镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-07 15:06:48 +00:00
比较提交
26 次代码提交
huggingfac
...
version3.7
| 作者 | SHA1 | 提交日期 | |
|---|---|---|---|
|
|
163f12c533 | ||
|
|
bdd46c5dd1 | ||
|
|
ae51a0e686 | ||
|
|
f2582ea137 | ||
|
|
ddd2fd84da | ||
|
|
6c90ff80ea | ||
|
|
cb7c0703be | ||
|
|
5181cd441d | ||
|
|
216d4374e7 | ||
|
|
8af6c0cab6 | ||
|
|
67ad041372 | ||
|
|
725c72229c | ||
|
|
e42ede512b | ||
|
|
84ccc9e64c | ||
|
|
c172847e19 | ||
|
|
d166d25eb4 | ||
|
|
516bbb1331 | ||
|
|
c3140ce344 | ||
|
|
cd18663800 | ||
|
|
dbf1322836 | ||
|
|
98dd3ae1c0 | ||
|
|
3036709496 | ||
|
|
8e9c07644f | ||
|
|
90d96b77e6 | ||
|
|
66c876a9ca | ||
|
|
0665eb75ed |
@@ -1,7 +1,6 @@
|
|||||||
> [!IMPORTANT]
|
> [!IMPORTANT]
|
||||||
|
> 2024.3.11: 恭迎Claude3和Moonshot,全力支持Qwen、GLM、DeepseekCoder等中文大语言模型!
|
||||||
> 2024.1.18: 更新3.70版本,支持Mermaid绘图库(让大模型绘制脑图)
|
> 2024.1.18: 更新3.70版本,支持Mermaid绘图库(让大模型绘制脑图)
|
||||||
> 2024.1.17: 恭迎GLM4,全力支持Qwen、GLM、DeepseekCoder等国内中文大语言基座模型!
|
|
||||||
> 2024.1.17: 某些依赖包尚不兼容python 3.12,推荐python 3.11。
|
|
||||||
> 2024.1.17: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目完全开源免费,您可通过订阅[在线服务](https://github.com/binary-husky/gpt_academic/wiki/online)的方式鼓励本项目的发展。
|
> 2024.1.17: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目完全开源免费,您可通过订阅[在线服务](https://github.com/binary-husky/gpt_academic/wiki/online)的方式鼓励本项目的发展。
|
||||||
|
|
||||||
<br>
|
<br>
|
||||||
@@ -253,8 +252,7 @@ P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以
|
|||||||
# Advanced Usage
|
# Advanced Usage
|
||||||
### I:自定义新的便捷按钮(学术快捷键)
|
### I:自定义新的便捷按钮(学术快捷键)
|
||||||
|
|
||||||
任意文本编辑器打开`core_functional.py`,添加如下条目,然后重启程序。(如果按钮已存在,那么可以直接修改(前缀、后缀都已支持热修改),无需重启程序即可生效。)
|
现在已可以通过UI中的`界面外观`菜单中的`自定义菜单`添加新的便捷按钮。如果需要在代码中定义,请使用任意文本编辑器打开`core_functional.py`,添加如下条目即可:
|
||||||
例如
|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
"超级英译中": {
|
"超级英译中": {
|
||||||
|
|||||||
@@ -47,7 +47,7 @@ def backup_and_download(current_version, remote_version):
|
|||||||
shutil.copytree('./', backup_dir, ignore=lambda x, y: ['history'])
|
shutil.copytree('./', backup_dir, ignore=lambda x, y: ['history'])
|
||||||
proxies = get_conf('proxies')
|
proxies = get_conf('proxies')
|
||||||
try: r = requests.get('https://github.com/binary-husky/chatgpt_academic/archive/refs/heads/master.zip', proxies=proxies, stream=True)
|
try: r = requests.get('https://github.com/binary-husky/chatgpt_academic/archive/refs/heads/master.zip', proxies=proxies, stream=True)
|
||||||
except: r = requests.get('https://public.gpt-academic.top/publish/master.zip', proxies=proxies, stream=True)
|
except: r = requests.get('https://public.agent-matrix.com/publish/master.zip', proxies=proxies, stream=True)
|
||||||
zip_file_path = backup_dir+'/master.zip'
|
zip_file_path = backup_dir+'/master.zip'
|
||||||
with open(zip_file_path, 'wb+') as f:
|
with open(zip_file_path, 'wb+') as f:
|
||||||
f.write(r.content)
|
f.write(r.content)
|
||||||
@@ -81,7 +81,7 @@ def patch_and_restart(path):
|
|||||||
dir_util.copy_tree(path_new_version, './')
|
dir_util.copy_tree(path_new_version, './')
|
||||||
print亮绿('代码已经更新,即将更新pip包依赖……')
|
print亮绿('代码已经更新,即将更新pip包依赖……')
|
||||||
for i in reversed(range(5)): time.sleep(1); print(i)
|
for i in reversed(range(5)): time.sleep(1); print(i)
|
||||||
try:
|
try:
|
||||||
import subprocess
|
import subprocess
|
||||||
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-r', 'requirements.txt'])
|
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-r', 'requirements.txt'])
|
||||||
except:
|
except:
|
||||||
@@ -113,7 +113,7 @@ def auto_update(raise_error=False):
|
|||||||
import json
|
import json
|
||||||
proxies = get_conf('proxies')
|
proxies = get_conf('proxies')
|
||||||
try: response = requests.get("https://raw.githubusercontent.com/binary-husky/chatgpt_academic/master/version", proxies=proxies, timeout=5)
|
try: response = requests.get("https://raw.githubusercontent.com/binary-husky/chatgpt_academic/master/version", proxies=proxies, timeout=5)
|
||||||
except: response = requests.get("https://public.gpt-academic.top/publish/version", proxies=proxies, timeout=5)
|
except: response = requests.get("https://public.agent-matrix.com/publish/version", proxies=proxies, timeout=5)
|
||||||
remote_json_data = json.loads(response.text)
|
remote_json_data = json.loads(response.text)
|
||||||
remote_version = remote_json_data['version']
|
remote_version = remote_json_data['version']
|
||||||
if remote_json_data["show_feature"]:
|
if remote_json_data["show_feature"]:
|
||||||
@@ -159,7 +159,7 @@ def warm_up_modules():
|
|||||||
enc.encode("模块预热", disallowed_special=())
|
enc.encode("模块预热", disallowed_special=())
|
||||||
enc = model_info["gpt-4"]['tokenizer']
|
enc = model_info["gpt-4"]['tokenizer']
|
||||||
enc.encode("模块预热", disallowed_special=())
|
enc.encode("模块预热", disallowed_special=())
|
||||||
|
|
||||||
def warm_up_vectordb():
|
def warm_up_vectordb():
|
||||||
print('正在执行一些模块的预热 ...')
