比较提交

...

82 次代码提交

作者 SHA1 备注 提交日期
binary-husky
f9226d92be Update version 2023-06-08 12:24:14 +08:00
binary-husky
a0ea5d0e9e Update README.md 2023-06-08 12:22:03 +08:00
binary-husky
ce6f11d200 Update README.md 2023-06-08 12:20:49 +08:00
binary-husky
10b3001dba Update README.md 2023-06-08 12:19:11 +08:00
binary-husky
e2de1d76ea Update README.md 2023-06-08 12:18:31 +08:00
binary-husky
77cc141a82 Update README.md 2023-06-08 12:14:02 +08:00
binary-husky
526b4d8ecd Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-06-07 11:09:20 +08:00
binary-husky
149db621ec langchain check depends 2023-06-07 11:09:12 +08:00
binary-husky
2e1bb7311c Merge pull request #848 from MengDanzz/master
将Dockerfile COPY分成两段,缓存依赖库,重新构建不需要重新安装
2023-06-07 10:44:09 +08:00
binary-husky
dae65fd2c2 在copy ..后在运行一次pip install检查依赖变化 2023-06-07 10:43:45 +08:00
MengDanzz
9aafb2ee47 非pypi包加入COPY 2023-06-07 09:18:57 +08:00
MengDanzz
6bc91bd02e Merge branch 'binary-husky:master' into master 2023-06-07 09:15:44 +08:00
qingxu fu
8ef7344101 fix subprocess bug in Windows 2023-06-06 18:57:52 +08:00
binary-husky
40da1b0afe 将Latex分解程序放到子进程执行 2023-06-06 18:44:00 +08:00
MengDanzz
c65def90f3 将Dockerfile COPY分成两段,缓存依赖库,重新构建不需要重新安装 2023-06-06 14:36:30 +08:00
binary-husky
ddeaf76422 check latex in PATH 2023-06-06 00:23:00 +08:00
qingxu fu
f23b66dec2 update Dockerfile with Latex 2023-06-05 23:49:54 +08:00
qingxu fu
a26b294817 Write Some Docstring 2023-06-05 23:44:59 +08:00
qingxu fu
66018840da declare resp 2023-06-05 23:24:41 +08:00
qingxu fu
cea2144f34 fix test samples 2023-06-05 23:11:21 +08:00
qingxu fu
7f5be93c1d 修正一些正则匹配bug 2023-06-05 22:57:39 +08:00
binary-husky
85b838b302 add Linux support 2023-06-04 23:06:35 +08:00
qingxu fu
27f97ba92a remove previous results 2023-06-04 16:55:36 +08:00
qingxu fu
14269eba98 建立本地arxiv缓存区 2023-06-04 16:08:01 +08:00
qingxu fu
d5c9bc9f0a 提高iffalse搜索优先级 2023-06-04 14:15:59 +08:00
qingxu fu
b0fed3edfc consider iffalse state 2023-06-04 14:06:02 +08:00
qingxu fu
7296d054a2 patch latex segmentation 2023-06-04 13:56:15 +08:00
qingxu fu
d57c7d352d improve quality 2023-06-03 23:54:30 +08:00
qingxu fu
3fd2927ea3 改善 2023-06-03 23:33:45 +08:00
qingxu fu
b745074160 avoid most compile failure 2023-06-03 23:33:32 +08:00
qingxu fu
70ee810133 improve success rate 2023-06-03 19:39:19 +08:00
qingxu fu
68fea9e79b fix test 2023-06-03 18:09:39 +08:00
qingxu fu
f82bf91aa8 test example 2023-06-03 18:06:39 +08:00
qingxu fu
dde9edcc0c fix a fatal mistake 2023-06-03 17:49:22 +08:00
qingxu fu
66c78e459e 修正提示 2023-06-03 17:18:38 +08:00
qingxu fu
de54102303 修改提醒 2023-06-03 16:43:26 +08:00
qingxu fu
7c7d2d8a84 Latex的minipage补丁 2023-06-03 16:16:32 +08:00
qingxu fu
834f989ed4 考虑有人用input不加.tex的情况 2023-06-03 15:42:22 +08:00
qingxu fu
b658ee6e04 修复arxiv翻译的一些问题 2023-06-03 15:36:55 +08:00
qingxu fu
1a60280ea0 添加警告 2023-06-03 14:40:37 +08:00
qingxu fu
991cb7d272 warning 2023-06-03 14:39:40 +08:00
qingxu fu
463991cfb2 fix bug 2023-06-03 14:24:06 +08:00
qingxu fu
06f10b5fdc fix zh cite bug 2023-06-03 14:17:58 +08:00
qingxu fu
d275d012c6 Merge branch 'langchain' into master 2023-06-03 13:53:39 +08:00
qingxu fu
c5d1ea3e21 update langchain version 2023-06-03 13:53:34 +08:00
qingxu fu
0022b92404 update prompt 2023-06-03 13:50:39 +08:00
qingxu fu
ef61221241 latex auto translation milestone 2023-06-03 13:46:40 +08:00
qingxu fu
5a1831db98 成功! 2023-06-03 00:34:23 +08:00
qingxu fu
a643f8b0db debug translation 2023-06-02 23:06:01 +08:00
qingxu fu
601712fd0a latex toolchain 2023-06-02 21:44:11 +08:00
505030475
e769f831c7 latex 2023-06-02 14:07:04 +08:00
binary-husky
dcd952671f Update main.py 2023-06-01 15:56:52 +08:00
binary-husky
06564df038 Merge branch 'langchain' 2023-06-01 09:39:34 +08:00
binary-husky
2f037f30d5 暂时移除插件锁定 2023-06-01 09:39:00 +08:00
505030475
efedab186d Merge branch 'master' into langchain 2023-06-01 00:10:22 +08:00
binary-husky
f49cae5116 Update Langchain知识库.py 2023-06-01 00:09:07 +08:00
binary-husky
2b620ccf2e 更新提示 2023-06-01 00:07:19 +08:00
binary-husky
a1b7a4da56 更新测试案例 2023-06-01 00:03:27 +08:00
binary-husky
61b0e49fed fix some bugs in linux 2023-05-31 23:49:25 +08:00
binary-husky
f60dc371db 12 2023-05-31 10:42:44 +08:00
binary-husky
0a3433b8ac Update README.md 2023-05-31 10:37:08 +08:00
binary-husky
31bce54abb Update README.md 2023-05-31 10:34:21 +08:00
binary-husky
5db1530717 Merge branch 'langchain' of github.com:binary-husky/chatgpt_academic into langchain 2023-05-30 20:08:47 +08:00
binary-husky
c32929fd11 Merge branch 'master' into langchain 2023-05-30 20:08:15 +08:00
505030475
3e4c2b056c knowledge base 2023-05-30 19:55:38 +08:00
505030475
e79e9d7d23 Merge branch 'master' into langchain 2023-05-30 18:31:39 +08:00
binary-husky
d175b93072 Update README.md.Italian.md 2023-05-30 17:27:41 +08:00
binary-husky
ed254687d2 Update README.md.Italian.md 2023-05-30 17:26:12 +08:00
binary-husky
c0392f7074 Update README.md.Korean.md 2023-05-30 17:25:32 +08:00
binary-husky
f437712af7 Update README.md.Portuguese.md 2023-05-30 17:22:46 +08:00
505030475
6d1ea643e9 langchain 2023-05-30 12:54:42 +08:00
binary-husky
9e84cfcd46 Update README.md 2023-05-29 19:48:34 +08:00
binary-husky
897695d29f 修复二级路径的文件屏蔽 2023-05-28 20:25:35 +08:00
binary-husky
1dcc2873d2 修复Gradio配置泄露的问题 2023-05-28 20:23:47 +08:00
binary-husky
42cf738a31 修复一些情况下复制键失效的问题 2023-05-28 18:12:48 +08:00
binary-husky
e4646789af Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-05-28 16:07:29 +08:00
binary-husky
e6c3aabd45 docker-compose check 2023-05-28 16:07:24 +08:00
binary-husky
6789d1fab4 Update README.md 2023-05-28 11:21:50 +08:00
binary-husky
7a733f00a2 Update README.md 2023-05-28 00:19:23 +08:00
binary-husky
dd55888f0e Update README.md 2023-05-28 00:16:45 +08:00
binary-husky
0327df22eb Update README.md 2023-05-28 00:14:54 +08:00
binary-husky
e544f5e9d0 Update README.md 2023-05-27 23:45:15 +08:00
共有 20 个文件被更改,包括 1516 次插入162 次删除

查看文件

@@ -10,12 +10,16 @@ RUN echo '[global]' > /etc/pip.conf && \
WORKDIR /gpt WORKDIR /gpt
# 装载项目文件
COPY . .
# 安装依赖 # 安装依赖
COPY requirements.txt ./
COPY ./docs/gradio-3.32.2-py3-none-any.whl ./docs/gradio-3.32.2-py3-none-any.whl
RUN pip3 install -r requirements.txt
# 装载项目文件
COPY . .
RUN pip3 install -r requirements.txt RUN pip3 install -r requirements.txt
# 可选步骤,用于预热模块 # 可选步骤,用于预热模块
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()' RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'

