镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-06 14:36:48 +00:00
比较提交
51 次代码提交
purge_prin
...
boyin_summ
| 作者 | SHA1 | 提交日期 | |
|---|---|---|---|
|
|
61676d0536 | ||
|
|
df2ef7940c | ||
|
|
c10f2b45e5 | ||
|
|
7e2ede2d12 | ||
|
|
ec10e2a3ac | ||
|
|
7474d43433 | ||
|
|
83489f9acf | ||
|
|
36e50d490d | ||
|
|
9172337695 | ||
|
|
180550b8f0 | ||
|
|
7497dcb852 | ||
|
|
5dab7b2290 | ||
|
|
23ef2ffb22 | ||
|
|
848d0f65c7 | ||
|
|
f0b0364f74 | ||
|
|
89dc6c7265 | ||
|
|
69f3755682 | ||
|
|
4727113243 | ||
|
|
21111d3bd0 | ||
|
|
701018f48c | ||
|
|
8733c4e1e9 | ||
|
|
8498ddf6bf | ||
|
|
3c3293818d | ||
|
|
310122f5a7 | ||
|
|
c83bf214d0 | ||
|
|
e34c49dce5 | ||
|
|
3890467c84 | ||
|
|
074b3c9828 | ||
|
|
b8e8457a01 | ||
|
|
2c93a24d7e | ||
|
|
e9af6ef3a0 | ||
|
|
5ae8981dbb | ||
|
|
adbed044e4 | ||
|
|
2fe5febaf0 | ||
|
|
f54d8e559a | ||
|
|
e68fc2bc69 | ||
|
|
f695d7f1da | ||
|
|
679352d896 | ||
|
|
12c9ab1e33 | ||
|
|
da4a5efc49 | ||
|
|
9ac450cfb6 | ||
|
|
172f9e220b | ||
|
|
a28b7d8475 | ||
|
|
7d3ed36899 | ||
|
|
a7bc5fa357 | ||
|
|
4f5dd9ebcf | ||
|
|
427feb99d8 | ||
|
|
a01ca93362 | ||
|
|
597c320808 | ||
|
|
18290fd138 | ||
|
|
0d0575a639 |
44
.github/workflows/build-with-jittorllms.yml
vendored
44
.github/workflows/build-with-jittorllms.yml
vendored
@@ -1,44 +0,0 @@
|
|||||||
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
|
|
||||||
name: build-with-jittorllms
|
|
||||||
|
|
||||||
on:
|
|
||||||
push:
|
|
||||||
branches:
|
|
||||||
- 'master'
|
|
||||||
|
|
||||||
env:
|
|
||||||
REGISTRY: ghcr.io
|
|
||||||
IMAGE_NAME: ${{ github.repository }}_jittorllms
|
|
||||||
|
|
||||||
jobs:
|
|
||||||
build-and-push-image:
|
|
||||||
runs-on: ubuntu-latest
|
|
||||||
permissions:
|
|
||||||
contents: read
|
|
||||||
packages: write
|
|
||||||
|
|
||||||
steps:
|
|
||||||
- name: Checkout repository
|
|
||||||
uses: actions/checkout@v3
|
|
||||||
|
|
||||||
- name: Log in to the Container registry
|
|
||||||
uses: docker/login-action@v2
|
|
||||||
with:
|
|
||||||
registry: ${{ env.REGISTRY }}
|
|
||||||
username: ${{ github.actor }}
|
|
||||||
password: ${{ secrets.GITHUB_TOKEN }}
|
|
||||||
|
|
||||||
- name: Extract metadata (tags, labels) for Docker
|
|
||||||
id: meta
|
|
||||||
uses: docker/metadata-action@v4
|
|
||||||
with:
|
|
||||||
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
|
|
||||||
|
|
||||||
- name: Build and push Docker image
|
|
||||||
uses: docker/build-push-action@v4
|
|
||||||
with:
|
|
||||||
context: .
|
|
||||||
push: true
|
|
||||||
file: docs/GithubAction+JittorLLMs
|
|
||||||
tags: ${{ steps.meta.outputs.tags }}
|
|
||||||
labels: ${{ steps.meta.outputs.labels }}
|
|
||||||
@@ -1,14 +1,14 @@
|
|||||||
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
|
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
|
||||||
name: build-with-all-capacity-beta
|
name: build-with-latex-arm
|
||||||
|
|
||||||
on:
|
on:
|
||||||
push:
|
push:
|
||||||
branches:
|
branches:
|
||||||
- 'master'
|
- "master"
|
||||||
|
|
||||||
env:
|
env:
|
||||||
REGISTRY: ghcr.io
|
REGISTRY: ghcr.io
|
||||||
IMAGE_NAME: ${{ github.repository }}_with_all_capacity_beta
|
IMAGE_NAME: ${{ github.repository }}_with_latex_arm
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
build-and-push-image:
|
build-and-push-image:
|
||||||
@@ -18,11 +18,17 @@ jobs:
|
|||||||
packages: write
|
packages: write
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
|
- name: Set up QEMU
|
||||||
|
uses: docker/setup-qemu-action@v3
|
||||||
|
|
||||||
|
- name: Set up Docker Buildx
|
||||||
|
uses: docker/setup-buildx-action@v3
|
||||||
|
|
||||||
- name: Checkout repository
|
- name: Checkout repository
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v4
|
||||||
|
|
||||||
- name: Log in to the Container registry
|
- name: Log in to the Container registry
|
||||||
uses: docker/login-action@v2
|
uses: docker/login-action@v3
|
||||||
with:
|
with:
|
||||||
registry: ${{ env.REGISTRY }}
|
registry: ${{ env.REGISTRY }}
|
||||||
username: ${{ github.actor }}
|
username: ${{ github.actor }}
|
||||||
@@ -35,10 +41,11 @@ jobs:
|
|||||||
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
|
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
|
||||||
|
|
||||||
- name: Build and push Docker image
|
- name: Build and push Docker image
|
||||||
uses: docker/build-push-action@v4
|
uses: docker/build-push-action@v6
|
||||||
with:
|
with:
|
||||||
context: .
|
context: .
|
||||||
push: true
|
push: true
|
||||||
file: docs/GithubAction+AllCapacityBeta
|
platforms: linux/arm64
|
||||||
|
file: docs/GithubAction+NoLocal+Latex
|
||||||
tags: ${{ steps.meta.outputs.tags }}
|
tags: ${{ steps.meta.outputs.tags }}
|
||||||
labels: ${{ steps.meta.outputs.labels }}
|
labels: ${{ steps.meta.outputs.labels }}
|
||||||
@@ -1,5 +1,6 @@
|
|||||||
> [!IMPORTANT]
|
> [!IMPORTANT]
|
||||||
> 2024.6.1: 版本3.80加入插件二级菜单功能(详见wiki)
|
> 2024.10.10: 突发停电,紧急恢复了提供[whl包](https://drive.google.com/file/d/19U_hsLoMrjOlQSzYS3pzWX9fTzyusArP/view?usp=sharing)的文件服务器
|
||||||
|
> 2024.10.8: 版本3.90加入对llama-index的初步支持,版本3.80加入插件二级菜单功能(详见wiki)
|
||||||
> 2024.5.1: 加入Doc2x翻译PDF论文的功能,[查看详情](https://github.com/binary-husky/gpt_academic/wiki/Doc2x)
|
> 2024.5.1: 加入Doc2x翻译PDF论文的功能,[查看详情](https://github.com/binary-husky/gpt_academic/wiki/Doc2x)
|
||||||
> 2024.3.11: 全力支持Qwen、GLM、DeepseekCoder等中文大语言模型! SoVits语音克隆模块,[查看详情](https://www.bilibili.com/video/BV1Rp421S7tF/)
|
> 2024.3.11: 全力支持Qwen、GLM、DeepseekCoder等中文大语言模型! SoVits语音克隆模块,[查看详情](https://www.bilibili.com/video/BV1Rp421S7tF/)
|
||||||
> 2024.1.17: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目完全开源免费,您可通过订阅[在线服务](https://github.com/binary-husky/gpt_academic/wiki/online)的方式鼓励本项目的发展。
|
> 2024.1.17: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目完全开源免费,您可通过订阅[在线服务](https://github.com/binary-husky/gpt_academic/wiki/online)的方式鼓励本项目的发展。
|
||||||
|
|||||||
@@ -1,24 +1,36 @@
|
|||||||
from loguru import logger
|
from loguru import logger
|
||||||
|
|
||||||
def check_proxy(proxies, return_ip=False):
|
def check_proxy(proxies, return_ip=False):
|
||||||
|
"""
|
||||||
|
检查代理配置并返回结果。
|
||||||
|
|
||||||
|
Args:
|
||||||
|
proxies (dict): 包含http和https代理配置的字典。
|
||||||
|
return_ip (bool, optional): 是否返回代理的IP地址。默认为False。
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str or None: 检查的结果信息或代理的IP地址(如果`return_ip`为True)。
|
||||||
|
"""
|
||||||
import requests
|
import requests
|
||||||
proxies_https = proxies['https'] if proxies is not None else '无'
|
proxies_https = proxies['https'] if proxies is not None else '无'
|
||||||
ip = None
|
ip = None
|
||||||
try:
|
try:
|
||||||
response = requests.get("https://ipapi.co/json/", proxies=proxies, timeout=4)
|
response = requests.get("https://ipapi.co/json/", proxies=proxies, timeout=4) # ⭐ 执行GET请求以获取代理信息
|
||||||
data = response.json()
|
data = response.json()
|
||||||
if 'country_name' in data:
|
if 'country_name' in data:
|
||||||
country = data['country_name']
|
country = data['country_name']
|
||||||
result = f"代理配置 {proxies_https}, 代理所在地:{country}"
|
result = f"代理配置 {proxies_https}, 代理所在地:{country}"
|
||||||
if 'ip' in data: ip = data['ip']
|
if 'ip' in data:
|
||||||
|
ip = data['ip']
|
||||||
elif 'error' in data:
|
elif 'error' in data:
|
||||||
alternative, ip = _check_with_backup_source(proxies)
|
alternative, ip = _check_with_backup_source(proxies) # ⭐ 调用备用方法检查代理配置
|
||||||
if alternative is None:
|
if alternative is None:
|
||||||
result = f"代理配置 {proxies_https}, 代理所在地:未知,IP查询频率受限"
|
result = f"代理配置 {proxies_https}, 代理所在地:未知,IP查询频率受限"
|
||||||
else:
|
else:
|
||||||
result = f"代理配置 {proxies_https}, 代理所在地:{alternative}"
|
result = f"代理配置 {proxies_https}, 代理所在地:{alternative}"
|
||||||
else:
|
else:
|
||||||
result = f"代理配置 {proxies_https}, 代理数据解析失败:{data}"
|
result = f"代理配置 {proxies_https}, 代理数据解析失败:{data}"
|
||||||
|
|
||||||
if not return_ip:
|
if not return_ip:
|
||||||
logger.warning(result)
|
logger.warning(result)
|
||||||
return result
|
return result
|
||||||
@@ -33,17 +45,33 @@ def check_proxy(proxies, return_ip=False):
|
|||||||
return ip
|
return ip
|
||||||
|
|
||||||
def _check_with_backup_source(proxies):
|
def _check_with_backup_source(proxies):
|
||||||
|
"""
|
||||||
|
通过备份源检查代理,并获取相应信息。
|
||||||
|
|
||||||
|
Args:
|
||||||
|
proxies (dict): 包含代理信息的字典。
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
tuple: 代理信息(geo)和IP地址(ip)的元组。
|
||||||
|
"""
|
||||||
import random, string, requests
|
import random, string, requests
|
||||||
random_string = ''.join(random.choices(string.ascii_letters + string.digits, k=32))
|
random_string = ''.join(random.choices(string.ascii_letters + string.digits, k=32))
|
||||||
try:
|
try:
|
||||||
res_json = requests.get(f"http://{random_string}.edns.ip-api.com/json", proxies=proxies, timeout=4).json()
|
res_json = requests.get(f"http://{random_string}.edns.ip-api.com/json", proxies=proxies, timeout=4).json() # ⭐ 执行代理检查和备份源请求
|
||||||
return res_json['dns']['geo'], res_json['dns']['ip']
|
return res_json['dns']['geo'], res_json['dns']['ip']
|
||||||
except:
|
except:
|
||||||
return None, None
|
return None, None
|
||||||
|
|
||||||
def backup_and_download(current_version, remote_version):
|
def backup_and_download(current_version, remote_version):
|
||||||
"""
|
"""
|
||||||
一键更新协议:备份和下载
|
一键更新协议:备份当前版本,下载远程版本并解压缩。
|
||||||
|
|
||||||
|
Args:
|
||||||
|
current_version (str): 当前版本号。
|
||||||
|
remote_version (str): 远程版本号。
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: 新版本目录的路径。
|
||||||
"""
|
"""
|
||||||
from toolbox import get_conf
|
from toolbox import get_conf
|
||||||
import shutil
|
import shutil
|
||||||
@@ -60,7 +88,7 @@ def backup_and_download(current_version, remote_version):
|
|||||||
proxies = get_conf('proxies')
|
proxies = get_conf('proxies')
|
||||||
try: r = requests.get('https://github.com/binary-husky/chatgpt_academic/archive/refs/heads/master.zip', proxies=proxies, stream=True)
|
try: r = requests.get('https://github.com/binary-husky/chatgpt_academic/archive/refs/heads/master.zip', proxies=proxies, stream=True)
|
||||||
except: r = requests.get('https://public.agent-matrix.com/publish/master.zip', proxies=proxies, stream=True)
|
except: r = requests.get('https://public.agent-matrix.com/publish/master.zip', proxies=proxies, stream=True)
|
||||||
zip_file_path = backup_dir+'/master.zip'
|
zip_file_path = backup_dir+'/master.zip' # ⭐ 保存备份文件的路径
|
||||||
with open(zip_file_path, 'wb+') as f:
|
with open(zip_file_path, 'wb+') as f:
|
||||||
f.write(r.content)
|
f.write(r.content)
|
||||||
dst_path = new_version_dir
|
dst_path = new_version_dir
|
||||||
@@ -76,6 +104,17 @@ def backup_and_download(current_version, remote_version):
|
|||||||
def patch_and_restart(path):
|
def patch_and_restart(path):
|
||||||
"""
|
"""
|
||||||
一键更新协议:覆盖和重启
|
一键更新协议:覆盖和重启
|
||||||
|
|
||||||
|
Args:
|
||||||
|
path (str): 新版本代码所在的路径
|
||||||
|
|
||||||
|
注意事项:
|
||||||
|
如果您的程序没有使用config_private.py私密配置文件,则会将config.py重命名为config_private.py以避免配置丢失。
|
||||||
|
|
||||||
|
更新流程:
|
||||||
|
- 复制最新版本代码到当前目录
|
||||||
|
- 更新pip包依赖
|
||||||
|
- 如果更新失败,则提示手动安装依赖库并重启
|
||||||
"""
|
"""
|
||||||
from distutils import dir_util
|
from distutils import dir_util
|
||||||
import shutil
|
import shutil
|
||||||
@@ -84,32 +123,43 @@ def patch_and_restart(path):
|
|||||||
import time
|
import time
|
||||||
import glob
|
import glob
|
||||||
from shared_utils.colorful import log亮黄, log亮绿, log亮红
|
from shared_utils.colorful import log亮黄, log亮绿, log亮红
|
||||||
# if not using config_private, move origin config.py as config_private.py
|
|
||||||
if not os.path.exists('config_private.py'):
|
if not os.path.exists('config_private.py'):
|
||||||
log亮黄('由于您没有设置config_private.py私密配置,现将您的现有配置移动至config_private.py以防止配置丢失,',
|
log亮黄('由于您没有设置config_private.py私密配置,现将您的现有配置移动至config_private.py以防止配置丢失,',
|
||||||
'另外您可以随时在history子文件夹下找回旧版的程序。')
|
'另外您可以随时在history子文件夹下找回旧版的程序。')
|
||||||
shutil.copyfile('config.py', 'config_private.py')
|
shutil.copyfile('config.py', 'config_private.py')
|
||||||
|
|
||||||
path_new_version = glob.glob(path + '/*-master')[0]
|
path_new_version = glob.glob(path + '/*-master')[0]
|
||||||
dir_util.copy_tree(path_new_version, './')
|
dir_util.copy_tree(path_new_version, './') # ⭐ 将最新版本代码复制到当前目录
|
||||||
|
|
||||||
log亮绿('代码已经更新,即将更新pip包依赖……')
|
log亮绿('代码已经更新,即将更新pip包依赖……')
|
||||||
for i in reversed(range(5)): time.sleep(1); log亮绿(i)
|
for i in reversed(range(5)): time.sleep(1); log亮绿(i)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
import subprocess
|
import subprocess
|
||||||
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-r', 'requirements.txt'])
|
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-r', 'requirements.txt'])
|
||||||
except:
|
except:
|
||||||
log亮红('pip包依赖安装出现问题,需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
|
log亮红('pip包依赖安装出现问题,需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
|
||||||
|
|
||||||
log亮绿('更新完成,您可以随时在history子文件夹下找回旧版的程序,5s之后重启')
|
log亮绿('更新完成,您可以随时在history子文件夹下找回旧版的程序,5s之后重启')
|
||||||
log亮红('假如重启失败,您可能需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
|
log亮红('假如重启失败,您可能需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
|
||||||
log亮绿(' ------------------------------ -----------------------------------')
|
log亮绿(' ------------------------------ -----------------------------------')
|
||||||
|
|
||||||
for i in reversed(range(8)): time.sleep(1); log亮绿(i)
|
for i in reversed(range(8)): time.sleep(1); log亮绿(i)
|
||||||
os.execl(sys.executable, sys.executable, *sys.argv)
|
os.execl(sys.executable, sys.executable, *sys.argv) # 重启程序
|
||||||
|
|
||||||
|
|
||||||
def get_current_version():
|
def get_current_version():
|
||||||
|
"""
|
||||||
|
获取当前的版本号。
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: 当前的版本号。如果无法获取版本号,则返回空字符串。
|
||||||
|
"""
|
||||||
import json
|
import json
|
||||||
try:
|
try:
|
||||||
with open('./version', 'r', encoding='utf8') as f:
|
with open('./version', 'r', encoding='utf8') as f:
|
||||||
current_version = json.loads(f.read())['version']
|
current_version = json.loads(f.read())['version'] # ⭐ 从读取的json数据中提取版本号
|
||||||
except:
|
except:
|
||||||
current_version = ""
|
current_version = ""
|
||||||
return current_version
|
return current_version
|
||||||
@@ -118,6 +168,12 @@ def get_current_version():
|
|||||||
def auto_update(raise_error=False):
|
def auto_update(raise_error=False):
|
||||||
"""
|
"""
|
||||||
一键更新协议:查询版本和用户意见
|
一键更新协议:查询版本和用户意见
|
||||||
|
|
||||||
|
Args:
|
||||||
|
raise_error (bool, optional): 是否在出错时抛出错误。默认为 False。
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
None
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
from toolbox import get_conf
|
from toolbox import get_conf
|
||||||
@@ -137,13 +193,13 @@ def auto_update(raise_error=False):
|
|||||||
current_version = json.loads(current_version)['version']
|
current_version = json.loads(current_version)['version']
|
||||||
if (remote_version - current_version) >= 0.01-1e-5:
|
if (remote_version - current_version) >= 0.01-1e-5:
|
||||||
from shared_utils.colorful import log亮黄
|
from shared_utils.colorful import log亮黄
|
||||||
log亮黄(f'\n新版本可用。新版本:{remote_version},当前版本:{current_version}。{new_feature}')
|
log亮黄(f'\n新版本可用。新版本:{remote_version},当前版本:{current_version}。{new_feature}') # ⭐ 在控制台打印新版本信息
|
||||||
logger.info('(1)Github更新地址:\nhttps://github.com/binary-husky/chatgpt_academic\n')
|
logger.info('(1)Github更新地址:\nhttps://github.com/binary-husky/chatgpt_academic\n')
|
||||||
user_instruction = input('(2)是否一键更新代码(Y+回车=确认,输入其他/无输入+回车=不更新)?')
|
user_instruction = input('(2)是否一键更新代码(Y+回车=确认,输入其他/无输入+回车=不更新)?')
|
||||||
if user_instruction in ['Y', 'y']:
|
if user_instruction in ['Y', 'y']:
|
||||||
path = backup_and_download(current_version, remote_version)
|
path = backup_and_download(current_version, remote_version) # ⭐ 备份并下载文件
|
||||||
try:
|
try:
|
||||||
patch_and_restart(path)
|
patch_and_restart(path) # ⭐ 执行覆盖并重启操作
|
||||||
except:
|
except:
|
||||||
msg = '更新失败。'
|
msg = '更新失败。'
|
||||||
if raise_error:
|
if raise_error:
|
||||||
@@ -163,6 +219,9 @@ def auto_update(raise_error=False):
|
|||||||
logger.info(msg)
|
logger.info(msg)
|
||||||
|
|
||||||
def warm_up_modules():
|
def warm_up_modules():
|
||||||
|
"""
|
||||||
|
预热模块,加载特定模块并执行预热操作。
|
||||||
|
"""
|
||||||
logger.info('正在执行一些模块的预热 ...')
|
logger.info('正在执行一些模块的预热 ...')
|
||||||
from toolbox import ProxyNetworkActivate
|
from toolbox import ProxyNetworkActivate
|
||||||
from request_llms.bridge_all import model_info
|
from request_llms.bridge_all import model_info
|
||||||
@@ -173,6 +232,16 @@ def warm_up_modules():
|
|||||||
enc.encode("模块预热", disallowed_special=())
|
enc.encode("模块预热", disallowed_special=())
|
||||||
|
|
||||||
def warm_up_vectordb():
|
def warm_up_vectordb():
|
||||||
|
"""
|
||||||
|
执行一些模块的预热操作。
|
||||||
|
|
||||||
|
本函数主要用于执行一些模块的预热操作,确保在后续的流程中能够顺利运行。
|
||||||
|
|
||||||
|
⭐ 关键作用:预热模块
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
None
|
||||||
|
"""
|
||||||
logger.info('正在执行一些模块的预热 ...')
|
logger.info('正在执行一些模块的预热 ...')
