THEMES', 'THEME')
|
||||||
|
|
||||||
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
||||||
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
||||||
from check_proxy import get_current_version
|
from check_proxy import get_current_version
|
||||||
from themes.theme import adjust_theme, advanced_css, theme_declaration
|
from themes.theme import adjust_theme, advanced_css, theme_declaration, load_dynamic_theme
|
||||||
|
|
||||||
initial_prompt = "Serve me as a writing and programming assistant."
|
initial_prompt = "Serve me as a writing and programming assistant."
|
||||||
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
|
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
|
||||||
description = "代码开源和更新[地址🚀](https://github.com/binary-husky/gpt_academic),"
|
description = "代码开源和更新[地址🚀](https://github.com/binary-husky/gpt_academic),"
|
||||||
@@ -59,6 +60,7 @@ def main():
|
|||||||
cancel_handles = []
|
cancel_handles = []
|
||||||
with gr.Blocks(title="GPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
|
with gr.Blocks(title="GPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
|
||||||
gr.HTML(title_html)
|
gr.HTML(title_html)
|
||||||
|
secret_css, secret_font = gr.Textbox(visible=False), gr.Textbox(visible=False)
|
||||||
cookies = gr.State(load_chat_cookies())
|
cookies = gr.State(load_chat_cookies())
|
||||||
with gr_L1():
|
with gr_L1():
|
||||||
with gr_L2(scale=2, elem_id="gpt-chat"):
|
with gr_L2(scale=2, elem_id="gpt-chat"):
|
||||||
@@ -123,7 +125,8 @@ def main():
|
|||||||
max_length_sl = gr.Slider(minimum=256, maximum=8192, value=4096, step=1, interactive=True, label="Local LLM MaxLength",)
|
max_length_sl = gr.Slider(minimum=256, maximum=8192, value=4096, step=1, interactive=True, label="Local LLM MaxLength",)
|
||||||
checkboxes = gr.CheckboxGroup(["基础功能区", "函数插件区", "底部输入区", "输入清除键", "插件参数区"], value=["基础功能区", "函数插件区"], label="显示/隐藏功能区")
|
checkboxes = gr.CheckboxGroup(["基础功能区", "函数插件区", "底部输入区", "输入清除键", "插件参数区"], value=["基础功能区", "函数插件区"], label="显示/隐藏功能区")
|
||||||
md_dropdown = gr.Dropdown(AVAIL_LLM_MODELS, value=LLM_MODEL, label="更换LLM模型/请求源").style(container=False)
|
md_dropdown = gr.Dropdown(AVAIL_LLM_MODELS, value=LLM_MODEL, label="更换LLM模型/请求源").style(container=False)
|
||||||
dark_mode_btn = gr.Button("Toggle Dark Mode ☀", variant="secondary").style(size="sm")
|
theme_dropdown = gr.Dropdown(AVAIL_THEMES, value=THEME, label="更换UI主题").style(container=False)
|
||||||
|
dark_mode_btn = gr.Button("切换界面明暗 ☀", variant="secondary").style(size="sm")
|
||||||
dark_mode_btn.click(None, None, None, _js="""() => {
|
dark_mode_btn.click(None, None, None, _js="""() => {
|
||||||
if (document.querySelectorAll('.dark').length) {
|
if (document.querySelectorAll('.dark').length) {
|
||||||
document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
|
document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
|
||||||
@@ -197,9 +200,37 @@ def main():
|
|||||||
ret.update({plugin_advanced_arg: gr.update(visible=False, label=f"插件[{k}]不需要高级参数。")})
|
ret.update({plugin_advanced_arg: gr.update(visible=False, label=f"插件[{k}]不需要高级参数。")})
|
||||||
return ret
|
return ret
|
||||||
dropdown.select(on_dropdown_changed, [dropdown], [switchy_bt, plugin_advanced_arg] )
|
dropdown.select(on_dropdown_changed, [dropdown], [switchy_bt, plugin_advanced_arg] )
|
||||||
|
|