查看文件

@@ -1,8 +1,8 @@
> **Note** > **Note**
> >
> 安装依赖时,请严格选择requirements.txt中**指定的版本**,并使用官方pip源 > 2023.5.27 对Gradio依赖进行了调整,Fork并解决了官方Gradio的若干Bugs。请及时**更新代码**并重新更新pip依赖。安装依赖时,请严格选择`requirements.txt`中**指定的版本**
> >
> `pip install -r requirements.txt -i https://pypi.org/simple` > `pip install -r requirements.txt`
> >
# <img src="docs/logo.png" width="40" > GPT 学术优化 (GPT Academic) # <img src="docs/logo.png" width="40" > GPT 学术优化 (GPT Academic)
@@ -43,6 +43,7 @@ chat分析报告生成 | [函数插件] 运行后自动生成总结汇报
[Arxiv小助手](https://www.bilibili.com/video/BV1LM4y1279X) | [函数插件] 输入arxiv文章url即可一键翻译摘要+下载PDF [Arxiv小助手](https://www.bilibili.com/video/BV1LM4y1279X) | [函数插件] 输入arxiv文章url即可一键翻译摘要+下载PDF
[谷歌学术统合小助手](https://www.bilibili.com/video/BV19L411U7ia) | [函数插件] 给定任意谷歌学术搜索页面URL,让gpt帮你[写relatedworks](https://www.bilibili.com/video/BV1GP411U7Az/) [谷歌学术统合小助手](https://www.bilibili.com/video/BV19L411U7ia) | [函数插件] 给定任意谷歌学术搜索页面URL,让gpt帮你[写relatedworks](https://www.bilibili.com/video/BV1GP411U7Az/)
互联网信息聚合+GPT | [函数插件] 一键[让GPT先从互联网获取信息](https://www.bilibili.com/video/BV1om4y127ck),再回答问题,让信息永不过时 互联网信息聚合+GPT | [函数插件] 一键[让GPT先从互联网获取信息](https://www.bilibili.com/video/BV1om4y127ck),再回答问题,让信息永不过时
Arxiv论文精密翻译 | [函数插件] 一键[以超高质量翻译arxiv论文](https://www.bilibili.com/video/BV1dz4y1v77A/),迄今为止最好的论文翻译工具
公式/图片/表格显示 | 可以同时显示公式的[tex形式和渲染形式](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png),支持公式、代码高亮 公式/图片/表格显示 | 可以同时显示公式的[tex形式和渲染形式](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png),支持公式、代码高亮
多线程函数插件支持 | 支持多线调用chatgpt,一键处理[海量文本](https://www.bilibili.com/video/BV1FT411H7c5/)或程序 多线程函数插件支持 | 支持多线调用chatgpt,一键处理[海量文本](https://www.bilibili.com/video/BV1FT411H7c5/)或程序
启动暗色gradio[主题](https://github.com/binary-husky/chatgpt_academic/issues/173) | 在浏览器url后面添加```/?__theme=dark```可以切换dark主题 启动暗色gradio[主题](https://github.com/binary-husky/chatgpt_academic/issues/173) | 在浏览器url后面添加```/?__theme=dark```可以切换dark主题
@@ -175,21 +176,26 @@ docker-compose up
## 安装-方法3其他部署姿势 ## 安装-方法3其他部署姿势
1. 一键运行脚本。
完全不熟悉python环境的Windows用户可以下载[Release](https://github.com/binary-husky/gpt_academic/releases)中发布的一键运行脚本安装无本地模型的版本,
不建议电脑上已有python的用户采用此方法在此基础上安装插件的依赖很麻烦
脚本的贡献来源是[oobabooga](https://github.com/oobabooga/one-click-installers)。
1. 如何使用反代URL/微软云AzureAPI 2. 使用docker-compose运行。
请阅读docker-compose.yml后,按照其中的提示操作即可
3. 如何使用反代URL/微软云AzureAPI。
按照`config.py`中的说明配置API_URL_REDIRECT即可。 按照`config.py`中的说明配置API_URL_REDIRECT即可。
2. 远程云服务器部署(需要云服务器知识与经验) 4. 远程云服务器部署(需要云服务器知识与经验)
请访问[部署wiki-1](https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97) 请访问[部署wiki-1](https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
3. 使用WSL2Windows Subsystem for Linux 子系统) 5. 使用WSL2Windows Subsystem for Linux 子系统)
请访问[部署wiki-2](https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2) 请访问[部署wiki-2](https://github.com/binary-husky/chatgpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
4. 如何在二级网址(如`http://localhost/subpath`)下运行 6. 如何在二级网址(如`http://localhost/subpath`)下运行
请访问[FastAPI运行说明](docs/WithFastapi.md) 请访问[FastAPI运行说明](docs/WithFastapi.md)
5. 使用docker-compose运行
请阅读docker-compose.yml后,按照其中的提示操作即可
--- ---
# Advanced Usage # Advanced Usage
## 自定义新的便捷按钮 / 自定义函数插件 ## 自定义新的便捷按钮 / 自定义函数插件
@@ -278,13 +284,19 @@ Tip不指定文件直接点击 `载入对话历史存档` 可以查看历史h
10. Latex全文校对纠错 10. Latex全文校对纠错
<div align="center"> <div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/651ccd98-02c9-4464-91e1-77a6b7d1b033" width="500" > <img src="https://github.com/binary-husky/gpt_academic/assets/96192199/651ccd98-02c9-4464-91e1-77a6b7d1b033" height="250" > ===>
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/476f66d9-7716-4537-b5c1-735372c25adb" height="250">
</div> </div>
10. Latex/Arxiv论文翻译功能
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/002a1a75-ace0-4e6a-94e2-ec1406a746f1" height="250" >
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/9fdcc391-f823-464f-9322-f8719677043b" height="250" >
</div>
## 版本: ## 版本:
- version 3.5(Todo): 使用自然语言调用本项目的所有函数插件(高优先级) - version 3.5(Todo): 使用自然语言调用本项目的所有函数插件(高优先级)
- version 3.4(Todo): 完善chatglm本地大模型的多线支持 - version 3.4: +arxiv论文翻译、latex论文批改功能
- version 3.3: +互联网信息综合功能 - version 3.3: +互联网信息综合功能
- version 3.2: 函数插件支持更多参数接口 (保存对话功能, 解读任意语言代码+同时询问任意的LLM组合) - version 3.2: 函数插件支持更多参数接口 (保存对话功能, 解读任意语言代码+同时询问任意的LLM组合)
- version 3.1: 支持同时问询多个gpt模型支持api2d,支持多个apikey负载均衡 - version 3.1: 支持同时问询多个gpt模型支持api2d,支持多个apikey负载均衡
@@ -302,7 +314,7 @@ gpt_academic开发者QQ群-2610599535
- 已知问题 - 已知问题
- 某些浏览器翻译插件干扰此软件前端的运行 - 某些浏览器翻译插件干扰此软件前端的运行
- gradio版本过高或过低,都会导致多种异常 - 官方Gradio目前有很多兼容性Bug,请务必使用requirement.txt安装Gradio
## 参考与学习 ## 参考与学习
@@ -327,4 +339,5 @@ https://github.com/kaixindelele/ChatPaper
# 更多: # 更多:
https://github.com/gradio-app/gradio https://github.com/gradio-app/gradio
https://github.com/fghrsh/live2d_demo https://github.com/fghrsh/live2d_demo
https://github.com/oobabooga/one-click-installers
``` ```

查看文件

@@ -34,58 +34,28 @@ def print亮紫(*kw,**kargs):
def print亮靛(*kw,**kargs): def print亮靛(*kw,**kargs):
print("\033[1;36m",*kw,"\033[0m",**kargs) print("\033[1;36m",*kw,"\033[0m",**kargs)
# Do you like the elegance of Chinese characters?
def sprint红(*kw):
def print亮红(*kw,**kargs): return "\033[0;31m"+' '.join(kw)+"\033[0m"
print("\033[1;31m",*kw,"\033[0m",**kargs) def sprint绿(*kw):
def print亮绿(*kw,**kargs): return "\033[0;32m"+' '.join(kw)+"\033[0m"
print("\033[1;32m",*kw,"\033[0m",**kargs) def sprint(*kw):
def print亮黄(*kw,**kargs): return "\033[0;33m"+' '.join(kw)+"\033[0m"
print("\033[1;33m",*kw,"\033[0m",**kargs) def sprint(*kw):
def print亮蓝(*kw,**kargs): return "\033[0;34m"+' '.join(kw)+"\033[0m"
print("\033[1;34m",*kw,"\033[0m",**kargs) def sprint(*kw):
def print亮紫(*kw,**kargs): return "\033[0;35m"+' '.join(kw)+"\033[0m"
print("\033[1;35m",*kw,"\033[0m",**kargs) def sprint(*kw):
def print亮靛(*kw,**kargs): return "\033[0;36m"+' '.join(kw)+"\033[0m"
print("\033[1;36m",*kw,"\033[0m",**kargs) def sprint亮红(*kw):
return "\033[1;31m"+' '.join(kw)+"\033[0m"
print_red = print红 def sprint亮绿(*kw):
print_green = print绿 return "\033[1;32m"+' '.join(kw)+"\033[0m"
print_yellow = print黄 def sprint亮黄(*kw):
print_blue = print蓝 return "\033[1;33m"+' '.join(kw)+"\033[0m"
print_purple = print紫 def sprint亮蓝(*kw):
print_indigo = print靛 return "\033[1;34m"+' '.join(kw)+"\033[0m"
def sprint亮紫(*kw):
print_bold_red = print亮红 return "\033[1;35m"+' '.join(kw)+"\033[0m"
print_bold_green = print亮绿 def sprint亮靛(*kw):
print_bold_yellow = print亮黄 return "\033[1;36m"+' '.join(kw)+"\033[0m"
print_bold_blue = print亮蓝
print_bold_purple = print亮紫
print_bold_indigo = print亮靛
if not stdout.isatty():
# redirection, avoid a fucked up log file
print红 = print
print绿 = print
print黄 = print
print蓝 = print
print紫 = print
print靛 = print
print亮红 = print
print亮绿 = print
print亮黄 = print
print亮蓝 = print
print亮紫 = print
print亮靛 = print
print_red = print
print_green = print
print_yellow = print
print_blue = print
print_purple = print
print_indigo = print
print_bold_red = print
print_bold_green = print
print_bold_yellow = print
print_bold_blue = print
print_bold_purple = print
print_bold_indigo = print

查看文件

@@ -126,7 +126,7 @@ def get_crazy_functions():
###################### 第二组插件 ########################### ###################### 第二组插件 ###########################
# [第二组插件]: 经过充分测试 # [第二组插件]: 经过充分测试
from crazy_functions.批量总结PDF文档 import 批量总结PDF文档 from crazy_functions.批量总结PDF文档 import 批量总结PDF文档
from crazy_functions.批量总结PDF文档pdfminer import 批量总结PDF文档pdfminer # from crazy_functions.批量总结PDF文档pdfminer import 批量总结PDF文档pdfminer
from crazy_functions.批量翻译PDF文档_多线程 import 批量翻译PDF文档 from crazy_functions.批量翻译PDF文档_多线程 import 批量翻译PDF文档
from crazy_functions.谷歌检索小助手 import 谷歌检索小助手 from crazy_functions.谷歌检索小助手 import 谷歌检索小助手
from crazy_functions.理解PDF文档内容 import 理解PDF文档内容标准文件输入 from crazy_functions.理解PDF文档内容 import 理解PDF文档内容标准文件输入
@@ -152,17 +152,16 @@ def get_crazy_functions():
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效 # HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Function": HotReload(批量总结PDF文档) "Function": HotReload(批量总结PDF文档)
}, },
"[测试功能] 批量总结PDF文档pdfminer": { # "[测试功能] 批量总结PDF文档pdfminer": {
"Color": "stop", # "Color": "stop",
"AsButton": False, # 加入下拉菜单中 # "AsButton": False, # 加入下拉菜单中
"Function": HotReload(批量总结PDF文档pdfminer) # "Function": HotReload(批量总结PDF文档pdfminer)
}, # },
"谷歌学术检索助手输入谷歌学术搜索页url": { "谷歌学术检索助手输入谷歌学术搜索页url": {
"Color": "stop", "Color": "stop",
"AsButton": False, # 加入下拉菜单中 "AsButton": False, # 加入下拉菜单中
"Function": HotReload(谷歌检索小助手) "Function": HotReload(谷歌检索小助手)
}, },
"理解PDF文档内容 模仿ChatPDF": { "理解PDF文档内容 模仿ChatPDF": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效 # HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Color": "stop", "Color": "stop",
@@ -181,7 +180,7 @@ def get_crazy_functions():
"AsButton": False, # 加入下拉菜单中 "AsButton": False, # 加入下拉菜单中
"Function": HotReload(Latex英文纠错) "Function": HotReload(Latex英文纠错)
}, },
"[测试功能] 中文Latex项目全文润色输入路径或上传压缩包": { "中文Latex项目全文润色输入路径或上传压缩包": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效 # HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Color": "stop", "Color": "stop",
"AsButton": False, # 加入下拉菜单中 "AsButton": False, # 加入下拉菜单中
@@ -210,65 +209,88 @@ def get_crazy_functions():
}) })
###################### 第三组插件 ########################### ###################### 第三组插件 ###########################
# [第三组插件]: 尚未充分测试的函数插件,放在这里 # [第三组插件]: 尚未充分测试的函数插件
from crazy_functions.下载arxiv论文翻译摘要 import 下载arxiv论文并翻译摘要
function_plugins.update({
"一键下载arxiv论文并翻译摘要先在input输入编号,如1812.10695": {
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(下载arxiv论文并翻译摘要)
}
})
from crazy_functions.联网的ChatGPT import 连接网络回答问题 try:
function_plugins.update({ from crazy_functions.下载arxiv论文翻译摘要 import 下载arxiv论文并翻译摘要
"连接网络回答问题(先输入问题,再点击按钮,需要访问谷歌)": { function_plugins.update({
"Color": "stop", "一键下载arxiv论文并翻译摘要先在input输入编号,如1812.10695": {
"AsButton": False, # 加入下拉菜单中 "Color": "stop",
"Function": HotReload(连接网络回答问题) "AsButton": False, # 加入下拉菜单中
} "Function": HotReload(下载arxiv论文并翻译摘要)
}) }
})
except:
print('Load function plugin failed')
try:
from crazy_functions.联网的ChatGPT import 连接网络回答问题
function_plugins.update({
"连接网络回答问题(先输入问题,再点击按钮,需要访问谷歌)": {
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(连接网络回答问题)
}
})
except:
print('Load function plugin failed')
try:
from crazy_functions.解析项目源代码 import 解析任意code项目
function_plugins.update({
"解析项目源代码(手动指定和筛选源代码文件类型)": {
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区默认False
"ArgsReminder": "输入时用逗号隔开, *代表通配符, 加了^代表不匹配; 不输入代表全部匹配。例如: \"*.c, ^*.cpp, config.toml, ^*.toml\"", # 高级参数输入区的显示提示
"Function": HotReload(解析任意code项目)
},
})
except:
print('Load function plugin failed')
try:
from crazy_functions.询问多个大语言模型 import 同时问询_指定模型
function_plugins.update({
"询问多个GPT模型手动指定询问哪些模型": {
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区默认False
"ArgsReminder": "支持任意数量的llm接口,用&符号分隔。例如chatglm&gpt-3.5-turbo&api2d-gpt-4", # 高级参数输入区的显示提示
"Function": HotReload(同时问询_指定模型)
},
})
except:
print('Load function plugin failed')
try:
from crazy_functions.图片生成 import 图片生成
function_plugins.update({
"图片生成先切换模型到openai或api2d": {
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区默认False
"ArgsReminder": "在这里输入分辨率, 如256x256默认", # 高级参数输入区的显示提示
"Function": HotReload(图片生成)
},
})
except:
print('Load function plugin failed')
try:
from crazy_functions.总结音视频 import 总结音视频
function_plugins.update({
"批量总结音视频(输入路径或上传压缩包)": {