|
print('正在执行一些模块的预热 ...')
|
||||||
from toolbox import ProxyNetworkActivate
|
from toolbox import ProxyNetworkActivate
|
||||||
@@ -167,7 +167,7 @@ def warm_up_vectordb():
|
|||||||
import nltk
|
import nltk
|
||||||
with ProxyNetworkActivate("Warmup_Modules"): nltk.download("punkt")
|
with ProxyNetworkActivate("Warmup_Modules"): nltk.download("punkt")
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
import os
|
import os
|
||||||
os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
|
os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
|
||||||
|
|||||||
@@ -3,7 +3,7 @@ from sys import stdout
|
|||||||
|
|
||||||
if platform.system()=="Linux":
|
if platform.system()=="Linux":
|
||||||
pass
|
pass
|
||||||
else:
|
else:
|
||||||
from colorama import init
|
from colorama import init
|
||||||
init()
|
init()
|
||||||
|
|
||||||
|
|||||||
86
config.py
86
config.py
@@ -30,7 +30,33 @@ if USE_PROXY:
|
|||||||
else:
|
else:
|
||||||
proxies = None
|
proxies = None
|
||||||
|
|
||||||
# ------------------------------------ 以下配置可以优化体验, 但大部分场合下并不需要修改 ------------------------------------
|
# [step 3]>> 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
|
||||||
|
LLM_MODEL = "gpt-3.5-turbo-16k" # 可选 ↓↓↓
|
||||||
|
AVAIL_LLM_MODELS = ["gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
|
||||||
|
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
|
||||||
|
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-3-turbo",
|
||||||
|
"gemini-pro", "chatglm3"
|
||||||
|
]
|
||||||
|
# --- --- --- ---
|
||||||
|
# P.S. 其他可用的模型还包括
|
||||||
|
# AVAIL_LLM_MODELS = [
|
||||||
|
# "qianfan", "deepseekcoder",
|
||||||
|
# "spark", "sparkv2", "sparkv3", "sparkv3.5",
|
||||||
|
# "qwen-turbo", "qwen-plus", "qwen-max", "qwen-local",
|
||||||
|
# "moonshot-v1-128k", "moonshot-v1-32k", "moonshot-v1-8k",
|
||||||
|
# "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125"
|
||||||
|
# "claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
|
||||||
|
# "moss", "llama2", "chatglm_onnx", "internlm", "jittorllms_pangualpha", "jittorllms_llama",
|
||||||
|
# "yi-34b-chat-0205", "yi-34b-chat-200k"
|
||||||
|
# ]
|
||||||
|
# --- --- --- ---
|
||||||
|
# 此外,为了更灵活地接入one-api多模型管理界面,您还可以在接入one-api时,
|
||||||
|
# 使用"one-api-*"前缀直接使用非标准方式接入的模型,例如
|
||||||
|
# AVAIL_LLM_MODELS = ["one-api-claude-3-sonnet-20240229(max_token=100000)"]
|
||||||
|
# --- --- --- ---
|
||||||
|
|
||||||
|
|
||||||
|
# --------------- 以下配置可以优化体验 ---------------
|
||||||
|
|
||||||
# 重新URL重新定向,实现更换API_URL的作用(高危设置! 常规情况下不要修改! 通过修改此设置,您将把您的API-KEY和对话隐私完全暴露给您设定的中间人!)
|
# 重新URL重新定向,实现更换API_URL的作用(高危设置! 常规情况下不要修改! 通过修改此设置,您将把您的API-KEY和对话隐私完全暴露给您设定的中间人!)
|
||||||
# 格式: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
|
# 格式: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
|
||||||
@@ -85,20 +111,6 @@ MAX_RETRY = 2
|
|||||||
DEFAULT_FN_GROUPS = ['对话', '编程', '学术', '智能体']
|
DEFAULT_FN_GROUPS = ['对话', '编程', '学术', '智能体']
|
||||||
|
|
||||||
|
|
||||||
# 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
|
|
||||||
LLM_MODEL = "gpt-3.5-turbo-16k" # 可选 ↓↓↓
|
|
||||||
AVAIL_LLM_MODELS = ["gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
|
|
||||||
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
|
|
||||||
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-3-turbo",
|
|
||||||
"gemini-pro", "chatglm3", "claude-2"]
|
|
||||||
# P.S. 其他可用的模型还包括 [
|
|
||||||
# "moss", "qwen-turbo", "qwen-plus", "qwen-max"
|
|
||||||
# "zhipuai", "qianfan", "deepseekcoder", "llama2", "qwen-local", "gpt-3.5-turbo-0613",
|
|
||||||
# "gpt-3.5-turbo-16k-0613", "gpt-3.5-random", "api2d-gpt-3.5-turbo", 'api2d-gpt-3.5-turbo-16k',
|
|
||||||
# "spark", "sparkv2", "sparkv3", "chatglm_onnx", "claude-1-100k", "claude-2", "internlm", "jittorllms_pangualpha", "jittorllms_llama"
|
|
||||||
# ]
|
|
||||||
|
|
||||||
|
|
||||||
# 定义界面上“询问多个GPT模型”插件应该使用哪些模型,请从AVAIL_LLM_MODELS中选择,并在不同模型之间用`&`间隔,例如"gpt-3.5-turbo&chatglm3&azure-gpt-4"
|
# 定义界面上“询问多个GPT模型”插件应该使用哪些模型,请从AVAIL_LLM_MODELS中选择,并在不同模型之间用`&`间隔,例如"gpt-3.5-turbo&chatglm3&azure-gpt-4"
|
||||||
MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
|
MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
|
||||||
|
|
||||||
@@ -127,6 +139,7 @@ CHATGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b
|
|||||||
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
|
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
|
||||||
LOCAL_MODEL_QUANT = "FP16" # 默认 "FP16" "INT4" 启用量化INT4版本 "INT8" 启用量化INT8版本
|
LOCAL_MODEL_QUANT = "FP16" # 默认 "FP16" "INT4" 启用量化INT4版本 "INT8" 启用量化INT8版本
|
||||||
|
|
||||||
|
|
||||||
# 设置gradio的并行线程数(不需要修改)
|
# 设置gradio的并行线程数(不需要修改)
|
||||||
CONCURRENT_COUNT = 100
|
CONCURRENT_COUNT = 100
|
||||||
|
|
||||||
@@ -144,7 +157,8 @@ ADD_WAIFU = False
|
|||||||
AUTHENTICATION = []
|
AUTHENTICATION = []
|
||||||
|
|
||||||
|
|
||||||
# 如果需要在二级路径下运行(常规情况下,不要修改!!)(需要配合修改main.py才能生效!)
|
# 如果需要在二级路径下运行(常规情况下,不要修改!!)
|
||||||
|
# (举例 CUSTOM_PATH = "/gpt_academic",可以让软件运行在 http://ip:port/gpt_academic/ 下。)
|
||||||
CUSTOM_PATH = "/"
|
CUSTOM_PATH = "/"
|
||||||
|
|
||||||
|
|
||||||
@@ -172,14 +186,8 @@ AZURE_ENGINE = "填入你亲手写的部署名" # 读 docs\use_azure.