||||||
def on_md_dropdown_changed(k):
|
def on_md_dropdown_changed(k):
|
||||||
return {chatbot: gr.update(label="当前模型:"+k)}
|
return {chatbot: gr.update(label="当前模型:"+k)}
|
||||||
md_dropdown.select(on_md_dropdown_changed, [md_dropdown], [chatbot] )
|
md_dropdown.select(on_md_dropdown_changed, [md_dropdown], [chatbot] )
|
||||||
|
|
||||||
|
def on_theme_dropdown_changed(theme, secret_css):
|
||||||
|
adjust_theme, css_part1, _, adjust_dynamic_theme = load_dynamic_theme(theme)
|
||||||
|
if adjust_dynamic_theme:
|
||||||
|
css_part2 = adjust_dynamic_theme._get_theme_css()
|
||||||
|
else:
|
||||||
|
css_part2 = adjust_theme()._get_theme_css()
|
||||||
|
return css_part2 + css_part1
|
||||||
|
|
||||||
|
theme_handle = theme_dropdown.select(on_theme_dropdown_changed, [theme_dropdown, secret_css], [secret_css])
|
||||||
|
theme_handle.then(
|
||||||
|
None,
|
||||||
|
[secret_css],
|
||||||
|
None,
|
||||||
|
_js="""(css) => {
|
||||||
|
var existingStyles = document.querySelectorAll("style[data-loaded-css]");
|
||||||
|
for (var i = 0; i < existingStyles.length; i++) {
|
||||||
|
var style = existingStyles[i];
|
||||||
|
style.parentNode.removeChild(style);
|
||||||
|
}
|
||||||
|
var styleElement = document.createElement('style');
|
||||||
|
styleElement.setAttribute('data-loaded-css', css);
|
||||||
|
styleElement.innerHTML = css;
|
||||||
|
document.head.appendChild(styleElement);
|
||||||
|
}
|
||||||
|
"""
|
||||||
|
)
|
||||||
# 随变按钮的回调函数注册
|
# 随变按钮的回调函数注册
|
||||||
def route(request: gr.Request, k, *args, **kwargs):
|
def route(request: gr.Request, k, *args, **kwargs):
|
||||||
if k in [r"打开插件列表", r"请先从插件列表中选择"]: return
|
if k in [r"打开插件列表", r"请先从插件列表中选择"]: return
|
||||||
@@ -235,7 +266,7 @@ def main():
|
|||||||
cookies.update({'uuid': uuid.uuid4()})
|
cookies.update({'uuid': uuid.uuid4()})
|
||||||
return cookies
|
return cookies
|
||||||
demo.load(init_cookie, inputs=[cookies, chatbot], outputs=[cookies])
|
demo.load(init_cookie, inputs=[cookies, chatbot], outputs=[cookies])
|
||||||
demo.load(lambda: 0, inputs=None, outputs=None, _js='()=>{ChatBotHeight();}')
|
demo.load(lambda: 0, inputs=None, outputs=None, _js='()=>{GptAcademicJavaScriptInit();}')
|
||||||
|
|
||||||
# gradio的inbrowser触发不太稳定,回滚代码到原始的浏览器打开函数
|
# gradio的inbrowser触发不太稳定,回滚代码到原始的浏览器打开函数
|
||||||
def auto_opentab_delay():
|
def auto_opentab_delay():
|
||||||
@@ -254,6 +285,7 @@ def main():
|
|||||||
|
|
||||||
auto_opentab_delay()
|
auto_opentab_delay()
|
||||||
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(
|
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(
|
||||||
|
quiet=True,
|
||||||
server_name="0.0.0.0",
|
server_name="0.0.0.0",
|
||||||
server_port=PORT,
|
server_port=PORT,
|
||||||
favicon_path="docs/logo.png",
|
favicon_path="docs/logo.png",
|
||||||
|
|||||||
@@ -52,6 +52,7 @@ API_URL_REDIRECT, AZURE_ENDPOINT, AZURE_ENGINE = get_conf("API_URL_REDIRECT", "A
|
|||||||
openai_endpoint = "https://api.openai.com/v1/chat/completions"
|
openai_endpoint = "https://api.openai.com/v1/chat/completions"
|
||||||
api2d_endpoint = "https://openai.api2d.net/v1/chat/completions"
|
api2d_endpoint = "https://openai.api2d.net/v1/chat/completions"
|
||||||
newbing_endpoint = "wss://sydney.bing.com/sydney/ChatHub"
|
newbing_endpoint = "wss://sydney.bing.com/sydney/ChatHub"
|
||||||
|
if not AZURE_ENDPOINT.endswith('/'): AZURE_ENDPOINT += '/'