|
||||||
from toolbox import ProxyNetworkActivate
|
from toolbox import ProxyNetworkActivate
|
||||||
with ProxyNetworkActivate("Warmup_Modules"):
|
with ProxyNetworkActivate("Warmup_Modules"):
|
||||||
@@ -185,4 +254,4 @@ if __name__ == '__main__':
|
|||||||
os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
|
os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
|
||||||
from toolbox import get_conf
|
from toolbox import get_conf
|
||||||
proxies = get_conf('proxies')
|
proxies = get_conf('proxies')
|
||||||
check_proxy(proxies)
|
check_proxy(proxies)
|
||||||
@@ -57,9 +57,9 @@ EMBEDDING_MODEL = "text-embedding-3-small"
|
|||||||
# "yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview",
|
# "yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview",
|
||||||
# ]
|
# ]
|
||||||
# --- --- --- ---
|
# --- --- --- ---
|
||||||
# 此外,您还可以在接入one-api/vllm/ollama时,
|
# 此外,您还可以在接入one-api/vllm/ollama/Openroute时,
|
||||||
# 使用"one-api-*","vllm-*","ollama-*"前缀直接使用非标准方式接入的模型,例如
|
# 使用"one-api-*","vllm-*","ollama-*","openrouter-*"前缀直接使用非标准方式接入的模型,例如
|
||||||
# AVAIL_LLM_MODELS = ["one-api-claude-3-sonnet-20240229(max_token=100000)", "ollama-phi3(max_token=4096)"]
|
# AVAIL_LLM_MODELS = ["one-api-claude-3-sonnet-20240229(max_token=100000)", "ollama-phi3(max_token=4096)","openrouter-openai/gpt-4o-mini","openrouter-openai/chatgpt-4o-latest"]
|
||||||
# --- --- --- ---
|
# --- --- --- ---
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -17,7 +17,7 @@ def get_core_functions():
|
|||||||
text_show_english=
|
text_show_english=
|
||||||
r"Below is a paragraph from an academic paper. Polish the writing to meet the academic style, "
|
r"Below is a paragraph from an academic paper. Polish the writing to meet the academic style, "
|
||||||
r"improve the spelling, grammar, clarity, concision and overall readability. When necessary, rewrite the whole sentence. "
|
r"improve the spelling, grammar, clarity, concision and overall readability. When necessary, rewrite the whole sentence. "
|
||||||
r"Firstly, you should provide the polished paragraph. "
|
r"Firstly, you should provide the polished paragraph (in English). "
|
||||||
r"Secondly, you should list all your modification and explain the reasons to do so in markdown table.",
|
r"Secondly, you should list all your modification and explain the reasons to do so in markdown table.",
|
||||||
text_show_chinese=
|
text_show_chinese=
|
||||||
r"作为一名中文学术论文写作改进助理,你的任务是改进所提供文本的拼写、语法、清晰、简洁和整体可读性,"
|
r"作为一名中文学术论文写作改进助理,你的任务是改进所提供文本的拼写、语法、清晰、简洁和整体可读性,"
|
||||||
|
|||||||
@@ -6,7 +6,6 @@ from loguru import logger
|
|||||||
def get_crazy_functions():
|
def get_crazy_functions():
|
||||||
from crazy_functions.读文章写摘要 import 读文章写摘要
|
from crazy_functions.读文章写摘要 import 读文章写摘要
|
||||||
from crazy_functions.生成函数注释 import 批量生成函数注释
|
from crazy_functions.生成函数注释 import 批量生成函数注释
|
||||||
from crazy_functions.Rag_Interface import Rag问答
|
|
||||||
from crazy_functions.SourceCode_Analyse import 解析项目本身
|
from crazy_functions.SourceCode_Analyse import 解析项目本身
|
||||||
from crazy_functions.SourceCode_Analyse import 解析一个Python项目
|
from crazy_functions.SourceCode_Analyse import 解析一个Python项目
|
||||||
from crazy_functions.SourceCode_Analyse import 解析一个Matlab项目
|
from crazy_functions.SourceCode_Analyse import 解析一个Matlab项目
|
||||||
@@ -22,13 +21,13 @@ def get_crazy_functions():
|
|||||||
from crazy_functions.询问多个大语言模型 import 同时问询
|
from crazy_functions.询问多个大语言模型 import 同时问询
|
||||||
from crazy_functions.SourceCode_Analyse import 解析一个Lua项目
|
from crazy_functions.SourceCode_Analyse import 解析一个Lua项目
|
||||||
from crazy_functions.SourceCode_Analyse import 解析一个CSharp项目
|
from crazy_functions.SourceCode_Analyse import 解析一个CSharp项目
|
||||||
from crazy_functions.总结word文档 import 总结word文档
|
|
||||||
from crazy_functions.解析JupyterNotebook import 解析ipynb文件
|
from crazy_functions.解析JupyterNotebook import 解析ipynb文件
|
||||||
from crazy_functions.Conversation_To_File import 载入对话历史存档
|
from crazy_functions.Conversation_To_File import 载入对话历史存档
|
||||||
from crazy_functions.Conversation_To_File import 对话历史存档
|
from crazy_functions.Conversation_To_File import 对话历史存档
|
||||||
from crazy_functions.Conversation_To_File import Conversation_To_File_Wrap
|
from crazy_functions.Conversation_To_File import Conversation_To_File_Wrap
|
||||||
from crazy_functions.Conversation_To_File import 删除所有本地对话历史记录
|
from crazy_functions.Conversation_To_File import 删除所有本地对话历史记录
|
||||||
from crazy_functions.辅助功能 import 清除缓存
|
from crazy_functions.辅助功能 import 清除缓存
|
||||||
|
from crazy_functions.批量文件询问 import 批量文件询问
|
||||||
from crazy_functions.Markdown_Translate import Markdown英译中
|
from crazy_functions.Markdown_Translate import Markdown英译中
|
||||||
from crazy_functions.批量总结PDF文档 import 批量总结PDF文档
|
from crazy_functions.批量总结PDF文档 import 批量总结PDF文档
|
||||||
from crazy_functions.PDF_Translate import 批量翻译PDF文档
|
from crazy_functions.PDF_Translate import 批量翻译PDF文档
|
||||||
@@ -50,15 +49,9 @@ def get_crazy_functions():
|
|||||||
from crazy_functions.Image_Generate import 图片生成_DALLE2, 图片生成_DALLE3, 图片修改_DALLE2
|
from crazy_functions.Image_Generate import 图片生成_DALLE2, 图片生成_DALLE3, 图片修改_DALLE2
|
||||||
from crazy_functions.Image_Generate_Wrap import ImageGen_Wrap
|
from crazy_functions.Image_Generate_Wrap import ImageGen_Wrap
|
||||||
from crazy_functions.SourceCode_Comment import 注释Python项目
|
from crazy_functions.SourceCode_Comment import 注释Python项目
|
||||||
|
from crazy_functions.SourceCode_Comment_Wrap import SourceCodeComment_Wrap
|
||||||
|
|
||||||
function_plugins = {
|
function_plugins = {
|
||||||
"Rag智能召回": {
|
|
||||||
"Group": "对话",
|
|
||||||
"Color": "stop",
|
|
||||||
"AsButton": False,
|
|
||||||
"Info": "将问答数据记录到向量库中,作为长期参考。",
|
|
||||||
"Function": HotReload(Rag问答),
|
|
||||||
},
|
|
||||||
"虚空终端": {
|
"虚空终端": {
|
||||||
"Group": "对话|编程|学术|智能体",
|
"Group": "对话|编程|学术|智能体",
|
||||||
"Color": "stop",
|
"Color": "stop",
|
||||||
@@ -79,6 +72,7 @@ def get_crazy_functions():
|
|||||||
"AsButton": False,
|
"AsButton": False,
|
||||||
"Info": "上传一系列python源文件(或者压缩包), 为这些代码添加docstring | 输入参数为路径",
|
"Info": "上传一系列python源文件(或者压缩包), 为这些代码添加docstring | 输入参数为路径",
|
||||||
"Function": HotReload(注释Python项目),
|
"Function": HotReload(注释Python项目),
|
||||||
|
"Class": SourceCodeComment_Wrap,
|
||||||
},
|
},
|
||||||
"载入对话历史存档(先上传存档或输入路径)": {
|
"载入对话历史存档(先上传存档或输入路径)": {
|
||||||
"Group": "对话",
|
"Group": "对话",
|
||||||
@@ -116,12 +110,13 @@ def get_crazy_functions():
|
|||||||
"Function": HotReload(Latex翻译中文并重新编译PDF), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
|
"Function": HotReload(Latex翻译中文并重新编译PDF), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
|
||||||
"Class": Arxiv_Localize, # 新一代插件需要注册Class
|
"Class": Arxiv_Localize, # 新一代插件需要注册Class
|
||||||
},
|
},
|
||||||
"批量总结Word文档": {
|
"批量文件询问": {
|
||||||
"Group": "学术",
|
"Group": "学术",
|
||||||
"Color": "stop",
|
"Color": "stop",
|
||||||
"AsButton": False,
|
"AsButton": False,
|
||||||
"Info": "批量总结word文档 | 输入参数为路径",
|
"AdvancedArgs": True,
|
||||||
"Function": HotReload(总结word文档),
|
"Info": "通过在高级参数区写入prompt,可自定义询问逻辑,默认情况下为总结逻辑 | 输入参数为路径",
|
||||||
|
"Function": HotReload(批量文件询问),
|
||||||
},
|
},
|
||||||
"解析整个Matlab项目": {
|
"解析整个Matlab项目": {
|
||||||
"Group": "编程",
|
"Group": "编程",
|
||||||
@@ -707,6 +702,31 @@ def get_crazy_functions():
|
|||||||
logger.error(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
logger.error("Load function plugin failed")
|
logger.error("Load function plugin failed")
|
||||||
|
|
||||||
|
try:
|
||||||
|
from crazy_functions.Rag_Interface import Rag问答
|
||||||
|
|
||||||
|
function_plugins.update(
|
||||||
|
{
|
||||||
|
"Rag智能召回": {
|
||||||
|
"Group": "对话",
|
||||||
|
"Color": "stop",
|
||||||
|
"AsButton": False,
|
||||||
|
"Info": "将问答数据记录到向量库中,作为长期参考。",
|
||||||
|
"Function": HotReload(Rag问答),
|
||||||
|
},
|
||||||
|
}
|
||||||
|
)
|
||||||
|
except:
|
||||||
|
logger.error(trimmed_format_exc())
|
||||||
|
logger.error("Load function plugin failed")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# try:
|
# try:
|
||||||
# from crazy_functions.高级功能函数模板 import 测试图表渲染
|
# from crazy_functions.高级功能函数模板 import 测试图表渲染
|
||||||
# function_plugins.update({
|
# function_plugins.update({
|
||||||
|
|||||||
@@ -3,7 +3,7 @@ from toolbox import CatchException, report_exception, update_ui_lastest_msg, zip
|
|||||||
from functools import partial
|
from functools import partial
|
||||||
from loguru import logger
|
from loguru import logger
|
||||||
|
|
||||||
import glob, os, requests, time, json, tarfile
|
import glob, os, requests, time, json, tarfile, threading
|
||||||
|
|
||||||
pj = os.path.join
|
pj = os.path.join
|
||||||
ARXIV_CACHE_DIR = get_conf("ARXIV_CACHE_DIR")
|
ARXIV_CACHE_DIR = get_conf("ARXIV_CACHE_DIR")
|
||||||
@@ -138,25 +138,43 @@ def arxiv_download(chatbot, history, txt, allow_cache=True):
|
|||||||
cached_translation_pdf = check_cached_translation_pdf(arxiv_id)
|
cached_translation_pdf = check_cached_translation_pdf(arxiv_id)
|
||||||
if cached_translation_pdf and allow_cache: return cached_translation_pdf, arxiv_id
|
if cached_translation_pdf and allow_cache: return cached_translation_pdf, arxiv_id
|
||||||
|
|
||||||
url_tar = url_.replace('/abs/', '/e-print/')
|
|
||||||
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'e-print')
|
|
||||||
extract_dst = pj(ARXIV_CACHE_DIR, arxiv_id, 'extract')
|
extract_dst = pj(ARXIV_CACHE_DIR, arxiv_id, 'extract')
|
||||||
os.makedirs(translation_dir, exist_ok=True)
|
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'e-print')
|
||||||
|
|
||||||
# <-------------- download arxiv source file ------------->
|
|
||||||
dst = pj(translation_dir, arxiv_id + '.tar')
|
dst = pj(translation_dir, arxiv_id + '.tar')
|
||||||
if os.path.exists(dst):
|
os.makedirs(translation_dir, exist_ok=True)
|
||||||
yield from update_ui_lastest_msg("调用缓存", chatbot=chatbot, history=history) # 刷新界面
|
# <-------------- download arxiv source file ------------->
|
||||||
|
|
||||||
|
def fix_url_and_download():
|
||||||
|
# for url_tar in [url_.replace('/abs/', '/e-print/'), url_.replace('/abs/', '/src/')]:
|
||||||
|
for url_tar in [url_.replace('/abs/', '/src/'), url_.replace('/abs/', '/e-print/')]:
|
||||||
|
proxies = get_conf('proxies')
|
||||||
|
r = requests.get(url_tar, proxies=proxies)
|
||||||
|
if r.status_code == 200:
|
||||||
|
with open(dst, 'wb+') as f:
|
||||||
|
f.write(r.content)
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
if os.path.exists(dst) and allow_cache:
|
||||||
|
yield from update_ui_lastest_msg(f"调用缓存 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
success = True
|
||||||
else:
|
else:
|
||||||
yield from update_ui_lastest_msg("开始下载", chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui_lastest_msg(f"开始下载 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
||||||
proxies = get_conf('proxies')
|
success = fix_url_and_download()
|
||||||
r = requests.get(url_tar, proxies=proxies)
|
yield from update_ui_lastest_msg(f"下载完成 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
||||||
with open(dst, 'wb+') as f:
|
|
||||||
f.write(r.content)
|
|
||||||
|
if not success:
|
||||||
|
yield from update_ui_lastest_msg(f"下载失败 {arxiv_id}", chatbot=chatbot, history=history)
|
||||||
|
raise tarfile.ReadError(f"论文下载失败 {arxiv_id}")
|
||||||
|
|
||||||
# <-------------- extract file ------------->
|
# <-------------- extract file ------------->
|
||||||
yield from update_ui_lastest_msg("下载完成", chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
from toolbox import extract_archive
|
from toolbox import extract_archive
|
||||||
extract_archive(file_path=dst, dest_dir=extract_dst)
|
try:
|
||||||
|
extract_archive(file_path=dst, dest_dir=extract_dst)
|
||||||
|
except tarfile.ReadError:
|
||||||
|
os.remove(dst)
|
||||||
|
raise tarfile.ReadError(f"论文下载失败")
|
||||||
return extract_dst, arxiv_id
|
return extract_dst, arxiv_id
|
||||||
|
|
||||||
|
|
||||||
@@ -320,11 +338,17 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
# <-------------- more requirements ------------->
|
# <-------------- more requirements ------------->
|
||||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||||
more_req = plugin_kwargs.get("advanced_arg", "")
|
more_req = plugin_kwargs.get("advanced_arg", "")
|
||||||
no_cache = more_req.startswith("--no-cache")
|
|
||||||
if no_cache: more_req.lstrip("--no-cache")
|
no_cache = ("--no-cache" in more_req)
|
||||||
|
if no_cache: more_req = more_req.replace("--no-cache", "").strip()
|
||||||
|
|
||||||
|
allow_gptac_cloud_io = ("--allow-cloudio" in more_req) # 从云端下载翻译结果,以及上传翻译结果到云端
|
||||||
|
if allow_gptac_cloud_io: more_req = more_req.replace("--allow-cloudio", "").strip()
|
||||||
|
|
||||||
allow_cache = not no_cache
|
allow_cache = not no_cache
|
||||||
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
|
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
|
||||||
|
|
||||||
|
|
||||||
# <-------------- check deps ------------->
|
# <-------------- check deps ------------->
|
||||||
try:
|
try:
|
||||||
import glob, os, time, subprocess
|
import glob, os, time, subprocess
|
||||||
@@ -351,6 +375,20 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
return
|
return
|
||||||
|
|
||||||
|
# #################################################################
|
||||||
|
if allow_gptac_cloud_io and arxiv_id:
|
||||||
|
# 访问 GPTAC学术云,查询云端是否存在该论文的翻译版本
|
||||||
|
from crazy_functions.latex_fns.latex_actions import check_gptac_cloud
|
||||||
|
success, downloaded = check_gptac_cloud(arxiv_id, chatbot)
|
||||||
|
if success:
|
||||||
|
chatbot.append([
|
||||||
|
f"检测到GPTAC云端存在翻译版本, 如果不满意翻译结果, 请禁用云端分享, 然后重新执行。",
|
||||||
|
None
|
||||||
|
])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
return
|
||||||
|
#################################################################
|
||||||
|
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
else:
|
else:
|
||||||
@@ -388,14 +426,21 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
# <-------------- zip PDF ------------->
|
# <-------------- zip PDF ------------->
|
||||||
zip_res = zip_result(project_folder)
|
zip_res = zip_result(project_folder)
|
||||||
if success:
|
if success:
|
||||||
|
if allow_gptac_cloud_io and arxiv_id:
|
||||||
|
# 如果用户允许,我们将翻译好的arxiv论文PDF上传到GPTAC学术云
|
||||||
|
from crazy_functions.latex_fns.latex_actions import upload_to_gptac_cloud_if_user_allow
|
||||||
|
threading.Thread(target=upload_to_gptac_cloud_if_user_allow,
|
||||||
|
args=(chatbot, arxiv_id), daemon=True).start()
|
||||||
|
|
||||||
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
||||||
yield from update_ui(chatbot=chatbot, history=history);
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
time.sleep(1) # 刷新界面
|
time.sleep(1) # 刷新界面
|
||||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
chatbot.append((f"失败了",
|
chatbot.append((f"失败了",
|
||||||
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体(见Github wiki) ...'))
|
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体(见Github wiki) ...'))
|
||||||
yield from update_ui(chatbot=chatbot, history=history);
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
time.sleep(1) # 刷新界面
|
time.sleep(1) # 刷新界面
|
||||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||||
|
|
||||||
|
|||||||
@@ -30,6 +30,8 @@ class Arxiv_Localize(GptAcademicPluginTemplate):
|
|||||||
default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步
|
default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步
|
||||||
"allow_cache":
|
"allow_cache":
|
||||||
ArgProperty(title="是否允许从缓存中调取结果", options=["允许缓存", "从头执行"], default_value="允许缓存", description="无", type="dropdown").model_dump_json(),
|
ArgProperty(title="是否允许从缓存中调取结果", options=["允许缓存", "从头执行"], default_value="允许缓存", description="无", type="dropdown").model_dump_json(),
|
||||||
|
"allow_cloudio":
|
||||||
|
ArgProperty(title="是否允许从GPTAC学术云下载(或者上传)翻译结果(仅针对Arxiv论文)", options=["允许", "禁止"], default_value="禁止", description="共享文献,互助互利", type="dropdown").model_dump_json(),
|
||||||
}
|
}
|
||||||
return gui_definition
|
return gui_definition
|
||||||
|
|
||||||
@@ -38,9 +40,14 @@ class Arxiv_Localize(GptAcademicPluginTemplate):
|
|||||||
执行插件
|
执行插件
|
||||||
"""
|
"""
|
||||||
allow_cache = plugin_kwargs["allow_cache"]
|
allow_cache = plugin_kwargs["allow_cache"]
|
||||||
|
allow_cloudio = plugin_kwargs["allow_cloudio"]
|
||||||
advanced_arg = plugin_kwargs["advanced_arg"]
|
advanced_arg = plugin_kwargs["advanced_arg"]
|
||||||
|
|
||||||
if allow_cache == "从头执行": plugin_kwargs["advanced_arg"] = "--no-cache " + plugin_kwargs["advanced_arg"]
|
if allow_cache == "从头执行": plugin_kwargs["advanced_arg"] = "--no-cache " + plugin_kwargs["advanced_arg"]
|
||||||
|
|
||||||
|
# 从云端下载翻译结果,以及上传翻译结果到云端;人人为我,我为人人。
|
||||||
|
if allow_cloudio == "允许": plugin_kwargs["advanced_arg"] = "--allow-cloudio " + plugin_kwargs["advanced_arg"]
|
||||||
|
|
||||||
yield from Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
yield from Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -65,7 +65,7 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
pfg.file_contents.append(file_content)
|
pfg.file_contents.append(file_content)
|
||||||
|
|
||||||
# <-------- 拆分过长的Markdown文件 ---------->
|
# <-------- 拆分过长的Markdown文件 ---------->
|
||||||
pfg.run_file_split(max_token_limit=2048)
|
pfg.run_file_split(max_token_limit=1024)
|
||||||
n_split = len(pfg.sp_file_contents)
|
n_split = len(pfg.sp_file_contents)
|
||||||
|
|
||||||
# <-------- 多线程翻译开始 ---------->
|
# <-------- 多线程翻译开始 ---------->
|
||||||
|
|||||||
@@ -2,20 +2,7 @@ from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_
|
|||||||
from crazy_functions.crazy_utils import input_clipping
|
from crazy_functions.crazy_utils import input_clipping
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
|
|
||||||
VECTOR_STORE_TYPE = "Milvus"
|
|
||||||
|
|
||||||
if VECTOR_STORE_TYPE == "Milvus":
|
|
||||||
try:
|
|
||||||
from crazy_functions.rag_fns.milvus_worker import MilvusRagWorker as LlamaIndexRagWorker
|
|
||||||
except:
|
|
||||||
VECTOR_STORE_TYPE = "Simple"
|
|
||||||
|
|
||||||
if VECTOR_STORE_TYPE == "Simple":
|
|
||||||
from crazy_functions.rag_fns.llama_index_worker import LlamaIndexRagWorker
|
|
||||||
|
|
||||||
|
|
||||||
RAG_WORKER_REGISTER = {}
|
RAG_WORKER_REGISTER = {}
|
||||||
|
|
||||||
MAX_HISTORY_ROUND = 5
|
MAX_HISTORY_ROUND = 5
|
||||||
MAX_CONTEXT_TOKEN_LIMIT = 4096
|
MAX_CONTEXT_TOKEN_LIMIT = 4096
|
||||||
REMEMBER_PREVIEW = 1000
|
REMEMBER_PREVIEW = 1000
|
||||||
@@ -23,6 +10,16 @@ REMEMBER_PREVIEW = 1000
|
|||||||
@CatchException
|
@CatchException
|
||||||
def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
|
|
||||||
|
# import vector store lib
|
||||||
|
VECTOR_STORE_TYPE = "Milvus"
|
||||||
|
if VECTOR_STORE_TYPE == "Milvus":
|
||||||
|
try:
|
||||||
|
from crazy_functions.rag_fns.milvus_worker import MilvusRagWorker as LlamaIndexRagWorker
|
||||||
|
except:
|
||||||
|
VECTOR_STORE_TYPE = "Simple"
|
||||||
|
if VECTOR_STORE_TYPE == "Simple":
|
||||||
|
from crazy_functions.rag_fns.llama_index_worker import LlamaIndexRagWorker
|
||||||
|
|
||||||
# 1. we retrieve rag worker from global context
|
# 1. we retrieve rag worker from global context
|
||||||
user_name = chatbot.get_user()
|
user_name = chatbot.get_user()
|
||||||
checkpoint_dir = get_log_folder(user_name, plugin_name='experimental_rag')
|
checkpoint_dir = get_log_folder(user_name, plugin_name='experimental_rag')
|
||||||
|
|||||||
@@ -1,7 +1,13 @@
|
|||||||
|
import pickle, os, random
|
||||||
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
|
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
|
||||||
from crazy_functions.crazy_utils import input_clipping
|
from crazy_functions.crazy_utils import input_clipping
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
import pickle, os
|
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||||
|
from crazy_functions.json_fns.select_tool import structure_output, select_tool
|
||||||
|
from pydantic import BaseModel, Field
|
||||||
|
from loguru import logger
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
|
||||||
SOCIAL_NETWOK_WORKER_REGISTER = {}
|
SOCIAL_NETWOK_WORKER_REGISTER = {}
|
||||||
|
|
||||||
@@ -9,7 +15,7 @@ class SocialNetwork():
|
|||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.people = []
|
self.people = []
|
||||||
|
|
||||||
class SocialNetworkWorker():
|
class SaveAndLoad():
|
||||||
def __init__(self, user_name, llm_kwargs, auto_load_checkpoint=True, checkpoint_dir=None) -> None:
|
def __init__(self, user_name, llm_kwargs, auto_load_checkpoint=True, checkpoint_dir=None) -> None:
|
||||||
self.user_name = user_name
|
self.user_name = user_name
|
||||||
self.checkpoint_dir = checkpoint_dir
|
self.checkpoint_dir = checkpoint_dir
|
||||||
@@ -41,8 +47,105 @@ class SocialNetworkWorker():
|
|||||||
return SocialNetwork()
|
return SocialNetwork()
|
||||||
|
|
||||||
|
|
||||||
|
class Friend(BaseModel):
|
||||||
|
friend_name: str = Field(description="name of a friend")
|
||||||
|
friend_description: str = Field(description="description of a friend (everything about this friend)")
|
||||||
|
friend_relationship: str = Field(description="The relationship with a friend (e.g. friend, family, colleague)")
|
||||||
|
|
||||||
|
class FriendList(BaseModel):
|
||||||
|
friends_list: List[Friend] = Field(description="The list of friends")
|
||||||
|
|
||||||
|
|
||||||
|
class SocialNetworkWorker(SaveAndLoad):
|
||||||
|
def ai_socail_advice(self, prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def ai_remove_friend(self, prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def ai_list_friends(self, prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def ai_add_multi_friends(self, prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type):
|
||||||
|
friend, err_msg = structure_output(
|
||||||
|
txt=prompt,
|
||||||
|
prompt="根据提示, 解析多个联系人的身份信息\n\n",
|
||||||
|
err_msg=f"不能理解该联系人",
|
||||||
|
run_gpt_fn=run_gpt_fn,
|
||||||
|
pydantic_cls=FriendList
|
||||||
|
)
|
||||||
|
if friend.friends_list:
|
||||||
|
for f in friend.friends_list:
|
||||||
|
self.add_friend(f)
|
||||||
|
msg = f"成功添加{len(friend.friends_list)}个联系人: {str(friend.friends_list)}"
|
||||||
|
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=0)
|
||||||
|
|
||||||
|
|
||||||
|
def run(self, txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
|
prompt = txt
|
||||||
|
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
|
||||||
|
self.tools_to_select = {
|
||||||
|
"SocialAdvice":{
|
||||||
|
"explain_to_llm": "如果用户希望获取社交指导,调用SocialAdvice生成一些社交建议",
|
||||||
|
"callback": self.ai_socail_advice,
|
||||||
|
},
|
||||||
|
"AddFriends":{
|
||||||
|
"explain_to_llm": "如果用户给出了联系人,调用AddMultiFriends把联系人添加到数据库",
|
||||||
|
"callback": self.ai_add_multi_friends,
|
||||||
|
},
|
||||||
|
"RemoveFriend":{
|
||||||
|
"explain_to_llm": "如果用户希望移除某个联系人,调用RemoveFriend",
|
||||||
|
"callback": self.ai_remove_friend,
|
||||||
|
},
|
||||||
|
"ListFriends":{
|
||||||
|
"explain_to_llm": "如果用户列举联系人,调用ListFriends",
|
||||||
|
"callback": self.ai_list_friends,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
try:
|
||||||
|
Explaination = '\n'.join([f'{k}: {v["explain_to_llm"]}' for k, v in self.tools_to_select.items()])
|
||||||
|
class UserSociaIntention(BaseModel):
|
||||||
|
intention_type: str = Field(
|
||||||
|
description=
|
||||||
|
f"The type of user intention. You must choose from {self.tools_to_select.keys()}.\n\n"
|
||||||
|
f"Explaination:\n{Explaination}",
|
||||||
|
default="SocialAdvice"
|
||||||
|
)
|
||||||
|
pydantic_cls_instance, err_msg = select_tool(
|
||||||
|
prompt=txt,
|
||||||
|
run_gpt_fn=run_gpt_fn,
|
||||||
|
pydantic_cls=UserSociaIntention
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
yield from update_ui_lastest_msg(
|
||||||
|
lastmsg=f"无法理解用户意图 {err_msg}",
|
||||||
|
chatbot=chatbot,
|
||||||
|
history=history,
|
||||||
|
delay=0
|
||||||
|
)
|
||||||
|
return
|
||||||
|
|
||||||
|
intention_type = pydantic_cls_instance.intention_type
|
||||||
|
intention_callback = self.tools_to_select[pydantic_cls_instance.intention_type]['callback']
|
||||||
|
yield from intention_callback(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type)
|
||||||
|
|
||||||
|
|
||||||
|
def add_friend(self, friend):
|
||||||
|
# check whether the friend is already in the social network
|
||||||
|
for f in self.social_network.people:
|
||||||
|
if f.friend_name == friend.friend_name:
|
||||||
|
f.friend_description = friend.friend_description
|
||||||
|
f.friend_relationship = friend.friend_relationship
|
||||||
|
logger.info(f"Repeated friend, update info: {friend}")
|
||||||
|
return
|
||||||
|
logger.info(f"Add a new friend: {friend}")
|
||||||
|
self.social_network.people.append(friend)
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
@CatchException
|
@CatchException
|
||||||
def I人助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request, num_day=5):
|
def I人助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
|
|
||||||
# 1. we retrieve worker from global context
|
# 1. we retrieve worker from global context
|
||||||
user_name = chatbot.get_user()
|
user_name = chatbot.get_user()
|
||||||
@@ -58,8 +161,7 @@ def I人助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt,
|
|||||||
)
|
)
|
||||||
|
|
||||||
# 2. save
|
# 2. save
|
||||||
social_network_worker.social_network.people.append("张三")
|
yield from social_network_worker.run(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||||
social_network_worker.save_to_checkpoint(checkpoint_dir)
|
social_network_worker.save_to_checkpoint(checkpoint_dir)
|
||||||
chatbot.append(["good", "work"])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
|
|||||||
@@ -6,7 +6,10 @@ from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_ver
|
|||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from crazy_functions.agent_fns.python_comment_agent import PythonCodeComment
|
from crazy_functions.agent_fns.python_comment_agent import PythonCodeComment
|
||||||
from crazy_functions.diagram_fns.file_tree import FileNode
|
from crazy_functions.diagram_fns.file_tree import FileNode
|
||||||
|
from crazy_functions.agent_fns.watchdog import WatchDog
|
||||||
from shared_utils.advanced_markdown_format import markdown_convertion_for_file
|
from shared_utils.advanced_markdown_format import markdown_convertion_for_file
|
||||||
|
from loguru import logger
|
||||||
|
|
||||||
|
|
||||||
def 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
def 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
|
|
||||||
@@ -24,12 +27,13 @@ def 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
file_tree_struct.add_file(file_path, file_path)
|
file_tree_struct.add_file(file_path, file_path)
|
||||||
|
|
||||||
# <第一步,逐个文件分析,多线程>
|
# <第一步,逐个文件分析,多线程>
|
||||||
|
lang = "" if not plugin_kwargs["use_chinese"] else " (you must use Chinese)"
|
||||||
for index, fp in enumerate(file_manifest):
|
for index, fp in enumerate(file_manifest):
|
||||||
# 读取文件
|
# 读取文件
|
||||||
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
||||||
file_content = f.read()
|
file_content = f.read()
|
||||||
prefix = ""
|
prefix = ""
|
||||||
i_say = prefix + f'Please conclude the following source code at {os.path.relpath(fp, project_folder)} with only one sentence, the code is:\n```{file_content}```'
|
i_say = prefix + f'Please conclude the following source code at {os.path.relpath(fp, project_folder)} with only one sentence{lang}, the code is:\n```{file_content}```'
|
||||||
i_say_show_user = prefix + f'[{index+1}/{len(file_manifest)}] 请用一句话对下面的程序文件做一个整体概述: {fp}'
|
i_say_show_user = prefix + f'[{index+1}/{len(file_manifest)}] 请用一句话对下面的程序文件做一个整体概述: {fp}'
|
||||||
# 装载请求内容
|
# 装载请求内容
|
||||||
MAX_TOKEN_SINGLE_FILE = 2560
|
MAX_TOKEN_SINGLE_FILE = 2560
|
||||||
@@ -37,7 +41,7 @@ def 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
inputs_array.append(i_say)
|
inputs_array.append(i_say)
|
||||||
inputs_show_user_array.append(i_say_show_user)
|
inputs_show_user_array.append(i_say_show_user)
|
||||||
history_array.append([])
|
history_array.append([])
|
||||||
sys_prompt_array.append("You are a software architecture analyst analyzing a source code project. Do not dig into details, tell me what the code is doing in general. Your answer must be short, simple and clear.")
|
sys_prompt_array.append(f"You are a software architecture analyst analyzing a source code project. Do not dig into details, tell me what the code is doing in general. Your answer must be short, simple and clear{lang}.")