|
|||||||
AZURE_CFG_ARRAY = {}
|
AZURE_CFG_ARRAY = {}
|
||||||
|
|
||||||
|
|
||||||
# 使用Newbing (不推荐使用,未来将删除)
|
# 阿里云实时语音识别 配置难度较高
|
||||||
NEWBING_STYLE = "creative" # ["creative", "balanced", "precise"]
|
# 参考 https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md
|
||||||
NEWBING_COOKIES = """
|
|
||||||
put your new bing cookies here
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
# 阿里云实时语音识别 配置难度较高 仅建议高手用户使用 参考 https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md
|
|
||||||
ENABLE_AUDIO = False
|
ENABLE_AUDIO = False
|
||||||
ALIYUN_TOKEN="" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
|
ALIYUN_TOKEN="" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
|
||||||
ALIYUN_APPKEY="" # 例如 RoPlZrM88DnAFkZK
|
ALIYUN_APPKEY="" # 例如 RoPlZrM88DnAFkZK
|
||||||
@@ -198,16 +206,18 @@ ZHIPUAI_API_KEY = ""
|
|||||||
ZHIPUAI_MODEL = "" # 此选项已废弃,不再需要填写
|
ZHIPUAI_MODEL = "" # 此选项已废弃,不再需要填写
|
||||||
|
|
||||||
|
|
||||||
# # 火山引擎YUNQUE大模型
|
|
||||||
# YUNQUE_SECRET_KEY = ""
|
|
||||||
# YUNQUE_ACCESS_KEY = ""
|
|
||||||
# YUNQUE_MODEL = ""
|
|
||||||
|
|
||||||
|
|
||||||
# Claude API KEY
|
# Claude API KEY
|
||||||
ANTHROPIC_API_KEY = ""
|
ANTHROPIC_API_KEY = ""
|
||||||
|
|
||||||
|
|
||||||
|
# 月之暗面 API KEY
|
||||||
|
MOONSHOT_API_KEY = ""
|
||||||
|
|
||||||
|
|
||||||
|
# 零一万物(Yi Model) API KEY
|
||||||
|
YIMODEL_API_KEY = ""
|
||||||
|
|
||||||
|
|
||||||
# Mathpix 拥有执行PDF的OCR功能,但是需要注册账号
|
# Mathpix 拥有执行PDF的OCR功能,但是需要注册账号
|
||||||
MATHPIX_APPID = ""
|
MATHPIX_APPID = ""
|
||||||
MATHPIX_APPKEY = ""
|
MATHPIX_APPKEY = ""
|
||||||
@@ -266,7 +276,11 @@ PLUGIN_HOT_RELOAD = False
|
|||||||
# 自定义按钮的最大数量限制
|
# 自定义按钮的最大数量限制
|
||||||
NUM_CUSTOM_BASIC_BTN = 4
|
NUM_CUSTOM_BASIC_BTN = 4
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
--------------- 配置关联关系说明 ---------------
|
||||||
|
|
||||||
在线大模型配置关联关系示意图
|
在线大模型配置关联关系示意图
|
||||||
│
|
│
|
||||||
├── "gpt-3.5-turbo" 等openai模型
|
├── "gpt-3.5-turbo" 等openai模型
|
||||||
@@ -290,7 +304,7 @@ NUM_CUSTOM_BASIC_BTN = 4
|
|||||||
│ ├── XFYUN_API_SECRET
|
│ ├── XFYUN_API_SECRET
|
||||||
│ └── XFYUN_API_KEY
|
│ └── XFYUN_API_KEY
|
||||||
│
|
│
|
||||||
├── "claude-1-100k" 等claude模型
|
├── "claude-3-opus-20240229" 等claude模型
|
||||||
│ └── ANTHROPIC_API_KEY
|
│ └── ANTHROPIC_API_KEY
|
||||||
│
|
│
|
||||||
├── "stack-claude"
|
├── "stack-claude"
|
||||||
@@ -305,15 +319,19 @@ NUM_CUSTOM_BASIC_BTN = 4
|
|||||||
├── "glm-4", "glm-3-turbo", "zhipuai" 智谱AI大模型
|
├── "glm-4", "glm-3-turbo", "zhipuai" 智谱AI大模型
|
||||||
│ └── ZHIPUAI_API_KEY
|
│ └── ZHIPUAI_API_KEY
|
||||||
│
|
│
|
||||||
|
├── "yi-34b-chat-0205", "yi-34b-chat-200k" 等零一万物(Yi Model)大模型
|
||||||
|
│ └── YIMODEL_API_KEY
|
||||||
|
│
|
||||||
├── "qwen-turbo" 等通义千问大模型
|
├── "qwen-turbo" 等通义千问大模型
|
||||||
│ └── DASHSCOPE_API_KEY
|
│ └── DASHSCOPE_API_KEY
|
||||||
│
|
│
|
||||||
├── "Gemini"
|
├── "Gemini"
|
||||||
│ └── GEMINI_API_KEY
|
│ └── GEMINI_API_KEY
|
||||||
│
|
│
|
||||||
└── "newbing" Newbing接口不再稳定,不推荐使用
|
└── "one-api-...(max_token=...)" 用一种更方便的方式接入one-api多模型管理界面
|
||||||
├── NEWBING_STYLE
|
├── AVAIL_LLM_MODELS
|
||||||
└── NEWBING_COOKIES
|
├── API_KEY
|
||||||
|
└── API_URL_REDIRECT
|
||||||
|
|
||||||
|
|
||||||
本地大模型示意图
|
本地大模型示意图
|
||||||
|
|||||||
@@ -34,16 +34,16 @@ def get_core_functions():
|
|||||||
# [6] 文本预处理 (可选参数,默认 None,举例:写个函数移除所有的换行符)
|
# [6] 文本预处理 (可选参数,默认 None,举例:写个函数移除所有的换行符)
|
||||||
"PreProcess": None,
|
"PreProcess": None,
|
||||||
},
|
},
|
||||||
|
|
||||||
|
|
||||||
"总结绘制脑图": {
|
"总结绘制脑图": {
|
||||||
# 前缀,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等
|
# 前缀,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等
|