|
||||||
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
|
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
|
||||||
# 兼容旧版的配置
|
# 兼容旧版的配置
|
||||||
try:
|
try:
|
||||||
@@ -125,6 +126,15 @@ model_info = {
|
|||||||
"token_cnt": get_token_num_gpt4,
|
"token_cnt": get_token_num_gpt4,
|
||||||
},
|
},
|
||||||
|
|
||||||
|
"gpt-4-32k": {
|
||||||
|
"fn_with_ui": chatgpt_ui,
|
||||||
|
"fn_without_ui": chatgpt_noui,
|
||||||
|
"endpoint": openai_endpoint,
|
||||||
|
"max_token": 32768,
|
||||||
|
"tokenizer": tokenizer_gpt4,
|
||||||
|
"token_cnt": get_token_num_gpt4,
|
||||||
|
},
|
||||||
|
|
||||||
# azure openai
|
# azure openai
|
||||||
"azure-gpt-3.5":{
|
"azure-gpt-3.5":{
|
||||||
"fn_with_ui": chatgpt_ui,
|
"fn_with_ui": chatgpt_ui,
|
||||||
@@ -135,6 +145,15 @@ model_info = {
|
|||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
},
|
},
|
||||||
|
|
||||||
|
"azure-gpt-4":{
|
||||||
|
"fn_with_ui": chatgpt_ui,
|
||||||
|
"fn_without_ui": chatgpt_noui,
|
||||||
|
"endpoint": azure_endpoint,
|
||||||
|
"max_token": 8192,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
|
||||||
# api_2d
|
# api_2d
|
||||||
"api2d-gpt-3.5-turbo": {
|
"api2d-gpt-3.5-turbo": {
|
||||||
"fn_with_ui": chatgpt_ui,
|
"fn_with_ui": chatgpt_ui,
|
||||||
|
|||||||
@@ -3,7 +3,7 @@ from transformers import AutoModel, AutoTokenizer
|
|||||||
import time
|
import time
|
||||||
import threading
|
import threading
|
||||||
import importlib
|
import importlib
|
||||||
from toolbox import update_ui, get_conf
|
from toolbox import update_ui, get_conf, ProxyNetworkActivate
|
||||||
from multiprocessing import Process, Pipe
|
from multiprocessing import Process, Pipe
|
||||||
|
|
||||||
load_message = "ChatGLM尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLM消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
load_message = "ChatGLM尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLM消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||||
@@ -48,16 +48,17 @@ class GetGLMHandle(Process):
|
|||||||
|
|
||||||
while True:
|
while True:
|
||||||
try:
|
try:
|
||||||
if self.chatglm_model is None:
|
with ProxyNetworkActivate('Download_LLM'):
|
||||||
self.chatglm_tokenizer = AutoTokenizer.from_pretrained(_model_name_, trust_remote_code=True)
|
if self.chatglm_model is None:
|
||||||
if device=='cpu':
|
self.chatglm_tokenizer = AutoTokenizer.from_pretrained(_model_name_, trust_remote_code=True)
|
||||||
self.chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).float()
|
if device=='cpu':
|
||||||
|
self.chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).float()
|
||||||
|
else:
|
||||||
|
self.chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).half().cuda()
|
||||||
|
self.chatglm_model = self.chatglm_model.eval()
|
||||||
|
break
|
||||||
else:
|
else:
|
||||||
self.chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).half().cuda()
|
break
|
||||||
self.chatglm_model = self.chatglm_model.eval()
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
break
|
|
||||||
except:
|
except:
|
||||||
retry += 1
|
retry += 1
|
||||||
if retry > 3:
|
if retry > 3:
|
||||||
|
|||||||
@@ -30,7 +30,7 @@ class GetONNXGLMHandle(LocalLLMHandle):
|
|||||||
with open(os.path.expanduser('~/.cache/huggingface/token'), 'w') as f:
|
with open(os.path.expanduser('~/.cache/huggingface/token'), 'w') as f:
|
||||||
f.write(huggingface_token)
|
f.write(huggingface_token)
|
||||||
model_id = 'meta-llama/Llama-2-7b-chat-hf'
|
model_id = 'meta-llama/Llama-2-7b-chat-hf'
|
||||||
with ProxyNetworkActivate():
|
with ProxyNetworkActivate('Download_LLM'):
|
||||||
self._tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=huggingface_token)
|
self._tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=huggingface_token)
|
||||||
# use fp16
|
# use fp16
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_id, use_auth_token=huggingface_token).eval()
|
model = AutoModelForCausalLM.from_pretrained(model_id, use_auth_token=huggingface_token).eval()
|
||||||
|
|||||||
@@ -1,5 +1,4 @@
|
|||||||
protobuf
|
protobuf
|
||||||
transformers>=4.27.1
|
|
||||||
cpm_kernels
|
cpm_kernels
|
||||||
torch>=1.10
|
torch>=1.10
|
||||||
mdtex2html
|
mdtex2html
|
||||||
|
|||||||
@@ -1,5 +1,4 @@
|
|||||||
protobuf
|
protobuf
|
||||||
transformers>=4.27.1
|
|
||||||
cpm_kernels
|
cpm_kernels
|
||||||
torch>=1.10
|
torch>=1.10
|
||||||
mdtex2html
|
mdtex2html
|
||||||
|
|||||||
@@ -2,6 +2,5 @@ jittor >= 1.3.7.9
|
|||||||
jtorch >= 0.1.3
|
jtorch >= 0.1.3
|
||||||
torch
|
torch
|
||||||
torchvision
|
torchvision
|
||||||
transformers==4.26.1
|
|
||||||
pandas
|
pandas
|
||||||
jieba
|
jieba
|
||||||
@@ -1,5 +1,4 @@
|
|||||||
torch
|
torch
|
||||||
transformers==4.25.1
|
|
||||||
sentencepiece
|
sentencepiece
|
||||||
datasets
|
datasets
|
||||||
accelerate
|
accelerate
|
||||||
|
|||||||
@@ -2,7 +2,7 @@
|
|||||||
pydantic==1.10.11
|
pydantic==1.10.11
|
||||||
tiktoken>=0.3.3
|
tiktoken>=0.3.3
|
||||||
requests[socks]
|
requests[socks]
|
||||||
transformers
|
transformers>=4.27.1
|
||||||
python-markdown-math
|
python-markdown-math
|
||||||
beautifulsoup4
|
beautifulsoup4
|
||||||
prompt_toolkit
|
prompt_toolkit
|
||||||
|
|||||||
@@ -6,11 +6,14 @@
|
|||||||
import os, sys
|
import os, sys
|
||||||
def validate_path(): dir_name = os.path.dirname(__file__); root_dir_assume = os.path.abspath(dir_name + '/..'); os.chdir(root_dir_assume); sys.path.append(root_dir_assume)
|
def validate_path(): dir_name = os.path.dirname(__file__); root_dir_assume = os.path.abspath(dir_name + '/..'); os.chdir(root_dir_assume); sys.path.append(root_dir_assume)
|
||||||
validate_path() # 返回项目根路径
|
validate_path() # 返回项目根路径
|
||||||
from tests.test_utils import plugin_test
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
from tests.test_utils import plugin_test
|
||||||
|
plugin_test(plugin='crazy_functions.函数动态生成->函数动态生成', main_input='交换图像的蓝色通道和红色通道', advanced_arg={"file_path_arg": "./build/ants.jpg"})
|
||||||
|
|
||||||
# plugin_test(plugin='crazy_functions.虚空终端->虚空终端', main_input='修改api-key为sk-jhoejriotherjep')
|
# plugin_test(plugin='crazy_functions.虚空终端->虚空终端', main_input='修改api-key为sk-jhoejriotherjep')
|
||||||
plugin_test(plugin='crazy_functions.批量翻译PDF文档_NOUGAT->批量翻译PDF文档', main_input='crazy_functions/test_project/pdf_and_word/aaai.pdf')
|
|
||||||
|
# plugin_test(plugin='crazy_functions.批量翻译PDF文档_NOUGAT->批量翻译PDF文档', main_input='crazy_functions/test_project/pdf_and_word/aaai.pdf')
|
||||||
|
|
||||||
# plugin_test(plugin='crazy_functions.虚空终端->虚空终端', main_input='调用插件,对C:/Users/fuqingxu/Desktop/旧文件/gpt/chatgpt_academic/crazy_functions/latex_fns中的python文件进行解析')
|