|
||||||
# 文件读取完成,对每一个源代码文件,生成一个请求线程,发送到大模型进行分析
|
# 文件读取完成,对每一个源代码文件,生成一个请求线程,发送到大模型进行分析
|
||||||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||||
inputs_array = inputs_array,
|
inputs_array = inputs_array,
|
||||||
@@ -50,10 +54,20 @@ def 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
)
|
)
|
||||||
|
|
||||||
# <第二步,逐个文件分析,生成带注释文件>
|
# <第二步,逐个文件分析,生成带注释文件>
|
||||||
|
tasks = ["" for _ in range(len(file_manifest))]
|
||||||
|
def bark_fn(tasks):
|
||||||
|
for i in range(len(tasks)): tasks[i] = "watchdog is dead"
|
||||||
|
wd = WatchDog(timeout=10, bark_fn=lambda: bark_fn(tasks), interval=3, msg="ThreadWatcher timeout")
|
||||||
|
wd.begin_watch()
|
||||||
from concurrent.futures import ThreadPoolExecutor
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
executor = ThreadPoolExecutor(max_workers=get_conf('DEFAULT_WORKER_NUM'))
|
executor = ThreadPoolExecutor(max_workers=get_conf('DEFAULT_WORKER_NUM'))
|
||||||
def _task_multi_threading(i_say, gpt_say, fp, file_tree_struct):
|
def _task_multi_threading(i_say, gpt_say, fp, file_tree_struct, index):
|
||||||
pcc = PythonCodeComment(llm_kwargs, language='English')
|
language = 'Chinese' if plugin_kwargs["use_chinese"] else 'English'
|
||||||
|
def observe_window_update(x):
|
||||||
|
if tasks[index] == "watchdog is dead":
|
||||||
|
raise TimeoutError("ThreadWatcher: watchdog is dead")
|
||||||
|
tasks[index] = x
|
||||||
|
pcc = PythonCodeComment(llm_kwargs, plugin_kwargs, language=language, observe_window_update=observe_window_update)
|
||||||
pcc.read_file(path=fp, brief=gpt_say)
|
pcc.read_file(path=fp, brief=gpt_say)
|
||||||
revised_path, revised_content = pcc.begin_comment_source_code(None, None)
|
revised_path, revised_content = pcc.begin_comment_source_code(None, None)
|
||||||
file_tree_struct.manifest[fp].revised_path = revised_path
|
file_tree_struct.manifest[fp].revised_path = revised_path
|
||||||
@@ -65,7 +79,8 @@ def 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
with open("crazy_functions/agent_fns/python_comment_compare.html", 'r', encoding='utf-8') as f:
|
with open("crazy_functions/agent_fns/python_comment_compare.html", 'r', encoding='utf-8') as f:
|
||||||
html_template = f.read()
|
html_template = f.read()
|
||||||
warp = lambda x: "```python\n\n" + x + "\n\n```"
|
warp = lambda x: "```python\n\n" + x + "\n\n```"
|
||||||
from themes.theme import advanced_css
|
from themes.theme import load_dynamic_theme
|
||||||
|
_, advanced_css, _, _ = load_dynamic_theme("Default")
|
||||||
html_template = html_template.replace("ADVANCED_CSS", advanced_css)
|
html_template = html_template.replace("ADVANCED_CSS", advanced_css)
|
||||||
html_template = html_template.replace("REPLACE_CODE_FILE_LEFT", pcc.get_markdown_block_in_html(markdown_convertion_for_file(warp(pcc.original_content))))
|
html_template = html_template.replace("REPLACE_CODE_FILE_LEFT", pcc.get_markdown_block_in_html(markdown_convertion_for_file(warp(pcc.original_content))))
|
||||||
html_template = html_template.replace("REPLACE_CODE_FILE_RIGHT", pcc.get_markdown_block_in_html(markdown_convertion_for_file(warp(revised_content))))
|
html_template = html_template.replace("REPLACE_CODE_FILE_RIGHT", pcc.get_markdown_block_in_html(markdown_convertion_for_file(warp(revised_content))))
|
||||||
@@ -73,17 +88,21 @@ def 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
file_tree_struct.manifest[fp].compare_html = compare_html_path
|
file_tree_struct.manifest[fp].compare_html = compare_html_path
|
||||||
with open(compare_html_path, 'w', encoding='utf-8') as f:
|
with open(compare_html_path, 'w', encoding='utf-8') as f:
|
||||||
f.write(html_template)
|
f.write(html_template)
|
||||||
# print('done 1')
|
tasks[index] = ""
|
||||||
|
|
||||||
chatbot.append([None, f"正在处理:"])
|
chatbot.append([None, f"正在处理:"])
|
||||||
futures = []
|
futures = []
|
||||||
|
index = 0
|
||||||
for i_say, gpt_say, fp in zip(gpt_response_collection[0::2], gpt_response_collection[1::2], file_manifest):
|
for i_say, gpt_say, fp in zip(gpt_response_collection[0::2], gpt_response_collection[1::2], file_manifest):
|
||||||
future = executor.submit(_task_multi_threading, i_say, gpt_say, fp, file_tree_struct)
|
future = executor.submit(_task_multi_threading, i_say, gpt_say, fp, file_tree_struct, index)
|
||||||
|
index += 1
|
||||||
futures.append(future)
|
futures.append(future)
|
||||||
|
|
||||||
|
# <第三步,等待任务完成>
|
||||||
cnt = 0
|
cnt = 0
|
||||||
while True:
|
while True:
|
||||||
cnt += 1
|
cnt += 1
|
||||||
|
wd.feed()
|
||||||
time.sleep(3)
|
time.sleep(3)
|
||||||
worker_done = [h.done() for h in futures]
|
worker_done = [h.done() for h in futures]
|
||||||
remain = len(worker_done) - sum(worker_done)
|
remain = len(worker_done) - sum(worker_done)
|
||||||
@@ -92,14 +111,18 @@ def 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
preview_html_list = []
|
preview_html_list = []
|
||||||
for done, fp in zip(worker_done, file_manifest):
|
for done, fp in zip(worker_done, file_manifest):
|
||||||
if not done: continue
|
if not done: continue
|
||||||
preview_html_list.append(file_tree_struct.manifest[fp].compare_html)
|
if hasattr(file_tree_struct.manifest[fp], 'compare_html'):
|
||||||
|
preview_html_list.append(file_tree_struct.manifest[fp].compare_html)
|
||||||
|
else:
|
||||||
|
logger.error(f"文件: {fp} 的注释结果未能成功")
|
||||||
file_links = generate_file_link(preview_html_list)
|
file_links = generate_file_link(preview_html_list)
|
||||||
|
|
||||||
yield from update_ui_lastest_msg(
|
yield from update_ui_lastest_msg(
|
||||||
f"剩余源文件数量: {remain}.\n\n" +
|
f"当前任务: <br/>{'<br/>'.join(tasks)}.<br/>" +
|
||||||
f"已完成的文件: {sum(worker_done)}.\n\n" +
|
f"剩余源文件数量: {remain}.<br/>" +
|
||||||
|
f"已完成的文件: {sum(worker_done)}.<br/>" +
|
||||||
file_links +
|
file_links +
|
||||||
"\n\n" +
|
"<br/>" +
|
||||||
''.join(['.']*(cnt % 10 + 1)
|
''.join(['.']*(cnt % 10 + 1)
|
||||||
), chatbot=chatbot, history=history, delay=0)
|
), chatbot=chatbot, history=history, delay=0)
|
||||||
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
|
||||||
@@ -120,6 +143,7 @@ def 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
@CatchException
|
@CatchException
|
||||||
def 注释Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
def 注释Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
history = [] # 清空历史,以免输入溢出
|
history = [] # 清空历史,以免输入溢出
|
||||||
|
plugin_kwargs["use_chinese"] = plugin_kwargs.get("use_chinese", False)
|
||||||
import glob, os
|
import glob, os
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
|
|||||||
@@ -0,0 +1,36 @@
|
|||||||
|
|
||||||
|
from toolbox import get_conf, update_ui
|
||||||
|
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
||||||
|
from crazy_functions.SourceCode_Comment import 注释Python项目
|
||||||
|
|
||||||
|
class SourceCodeComment_Wrap(GptAcademicPluginTemplate):
|
||||||
|
def __init__(self):
|
||||||
|
"""
|
||||||
|
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
def define_arg_selection_menu(self):
|
||||||
|
"""
|
||||||
|
定义插件的二级选项菜单
|
||||||
|
"""
|
||||||
|
gui_definition = {
|
||||||
|
"main_input":
|
||||||
|
ArgProperty(title="路径", description="程序路径(上传文件后自动填写)", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
||||||
|
"use_chinese":
|
||||||
|
ArgProperty(title="注释语言", options=["英文", "中文"], default_value="英文", description="无", type="dropdown").model_dump_json(),
|
||||||
|
# "use_emoji":
|
||||||
|
# ArgProperty(title="在注释中使用emoji", options=["禁止", "允许"], default_value="禁止", description="无", type="dropdown").model_dump_json(),
|
||||||
|
}
|
||||||
|
return gui_definition
|
||||||
|
|
||||||
|
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
|
"""
|
||||||
|
执行插件
|
||||||
|
"""
|
||||||
|
if plugin_kwargs["use_chinese"] == "中文":
|
||||||
|
plugin_kwargs["use_chinese"] = True
|
||||||
|
else:
|
||||||
|
plugin_kwargs["use_chinese"] = False
|
||||||
|
|
||||||
|
yield from 注释Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||||
@@ -68,6 +68,7 @@ Be aware:
|
|||||||
1. You must NOT modify the indent of code.
|
1. You must NOT modify the indent of code.
|
||||||
2. You are NOT authorized to change or translate non-comment code, and you are NOT authorized to add empty lines either, toggle qu.
|
2. You are NOT authorized to change or translate non-comment code, and you are NOT authorized to add empty lines either, toggle qu.
|
||||||
3. Use {LANG} to add comments and docstrings. Do NOT translate Chinese that is already in the code.
|
3. Use {LANG} to add comments and docstrings. Do NOT translate Chinese that is already in the code.
|
||||||
|
4. Besides adding a docstring, use the ⭐ symbol to annotate the most core and important line of code within the function, explaining its role.
|
||||||
|
|
||||||
------------------ Example ------------------
|
------------------ Example ------------------
|
||||||
INPUT:
|
INPUT:
|
||||||
@@ -116,10 +117,66 @@ def zip_result(folder):
|
|||||||
'''
|
'''
|
||||||
|
|
||||||
|
|
||||||
|
revise_funtion_prompt_chinese = '''
|
||||||
|
您需要阅读以下代码,并根据以下说明修订源代码({FILE_BASENAME}):
|
||||||
|
1. 如果源代码中包含函数的话, 你应该分析给定函数实现了什么功能
|
||||||
|
2. 如果源代码中包含函数的话, 你需要为函数添加docstring, docstring必须使用中文
|
||||||
|
|
||||||
|
请注意:
|
||||||
|
1. 你不得修改代码的缩进
|
||||||
|
2. 你无权更改或翻译代码中的非注释部分,也不允许添加空行
|
||||||
|
3. 使用 {LANG} 添加注释和文档字符串。不要翻译代码中已有的中文
|
||||||
|
4. 除了添加docstring之外, 使用⭐符号给该函数中最核心、最重要的一行代码添加注释,并说明其作用
|
||||||
|
|
||||||
|
------------------ 示例 ------------------
|
||||||
|
INPUT:
|
||||||
|
```
|
||||||
|
L0000 |
|
||||||
|
L0001 |def zip_result(folder):
|
||||||
|
L0002 | t = gen_time_str()
|
||||||
|
L0003 | zip_folder(folder, get_log_folder(), f"result.zip")
|
||||||
|
L0004 | return os.path.join(get_log_folder(), f"result.zip")
|
||||||
|
L0005 |
|
||||||
|
L0006 |
|
||||||
|
```
|
||||||
|
|
||||||
|
OUTPUT:
|
||||||
|
|
||||||
|
<instruction_1_purpose>
|
||||||
|
该函数用于压缩指定文件夹,并返回生成的`zip`文件的路径。
|
||||||
|
</instruction_1_purpose>
|
||||||
|
<instruction_2_revised_code>
|
||||||
|
```
|
||||||
|
def zip_result(folder):
|
||||||
|
"""
|
||||||
|
该函数将指定的文件夹压缩成ZIP文件, 并将其存储在日志文件夹中。
|
||||||
|
|
||||||
|
输入参数:
|
||||||
|
folder (str): 需要压缩的文件夹的路径。
|
||||||
|
返回值:
|
||||||
|
str: 日志文件夹中创建的ZIP文件的路径。
|
||||||
|
"""
|
||||||
|
t = gen_time_str()
|
||||||
|
zip_folder(folder, get_log_folder(), f"result.zip") # ⭐ 执行文件夹的压缩
|
||||||
|
return os.path.join(get_log_folder(), f"result.zip")
|
||||||
|
```
|
||||||
|
</instruction_2_revised_code>
|
||||||
|
------------------ End of Example ------------------
|
||||||
|
|
||||||
|
|
||||||
|
------------------ the real INPUT you need to process NOW ({FILE_BASENAME}) ------------------
|
||||||
|
```
|
||||||
|
{THE_CODE}
|
||||||
|
```
|
||||||
|
{INDENT_REMINDER}
|
||||||
|
{BRIEF_REMINDER}
|
||||||
|
{HINT_REMINDER}
|
||||||
|
'''
|
||||||
|
|
||||||
|
|
||||||
class PythonCodeComment():
|
class PythonCodeComment():
|
||||||
|
|
||||||
def __init__(self, llm_kwargs, language) -> None:
|
def __init__(self, llm_kwargs, plugin_kwargs, language, observe_window_update) -> None:
|
||||||
self.original_content = ""
|
self.original_content = ""
|
||||||
self.full_context = []
|
self.full_context = []
|
||||||
self.full_context_with_line_no = []
|
self.full_context_with_line_no = []
|
||||||
@@ -127,7 +184,13 @@ class PythonCodeComment():
|
|||||||
self.page_limit = 100 # 100 lines of code each page
|
self.page_limit = 100 # 100 lines of code each page
|
||||||
self.ignore_limit = 20
|
self.ignore_limit = 20
|
||||||
self.llm_kwargs = llm_kwargs
|
self.llm_kwargs = llm_kwargs
|
||||||
|
self.plugin_kwargs = plugin_kwargs
|
||||||
self.language = language
|
self.language = language
|
||||||
|
self.observe_window_update = observe_window_update
|
||||||
|
if self.language == "chinese":
|
||||||
|
self.core_prompt = revise_funtion_prompt_chinese
|
||||||
|
else:
|
||||||
|
self.core_prompt = revise_funtion_prompt
|
||||||
self.path = None
|
self.path = None
|
||||||
self.file_basename = None
|
self.file_basename = None
|
||||||
self.file_brief = ""
|
self.file_brief = ""
|
||||||
@@ -258,7 +321,7 @@ class PythonCodeComment():
|
|||||||
hint_reminder = "" if hint is None else f"(Reminder: do not ignore or modify code such as `{hint}`, provide complete code in the OUTPUT.)"
|
hint_reminder = "" if hint is None else f"(Reminder: do not ignore or modify code such as `{hint}`, provide complete code in the OUTPUT.)"
|
||||||
self.llm_kwargs['temperature'] = 0
|
self.llm_kwargs['temperature'] = 0
|
||||||
result = predict_no_ui_long_connection(
|
result = predict_no_ui_long_connection(
|
||||||
inputs=revise_funtion_prompt.format(
|
inputs=self.core_prompt.format(
|
||||||
LANG=self.language,
|
LANG=self.language,
|
||||||
FILE_BASENAME=self.file_basename,
|
FILE_BASENAME=self.file_basename,
|
||||||
THE_CODE=code,
|
THE_CODE=code,
|
||||||
@@ -348,6 +411,7 @@ class PythonCodeComment():
|
|||||||
try:
|
try:
|
||||||
# yield from update_ui_lastest_msg(f"({self.file_basename}) 正在读取下一段代码片段:\n", chatbot=chatbot, history=history, delay=0)
|
# yield from update_ui_lastest_msg(f"({self.file_basename}) 正在读取下一段代码片段:\n", chatbot=chatbot, history=history, delay=0)
|
||||||
next_batch, line_no_start, line_no_end = self.get_next_batch()
|
next_batch, line_no_start, line_no_end = self.get_next_batch()
|
||||||
|
self.observe_window_update(f"正在处理{self.file_basename} - {line_no_start}/{len(self.full_context)}\n")
|
||||||
# yield from update_ui_lastest_msg(f"({self.file_basename}) 处理代码片段:\n\n{next_batch}", chatbot=chatbot, history=history, delay=0)
|
# yield from update_ui_lastest_msg(f"({self.file_basename}) 处理代码片段:\n\n{next_batch}", chatbot=chatbot, history=history, delay=0)
|
||||||
|
|
||||||
hint = None
|
hint = None
|
||||||
|
|||||||
@@ -1,39 +1,47 @@
|
|||||||
import ast
|
import token
|
||||||
|
import tokenize
|
||||||
|
import copy
|
||||||
|
import io
|
||||||
|
|
||||||
class CommentRemover(ast.NodeTransformer):
|
|
||||||
def visit_FunctionDef(self, node):
|
|
||||||
# 移除函数的文档字符串
|
|
||||||
if (node.body and isinstance(node.body[0], ast.Expr) and
|
|
||||||
isinstance(node.body[0].value, ast.Str)):
|
|
||||||
node.body = node.body[1:]
|
|
||||||
self.generic_visit(node)
|
|
||||||
return node
|
|
||||||
|
|
||||||
def visit_ClassDef(self, node):
|
def remove_python_comments(input_source: str) -> str:
|
||||||
# 移除类的文档字符串
|
source_flag = copy.copy(input_source)
|
||||||
if (node.body and isinstance(node.body[0], ast.Expr) and
|
source = io.StringIO(input_source)
|
||||||
isinstance(node.body[0].value, ast.Str)):
|
ls = input_source.split('\n')
|
||||||
node.body = node.body[1:]
|
prev_toktype = token.INDENT
|
||||||
self.generic_visit(node)
|
readline = source.readline
|
||||||
return node
|
|
||||||
|
|
||||||
def visit_Module(self, node):
|
def get_char_index(lineno, col):
|
||||||
# 移除模块的文档字符串
|
# find the index of the char in the source code
|
||||||
if (node.body and isinstance(node.body[0], ast.Expr) and
|
if lineno == 1:
|
||||||
isinstance(node.body[0].value, ast.Str)):
|
return len('\n'.join(ls[:(lineno-1)])) + col
|
||||||
node.body = node.body[1:]
|
else:
|
||||||
self.generic_visit(node)
|
return len('\n'.join(ls[:(lineno-1)])) + col + 1
|
||||||
return node
|
|
||||||
|
def replace_char_between(start_lineno, start_col, end_lineno, end_col, source, replace_char, ls):
|
||||||
|
# replace char between start_lineno, start_col and end_lineno, end_col with replace_char, but keep '\n' and ' '
|
||||||
|
b = get_char_index(start_lineno, start_col)
|
||||||
|
e = get_char_index(end_lineno, end_col)
|
||||||
|
for i in range(b, e):
|
||||||
|
if source[i] == '\n':
|
||||||
|
source = source[:i] + '\n' + source[i+1:]
|
||||||
|
elif source[i] == ' ':
|
||||||
|
source = source[:i] + ' ' + source[i+1:]
|
||||||
|
else:
|
||||||
|
source = source[:i] + replace_char + source[i+1:]
|
||||||
|
return source
|
||||||
|
|
||||||
|
tokgen = tokenize.generate_tokens(readline)
|
||||||
|
for toktype, ttext, (slineno, scol), (elineno, ecol), ltext in tokgen:
|
||||||
|
if toktype == token.STRING and (prev_toktype == token.INDENT):
|
||||||
|
source_flag = replace_char_between(slineno, scol, elineno, ecol, source_flag, ' ', ls)
|
||||||
|
elif toktype == token.STRING and (prev_toktype == token.NEWLINE):
|
||||||
|
source_flag = replace_char_between(slineno, scol, elineno, ecol, source_flag, ' ', ls)
|
||||||
|
elif toktype == tokenize.COMMENT:
|
||||||
|
source_flag = replace_char_between(slineno, scol, elineno, ecol, source_flag, ' ', ls)
|
||||||
|
prev_toktype = toktype
|
||||||
|
return source_flag
|
||||||
|
|
||||||
def remove_python_comments(source_code):
|
|
||||||
# 解析源代码为 AST
|
|
||||||
tree = ast.parse(source_code)
|
|
||||||
# 移除注释
|
|
||||||
transformer = CommentRemover()
|
|
||||||
tree = transformer.visit(tree)
|
|
||||||
# 将处理后的 AST 转换回源代码
|
|
||||||
return ast.unparse(tree)
|
|
||||||
|
|
||||||
# 示例使用
|
# 示例使用
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|||||||
@@ -0,0 +1,450 @@
|
|||||||
|
import os
|
||||||
|
import time
|
||||||
|
from abc import ABC, abstractmethod
|
||||||
|
from datetime import datetime
|
||||||
|
from docx import Document
|
||||||
|
from docx.enum.style import WD_STYLE_TYPE
|
||||||
|
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT, WD_LINE_SPACING
|
||||||
|
from docx.oxml.ns import qn
|
||||||
|
from docx.shared import Inches, Cm
|
||||||
|
from docx.shared import Pt, RGBColor, Inches
|
||||||
|
from typing import Dict, List, Tuple
|
||||||
|
|
||||||
|
|
||||||
|
class DocumentFormatter(ABC):
|
||||||
|
"""文档格式化基类,定义文档格式化的基本接口"""
|
||||||
|
|
||||||
|
def __init__(self, final_summary: str, file_summaries_map: Dict, failed_files: List[Tuple]):
|
||||||
|
self.final_summary = final_summary
|
||||||
|
self.file_summaries_map = file_summaries_map
|
||||||
|
self.failed_files = failed_files
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def format_failed_files(self) -> str:
|
||||||
|
"""格式化失败文件列表"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def format_file_summaries(self) -> str:
|
||||||
|
"""格式化文件总结内容"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def create_document(self) -> str:
|
||||||
|
"""创建完整文档"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class WordFormatter(DocumentFormatter):
|
||||||
|
"""Word格式文档生成器 - 符合中国政府公文格式规范(GB/T 9704-2012),并进行了优化"""
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
self.doc = Document()
|
||||||
|
self._setup_document()
|
||||||
|
self._create_styles()
|
||||||
|
# 初始化三级标题编号系统
|
||||||
|
self.numbers = {
|
||||||
|
1: 0, # 一级标题编号
|
||||||
|
2: 0, # 二级标题编号
|
||||||
|
3: 0 # 三级标题编号
|
||||||
|
}
|
||||||
|
|
||||||
|
def _setup_document(self):
|
||||||
|
"""设置文档基本格式,包括页面设置和页眉"""
|
||||||
|
sections = self.doc.sections
|
||||||
|
for section in sections:
|
||||||
|
# 设置页面大小为A4
|
||||||
|
section.page_width = Cm(21)
|
||||||
|
section.page_height = Cm(29.7)
|
||||||
|
# 设置页边距
|
||||||
|
section.top_margin = Cm(3.7) # 上边距37mm
|
||||||
|
section.bottom_margin = Cm(3.5) # 下边距35mm
|
||||||
|
section.left_margin = Cm(2.8) # 左边距28mm
|
||||||
|
section.right_margin = Cm(2.6) # 右边距26mm
|
||||||
|
# 设置页眉页脚距离
|
||||||
|
section.header_distance = Cm(2.0)
|
||||||
|
section.footer_distance = Cm(2.0)
|
||||||
|
|
||||||
|
# 添加页眉
|
||||||
|
header = section.header
|
||||||
|
header_para = header.paragraphs[0]
|
||||||
|
header_para.alignment = WD_PARAGRAPH_ALIGNMENT.RIGHT
|
||||||
|
header_run = header_para.add_run("该文档由GPT-academic生成")
|
||||||
|
header_run.font.name = '仿宋'
|
||||||
|
header_run._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
|
||||||
|
header_run.font.size = Pt(9)
|
||||||
|
|
||||||
|
def _create_styles(self):
|
||||||
|
"""创建文档样式"""
|
||||||
|
# 创建正文样式
|
||||||
|
style = self.doc.styles.add_style('Normal_Custom', WD_STYLE_TYPE.PARAGRAPH)
|
||||||
|
style.font.name = '仿宋'
|
||||||
|
style._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
|
||||||
|
style.font.size = Pt(14)
|
||||||
|
style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
|
||||||
|
style.paragraph_format.space_after = Pt(0)
|
||||||
|
style.paragraph_format.first_line_indent = Pt(28)
|
||||||
|
|
||||||
|
# 创建各级标题样式
|
||||||
|
self._create_heading_style('Title_Custom', '方正小标宋简体', 32, WD_PARAGRAPH_ALIGNMENT.CENTER)
|
||||||
|
self._create_heading_style('Heading1_Custom', '黑体', 22, WD_PARAGRAPH_ALIGNMENT.LEFT)
|
||||||
|
self._create_heading_style('Heading2_Custom', '黑体', 18, WD_PARAGRAPH_ALIGNMENT.LEFT)
|
||||||
|
self._create_heading_style('Heading3_Custom', '黑体', 16, WD_PARAGRAPH_ALIGNMENT.LEFT)
|
||||||
|
|
||||||
|
def _create_heading_style(self, style_name: str, font_name: str, font_size: int, alignment):
|
||||||
|
"""创建标题样式"""
|
||||||
|
style = self.doc.styles.add_style(style_name, WD_STYLE_TYPE.PARAGRAPH)
|
||||||
|
style.font.name = font_name
|
||||||
|
style._element.rPr.rFonts.set(qn('w:eastAsia'), font_name)
|
||||||
|
style.font.size = Pt(font_size)
|
||||||
|
style.font.bold = True
|
||||||
|
style.paragraph_format.alignment = alignment
|
||||||
|
style.paragraph_format.space_before = Pt(12)
|
||||||
|
style.paragraph_format.space_after = Pt(12)
|
||||||
|
style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
|
||||||
|
return style
|
||||||
|
|
||||||
|
def _get_heading_number(self, level: int) -> str:
|
||||||
|
"""
|
||||||
|
生成标题编号
|
||||||
|
|
||||||
|
Args:
|
||||||
|
level: 标题级别 (0-3)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: 格式化的标题编号
|
||||||
|
"""
|
||||||
|
if level == 0: # 主标题不需要编号
|
||||||
|
return ""
|
||||||
|
|
||||||
|
self.numbers[level] += 1 # 增加当前级别的编号
|
||||||
|
|
||||||
|
# 重置下级标题编号
|
||||||
|
for i in range(level + 1, 4):
|
||||||
|
self.numbers[i] = 0
|
||||||
|
|
||||||
|
# 根据级别返回不同格式的编号
|
||||||
|
if level == 1:
|
||||||
|
return f"{self.numbers[1]}. "
|
||||||
|
elif level == 2:
|
||||||
|
return f"{self.numbers[1]}.{self.numbers[2]} "
|
||||||
|
elif level == 3:
|
||||||
|
return f"{self.numbers[1]}.{self.numbers[2]}.{self.numbers[3]} "
|
||||||
|
return ""
|
||||||
|
|
||||||
|
def _add_heading(self, text: str, level: int):
|
||||||
|
"""
|
||||||
|
添加带编号的标题
|
||||||
|
|
||||||
|
Args:
|
||||||
|
text: 标题文本
|
||||||
|
level: 标题级别 (0-3)
|
||||||
|
"""
|
||||||
|
style_map = {
|
||||||
|
0: 'Title_Custom',
|
||||||
|
1: 'Heading1_Custom',
|
||||||
|
2: 'Heading2_Custom',
|
||||||
|
3: 'Heading3_Custom'
|
||||||
|
}
|
||||||
|
|
||||||
|
number = self._get_heading_number(level)
|
||||||
|
paragraph = self.doc.add_paragraph(style=style_map[level])
|
||||||
|
|
||||||
|
if number:
|
||||||
|
number_run = paragraph.add_run(number)
|
||||||
|
font_size = 22 if level == 1 else (18 if level == 2 else 16)
|
||||||
|
self._get_run_style(number_run, '黑体', font_size, True)
|
||||||
|
|
||||||
|
text_run = paragraph.add_run(text)
|
||||||
|
font_size = 32 if level == 0 else (22 if level == 1 else (18 if level == 2 else 16))
|
||||||
|
self._get_run_style(text_run, '黑体', font_size, True)