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": "调用openai api 使用whisper-1模型, 目前支持的格式:mp4, m4a, wav, mpga, mpeg, mp3。此处可以输入解析提示,例如解析为简体中文默认",
"Function": HotReload(总结音视频)
}
})
except:
print('Load function plugin failed')
from crazy_functions.解析项目源代码 import 解析任意code项目
function_plugins.update({
"解析项目源代码(手动指定和筛选源代码文件类型)": {
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区默认False
"ArgsReminder": "输入时用逗号隔开, *代表通配符, 加了^代表不匹配; 不输入代表全部匹配。例如: \"*.c, ^*.cpp, config.toml, ^*.toml\"", # 高级参数输入区的显示提示
"Function": HotReload(解析任意code项目)
},
})
from crazy_functions.询问多个大语言模型 import 同时问询_指定模型
function_plugins.update({
"询问多个GPT模型手动指定询问哪些模型": {
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区默认False
"ArgsReminder": "支持任意数量的llm接口,用&符号分隔。例如chatglm&gpt-3.5-turbo&api2d-gpt-4", # 高级参数输入区的显示提示
"Function": HotReload(同时问询_指定模型)
},
})
from crazy_functions.图片生成 import 图片生成
function_plugins.update({
"图片生成先切换模型到openai或api2d": {
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True, # 调用时,唤起高级参数输入区默认False
"ArgsReminder": "在这里输入分辨率, 如256x256默认", # 高级参数输入区的显示提示
"Function": HotReload(图片生成)
},
})
from crazy_functions.总结音视频 import 总结音视频
function_plugins.update({
"批量总结音视频(输入路径或上传压缩包)": {
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": "调用openai api 使用whisper-1模型, 目前支持的格式:mp4, m4a, wav, mpga, mpeg, mp3。此处可以输入解析提示,例如解析为简体中文默认",
"Function": HotReload(总结音视频)
}
})
try: try:
from crazy_functions.数学动画生成manim import 动画生成 from crazy_functions.数学动画生成manim import 动画生成
function_plugins.update({ function_plugins.update({
@@ -295,5 +317,56 @@ def get_crazy_functions():
except: except:
print('Load function plugin failed') print('Load function plugin failed')
try:
from crazy_functions.Langchain知识库 import 知识库问答
function_plugins.update({
"[功能尚不稳定] 构建知识库(请先上传文件素材)": {
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": "待注入的知识库名称id, 默认为default",
"Function": HotReload(知识库问答)
}
})
except:
print('Load function plugin failed')
try:
from crazy_functions.Langchain知识库 import 读取知识库作答
function_plugins.update({
"[功能尚不稳定] 知识库问答": {
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": "待提取的知识库名称id, 默认为default, 您需要首先调用构建知识库",
"Function": HotReload(读取知识库作答)
}
})
except:
print('Load function plugin failed')
try:
from crazy_functions.Latex输出PDF结果 import Latex英文纠错加PDF对比
function_plugins.update({
"[功能尚不稳定] Latex英文纠错+LatexDiff高亮修正位置": {
"Color": "stop",
"AsButton": False,
# "AdvancedArgs": True,
# "ArgsReminder": "",
"Function": HotReload(Latex英文纠错加PDF对比)
}
})
from crazy_functions.Latex输出PDF结果 import Latex翻译中文并重新编译PDF
function_plugins.update({
"[功能尚不稳定] Latex翻译/Arixv翻译+重构PDF": {
"Color": "stop",
"AsButton": False,
# "AdvancedArgs": True,
# "ArgsReminder": "",
"Function": HotReload(Latex翻译中文并重新编译PDF)
}
})
except:
print('Load function plugin failed')
###################### 第n组插件 ########################### ###################### 第n组插件 ###########################
return function_plugins return function_plugins

查看文件

@@ -0,0 +1,107 @@
from toolbox import CatchException, update_ui, ProxyNetworkActivate
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_files_from_everything
@CatchException
def 知识库问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数, 如温度和top_p等, 一般原样传递下去就行
plugin_kwargs 插件模型的参数,暂时没有用武之地
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
chatbot.append(("这是什么功能?", "[Local Message] 从一批文件(txt, md, tex)中读取数据构建知识库, 然后进行问答。"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# resolve deps
try:
from zh_langchain import construct_vector_store
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from .crazy_utils import knowledge_archive_interface
except Exception as e:
chatbot.append(
["依赖不足",
"导入依赖失败。正在尝试自动安装,请查看终端的输出或耐心等待..."]
)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
from .crazy_utils import try_install_deps
try_install_deps(['zh_langchain==0.2.0'])
# < --------------------读取参数--------------- >
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
kai_id = plugin_kwargs.get("advanced_arg", 'default')
# < --------------------读取文件--------------- >
file_manifest = []
spl = ["txt", "doc", "docx", "email", "epub", "html", "json", "md", "msg", "pdf", "ppt", "pptx", "rtf"]
for sp in spl:
_, file_manifest_tmp, _ = get_files_from_everything(txt, type=f'.{sp}')
file_manifest += file_manifest_tmp
if len(file_manifest) == 0:
chatbot.append(["没有找到任何可读取文件", "当前支持的格式包括: txt, md, docx, pptx, pdf, json等"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# < -------------------预热文本向量化模组--------------- >
chatbot.append(['<br/>'.join(file_manifest), "正在预热文本向量化模组, 如果是第一次运行, 将消耗较长时间下载中文向量化模型..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
print('Checking Text2vec ...')
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
with ProxyNetworkActivate(): # 临时地激活代理网络
HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
# < -------------------构建知识库--------------- >
chatbot.append(['<br/>'.join(file_manifest), "正在构建知识库..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
print('Establishing knowledge archive ...')
with ProxyNetworkActivate(): # 临时地激活代理网络
kai = knowledge_archive_interface()
kai.feed_archive(file_manifest=file_manifest, id=kai_id)
kai_files = kai.get_loaded_file()
kai_files = '<br/>'.join(kai_files)
# chatbot.append(['知识库构建成功', "正在将知识库存储至cookie中"])
# yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# chatbot._cookies['langchain_plugin_embedding'] = kai.get_current_archive_id()
# chatbot._cookies['lock_plugin'] = 'crazy_functions.Langchain知识库->读取知识库作答'
# chatbot.append(['完成', "“根据知识库作答”函数插件已经接管问答系统, 提问吧! 但注意, 您接下来不能再使用其他插件了,刷新页面即可以退出知识库问答模式。"])
chatbot.append(['构建完成', f"当前知识库内的有效文件:\n\n---\n\n{kai_files}\n\n---\n\n请切换至“知识库问答”插件进行知识库访问, 或者使用此插件继续上传更多文件。"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
@CatchException
def 读取知识库作答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port=-1):
# resolve deps
try:
from zh_langchain import construct_vector_store
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from .crazy_utils import knowledge_archive_interface
except Exception as e:
chatbot.append(["依赖不足", "导入依赖失败。正在尝试自动安装,请查看终端的输出或耐心等待..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
from .crazy_utils import try_install_deps
try_install_deps(['zh_langchain==0.2.0'])
# < ------------------- --------------- >
kai = knowledge_archive_interface()
if 'langchain_plugin_embedding' in chatbot._cookies:
resp, prompt = kai.answer_with_archive_by_id(txt, chatbot._cookies['langchain_plugin_embedding'])
else:
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
kai_id = plugin_kwargs.get("advanced_arg", 'default')
resp, prompt = kai.answer_with_archive_by_id(txt, kai_id)
chatbot.append((txt, '[Local Message] ' + prompt))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=prompt, inputs_show_user=txt,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
sys_prompt=system_prompt
)
history.extend((prompt, gpt_say))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新

查看文件

@@ -238,3 +238,6 @@ def Latex英文纠错(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return return
yield from 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en', mode='proofread') yield from 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en', mode='proofread')

查看文件

@@ -0,0 +1,276 @@
from toolbox import update_ui, trimmed_format_exc, get_conf, objdump, objload, promote_file_to_downloadzone
from toolbox import CatchException, report_execption, update_ui_lastest_msg, zip_result, gen_time_str
import glob, os, requests, time
pj = os.path.join
ARXIV_CACHE_DIR = os.path.expanduser(f"~/arxiv_cache/")
# =================================== 工具函数 ===============================================
沙雕GPT啊别犯这些低级翻译错误 = 'You must to translate "agent" to "智能体". '
def switch_prompt(pfg, mode):
"""
Generate prompts and system prompts based on the mode for proofreading or translating.
Args:
- pfg: Proofreader or Translator instance.
- mode: A string specifying the mode, either 'proofread' or 'translate_zh'.
Returns:
- inputs_array: A list of strings containing prompts for users to respond to.
- sys_prompt_array: A list of strings containing prompts for system prompts.
"""
n_split = len(pfg.sp_file_contents)
if mode == 'proofread':
inputs_array = [r"Below is a section from an academic paper, proofread this section." +
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " +
r"Answer me only with the revised text:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
elif mode == 'translate_zh':
inputs_array = [r"Below is a section from an English academic paper, translate it into Chinese." + 沙雕GPT啊别犯这些低级翻译错误 +
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " +
r"Answer me only with the translated text:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
sys_prompt_array = ["You are a professional translator." for _ in range(n_split)]
else:
assert False, "未知指令"
return inputs_array, sys_prompt_array
def desend_to_extracted_folder_if_exist(project_folder):
"""
Descend into the extracted folder if it exists, otherwise return the original folder.
Args:
- project_folder: A string specifying the folder path.
Returns:
- A string specifying the path to the extracted folder, or the original folder if there is no extracted folder.
"""
maybe_dir = [f for f in glob.glob(f'{project_folder}/*') if os.path.isdir(f)]
if len(maybe_dir) == 0: return project_folder
if maybe_dir[0].endswith('.extract'): return maybe_dir[0]
return project_folder
def move_project(project_folder, arxiv_id=None):
"""
Create a new work folder and copy the project folder to it.
Args:
- project_folder: A string specifying the folder path of the project.
Returns:
- A string specifying the path to the new work folder.
"""
import shutil, time
time.sleep(2) # avoid time string conflict
if arxiv_id is not None:
new_workfolder = pj(ARXIV_CACHE_DIR, arxiv_id, 'workfolder')
else:
new_workfolder = f'gpt_log/{gen_time_str()}'
try:
shutil.rmtree(new_workfolder)
except:
pass
shutil.copytree(src=project_folder, dst=new_workfolder)
return new_workfolder
def arxiv_download(chatbot, history, txt):
def check_cached_translation_pdf(arxiv_id):
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'translation')
if not os.path.exists(translation_dir):
os.makedirs(translation_dir)
target_file = pj(translation_dir, 'translate_zh.pdf')
if os.path.exists(target_file):
promote_file_to_downloadzone(target_file)
return target_file
return False
def is_float(s):
try:
float(s)
return True
except ValueError:
return False
if ('.' in txt) and ('/' not in txt) and is_float(txt):
txt = 'https://arxiv.org/abs/' + txt
if not txt.startswith('https://arxiv.org'):
return txt, None
# <-------------- inspect format ------------->
chatbot.append([f"检测到arxiv文档连接", '尝试下载 ...'])
yield from update_ui(chatbot=chatbot, history=history)
time.sleep(1) # 刷新界面
url_ = txt # https://arxiv.org/abs/1707.06690
if not txt.startswith('https://arxiv.org/abs/'):
msg = f"解析arxiv网址失败, 期望格式例如: https://arxiv.org/abs/1707.06690。实际得到格式: {url_}"
yield from update_ui_lastest_msg(msg, chatbot=chatbot, history=history) # 刷新界面
return msg, None
# <-------------- set format ------------->
arxiv_id = url_.split('/abs/')[-1]
cached_translation_pdf = check_cached_translation_pdf(arxiv_id)
if cached_translation_pdf: return cached_translation_pdf, arxiv_id
url_tar = url_.replace('/abs/', '/e-print/')
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'e-print')
extract_dst = pj(ARXIV_CACHE_DIR, arxiv_id, 'extract')