# plugin_test(plugin='crazy_functions.虚空终端->虚空终端', main_input='调用插件,对C:/Users/fuqingxu/Desktop/旧文件/gpt/chatgpt_academic/crazy_functions/latex_fns中的python文件进行解析')
|
||||||
|
|
||||||
|
|||||||
@@ -74,7 +74,7 @@ def plugin_test(main_input, plugin, advanced_arg=None):
|
|||||||
plugin_kwargs['plugin_kwargs'] = advanced_arg
|
plugin_kwargs['plugin_kwargs'] = advanced_arg
|
||||||
my_working_plugin = silence_stdout(plugin)(**plugin_kwargs)
|
my_working_plugin = silence_stdout(plugin)(**plugin_kwargs)
|
||||||
|
|
||||||
with Live(Markdown(""), auto_refresh=False) as live:
|
with Live(Markdown(""), auto_refresh=False, vertical_overflow="visible") as live:
|
||||||
for cookies, chat, hist, msg in my_working_plugin:
|
for cookies, chat, hist, msg in my_working_plugin:
|
||||||
md_str = vt.chat_to_markdown_str(chat)
|
md_str = vt.chat_to_markdown_str(chat)
|
||||||
md = Markdown(md_str)
|
md = Markdown(md_str)
|
||||||
|
|||||||
@@ -19,3 +19,67 @@
|
|||||||
.wrap.svelte-xwlu1w {
|
.wrap.svelte-xwlu1w {
|
||||||
min-height: var(--size-32);
|
min-height: var(--size-32);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* status bar height */
|
||||||
|
.min.svelte-1yrv54 {
|
||||||
|
min-height: var(--size-12);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* copy btn */
|
||||||
|
.message-btn-row {
|
||||||
|
width: 19px;
|
||||||
|
height: 19px;
|
||||||
|
position: absolute;
|
||||||
|
left: calc(100% + 3px);
|
||||||
|
top: 0;
|
||||||
|
display: flex;
|
||||||
|
justify-content: space-between;
|
||||||
|
}
|
||||||
|
/* .message-btn-row-leading, .message-btn-row-trailing {
|
||||||
|
display: inline-flex;
|
||||||
|
gap: 4px;
|
||||||
|
} */
|
||||||
|
.message-btn-row button {
|
||||||
|
font-size: 18px;
|
||||||
|
align-self: center;
|
||||||
|
align-items: center;
|
||||||
|
flex-wrap: nowrap;
|
||||||
|
white-space: nowrap;
|
||||||
|
display: inline-flex;
|
||||||
|
flex-direction: row;
|
||||||
|
gap: 4px;
|
||||||
|
padding-block: 2px !important;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* Scrollbar Width */
|
||||||
|
::-webkit-scrollbar {
|
||||||
|
width: 12px;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Scrollbar Track */
|
||||||
|
::-webkit-scrollbar-track {
|
||||||
|
background: #f1f1f1;
|
||||||
|
border-radius: 12px;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Scrollbar Handle */
|
||||||
|
::-webkit-scrollbar-thumb {
|
||||||
|
background: #888;
|
||||||
|
border-radius: 12px;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Scrollbar Handle on hover */
|
||||||
|
::-webkit-scrollbar-thumb:hover {
|
||||||
|
background: #555;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* input btns: clear, reset, stop */
|
||||||
|
#input-panel button {
|
||||||
|
min-width: min(80px, 100%);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* input btns: clear, reset, stop */
|
||||||
|
#input-panel2 button {
|
||||||
|
min-width: min(80px, 100%);
|
||||||
|
}
|
||||||
@@ -1,4 +1,86 @@
|
|||||||
function ChatBotHeight() {
|
function gradioApp() {
|
||||||
|
// https://github.com/GaiZhenbiao/ChuanhuChatGPT/tree/main/web_assets/javascript
|
||||||
|
const elems = document.getElementsByTagName('gradio-app');
|
||||||
|
const elem = elems.length == 0 ? document : elems[0];
|
||||||
|
if (elem !== document) {
|
||||||
|
elem.getElementById = function(id) {
|
||||||
|
return document.getElementById(id);