|
||||||
|
|
||||||
|
# 主标题添加日期
|
||||||
|
if level == 0:
|
||||||
|
date_paragraph = self.doc.add_paragraph()
|
||||||
|
date_paragraph.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER
|
||||||
|
date_run = date_paragraph.add_run(datetime.now().strftime('%Y年%m月%d日'))
|
||||||
|
self._get_run_style(date_run, '仿宋', 16, False)
|
||||||
|
|
||||||
|
return paragraph
|
||||||
|
|
||||||
|
def _get_run_style(self, run, font_name: str, font_size: int, bold: bool = False):
|
||||||
|
"""设置文本运行对象的样式"""
|
||||||
|
run.font.name = font_name
|
||||||
|
run._element.rPr.rFonts.set(qn('w:eastAsia'), font_name)
|
||||||
|
run.font.size = Pt(font_size)
|
||||||
|
run.font.bold = bold
|
||||||
|
|
||||||
|
def format_failed_files(self) -> str:
|
||||||
|
"""格式化失败文件列表"""
|
||||||
|
result = []
|
||||||
|
if not self.failed_files:
|
||||||
|
return "\n".join(result)
|
||||||
|
|
||||||
|
result.append("处理失败文件:")
|
||||||
|
for fp, reason in self.failed_files:
|
||||||
|
result.append(f"• {os.path.basename(fp)}: {reason}")
|
||||||
|
|
||||||
|
self._add_heading("处理失败文件", 1)
|
||||||
|
for fp, reason in self.failed_files:
|
||||||
|
self._add_content(f"• {os.path.basename(fp)}: {reason}", indent=False)
|
||||||
|
self.doc.add_paragraph()
|
||||||
|
|
||||||
|
return "\n".join(result)
|
||||||
|
|
||||||
|
def _add_content(self, text: str, indent: bool = True):
|
||||||
|
"""添加正文内容"""
|
||||||
|
paragraph = self.doc.add_paragraph(text, style='Normal_Custom')
|
||||||
|
if not indent:
|
||||||
|
paragraph.paragraph_format.first_line_indent = Pt(0)
|
||||||
|
return paragraph
|
||||||
|
|
||||||
|
def format_file_summaries(self) -> str:
|
||||||
|
"""
|
||||||
|
格式化文件总结内容,确保正确的标题层级
|
||||||
|
|
||||||
|
返回:
|
||||||
|
str: 格式化后的文件总结字符串
|
||||||
|
|
||||||
|
标题层级规则:
|
||||||
|
1. 一级标题为"各文件详细总结"
|
||||||
|
2. 如果文件有目录路径:
|
||||||
|
- 目录路径作为二级标题 (2.1, 2.2 等)
|
||||||
|
- 该目录下所有文件作为三级标题 (2.1.1, 2.1.2 等)
|
||||||
|
3. 如果文件没有目录路径:
|
||||||
|
- 文件直接作为二级标题 (2.1, 2.2 等)
|
||||||
|
"""
|
||||||
|
result = []
|
||||||
|
# 首先对文件路径进行分组整理
|
||||||
|
file_groups = {}
|
||||||
|
for path in sorted(self.file_summaries_map.keys()):
|
||||||
|
dir_path = os.path.dirname(path)
|
||||||
|
if dir_path not in file_groups:
|
||||||
|
file_groups[dir_path] = []
|
||||||
|
file_groups[dir_path].append(path)
|
||||||
|
|
||||||
|
# 处理没有目录的文件
|
||||||
|
root_files = file_groups.get("", [])
|
||||||
|
if root_files:
|
||||||
|
for path in sorted(root_files):
|
||||||
|
file_name = os.path.basename(path)
|
||||||
|
result.append(f"\n📄 {file_name}")
|
||||||
|
result.append(self.file_summaries_map[path])
|
||||||
|
# 无目录的文件作为二级标题
|
||||||
|
self._add_heading(f"📄 {file_name}", 2)
|
||||||
|
self._add_content(self.file_summaries_map[path])
|
||||||
|
self.doc.add_paragraph()
|
||||||
|
|
||||||
|
# 处理有目录的文件
|
||||||
|
for dir_path in sorted(file_groups.keys()):
|
||||||
|
if dir_path == "": # 跳过已处理的根目录文件
|
||||||
|
continue
|
||||||
|
|
||||||
|
# 添加目录作为二级标题
|
||||||
|
result.append(f"\n📁 {dir_path}")
|
||||||
|
self._add_heading(f"📁 {dir_path}", 2)
|
||||||
|
|
||||||
|
# 该目录下的所有文件作为三级标题
|
||||||
|
for path in sorted(file_groups[dir_path]):
|
||||||
|
file_name = os.path.basename(path)
|
||||||
|
result.append(f"\n📄 {file_name}")
|
||||||
|
result.append(self.file_summaries_map[path])
|
||||||
|
|
||||||
|
# 添加文件名作为三级标题
|
||||||
|
self._add_heading(f"📄 {file_name}", 3)
|
||||||
|
self._add_content(self.file_summaries_map[path])
|
||||||
|
self.doc.add_paragraph()
|
||||||
|
|
||||||
|
return "\n".join(result)
|
||||||
|
|
||||||
|
|
||||||
|
def create_document(self):
|
||||||
|
"""创建完整Word文档并返回文档对象"""
|
||||||
|
# 重置所有编号
|
||||||
|
for level in self.numbers:
|
||||||
|
self.numbers[level] = 0
|
||||||
|
|
||||||
|
# 添加主标题
|
||||||
|
self._add_heading("文档总结报告", 0)
|
||||||
|
self.doc.add_paragraph()
|
||||||
|
|
||||||
|
# 添加总体摘要
|
||||||
|
self._add_heading("总体摘要", 1)
|
||||||
|
self._add_content(self.final_summary)
|
||||||
|
self.doc.add_paragraph()
|
||||||
|
|
||||||
|
# 添加失败文件列表(如果有)
|
||||||
|
if self.failed_files:
|
||||||
|
self.format_failed_files()
|
||||||
|
|
||||||
|
# 添加文件详细总结
|
||||||
|
self._add_heading("各文件详细总结", 1)
|
||||||
|
self.format_file_summaries()
|
||||||
|
|
||||||
|
return self.doc
|
||||||
|
|
||||||
|
|
||||||
|
class MarkdownFormatter(DocumentFormatter):
|
||||||
|
"""Markdown格式文档生成器"""
|
||||||
|
|
||||||
|
def format_failed_files(self) -> str:
|
||||||
|
if not self.failed_files:
|
||||||
|
return ""
|
||||||
|
|
||||||
|
formatted_text = ["\n## ⚠️ 处理失败的文件"]
|
||||||
|
for fp, reason in self.failed_files:
|
||||||
|
formatted_text.append(f"- {os.path.basename(fp)}: {reason}")
|
||||||
|
formatted_text.append("\n---")
|
||||||
|
return "\n".join(formatted_text)
|
||||||
|
|
||||||
|
def format_file_summaries(self) -> str:
|
||||||
|
formatted_text = []
|
||||||
|
sorted_paths = sorted(self.file_summaries_map.keys())
|
||||||
|
current_dir = ""
|
||||||
|
|
||||||
|
for path in sorted_paths:
|
||||||
|
dir_path = os.path.dirname(path)
|
||||||
|
if dir_path != current_dir:
|
||||||
|
if dir_path:
|
||||||
|
formatted_text.append(f"\n## 📁 {dir_path}")
|
||||||
|
current_dir = dir_path
|
||||||
|
|
||||||
|
file_name = os.path.basename(path)
|
||||||
|
formatted_text.append(f"\n### 📄 {file_name}")
|
||||||
|
formatted_text.append(self.file_summaries_map[path])
|
||||||
|
formatted_text.append("\n---")
|
||||||
|
|
||||||
|
return "\n".join(formatted_text)
|
||||||
|
|
||||||
|
def create_document(self) -> str:
|
||||||
|
document = [
|
||||||
|
"# 📑 文档总结报告",
|
||||||
|
"\n## 总体摘要",
|
||||||
|
self.final_summary
|
||||||
|
]
|
||||||
|
|
||||||
|
if self.failed_files:
|
||||||
|
document.append(self.format_failed_files())
|
||||||
|
|
||||||
|
document.extend([
|
||||||
|
"\n# 📚 各文件详细总结",
|
||||||
|
self.format_file_summaries()
|
||||||
|
])
|
||||||
|
|
||||||
|
return "\n".join(document)
|
||||||
|
|
||||||
|
|
||||||
|
class HtmlFormatter(DocumentFormatter):
|
||||||
|
"""HTML格式文档生成器"""
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
self.css_styles = """
|
||||||
|
body {
|
||||||
|
font-family: "Microsoft YaHei", Arial, sans-serif;
|
||||||
|
line-height: 1.6;
|
||||||
|
max-width: 1000px;
|
||||||
|
margin: 0 auto;
|
||||||
|
padding: 20px;
|
||||||
|
color: #333;
|
||||||
|
}
|
||||||
|
h1 {
|
||||||
|
color: #2c3e50;
|
||||||
|
border-bottom: 2px solid #eee;
|
||||||
|
padding-bottom: 10px;
|
||||||
|
font-size: 24px;
|
||||||
|
text-align: center;
|
||||||
|
}
|
||||||
|
h2 {
|
||||||
|
color: #34495e;
|
||||||
|
margin-top: 30px;
|
||||||
|
font-size: 20px;
|
||||||
|
border-left: 4px solid #3498db;
|
||||||
|
padding-left: 10px;
|
||||||
|
}
|
||||||
|
h3 {
|
||||||
|
color: #2c3e50;
|
||||||
|
font-size: 18px;
|
||||||
|
margin-top: 20px;
|
||||||
|
}
|
||||||
|
.summary {
|
||||||
|
background-color: #f8f9fa;
|
||||||
|
padding: 20px;
|
||||||
|
border-radius: 5px;
|
||||||
|
margin: 20px 0;
|
||||||
|
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
||||||
|
}
|
||||||
|
.details {
|
||||||
|
margin-top: 40px;
|
||||||
|
}
|
||||||
|
.failed-files {
|
||||||
|
background-color: #fff3f3;
|
||||||
|
padding: 15px;
|
||||||
|
border-left: 4px solid #e74c3c;
|
||||||
|
margin: 20px 0;
|
||||||
|
}
|
||||||
|
.file-summary {
|
||||||
|
background-color: #fff;
|
||||||
|
padding: 15px;
|
||||||
|
margin: 15px 0;
|
||||||
|
border-radius: 4px;
|
||||||
|
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
|
||||||
|
}
|
||||||
|
"""
|
||||||
|
|
||||||
|
def format_failed_files(self) -> str:
|
||||||
|
if not self.failed_files:
|
||||||
|
return ""
|
||||||
|
|
||||||
|
failed_files_html = ['<div class="failed-files">']
|
||||||
|
failed_files_html.append("<h2>⚠️ 处理失败的文件</h2>")
|
||||||
|
failed_files_html.append("<ul>")
|
||||||
|
for fp, reason in self.failed_files:
|
||||||
|
failed_files_html.append(f"<li><strong>{os.path.basename(fp)}:</strong> {reason}</li>")
|
||||||
|
failed_files_html.append("</ul></div>")
|
||||||
|
return "\n".join(failed_files_html)
|
||||||
|
|
||||||
|
def format_file_summaries(self) -> str:
|
||||||
|
formatted_html = []
|
||||||
|
sorted_paths = sorted(self.file_summaries_map.keys())
|
||||||
|
current_dir = ""
|
||||||
|
|
||||||
|
for path in sorted_paths:
|
||||||
|
dir_path = os.path.dirname(path)
|
||||||
|
if dir_path != current_dir:
|
||||||
|
if dir_path:
|
||||||
|
formatted_html.append(f'<h2>📁 {dir_path}</h2>')
|
||||||
|
current_dir = dir_path
|
||||||
|
|
||||||
|
file_name = os.path.basename(path)
|
||||||
|
formatted_html.append('<div class="file-summary">')
|
||||||
|
formatted_html.append(f'<h3>📄 {file_name}</h3>')
|
||||||
|
formatted_html.append(f'<p>{self.file_summaries_map[path]}</p>')
|
||||||
|
formatted_html.append('</div>')
|
||||||
|
|
||||||
|
return "\n".join(formatted_html)
|
||||||
|
|
||||||
|
def create_document(self) -> str:
|
||||||
|
return f"""
|
||||||
|
<!DOCTYPE html>
|
||||||
|
<html>
|
||||||
|
<head>
|
||||||
|
<meta charset='utf-8'>
|
||||||
|
<title>文档总结报告</title>
|
||||||
|
<style>{self.css_styles}</style>
|
||||||
|
</head>
|
||||||
|
<body>
|
||||||
|
<h1>📑 文档总结报告</h1>
|
||||||
|
<h2>总体摘要</h2>
|
||||||
|
<div class="summary">{self.final_summary}</div>
|
||||||
|
{self.format_failed_files()}
|
||||||
|
<div class="details">
|
||||||
|
<h2>📚 各文件详细总结</h2>
|
||||||
|
{self.format_file_summaries()}
|
||||||
|
</div>
|
||||||
|
</body>
|
||||||
|
</html>
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
@@ -0,0 +1,26 @@
|
|||||||
|
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
|
||||||
|
|
||||||
|
def structure_output(txt, prompt, err_msg, run_gpt_fn, pydantic_cls):
|
||||||
|
gpt_json_io = GptJsonIO(pydantic_cls)
|
||||||
|
analyze_res = run_gpt_fn(
|
||||||
|
txt,
|
||||||
|
sys_prompt=prompt + gpt_json_io.format_instructions
|
||||||
|
)
|
||||||
|
try:
|
||||||
|
friend = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
|
||||||
|
except JsonStringError as e:
|
||||||
|
return None, err_msg
|
||||||
|
|
||||||
|
err_msg = ""
|
||||||
|
return friend, err_msg
|
||||||
|
|
||||||
|
|
||||||
|
def select_tool(prompt, run_gpt_fn, pydantic_cls):
|
||||||
|
pydantic_cls_instance, err_msg = structure_output(
|
||||||
|
txt=prompt,
|
||||||
|
prompt="根据提示, 分析应该调用哪个工具函数\n\n",
|
||||||
|
err_msg=f"不能理解该联系人",
|
||||||
|
run_gpt_fn=run_gpt_fn,
|
||||||
|
pydantic_cls=pydantic_cls
|
||||||
|
)
|
||||||
|
return pydantic_cls_instance, err_msg
|
||||||
@@ -3,7 +3,7 @@ import re
|
|||||||
import shutil
|
import shutil
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from loguru import logger
|
from loguru import logger
|
||||||
from toolbox import update_ui, update_ui_lastest_msg, get_log_folder
|
from toolbox import update_ui, update_ui_lastest_msg, get_log_folder, gen_time_str
|
||||||
from toolbox import get_conf, promote_file_to_downloadzone
|
from toolbox import get_conf, promote_file_to_downloadzone
|
||||||
from crazy_functions.latex_fns.latex_toolbox import PRESERVE, TRANSFORM
|
from crazy_functions.latex_fns.latex_toolbox import PRESERVE, TRANSFORM
|
||||||
from crazy_functions.latex_fns.latex_toolbox import set_forbidden_text, set_forbidden_text_begin_end, set_forbidden_text_careful_brace
|
from crazy_functions.latex_fns.latex_toolbox import set_forbidden_text, set_forbidden_text_begin_end, set_forbidden_text_careful_brace
|
||||||
@@ -468,3 +468,70 @@ def write_html(sp_file_contents, sp_file_result, chatbot, project_folder):
|
|||||||
except:
|
except:
|
||||||
from toolbox import trimmed_format_exc
|
from toolbox import trimmed_format_exc
|
||||||
logger.error('writing html result failed:', trimmed_format_exc())
|
logger.error('writing html result failed:', trimmed_format_exc())
|
||||||
|
|
||||||
|
|
||||||
|
def upload_to_gptac_cloud_if_user_allow(chatbot, arxiv_id):
|
||||||
|
try:
|
||||||
|
# 如果用户允许,我们将arxiv论文PDF上传到GPTAC学术云
|
||||||
|
from toolbox import map_file_to_sha256
|
||||||
|
# 检查是否顺利,如果没有生成预期的文件,则跳过
|
||||||
|
is_result_good = False
|
||||||
|
for file_path in chatbot._cookies.get("files_to_promote", []):
|
||||||
|
if file_path.endswith('translate_zh.pdf'):
|
||||||
|
is_result_good = True
|
||||||
|
if not is_result_good:
|
||||||
|
return
|
||||||
|
# 上传文件
|
||||||
|
for file_path in chatbot._cookies.get("files_to_promote", []):
|
||||||
|
align_name = None
|
||||||
|
# normalized name
|
||||||
|
for name in ['translate_zh.pdf', 'comparison.pdf']:
|
||||||
|
if file_path.endswith(name): align_name = name
|
||||||
|
# if match any align name
|
||||||
|
if align_name:
|
||||||
|
logger.info(f'Uploading to GPTAC cloud as the user has set `allow_cloud_io`: {file_path}')
|
||||||
|
with open(file_path, 'rb') as f:
|
||||||
|
import requests
|
||||||
|
url = 'https://cloud-2.agent-matrix.com/arxiv_tf_paper_normal_upload'
|
||||||
|
files = {'file': (align_name, f, 'application/octet-stream')}
|
||||||
|
data = {
|
||||||
|
'arxiv_id': arxiv_id,
|
||||||
|
'file_hash': map_file_to_sha256(file_path),
|
||||||
|
'language': 'zh',
|
||||||
|
'trans_prompt': 'to_be_implemented',
|
||||||
|
'llm_model': 'to_be_implemented',
|
||||||
|
'llm_model_param': 'to_be_implemented',
|
||||||
|
}
|
||||||
|
resp = requests.post(url=url, files=files, data=data, timeout=30)
|
||||||
|
logger.info(f'Uploading terminate ({resp.status_code})`: {file_path}')
|
||||||
|
except:
|
||||||
|
# 如果上传失败,不会中断程序,因为这是次要功能
|
||||||
|
pass
|
||||||
|
|
||||||
|
def check_gptac_cloud(arxiv_id, chatbot):
|
||||||
|
import requests
|
||||||
|
success = False
|
||||||
|
downloaded = []
|
||||||
|
try:
|
||||||
|
for pdf_target in ['translate_zh.pdf', 'comparison.pdf']:
|
||||||
|
url = 'https://cloud-2.agent-matrix.com/arxiv_tf_paper_normal_exist'
|
||||||
|
data = {
|
||||||
|
'arxiv_id': arxiv_id,
|
||||||
|
'name': pdf_target,
|
||||||
|
}
|
||||||
|
resp = requests.post(url=url, data=data)
|
||||||
|
cache_hit_result = resp.text.strip('"')
|
||||||
|
if cache_hit_result.startswith("http"):
|
||||||
|
url = cache_hit_result
|
||||||
|
logger.info(f'Downloading from GPTAC cloud: {url}')
|
||||||
|
resp = requests.get(url=url, timeout=30)
|
||||||
|
target = os.path.join(get_log_folder(plugin_name='gptac_cloud'), gen_time_str(), pdf_target)
|
||||||
|
os.makedirs(os.path.dirname(target), exist_ok=True)
|
||||||
|
with open(target, 'wb') as f:
|
||||||
|
f.write(resp.content)
|
||||||
|
new_path = promote_file_to_downloadzone(target, chatbot=chatbot)
|
||||||
|
success = True
|
||||||
|
downloaded.append(new_path)
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
return success, downloaded
|
||||||
|
|||||||
@@ -644,6 +644,216 @@ def run_in_subprocess(func):
|
|||||||
|
|
||||||
|
|
||||||
def _merge_pdfs(pdf1_path, pdf2_path, output_path):
|
def _merge_pdfs(pdf1_path, pdf2_path, output_path):
|
||||||
|
try:
|
||||||
|
logger.info("Merging PDFs using _merge_pdfs_ng")
|
||||||
|
_merge_pdfs_ng(pdf1_path, pdf2_path, output_path)
|
||||||
|
except:
|
||||||
|
logger.info("Merging PDFs using _merge_pdfs_legacy")
|
||||||
|
_merge_pdfs_legacy(pdf1_path, pdf2_path, output_path)
|
||||||
|
|
||||||
|
|
||||||
|
def _merge_pdfs_ng(pdf1_path, pdf2_path, output_path):
|
||||||
|
import PyPDF2 # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放
|
||||||
|
from PyPDF2.generic import NameObject, TextStringObject, ArrayObject, FloatObject, NumberObject
|
||||||
|
|
||||||
|
Percent = 1
|
||||||
|
# raise RuntimeError('PyPDF2 has a serious memory leak problem, please use other tools to merge PDF files.')
|
||||||
|
# Open the first PDF file
|
||||||
|
with open(pdf1_path, "rb") as pdf1_file:
|
||||||
|
pdf1_reader = PyPDF2.PdfFileReader(pdf1_file)
|
||||||
|
# Open the second PDF file
|
||||||
|
with open(pdf2_path, "rb") as pdf2_file:
|
||||||
|
pdf2_reader = PyPDF2.PdfFileReader(pdf2_file)
|
||||||
|
# Create a new PDF file to store the merged pages
|
||||||
|
output_writer = PyPDF2.PdfFileWriter()
|
||||||
|
# Determine the number of pages in each PDF file
|
||||||
|
num_pages = max(pdf1_reader.numPages, pdf2_reader.numPages)
|
||||||
|
# Merge the pages from the two PDF files
|
||||||
|
for page_num in range(num_pages):
|
||||||
|
# Add the page from the first PDF file
|
||||||
|
if page_num < pdf1_reader.numPages:
|
||||||
|
page1 = pdf1_reader.getPage(page_num)
|
||||||
|
else:
|
||||||
|
page1 = PyPDF2.PageObject.createBlankPage(pdf1_reader)
|
||||||
|
# Add the page from the second PDF file
|
||||||
|
if page_num < pdf2_reader.numPages:
|
||||||
|
page2 = pdf2_reader.getPage(page_num)
|
||||||
|
else:
|
||||||
|
page2 = PyPDF2.PageObject.createBlankPage(pdf1_reader)
|
||||||
|
# Create a new empty page with double width
|
||||||
|
new_page = PyPDF2.PageObject.createBlankPage(
|
||||||
|
width=int(
|
||||||
|
int(page1.mediaBox.getWidth())
|
||||||
|
+ int(page2.mediaBox.getWidth()) * Percent
|
||||||
|
),
|
||||||
|
height=max(page1.mediaBox.getHeight(), page2.mediaBox.getHeight()),
|
||||||
|
)
|
||||||
|
new_page.mergeTranslatedPage(page1, 0, 0)
|
||||||
|
new_page.mergeTranslatedPage(
|
||||||
|
page2,
|
||||||
|
int(
|
||||||
|
int(page1.mediaBox.getWidth())
|
||||||
|
- int(page2.mediaBox.getWidth()) * (1 - Percent)
|
||||||
|
),
|
||||||
|
0,
|
||||||
|
)
|
||||||
|
if "/Annots" in new_page:
|
||||||
|
annotations = new_page["/Annots"]
|
||||||
|
for i, annot in enumerate(annotations):
|
||||||
|
annot_obj = annot.get_object()
|
||||||
|
|
||||||
|
# 检查注释类型是否是链接(/Link)
|
||||||
|
if annot_obj.get("/Subtype") == "/Link":
|
||||||
|
# 检查是否为内部链接跳转(/GoTo)或外部URI链接(/URI)
|
||||||
|
action = annot_obj.get("/A")
|
||||||
|
if action:
|
||||||
|
|
||||||
|
if "/S" in action and action["/S"] == "/GoTo":
|
||||||
|
# 内部链接:跳转到文档中的某个页面
|
||||||
|
dest = action.get("/D") # 目标页或目标位置
|
||||||
|
# if dest and annot.idnum in page2_annot_id:
|
||||||
|
# if dest in pdf2_reader.named_destinations:
|
||||||
|
if dest and page2.annotations:
|
||||||
|
if annot in page2.annotations:
|
||||||
|
# 获取原始文件中跳转信息,包括跳转页面
|
||||||
|
destination = pdf2_reader.named_destinations[
|
||||||
|
dest
|
||||||
|
]
|
||||||
|
page_number = (
|
||||||
|
pdf2_reader.get_destination_page_number(
|
||||||
|
destination
|
||||||
|
)
|
||||||
|
)
|
||||||
|
# 更新跳转信息,跳转到对应的页面和,指定坐标 (100, 150),缩放比例为 100%
|
||||||
|
# “/D”:[10,'/XYZ',100,100,0]
|
||||||
|
if destination.dest_array[1] == "/XYZ":
|
||||||
|
annot_obj["/A"].update(
|
||||||
|
{
|
||||||
|
NameObject("/D"): ArrayObject(
|
||||||
|
[
|
||||||
|
NumberObject(page_number),
|
||||||
|
destination.dest_array[1],
|
||||||
|
FloatObject(
|
||||||
|
destination.dest_array[
|
||||||
|
2
|
||||||
|
]
|
||||||
|
+ int(
|
||||||
|
page1.mediaBox.getWidth()
|
||||||
|
)
|
||||||
|
),
|
||||||
|
destination.dest_array[3],
|
||||||
|
destination.dest_array[4],
|
||||||
|
]
|
||||||
|
) # 确保键和值是 PdfObject
|
||||||
|
}
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
annot_obj["/A"].update(
|
||||||
|
{
|
||||||
|
NameObject("/D"): ArrayObject(
|
||||||
|
[
|
||||||
|
NumberObject(page_number),
|
||||||
|
destination.dest_array[1],
|
||||||
|
]
|
||||||
|
) # 确保键和值是 PdfObject
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
rect = annot_obj.get("/Rect")
|
||||||
|
# 更新点击坐标
|
||||||
|
rect = ArrayObject(
|
||||||
|
[
|
||||||
|
FloatObject(
|
||||||
|
rect[0]
|
||||||
|
+ int(page1.mediaBox.getWidth())
|
||||||
|
),
|
||||||
|
rect[1],
|
||||||
|
FloatObject(
|
||||||
|
rect[2]
|
||||||
|
+ int(page1.mediaBox.getWidth())
|
||||||
|
),
|
||||||
|
rect[3],
|
||||||
|
]
|
||||||
|
)
|
||||||
|
annot_obj.update(
|
||||||
|
{
|
||||||
|
NameObject(
|
||||||
|
"/Rect"
|
||||||
|
): rect # 确保键和值是 PdfObject
|
||||||
|
}
|
||||||
|
)
|
||||||
|
# if dest and annot.idnum in page1_annot_id:
|
||||||
|
# if dest in pdf1_reader.named_destinations:
|
||||||
|
if dest and page1.annotations:
|
||||||
|
if annot in page1.annotations:
|
||||||
|
# 获取原始文件中跳转信息,包括跳转页面
|
||||||
|
destination = pdf1_reader.named_destinations[
|
||||||
|
dest
|
||||||
|
]
|
||||||
|
page_number = (
|
||||||
|
pdf1_reader.get_destination_page_number(
|
||||||
|
destination
|
||||||
|
)
|
||||||
|
)
|
||||||
|
# 更新跳转信息,跳转到对应的页面和,指定坐标 (100, 150),缩放比例为 100%
|
||||||
|
# “/D”:[10,'/XYZ',100,100,0]
|
||||||
|
if destination.dest_array[1] == "/XYZ":
|
||||||
|
annot_obj["/A"].update(
|
||||||
|
{
|
||||||
|
NameObject("/D"): ArrayObject(
|
||||||
|
[
|
||||||
|
NumberObject(page_number),
|
||||||
|
destination.dest_array[1],
|
||||||
|
FloatObject(
|
||||||
|
destination.dest_array[
|
||||||
|
2
|
||||||
|
]
|
||||||
|
),
|
||||||
|
destination.dest_array[3],
|
||||||
|
destination.dest_array[4],
|
||||||
|
]
|
||||||
|
) # 确保键和值是 PdfObject
|
||||||
|
}
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
annot_obj["/A"].update(
|
||||||
|
{
|
||||||
|
NameObject("/D"): ArrayObject(
|
||||||
|
[
|
||||||
|
NumberObject(page_number),
|
||||||
|
destination.dest_array[1],
|
||||||
|
]
|
||||||
|
) # 确保键和值是 PdfObject
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
rect = annot_obj.get("/Rect")
|
||||||
|
rect = ArrayObject(
|
||||||
|
[
|
||||||
|
FloatObject(rect[0]),
|
||||||
|
rect[1],
|
||||||
|
FloatObject(rect[2]),
|
||||||
|
rect[3],
|
||||||
|
]
|
||||||
|
)
|
||||||
|
annot_obj.update(
|
||||||
|
{
|
||||||
|
NameObject(
|
||||||
|
"/Rect"
|
||||||
|
): rect # 确保键和值是 PdfObject
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
elif "/S" in action and action["/S"] == "/URI":
|
||||||
|
# 外部链接:跳转到某个URI
|
||||||
|
uri = action.get("/URI")
|
||||||
|
output_writer.addPage(new_page)
|
||||||
|
# Save the merged PDF file
|
||||||
|
with open(output_path, "wb") as output_file:
|
||||||
|
output_writer.write(output_file)
|
||||||
|
|
||||||
|
|
||||||
|
def _merge_pdfs_legacy(pdf1_path, pdf2_path, output_path):
|
||||||
import PyPDF2 # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放
|
import PyPDF2 # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放
|
||||||
|
|
||||||
Percent = 0.95
|
Percent = 0.95
|
||||||
|
|||||||
@@ -4,7 +4,9 @@ from toolbox import promote_file_to_downloadzone, extract_archive
|
|||||||
from toolbox import generate_file_link, zip_folder
|
from toolbox import generate_file_link, zip_folder
|
||||||
from crazy_functions.crazy_utils import get_files_from_everything
|
from crazy_functions.crazy_utils import get_files_from_everything
|
||||||
from shared_utils.colorful import *
|
from shared_utils.colorful import *
|
||||||
|
from loguru import logger
|
||||||
import os
|
import os
|
||||||
|
import time
|
||||||
|
|
||||||
def refresh_key(doc2x_api_key):
|
def refresh_key(doc2x_api_key):
|
||||||
import requests, json
|
import requests, json
|
||||||
@@ -22,105 +24,140 @@ def refresh_key(doc2x_api_key):
|
|||||||
raise RuntimeError(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
|
raise RuntimeError(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
|
||||||
return doc2x_api_key
|
return doc2x_api_key
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def 解析PDF_DOC2X_转Latex(pdf_file_path):