os.makedirs(translation_dir, exist_ok=True)
# <-------------- download arxiv source file ------------->
dst = pj(translation_dir, arxiv_id+'.tar')
if os.path.exists(dst):
yield from update_ui_lastest_msg("调用缓存", chatbot=chatbot, history=history) # 刷新界面
else:
yield from update_ui_lastest_msg("开始下载", chatbot=chatbot, history=history) # 刷新界面
proxies, = get_conf('proxies')
r = requests.get(url_tar, proxies=proxies)
with open(dst, 'wb+') as f:
f.write(r.content)
# <-------------- extract file ------------->
yield from update_ui_lastest_msg("下载完成", chatbot=chatbot, history=history) # 刷新界面
from toolbox import extract_archive
extract_archive(file_path=dst, dest_dir=extract_dst)
return extract_dst, arxiv_id
# ========================================= 插件主程序1 =====================================================
@CatchException
def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# <-------------- information about this plugin ------------->
chatbot.append([ "函数插件功能?",
"对整个Latex项目进行纠错, 用latex编译为PDF对修正处做高亮。函数插件贡献者: Binary-Husky。注意事项: 目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。仅在Windows系统进行了测试,其他操作系统表现未知。"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# <-------------- check deps ------------->
try:
import glob, os, time, subprocess
subprocess.Popen(['pdflatex', '-version'])
from .latex_utils import Latex精细分解与转化, 编译Latex
except Exception as e:
chatbot.append([ f"解析项目: {txt}",
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# <-------------- clear history and read input ------------->
history = []
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# <-------------- if is a zip/tar file ------------->
project_folder = desend_to_extracted_folder_if_exist(project_folder)
# <-------------- move latex project away from temp folder ------------->
project_folder = move_project(project_folder, arxiv_id=None)
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
if not os.path.exists(project_folder + '/merge_proofread.tex'):
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, mode='proofread_latex', switch_prompt=switch_prompt)
# <-------------- compile PDF ------------->
success = yield from 编译Latex(chatbot, history, main_file_original='merge', main_file_modified='merge_proofread',
work_folder_original=project_folder, work_folder_modified=project_folder, work_folder=project_folder)
# <-------------- zip PDF ------------->
zip_result(project_folder)
if success:
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
else:
chatbot.append((f"失败了", '虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 也是可读的, 您可以到Github Issue区, 用该压缩包+对话历史存档进行反馈 ...'))
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
# <-------------- we are done ------------->
return success
# ========================================= 插件主程序2 =====================================================
@CatchException
def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# <-------------- information about this plugin ------------->
chatbot.append([
"函数插件功能?",
"对整个Latex项目进行翻译, 生成中文PDF。函数插件贡献者: Binary-Husky。注意事项: 目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# <-------------- check deps ------------->
try:
import glob, os, time, subprocess
subprocess.Popen(['pdflatex', '-version'])
from .latex_utils import Latex精细分解与转化, 编译Latex
except Exception as e:
chatbot.append([ f"解析项目: {txt}",
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# <-------------- clear history and read input ------------->
history = []
txt, arxiv_id = yield from arxiv_download(chatbot, history, txt)
if txt.endswith('.pdf'):
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"发现已经存在翻译好的PDF文档")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# <-------------- if is a zip/tar file ------------->
project_folder = desend_to_extracted_folder_if_exist(project_folder)
# <-------------- move latex project away from temp folder ------------->
project_folder = move_project(project_folder, arxiv_id)
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
if not os.path.exists(project_folder + '/merge_translate_zh.tex'):
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, mode='translate_zh', switch_prompt=switch_prompt)
# <-------------- compile PDF ------------->
success = yield from 编译Latex(chatbot, history, main_file_original='merge', main_file_modified='merge_translate_zh',
work_folder_original=project_folder, work_folder_modified=project_folder, work_folder=project_folder)
# <-------------- zip PDF ------------->
zip_result(project_folder)
if success:
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
else:
chatbot.append((f"失败了", '虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 也是可读的, 您可以到Github Issue区, 用该压缩包+对话历史存档进行反馈 ...'))
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
# <-------------- we are done ------------->
return success

查看文件

@@ -3,6 +3,8 @@
这个文件用于函数插件的单元测试 这个文件用于函数插件的单元测试
运行方法 python crazy_functions/crazy_functions_test.py 运行方法 python crazy_functions/crazy_functions_test.py
""" """
# ==============================================================================================================================
def validate_path(): def validate_path():
import os, sys import os, sys
@@ -10,10 +12,16 @@ def validate_path():
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..') root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
os.chdir(root_dir_assume) os.chdir(root_dir_assume)
sys.path.append(root_dir_assume) sys.path.append(root_dir_assume)
validate_path() # validate path so you can run from base directory validate_path() # validate path so you can run from base directory
# ==============================================================================================================================
from colorful import * from colorful import *
from toolbox import get_conf, ChatBotWithCookies from toolbox import get_conf, ChatBotWithCookies
import contextlib
import os
import sys
from functools import wraps
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY = \ proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY = \
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY') get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY')
@@ -30,7 +38,43 @@ history = []
system_prompt = "Serve me as a writing and programming assistant." system_prompt = "Serve me as a writing and programming assistant."
web_port = 1024 web_port = 1024
# ==============================================================================================================================
def silence_stdout(func):
@wraps(func)
def wrapper(*args, **kwargs):
_original_stdout = sys.stdout
sys.stdout = open(os.devnull, 'w')
for q in func(*args, **kwargs):
sys.stdout = _original_stdout
yield q
sys.stdout = open(os.devnull, 'w')
sys.stdout.close()
sys.stdout = _original_stdout
return wrapper
class CLI_Printer():
def __init__(self) -> None:
self.pre_buf = ""
def print(self, buf):
bufp = ""
for index, chat in enumerate(buf):
a, b = chat
bufp += sprint亮靛('[Me]:' + a) + '\n'
bufp += '[GPT]:' + b
if index < len(buf)-1:
bufp += '\n'
if self.pre_buf!="" and bufp.startswith(self.pre_buf):
print(bufp[len(self.pre_buf):], end='')
else:
print('\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n'+bufp, end='')
self.pre_buf = bufp
return
cli_printer = CLI_Printer()
# ==============================================================================================================================
def test_解析一个Python项目(): def test_解析一个Python项目():
from crazy_functions.解析项目源代码 import 解析一个Python项目 from crazy_functions.解析项目源代码 import 解析一个Python项目
txt = "crazy_functions/test_project/python/dqn" txt = "crazy_functions/test_project/python/dqn"
@@ -116,6 +160,48 @@ def test_Markdown多语言():
for cookies, cb, hist, msg in Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port): for cookies, cb, hist, msg in Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb) print(cb)
def test_Langchain知识库():
from crazy_functions.Langchain知识库 import 知识库问答
txt = "./"
chatbot = ChatBotWithCookies(llm_kwargs)
for cookies, cb, hist, msg in silence_stdout(知识库问答)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
cli_printer.print(cb) # print(cb)
chatbot = ChatBotWithCookies(cookies)
from crazy_functions.Langchain知识库 import 读取知识库作答
txt = "What is the installation method?"
for cookies, cb, hist, msg in silence_stdout(读取知识库作答)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
cli_printer.print(cb) # print(cb)
def test_Langchain知识库读取():
from crazy_functions.Langchain知识库 import 读取知识库作答
txt = "远程云服务器部署?"
for cookies, cb, hist, msg in silence_stdout(读取知识库作答)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
cli_printer.print(cb) # print(cb)
def test_Latex():
from crazy_functions.Latex输出PDF结果 import Latex英文纠错加PDF对比, Latex翻译中文并重新编译PDF
# txt = r"https://arxiv.org/abs/1706.03762"
# txt = r"https://arxiv.org/abs/1902.03185"
# txt = r"https://arxiv.org/abs/2305.18290"
# txt = r"https://arxiv.org/abs/2305.17608"
# txt = r"https://arxiv.org/abs/2211.16068" # ACE
# txt = r"C:\Users\x\arxiv_cache\2211.16068\workfolder" # ACE
txt = r"https://arxiv.org/abs/2002.09253"
for cookies, cb, hist, msg in (Latex翻译中文并重新编译PDF)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
cli_printer.print(cb) # print(cb)
# txt = "2302.02948.tar"
# print(txt)
# main_tex, work_folder = Latex预处理(txt)
# print('main tex:', main_tex)
# res = 编译Latex(main_tex, work_folder)
# # for cookies, cb, hist, msg in silence_stdout(编译Latex)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# cli_printer.print(cb) # print(cb)
# test_解析一个Python项目() # test_解析一个Python项目()
@@ -129,7 +215,8 @@ def test_Markdown多语言():
# test_联网回答问题() # test_联网回答问题()
# test_解析ipynb文件() # test_解析ipynb文件()
# test_数学动画生成manim() # test_数学动画生成manim()
test_Markdown多语言() # test_Langchain知识库()
# test_Langchain知识库读取()
test_Latex()
input("程序完成,回车退出。") input("程序完成,回车退出。")
print("退出。") print("退出。")

查看文件

@@ -1,4 +1,5 @@
from toolbox import update_ui, get_conf, trimmed_format_exc from toolbox import update_ui, get_conf, trimmed_format_exc
import threading
def input_clipping(inputs, history, max_token_limit): def input_clipping(inputs, history, max_token_limit):
import numpy as np import numpy as np
@@ -606,3 +607,94 @@ def get_files_from_everything(txt, type): # type='.md'
success = False success = False
return success, file_manifest, project_folder return success, file_manifest, project_folder
def Singleton(cls):
_instance = {}
def _singleton(*args, **kargs):
if cls not in _instance:
_instance[cls] = cls(*args, **kargs)
return _instance[cls]
return _singleton
@Singleton
class knowledge_archive_interface():
def __init__(self) -> None:
self.threadLock = threading.Lock()
self.current_id = ""
self.kai_path = None
self.qa_handle = None
self.text2vec_large_chinese = None
def get_chinese_text2vec(self):
if self.text2vec_large_chinese is None:
# < -------------------预热文本向量化模组--------------- >
from toolbox import ProxyNetworkActivate
print('Checking Text2vec ...')
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
with ProxyNetworkActivate(): # 临时地激活代理网络
self.text2vec_large_chinese = HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
return self.text2vec_large_chinese
def feed_archive(self, file_manifest, id="default"):
self.threadLock.acquire()
# import uuid
self.current_id = id
from zh_langchain import construct_vector_store
self.qa_handle, self.kai_path = construct_vector_store(