|
||||||
|
};
|
||||||
|
}
|
||||||
|
return elem.shadowRoot ? elem.shadowRoot : elem;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
function addCopyButton(botElement) {
|
||||||
|
// https://github.com/GaiZhenbiao/ChuanhuChatGPT/tree/main/web_assets/javascript
|
||||||
|
// Copy bot button
|
||||||
|
const copiedIcon = '<span><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" height=".8em" width=".8em" xmlns="http://www.w3.org/2000/svg"><polyline points="20 6 9 17 4 12"></polyline></svg></span>';
|
||||||
|
const copyIcon = '<span><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" height=".8em" width=".8em" xmlns="http://www.w3.org/2000/svg"><rect x="9" y="9" width="13" height="13" rx="2" ry="2"></rect><path d="M5 15H4a2 2 0 0 1-2-2V4a2 2 0 0 1 2-2h9a2 2 0 0 1 2 2v1"></path></svg></span>';
|
||||||
|
|
||||||
|
const messageBtnColumnElement = botElement.querySelector('.message-btn-row');
|
||||||
|
if (messageBtnColumnElement) {
|
||||||
|
// Do something if .message-btn-column exists, for example, remove it
|
||||||
|
// messageBtnColumnElement.remove();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
var copyButton = document.createElement('button');
|
||||||
|
copyButton.classList.add('copy-bot-btn');
|
||||||
|
copyButton.setAttribute('aria-label', 'Copy');
|
||||||
|
copyButton.innerHTML = copyIcon;
|
||||||
|
copyButton.addEventListener('click', async () => {
|
||||||
|
const textToCopy = botElement.innerText;
|
||||||
|
try {
|
||||||
|
if ("clipboard" in navigator) {
|
||||||
|
await navigator.clipboard.writeText(textToCopy);
|
||||||
|
copyButton.innerHTML = copiedIcon;
|
||||||
|
setTimeout(() => {
|
||||||
|
copyButton.innerHTML = copyIcon;
|
||||||
|
}, 1500);
|
||||||
|
} else {
|
||||||
|
const textArea = document.createElement("textarea");
|
||||||
|
textArea.value = textToCopy;
|
||||||
|
document.body.appendChild(textArea);
|
||||||
|
textArea.select();
|
||||||
|
try {
|
||||||
|
document.execCommand('copy');
|
||||||
|
copyButton.innerHTML = copiedIcon;
|
||||||
|
setTimeout(() => {
|
||||||
|
copyButton.innerHTML = copyIcon;
|
||||||
|
}, 1500);
|
||||||
|
} catch (error) {
|
||||||
|
console.error("Copy failed: ", error);
|
||||||
|
}
|
||||||
|
document.body.removeChild(textArea);
|
||||||
|
}
|
||||||
|
} catch (error) {
|
||||||
|
console.error("Copy failed: ", error);
|
||||||
|
}
|
||||||
|
});
|
||||||
|
var messageBtnColumn = document.createElement('div');
|
||||||
|
messageBtnColumn.classList.add('message-btn-row');
|
||||||
|
messageBtnColumn.appendChild(copyButton);
|
||||||
|
botElement.appendChild(messageBtnColumn);
|
||||||
|
}
|
||||||
|
|
||||||
|
function chatbotContentChanged(attempt = 1, force = false) {
|
||||||
|
// https://github.com/GaiZhenbiao/ChuanhuChatGPT/tree/main/web_assets/javascript
|
||||||
|
for (var i = 0; i < attempt; i++) {
|
||||||
|
setTimeout(() => {
|
||||||
|
gradioApp().querySelectorAll('#gpt-chatbot .message-wrap .message.bot').forEach(addCopyButton);
|
||||||
|
}, i === 0 ? 0 : 200);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
function GptAcademicJavaScriptInit() {
|
||||||
|
chatbotIndicator = gradioApp().querySelector('#gpt-chatbot > div.wrap');
|
||||||
|
var chatbotObserver = new MutationObserver(() => {
|
||||||
|
chatbotContentChanged(1);
|
||||||
|
});
|
||||||
|