|
def 解析PDF_DOC2X_转Latex(pdf_file_path):
|
||||||
|
zip_file_path, unzipped_folder = 解析PDF_DOC2X(pdf_file_path, format='tex')
|
||||||
|
return unzipped_folder
|
||||||
|
|
||||||
|
|
||||||
|
def 解析PDF_DOC2X(pdf_file_path, format='tex'):
|
||||||
|
"""
|
||||||
|
format: 'tex', 'md', 'docx'
|
||||||
|
"""
|
||||||
import requests, json, os
|
import requests, json, os
|
||||||
DOC2X_API_KEY = get_conf('DOC2X_API_KEY')
|
DOC2X_API_KEY = get_conf('DOC2X_API_KEY')
|
||||||
latex_dir = get_log_folder(plugin_name="pdf_ocr_latex")
|
latex_dir = get_log_folder(plugin_name="pdf_ocr_latex")
|
||||||
|
markdown_dir = get_log_folder(plugin_name="pdf_ocr")
|
||||||
doc2x_api_key = DOC2X_API_KEY
|
doc2x_api_key = DOC2X_API_KEY
|
||||||
if doc2x_api_key.startswith('sk-'):
|
|
||||||
url = "https://api.doc2x.noedgeai.com/api/v1/pdf"
|
|
||||||
else:
|
|
||||||
doc2x_api_key = refresh_key(doc2x_api_key)
|
|
||||||
url = "https://api.doc2x.noedgeai.com/api/platform/pdf"
|
|
||||||
|
|
||||||
|
|
||||||
|
# < ------ 第1步:上传 ------ >
|
||||||
|
logger.info("Doc2x 第1步:上传")
|
||||||
|
with open(pdf_file_path, 'rb') as file:
|
||||||
|
res = requests.post(
|
||||||
|
"https://v2.doc2x.noedgeai.com/api/v2/parse/pdf",
|
||||||
|
headers={"Authorization": "Bearer " + doc2x_api_key},
|
||||||
|
data=file
|
||||||
|
)
|
||||||
|
# res_json = []
|
||||||
|
if res.status_code == 200:
|
||||||
|
res_json = res.json()
|
||||||
|
else:
|
||||||
|
raise RuntimeError(f"Doc2x return an error: {res.json()}")
|
||||||
|
uuid = res_json['data']['uid']
|
||||||
|
|
||||||
|
# < ------ 第2步:轮询等待 ------ >
|
||||||
|
logger.info("Doc2x 第2步:轮询等待")
|
||||||
|
params = {'uid': uuid}
|
||||||
|
while True:
|
||||||
|
res = requests.get(
|
||||||
|
'https://v2.doc2x.noedgeai.com/api/v2/parse/status',
|
||||||
|
headers={"Authorization": "Bearer " + doc2x_api_key},
|
||||||
|
params=params
|
||||||
|
)
|
||||||
|
res_json = res.json()
|
||||||
|
if res_json['data']['status'] == "success":
|
||||||
|
break
|
||||||
|
elif res_json['data']['status'] == "processing":
|
||||||
|
time.sleep(3)
|
||||||
|
logger.info(f"Doc2x is processing at {res_json['data']['progress']}%")
|
||||||
|
elif res_json['data']['status'] == "failed":
|
||||||
|
raise RuntimeError(f"Doc2x return an error: {res_json}")
|
||||||
|
|
||||||
|
|
||||||
|
# < ------ 第3步:提交转化 ------ >
|
||||||
|
logger.info("Doc2x 第3步:提交转化")
|
||||||
|
data = {
|
||||||
|
"uid": uuid,
|
||||||
|
"to": format,
|
||||||
|
"formula_mode": "dollar",
|
||||||
|
"filename": "output"
|
||||||
|
}
|
||||||
res = requests.post(
|
res = requests.post(
|
||||||
url,
|
'https://v2.doc2x.noedgeai.com/api/v2/convert/parse',
|
||||||
files={"file": open(pdf_file_path, "rb")},
|
headers={"Authorization": "Bearer " + doc2x_api_key},
|
||||||
data={"ocr": "1"},
|
json=data
|
||||||
headers={"Authorization": "Bearer " + doc2x_api_key}
|
|
||||||
)
|
)
|
||||||
res_json = []
|
|
||||||
if res.status_code == 200:
|
if res.status_code == 200:
|
||||||
decoded = res.content.decode("utf-8")
|
res_json = res.json()
|
||||||
for z_decoded in decoded.split('\n'):
|
|
||||||
if len(z_decoded) == 0: continue
|
|
||||||
assert z_decoded.startswith("data: ")
|
|
||||||
z_decoded = z_decoded[len("data: "):]
|
|
||||||
decoded_json = json.loads(z_decoded)
|
|
||||||
res_json.append(decoded_json)
|
|
||||||
else:
|
else:
|
||||||
raise RuntimeError(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
|
raise RuntimeError(f"Doc2x return an error: {res.json()}")
|
||||||
|
|
||||||
uuid = res_json[0]['uuid']
|
|
||||||
to = "latex" # latex, md, docx
|
|
||||||
url = "https://api.doc2x.noedgeai.com/api/export"+"?request_id="+uuid+"&to="+to
|
|
||||||
|
|
||||||
res = requests.get(url, headers={"Authorization": "Bearer " + doc2x_api_key})
|
# < ------ 第4步:等待结果 ------ >
|
||||||
latex_zip_path = os.path.join(latex_dir, gen_time_str() + '.zip')
|
logger.info("Doc2x 第4步:等待结果")
|
||||||
latex_unzip_path = os.path.join(latex_dir, gen_time_str())
|
params = {'uid': uuid}
|
||||||
if res.status_code == 200:
|
while True:
|
||||||
with open(latex_zip_path, "wb") as f: f.write(res.content)
|
res = requests.get(
|
||||||
else:
|
'https://v2.doc2x.noedgeai.com/api/v2/convert/parse/result',
|
||||||
raise RuntimeError(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
|
headers={"Authorization": "Bearer " + doc2x_api_key},
|
||||||
|
params=params
|
||||||
|
)
|
||||||
|
res_json = res.json()
|
||||||
|
if res_json['data']['status'] == "success":
|
||||||
|
break
|
||||||
|
elif res_json['data']['status'] == "processing":
|
||||||
|
time.sleep(3)
|
||||||
|
logger.info(f"Doc2x still processing")
|
||||||
|
elif res_json['data']['status'] == "failed":
|
||||||
|
raise RuntimeError(f"Doc2x return an error: {res_json}")
|
||||||
|
|
||||||
|
|
||||||
|
# < ------ 第5步:最后的处理 ------ >
|
||||||
|
logger.info("Doc2x 第5步:最后的处理")
|
||||||
|
|
||||||
|
if format=='tex':
|
||||||
|
target_path = latex_dir
|
||||||
|
if format=='md':
|
||||||
|
target_path = markdown_dir
|
||||||
|
os.makedirs(target_path, exist_ok=True)
|
||||||
|
|
||||||
|
max_attempt = 3
|
||||||
|
# < ------ 下载 ------ >
|
||||||
|
for attempt in range(max_attempt):
|
||||||
|
try:
|
||||||
|
result_url = res_json['data']['url']
|
||||||
|
res = requests.get(result_url)
|
||||||
|
zip_path = os.path.join(target_path, gen_time_str() + '.zip')
|
||||||
|
unzip_path = os.path.join(target_path, gen_time_str())
|
||||||
|
if res.status_code == 200:
|
||||||
|
with open(zip_path, "wb") as f: f.write(res.content)
|
||||||
|
else:
|
||||||
|
raise RuntimeError(f"Doc2x return an error: {res.json()}")
|
||||||
|
except Exception as e:
|
||||||
|
if attempt < max_attempt - 1:
|
||||||
|
logger.error(f"Failed to download latex file, retrying... {e}")
|
||||||
|
time.sleep(3)
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
raise e
|
||||||
|
|
||||||
|
# < ------ 解压 ------ >
|
||||||
import zipfile
|
import zipfile
|
||||||
with zipfile.ZipFile(latex_zip_path, 'r') as zip_ref:
|
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
||||||
zip_ref.extractall(latex_unzip_path)
|
zip_ref.extractall(unzip_path)
|
||||||
|
return zip_path, unzip_path
|
||||||
|
|
||||||
return latex_unzip_path
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def 解析PDF_DOC2X_单文件(fp, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, DOC2X_API_KEY, user_request):
|
def 解析PDF_DOC2X_单文件(fp, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, DOC2X_API_KEY, user_request):
|
||||||
|
|
||||||
|
|
||||||
def pdf2markdown(filepath):
|
def pdf2markdown(filepath):
|
||||||
import requests, json, os
|
chatbot.append((None, f"Doc2x 解析中"))
|
||||||
markdown_dir = get_log_folder(plugin_name="pdf_ocr")
|
|
||||||
doc2x_api_key = DOC2X_API_KEY
|
|
||||||
if doc2x_api_key.startswith('sk-'):
|
|
||||||
url = "https://api.doc2x.noedgeai.com/api/v1/pdf"
|
|
||||||
else:
|
|
||||||
doc2x_api_key = refresh_key(doc2x_api_key)
|
|
||||||
url = "https://api.doc2x.noedgeai.com/api/platform/pdf"
|
|
||||||
|
|
||||||
chatbot.append((None, "加载PDF文件,发送至DOC2X解析..."))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
res = requests.post(
|
md_zip_path, unzipped_folder = 解析PDF_DOC2X(filepath, format='md')
|
||||||
url,
|
|
||||||
files={"file": open(filepath, "rb")},
|
|
||||||
data={"ocr": "1"},
|
|
||||||
headers={"Authorization": "Bearer " + doc2x_api_key}
|
|
||||||
)
|
|
||||||
res_json = []
|
|
||||||
if res.status_code == 200:
|
|
||||||
decoded = res.content.decode("utf-8")
|
|
||||||
for z_decoded in decoded.split('\n'):
|
|
||||||
if len(z_decoded) == 0: continue
|
|
||||||
assert z_decoded.startswith("data: ")
|
|
||||||
z_decoded = z_decoded[len("data: "):]
|
|
||||||
decoded_json = json.loads(z_decoded)
|
|
||||||
res_json.append(decoded_json)
|
|
||||||
if 'limit exceeded' in decoded_json.get('status', ''):
|
|
||||||
raise RuntimeError("Doc2x API 页数受限,请联系 Doc2x 方面,并更换新的 API 秘钥。")
|
|
||||||
else:
|
|
||||||
raise RuntimeError(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
|
|
||||||
uuid = res_json[0]['uuid']
|
|
||||||
to = "md" # latex, md, docx
|
|
||||||
url = "https://api.doc2x.noedgeai.com/api/export"+"?request_id="+uuid+"&to="+to
|
|
||||||
|
|
||||||
chatbot.append((None, f"读取解析: {url} ..."))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
res = requests.get(url, headers={"Authorization": "Bearer " + doc2x_api_key})
|
|
||||||
md_zip_path = os.path.join(markdown_dir, gen_time_str() + '.zip')
|
|
||||||
if res.status_code == 200:
|
|
||||||
with open(md_zip_path, "wb") as f: f.write(res.content)
|
|
||||||
else:
|
|
||||||
raise RuntimeError(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
|
|
||||||
promote_file_to_downloadzone(md_zip_path, chatbot=chatbot)
|
promote_file_to_downloadzone(md_zip_path, chatbot=chatbot)
|
||||||
chatbot.append((None, f"完成解析 {md_zip_path} ..."))
|
chatbot.append((None, f"完成解析 {md_zip_path} ..."))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|||||||
@@ -1,17 +1,13 @@
|
|||||||
import llama_index
|
|
||||||
import os
|
|
||||||
import atexit
|
import atexit
|
||||||
from loguru import logger
|
from loguru import logger
|
||||||
from typing import List
|
from typing import List
|
||||||
|
|
||||||
from llama_index.core import Document
|
from llama_index.core import Document
|
||||||
from llama_index.core.schema import TextNode
|
|
||||||
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
|
|
||||||
from shared_utils.connect_void_terminal import get_chat_default_kwargs
|
|
||||||
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
|
|
||||||
from crazy_functions.rag_fns.vector_store_index import GptacVectorStoreIndex
|
|
||||||
from llama_index.core.ingestion import run_transformations
|
from llama_index.core.ingestion import run_transformations
|
||||||
from llama_index.core import PromptTemplate
|
from llama_index.core.schema import TextNode
|
||||||
from llama_index.core.response_synthesizers import TreeSummarize
|
|
||||||
|
from crazy_functions.rag_fns.vector_store_index import GptacVectorStoreIndex
|
||||||
|
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
|
||||||
|
|
||||||
DEFAULT_QUERY_GENERATION_PROMPT = """\
|
DEFAULT_QUERY_GENERATION_PROMPT = """\
|
||||||
Now, you have context information as below:
|
Now, you have context information as below:
|
||||||
@@ -63,7 +59,7 @@ class SaveLoad():
|
|||||||
def purge(self):
|
def purge(self):
|
||||||
import shutil
|
import shutil
|
||||||
shutil.rmtree(self.checkpoint_dir, ignore_errors=True)
|
shutil.rmtree(self.checkpoint_dir, ignore_errors=True)
|
||||||
self.vs_index = self.create_new_vs()
|
self.vs_index = self.create_new_vs(self.checkpoint_dir)
|
||||||
|
|
||||||
|
|
||||||
class LlamaIndexRagWorker(SaveLoad):
|
class LlamaIndexRagWorker(SaveLoad):
|
||||||
@@ -75,7 +71,7 @@ class LlamaIndexRagWorker(SaveLoad):
|
|||||||
if auto_load_checkpoint:
|
if auto_load_checkpoint:
|
||||||
self.vs_index = self.load_from_checkpoint(checkpoint_dir)
|
self.vs_index = self.load_from_checkpoint(checkpoint_dir)
|
||||||
else:
|
else:
|
||||||
self.vs_index = self.create_new_vs(checkpoint_dir)
|
self.vs_index = self.create_new_vs()
|
||||||
atexit.register(lambda: self.save_to_checkpoint(checkpoint_dir))
|
atexit.register(lambda: self.save_to_checkpoint(checkpoint_dir))
|
||||||
|
|
||||||
def assign_embedding_model(self):
|
def assign_embedding_model(self):
|
||||||
@@ -91,40 +87,52 @@ class LlamaIndexRagWorker(SaveLoad):
|
|||||||
logger.info('oo --------inspect_vector_store end--------')
|
logger.info('oo --------inspect_vector_store end--------')
|
||||||
return vector_store_preview
|
return vector_store_preview
|
||||||
|
|
||||||
def add_documents_to_vector_store(self, document_list):
|
def add_documents_to_vector_store(self, document_list: List[Document]):
|
||||||
documents = [Document(text=t) for t in document_list]
|
"""
|
||||||
|
Adds a list of Document objects to the vector store after processing.
|
||||||
|
"""
|
||||||
|
documents = document_list
|
||||||
documents_nodes = run_transformations(
|
documents_nodes = run_transformations(
|
||||||
documents, # type: ignore
|
documents, # type: ignore
|
||||||
self.vs_index._transformations,
|
self.vs_index._transformations,
|
||||||
show_progress=True
|
show_progress=True
|
||||||
)
|
)
|
||||||
self.vs_index.insert_nodes(documents_nodes)
|
self.vs_index.insert_nodes(documents_nodes)
|
||||||
if self.debug_mode: self.inspect_vector_store()
|
if self.debug_mode:
|
||||||
|
self.inspect_vector_store()
|
||||||
|
|
||||||
def add_text_to_vector_store(self, text):
|
def add_text_to_vector_store(self, text: str):
|
||||||
node = TextNode(text=text)
|
node = TextNode(text=text)
|
||||||
documents_nodes = run_transformations(
|
documents_nodes = run_transformations(
|
||||||
[node],
|
[node],
|
||||||
self.vs_index._transformations,
|
self.vs_index._transformations,
|
||||||
show_progress=True
|
show_progress=True
|
||||||
)
|
)
|
||||||
self.vs_index.insert_nodes(documents_nodes)
|
self.vs_index.insert_nodes(documents_nodes)
|
||||||
if self.debug_mode: self.inspect_vector_store()
|
if self.debug_mode:
|
||||||
|
self.inspect_vector_store()
|
||||||
|
|
||||||
def remember_qa(self, question, answer):
|
def remember_qa(self, question, answer):
|
||||||
formatted_str = QUESTION_ANSWER_RECORD.format(question=question, answer=answer)
|
formatted_str = QUESTION_ANSWER_RECORD.format(question=question, answer=answer)
|
||||||
self.add_text_to_vector_store(formatted_str)
|
self.add_text_to_vector_store(formatted_str)
|
||||||
|
|
||||||
def retrieve_from_store_with_query(self, query):
|
def retrieve_from_store_with_query(self, query):
|
||||||
if self.debug_mode: self.inspect_vector_store()
|
if self.debug_mode:
|
||||||
|
self.inspect_vector_store()
|
||||||
retriever = self.vs_index.as_retriever()
|
retriever = self.vs_index.as_retriever()
|
||||||
return retriever.retrieve(query)
|
return retriever.retrieve(query)
|
||||||
|
|
||||||
def build_prompt(self, query, nodes):
|
def build_prompt(self, query, nodes):
|
||||||
context_str = self.generate_node_array_preview(nodes)
|
context_str = self.generate_node_array_preview(nodes)
|
||||||
return DEFAULT_QUERY_GENERATION_PROMPT.format(context_str=context_str, query_str=query)
|
return DEFAULT_QUERY_GENERATION_PROMPT.format(context_str=context_str, query_str=query)
|
||||||
|
|
||||||
def generate_node_array_preview(self, nodes):
|
def generate_node_array_preview(self, nodes):
|
||||||
buf = "\n".join(([f"(No.{i+1} | score {n.score:.3f}): {n.text}" for i, n in enumerate(nodes)]))
|
buf = "\n".join(([f"(No.{i+1} | score {n.score:.3f}): {n.text}" for i, n in enumerate(nodes)]))
|
||||||
if self.debug_mode: logger.info(buf)
|
if self.debug_mode: logger.info(buf)
|
||||||
return buf
|
return buf
|
||||||
|
|
||||||
|
def purge_vector_store(self):
|
||||||
|
"""
|
||||||
|
Purges the current vector store and creates a new one.
|
||||||
|
"""
|
||||||
|
self.purge()
|
||||||
@@ -0,0 +1,45 @@
|
|||||||
|
import os
|
||||||
|
from llama_index.core import SimpleDirectoryReader
|
||||||
|
|
||||||
|
supports_format = ['.csv', '.docx','.doc', '.epub', '.ipynb', '.mbox', '.md', '.pdf', '.txt', '.ppt',
|
||||||
|
'.pptm', '.pptx','.py', '.xls', '.xlsx', '.html', '.json', '.xml', '.yaml', '.yml' ,'.m']
|
||||||
|
|
||||||
|
def read_docx_doc(file_path):
|
||||||
|
if file_path.split(".")[-1] == "docx":
|
||||||
|
from docx import Document
|
||||||
|
doc = Document(file_path)
|
||||||
|
file_content = "\n".join([para.text for para in doc.paragraphs])
|
||||||
|
else:
|
||||||
|
try:
|
||||||
|
import win32com.client
|
||||||
|
word = win32com.client.Dispatch("Word.Application")
|
||||||
|
word.visible = False
|
||||||
|
# 打开文件
|
||||||
|
doc = word.Documents.Open(os.getcwd() + '/' + file_path)
|
||||||
|
# file_content = doc.Content.Text
|
||||||
|
doc = word.ActiveDocument
|
||||||
|
file_content = doc.Range().Text
|
||||||
|
doc.Close()
|
||||||
|
word.Quit()
|
||||||
|
except:
|
||||||
|
raise RuntimeError('请先将.doc文档转换为.docx文档。')
|
||||||
|
return file_content
|
||||||
|
|
||||||
|
# 修改后的 extract_text 函数,结合 SimpleDirectoryReader 和自定义解析逻辑
|
||||||
|
import os
|
||||||
|
|
||||||
|
def extract_text(file_path):
|
||||||
|
_, ext = os.path.splitext(file_path.lower())
|
||||||
|
|
||||||
|
# 使用 SimpleDirectoryReader 处理它支持的文件格式
|
||||||
|
if ext in ['.docx', '.doc']:
|
||||||
|
return read_docx_doc(file_path)
|
||||||
|
try:
|
||||||
|
reader = SimpleDirectoryReader(input_files=[file_path])
|
||||||
|
documents = reader.load_data()
|
||||||
|
if len(documents) > 0:
|
||||||
|
return documents[0].text
|
||||||
|
except Exception as e:
|
||||||
|
pass
|
||||||
|
|
||||||
|
return None
|
||||||
@@ -1,127 +0,0 @@
|
|||||||
from toolbox import update_ui
|
|
||||||
from toolbox import CatchException, report_exception
|
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
|
||||||
fast_debug = False
|
|
||||||
|
|
||||||
|
|
||||||
def 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
|
||||||
import time, os
|
|
||||||
# pip install python-docx 用于docx格式,跨平台
|
|
||||||
# pip install pywin32 用于doc格式,仅支持Win平台
|
|
||||||
for index, fp in enumerate(file_manifest):
|
|
||||||
if fp.split(".")[-1] == "docx":
|
|
||||||
from docx import Document
|
|
||||||
doc = Document(fp)
|
|
||||||
file_content = "\n".join([para.text for para in doc.paragraphs])
|
|
||||||
else:
|
|
||||||
try:
|
|
||||||
import win32com.client
|
|
||||||
word = win32com.client.Dispatch("Word.Application")
|
|
||||||
word.visible = False
|
|
||||||
# 打开文件
|
|
||||||
doc = word.Documents.Open(os.getcwd() + '/' + fp)
|
|
||||||
# file_content = doc.Content.Text
|
|
||||||
doc = word.ActiveDocument
|
|
||||||
file_content = doc.Range().Text
|
|
||||||
doc.Close()
|
|
||||||
word.Quit()
|
|
||||||
except:
|
|
||||||
raise RuntimeError('请先将.doc文档转换为.docx文档。')
|
|
||||||
|
|
||||||
# private_upload里面的文件名在解压zip后容易出现乱码(rar和7z格式正常),故可以只分析文章内容,不输入文件名
|
|
||||||
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
|
||||||
from request_llms.bridge_all import model_info
|
|
||||||
max_token = model_info[llm_kwargs['llm_model']]['max_token']
|
|
||||||
TOKEN_LIMIT_PER_FRAGMENT = max_token * 3 // 4
|
|
||||||
paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
|
|
||||||
this_paper_history = []
|
|
||||||
for i, paper_frag in enumerate(paper_fragments):
|
|
||||||
i_say = f'请对下面的文章片段用中文做概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{paper_frag}```'
|
|
||||||
i_say_show_user = f'请对下面的文章片段做概述: {os.path.abspath(fp)}的第{i+1}/{len(paper_fragments)}个片段。'
|
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
|
||||||
inputs=i_say,
|
|
||||||
inputs_show_user=i_say_show_user,
|
|
||||||
llm_kwargs=llm_kwargs,
|
|
||||||
chatbot=chatbot,
|
|
||||||
history=[],
|
|
||||||
sys_prompt="总结文章。"
|
|
||||||
)
|
|
||||||
|
|
||||||
chatbot[-1] = (i_say_show_user, gpt_say)
|
|
||||||
history.extend([i_say_show_user,gpt_say])
|
|
||||||
this_paper_history.extend([i_say_show_user,gpt_say])
|
|
||||||
|
|
||||||
# 已经对该文章的所有片段总结完毕,如果文章被切分了,
|
|
||||||
if len(paper_fragments) > 1:
|
|
||||||
i_say = f"根据以上的对话,总结文章{os.path.abspath(fp)}的主要内容。"
|
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
|
||||||
inputs=i_say,
|
|
||||||
inputs_show_user=i_say,
|
|
||||||
llm_kwargs=llm_kwargs,
|
|
||||||
chatbot=chatbot,
|
|
||||||
history=this_paper_history,
|
|
||||||
sys_prompt="总结文章。"
|
|
||||||
)
|
|
||||||
|
|
||||||
history.extend([i_say,gpt_say])
|
|
||||||
this_paper_history.extend([i_say,gpt_say])
|
|
||||||
|
|
||||||
res = write_history_to_file(history)
|
|
||||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
|
||||||
chatbot.append(("完成了吗?", res))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
res = write_history_to_file(history)
|
|
||||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
|
||||||
chatbot.append(("所有文件都总结完成了吗?", res))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
|
|
||||||
@CatchException
|
|
||||||
def 总结word文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
||||||
import glob, os
|
|
||||||
|
|
||||||
# 基本信息:功能、贡献者
|
|
||||||
chatbot.append([
|
|
||||||
"函数插件功能?",
|
|
||||||
"批量总结Word文档。函数插件贡献者: JasonGuo1。注意, 如果是.doc文件, 请先转化为.docx格式。"])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
|
||||||
try:
|
|
||||||
from docx import Document
|
|
||||||
except:
|
|
||||||
report_exception(chatbot, history,
|
|
||||||
a=f"解析项目: {txt}",
|
|
||||||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade python-docx pywin32```。")
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
# 清空历史,以免输入溢出
|
|
||||||
history = []
|
|
||||||
|
|
||||||
# 检测输入参数,如没有给定输入参数,直接退出
|
|
||||||
if os.path.exists(txt):
|
|
||||||
project_folder = txt
|
|
||||||
else:
|
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
|
||||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
# 搜索需要处理的文件清单
|
|
||||||
if txt.endswith('.docx') or txt.endswith('.doc'):
|
|
||||||
file_manifest = [txt]
|
|
||||||
else:
|
|
||||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.docx', recursive=True)] + \
|
|
||||||
[f for f in glob.glob(f'{project_folder}/**/*.doc', recursive=True)]
|
|
||||||
|
|
||||||
# 如果没找到任何文件
|
|
||||||
if len(file_manifest) == 0:
|
|
||||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.docx或doc文件: {txt}")
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
# 开始正式执行任务
|
|
||||||
yield from 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
|
||||||
496
crazy_functions/批量文件询问.py
普通文件
496
crazy_functions/批量文件询问.py
普通文件
@@ -0,0 +1,496 @@
|
|||||||
|
import os
|
||||||
|
import threading
|
||||||
|
import time
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import List, Tuple, Dict, Generator
|
||||||
|
|
||||||
|
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
|
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
||||||
|
from crazy_functions.rag_fns.rag_file_support import extract_text
|
||||||
|
from request_llms.bridge_all import model_info
|
||||||
|
from toolbox import update_ui, CatchException, report_exception
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class FileFragment:
|
||||||
|
"""文件片段数据类,用于组织处理单元"""
|
||||||
|
file_path: str
|
||||||
|
content: str
|
||||||
|
rel_path: str
|
||||||
|
fragment_index: int
|
||||||
|
total_fragments: int
|
||||||
|
|
||||||
|
|
||||||
|
class BatchDocumentSummarizer:
|
||||||
|
"""优化的文档总结器 - 批处理版本"""
|
||||||
|
|
||||||
|
def __init__(self, llm_kwargs: Dict, plugin_kwargs: Dict, chatbot: List, history: List, system_prompt: str):
|
||||||
|
"""初始化总结器"""
|
||||||
|
self.llm_kwargs = llm_kwargs
|
||||||
|
self.plugin_kwargs = plugin_kwargs
|
||||||
|
self.chatbot = chatbot
|
||||||
|
self.history = history
|
||||||
|
self.system_prompt = system_prompt
|
||||||
|
self.failed_files = []
|
||||||
|
self.file_summaries_map = {}
|
||||||
|
|
||||||
|
def _get_token_limit(self) -> int:
|