||||||
"Prefix": r"",
|
"Prefix": '''"""\n\n''',
|
||||||
# 后缀,会被加在你的输入之后。例如,配合前缀可以把你的输入内容用引号圈起来
|
# 后缀,会被加在你的输入之后。例如,配合前缀可以把你的输入内容用引号圈起来
|
||||||
"Suffix":
|
"Suffix":
|
||||||
# dedent() 函数用于去除多行字符串的缩进
|
# dedent() 函数用于去除多行字符串的缩进
|
||||||
dedent("\n"+r'''
|
dedent("\n\n"+r'''
|
||||||
==============================
|
"""
|
||||||
|
|
||||||
使用mermaid flowchart对以上文本进行总结,概括上述段落的内容以及内在逻辑关系,例如:
|
使用mermaid flowchart对以上文本进行总结,概括上述段落的内容以及内在逻辑关系,例如:
|
||||||
|
|
||||||
@@ -57,15 +57,15 @@ def get_core_functions():
|
|||||||
C --> |"箭头名2"| F["节点名6"]
|
C --> |"箭头名2"| F["节点名6"]
|
||||||
```
|
```
|
||||||
|
|
||||||
警告:
|
注意:
|
||||||
(1)使用中文
|
(1)使用中文
|
||||||
(2)节点名字使用引号包裹,如["Laptop"]
|
(2)节点名字使用引号包裹,如["Laptop"]
|
||||||
(3)`|` 和 `"`之间不要存在空格
|
(3)`|` 和 `"`之间不要存在空格
|
||||||
(4)根据情况选择flowchart LR(从左到右)或者flowchart TD(从上到下)
|
(4)根据情况选择flowchart LR(从左到右)或者flowchart TD(从上到下)
|
||||||
'''),
|
'''),
|
||||||
},
|
},
|
||||||
|
|
||||||
|
|
||||||
"查找语法错误": {
|
"查找语法错误": {
|
||||||
"Prefix": r"Help me ensure that the grammar and the spelling is correct. "
|
"Prefix": r"Help me ensure that the grammar and the spelling is correct. "
|
||||||
r"Do not try to polish the text, if no mistake is found, tell me that this paragraph is good. "
|
r"Do not try to polish the text, if no mistake is found, tell me that this paragraph is good. "
|
||||||
@@ -85,14 +85,14 @@ def get_core_functions():
|
|||||||
"Suffix": r"",
|
"Suffix": r"",
|
||||||
"PreProcess": clear_line_break, # 预处理:清除换行符
|
"PreProcess": clear_line_break, # 预处理:清除换行符
|
||||||
},
|
},
|
||||||
|
|
||||||
|
|
||||||
"中译英": {
|
"中译英": {
|
||||||
"Prefix": r"Please translate following sentence to English:" + "\n\n",
|
"Prefix": r"Please translate following sentence to English:" + "\n\n",
|
||||||
"Suffix": r"",
|
"Suffix": r"",
|
||||||
},
|
},
|
||||||
|
|
||||||
|
|
||||||
"学术英中互译": {
|
"学术英中互译": {
|
||||||
"Prefix": build_gpt_academic_masked_string_langbased(
|
"Prefix": build_gpt_academic_masked_string_langbased(
|
||||||
text_show_chinese=
|
text_show_chinese=
|
||||||
@@ -112,29 +112,29 @@ def get_core_functions():
|
|||||||
) + "\n\n",
|
) + "\n\n",
|
||||||
"Suffix": r"",
|
"Suffix": r"",
|
||||||
},
|
},
|
||||||
|
|
||||||
|
|
||||||
"英译中": {
|
"英译中": {
|
||||||
"Prefix": r"翻译成地道的中文:" + "\n\n",
|
"Prefix": r"翻译成地道的中文:" + "\n\n",
|
||||||
"Suffix": r"",
|
"Suffix": r"",
|
||||||
"Visible": False,
|
"Visible": False,
|
||||||
},
|
},
|
||||||
|
|
||||||
|
|
||||||
"找图片": {
|
"找图片": {
|
||||||
"Prefix": r"我需要你找一张网络图片。使用Unsplash API(https://source.unsplash.com/960x640/?<英语关键词>)获取图片URL,"
|
"Prefix": r"我需要你找一张网络图片。使用Unsplash API(https://source.unsplash.com/960x640/?<英语关键词>)获取图片URL,"
|
||||||
r"然后请使用Markdown格式封装,并且不要有反斜线,不要用代码块。现在,请按以下描述给我发送图片:" + "\n\n",
|
r"然后请使用Markdown格式封装,并且不要有反斜线,不要用代码块。现在,请按以下描述给我发送图片:" + "\n\n",
|
||||||
"Suffix": r"",
|
"Suffix": r"",
|
||||||
"Visible": False,
|
"Visible": False,
|
||||||
},
|
},
|
||||||
|
|
||||||
|
|
||||||
"解释代码": {
|
"解释代码": {
|
||||||
"Prefix": r"请解释以下代码:" + "\n```\n",
|
"Prefix": r"请解释以下代码:" + "\n```\n",
|
||||||
"Suffix": "\n```\n",
|
"Suffix": "\n```\n",
|
||||||
},
|
},
|
||||||
|
|
||||||
|
|
||||||
"参考文献转Bib": {
|
"参考文献转Bib": {
|
||||||
"Prefix": r"Here are some bibliography items, please transform them into bibtex style."
|
"Prefix": r"Here are some bibliography items, please transform them into bibtex style."
|
||||||
r"Note that, reference styles maybe more than one kind, you should transform each item correctly."
|
r"Note that, reference styles maybe more than one kind, you should transform each item correctly."