chatbotObserver.observe(chatbotIndicator, { attributes: true, childList: true, subtree: true });
|
||||||
|
|
||||||
function update_height(){
|
function update_height(){
|
||||||
var { panel_height_target, chatbot_height, chatbot } = get_elements(true);
|
var { panel_height_target, chatbot_height, chatbot } = get_elements(true);
|
||||||
if (panel_height_target!=chatbot_height)
|
if (panel_height_target!=chatbot_height)
|
||||||
|
|||||||
@@ -3,11 +3,20 @@ import logging
|
|||||||
from toolbox import get_conf, ProxyNetworkActivate
|
from toolbox import get_conf, ProxyNetworkActivate
|
||||||
CODE_HIGHLIGHT, ADD_WAIFU, LAYOUT = get_conf('CODE_HIGHLIGHT', 'ADD_WAIFU', 'LAYOUT')
|
CODE_HIGHLIGHT, ADD_WAIFU, LAYOUT = get_conf('CODE_HIGHLIGHT', 'ADD_WAIFU', 'LAYOUT')
|
||||||
|
|
||||||
|
def dynamic_set_theme(THEME):
|
||||||
|
set_theme = gr.themes.ThemeClass()
|
||||||
|
with ProxyNetworkActivate('Download_Gradio_Theme'):
|
||||||
|
logging.info('正在下载Gradio主题,请稍等。')
|
||||||
|
if THEME.startswith('Huggingface-'): THEME = THEME.lstrip('Huggingface-')
|
||||||
|
if THEME.startswith('huggingface-'): THEME = THEME.lstrip('huggingface-')
|
||||||
|
set_theme = set_theme.from_hub(THEME.lower())
|
||||||
|
return set_theme
|
||||||
|
|
||||||
def adjust_theme():
|
def adjust_theme():
|
||||||
|
|
||||||
try:
|
try:
|
||||||
set_theme = gr.themes.ThemeClass()
|
set_theme = gr.themes.ThemeClass()
|
||||||
with ProxyNetworkActivate():
|
with ProxyNetworkActivate('Download_Gradio_Theme'):
|
||||||
logging.info('正在下载Gradio主题,请稍等。')
|
logging.info('正在下载Gradio主题,请稍等。')
|
||||||
THEME, = get_conf('THEME')
|
THEME, = get_conf('THEME')
|
||||||
if THEME.startswith('Huggingface-'): THEME = THEME.lstrip('Huggingface-')
|
if THEME.startswith('Huggingface-'): THEME = THEME.lstrip('Huggingface-')
|
||||||
|
|||||||
@@ -2,17 +2,22 @@ import gradio as gr
|
|||||||
from toolbox import get_conf
|
from toolbox import get_conf
|
||||||
THEME, = get_conf('THEME')
|
THEME, = get_conf('THEME')
|
||||||
|
|
||||||
if THEME == 'Chuanhu-Small-and-Beautiful':
|
def load_dynamic_theme(THEME):
|
||||||
from .green import adjust_theme, advanced_css
|
adjust_dynamic_theme = None
|
||||||
theme_declaration = "<h2 align=\"center\" class=\"small\">[Chuanhu-Small-and-Beautiful主题]</h2>"
|
if THEME == 'Chuanhu-Small-and-Beautiful':
|
||||||
elif THEME == 'High-Contrast':
|
from .green import adjust_theme, advanced_css
|
||||||
from .contrast import adjust_theme, advanced_css
|
theme_declaration = "<h2 align=\"center\" class=\"small\">[Chuanhu-Small-and-Beautiful主题]</h2>"
|
||||||
theme_declaration = ""
|
elif THEME == 'High-Contrast':
|
||||||
elif '/' in THEME:
|
from .contrast import adjust_theme, advanced_css
|
||||||
from .gradios import adjust_theme, advanced_css
|
theme_declaration = ""
|
||||||
theme_declaration = ""
|
elif '/' in THEME:
|
||||||
else:
|
from .gradios import adjust_theme, advanced_css
|
||||||
from .default import adjust_theme, advanced_css
|
from .gradios import dynamic_set_theme
|
||||||
theme_declaration = ""
|
adjust_dynamic_theme = dynamic_set_theme(THEME)
|
||||||
|
theme_declaration = ""
|
||||||
|
else:
|
||||||
|
from .default import adjust_theme, advanced_css
|
||||||
|
theme_declaration = ""
|
||||||
|
return adjust_theme, advanced_css, theme_declaration, adjust_dynamic_theme
|
||||||
|
|
||||||
|