||||||
|
"""获取模型token限制"""
|
||||||
|
max_token = model_info[self.llm_kwargs['llm_model']]['max_token']
|
||||||
|
return max_token * 3 // 4
|
||||||
|
|
||||||
|
def _create_batch_inputs(self, fragments: List[FileFragment]) -> Tuple[List, List, List]:
|
||||||
|
"""创建批处理输入"""
|
||||||
|
inputs_array = []
|
||||||
|
inputs_show_user_array = []
|
||||||
|
history_array = []
|
||||||
|
|
||||||
|
for frag in fragments:
|
||||||
|
if self.plugin_kwargs.get("advanced_arg"):
|
||||||
|
i_say = (f'请按照用户要求对文件内容进行处理,文件名为{os.path.basename(frag.file_path)},'
|
||||||
|
f'用户要求为:{self.plugin_kwargs["advanced_arg"]}:'
|
||||||
|
f'文件内容是 ```{frag.content}```')
|
||||||
|
i_say_show_user = (f'正在处理 {frag.rel_path} (片段 {frag.fragment_index + 1}/{frag.total_fragments})')
|
||||||
|
else:
|
||||||
|
i_say = (f'请对下面的内容用中文做总结,不超过500字,文件名是{os.path.basename(frag.file_path)},'
|
||||||
|
f'内容是 ```{frag.content}```')
|
||||||
|
i_say_show_user = f'正在处理 {frag.rel_path} (片段 {frag.fragment_index + 1}/{frag.total_fragments})'
|
||||||
|
|
||||||
|
inputs_array.append(i_say)
|
||||||
|
inputs_show_user_array.append(i_say_show_user)
|
||||||
|
history_array.append([])
|
||||||
|
|
||||||
|
return inputs_array, inputs_show_user_array, history_array
|
||||||
|
|
||||||
|
def _process_single_file_with_timeout(self, file_info: Tuple[str, str], mutable_status: List) -> List[FileFragment]:
|
||||||
|
"""包装了超时控制的文件处理函数"""
|
||||||
|
|
||||||
|
def timeout_handler():
|
||||||
|
thread = threading.current_thread()
|
||||||
|
if hasattr(thread, '_timeout_occurred'):
|
||||||
|
thread._timeout_occurred = True
|
||||||
|
|
||||||
|
# 设置超时标记
|
||||||
|
thread = threading.current_thread()
|
||||||
|
thread._timeout_occurred = False
|
||||||
|
|
||||||
|
# 设置超时定时器
|
||||||
|
timer = threading.Timer(self.watch_dog_patience, timeout_handler)
|
||||||
|
timer.start()
|
||||||
|
|
||||||
|
try:
|
||||||
|
fp, project_folder = file_info
|
||||||
|
fragments = []
|
||||||
|
|
||||||
|
# 定期检查是否超时
|
||||||
|
def check_timeout():
|
||||||
|
if hasattr(thread, '_timeout_occurred') and thread._timeout_occurred:
|
||||||
|
raise TimeoutError("处理超时")
|
||||||
|
|
||||||
|
# 更新状态
|
||||||
|
mutable_status[0] = "检查文件大小"
|
||||||
|
mutable_status[1] = time.time()
|
||||||
|
check_timeout()
|
||||||
|
|
||||||
|
# 文件大小检查
|
||||||
|
if os.path.getsize(fp) > self.max_file_size:
|
||||||
|
self.failed_files.append((fp, f"文件过大:超过{self.max_file_size / 1024 / 1024}MB"))
|
||||||
|
mutable_status[2] = "文件过大"
|
||||||
|
return fragments
|
||||||
|
|
||||||
|
check_timeout()
|
||||||
|
|
||||||
|
# 更新状态
|
||||||
|
mutable_status[0] = "提取文件内容"
|
||||||
|
mutable_status[1] = time.time()
|
||||||
|
|
||||||
|
# 提取内容
|
||||||
|
content = extract_text(fp)
|
||||||
|
if content is None:
|
||||||
|
self.failed_files.append((fp, "文件解析失败:不支持的格式或文件损坏"))
|
||||||
|
mutable_status[2] = "格式不支持"
|
||||||
|
return fragments
|
||||||
|
elif not content.strip():
|
||||||
|
self.failed_files.append((fp, "文件内容为空"))
|
||||||
|
mutable_status[2] = "内容为空"
|
||||||
|
return fragments
|
||||||
|
|
||||||
|
check_timeout()
|
||||||
|
|
||||||
|
# 更新状态
|
||||||
|
mutable_status[0] = "分割文本"
|
||||||
|
mutable_status[1] = time.time()
|
||||||
|
|
||||||
|
# 分割文本
|
||||||
|
try:
|
||||||
|
paper_fragments = breakdown_text_to_satisfy_token_limit(
|
||||||
|
txt=content,
|
||||||
|
limit=self._get_token_limit(),
|
||||||
|
llm_model=self.llm_kwargs['llm_model']
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
self.failed_files.append((fp, f"文本分割失败:{str(e)}"))
|
||||||
|
mutable_status[2] = "分割失败"
|
||||||
|
return fragments
|
||||||
|
|
||||||
|
check_timeout()
|
||||||
|
|
||||||
|
# 处理片段
|
||||||
|
rel_path = os.path.relpath(fp, project_folder)
|
||||||
|
for i, frag in enumerate(paper_fragments):
|
||||||
|
if frag.strip():
|
||||||
|
fragments.append(FileFragment(
|
||||||
|
file_path=fp,
|
||||||
|
content=frag,
|
||||||
|
rel_path=rel_path,
|
||||||
|
fragment_index=i,
|
||||||
|
total_fragments=len(paper_fragments)
|
||||||
|
))
|
||||||
|
|
||||||
|
mutable_status[2] = "处理完成"
|
||||||
|
return fragments
|
||||||
|
|
||||||
|
except TimeoutError as e:
|
||||||
|
self.failed_files.append((fp, "处理超时"))
|
||||||
|
mutable_status[2] = "处理超时"
|
||||||
|
return []
|
||||||
|
except Exception as e:
|
||||||
|
self.failed_files.append((fp, f"处理失败:{str(e)}"))
|
||||||
|
mutable_status[2] = "处理异常"
|
||||||
|
return []
|
||||||
|
finally:
|
||||||
|
timer.cancel()
|
||||||
|
|
||||||
|
def prepare_fragments(self, project_folder: str, file_paths: List[str]) -> Generator:
|
||||||
|
import concurrent.futures
|
||||||
|
|
||||||
|
|
||||||
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
from typing import Generator, List
|
||||||
|
"""并行准备所有文件的处理片段"""
|
||||||
|
all_fragments = []
|
||||||
|
total_files = len(file_paths)
|
||||||
|
|
||||||
|
# 配置参数
|
||||||
|
self.refresh_interval = 0.2 # UI刷新间隔
|
||||||
|
self.watch_dog_patience = 5 # 看门狗超时时间
|
||||||
|
self.max_file_size = 10 * 1024 * 1024 # 10MB限制
|
||||||
|
self.max_workers = min(32, len(file_paths)) # 最多32个线程
|
||||||
|
|
||||||
|
# 创建有超时控制的线程池
|
||||||
|
executor = ThreadPoolExecutor(max_workers=self.max_workers)
|
||||||
|
|
||||||
|
# 用于跨线程状态传递的可变列表 - 增加文件名信息
|
||||||
|
mutable_status_array = [["等待中", time.time(), "pending", file_path] for file_path in file_paths]
|
||||||
|
|
||||||
|
# 创建文件处理任务
|
||||||
|
file_infos = [(fp, project_folder) for fp in file_paths]
|
||||||
|
|
||||||
|
# 提交所有任务,使用带超时控制的处理函数
|
||||||
|
futures = [
|
||||||
|
executor.submit(
|
||||||
|
self._process_single_file_with_timeout,
|
||||||
|
file_info,
|
||||||
|
mutable_status_array[i]
|
||||||
|
) for i, file_info in enumerate(file_infos)
|
||||||
|
]
|
||||||
|
|
||||||
|
# 更新UI的计数器
|
||||||
|
cnt = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
# 监控任务执行
|
||||||
|
while True:
|
||||||
|
time.sleep(self.refresh_interval)
|
||||||
|
cnt += 1
|
||||||
|
|
||||||
|
# 检查任务完成状态
|
||||||
|
worker_done = [f.done() for f in futures]
|
||||||
|
|
||||||
|
# 更新状态显示
|
||||||
|
status_str = ""
|
||||||
|
for i, (status, timestamp, desc, file_path) in enumerate(mutable_status_array):
|
||||||
|
# 获取文件名(去掉路径)
|
||||||
|
file_name = os.path.basename(file_path)
|
||||||
|
if worker_done[i]:
|
||||||
|
status_str += f"文件 {file_name}: {desc}\n"
|
||||||
|
else:
|
||||||
|
status_str += f"文件 {file_name}: {status} {desc}\n"
|
||||||
|
|
||||||
|
# 更新UI
|
||||||
|
self.chatbot[-1] = [
|
||||||
|
"处理进度",
|
||||||
|
f"正在处理文件...\n\n{status_str}" + "." * (cnt % 10 + 1)
|
||||||
|
]
|
||||||
|
yield from update_ui(chatbot=self.chatbot, history=self.history)
|
||||||
|
|
||||||
|
# 检查是否所有任务完成
|
||||||
|
if all(worker_done):
|
||||||
|
break
|
||||||
|
|
||||||
|
finally:
|
||||||
|
# 确保线程池正确关闭
|
||||||
|
executor.shutdown(wait=False)
|
||||||
|
|
||||||
|
# 收集结果
|
||||||
|
processed_files = 0
|
||||||
|
for future in futures:
|
||||||
|
try:
|
||||||
|
fragments = future.result(timeout=0.1) # 给予一个短暂的超时时间来获取结果
|
||||||
|
all_fragments.extend(fragments)
|
||||||
|
processed_files += 1
|
||||||
|
except concurrent.futures.TimeoutError:
|
||||||
|
# 处理获取结果超时
|
||||||
|
file_index = futures.index(future)
|
||||||
|
self.failed_files.append((file_paths[file_index], "结果获取超时"))
|
||||||
|
continue
|
||||||
|
except Exception as e:
|
||||||
|
# 处理其他异常
|
||||||
|
file_index = futures.index(future)
|
||||||
|
self.failed_files.append((file_paths[file_index], f"未知错误:{str(e)}"))
|
||||||
|
continue
|
||||||
|
|
||||||
|
# 最终进度更新
|
||||||
|
self.chatbot.append([
|
||||||
|
"文件处理完成",
|
||||||
|
f"成功处理 {len(all_fragments)} 个片段,失败 {len(self.failed_files)} 个文件"
|
||||||
|
])
|
||||||
|
yield from update_ui(chatbot=self.chatbot, history=self.history)
|
||||||
|
|
||||||
|
return all_fragments
|
||||||
|
|
||||||
|
def _process_fragments_batch(self, fragments: List[FileFragment]) -> Generator:
|
||||||
|
"""批量处理文件片段"""
|
||||||
|
from collections import defaultdict
|
||||||
|
batch_size = 64 # 每批处理的片段数
|
||||||
|
max_retries = 3 # 最大重试次数
|
||||||
|
retry_delay = 5 # 重试延迟(秒)
|
||||||
|
results = defaultdict(list)
|
||||||
|
|
||||||
|
# 按批次处理
|
||||||
|
for i in range(0, len(fragments), batch_size):
|
||||||
|
batch = fragments[i:i + batch_size]
|
||||||
|
|
||||||
|
inputs_array, inputs_show_user_array, history_array = self._create_batch_inputs(batch)
|
||||||
|
sys_prompt_array = ["请总结以下内容:"] * len(batch)
|
||||||
|
|
||||||
|
# 添加重试机制
|
||||||
|
for retry in range(max_retries):
|
||||||
|
try:
|
||||||
|
response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||||
|
inputs_array=inputs_array,
|
||||||
|
inputs_show_user_array=inputs_show_user_array,
|
||||||
|
llm_kwargs=self.llm_kwargs,
|
||||||
|
chatbot=self.chatbot,
|
||||||
|
history_array=history_array,
|
||||||
|
sys_prompt_array=sys_prompt_array,
|
||||||
|
)
|
||||||
|
|
||||||
|
# 处理响应
|
||||||
|
for j, frag in enumerate(batch):
|
||||||
|
summary = response_collection[j * 2 + 1]
|
||||||
|
if summary and summary.strip():
|
||||||
|
results[frag.rel_path].append({
|
||||||
|
'index': frag.fragment_index,
|
||||||
|
'summary': summary,
|
||||||
|
'total': frag.total_fragments
|
||||||
|
})
|
||||||
|
break # 成功处理,跳出重试循环
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
if retry == max_retries - 1: # 最后一次重试失败
|
||||||
|
for frag in batch:
|
||||||
|
self.failed_files.append((frag.file_path, f"处理失败:{str(e)}"))
|
||||||
|
else:
|
||||||
|
yield from update_ui(self.chatbot.append([f"批次处理失败,{retry_delay}秒后重试...", str(e)]))
|
||||||
|
time.sleep(retry_delay)
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
def _generate_final_summary_request(self) -> Tuple[List, List, List]:
|
||||||
|
"""准备最终总结请求"""
|
||||||
|
if not self.file_summaries_map:
|
||||||
|
return (["无可用的文件总结"], ["生成最终总结"], [[]])
|
||||||
|
|
||||||
|
summaries = list(self.file_summaries_map.values())
|
||||||
|
if all(not summary for summary in summaries):
|
||||||
|
return (["所有文件处理均失败"], ["生成最终总结"], [[]])
|
||||||
|
|
||||||
|
if self.plugin_kwargs.get("advanced_arg"):
|
||||||
|
i_say = "根据以上所有文件的处理结果,按要求进行综合处理:" + self.plugin_kwargs['advanced_arg']
|
||||||
|
else:
|
||||||
|
i_say = "请根据以上所有文件的处理结果,生成最终的总结,不超过1000字。"
|
||||||
|
|
||||||
|
return ([i_say], [i_say], [summaries])
|
||||||
|
|
||||||
|
def process_files(self, project_folder: str, file_paths: List[str]) -> Generator:
|
||||||
|
"""处理所有文件"""
|
||||||
|
total_files = len(file_paths)
|
||||||
|
self.chatbot.append([f"开始处理", f"总计 {total_files} 个文件"])
|
||||||
|
yield from update_ui(chatbot=self.chatbot, history=self.history)
|
||||||
|
|
||||||
|
# 1. 准备所有文件片段
|
||||||
|
# 在 process_files 函数中:
|
||||||
|
fragments = yield from self.prepare_fragments(project_folder, file_paths)
|
||||||
|
if not fragments:
|
||||||
|
self.chatbot.append(["处理失败", "没有可处理的文件内容"])
|
||||||
|
return "没有可处理的文件内容"
|
||||||
|
|
||||||
|
# 2. 批量处理所有文件片段
|
||||||
|
self.chatbot.append([f"文件分析", f"共计 {len(fragments)} 个处理单元"])
|
||||||
|
yield from update_ui(chatbot=self.chatbot, history=self.history)
|
||||||
|
|
||||||
|
try:
|
||||||
|
file_summaries = yield from self._process_fragments_batch(fragments)
|
||||||
|
except Exception as e:
|
||||||
|
self.chatbot.append(["处理错误", f"批处理过程失败:{str(e)}"])
|
||||||
|
return "处理过程发生错误"
|
||||||
|
|
||||||
|
# 3. 为每个文件生成整体总结
|
||||||
|
self.chatbot.append(["生成总结", "正在汇总文件内容..."])
|
||||||
|
yield from update_ui(chatbot=self.chatbot, history=self.history)
|
||||||
|
|
||||||
|
# 处理每个文件的总结
|
||||||
|
for rel_path, summaries in file_summaries.items():
|
||||||
|
if len(summaries) > 1: # 多片段文件需要生成整体总结
|
||||||
|
sorted_summaries = sorted(summaries, key=lambda x: x['index'])
|
||||||
|
if self.plugin_kwargs.get("advanced_arg"):
|
||||||
|
|
||||||
|
i_say = f'请按照用户要求对文件内容进行处理,用户要求为:{self.plugin_kwargs["advanced_arg"]}:'
|
||||||
|
else:
|
||||||
|
i_say = f"请总结文件 {os.path.basename(rel_path)} 的主要内容,不超过500字。"
|
||||||
|
|
||||||
|
try:
|
||||||
|
summary_texts = [s['summary'] for s in sorted_summaries]
|
||||||
|
response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||||
|
inputs_array=[i_say],
|
||||||
|
inputs_show_user_array=[f"生成 {rel_path} 的处理结果"],
|
||||||
|
llm_kwargs=self.llm_kwargs,
|
||||||
|
chatbot=self.chatbot,
|
||||||
|
history_array=[summary_texts],
|
||||||
|
sys_prompt_array=["你是一个优秀的助手,"],
|
||||||
|
)
|
||||||
|
self.file_summaries_map[rel_path] = response_collection[1]
|
||||||
|
except Exception as e:
|
||||||
|
self.chatbot.append(["警告", f"文件 {rel_path} 总结生成失败:{str(e)}"])
|
||||||
|
self.file_summaries_map[rel_path] = "总结生成失败"
|
||||||
|
else: # 单片段文件直接使用其唯一的总结
|
||||||
|
self.file_summaries_map[rel_path] = summaries[0]['summary']
|
||||||
|
|
||||||
|
# 4. 生成最终总结
|
||||||
|
if total_files ==1:
|
||||||
|
return "文件数为1,此时不调用总结模块"
|
||||||
|
else:
|
||||||
|
try:
|
||||||
|
# 收集所有文件的总结用于生成最终总结
|
||||||
|
file_summaries_for_final = []
|
||||||
|
for rel_path, summary in self.file_summaries_map.items():
|
||||||
|
file_summaries_for_final.append(f"文件 {rel_path} 的总结:\n{summary}")
|
||||||
|
|
||||||
|
if self.plugin_kwargs.get("advanced_arg"):
|
||||||
|
final_summary_prompt = ("根据以下所有文件的总结内容,按要求进行综合处理:" +
|
||||||
|
self.plugin_kwargs['advanced_arg'])
|
||||||
|
else:
|
||||||
|
final_summary_prompt = "请根据以下所有文件的总结内容,生成最终的总结报告。"
|
||||||
|
|
||||||
|
response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||||
|
inputs_array=[final_summary_prompt],
|
||||||
|
inputs_show_user_array=["生成最终总结报告"],
|
||||||
|
llm_kwargs=self.llm_kwargs,
|
||||||
|
chatbot=self.chatbot,
|
||||||
|
history_array=[file_summaries_for_final],
|
||||||
|
sys_prompt_array=["总结所有文件内容。"],
|
||||||
|
max_workers=1
|
||||||
|
)
|
||||||
|
|
||||||
|
return response_collection[1] if len(response_collection) > 1 else "生成总结失败"
|
||||||
|
except Exception as e:
|
||||||
|
self.chatbot.append(["错误", f"最终总结生成失败:{str(e)}"])
|
||||||
|
return "生成总结失败"
|
||||||
|
|
||||||
|
def save_results(self, final_summary: str):
|
||||||
|
"""保存结果到文件"""
|
||||||
|
from toolbox import promote_file_to_downloadzone, write_history_to_file
|
||||||
|
from crazy_functions.doc_fns.batch_file_query_doc import MarkdownFormatter, HtmlFormatter, WordFormatter
|
||||||
|
import os
|
||||||
|
timestamp = time.strftime("%Y%m%d_%H%M%S")
|
||||||
|
|
||||||
|
# 创建各种格式化器
|
||||||
|
md_formatter = MarkdownFormatter(final_summary, self.file_summaries_map, self.failed_files)
|
||||||
|
html_formatter = HtmlFormatter(final_summary, self.file_summaries_map, self.failed_files)
|
||||||
|
word_formatter = WordFormatter(final_summary, self.file_summaries_map, self.failed_files)
|
||||||
|
|
||||||
|
result_files = []
|
||||||
|
|
||||||
|
# 保存 Markdown
|
||||||
|
md_content = md_formatter.create_document()
|
||||||
|
result_file_md = write_history_to_file(
|
||||||
|
history=[md_content], # 直接传入内容列表
|
||||||
|
file_basename=f"文档总结_{timestamp}.md"
|
||||||
|
)
|
||||||
|
result_files.append(result_file_md)
|
||||||
|
|
||||||
|
# 保存 HTML
|
||||||
|
html_content = html_formatter.create_document()
|
||||||
|
result_file_html = write_history_to_file(
|
||||||
|
history=[html_content],
|
||||||
|
file_basename=f"文档总结_{timestamp}.html"
|
||||||
|
)
|
||||||
|
result_files.append(result_file_html)
|
||||||
|
|
||||||
|
# 保存 Word
|
||||||
|
doc = word_formatter.create_document()
|
||||||
|
# 由于 Word 文档需要用 doc.save(),我们使用与 md 文件相同的目录
|
||||||
|
result_file_docx = os.path.join(
|
||||||
|
os.path.dirname(result_file_md),
|
||||||
|
f"文档总结_{timestamp}.docx"
|
||||||
|
)
|
||||||
|
doc.save(result_file_docx)
|
||||||
|
result_files.append(result_file_docx)
|
||||||
|
|
||||||
|
# 添加到下载区
|
||||||
|
for file in result_files:
|
||||||
|
promote_file_to_downloadzone(file, chatbot=self.chatbot)
|
||||||
|
|
||||||
|
self.chatbot.append(["处理完成", f"结果已保存至: {', '.join(result_files)}"])
|
||||||
|
@CatchException
|
||||||
|
def 批量文件询问(txt: str, llm_kwargs: Dict, plugin_kwargs: Dict, chatbot: List,
|
||||||
|
history: List, system_prompt: str, user_request: str):
|
||||||
|
"""主函数 - 优化版本"""
|
||||||
|
# 初始化
|
||||||
|
import glob
|
||||||
|
import re
|
||||||
|
from crazy_functions.rag_fns.rag_file_support import supports_format
|
||||||
|
from toolbox import report_exception
|
||||||
|
|
||||||
|
summarizer = BatchDocumentSummarizer(llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||||
|
chatbot.append(["函数插件功能", f"作者:lbykkkk,批量总结文件。支持格式: {', '.join(supports_format)}等其他文本格式文件,如果长时间卡在文件处理过程,请查看处理进度,然后删除所有处于“pending”状态的文件,然后重新上传处理。"])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
|
||||||
|
# 验证输入路径
|
||||||
|
if not os.path.exists(txt):
|
||||||
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到项目或无权访问: {txt}")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
return
|
||||||
|
|
||||||
|
# 获取文件列表
|
||||||
|
project_folder = txt
|
||||||
|
extract_folder = next((d for d in glob.glob(f'{project_folder}/*')
|
||||||
|
if os.path.isdir(d) and d.endswith('.extract')), project_folder)
|
||||||
|
|
||||||
|
exclude_patterns = r'/[^/]+\.(zip|rar|7z|tar|gz)$'
|
||||||
|
file_manifest = [f for f in glob.glob(f'{extract_folder}/**', recursive=True)
|
||||||
|
if os.path.isfile(f) and not re.search(exclude_patterns, f)]
|
||||||
|
|
||||||
|
if not file_manifest:
|
||||||
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b="未找到支持的文件类型")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
return
|
||||||
|
|
||||||
|
# 处理所有文件并生成总结
|
||||||
|
final_summary = yield from summarizer.process_files(project_folder, file_manifest)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
|
||||||
|
# 保存结果
|
||||||
|
summarizer.save_results(final_summary)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
@@ -180,6 +180,7 @@ version: '3'
|
|||||||
services:
|
services:
|
||||||
gpt_academic_with_latex:
|
gpt_academic_with_latex:
|
||||||
image: ghcr.io/binary-husky/gpt_academic_with_latex:master # (Auto Built by Dockerfile: docs/GithubAction+NoLocal+Latex)
|
image: ghcr.io/binary-husky/gpt_academic_with_latex:master # (Auto Built by Dockerfile: docs/GithubAction+NoLocal+Latex)
|
||||||
|
# 对于ARM64设备,请将以上镜像名称替换为 ghcr.io/binary-husky/gpt_academic_with_latex_arm:master
|
||||||
environment:
|
environment:
|
||||||
# 请查阅 `config.py` 以查看所有的配置信息
|
# 请查阅 `config.py` 以查看所有的配置信息
|
||||||
API_KEY: ' sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx '
|
API_KEY: ' sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx '
|
||||||
|
|||||||
@@ -1 +0,0 @@
|
|||||||
# 此Dockerfile不再维护,请前往docs/GithubAction+JittorLLMs
|
|
||||||
@@ -1,57 +0,0 @@
|
|||||||
# docker build -t gpt-academic-all-capacity -f docs/GithubAction+AllCapacity --network=host --build-arg http_proxy=http://localhost:10881 --build-arg https_proxy=http://localhost:10881 .
|
|
||||||
# docker build -t gpt-academic-all-capacity -f docs/GithubAction+AllCapacityBeta --network=host .
|
|
||||||
# docker run -it --net=host gpt-academic-all-capacity bash
|
|
||||||
|
|
||||||
# 从NVIDIA源,从而支持显卡(检查宿主的nvidia-smi中的cuda版本必须>=11.3)
|
|
||||||
FROM fuqingxu/11.3.1-runtime-ubuntu20.04-with-texlive:latest
|
|
||||||
|
|
||||||
# edge-tts需要的依赖,某些pip包所需的依赖
|
|
||||||
RUN apt update && apt install ffmpeg build-essential -y
|
|
||||||
|
|
||||||
# use python3 as the system default python
|
|
||||||
WORKDIR /gpt
|
|
||||||
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
|
|
||||||
|
|
||||||
# # 非必要步骤,更换pip源 (以下三行,可以删除)
|
|
||||||
# RUN echo '[global]' > /etc/pip.conf && \
|
|
||||||
# echo 'index-url = https://mirrors.aliyun.com/pypi/simple/' >> /etc/pip.conf && \
|
|
||||||
# echo 'trusted-host = mirrors.aliyun.com' >> /etc/pip.conf
|
|
||||||
|
|
||||||
# 下载pytorch
|
|
||||||
RUN python3 -m pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu113
|
|
||||||
# 准备pip依赖
|
|
||||||
RUN python3 -m pip install openai numpy arxiv rich
|
|
||||||
RUN python3 -m pip install colorama Markdown pygments pymupdf
|
|
||||||
RUN python3 -m pip install python-docx moviepy pdfminer
|
|
||||||
RUN python3 -m pip install zh_langchain==0.2.1 pypinyin
|
|
||||||
RUN python3 -m pip install rarfile py7zr
|
|
||||||
RUN python3 -m pip install aliyun-python-sdk-core==2.13.3 pyOpenSSL webrtcvad scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
|
|
||||||
# 下载分支
|
|
||||||
WORKDIR /gpt
|
|
||||||
RUN git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
|
|
||||||
WORKDIR /gpt/gpt_academic
|
|
||||||
RUN git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss
|
|
||||||
|
|
||||||
RUN python3 -m pip install -r requirements.txt
|
|
||||||
RUN python3 -m pip install -r request_llms/requirements_moss.txt
|
|
||||||
RUN python3 -m pip install -r request_llms/requirements_qwen.txt
|
|
||||||
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
|
|
||||||
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
|
|
||||||
RUN python3 -m pip install nougat-ocr
|
|
||||||
|
|
||||||
|
|
||||||
# 预热Tiktoken模块
|
|
||||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
|
||||||
|
|
||||||
# 安装知识库插件的额外依赖
|
|
||||||
RUN apt-get update && apt-get install libgl1 -y
|
|
||||||
RUN pip3 install transformers protobuf langchain sentence-transformers faiss-cpu nltk beautifulsoup4 bitsandbytes tabulate icetk --upgrade
|
|
||||||
RUN pip3 install unstructured[all-docs] --upgrade
|
|
||||||
RUN python3 -c 'from check_proxy import warm_up_vectordb; warm_up_vectordb()'
|
|
||||||
RUN rm -rf /usr/local/lib/python3.8/dist-packages/tests
|
|
||||||
|
|
||||||
|
|
||||||
# COPY .cache /root/.cache
|
|
||||||
# COPY config_private.py config_private.py
|
|
||||||
# 启动
|
|
||||||
CMD ["python3", "-u", "main.py"]
|
|
||||||
@@ -1,35 +1,34 @@
|
|||||||
# 此Dockerfile适用于“无本地模型”的环境构建,如果需要使用chatglm等本地模型,请参考 docs/Dockerfile+ChatGLM
|
# 此Dockerfile适用于"无本地模型"的环境构建,如果需要使用chatglm等本地模型,请参考 docs/Dockerfile+ChatGLM
|
||||||
# - 1 修改 `config.py`
|
# - 1 修改 `config.py`
|
||||||
# - 2 构建 docker build -t gpt-academic-nolocal-latex -f docs/GithubAction+NoLocal+Latex .
|
# - 2 构建 docker build -t gpt-academic-nolocal-latex -f docs/GithubAction+NoLocal+Latex .
|
||||||
# - 3 运行 docker run -v /home/fuqingxu/arxiv_cache:/root/arxiv_cache --rm -it --net=host gpt-academic-nolocal-latex
|
# - 3 运行 docker run -v /home/fuqingxu/arxiv_cache:/root/arxiv_cache --rm -it --net=host gpt-academic-nolocal-latex
|
||||||
|
|
||||||
FROM fuqingxu/python311_texlive_ctex:latest
|
FROM menghuan1918/ubuntu_uv_ctex:latest
|
||||||
ENV PATH "$PATH:/usr/local/texlive/2022/bin/x86_64-linux"
|
ENV DEBIAN_FRONTEND=noninteractive
|
||||||
ENV PATH "$PATH:/usr/local/texlive/2023/bin/x86_64-linux"
|
SHELL ["/bin/bash", "-c"]
|
||||||
ENV PATH "$PATH:/usr/local/texlive/2024/bin/x86_64-linux"
|
|
||||||
ENV PATH "$PATH:/usr/local/texlive/2025/bin/x86_64-linux"
|
|
||||||
ENV PATH "$PATH:/usr/local/texlive/2026/bin/x86_64-linux"
|
|
||||||
|
|
||||||
# 指定路径
|
|
||||||
WORKDIR /gpt
|
WORKDIR /gpt
|
||||||
|
|
||||||
RUN pip3 install openai numpy arxiv rich
|
# 先复制依赖文件
|
||||||
RUN pip3 install colorama Markdown pygments pymupdf
|
COPY requirements.txt .