|
||||||
|
|||||||
@@ -46,7 +46,7 @@ class PaperFileGroup():
|
|||||||
manifest.append(path + '.polish.tex')
|
manifest.append(path + '.polish.tex')
|
||||||
f.write(res)
|
f.write(res)
|
||||||
return manifest
|
return manifest
|
||||||
|
|
||||||
def zip_result(self):
|
def zip_result(self):
|
||||||
import os, time
|
import os, time
|
||||||
folder = os.path.dirname(self.file_paths[0])
|
folder = os.path.dirname(self.file_paths[0])
|
||||||
@@ -59,7 +59,7 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
|
|
||||||
|
|
||||||
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
|
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
|
||||||
pfg = PaperFileGroup()
|
pfg = PaperFileGroup()
|
||||||
|
|
||||||
for index, fp in enumerate(file_manifest):
|
for index, fp in enumerate(file_manifest):
|
||||||
@@ -73,31 +73,31 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
pfg.file_paths.append(fp)
|
pfg.file_paths.append(fp)
|
||||||
pfg.file_contents.append(clean_tex_content)
|
pfg.file_contents.append(clean_tex_content)
|
||||||
|
|
||||||
# <-------- 拆分过长的latex文件 ---------->
|
# <-------- 拆分过长的latex文件 ---------->
|
||||||
pfg.run_file_split(max_token_limit=1024)
|
pfg.run_file_split(max_token_limit=1024)
|
||||||
n_split = len(pfg.sp_file_contents)
|
n_split = len(pfg.sp_file_contents)
|
||||||
|
|
||||||
|
|
||||||
# <-------- 多线程润色开始 ---------->
|
# <-------- 多线程润色开始 ---------->
|
||||||
if language == 'en':
|
if language == 'en':
|
||||||
if mode == 'polish':
|
if mode == 'polish':
|
||||||
inputs_array = ["Below is a section from an academic paper, polish this section to meet the academic standard, " +
|
inputs_array = [r"Below is a section from an academic paper, polish this section to meet the academic standard, " +
|
||||||
"improve the grammar, clarity and overall readability, do not modify any latex command such as \section, \cite and equations:" +
|
r"improve the grammar, clarity and overall readability, do not modify any latex command such as \section, \cite and equations:" +
|
||||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||||
else:
|
else:
|
||||||
inputs_array = [r"Below is a section from an academic paper, proofread this section." +
|
inputs_array = [r"Below is a section from an academic paper, proofread this section." +
|
||||||
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " +
|
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " +
|
||||||
r"Answer me only with the revised text:" +
|
r"Answer me only with the revised text:" +
|
||||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||||
inputs_show_user_array = [f"Polish {f}" for f in pfg.sp_file_tag]
|
inputs_show_user_array = [f"Polish {f}" for f in pfg.sp_file_tag]
|
||||||
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
|
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
|
||||||
elif language == 'zh':
|
elif language == 'zh':
|
||||||
if mode == 'polish':
|
if mode == 'polish':
|
||||||
inputs_array = [f"以下是一篇学术论文中的一段内容,请将此部分润色以满足学术标准,提高语法、清晰度和整体可读性,不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
|
inputs_array = [r"以下是一篇学术论文中的一段内容,请将此部分润色以满足学术标准,提高语法、清晰度和整体可读性,不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
|
||||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||||
else:
|
else:
|
||||||
inputs_array = [f"以下是一篇学术论文中的一段内容,请对这部分内容进行语法矫正。不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
|
inputs_array = [r"以下是一篇学术论文中的一段内容,请对这部分内容进行语法矫正。不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
|
||||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||||
inputs_show_user_array = [f"润色 {f}" for f in pfg.sp_file_tag]
|
inputs_show_user_array = [f"润色 {f}" for f in pfg.sp_file_tag]
|
||||||
sys_prompt_array=["你是一位专业的中文学术论文作家。" for _ in range(n_split)]
|
sys_prompt_array=["你是一位专业的中文学术论文作家。" for _ in range(n_split)]
|
||||||
|
|
||||||
@@ -113,7 +113,7 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
scroller_max_len = 80
|
scroller_max_len = 80
|
||||||
)
|
)
|
||||||
|
|
||||||
# <-------- 文本碎片重组为完整的tex文件,整理结果为压缩包 ---------->
|
# <-------- 文本碎片重组为完整的tex文件,整理结果为压缩包 ---------->
|
||||||
try:
|
try:
|
||||||
pfg.sp_file_result = []
|
pfg.sp_file_result = []
|
||||||
for i_say, gpt_say in zip(gpt_response_collection[0::2], gpt_response_collection[1::2]):
|
for i_say, gpt_say in zip(gpt_response_collection[0::2], gpt_response_collection[1::2]):
|
||||||
@@ -124,7 +124,7 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
|
|
||||||
# <-------- 整理结果,退出 ---------->
|
# <-------- 整理结果,退出 ---------->
|
||||||
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
|
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
|
||||||
res = write_history_to_file(gpt_response_collection, file_basename=create_report_file_name)
|
res = write_history_to_file(gpt_response_collection, file_basename=create_report_file_name)
|
||||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||||
|
|||||||
@@ -39,7 +39,7 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
import time, os, re
|
import time, os, re
|
||||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
|
|
||||||
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
|
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
|
||||||
pfg = PaperFileGroup()
|
pfg = PaperFileGroup()
|
||||||
|
|
||||||
for index, fp in enumerate(file_manifest):
|
for index, fp in enumerate(file_manifest):
|
||||||
@@ -53,11 +53,11 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
pfg.file_paths.append(fp)
|
pfg.file_paths.append(fp)
|
||||||
pfg.file_contents.append(clean_tex_content)
|
pfg.file_contents.append(clean_tex_content)
|
||||||
|
|
||||||
# <-------- 拆分过长的latex文件 ---------->
|
# <-------- 拆分过长的latex文件 ---------->
|
||||||
pfg.run_file_split(max_token_limit=1024)
|
pfg.run_file_split(max_token_limit=1024)
|
||||||
n_split = len(pfg.sp_file_contents)
|
n_split = len(pfg.sp_file_contents)
|
||||||
|
|
||||||
# <-------- 抽取摘要 ---------->
|
# <-------- 抽取摘要 ---------->
|
||||||
# if language == 'en':
|
# if language == 'en':
|
||||||
# abs_extract_inputs = f"Please write an abstract for this paper"
|
# abs_extract_inputs = f"Please write an abstract for this paper"
|
||||||
|
|
||||||
@@ -70,14 +70,14 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
# sys_prompt="Your job is to collect information from materials。",
|
# sys_prompt="Your job is to collect information from materials。",
|
||||||
# )
|
# )
|
||||||
|
|
||||||
# <-------- 多线程润色开始 ---------->
|
# <-------- 多线程润色开始 ---------->
|
||||||
if language == 'en->zh':
|
if language == 'en->zh':
|
||||||
inputs_array = ["Below is a section from an English academic paper, translate it into Chinese, do not modify any latex command such as \section, \cite and equations:" +
|
inputs_array = ["Below is a section from an English academic paper, translate it into Chinese, do not modify any latex command such as \section, \cite and equations:" +
|
||||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||||
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
||||||
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
||||||
elif language == 'zh->en':
|
elif language == 'zh->en':
|
||||||
inputs_array = [f"Below is a section from a Chinese academic paper, translate it into English, do not modify any latex command such as \section, \cite and equations:" +
|
inputs_array = [f"Below is a section from a Chinese academic paper, translate it into English, do not modify any latex command such as \section, \cite and equations:" +
|
||||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||||
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
||||||
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
||||||
@@ -93,7 +93,7 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
scroller_max_len = 80
|
scroller_max_len = 80
|
||||||
)
|
)
|
||||||
|
|
||||||
# <-------- 整理结果,退出 ---------->
|
# <-------- 整理结果,退出 ---------->
|
||||||
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
|
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
|
||||||
res = write_history_to_file(gpt_response_collection, create_report_file_name)
|
res = write_history_to_file(gpt_response_collection, create_report_file_name)
|
||||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
from toolbox import update_ui, trimmed_format_exc, get_conf, get_log_folder, promote_file_to_downloadzone
|
from toolbox import update_ui, trimmed_format_exc, get_conf, get_log_folder, promote_file_to_downloadzone, check_repeat_upload, map_file_to_sha256
|
||||||
from toolbox import CatchException, report_exception, update_ui_lastest_msg, zip_result, gen_time_str
|
from toolbox import CatchException, report_exception, update_ui_lastest_msg, zip_result, gen_time_str
|
||||||
from functools import partial
|
from functools import partial
|
||||||
import glob, os, requests, time, json, tarfile
|
import glob, os, requests, time, json, tarfile
|
||||||
@@ -40,7 +40,7 @@ def switch_prompt(pfg, mode, more_requirement):
|
|||||||
|
|
||||||
|
|
||||||
def desend_to_extracted_folder_if_exist(project_folder):
|
def desend_to_extracted_folder_if_exist(project_folder):
|
||||||
"""
|
"""
|
||||||
Descend into the extracted folder if it exists, otherwise return the original folder.