adjust_theme, advanced_css, theme_declaration, _ = load_dynamic_theme(THEME)
|
||||||
17
toolbox.py
17
toolbox.py
@@ -216,7 +216,7 @@ def get_reduce_token_percent(text):
|
|||||||
return 0.5, '不详'
|
return 0.5, '不详'
|
||||||
|
|
||||||
|
|
||||||
def write_history_to_file(history, file_basename=None, file_fullname=None):
|
def write_history_to_file(history, file_basename=None, file_fullname=None, auto_caption=True):
|
||||||
"""
|
"""
|
||||||
将对话记录history以Markdown格式写入文件中。如果没有指定文件名,则使用当前时间生成文件名。
|
将对话记录history以Markdown格式写入文件中。如果没有指定文件名,则使用当前时间生成文件名。
|
||||||
"""
|
"""
|
||||||
@@ -235,7 +235,7 @@ def write_history_to_file(history, file_basename=None, file_fullname=None):
|
|||||||
if type(content) != str: content = str(content)
|
if type(content) != str: content = str(content)
|
||||||
except:
|
except:
|
||||||
continue
|
continue
|
||||||
if i % 2 == 0:
|
if i % 2 == 0 and auto_caption:
|
||||||
f.write('## ')
|
f.write('## ')
|
||||||
try:
|
try:
|
||||||
f.write(content)
|
f.write(content)
|
||||||
@@ -527,6 +527,7 @@ def promote_file_to_downloadzone(file, rename_file=None, chatbot=None):
|
|||||||
if 'files_to_promote' in chatbot._cookies: current = chatbot._cookies['files_to_promote']
|
if 'files_to_promote' in chatbot._cookies: current = chatbot._cookies['files_to_promote']
|
||||||
else: current = []
|
else: current = []
|
||||||
chatbot._cookies.update({'files_to_promote': [new_path] + current})
|
chatbot._cookies.update({'files_to_promote': [new_path] + current})
|
||||||
|
return new_path
|
||||||
|
|
||||||
def disable_auto_promotion(chatbot):
|
def disable_auto_promotion(chatbot):
|
||||||
chatbot._cookies.update({'files_to_promote': []})
|
chatbot._cookies.update({'files_to_promote': []})
|
||||||
@@ -955,7 +956,19 @@ class ProxyNetworkActivate():
|
|||||||
"""
|
"""
|
||||||
这段代码定义了一个名为TempProxy的空上下文管理器, 用于给一小段代码上代理
|
这段代码定义了一个名为TempProxy的空上下文管理器, 用于给一小段代码上代理
|
||||||
"""
|
"""
|
||||||
|
def __init__(self, task=None) -> None:
|
||||||
|
self.task = task
|
||||||
|
if not task:
|
||||||
|
# 不给定task, 那么我们默认代理生效
|
||||||
|
self.valid = True
|
||||||
|
else:
|
||||||
|
# 给定了task, 我们检查一下
|
||||||
|
from toolbox import get_conf
|
||||||
|
WHEN_TO_USE_PROXY, = get_conf('WHEN_TO_USE_PROXY')
|
||||||
|
self.valid = (task in WHEN_TO_USE_PROXY)
|
||||||
|
|
||||||
def __enter__(self):
|
def __enter__(self):
|
||||||
|
if not self.valid: return self
|
||||||
from toolbox import get_conf
|
from toolbox import get_conf
|
||||||
proxies, = get_conf('proxies')
|
proxies, = get_conf('proxies')
|
||||||
if 'no_proxy' in os.environ: os.environ.pop('no_proxy')
|
if 'no_proxy' in os.environ: os.environ.pop('no_proxy')
|
||||||
|
|||||||
4
version
4
version
@@ -1,5 +1,5 @@
|
|||||||
{
|
{
|
||||||
"version": 3.52,
|
"version": 3.54,
|
||||||
"show_feature": true,
|
"show_feature": true,
|
||||||
"new_feature": "提高稳定性&解决多用户冲突问题 <-> 支持插件分类和更多UI皮肤外观 <-> 支持用户使用自然语言调度各个插件(虚空终端) ! <-> 改进UI,设计新主题 <-> 支持借助GROBID实现PDF高精度翻译 <-> 接入百度千帆平台和文心一言 <-> 接入阿里通义千问、讯飞星火、上海AI-Lab书生 <-> 优化一键升级 <-> 提高arxiv翻译速度和成功率"
|
"new_feature": "新增动态代码解释器(CodeInterpreter) <-> 增加文本回答复制按钮 <-> 细分代理场合 <-> 支持动态选择不同界面主题 <-> 提高稳定性&解决多用户冲突问题 <-> 支持插件分类和更多UI皮肤外观 <-> 支持用户使用自然语言调度各个插件(虚空终端) ! <-> 改进UI,设计新主题 <-> 支持借助GROBID实现PDF高精度翻译 <-> 接入百度千帆平台和文心一言 <-> 接入阿里通义千问、讯飞星火、上海AI-Lab书生 <-> 优化一键升级 <-> 提高arxiv翻译速度和成功率"
|
||||||
}
|
}
|
||||||
|
|||||||
在新工单中引用
屏蔽一个用户