vs_id=self.current_id,
files=file_manifest,
sentence_size=100,
history=[],
one_conent="",
one_content_segmentation="",
text2vec = self.get_chinese_text2vec(),
)
self.threadLock.release()
def get_current_archive_id(self):
return self.current_id
def get_loaded_file(self):
return self.qa_handle.get_loaded_file()
def answer_with_archive_by_id(self, txt, id):
self.threadLock.acquire()
if not self.current_id == id:
self.current_id = id
from zh_langchain import construct_vector_store
self.qa_handle, self.kai_path = construct_vector_store(
vs_id=self.current_id,
files=[],
sentence_size=100,
history=[],
one_conent="",
one_content_segmentation="",
text2vec = self.get_chinese_text2vec(),
)
VECTOR_SEARCH_SCORE_THRESHOLD = 0
VECTOR_SEARCH_TOP_K = 4
CHUNK_SIZE = 512
resp, prompt = self.qa_handle.get_knowledge_based_conent_test(
query = txt,
vs_path = self.kai_path,
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
vector_search_top_k=VECTOR_SEARCH_TOP_K,
chunk_conent=True,
chunk_size=CHUNK_SIZE,
text2vec = self.get_chinese_text2vec(),
)
self.threadLock.release()
return resp, prompt
def try_install_deps(deps):
for dep in deps:
import subprocess, sys
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '--user', dep])

查看文件

@@ -0,0 +1,646 @@
from toolbox import update_ui, update_ui_lastest_msg # 刷新Gradio前端界面
from toolbox import zip_folder, objdump, objload, promote_file_to_downloadzone
import os, shutil
import re
import numpy as np
pj = os.path.join
"""
========================================================================
Part One
Latex segmentation to a linklist
========================================================================
"""
PRESERVE = 0
TRANSFORM = 1
def split_worker(text, mask, pattern, flags=0):
"""
Add a preserve text area in this paper
"""
pattern_compile = re.compile(pattern, flags)
for res in pattern_compile.finditer(text):
mask[res.span()[0]:res.span()[1]] = PRESERVE
return text, mask
def split_worker_reverse_caption(text, mask, pattern, flags=0):
"""
Move caption area out of preserve area
"""
pattern_compile = re.compile(pattern, flags)
for res in pattern_compile.finditer(text):
mask[res.regs[1][0]:res.regs[1][1]] = TRANSFORM
return text, mask
def split_worker_begin_end(text, mask, pattern, flags=0, limit_n_lines=42):
"""
Find all \begin{} ... \end{} text block that with less than limit_n_lines lines.
Add it to preserve area
"""
pattern_compile = re.compile(pattern, flags)
def search_with_line_limit(text, mask):
for res in pattern_compile.finditer(text):
cmd = res.group(1) # begin{what}
this = res.group(2) # content between begin and end
this_mask = mask[res.regs[2][0]:res.regs[2][1]]
white_list = ['document', 'abstract', 'lemma', 'definition', 'sproof',
'em', 'emph', 'textit', 'textbf', 'itemize', 'enumerate']
if (cmd in white_list) or this.count('\n') >= limit_n_lines: # use a magical number 42
this, this_mask = search_with_line_limit(this, this_mask)
mask[res.regs[2][0]:res.regs[2][1]] = this_mask
else:
mask[res.regs[0][0]:res.regs[0][1]] = PRESERVE
return text, mask
return search_with_line_limit(text, mask)
class LinkedListNode():
"""
Linked List Node
"""
def __init__(self, string, preserve=True) -> None:
self.string = string
self.preserve = preserve
self.next = None
# self.begin_line = 0
# self.begin_char = 0
def convert_to_linklist(text, mask):
root = LinkedListNode("", preserve=True)
current_node = root
for c, m, i in zip(text, mask, range(len(text))):
if (m==PRESERVE and current_node.preserve) \
or (m==TRANSFORM and not current_node.preserve):
# add
current_node.string += c
else:
current_node.next = LinkedListNode(c, preserve=(m==PRESERVE))
current_node = current_node.next
return root
"""
========================================================================
Latex Merge File
========================================================================
"""
def 寻找Latex主文件(file_manifest, mode):
"""
在多Tex文档中,寻找主文件,必须包含documentclass,返回找到的第一个。
P.S. 但愿没人把latex模板放在里面传进来
"""
for texf in file_manifest:
if os.path.basename(texf).startswith('merge'):
continue
with open(texf, 'r', encoding='utf8') as f:
file_content = f.read()
if r'\documentclass' in file_content:
return texf
else:
continue
raise RuntimeError('无法找到一个主Tex文件包含documentclass关键字')
def rm_comments(main_file):
new_file_remove_comment_lines = []
for l in main_file.splitlines():
# 删除整行的空注释
if l.startswith("%") or (l.startswith(" ") and l.lstrip().startswith("%")):
pass
else:
new_file_remove_comment_lines.append(l)
main_file = '\n'.join(new_file_remove_comment_lines)
main_file = re.sub(r'(?<!\\)%.*', '', main_file) # 使用正则表达式查找半行注释, 并替换为空字符串
return main_file
def merge_tex_files_(project_foler, main_file, mode):
"""
Merge Tex project recrusively
"""
main_file = rm_comments(main_file)
for s in reversed([q for q in re.finditer(r"\\input\{(.*?)\}", main_file, re.M)]):
f = s.group(1)
fp = os.path.join(project_foler, f)
if os.path.exists(fp):
# e.g., \input{srcs/07_appendix.tex}
with open(fp, 'r', encoding='utf-8', errors='replace') as fx:
c = fx.read()
else:
# e.g., \input{srcs/07_appendix}
with open(fp+'.tex', 'r', encoding='utf-8', errors='replace') as fx:
c = fx.read()
c = merge_tex_files_(project_foler, c, mode)
main_file = main_file[:s.span()[0]] + c + main_file[s.span()[1]:]
return main_file
def merge_tex_files(project_foler, main_file, mode):
"""
Merge Tex project recrusively
P.S. 顺便把CTEX塞进去以支持中文
P.S. 顺便把Latex的注释去除
"""
main_file = merge_tex_files_(project_foler, main_file, mode)
main_file = rm_comments(main_file)
if mode == 'translate_zh':
pattern = re.compile(r'\\documentclass.*\n')
match = pattern.search(main_file)
position = match.end()
add_ctex = '\\usepackage{ctex}\n'
add_url = '\\usepackage{url}\n' if '{url}' not in main_file else ''
main_file = main_file[:position] + add_ctex + add_url + main_file[position:]
# 2 fontset=windows
import platform
if platform.system() != 'Windows':
main_file = re.sub(r"\\documentclass\[(.*?)\]{(.*?)}", r"\\documentclass[\1,fontset=windows]{\2}",main_file)
main_file = re.sub(r"\\documentclass{(.*?)}", r"\\documentclass[fontset=windows]{\1}",main_file)
return main_file
"""
========================================================================
Post process
========================================================================
"""
def mod_inbraket(match):
"""
为啥chatgpt会把cite里面的逗号换成中文逗号呀
"""
# get the matched string
cmd = match.group(1)
str_to_modify = match.group(2)
# modify the matched string
str_to_modify = str_to_modify.replace('', ':') # 前面是中文冒号,后面是英文冒号
str_to_modify = str_to_modify.replace('', ',') # 前面是中文逗号,后面是英文逗号
# str_to_modify = 'BOOM'
return "\\" + cmd + "{" + str_to_modify + "}"
def fix_content(final_tex, node_string):
"""
Fix common GPT errors to increase success rate
"""
final_tex = re.sub(r"(?<!\\)%", "\\%", final_tex)
final_tex = re.sub(r"\\([a-z]{2,10})\ \{", r"\\\1{", string=final_tex)
final_tex = re.sub(r"\\\ ([a-z]{2,10})\{", r"\\\1{", string=final_tex)
final_tex = re.sub(r"\\([a-z]{2,10})\{([^\}]*?)\}", mod_inbraket, string=final_tex)
if node_string.count('\\begin') != final_tex.count('\\begin'):
final_tex = node_string # 出问题了,还原原文
if node_string.count('\_') > 0 and node_string.count('\_') > final_tex.count('\_'):
# walk and replace any _ without \
final_tex = re.sub(r"(?<!\\)_", "\\_", final_tex)
if node_string.count('{') != node_string.count('}'):
if final_tex.count('{') != node_string.count('{'):
final_tex = node_string # 出问题了,还原原文
if final_tex.count('}') != node_string.count('}'):
final_tex = node_string # 出问题了,还原原文
return final_tex
def split_subprocess(txt, project_folder, return_dict):
"""
break down latex file to a linked list,
each node use a preserve flag to indicate whether it should
be proccessed by GPT.
"""
text = txt
mask = np.zeros(len(txt), dtype=np.uint8) + TRANSFORM
# 吸收title与作者以上的部分
text, mask = split_worker(text, mask, r"(.*?)\\maketitle", re.DOTALL)
# 删除iffalse注释
text, mask = split_worker(text, mask, r"\\iffalse(.*?)\\fi", re.DOTALL)
# 吸收在25行以内的begin-end组合
text, mask = split_worker_begin_end(text, mask, r"\\begin\{([a-z\*]*)\}(.*?)\\end\{\1\}", re.DOTALL, limit_n_lines=25)
# 吸收匿名公式
text, mask = split_worker(text, mask, r"\$\$(.*?)\$\$", re.DOTALL)
# 吸收其他杂项
text, mask = split_worker(text, mask, r"\\section\{(.*?)\}")
text, mask = split_worker(text, mask, r"\\section\*\{(.*?)\}")
text, mask = split_worker(text, mask, r"\\subsection\{(.*?)\}")
text, mask = split_worker(text, mask, r"\\subsubsection\{(.*?)\}")
text, mask = split_worker(text, mask, r"\\bibliography\{(.*?)\}")
text, mask = split_worker(text, mask, r"\\bibliographystyle\{(.*?)\}")
text, mask = split_worker(text, mask, r"\\begin\{lstlisting\}(.*?)\\end\{lstlisting\}", re.DOTALL)
text, mask = split_worker(text, mask, r"\\begin\{wraptable\}(.*?)\\end\{wraptable\}", re.DOTALL)
text, mask = split_worker(text, mask, r"\\begin\{algorithm\}(.*?)\\end\{algorithm\}", re.DOTALL)
text, mask = split_worker(text, mask, r"\\begin\{wrapfigure\}(.*?)\\end\{wrapfigure\}", re.DOTALL)
text, mask = split_worker(text, mask, r"\\begin\{wrapfigure\*\}(.*?)\\end\{wrapfigure\*\}", re.DOTALL)
text, mask = split_worker(text, mask, r"\\begin\{figure\}(.*?)\\end\{figure\}", re.DOTALL)
text, mask = split_worker(text, mask, r"\\begin\{figure\*\}(.*?)\\end\{figure\*\}", re.DOTALL)
text, mask = split_worker(text, mask, r"\\begin\{multline\}(.*?)\\end\{multline\}", re.DOTALL)
text, mask = split_worker(text, mask, r"\\begin\{multline\*\}(.*?)\\end\{multline\*\}", re.DOTALL)
text, mask = split_worker(text, mask, r"\\begin\{table\}(.*?)\\end\{table\}", re.DOTALL)
text, mask = split_worker(text, mask, r"\\begin\{table\*\}(.*?)\\end\{table\*\}", re.DOTALL)
text, mask = split_worker(text, mask, r"\\begin\{minipage\}(.*?)\\end\{minipage\}", re.DOTALL)
text, mask = split_worker(text, mask, r"\\begin\{minipage\*\}(.*?)\\end\{minipage\*\}", re.DOTALL)
text, mask = split_worker(text, mask, r"\\begin\{align\*\}(.*?)\\end\{align\*\}", re.DOTALL)
text, mask = split_worker(text, mask, r"\\begin\{align\}(.*?)\\end\{align\}", re.DOTALL)
text, mask = split_worker(text, mask, r"\\begin\{equation\}(.*?)\\end\{equation\}", re.DOTALL)
text, mask = split_worker(text, mask, r"\\begin\{equation\*\}(.*?)\\end\{equation\*\}", re.DOTALL)
text, mask = split_worker(text, mask, r"\\item ")
text, mask = split_worker(text, mask, r"\\label\{(.*?)\}")
text, mask = split_worker(text, mask, r"\\begin\{(.*?)\}")
text, mask = split_worker(text, mask, r"\\vspace\{(.*?)\}")
text, mask = split_worker(text, mask, r"\\hspace\{(.*?)\}")
text, mask = split_worker(text, mask, r"\\end\{(.*?)\}")
# text, mask = split_worker_reverse_caption(text, mask, r"\\caption\{(.*?)\}", re.DOTALL)
root = convert_to_linklist(text, mask)
# 修复括号
node = root
while True:
string = node.string
if node.preserve:
node = node.next
if node is None: break
continue
def break_check(string):
str_stack = [""] # (lv, index)
for i, c in enumerate(string):
if c == '{':
str_stack.append('{')
elif c == '}':
if len(str_stack) == 1:
print('stack fix')
return i
str_stack.pop(-1)
else:
str_stack[-1] += c
return -1
bp = break_check(string)
if bp == -1:
pass
elif bp == 0:
node.string = string[:1]
q = LinkedListNode(string[1:], False)
q.next = node.next
node.next = q
else:
node.string = string[:bp]
q = LinkedListNode(string[bp:], False)
q.next = node.next
node.next = q
node = node.next
if node is None: break