|
||||||
RUN pip3 install python-docx pdfminer
|
|
||||||
RUN pip3 install nougat-ocr
|
|
||||||
|
|
||||||
# 装载项目文件
|
|
||||||
COPY . .
|
|
||||||
|
|
||||||
|
|
||||||
# 安装依赖
|
# 安装依赖
|
||||||
RUN pip3 install -r requirements.txt
|
RUN pip install --break-system-packages openai numpy arxiv rich colorama Markdown pygments pymupdf python-docx pdfminer \
|
||||||
|
&& pip install --break-system-packages -r requirements.txt \
|
||||||
|
&& if [ "$(uname -m)" = "x86_64" ]; then \
|
||||||
|
pip install --break-system-packages nougat-ocr; \
|
||||||
|
fi \
|
||||||
|
&& pip cache purge \
|
||||||
|
&& rm -rf /root/.cache/pip/*
|
||||||
|
|
||||||
# edge-tts需要的依赖
|
# 创建非root用户
|
||||||
RUN apt update && apt install ffmpeg -y
|
RUN useradd -m gptuser && chown -R gptuser /gpt
|
||||||
|
USER gptuser
|
||||||
|
|
||||||
|
# 最后才复制代码文件,这样代码更新时只需重建最后几层,可以大幅减少docker pull所需的大小
|
||||||
|
COPY --chown=gptuser:gptuser . .
|
||||||
|
|
||||||
# 可选步骤,用于预热模块
|
# 可选步骤,用于预热模块
|
||||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||||
|
|
||||||
# 启动
|
# 启动
|
||||||
CMD ["python3", "-u", "main.py"]
|
CMD ["python3", "-u", "main.py"]
|
||||||
|
|||||||
@@ -4,7 +4,7 @@ We currently support fastapi in order to solve sub-path deploy issue.
|
|||||||
|
|
||||||
1. change CUSTOM_PATH setting in `config.py`
|
1. change CUSTOM_PATH setting in `config.py`
|
||||||
|
|
||||||
``` sh
|
```sh
|
||||||
nano config.py
|
nano config.py
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -35,9 +35,8 @@ if __name__ == "__main__":
|
|||||||
main()
|
main()
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
3. Go!
|
3. Go!
|
||||||
|
|
||||||
``` sh
|
```sh
|
||||||
python main.py
|
python main.py
|
||||||
```
|
```
|
||||||
|
|||||||
文件差异内容过多而无法显示
加载差异
@@ -108,5 +108,22 @@
|
|||||||
"解析PDF_简单拆解": "ParsePDF_simpleDecomposition",
|
"解析PDF_简单拆解": "ParsePDF_simpleDecomposition",
|
||||||
"解析PDF_DOC2X_单文件": "ParsePDF_DOC2X_singleFile",
|
"解析PDF_DOC2X_单文件": "ParsePDF_DOC2X_singleFile",
|
||||||
"注释Python项目": "CommentPythonProject",
|
"注释Python项目": "CommentPythonProject",
|
||||||
"注释源代码": "CommentSourceCode"
|
"注释源代码": "CommentSourceCode",
|
||||||
|
"log亮黄": "log_yellow",
|
||||||
|
"log亮绿": "log_green",
|
||||||
|
"log亮红": "log_red",
|
||||||
|
"log亮紫": "log_purple",
|
||||||
|
"log亮蓝": "log_blue",
|
||||||
|
"Rag问答": "RagQA",
|
||||||
|
"sprint红": "sprint_red",
|
||||||
|
"sprint绿": "sprint_green",
|
||||||
|
"sprint黄": "sprint_yellow",
|
||||||
|
"sprint蓝": "sprint_blue",
|
||||||
|
"sprint紫": "sprint_purple",
|
||||||
|
"sprint靛": "sprint_indigo",
|
||||||
|
"sprint亮红": "sprint_bright_red",
|
||||||
|
"sprint亮绿": "sprint_bright_green",
|
||||||
|
"sprint亮黄": "sprint_bright_yellow",
|
||||||
|
"sprint亮蓝": "sprint_bright_blue",
|
||||||
|
"sprint亮紫": "sprint_bright_purple"
|
||||||
}
|
}
|
||||||
@@ -256,6 +256,8 @@ model_info = {
|
|||||||
"max_token": 128000,
|
"max_token": 128000,
|
||||||
"tokenizer": tokenizer_gpt4,
|
"tokenizer": tokenizer_gpt4,
|
||||||
"token_cnt": get_token_num_gpt4,
|
"token_cnt": get_token_num_gpt4,
|
||||||
|
"openai_disable_system_prompt": True,
|
||||||
|
"openai_disable_stream": True,
|
||||||
},
|
},
|
||||||
"o1-mini": {
|
"o1-mini": {
|
||||||
"fn_with_ui": chatgpt_ui,
|
"fn_with_ui": chatgpt_ui,
|
||||||
@@ -264,6 +266,8 @@ model_info = {
|
|||||||
"max_token": 128000,
|
"max_token": 128000,
|
||||||
"tokenizer": tokenizer_gpt4,
|
"tokenizer": tokenizer_gpt4,
|
||||||
"token_cnt": get_token_num_gpt4,
|
"token_cnt": get_token_num_gpt4,
|
||||||
|
"openai_disable_system_prompt": True,
|
||||||
|
"openai_disable_stream": True,
|
||||||
},
|
},
|
||||||
|
|
||||||
"gpt-4-turbo": {
|
"gpt-4-turbo": {
|
||||||
@@ -1116,6 +1120,24 @@ if len(AZURE_CFG_ARRAY) > 0:
|
|||||||
if azure_model_name not in AVAIL_LLM_MODELS:
|
if azure_model_name not in AVAIL_LLM_MODELS:
|
||||||
AVAIL_LLM_MODELS += [azure_model_name]
|
AVAIL_LLM_MODELS += [azure_model_name]
|
||||||
|
|
||||||
|
# -=-=-=-=-=-=- Openrouter模型对齐支持 -=-=-=-=-=-=-
|
||||||
|
# 为了更灵活地接入Openrouter路由,设计了此接口
|
||||||
|
for model in [m for m in AVAIL_LLM_MODELS if m.startswith("openrouter-")]:
|
||||||
|
from request_llms.bridge_openrouter import predict_no_ui_long_connection as openrouter_noui
|
||||||
|
from request_llms.bridge_openrouter import predict as openrouter_ui
|
||||||
|
model_info.update({
|
||||||
|
model: {
|
||||||
|
"fn_with_ui": openrouter_ui,
|
||||||
|
"fn_without_ui": openrouter_noui,
|
||||||
|
# 以下参数参考gpt-4o-mini的配置, 请根据实际情况修改
|
||||||
|
"endpoint": openai_endpoint,
|
||||||
|
"has_multimodal_capacity": True,
|
||||||
|
"max_token": 128000,
|
||||||
|
"tokenizer": tokenizer_gpt4,
|
||||||
|
"token_cnt": get_token_num_gpt4,
|
||||||
|
},
|
||||||
|
})
|
||||||
|
|
||||||
|
|
||||||
# -=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=-=-=
|
# -=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=-=-=
|
||||||
# -=-=-=-=-=-=-=-=-=- ☝️ 以上是模型路由 -=-=-=-=-=-=-=-=-=
|
# -=-=-=-=-=-=-=-=-=- ☝️ 以上是模型路由 -=-=-=-=-=-=-=-=-=
|
||||||
@@ -1261,5 +1283,5 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot,
|
|||||||
if additional_fn: # 根据基础功能区 ModelOverride 参数调整模型类型
|
if additional_fn: # 根据基础功能区 ModelOverride 参数调整模型类型
|
||||||
llm_kwargs, additional_fn, method = execute_model_override(llm_kwargs, additional_fn, method)
|
llm_kwargs, additional_fn, method = execute_model_override(llm_kwargs, additional_fn, method)
|
||||||
|
|
||||||
|
# 更新一下llm_kwargs的参数,否则会出现参数不匹配的问题
|
||||||
yield from method(inputs, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, stream, additional_fn)
|
yield from method(inputs, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, stream, additional_fn)
|
||||||
|
|
||||||
|
|||||||
@@ -134,22 +134,33 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
|
|||||||
observe_window = None:
|
observe_window = None:
|
||||||
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||||
"""
|
"""
|
||||||
|
from request_llms.bridge_all import model_info
|
||||||
|
|
||||||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||||
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
|
|
||||||
|
if model_info[llm_kwargs['llm_model']].get('openai_disable_stream', False): stream = False
|
||||||
|
else: stream = True
|
||||||
|
|
||||||
|
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=stream)
|
||||||
retry = 0
|
retry = 0
|
||||||
while True:
|
while True:
|
||||||
try:
|
try:
|
||||||
# make a POST request to the API endpoint, stream=False
|
# make a POST request to the API endpoint, stream=False
|
||||||
from .bridge_all import model_info
|
|
||||||
endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
|
endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
|
||||||
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||||
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
|
json=payload, stream=stream, timeout=TIMEOUT_SECONDS); break
|
||||||
except requests.exceptions.ReadTimeout as e:
|
except requests.exceptions.ReadTimeout as e:
|
||||||
retry += 1
|
retry += 1
|
||||||
traceback.print_exc()
|
traceback.print_exc()
|
||||||
if retry > MAX_RETRY: raise TimeoutError
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
if MAX_RETRY!=0: logger.error(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
if MAX_RETRY!=0: logger.error(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||||
|
|
||||||
|
if not stream:
|
||||||
|
# 该分支仅适用于不支持stream的o1模型,其他情形一律不适用
|
||||||
|
chunkjson = json.loads(response.content.decode())
|
||||||
|
gpt_replying_buffer = chunkjson['choices'][0]["message"]["content"]
|
||||||
|
return gpt_replying_buffer
|
||||||
|
|
||||||
stream_response = response.iter_lines()
|
stream_response = response.iter_lines()
|
||||||
result = ''
|
result = ''
|
||||||
json_data = None
|
json_data = None
|
||||||
@@ -181,7 +192,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
|
|||||||
if (not has_content) and (not has_role): continue # raise RuntimeError("发现不标准的第三方接口:"+delta)
|
if (not has_content) and (not has_role): continue # raise RuntimeError("发现不标准的第三方接口:"+delta)
|
||||||
if has_content: # has_role = True/False
|
if has_content: # has_role = True/False
|
||||||
result += delta["content"]
|
result += delta["content"]
|
||||||
if not console_slience: logger.info(delta["content"], end='')
|
if not console_slience: print(delta["content"], end='')
|
||||||
if observe_window is not None:
|
if observe_window is not None:
|
||||||
# 观测窗,把已经获取的数据显示出去
|
# 观测窗,把已经获取的数据显示出去
|
||||||
if len(observe_window) >= 1:
|
if len(observe_window) >= 1:
|
||||||
@@ -191,10 +202,13 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
|
|||||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||||
raise RuntimeError("用户取消了程序。")
|
raise RuntimeError("用户取消了程序。")
|
||||||
else: raise RuntimeError("意外Json结构:"+delta)
|
else: raise RuntimeError("意外Json结构:"+delta)
|
||||||
if json_data and json_data['finish_reason'] == 'content_filter':
|
|
||||||
raise RuntimeError("由于提问含不合规内容被Azure过滤。")
|
finish_reason = json_data.get('finish_reason', None) if json_data else None
|
||||||
if json_data and json_data['finish_reason'] == 'length':
|
if finish_reason == 'content_filter':
|
||||||
|
raise RuntimeError("由于提问含不合规内容被过滤。")
|
||||||
|
if finish_reason == 'length':
|
||||||
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
|
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
|
||||||
|
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
||||||
@@ -209,7 +223,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
|||||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||||
"""
|
"""
|
||||||
from .bridge_all import model_info
|
from request_llms.bridge_all import model_info
|
||||||
if is_any_api_key(inputs):
|
if is_any_api_key(inputs):
|
||||||
chatbot._cookies['api_key'] = inputs
|
chatbot._cookies['api_key'] = inputs
|
||||||
chatbot.append(("输入已识别为openai的api_key", what_keys(inputs)))
|
chatbot.append(("输入已识别为openai的api_key", what_keys(inputs)))
|
||||||
@@ -238,6 +252,10 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
|||||||
chatbot.append((_inputs, ""))
|
chatbot.append((_inputs, ""))
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||||
|
|
||||||
|
# 禁用stream的特殊模型处理
|
||||||
|
if model_info[llm_kwargs['llm_model']].get('openai_disable_stream', False): stream = False
|
||||||
|
else: stream = True
|
||||||
|
|
||||||
# check mis-behavior
|
# check mis-behavior
|
||||||
if is_the_upload_folder(user_input):
|
if is_the_upload_folder(user_input):
|
||||||
chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。")
|
chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。")
|
||||||
@@ -271,7 +289,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
|||||||
try:
|
try:
|
||||||
# make a POST request to the API endpoint, stream=True
|
# make a POST request to the API endpoint, stream=True
|
||||||
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||||
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
|
json=payload, stream=stream, timeout=TIMEOUT_SECONDS);break
|
||||||
except:
|
except:
|
||||||
retry += 1
|
retry += 1
|
||||||
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
|
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
|
||||||
@@ -279,10 +297,15 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
|||||||
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
||||||
if retry > MAX_RETRY: raise TimeoutError
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
|
||||||
gpt_replying_buffer = ""
|
|
||||||
|
|
||||||
is_head_of_the_stream = True
|
if not stream:
|
||||||
|
# 该分支仅适用于不支持stream的o1模型,其他情形一律不适用
|
||||||
|
yield from handle_o1_model_special(response, inputs, llm_kwargs, chatbot, history)
|
||||||
|
return
|
||||||
|
|
||||||
if stream:
|
if stream:
|
||||||
|
gpt_replying_buffer = ""
|
||||||
|
is_head_of_the_stream = True
|
||||||
stream_response = response.iter_lines()
|
stream_response = response.iter_lines()
|
||||||
while True:
|
while True:
|
||||||
try:
|
try:
|
||||||
@@ -343,12 +366,24 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
|||||||
chunk_decoded = chunk.decode()
|
chunk_decoded = chunk.decode()
|
||||||
error_msg = chunk_decoded
|
error_msg = chunk_decoded
|
||||||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析异常" + error_msg) # 刷新界面
|
||||||
logger.error(error_msg)
|
logger.error(error_msg)
|
||||||
return
|
return
|
||||||
|
return # return from stream-branch
|
||||||
|
|
||||||
|
def handle_o1_model_special(response, inputs, llm_kwargs, chatbot, history):
|
||||||
|
try:
|
||||||
|
chunkjson = json.loads(response.content.decode())
|
||||||
|
gpt_replying_buffer = chunkjson['choices'][0]["message"]["content"]
|
||||||
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||||
|
history[-1] = gpt_replying_buffer
|
||||||
|
chatbot[-1] = (history[-2], history[-1])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
except Exception as e:
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析异常" + response.text) # 刷新界面
|
||||||
|
|
||||||
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
|
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
|
||||||
from .bridge_all import model_info
|
from request_llms.bridge_all import model_info
|
||||||
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
|
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
|
||||||
if "reduce the length" in error_msg:
|
if "reduce the length" in error_msg:
|
||||||
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
||||||
@@ -381,6 +416,8 @@ def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:st
|
|||||||
"""
|
"""
|
||||||
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||||||
"""
|
"""
|
||||||
|
from request_llms.bridge_all import model_info
|
||||||
|
|
||||||
if not is_any_api_key(llm_kwargs['api_key']):
|
if not is_any_api_key(llm_kwargs['api_key']):
|
||||||
raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。")
|
raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。")
|
||||||
|
|
||||||
@@ -409,10 +446,16 @@ def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:st
|
|||||||
else:
|
else:
|
||||||
enable_multimodal_capacity = False
|
enable_multimodal_capacity = False
|
||||||
|
|
||||||
|
conversation_cnt = len(history) // 2
|
||||||
|
openai_disable_system_prompt = model_info[llm_kwargs['llm_model']].get('openai_disable_system_prompt', False)
|
||||||
|
|
||||||
|
if openai_disable_system_prompt:
|
||||||
|
messages = [{"role": "user", "content": system_prompt}]
|
||||||
|
else:
|
||||||
|
messages = [{"role": "system", "content": system_prompt}]
|
||||||
|
|
||||||
if not enable_multimodal_capacity:
|
if not enable_multimodal_capacity:
|
||||||
# 不使用多模态能力
|
# 不使用多模态能力
|
||||||
conversation_cnt = len(history) // 2
|
|
||||||
messages = [{"role": "system", "content": system_prompt}]
|
|
||||||
if conversation_cnt:
|
if conversation_cnt:
|
||||||
for index in range(0, 2*conversation_cnt, 2):
|
for index in range(0, 2*conversation_cnt, 2):
|
||||||
what_i_have_asked = {}
|
what_i_have_asked = {}
|
||||||
@@ -434,8 +477,6 @@ def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:st
|
|||||||
messages.append(what_i_ask_now)
|
messages.append(what_i_ask_now)
|
||||||
else:
|
else:
|
||||||
# 多模态能力
|
# 多模态能力
|
||||||
conversation_cnt = len(history) // 2
|
|
||||||
messages = [{"role": "system", "content": system_prompt}]
|
|
||||||
if conversation_cnt:
|
if conversation_cnt:
|
||||||
for index in range(0, 2*conversation_cnt, 2):
|
for index in range(0, 2*conversation_cnt, 2):
|
||||||
what_i_have_asked = {}
|
what_i_have_asked = {}
|
||||||
@@ -498,4 +539,3 @@ def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:st
|
|||||||
|
|
||||||
return headers,payload
|
return headers,payload
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -111,7 +111,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
|
|||||||
if chunkjson['event_type'] == 'stream-start': continue
|
if chunkjson['event_type'] == 'stream-start': continue
|
||||||
if chunkjson['event_type'] == 'text-generation':
|
if chunkjson['event_type'] == 'text-generation':
|
||||||
result += chunkjson["text"]
|
result += chunkjson["text"]
|
||||||
if not console_slience: logger.info(chunkjson["text"], end='')
|
if not console_slience: print(chunkjson["text"], end='')
|
||||||
if observe_window is not None:
|
if observe_window is not None:
|
||||||
# 观测窗,把已经获取的数据显示出去
|
# 观测窗,把已经获取的数据显示出去
|
||||||
if len(observe_window) >= 1:
|
if len(observe_window) >= 1:
|
||||||
|
|||||||
@@ -99,7 +99,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
logger.info(f'[response] {result}')
|
logger.info(f'[response] {result}')
|
||||||
break
|
break
|
||||||
result += chunkjson['message']["content"]
|
result += chunkjson['message']["content"]
|
||||||
if not console_slience: logger.info(chunkjson['message']["content"], end='')
|
if not console_slience: print(chunkjson['message']["content"], end='')
|
||||||
if observe_window is not None:
|
if observe_window is not None:
|
||||||
# 观测窗,把已经获取的数据显示出去
|
# 观测窗,把已经获取的数据显示出去
|
||||||
if len(observe_window) >= 1:
|
if len(observe_window) >= 1:
|
||||||
|
|||||||
541
request_llms/bridge_openrouter.py
普通文件
541
request_llms/bridge_openrouter.py
普通文件
@@ -0,0 +1,541 @@
|
|||||||
|
"""
|
||||||
|
该文件中主要包含三个函数
|
||||||
|
|
||||||
|
不具备多线程能力的函数:
|
||||||
|
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
|
||||||
|
|
||||||
|
具备多线程调用能力的函数
|
||||||
|
2. predict_no_ui_long_connection:支持多线程
|
||||||
|
"""
|
||||||
|
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import re
|
||||||
|
import time
|
||||||
|
import traceback
|
||||||
|
import requests
|
||||||
|
import random
|
||||||
|
from loguru import logger
|
||||||
|
|
||||||
|
# config_private.py放自己的秘密如API和代理网址
|
||||||
|
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||||
|
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
|
||||||
|
from toolbox import trimmed_format_exc, is_the_upload_folder, read_one_api_model_name, log_chat
|
||||||
|
from toolbox import ChatBotWithCookies, have_any_recent_upload_image_files, encode_image
|
||||||
|
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
||||||
|
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
|
||||||
|
|
||||||
|
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||||
|
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||||||
|
|
||||||
|
def get_full_error(chunk, stream_response):
|
||||||
|
"""
|
||||||
|
获取完整的从Openai返回的报错
|
||||||
|
"""
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
chunk += next(stream_response)
|
||||||
|
except:
|
||||||
|
break
|
||||||
|
return chunk
|
||||||
|
|
||||||
|
def make_multimodal_input(inputs, image_paths):
|
||||||
|
image_base64_array = []
|
||||||
|
for image_path in image_paths:
|
||||||
|
path = os.path.abspath(image_path)
|
||||||
|
base64 = encode_image(path)
|
||||||
|
inputs = inputs + f'<br/><br/><div align="center"><img src="file={path}" base64="{base64}"></div>'
|
||||||
|
image_base64_array.append(base64)
|
||||||
|
return inputs, image_base64_array
|
||||||
|
|
||||||
|
def reverse_base64_from_input(inputs):
|
||||||
|
# 定义一个正则表达式来匹配 Base64 字符串(假设格式为 base64="<Base64编码>")
|
||||||
|
# pattern = re.compile(r'base64="([^"]+)"></div>')
|
||||||
|
pattern = re.compile(r'<br/><br/><div align="center"><img[^<>]+base64="([^"]+)"></div>')
|
||||||
|
# 使用 findall 方法查找所有匹配的 Base64 字符串
|
||||||
|
base64_strings = pattern.findall(inputs)
|
||||||
|
# 返回反转后的 Base64 字符串列表
|
||||||
|
return base64_strings
|
||||||
|
|
||||||
|
def contain_base64(inputs):
|
||||||
|
base64_strings = reverse_base64_from_input(inputs)
|
||||||
|
return len(base64_strings) > 0
|
||||||
|
|
||||||
|
def append_image_if_contain_base64(inputs):
|
||||||
|
if not contain_base64(inputs):
|
||||||
|
return inputs
|
||||||
|
else:
|
||||||
|
image_base64_array = reverse_base64_from_input(inputs)
|
||||||
|
pattern = re.compile(r'<br/><br/><div align="center"><img[^><]+></div>')
|
||||||
|
inputs = re.sub(pattern, '', inputs)
|
||||||
|
res = []
|
||||||
|
res.append({
|
||||||
|
"type": "text",
|
||||||
|
"text": inputs
|
||||||
|
})
|
||||||
|
for image_base64 in image_base64_array:
|
||||||
|
res.append({
|
||||||
|
"type": "image_url",
|
||||||
|
"image_url": {
|
||||||
|
"url": f"data:image/jpeg;base64,{image_base64}"
|
||||||
|
}
|
||||||
|
})
|
||||||
|
return res
|
||||||
|
|
||||||
|
def remove_image_if_contain_base64(inputs):
|
||||||
|
if not contain_base64(inputs):
|
||||||
|
return inputs
|
||||||
|
else:
|
||||||
|
pattern = re.compile(r'<br/><br/><div align="center"><img[^><]+></div>')
|
||||||
|
inputs = re.sub(pattern, '', inputs)
|
||||||
|
return inputs
|
||||||
|
|
||||||
|
def decode_chunk(chunk):
|
||||||
|
# 提前读取一些信息 (用于判断异常)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
chunkjson = None
|
||||||
|
has_choices = False
|
||||||
|
choice_valid = False
|
||||||
|
has_content = False
|
||||||
|
has_role = False
|
||||||
|
try:
|
||||||
|
chunkjson = json.loads(chunk_decoded[6:])
|
||||||
|
has_choices = 'choices' in chunkjson
|
||||||
|
if has_choices: choice_valid = (len(chunkjson['choices']) > 0)
|
||||||
|
if has_choices and choice_valid: has_content = ("content" in chunkjson['choices'][0]["delta"])
|
||||||
|
if has_content: has_content = (chunkjson['choices'][0]["delta"]["content"] is not None)
|
||||||
|
if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"]
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
return chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role
|
||||||
|
|
||||||
|
from functools import lru_cache
|
||||||
|
@lru_cache(maxsize=32)
|
||||||
|
def verify_endpoint(endpoint):
|
||||||
|
"""
|
||||||
|
检查endpoint是否可用
|
||||||
|
"""
|
||||||
|
if "你亲手写的api名称" in endpoint:
|
||||||
|
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
|
||||||
|
return endpoint
|
||||||
|
|
||||||
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
|
||||||
|
"""
|
||||||
|
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||||
|
inputs:
|
||||||
|
是本次问询的输入
|
||||||
|
sys_prompt:
|
||||||
|
系统静默prompt
|
||||||
|
llm_kwargs:
|
||||||
|
chatGPT的内部调优参数
|
||||||
|
history:
|
||||||
|
是之前的对话列表
|
||||||
|
observe_window = None:
|
||||||
|
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||||
|
"""
|
||||||
|
from request_llms.bridge_all import model_info
|
||||||
|
|
||||||
|
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||||
|
|
||||||
|
if model_info[llm_kwargs['llm_model']].get('openai_disable_stream', False): stream = False
|
||||||
|
else: stream = True
|
||||||
|
|
||||||
|
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=stream)
|
||||||
|
retry = 0
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
# make a POST request to the API endpoint, stream=False
|
||||||
|
endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
|
||||||
|
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||||
|
json=payload, stream=stream, timeout=TIMEOUT_SECONDS); break
|
||||||
|
except requests.exceptions.ReadTimeout as e:
|
||||||
|
retry += 1
|
||||||
|
traceback.print_exc()
|
||||||
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
if MAX_RETRY!=0: logger.error(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||||
|
|
||||||
|
if not stream:
|
||||||
|
# 该分支仅适用于不支持stream的o1模型,其他情形一律不适用
|
||||||
|
chunkjson = json.loads(response.content.decode())
|
||||||
|
gpt_replying_buffer = chunkjson['choices'][0]["message"]["content"]
|
||||||
|
return gpt_replying_buffer
|
||||||
|
|
||||||
|
stream_response = response.iter_lines()
|
||||||
|
result = ''
|
||||||
|
json_data = None
|
||||||
|
while True:
|
||||||
|
try: chunk = next(stream_response)
|
||||||
|
except StopIteration:
|
||||||
|
break
|
||||||
|
except requests.exceptions.ConnectionError:
|
||||||
|
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||||
|
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
||||||
|
if len(chunk_decoded)==0: continue
|
||||||
|
if not chunk_decoded.startswith('data:'):
|
||||||
|
error_msg = get_full_error(chunk, stream_response).decode()
|
||||||