|
Descend into the extracted folder if it exists, otherwise return the original folder.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@@ -56,7 +56,7 @@ def desend_to_extracted_folder_if_exist(project_folder):
|
|||||||
|
|
||||||
|
|
||||||
def move_project(project_folder, arxiv_id=None):
|
def move_project(project_folder, arxiv_id=None):
|
||||||
"""
|
"""
|
||||||
Create a new work folder and copy the project folder to it.
|
Create a new work folder and copy the project folder to it.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@@ -112,9 +112,9 @@ def arxiv_download(chatbot, history, txt, allow_cache=True):
|
|||||||
if ('.' in txt) and ('/' not in txt) and is_float(txt[:10]): # is arxiv ID
|
if ('.' in txt) and ('/' not in txt) and is_float(txt[:10]): # is arxiv ID
|
||||||
txt = 'https://arxiv.org/abs/' + txt[:10]
|
txt = 'https://arxiv.org/abs/' + txt[:10]
|
||||||
|
|
||||||
if not txt.startswith('https://arxiv.org'):
|
if not txt.startswith('https://arxiv.org'):
|
||||||
return txt, None # 是本地文件,跳过下载
|
return txt, None # 是本地文件,跳过下载
|
||||||
|
|
||||||
# <-------------- inspect format ------------->
|
# <-------------- inspect format ------------->
|
||||||
chatbot.append([f"检测到arxiv文档连接", '尝试下载 ...'])
|
chatbot.append([f"检测到arxiv文档连接", '尝试下载 ...'])
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
@@ -214,7 +214,7 @@ def pdf2tex_project(pdf_file_path):
|
|||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序1 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序1 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||||
|
|
||||||
|
|
||||||
@CatchException
|
@CatchException
|
||||||
@@ -291,7 +291,7 @@ def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, histo
|
|||||||
return success
|
return success
|
||||||
|
|
||||||
|
|
||||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序2 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序2 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||||
|
|
||||||
@CatchException
|
@CatchException
|
||||||
def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
@@ -326,7 +326,7 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
txt, arxiv_id = yield from arxiv_download(chatbot, history, txt, allow_cache)
|
txt, arxiv_id = yield from arxiv_download(chatbot, history, txt, allow_cache)
|
||||||
except tarfile.ReadError as e:
|
except tarfile.ReadError as e:
|
||||||
yield from update_ui_lastest_msg(
|
yield from update_ui_lastest_msg(
|
||||||
"无法自动下载该论文的Latex源码,请前往arxiv打开此论文下载页面,点other Formats,然后download source手动下载latex源码包。接下来调用本地Latex翻译插件即可。",
|
"无法自动下载该论文的Latex源码,请前往arxiv打开此论文下载页面,点other Formats,然后download source手动下载latex源码包。接下来调用本地Latex翻译插件即可。",
|
||||||
chatbot=chatbot, history=history)
|
chatbot=chatbot, history=history)
|
||||||
return
|
return
|
||||||
|
|
||||||
@@ -385,7 +385,7 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
return success
|
return success
|
||||||
|
|
||||||
|
|
||||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- 插件主程序3 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- 插件主程序3 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||||
|
|
||||||
@CatchException
|
@CatchException
|
||||||
def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||||
@@ -438,47 +438,101 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
|
|||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
return
|
return
|
||||||
|
|
||||||
# <-------------- convert pdf into tex ------------->
|
hash_tag = map_file_to_sha256(file_manifest[0])
|
||||||
project_folder = pdf2tex_project(file_manifest[0])
|
|
||||||
|
|
||||||
# Translate English Latex to Chinese Latex, and compile it
|
# <-------------- check repeated pdf ------------->
|
||||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
chatbot.append([f"检查PDF是否被重复上传", "正在检查..."])