# 屏蔽空行和太短的句子
node = root
while True:
if len(node.string.strip('\n').strip(''))==0: node.preserve = True
if len(node.string.strip('\n').strip(''))<42: node.preserve = True
node = node.next
if node is None: break
node = root
while True:
if node.next and node.preserve and node.next.preserve:
node.string += node.next.string
node.next = node.next.next
node = node.next
if node is None: break
# 将前后断行符脱离
node = root
prev_node = None
while True:
if not node.preserve:
lstriped_ = node.string.lstrip().lstrip('\n')
if (prev_node is not None) and (prev_node.preserve) and (len(lstriped_)!=len(node.string)):
prev_node.string += node.string[:-len(lstriped_)]
node.string = lstriped_
rstriped_ = node.string.rstrip().rstrip('\n')
if (node.next is not None) and (node.next.preserve) and (len(rstriped_)!=len(node.string)):
node.next.string = node.string[len(rstriped_):] + node.next.string
node.string = rstriped_
# =====
prev_node = node
node = node.next
if node is None: break
with open(pj(project_folder, 'debug_log.html'), 'w', encoding='utf8') as f:
segment_parts_for_gpt = []
nodes = []
node = root
while True:
nodes.append(node)
show_html = node.string.replace('\n','<br/>')
if not node.preserve:
segment_parts_for_gpt.append(node.string)
f.write(f'<p style="color:black;">#{show_html}#</p>')
else:
f.write(f'<p style="color:red;">{show_html}</p>')
node = node.next
if node is None: break
for n in nodes: n.next = None # break
return_dict['nodes'] = nodes
return_dict['segment_parts_for_gpt'] = segment_parts_for_gpt
return return_dict
class LatexPaperSplit():
"""
break down latex file to a linked list,
each node use a preserve flag to indicate whether it should
be proccessed by GPT.
"""
def __init__(self) -> None:
self.nodes = None
self.msg = "{\\scriptsize\\textbf{警告该PDF由GPT-Academic开源项目调用大语言模型+Latex翻译插件一键生成," + \
"版权归原文作者所有。翻译内容可靠性无任何保障,请仔细鉴别并以原文为准。" + \
"项目Github地址 \\url{https://github.com/binary-husky/gpt_academic/}。"
# 请您不要删除或修改这行警告,除非您是论文的原作者如果您是论文原作者,欢迎加REAME中的QQ联系开发者
self.msg_declare = "为了防止大语言模型的意外谬误产生扩散影响,禁止移除或修改此警告。}}\\\\"
def merge_result(self, arr, mode, msg):
"""
Merge the result after the GPT process completed
"""
result_string = ""
p = 0
for node in self.nodes:
if node.preserve:
result_string += node.string
else:
result_string += fix_content(arr[p], node.string)
p += 1
if mode == 'translate_zh':
pattern = re.compile(r'\\begin\{abstract\}.*\n')
match = pattern.search(result_string)
position = match.end()
result_string = result_string[:position] + self.msg + msg + self.msg_declare + result_string[position:]
return result_string
def split(self, txt, project_folder):
"""
break down latex file to a linked list,
each node use a preserve flag to indicate whether it should
be proccessed by GPT.
P.S. use multiprocessing to avoid timeout error
"""
import multiprocessing
manager = multiprocessing.Manager()
return_dict = manager.dict()
p = multiprocessing.Process(
target=split_subprocess,
args=(txt, project_folder, return_dict))
p.start()
p.join()
self.nodes = return_dict['nodes']
self.sp = return_dict['segment_parts_for_gpt']
return self.sp
class LatexPaperFileGroup():
"""
use tokenizer to break down text according to max_token_limit
"""
def __init__(self):
self.file_paths = []
self.file_contents = []
self.sp_file_contents = []
self.sp_file_index = []
self.sp_file_tag = []
# count_token
from request_llm.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
self.get_token_num = get_token_num
def run_file_split(self, max_token_limit=1900):
"""
use tokenizer to break down text according to max_token_limit
"""
for index, file_content in enumerate(self.file_contents):
if self.get_token_num(file_content) < max_token_limit:
self.sp_file_contents.append(file_content)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
print('Segmentation: done')
def merge_result(self):
self.file_result = ["" for _ in range(len(self.file_paths))]
for r, k in zip(self.sp_file_result, self.sp_file_index):
self.file_result[k] += r
def write_result(self):
manifest = []
for path, res in zip(self.file_paths, self.file_result):
with open(path + '.polish.tex', 'w', encoding='utf8') as f:
manifest.append(path + '.polish.tex')
f.write(res)
return manifest
def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, mode='proofread', switch_prompt=None):
import time, os, re
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from .latex_utils import LatexPaperFileGroup, merge_tex_files, LatexPaperSplit, 寻找Latex主文件
# <-------- 寻找主tex文件 ---------->
maintex = 寻找Latex主文件(file_manifest, mode)
chatbot.append((f"定位主Latex文件", f'[Local Message] 分析结果该项目的Latex主文件是{maintex}, 如果分析错误, 请立即终止程序, 删除或修改歧义文件, 然后重试。主程序即将开始, 请稍候。'))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
time.sleep(3)
# <-------- 读取Latex文件, 将多文件tex工程融合为一个巨型tex ---------->
main_tex_basename = os.path.basename(maintex)
assert main_tex_basename.endswith('.tex')
main_tex_basename_bare = main_tex_basename[:-4]
may_exist_bbl = pj(project_folder, f'{main_tex_basename_bare}.bbl')
if os.path.exists(may_exist_bbl):
shutil.copyfile(may_exist_bbl, pj(project_folder, f'merge.bbl'))
shutil.copyfile(may_exist_bbl, pj(project_folder, f'merge_{mode}.bbl'))
shutil.copyfile(may_exist_bbl, pj(project_folder, f'merge_diff.bbl'))
with open(maintex, 'r', encoding='utf-8', errors='replace') as f:
content = f.read()
merged_content = merge_tex_files(project_folder, content, mode)
with open(project_folder + '/merge.tex', 'w', encoding='utf-8', errors='replace') as f:
f.write(merged_content)
# <-------- 精细切分latex文件 ---------->
lps = LatexPaperSplit()
res = lps.split(merged_content, project_folder) # 消耗时间的函数
# <-------- 拆分过长的latex片段 ---------->
pfg = LatexPaperFileGroup()
for index, r in enumerate(res):
pfg.file_paths.append('segment-' + str(index))
pfg.file_contents.append(r)
pfg.run_file_split(max_token_limit=1024)
n_split = len(pfg.sp_file_contents)
# <-------- 根据需要切换prompt ---------->
inputs_array, sys_prompt_array = switch_prompt(pfg, mode)
inputs_show_user_array = [f"{mode} {f}" for f in pfg.sp_file_tag]
if os.path.exists(pj(project_folder,'temp.pkl')):
# <-------- 【仅调试】如果存在调试缓存文件,则跳过GPT请求环节 ---------->
pfg = objload(file=pj(project_folder,'temp.pkl'))
else:
# <-------- gpt 多线程请求 ---------->
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[[""] for _ in range(n_split)],
sys_prompt_array=sys_prompt_array,
# max_workers=5, # 并行任务数量限制, 最多同时执行5个, 其他的排队等待
scroller_max_len = 40
)
# <-------- 文本碎片重组为完整的tex片段 ---------->
pfg.sp_file_result = []
for i_say, gpt_say, orig_content in zip(gpt_response_collection[0::2], gpt_response_collection[1::2], pfg.sp_file_contents):
pfg.sp_file_result.append(gpt_say)
pfg.merge_result()
# <-------- 临时存储用于调试 ---------->
pfg.get_token_num = None
objdump(pfg, file=pj(project_folder,'temp.pkl'))
# <-------- 写出文件 ---------->
msg = f"当前大语言模型: {llm_kwargs['llm_model']},当前语言模型温度设定: {llm_kwargs['temperature']}"
final_tex = lps.merge_result(pfg.file_result, mode, msg)
with open(project_folder + f'/merge_{mode}.tex', 'w', encoding='utf-8', errors='replace') as f:
if mode != 'translate_zh' or "binary" in final_tex: f.write(final_tex)
# <-------- 整理结果, 退出 ---------->
chatbot.append((f"完成了吗?", 'GPT结果已输出, 正在编译PDF'))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# <-------- 返回 ---------->
return project_folder + f'/merge_{mode}.tex'
def remove_buggy_lines(file_path, log_path, tex_name, tex_name_pure, n_fix, work_folder_modified):
try:
with open(log_path, 'r', encoding='utf-8', errors='replace') as f:
log = f.read()
with open(file_path, 'r', encoding='utf-8', errors='replace') as f:
file_lines = f.readlines()
import re
buggy_lines = re.findall(tex_name+':([0-9]{1,5}):', log)
buggy_lines = [int(l) for l in buggy_lines]
buggy_lines = sorted(buggy_lines)
print("removing lines that has errors", buggy_lines)
file_lines.pop(buggy_lines[0]-1)
with open(pj(work_folder_modified, f"{tex_name_pure}_fix_{n_fix}.tex"), 'w', encoding='utf-8', errors='replace') as f:
f.writelines(file_lines)
return True, f"{tex_name_pure}_fix_{n_fix}", buggy_lines
except:
print("Fatal error occurred, but we cannot identify error, please download zip, read latex log, and compile manually.")
return False, -1, [-1]
def compile_latex_with_timeout(command, timeout=60):
import subprocess
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
try:
stdout, stderr = process.communicate(timeout=timeout)
except subprocess.TimeoutExpired:
process.kill()
stdout, stderr = process.communicate()
print("Process timed out!")
return False
return True
def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_folder_original, work_folder_modified, work_folder):
import os, time
current_dir = os.getcwd()
n_fix = 1
max_try = 32
chatbot.append([f"正在编译PDF文档", f'编译已经开始。当前工作路径为{work_folder},如果程序停顿5分钟以上,则大概率是卡死在Latex里面了。不幸卡死时请直接去该路径下取回翻译结果,或者重启之后再度尝试 ...']); yield from update_ui(chatbot=chatbot, history=history)
chatbot.append([f"正在编译PDF文档", '...']); yield from update_ui(chatbot=chatbot, history=history); time.sleep(1); chatbot[-1] = list(chatbot[-1]) # 刷新界面
yield from update_ui_lastest_msg('编译已经开始...', chatbot, history) # 刷新Gradio前端界面
while True:
import os
# https://stackoverflow.com/questions/738755/dont-make-me-manually-abort-a-latex-compile-when-theres-an-error
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译原始PDF ...', chatbot, history) # 刷新Gradio前端界面
os.chdir(work_folder_original); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex'); os.chdir(current_dir)
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译转化后的PDF ...', chatbot, history) # 刷新Gradio前端界面
os.chdir(work_folder_modified); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex'); os.chdir(current_dir)
if ok and os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf')):
# 只有第二步成功,才能继续下面的步骤
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译BibTex ...', chatbot, history) # 刷新Gradio前端界面
if not os.path.exists(pj(work_folder_original, f'{main_file_original}.bbl')):
os.chdir(work_folder_original); ok = compile_latex_with_timeout(f'bibtex {main_file_original}.aux'); os.chdir(current_dir)
if not os.path.exists(pj(work_folder_modified, f'{main_file_modified}.bbl')):
os.chdir(work_folder_modified); ok = compile_latex_with_timeout(f'bibtex {main_file_modified}.aux'); os.chdir(current_dir)
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译文献交叉引用 ...', chatbot, history) # 刷新Gradio前端界面
os.chdir(work_folder_original); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex'); os.chdir(current_dir)
os.chdir(work_folder_modified); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex'); os.chdir(current_dir)
os.chdir(work_folder_original); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex'); os.chdir(current_dir)
os.chdir(work_folder_modified); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex'); os.chdir(current_dir)
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 使用latexdiff生成论文转化前后对比 ...', chatbot, history) # 刷新Gradio前端界面
print( f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex')
ok = compile_latex_with_timeout(f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex')
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 正在编译对比PDF ...', chatbot, history) # 刷新Gradio前端界面
os.chdir(work_folder); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex'); os.chdir(current_dir)
os.chdir(work_folder); ok = compile_latex_with_timeout(f'bibtex merge_diff.aux'); os.chdir(current_dir)