|
if "reduce the length" in error_msg:
|
||||||
|
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
|
||||||
|
elif """type":"upstream_error","param":"307""" in error_msg:
|
||||||
|
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
|
||||||
|
else:
|
||||||
|
raise RuntimeError("OpenAI拒绝了请求:" + error_msg)
|
||||||
|
if ('data: [DONE]' in chunk_decoded): break # api2d 正常完成
|
||||||
|
# 提前读取一些信息 (用于判断异常)
|
||||||
|
if (has_choices and not choice_valid) or ('OPENROUTER PROCESSING' in chunk_decoded):
|
||||||
|
# 一些垃圾第三方接口的出现这样的错误,openrouter的特殊处理
|
||||||
|
continue
|
||||||
|
json_data = chunkjson['choices'][0]
|
||||||
|
delta = json_data["delta"]
|
||||||
|
if len(delta) == 0: break
|
||||||
|
if (not has_content) and has_role: continue
|
||||||
|
if (not has_content) and (not has_role): continue # raise RuntimeError("发现不标准的第三方接口:"+delta)
|
||||||
|
if has_content: # has_role = True/False
|
||||||
|
result += delta["content"]
|
||||||
|
if not console_slience: print(delta["content"], end='')
|
||||||
|
if observe_window is not None:
|
||||||
|
# 观测窗,把已经获取的数据显示出去
|
||||||
|
if len(observe_window) >= 1:
|
||||||
|
observe_window[0] += delta["content"]
|
||||||
|
# 看门狗,如果超过期限没有喂狗,则终止
|
||||||
|
if len(observe_window) >= 2:
|
||||||
|
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||||
|
raise RuntimeError("用户取消了程序。")
|
||||||
|
else: raise RuntimeError("意外Json结构:"+delta)
|
||||||
|
if json_data and json_data['finish_reason'] == 'content_filter':
|
||||||
|
raise RuntimeError("由于提问含不合规内容被Azure过滤。")
|
||||||
|
if json_data and json_data['finish_reason'] == 'length':
|
||||||
|
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||||
|
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||||
|
"""
|
||||||
|
发送至chatGPT,流式获取输出。
|
||||||
|
用于基础的对话功能。
|
||||||
|
inputs 是本次问询的输入
|
||||||
|
top_p, temperature是chatGPT的内部调优参数
|
||||||
|
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||||
|
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||||
|
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||||
|
"""
|
||||||
|
from request_llms.bridge_all import model_info
|
||||||
|
if is_any_api_key(inputs):
|
||||||
|
chatbot._cookies['api_key'] = inputs
|
||||||
|
chatbot.append(("输入已识别为openai的api_key", what_keys(inputs)))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") # 刷新界面
|
||||||
|
return
|
||||||
|
elif not is_any_api_key(chatbot._cookies['api_key']):
|
||||||
|
chatbot.append((inputs, "缺少api_key。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。"))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="缺少api_key") # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
user_input = inputs
|
||||||
|
if additional_fn is not None:
|
||||||
|
from core_functional import handle_core_functionality
|
||||||
|
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||||
|
|
||||||
|
# 多模态模型
|
||||||
|
has_multimodal_capacity = model_info[llm_kwargs['llm_model']].get('has_multimodal_capacity', False)
|
||||||
|
if has_multimodal_capacity:
|
||||||
|
has_recent_image_upload, image_paths = have_any_recent_upload_image_files(chatbot, pop=True)
|
||||||
|
else:
|
||||||
|
has_recent_image_upload, image_paths = False, []
|
||||||
|
if has_recent_image_upload:
|
||||||
|
_inputs, image_base64_array = make_multimodal_input(inputs, image_paths)
|
||||||
|
else:
|
||||||
|
_inputs, image_base64_array = inputs, []
|
||||||
|
chatbot.append((_inputs, ""))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||||
|
|
||||||
|
# 禁用stream的特殊模型处理
|
||||||
|
if model_info[llm_kwargs['llm_model']].get('openai_disable_stream', False): stream = False
|
||||||
|
else: stream = True
|
||||||
|
|
||||||
|
# check mis-behavior
|
||||||
|
if is_the_upload_folder(user_input):
|
||||||
|
chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
|
||||||
|
time.sleep(2)
|
||||||
|
|
||||||
|
try:
|
||||||
|
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, image_base64_array, has_multimodal_capacity, stream)
|
||||||
|
except RuntimeError as e:
|
||||||
|
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# 检查endpoint是否合法
|
||||||
|
try:
|
||||||
|
endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
|
||||||
|
except:
|
||||||
|
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||||
|
chatbot[-1] = (inputs, tb_str)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Endpoint不满足要求") # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# 加入历史
|
||||||
|
if has_recent_image_upload:
|
||||||
|
history.extend([_inputs, ""])
|
||||||
|
else:
|
||||||
|
history.extend([inputs, ""])
|
||||||
|
|
||||||
|
retry = 0
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
# make a POST request to the API endpoint, stream=True
|
||||||
|
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||||
|
json=payload, stream=stream, timeout=TIMEOUT_SECONDS);break
|
||||||
|
except:
|
||||||
|
retry += 1
|
||||||
|
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
|
||||||
|
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
||||||
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
|
||||||
|
|
||||||
|
if not stream:
|
||||||
|
# 该分支仅适用于不支持stream的o1模型,其他情形一律不适用
|
||||||
|
yield from handle_o1_model_special(response, inputs, llm_kwargs, chatbot, history)
|
||||||
|
return
|
||||||
|
|
||||||
|
if stream:
|
||||||
|
gpt_replying_buffer = ""
|
||||||
|
is_head_of_the_stream = True
|
||||||
|
stream_response = response.iter_lines()
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
chunk = next(stream_response)
|
||||||
|
except StopIteration:
|
||||||
|
# 非OpenAI官方接口的出现这样的报错,OpenAI和API2D不会走这里
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
error_msg = chunk_decoded
|
||||||
|
# 首先排除一个one-api没有done数据包的第三方Bug情形
|
||||||
|
if len(gpt_replying_buffer.strip()) > 0 and len(error_msg) == 0:
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="检测到有缺陷的非OpenAI官方接口,建议选择更稳定的接口。")
|
||||||
|
break
|
||||||
|
# 其他情况,直接返回报错
|
||||||
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="非OpenAI官方接口返回了错误:" + chunk.decode()) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# 提前读取一些信息 (用于判断异常)
|
||||||
|
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
||||||
|
|
||||||
|
if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r"content" not in chunk_decoded):
|
||||||
|
# 数据流的第一帧不携带content
|
||||||
|
is_head_of_the_stream = False; continue
|
||||||
|
|
||||||
|
if chunk:
|
||||||
|
try:
|
||||||
|
if (has_choices and not choice_valid) or ('OPENROUTER PROCESSING' in chunk_decoded):
|
||||||
|
# 一些垃圾第三方接口的出现这样的错误, 或者OPENROUTER的特殊处理,因为OPENROUTER的数据流未连接到模型时会出现OPENROUTER PROCESSING
|
||||||
|
continue
|
||||||
|
if ('data: [DONE]' not in chunk_decoded) and len(chunk_decoded) > 0 and (chunkjson is None):
|
||||||
|
# 传递进来一些奇怪的东西
|
||||||
|
raise ValueError(f'无法读取以下数据,请检查配置。\n\n{chunk_decoded}')
|
||||||
|
# 前者是API2D的结束条件,后者是OPENAI的结束条件
|
||||||
|
if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0):
|
||||||
|
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||||
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||||
|
break
|
||||||
|
# 处理数据流的主体
|
||||||
|
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
|
||||||
|
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
|
||||||
|
if has_content:
|
||||||
|
# 正常情况
|
||||||
|
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
|
||||||
|
elif has_role:
|
||||||
|
# 一些第三方接口的出现这样的错误,兼容一下吧
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
# 至此已经超出了正常接口应该进入的范围,一些垃圾第三方接口会出现这样的错误
|
||||||
|
if chunkjson['choices'][0]["delta"]["content"] is None: continue # 一些垃圾第三方接口出现这样的错误,兼容一下吧
|
||||||
|
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
|
||||||
|
|
||||||
|
history[-1] = gpt_replying_buffer
|
||||||
|
chatbot[-1] = (history[-2], history[-1])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
|
||||||
|
except Exception as e:
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
|
||||||
|
chunk = get_full_error(chunk, stream_response)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
error_msg = chunk_decoded
|
||||||
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析异常" + error_msg) # 刷新界面
|
||||||
|
logger.error(error_msg)
|
||||||
|
return
|
||||||
|
return # return from stream-branch
|
||||||
|
|
||||||
|
def handle_o1_model_special(response, inputs, llm_kwargs, chatbot, history):
|
||||||
|
try:
|
||||||
|
chunkjson = json.loads(response.content.decode())
|
||||||
|
gpt_replying_buffer = chunkjson['choices'][0]["message"]["content"]
|
||||||
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||||
|
history[-1] = gpt_replying_buffer
|
||||||
|
chatbot[-1] = (history[-2], history[-1])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
except Exception as e:
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析异常" + response.text) # 刷新界面
|
||||||
|
|
||||||
|
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
|
||||||
|
from request_llms.bridge_all import model_info
|
||||||
|
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
|
||||||
|
if "reduce the length" in error_msg:
|
||||||
|
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
||||||
|
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
||||||
|
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
||||||
|
elif "does not exist" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格.")
|
||||||
|
elif "Incorrect API key" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由, 拒绝服务. " + openai_website)
|
||||||
|
elif "exceeded your current quota" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由, 拒绝服务." + openai_website)
|
||||||
|
elif "account is not active" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Your account is not active. OpenAI以账户失效为由, 拒绝服务." + openai_website)
|
||||||
|
elif "associated with a deactivated account" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] You are associated with a deactivated account. OpenAI以账户失效为由, 拒绝服务." + openai_website)
|
||||||
|
elif "API key has been deactivated" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] API key has been deactivated. OpenAI以账户失效为由, 拒绝服务." + openai_website)
|
||||||
|
elif "bad forward key" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.")
|
||||||
|
elif "Not enough point" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Not enough point. API2D账户点数不足.")
|
||||||
|
else:
|
||||||
|
from toolbox import regular_txt_to_markdown
|
||||||
|
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||||
|
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
|
||||||
|
return chatbot, history
|
||||||
|
|
||||||
|
def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:str, image_base64_array:list=[], has_multimodal_capacity:bool=False, stream:bool=True):
|
||||||
|
"""
|
||||||
|
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||||||
|
"""
|
||||||
|
from request_llms.bridge_all import model_info
|
||||||
|
|
||||||
|
if not is_any_api_key(llm_kwargs['api_key']):
|
||||||
|
raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。")
|
||||||
|
|
||||||
|
if llm_kwargs['llm_model'].startswith('vllm-'):
|
||||||
|
api_key = 'no-api-key'
|
||||||
|
else:
|
||||||
|
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
||||||
|
|
||||||
|
headers = {
|
||||||
|
"Content-Type": "application/json",
|
||||||
|
"Authorization": f"Bearer {api_key}"
|
||||||
|
}
|
||||||
|
if API_ORG.startswith('org-'): headers.update({"OpenAI-Organization": API_ORG})
|
||||||
|
if llm_kwargs['llm_model'].startswith('azure-'):
|
||||||
|
headers.update({"api-key": api_key})
|
||||||
|
if llm_kwargs['llm_model'] in AZURE_CFG_ARRAY.keys():
|
||||||
|
azure_api_key_unshared = AZURE_CFG_ARRAY[llm_kwargs['llm_model']]["AZURE_API_KEY"]
|
||||||
|
headers.update({"api-key": azure_api_key_unshared})
|
||||||
|
|
||||||
|
if has_multimodal_capacity:
|
||||||
|
# 当以下条件满足时,启用多模态能力:
|
||||||
|
# 1. 模型本身是多模态模型(has_multimodal_capacity)
|
||||||
|
# 2. 输入包含图像(len(image_base64_array) > 0)
|
||||||
|
# 3. 历史输入包含图像( any([contain_base64(h) for h in history]) )
|
||||||
|
enable_multimodal_capacity = (len(image_base64_array) > 0) or any([contain_base64(h) for h in history])
|
||||||
|
else:
|
||||||
|
enable_multimodal_capacity = False
|
||||||
|
|
||||||
|
conversation_cnt = len(history) // 2
|
||||||
|
openai_disable_system_prompt = model_info[llm_kwargs['llm_model']].get('openai_disable_system_prompt', False)
|
||||||
|
|
||||||
|
if openai_disable_system_prompt:
|
||||||
|
messages = [{"role": "user", "content": system_prompt}]
|
||||||
|
else:
|
||||||
|
messages = [{"role": "system", "content": system_prompt}]
|
||||||
|
|
||||||
|
if not enable_multimodal_capacity:
|
||||||
|
# 不使用多模态能力
|
||||||
|
if conversation_cnt:
|
||||||
|
for index in range(0, 2*conversation_cnt, 2):
|
||||||
|
what_i_have_asked = {}
|
||||||
|
what_i_have_asked["role"] = "user"
|
||||||
|
what_i_have_asked["content"] = remove_image_if_contain_base64(history[index])
|
||||||
|
what_gpt_answer = {}
|
||||||
|
what_gpt_answer["role"] = "assistant"
|
||||||
|
what_gpt_answer["content"] = remove_image_if_contain_base64(history[index+1])
|
||||||
|
if what_i_have_asked["content"] != "":
|
||||||
|
if what_gpt_answer["content"] == "": continue
|
||||||
|
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
||||||
|
messages.append(what_i_have_asked)
|
||||||
|
messages.append(what_gpt_answer)
|
||||||
|
else:
|
||||||
|
messages[-1]['content'] = what_gpt_answer['content']
|
||||||
|
what_i_ask_now = {}
|
||||||
|
what_i_ask_now["role"] = "user"
|
||||||
|
what_i_ask_now["content"] = inputs
|
||||||
|
messages.append(what_i_ask_now)
|
||||||
|
else:
|
||||||
|
# 多模态能力
|
||||||
|
if conversation_cnt:
|
||||||
|
for index in range(0, 2*conversation_cnt, 2):
|
||||||
|
what_i_have_asked = {}
|
||||||
|
what_i_have_asked["role"] = "user"
|
||||||
|
what_i_have_asked["content"] = append_image_if_contain_base64(history[index])
|
||||||
|
what_gpt_answer = {}
|
||||||
|
what_gpt_answer["role"] = "assistant"
|
||||||
|
what_gpt_answer["content"] = append_image_if_contain_base64(history[index+1])
|
||||||
|
if what_i_have_asked["content"] != "":
|
||||||
|
if what_gpt_answer["content"] == "": continue
|
||||||
|
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
||||||
|
messages.append(what_i_have_asked)
|
||||||
|
messages.append(what_gpt_answer)
|
||||||
|
else:
|
||||||
|
messages[-1]['content'] = what_gpt_answer['content']
|
||||||
|
what_i_ask_now = {}
|
||||||
|
what_i_ask_now["role"] = "user"
|
||||||
|
what_i_ask_now["content"] = []
|
||||||
|
what_i_ask_now["content"].append({
|
||||||
|
"type": "text",
|
||||||
|
"text": inputs
|
||||||
|
})
|
||||||
|
for image_base64 in image_base64_array:
|
||||||
|
what_i_ask_now["content"].append({
|
||||||
|
"type": "image_url",
|
||||||
|
"image_url": {
|
||||||
|
"url": f"data:image/jpeg;base64,{image_base64}"
|
||||||
|
}
|
||||||
|
})
|
||||||
|
messages.append(what_i_ask_now)
|
||||||
|
|
||||||
|
|
||||||
|
model = llm_kwargs['llm_model']
|
||||||
|
if llm_kwargs['llm_model'].startswith('api2d-'):
|
||||||
|
model = llm_kwargs['llm_model'][len('api2d-'):]
|
||||||
|
if llm_kwargs['llm_model'].startswith('one-api-'):
|
||||||
|
model = llm_kwargs['llm_model'][len('one-api-'):]
|
||||||
|
model, _ = read_one_api_model_name(model)
|
||||||
|
if llm_kwargs['llm_model'].startswith('vllm-'):
|
||||||
|
model = llm_kwargs['llm_model'][len('vllm-'):]
|
||||||
|
model, _ = read_one_api_model_name(model)
|
||||||
|
if llm_kwargs['llm_model'].startswith('openrouter-'):
|
||||||
|
model = llm_kwargs['llm_model'][len('openrouter-'):]
|
||||||
|
model= read_one_api_model_name(model)
|
||||||
|
if model == "gpt-3.5-random": # 随机选择, 绕过openai访问频率限制
|
||||||
|
model = random.choice([
|
||||||
|
"gpt-3.5-turbo",
|
||||||
|
"gpt-3.5-turbo-16k",
|
||||||
|
"gpt-3.5-turbo-1106",
|
||||||
|
"gpt-3.5-turbo-0613",
|
||||||
|
"gpt-3.5-turbo-16k-0613",
|
||||||
|
"gpt-3.5-turbo-0301",
|
||||||
|
])
|
||||||
|
|
||||||
|
payload = {
|
||||||
|
"model": model,
|
||||||
|
"messages": messages,
|
||||||
|
"temperature": llm_kwargs['temperature'], # 1.0,
|
||||||
|
"top_p": llm_kwargs['top_p'], # 1.0,
|
||||||
|
"n": 1,
|
||||||
|
"stream": stream,
|
||||||
|
}
|
||||||
|
|
||||||
|
return headers,payload
|
||||||
|
|
||||||
|
|
||||||
@@ -224,7 +224,7 @@ def get_predict_function(
|
|||||||
try:
|
try:
|
||||||
if finish_reason == "stop":
|
if finish_reason == "stop":
|
||||||
if not console_slience:
|
if not console_slience:
|
||||||
logger.info(f"[response] {result}")
|
print(f"[response] {result}")
|
||||||
break
|
break
|
||||||
result += response_text
|
result += response_text
|
||||||
if observe_window is not None:
|
if observe_window is not None:
|
||||||
|
|||||||
@@ -2,14 +2,15 @@ https://public.agent-matrix.com/publish/gradio-3.32.10-py3-none-any.whl
|
|||||||
fastapi==0.110
|
fastapi==0.110
|
||||||
gradio-client==0.8
|
gradio-client==0.8
|
||||||
pypdf2==2.12.1
|
pypdf2==2.12.1
|
||||||
|
httpx<=0.25.2
|
||||||
zhipuai==2.0.1
|
zhipuai==2.0.1
|
||||||
tiktoken>=0.3.3
|
tiktoken>=0.3.3
|
||||||
requests[socks]
|
requests[socks]
|
||||||
pydantic==2.5.2
|
pydantic==2.9.2
|
||||||
llama-index==0.10
|
|
||||||
protobuf==3.20
|
protobuf==3.20
|
||||||
transformers>=4.27.1,<4.42
|
transformers>=4.27.1,<4.42
|
||||||
scipdf_parser>=0.52
|
scipdf_parser>=0.52
|
||||||
|
spacy==3.7.4
|
||||||
anthropic>=0.18.1
|
anthropic>=0.18.1
|
||||||
python-markdown-math
|
python-markdown-math
|
||||||
pymdown-extensions
|
pymdown-extensions
|
||||||
@@ -32,3 +33,14 @@ loguru
|
|||||||
arxiv
|
arxiv
|
||||||
numpy
|
numpy
|
||||||
rich
|
rich
|
||||||
|
|
||||||
|
|
||||||
|
llama-index-core==0.10.68
|
||||||
|
llama-index-legacy==0.9.48
|
||||||
|
llama-index-readers-file==0.1.33
|
||||||
|
llama-index-readers-llama-parse==0.1.6
|
||||||
|
llama-index-embeddings-azure-openai==0.1.10
|
||||||
|
llama-index-embeddings-openai==0.1.10
|
||||||
|
llama-parse==0.4.9
|
||||||
|
mdit-py-plugins>=0.3.3
|
||||||
|
linkify-it-py==2.0.3
|
||||||
@@ -94,7 +94,7 @@ def read_single_conf_with_lru_cache(arg):
|
|||||||
if r is None:
|
if r is None:
|
||||||
log亮红('[PROXY] 网络代理状态:未配置。无代理状态下很可能无法访问OpenAI家族的模型。建议:检查USE_PROXY选项是否修改。')
|
log亮红('[PROXY] 网络代理状态:未配置。无代理状态下很可能无法访问OpenAI家族的模型。建议:检查USE_PROXY选项是否修改。')
|
||||||
else:
|
else:
|
||||||
log亮绿('[PROXY] 网络代理状态:已配置。配置信息如下:', r)
|
log亮绿('[PROXY] 网络代理状态:已配置。配置信息如下:', str(r))
|
||||||
assert isinstance(r, dict), 'proxies格式错误,请注意proxies选项的格式,不要遗漏括号。'
|
assert isinstance(r, dict), 'proxies格式错误,请注意proxies选项的格式,不要遗漏括号。'
|
||||||
return r
|
return r
|
||||||
|
|
||||||
|
|||||||
@@ -90,23 +90,6 @@ def make_history_cache():
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
# """
|
|
||||||
# with gr.Row():
|
|
||||||
# txt = gr.Textbox(show_label=False, placeholder="Input question here.", elem_id='user_input_main').style(container=False)
|
|
||||||
# txtx = gr.Textbox(show_label=False, placeholder="Input question here.", elem_id='user_input_main').style(container=False)
|
|
||||||
# with gr.Row():
|
|
||||||
# btn_value = "Test"
|
|
||||||
# elem_id = "TestCase"
|
|
||||||
# variant = "primary"
|
|
||||||
# input_list = [txt, txtx]
|
|
||||||
# output_list = [txt, txtx]
|
|
||||||
# input_name_list = ["txt(input)", "txtx(input)"]
|
|
||||||
# output_name_list = ["txt", "txtx"]
|
|
||||||
# js_callback = """(txt, txtx)=>{console.log(txt); console.log(txtx);}"""
|
|
||||||
# def function(txt, txtx):
|
|
||||||
# return "booo", "goooo"
|
|
||||||
# create_button_with_javascript_callback(btn_value, elem_id, variant, js_callback, input_list, output_list, function, input_name_list, output_name_list)
|
|
||||||
# """
|
|
||||||
def create_button_with_javascript_callback(btn_value, elem_id, variant, js_callback, input_list, output_list, function, input_name_list, output_name_list):
|
def create_button_with_javascript_callback(btn_value, elem_id, variant, js_callback, input_list, output_list, function, input_name_list, output_name_list):
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
middle_ware_component = gr.Textbox(visible=False, elem_id=elem_id+'_buffer')
|
middle_ware_component = gr.Textbox(visible=False, elem_id=elem_id+'_buffer')
|
||||||
|
|||||||
@@ -34,6 +34,9 @@ def is_api2d_key(key):
|
|||||||
API_MATCH_API2D = re.match(r"fk[a-zA-Z0-9]{6}-[a-zA-Z0-9]{32}$", key)
|
API_MATCH_API2D = re.match(r"fk[a-zA-Z0-9]{6}-[a-zA-Z0-9]{32}$", key)
|
||||||
return bool(API_MATCH_API2D)
|
return bool(API_MATCH_API2D)
|
||||||
|
|
||||||
|
def is_openroute_api_key(key):
|
||||||
|
API_MATCH_OPENROUTE = re.match(r"sk-or-v1-[a-zA-Z0-9]{64}$", key)
|
||||||
|
return bool(API_MATCH_OPENROUTE)
|
||||||
|
|
||||||
def is_cohere_api_key(key):
|
def is_cohere_api_key(key):
|
||||||
API_MATCH_AZURE = re.match(r"[a-zA-Z0-9]{40}$", key)
|
API_MATCH_AZURE = re.match(r"[a-zA-Z0-9]{40}$", key)
|
||||||
@@ -89,6 +92,10 @@ def select_api_key(keys, llm_model):
|
|||||||
if llm_model.startswith('cohere-'):
|
if llm_model.startswith('cohere-'):
|
||||||
for k in key_list:
|
for k in key_list:
|
||||||
if is_cohere_api_key(k): avail_key_list.append(k)
|
if is_cohere_api_key(k): avail_key_list.append(k)
|
||||||
|
|
||||||
|
if llm_model.startswith('openrouter-'):
|
||||||
|
for k in key_list:
|
||||||
|
if is_openroute_api_key(k): avail_key_list.append(k)
|
||||||
|
|
||||||
if len(avail_key_list) == 0:
|
if len(avail_key_list) == 0:
|
||||||
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源(左上角更换模型菜单中可切换openai,azure,claude,cohere等请求源)。")
|
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源(左上角更换模型菜单中可切换openai,azure,claude,cohere等请求源)。")
|
||||||
|
|||||||
@@ -11,7 +11,7 @@ def not_chat_log_filter(record):
|
|||||||
|
|
||||||
def formatter_with_clip(record):
|
def formatter_with_clip(record):
|
||||||
# Note this function returns the string to be formatted, not the actual message to be logged
|
# Note this function returns the string to be formatted, not the actual message to be logged
|
||||||
record["extra"]["serialized"] = "555555"
|
# record["extra"]["serialized"] = "555555"
|
||||||
max_len = 12
|
max_len = 12
|
||||||
record['function_x'] = record['function'].center(max_len)
|
record['function_x'] = record['function'].center(max_len)
|
||||||
if len(record['function_x']) > max_len:
|
if len(record['function_x']) > max_len:
|
||||||
|
|||||||
12
tests/test_anim_gen.py
普通文件
12
tests/test_anim_gen.py
普通文件
@@ -0,0 +1,12 @@
|
|||||||
|
"""
|
||||||
|
对项目中的各个插件进行测试。运行方法:直接运行 python tests/test_plugins.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
import init_test
|
||||||
|
import os, sys
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
from test_utils import plugin_test
|
||||||
|
|
||||||
|
plugin_test(plugin='crazy_functions.数学动画生成manim->动画生成', main_input="A point moving along function culve y=sin(x), starting from x=0 and stop at x=4*\pi.")
|
||||||
7
tests/test_doc2x.py
普通文件
7
tests/test_doc2x.py
普通文件
@@ -0,0 +1,7 @@
|
|||||||
|
import init_test
|
||||||
|
|
||||||
|
from crazy_functions.pdf_fns.parse_pdf_via_doc2x import 解析PDF_DOC2X_转Latex
|
||||||
|
|
||||||
|
# 解析PDF_DOC2X_转Latex("gpt_log/arxiv_cache_old/2410.10819/workfolder/merge.pdf")
|
||||||
|
# 解析PDF_DOC2X_转Latex("gpt_log/arxiv_cache_ooo/2410.07095/workfolder/merge.pdf")
|
||||||
|
解析PDF_DOC2X_转Latex("2410.11190v2.pdf")
|
||||||
@@ -8,4 +8,17 @@ import os, sys
|
|||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
from test_utils import plugin_test
|
from test_utils import plugin_test
|
||||||
plugin_test(plugin='crazy_functions.Social_Helper->I人助手', main_input="|")
|
plugin_test(
|
||||||
|
plugin='crazy_functions.Social_Helper->I人助手',
|
||||||
|
main_input="""
|
||||||
|
添加联系人:
|
||||||
|
艾德·史塔克:我的养父,他是临冬城的公爵。
|
||||||
|
凯特琳·史塔克:我的养母,她对我态度冷淡,因为我是私生子。
|
||||||
|
罗柏·史塔克:我的哥哥,他是北境的继承人。
|
||||||
|
艾莉亚·史塔克:我的妹妹,她和我关系亲密,性格独立坚强。
|
||||||
|
珊莎·史塔克:我的妹妹,她梦想成为一位淑女。
|
||||||
|
布兰·史塔克:我的弟弟,他有预知未来的能力。
|
||||||
|
瑞肯·史塔克:我的弟弟,他是个天真无邪的小孩。
|
||||||
|
山姆威尔·塔利:我的朋友,他在守夜人军团中与我并肩作战。
|
||||||
|
伊格瑞特:我的恋人,她是野人中的一员。
|
||||||
|
""")
|
||||||
|
|||||||
在新工单中引用
屏蔽一个用户