|
||||||
if len(file_manifest) == 0:
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
|
repeat, project_folder = check_repeat_upload(file_manifest[0], hash_tag)
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
# <-------------- if is a zip/tar file ------------->
|
except_flag = False
|
||||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
|
||||||
|
|
||||||
# <-------------- move latex project away from temp folder ------------->
|
if repeat:
|
||||||
project_folder = move_project(project_folder)
|
yield from update_ui_lastest_msg(f"发现重复上传,请查收结果(压缩包)...", chatbot=chatbot, history=history)
|
||||||
|
|
||||||
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
try:
|
||||||
if not os.path.exists(project_folder + '/merge_translate_zh.tex'):
|
trans_html_file = [f for f in glob.glob(f'{project_folder}/**/*.trans.html', recursive=True)][0]
|
||||||
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
promote_file_to_downloadzone(trans_html_file, rename_file=None, chatbot=chatbot)
|
||||||
chatbot, history, system_prompt, mode='translate_zh',
|
|
||||||
switch_prompt=_switch_prompt_)
|
|
||||||
|
|
||||||
# <-------------- compile PDF ------------->
|
translate_pdf = [f for f in glob.glob(f'{project_folder}/**/merge_translate_zh.pdf', recursive=True)][0]
|
||||||
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
|
promote_file_to_downloadzone(translate_pdf, rename_file=None, chatbot=chatbot)
|
||||||
main_file_modified='merge_translate_zh', mode='translate_zh',
|
|
||||||
work_folder_original=project_folder, work_folder_modified=project_folder,
|
|
||||||
work_folder=project_folder)
|
|
||||||
|
|
||||||
# <-------------- zip PDF ------------->
|
comparison_pdf = [f for f in glob.glob(f'{project_folder}/**/comparison.pdf', recursive=True)][0]
|
||||||
zip_res = zip_result(project_folder)
|
promote_file_to_downloadzone(comparison_pdf, rename_file=None, chatbot=chatbot)
|
||||||
if success:
|
|
||||||
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history);
|
|
||||||
time.sleep(1) # 刷新界面
|
|
||||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
|
||||||
else:
|
|
||||||
chatbot.append((f"失败了",
|
|
||||||
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体(见Github wiki) ...'))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history);
|
|
||||||
time.sleep(1) # 刷新界面
|
|
||||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
|
||||||
|
|
||||||
# <-------------- we are done ------------->
|
zip_res = zip_result(project_folder)
|
||||||
return success
|
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||||
|
|
||||||
|
return True
|
||||||
|
|
||||||
|
except:
|
||||||
|
report_exception(chatbot, history, b=f"发现重复上传,但是无法找到相关文件")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
|
||||||
|
chatbot.append([f"没有相关文件", '尝试重新翻译PDF...'])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
|
||||||
|
except_flag = True
|
||||||
|
|
||||||
|
|
||||||
|
elif not repeat or except_flag:
|
||||||
|
yield from update_ui_lastest_msg(f"未发现重复上传", chatbot=chatbot, history=history)
|
||||||
|
|
||||||
|
# <-------------- convert pdf into tex ------------->
|
||||||
|
chatbot.append([f"解析项目: {txt}", "正在将PDF转换为tex项目,请耐心等待..."])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
project_folder = pdf2tex_project(file_manifest[0])
|
||||||
|
if project_folder is None:
|
||||||
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"PDF转换为tex项目失败")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
return False
|
||||||
|
|
||||||
|
# <-------------- translate latex file into Chinese ------------->
|
||||||
|
yield from update_ui_lastest_msg("正在tex项目将翻译为中文...", chatbot=chatbot, history=history)
|
||||||
|
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||||
|
if len(file_manifest) == 0:
|
||||||
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# <-------------- if is a zip/tar file ------------->
|
||||||
|
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
||||||
|
|
||||||
|
# <-------------- move latex project away from temp folder ------------->
|
||||||
|
project_folder = move_project(project_folder)
|
||||||
|
|
||||||
|
# <-------------- set a hash tag for repeat-checking ------------->
|
||||||
|
with open(pj(project_folder, hash_tag + '.tag'), 'w') as f:
|
||||||
|
f.write(hash_tag)
|
||||||
|
f.close()
|
||||||
|
|
||||||
|
|
||||||
|
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
||||||
|
if not os.path.exists(project_folder + '/merge_translate_zh.tex'):
|
||||||
|
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
||||||
|
chatbot, history, system_prompt, mode='translate_zh',
|
||||||
|
switch_prompt=_switch_prompt_)
|
||||||
|
|
||||||
|
# <-------------- compile PDF ------------->
|
||||||
|
yield from update_ui_lastest_msg("正在将翻译好的项目tex项目编译为PDF...", chatbot=chatbot, history=history)
|
||||||
|
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
|
||||||
|
main_file_modified='merge_translate_zh', mode='translate_zh',
|
||||||
|
work_folder_original=project_folder, work_folder_modified=project_folder,
|
||||||
|
work_folder=project_folder)
|
||||||
|
|
||||||
|
# <-------------- zip PDF ------------->
|
||||||
|
zip_res = zip_result(project_folder)
|
||||||
|
if success:
|
||||||
|
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history);
|
||||||
|
time.sleep(1) # 刷新界面
|
||||||
|
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||||
|
else:
|
||||||
|
chatbot.append((f"失败了",
|
||||||
|
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体(见Github wiki) ...'))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history);
|
||||||
|
time.sleep(1) # 刷新界面
|
||||||
|
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||||
|
|
||||||
|
# <-------------- we are done ------------->
|
||||||
|
return success
|
||||||
|
|||||||
@@ -72,7 +72,7 @@ class PluginMultiprocessManager:
|
|||||||
if file_type.lower() in ['png', 'jpg']:
|
if file_type.lower() in ['png', 'jpg']:
|
||||||
image_path = os.path.abspath(fp)
|
image_path = os.path.abspath(fp)
|
||||||
self.chatbot.append([
|
self.chatbot.append([
|
||||||
'检测到新生图像:',
|
'检测到新生图像:',
|
||||||
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
|
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
|
||||||
])
|
])
|
||||||
yield from update_ui(chatbot=self.chatbot, history=self.history)
|
yield from update_ui(chatbot=self.chatbot, history=self.history)
|
||||||
@@ -114,21 +114,21 @@ class PluginMultiprocessManager:
|