os.chdir(work_folder); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex'); os.chdir(current_dir)
os.chdir(work_folder); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex'); os.chdir(current_dir)
# <--------------------->
os.chdir(current_dir)
# <---------- 检查结果 ----------->
results_ = ""
original_pdf_success = os.path.exists(pj(work_folder_original, f'{main_file_original}.pdf'))
modified_pdf_success = os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf'))
diff_pdf_success = os.path.exists(pj(work_folder, f'merge_diff.pdf'))
results_ += f"原始PDF编译是否成功: {original_pdf_success};"
results_ += f"转化PDF编译是否成功: {modified_pdf_success};"
results_ += f"对比PDF编译是否成功: {diff_pdf_success};"
yield from update_ui_lastest_msg(f'{n_fix}编译结束:<br/>{results_}...', chatbot, history) # 刷新Gradio前端界面
if modified_pdf_success:
yield from update_ui_lastest_msg(f'转化PDF编译已经成功, 即将退出 ...', chatbot, history) # 刷新Gradio前端界面
os.chdir(current_dir)
result_pdf = pj(work_folder_modified, f'{main_file_modified}.pdf')
if os.path.exists(pj(work_folder, '..', 'translation')):
shutil.copyfile(result_pdf, pj(work_folder, '..', 'translation', 'translate_zh.pdf'))
promote_file_to_downloadzone(result_pdf)
return True # 成功啦
else:
if n_fix>=max_try: break
n_fix += 1
can_retry, main_file_modified, buggy_lines = remove_buggy_lines(
file_path=pj(work_folder_modified, f'{main_file_modified}.tex'),
log_path=pj(work_folder_modified, f'{main_file_modified}.log'),
tex_name=f'{main_file_modified}.tex',
tex_name_pure=f'{main_file_modified}',
n_fix=n_fix,
work_folder_modified=work_folder_modified,
)
yield from update_ui_lastest_msg(f'由于最为关键的转化PDF编译失败, 将根据报错信息修正tex源文件并重试, 当前报错的latex代码处于第{buggy_lines}行 ...', chatbot, history) # 刷新Gradio前端界面
if not can_retry: break
os.chdir(current_dir)
return False # 失败啦

查看文件

@@ -99,6 +99,7 @@ services:
command: > command: >
bash -c " echo '[gpt-academic] 正在从github拉取最新代码...' && bash -c " echo '[gpt-academic] 正在从github拉取最新代码...' &&
git pull && git pull &&
pip install -r requirements.txt &&
echo '[jittorllms] 正在从github拉取最新代码...' && echo '[jittorllms] 正在从github拉取最新代码...' &&
git --git-dir=request_llm/jittorllms/.git --work-tree=request_llm/jittorllms pull --force && git --git-dir=request_llm/jittorllms/.git --work-tree=request_llm/jittorllms pull --force &&
python3 -u main.py" python3 -u main.py"

查看文件

@@ -0,0 +1,27 @@
# 此Dockerfile适用于“无本地模型”的环境构建,如果需要使用chatglm等本地模型,请参考 docs/Dockerfile+ChatGLM
# - 1 修改 `config.py`
# - 2 构建 docker build -t gpt-academic-nolocal-latex -f docs/Dockerfile+NoLocal+Latex .
# - 3 运行 docker run -v /home/fuqingxu/arxiv_cache:/root/arxiv_cache --rm -it --net=host gpt-academic-nolocal-latex
FROM fuqingxu/python311_texlive_ctex:latest
# 指定路径
WORKDIR /gpt
ARG useProxyNetwork=''
RUN $useProxyNetwork pip3 install gradio openai numpy arxiv rich -i https://pypi.douban.com/simple/
RUN $useProxyNetwork pip3 install colorama Markdown pygments pymupdf -i https://pypi.douban.com/simple/
# 装载项目文件
COPY . .
# 安装依赖
RUN $useProxyNetwork pip3 install -r requirements.txt -i https://pypi.douban.com/simple/
# 可选步骤,用于预热模块
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
# 启动
CMD ["python3", "-u", "main.py"]

查看文件

@@ -2,11 +2,11 @@
> >
> Durante l'installazione delle dipendenze, selezionare rigorosamente le **versioni specificate** nel file requirements.txt. > Durante l'installazione delle dipendenze, selezionare rigorosamente le **versioni specificate** nel file requirements.txt.
> >
> ` pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/` > ` pip install -r requirements.txt`
# <img src="docs/logo.png" width="40" > GPT Ottimizzazione Accademica (GPT Academic) # <img src="logo.png" width="40" > GPT Ottimizzazione Accademica (GPT Academic)
**Se ti piace questo progetto, ti preghiamo di dargli una stella. Se hai sviluppato scorciatoie accademiche o plugin funzionali più utili, non esitare ad aprire una issue o pull request. Abbiamo anche una README in [Inglese|](docs/README_EN.md)[Giapponese|](docs/README_JP.md)[Coreano|](https://github.com/mldljyh/ko_gpt_academic)[Russo|](docs/README_RS.md)[Francese](docs/README_FR.md) tradotta da questo stesso progetto. **Se ti piace questo progetto, ti preghiamo di dargli una stella. Se hai sviluppato scorciatoie accademiche o plugin funzionali più utili, non esitare ad aprire una issue o pull request. Abbiamo anche una README in [Inglese|](README_EN.md)[Giapponese|](README_JP.md)[Coreano|](https://github.com/mldljyh/ko_gpt_academic)[Russo|](README_RS.md)[Francese](README_FR.md) tradotta da questo stesso progetto.
Per tradurre questo progetto in qualsiasi lingua con GPT, leggere e eseguire [`multi_language.py`](multi_language.py) (sperimentale). Per tradurre questo progetto in qualsiasi lingua con GPT, leggere e eseguire [`multi_language.py`](multi_language.py) (sperimentale).
> **Nota** > **Nota**
@@ -17,7 +17,9 @@ Per tradurre questo progetto in qualsiasi lingua con GPT, leggere e eseguire [`m
> >
> 3. Questo progetto è compatibile e incoraggia l'utilizzo di grandi modelli di linguaggio di produzione nazionale come chatglm, RWKV, Pangu ecc. Supporta la coesistenza di più api-key e può essere compilato nel file di configurazione come `API_KEY="openai-key1,openai-key2,api2d-key3"`. Per sostituire temporaneamente `API_KEY`, inserire `API_KEY` temporaneo nell'area di input e premere Invio per renderlo effettivo. > 3. Questo progetto è compatibile e incoraggia l'utilizzo di grandi modelli di linguaggio di produzione nazionale come chatglm, RWKV, Pangu ecc. Supporta la coesistenza di più api-key e può essere compilato nel file di configurazione come `API_KEY="openai-key1,openai-key2,api2d-key3"`. Per sostituire temporaneamente `API_KEY`, inserire `API_KEY` temporaneo nell'area di input e premere Invio per renderlo effettivo.
<div align="center">Funzione | Descrizione <div align="center">
Funzione | Descrizione
--- | --- --- | ---
Correzione immediata | Supporta correzione immediata e ricerca degli errori di grammatica del documento con un solo clic Correzione immediata | Supporta correzione immediata e ricerca degli errori di grammatica del documento con un solo clic
Traduzione cinese-inglese immediata | Traduzione cinese-inglese immediata con un solo clic Traduzione cinese-inglese immediata | Traduzione cinese-inglese immediata con un solo clic
@@ -41,6 +43,8 @@ Avvia il tema di gradio [scuro](https://github.com/binary-husky/chatgpt_academic
Supporto per maggiori modelli LLM, supporto API2D | Sentirsi serviti simultaneamente da GPT3.5, GPT4, [Tsinghua ChatGLM](https://github.com/THUDM/ChatGLM-6B), [Fudan MOSS](https://github.com/OpenLMLab/MOSS) deve essere una grande sensazione, giusto? Supporto per maggiori modelli LLM, supporto API2D | Sentirsi serviti simultaneamente da GPT3.5, GPT4, [Tsinghua ChatGLM](https://github.com/THUDM/ChatGLM-6B), [Fudan MOSS](https://github.com/OpenLMLab/MOSS) deve essere una grande sensazione, giusto?
Ulteriori modelli LLM supportat,i supporto per l'implementazione di Huggingface | Aggiunta di un'interfaccia Newbing (Nuovo Bing), introdotta la compatibilità con Tsinghua [Jittorllms](https://github.com/Jittor/JittorLLMs), [LLaMA](https://github.com/facebookresearch/llama), [RWKV](https://github.com/BlinkDL/ChatRWKV) e [PanGu-α](https://openi.org.cn/pangu/) Ulteriori modelli LLM supportat,i supporto per l'implementazione di Huggingface | Aggiunta di un'interfaccia Newbing (Nuovo Bing), introdotta la compatibilità con Tsinghua [Jittorllms](https://github.com/Jittor/JittorLLMs), [LLaMA](https://github.com/facebookresearch/llama), [RWKV](https://github.com/BlinkDL/ChatRWKV) e [PanGu-α](https://openi.org.cn/pangu/)
Ulteriori dimostrazioni di nuove funzionalità (generazione di immagini, ecc.)... | Vedere la fine di questo documento... Ulteriori dimostrazioni di nuove funzionalità (generazione di immagini, ecc.)... | Vedere la fine di questo documento...
</div>
- Nuova interfaccia (modificare l'opzione LAYOUT in `config.py` per passare dal layout a sinistra e a destra al layout superiore e inferiore) - Nuova interfaccia (modificare l'opzione LAYOUT in `config.py` per passare dal layout a sinistra e a destra al layout superiore e inferiore)
<div align="center"> <div align="center">
@@ -202,11 +206,13 @@ ad esempio
2. Plugin di funzione personalizzati 2. Plugin di funzione personalizzati
Scrivi plugin di funzione personalizzati e esegui tutte le attività che desideri o non hai mai pensato di fare. Scrivi plugin di funzione personalizzati e esegui tutte le attività che desideri o non hai mai pensato di fare.
La difficoltà di scrittura e debug dei plugin del nostro progetto è molto bassa. Se si dispone di una certa conoscenza di base di Python, è possibile realizzare la propria funzione del plugin seguendo il nostro modello. Per maggiori dettagli, consultare la [guida al plugin per funzioni] (https://github.com/binary-husky/chatgpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97). La difficoltà di scrittura e debug dei plugin del nostro progetto è molto bassa. Se si dispone di una certa conoscenza di base di Python, è possibile realizzare la propria funzione del plugin seguendo il nostro modello. Per maggiori dettagli, consultare la [guida al plugin per funzioni](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
--- ---
# Ultimo aggiornamento # Ultimo aggiornamento
## Nuove funzionalità dinamiche1. Funzionalità di salvataggio della conversazione. Nell'area dei plugin della funzione, fare clic su "Salva la conversazione corrente" per salvare la conversazione corrente come file html leggibile e ripristinabile, inoltre, nell'area dei plugin della funzione (menu a discesa), fare clic su "Carica la cronologia della conversazione archiviata" per ripristinare la conversazione precedente. Suggerimento: fare clic su "Carica la cronologia della conversazione archiviata" senza specificare il file consente di visualizzare la cache degli archivi html di cronologia, fare clic su "Elimina tutti i record di cronologia delle conversazioni locali" per eliminare tutte le cache degli archivi html. ## Nuove funzionalità dinamiche
1. Funzionalità di salvataggio della conversazione. Nell'area dei plugin della funzione, fare clic su "Salva la conversazione corrente" per salvare la conversazione corrente come file html leggibile e ripristinabile, inoltre, nell'area dei plugin della funzione (menu a discesa), fare clic su "Carica la cronologia della conversazione archiviata" per ripristinare la conversazione precedente. Suggerimento: fare clic su "Carica la cronologia della conversazione archiviata" senza specificare il file consente di visualizzare la cache degli archivi html di cronologia, fare clic su "Elimina tutti i record di cronologia delle conversazioni locali" per eliminare tutte le cache degli archivi html.
<div align="center"> <div align="center">
<img src="https://user-images.githubusercontent.com/96192199/235222390-24a9acc0-680f-49f5-bc81-2f3161f1e049.png" width="500" > <img src="https://user-images.githubusercontent.com/96192199/235222390-24a9acc0-680f-49f5-bc81-2f3161f1e049.png" width="500" >
</div> </div>
@@ -307,4 +313,4 @@ https://github.com/kaixindelele/ChatPaper
# Altro: # Altro:
https://github.com/gradio-app/gradio https://github.com/gradio-app/gradio
https://github.com/fghrsh/live2d_demo https://github.com/fghrsh/live2d_demo
``` ```

查看文件

@@ -17,7 +17,9 @@ GPT를 이용하여 프로젝트를 임의의 언어로 번역하려면 [`multi_
> >
> 3. 이 프로젝트는 국내 언어 모델 chatglm과 RWKV, 판고 등의 시도와 호환 가능합니다. 여러 개의 api-key를 지원하며 설정 파일에 "API_KEY="openai-key1,openai-key2,api2d-key3""와 같이 작성할 수 있습니다. `API_KEY`를 임시로 변경해야하는 경우 입력 영역에 임시 `API_KEY`를 입력 한 후 엔터 키를 누르면 즉시 적용됩니다. > 3. 이 프로젝트는 국내 언어 모델 chatglm과 RWKV, 판고 등의 시도와 호환 가능합니다. 여러 개의 api-key를 지원하며 설정 파일에 "API_KEY="openai-key1,openai-key2,api2d-key3""와 같이 작성할 수 있습니다. `API_KEY`를 임시로 변경해야하는 경우 입력 영역에 임시 `API_KEY`를 입력 한 후 엔터 키를 누르면 즉시 적용됩니다.
<div align="center">기능 | 설명 <div align="center">
기능 | 설명
--- | --- --- | ---
원 키워드 | 원 키워드 및 논문 문법 오류를 찾는 기능 지원 원 키워드 | 원 키워드 및 논문 문법 오류를 찾는 기능 지원
한-영 키워드 | 한-영 키워드 지원 한-영 키워드 | 한-영 키워드 지원
@@ -265,4 +267,4 @@ https://github.com/kaixindelele/ChatPaper
# 더 많은 : # 더 많은 :
https://github.com/gradio-app/gradio https://github.com/gradio-app/gradio
https://github.com/fghrsh/live2d_demo https://github.com/fghrsh/live2d_demo
``` ```

查看文件

@@ -2,7 +2,7 @@
> >
> Ao instalar as dependências, por favor, selecione rigorosamente as versões **especificadas** no arquivo requirements.txt. > Ao instalar as dependências, por favor, selecione rigorosamente as versões **especificadas** no arquivo requirements.txt.
> >
> `pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/` > `pip install -r requirements.txt`
> >
# <img src="logo.png" width="40" > Otimização acadêmica GPT (GPT Academic) # <img src="logo.png" width="40" > Otimização acadêmica GPT (GPT Academic)
@@ -18,7 +18,9 @@ Para traduzir este projeto para qualquer idioma com o GPT, leia e execute [`mult
> >
> 3. Este projeto é compatível com e incentiva o uso de modelos de linguagem nacionais, como chatglm e RWKV, Pangolin, etc. Suporta a coexistência de várias chaves de API e pode ser preenchido no arquivo de configuração como `API_KEY="openai-key1,openai-key2,api2d-key3"`. Quando precisar alterar temporariamente o `API_KEY`, basta digitar o `API_KEY` temporário na área de entrada e pressionar Enter para que ele entre em vigor. > 3. Este projeto é compatível com e incentiva o uso de modelos de linguagem nacionais, como chatglm e RWKV, Pangolin, etc. Suporta a coexistência de várias chaves de API e pode ser preenchido no arquivo de configuração como `API_KEY="openai-key1,openai-key2,api2d-key3"`. Quando precisar alterar temporariamente o `API_KEY`, basta digitar o `API_KEY` temporário na área de entrada e pressionar Enter para que ele entre em vigor.
<div align="center">Funcionalidade | Descrição <div align="center">
Funcionalidade | Descrição
--- | --- --- | ---
Um clique de polimento | Suporte a um clique polimento, um clique encontrar erros de gramática no artigo Um clique de polimento | Suporte a um clique polimento, um clique encontrar erros de gramática no artigo
Tradução chinês-inglês de um clique | Tradução chinês-inglês de um clique Tradução chinês-inglês de um clique | Tradução chinês-inglês de um clique
@@ -216,7 +218,9 @@ Para mais detalhes, consulte o [Guia do plug-in de função.](https://github.com
--- ---
# Última atualização # Última atualização
## Novas funções dinâmicas.1. Função de salvamento de diálogo. Ao chamar o plug-in de função "Salvar diálogo atual", é possível salvar o diálogo atual em um arquivo html legível e reversível. Além disso, ao chamar o plug-in de função "Carregar arquivo de histórico de diálogo" no menu suspenso da área de plug-in, é possível restaurar uma conversa anterior. Dica: clicar em "Carregar arquivo de histórico de diálogo" sem especificar um arquivo permite visualizar o cache do arquivo html de histórico. Clicar em "Excluir todo o registro de histórico de diálogo local" permite excluir todo o cache de arquivo html. ## Novas funções dinâmicas.
1. Função de salvamento de diálogo. Ao chamar o plug-in de função "Salvar diálogo atual", é possível salvar o diálogo atual em um arquivo html legível e reversível. Além disso, ao chamar o plug-in de função "Carregar arquivo de histórico de diálogo" no menu suspenso da área de plug-in, é possível restaurar uma conversa anterior. Dica: clicar em "Carregar arquivo de histórico de diálogo" sem especificar um arquivo permite visualizar o cache do arquivo html de histórico. Clicar em "Excluir todo o registro de histórico de diálogo local" permite excluir todo o cache de arquivo html.
<div align="center"> <div align="center">
<img src="https://user-images.githubusercontent.com/96192199/235222390-24a9acc0-680f-49f5-bc81-2f3161f1e049.png" width="500" > <img src="https://user-images.githubusercontent.com/96192199/235222390-24a9acc0-680f-49f5-bc81-2f3161f1e049.png" width="500" >
</div> </div>
@@ -317,4 +321,4 @@ https://github.com/kaixindelele/ChatPaper
# Mais: # Mais:
https://github.com/gradio-app/gradio https://github.com/gradio-app/gradio
https://github.com/fghrsh/live2d_demo https://github.com/fghrsh/live2d_demo
``` ```

二进制文件未显示。

10
main.py
查看文件

@@ -2,7 +2,7 @@ import os; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
def main(): def main():
import gradio as gr import gradio as gr
if gr.__version__ not in ['3.28.3','3.32.2']: assert False, "用 pip install -r requirements.txt 安装依赖" if gr.__version__ not in ['3.28.3','3.32.2']: assert False, "需要特殊依赖,请务必用 pip install -r requirements.txt 指令安装依赖,详情信息见requirements.txt"
from request_llm.bridge_all import predict from request_llm.bridge_all import predict
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, DummyWith from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, DummyWith
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到 # 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
@@ -197,7 +197,10 @@ def main():
threading.Thread(target=warm_up_modules, name="warm-up", daemon=True).start() threading.Thread(target=warm_up_modules, name="warm-up", daemon=True).start()
auto_opentab_delay() auto_opentab_delay()
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(server_name="0.0.0.0", server_port=PORT, auth=AUTHENTICATION, favicon_path="docs/logo.png") demo.queue(concurrency_count=CONCURRENT_COUNT).launch(
server_name="0.0.0.0", server_port=PORT,
favicon_path="docs/logo.png", auth=AUTHENTICATION,
blocked_paths=["config.py","config_private.py","docker-compose.yml","Dockerfile"])
# 如果需要在二级路径下运行 # 如果需要在二级路径下运行
# CUSTOM_PATH, = get_conf('CUSTOM_PATH') # CUSTOM_PATH, = get_conf('CUSTOM_PATH')
@@ -205,7 +208,8 @@ def main():
# from toolbox import run_gradio_in_subpath # from toolbox import run_gradio_in_subpath
# run_gradio_in_subpath(demo, auth=AUTHENTICATION, port=PORT, custom_path=CUSTOM_PATH) # run_gradio_in_subpath(demo, auth=AUTHENTICATION, port=PORT, custom_path=CUSTOM_PATH)
# else: # else:
# demo.launch(server_name="0.0.0.0", server_port=PORT, auth=AUTHENTICATION, favicon_path="docs/logo.png") # demo.launch(server_name="0.0.0.0", server_port=PORT, auth=AUTHENTICATION, favicon_path="docs/logo.png",
# blocked_paths=["config.py","config_private.py","docker-compose.yml","Dockerfile"])
if __name__ == "__main__": if __name__ == "__main__":
main() main()

查看文件

@@ -15,4 +15,4 @@ pymupdf
openai openai
numpy numpy
arxiv arxiv
rich rich

查看文件

@@ -1,6 +1,6 @@
import markdown import markdown
import importlib import importlib
import traceback import time
import inspect import inspect
import re import re
import os import os
@@ -70,6 +70,17 @@ def update_ui(chatbot, history, msg='正常', **kwargs): # 刷新界面
assert isinstance(chatbot, ChatBotWithCookies), "在传递chatbot的过程中不要将其丢弃。必要时,可用clear将其清空,然后用for+append循环重新赋值。" assert isinstance(chatbot, ChatBotWithCookies), "在传递chatbot的过程中不要将其丢弃。必要时,可用clear将其清空,然后用for+append循环重新赋值。"
yield chatbot.get_cookies(), chatbot, history, msg yield chatbot.get_cookies(), chatbot, history, msg
def update_ui_lastest_msg(lastmsg, chatbot, history, delay=1): # 刷新界面
"""
刷新用户界面
"""
if len(chatbot) == 0: chatbot.append(["update_ui_last_msg", lastmsg])
chatbot[-1] = list(chatbot[-1])
chatbot[-1][-1] = lastmsg
yield from update_ui(chatbot=chatbot, history=history)
time.sleep(delay)
def trimmed_format_exc(): def trimmed_format_exc():
import os, traceback import os, traceback
str = traceback.format_exc() str = traceback.format_exc()
@@ -83,7 +94,7 @@ def CatchException(f):
""" """
@wraps(f) @wraps(f)
def decorated(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT): def decorated(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT=-1):
try: try:
yield from f(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT) yield from f(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT)
except Exception as e: except Exception as e:
@@ -420,6 +431,13 @@ def find_recent_files(directory):
return recent_files return recent_files
def promote_file_to_downloadzone(file, rename_file=None):
# 将文件复制一份到下载区
import shutil
if rename_file is None: rename_file = f'{gen_time_str()}-{os.path.basename(file)}'
new_path = os.path.join(f'./gpt_log/', rename_file)
if os.path.exists(new_path): os.remove(new_path)
shutil.copyfile(file, new_path)
def on_file_uploaded(files, chatbot, txt, txt2, checkboxes): def on_file_uploaded(files, chatbot, txt, txt2, checkboxes):
""" """
@@ -728,6 +746,8 @@ def clip_history(inputs, history, tokenizer, max_token_limit):
其他小工具: 其他小工具:
- zip_folder: 把某个路径下所有文件压缩,然后转移到指定的另一个路径中gpt写的 - zip_folder: 把某个路径下所有文件压缩,然后转移到指定的另一个路径中gpt写的
- gen_time_str: 生成时间戳 - gen_time_str: 生成时间戳
- ProxyNetworkActivate: 临时地启动代理网络(如果有)
- objdump/objload: 快捷的调试函数
======================================================================== ========================================================================
""" """
@@ -762,11 +782,15 @@ def zip_folder(source_folder, dest_folder, zip_name):
print(f"Zip file created at {zip_file}") print(f"Zip file created at {zip_file}")
def zip_result(folder):
import time
t = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
zip_folder(folder, './gpt_log/', f'{t}-result.zip')
def gen_time_str(): def gen_time_str():
import time import time
return time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) return time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
class ProxyNetworkActivate(): class ProxyNetworkActivate():
""" """
这段代码定义了一个名为TempProxy的空上下文管理器, 用于给一小段代码上代理 这段代码定义了一个名为TempProxy的空上下文管理器, 用于给一小段代码上代理
@@ -775,12 +799,27 @@ class ProxyNetworkActivate():
from toolbox import get_conf from toolbox import get_conf
proxies, = get_conf('proxies') proxies, = get_conf('proxies')
if 'no_proxy' in os.environ: os.environ.pop('no_proxy') if 'no_proxy' in os.environ: os.environ.pop('no_proxy')
os.environ['HTTP_PROXY'] = proxies['http'] if proxies is not None:
os.environ['HTTPS_PROXY'] = proxies['https'] if 'http' in proxies: os.environ['HTTP_PROXY'] = proxies['http']
if 'https' in proxies: os.environ['HTTPS_PROXY'] = proxies['https']
return self return self
def __exit__(self, exc_type, exc_value, traceback): def __exit__(self, exc_type, exc_value, traceback):
os.environ['no_proxy'] = '*' os.environ['no_proxy'] = '*'
if 'HTTP_PROXY' in os.environ: os.environ.pop('HTTP_PROXY') if 'HTTP_PROXY' in os.environ: os.environ.pop('HTTP_PROXY')
if 'HTTPS_PROXY' in os.environ: os.environ.pop('HTTPS_PROXY') if 'HTTPS_PROXY' in os.environ: os.environ.pop('HTTPS_PROXY')
return return
def objdump(obj, file='objdump.tmp'):
import pickle
with open(file, 'wb+') as f:
pickle.dump(obj, f)
return
def objload(file='objdump.tmp'):
import pickle, os
if not os.path.exists(file):
return
with open(file, 'rb') as f:
return pickle.load(f)

查看文件

@@ -1,5 +1,5 @@
{ {
"version": 3.37, "version": 3.4,
"show_feature": true, "show_feature": true,
"new_feature": "修复gradio复制按钮BUG <-> 修复PDF翻译的BUG, 新增HTML中英双栏对照 <-> 添加了OpenAI图片生成插件 <-> 添加了OpenAI音频转文本总结插件 <-> 通过Slack添加对Claude的支持 <-> 提供复旦MOSS模型适配启用需额外依赖 <-> 提供docker-compose方案兼容LLAMA盘古RWKV等模型的后端 <-> 新增Live2D装饰 <-> 完善对话历史的保存/载入/删除 <-> 保存对话功能" "new_feature": "新增最强Arxiv论文翻译插件 <-> 修复gradio复制按钮BUG <-> 修复PDF翻译的BUG, 新增HTML中英双栏对照 <-> 添加了OpenAI图片生成插件 <-> 添加了OpenAI音频转文本总结插件 <-> 通过Slack添加对Claude的支持"
} }