|||||||
self.cnt = 1
|
self.cnt = 1
|
||||||
self.parent_conn = self.launch_subprocess_with_pipe() # ⭐⭐⭐
|
self.parent_conn = self.launch_subprocess_with_pipe() # ⭐⭐⭐
|
||||||
repeated, cmd_to_autogen = self.send_command(txt)
|
repeated, cmd_to_autogen = self.send_command(txt)
|
||||||
if txt == 'exit':
|
if txt == 'exit':
|
||||||
self.chatbot.append([f"结束", "结束信号已明确,终止AutoGen程序。"])
|
self.chatbot.append([f"结束", "结束信号已明确,终止AutoGen程序。"])
|
||||||
yield from update_ui(chatbot=self.chatbot, history=self.history)
|
yield from update_ui(chatbot=self.chatbot, history=self.history)
|
||||||
self.terminate()
|
self.terminate()
|
||||||
return "terminate"
|
return "terminate"
|
||||||
|
|
||||||
# patience = 10
|
# patience = 10
|
||||||
|
|
||||||
while True:
|
while True:
|
||||||
time.sleep(0.5)
|
time.sleep(0.5)
|
||||||
if not self.alive:
|
if not self.alive:
|
||||||
# the heartbeat watchdog might have it killed
|
# the heartbeat watchdog might have it killed
|
||||||
self.terminate()
|
self.terminate()
|
||||||
return "terminate"
|
return "terminate"
|
||||||
if self.parent_conn.poll():
|
if self.parent_conn.poll():
|
||||||
self.feed_heartbeat_watchdog()
|
self.feed_heartbeat_watchdog()
|
||||||
if "[GPT-Academic] 等待中" in self.chatbot[-1][-1]:
|
if "[GPT-Academic] 等待中" in self.chatbot[-1][-1]:
|
||||||
self.chatbot.pop(-1) # remove the last line
|
self.chatbot.pop(-1) # remove the last line
|
||||||
@@ -152,8 +152,8 @@ class PluginMultiprocessManager:
|
|||||||
yield from update_ui(chatbot=self.chatbot, history=self.history)
|
yield from update_ui(chatbot=self.chatbot, history=self.history)
|
||||||
if msg.cmd == "interact":
|
if msg.cmd == "interact":
|
||||||
yield from self.overwatch_workdir_file_change()
|
yield from self.overwatch_workdir_file_change()
|
||||||
self.chatbot.append([f"程序抵达用户反馈节点.", msg.content +
|
self.chatbot.append([f"程序抵达用户反馈节点.", msg.content +
|
||||||
"\n\n等待您的进一步指令." +
|
"\n\n等待您的进一步指令." +
|
||||||
"\n\n(1) 一般情况下您不需要说什么, 清空输入区, 然后直接点击“提交”以继续. " +
|
"\n\n(1) 一般情况下您不需要说什么, 清空输入区, 然后直接点击“提交”以继续. " +
|
||||||
"\n\n(2) 如果您需要补充些什么, 输入要反馈的内容, 直接点击“提交”以继续. " +
|
"\n\n(2) 如果您需要补充些什么, 输入要反馈的内容, 直接点击“提交”以继续. " +
|
||||||
"\n\n(3) 如果您想终止程序, 输入exit, 直接点击“提交”以终止AutoGen并解锁. "
|
"\n\n(3) 如果您想终止程序, 输入exit, 直接点击“提交”以终止AutoGen并解锁. "
|
||||||
|
|||||||
@@ -8,7 +8,7 @@ class WatchDog():
|
|||||||
self.interval = interval
|
self.interval = interval
|
||||||
self.msg = msg
|
self.msg = msg
|
||||||
self.kill_dog = False
|
self.kill_dog = False
|
||||||
|
|
||||||
def watch(self):
|
def watch(self):
|
||||||
while True:
|
while True:
|
||||||
if self.kill_dog: break
|
if self.kill_dog: break
|
||||||
|
|||||||
@@ -46,7 +46,7 @@ def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成"))
|
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成"))
|
||||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||||
args = plugin_kwargs.get("advanced_arg", None)
|
args = plugin_kwargs.get("advanced_arg", None)
|
||||||
if args is None:
|
if args is None:
|
||||||
chatbot.append(("没给定指令", "退出"))
|
chatbot.append(("没给定指令", "退出"))
|
||||||
yield from update_ui(chatbot=chatbot, history=history); return
|
yield from update_ui(chatbot=chatbot, history=history); return
|
||||||
else:
|
else:
|
||||||
@@ -69,7 +69,7 @@ def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
sys_prompt_array=[arguments.system_prompt for _ in (batch)],
|
sys_prompt_array=[arguments.system_prompt for _ in (batch)],
|
||||||
max_workers=10 # OpenAI所允许的最大并行过载
|
max_workers=10 # OpenAI所允许的最大并行过载
|
||||||
)
|
)
|
||||||
|
|
||||||
with open(txt+'.generated.json', 'a+', encoding='utf8') as f:
|
with open(txt+'.generated.json', 'a+', encoding='utf8') as f:
|
||||||
for b, r in zip(batch, res[1::2]):
|
for b, r in zip(batch, res[1::2]):
|
||||||
f.write(json.dumps({"content":b, "summary":r}, ensure_ascii=False)+'\n')
|
f.write(json.dumps({"content":b, "summary":r}, ensure_ascii=False)+'\n')
|
||||||
@@ -95,12 +95,12 @@ def 启动微调(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
|
|||||||
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成"))
|
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成"))
|
||||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||||
args = plugin_kwargs.get("advanced_arg", None)
|
args = plugin_kwargs.get("advanced_arg", None)
|
||||||
if args is None:
|
if args is None:
|
||||||
chatbot.append(("没给定指令", "退出"))
|
chatbot.append(("没给定指令", "退出"))
|
||||||
yield from update_ui(chatbot=chatbot, history=history); return
|
yield from update_ui(chatbot=chatbot, history=history); return
|
||||||
else:
|
else:
|
||||||
arguments = string_to_options(arguments=args)
|
arguments = string_to_options(arguments=args)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
pre_seq_len = arguments.pre_seq_len # 128
|
pre_seq_len = arguments.pre_seq_len # 128
|
||||||
|
|||||||
@@ -135,13 +135,25 @@ def request_gpt_model_in_new_thread_with_ui_alive(
|
|||||||
yield from update_ui(chatbot=chatbot, history=[]) # 如果最后成功了,则删除报错信息
|
yield from update_ui(chatbot=chatbot, history=[]) # 如果最后成功了,则删除报错信息
|
||||||
return final_result
|
return final_result
|
||||||
|
|
||||||
def can_multi_process(llm):
|
def can_multi_process(llm) -> bool:
|
||||||
if llm.startswith('gpt-'): return True
|
from request_llms.bridge_all import model_info
|
||||||
if llm.startswith('api2d-'): return True
|
|
||||||
if llm.startswith('azure-'): return True
|
def default_condition(llm) -> bool:
|
||||||
if llm.startswith('spark'): return True
|
# legacy condition
|
||||||
if llm.startswith('zhipuai') or llm.startswith('glm-'): return True
|
if llm.startswith('gpt-'): return True
|
||||||
return False
|
if llm.startswith('api2d-'): return True
|
||||||
|
if llm.startswith('azure-'): return True
|
||||||
|
if llm.startswith('spark'): return True
|
||||||
|
if llm.startswith('zhipuai') or llm.startswith('glm-'): return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
if llm in model_info:
|
||||||
|
if 'can_multi_thread' in model_info[llm]:
|
||||||
|
return model_info[llm]['can_multi_thread']
|
||||||
|
else:
|
||||||
|
return default_condition(llm)
|
||||||
|
else:
|
||||||
|
return default_condition(llm)
|
||||||
|
|
||||||
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||||
inputs_array, inputs_show_user_array, llm_kwargs,
|
inputs_array, inputs_show_user_array, llm_kwargs,
|
||||||
|
|||||||
@@ -10,7 +10,7 @@ class FileNode:
|
|||||||
self.parenting_ship = []
|
self.parenting_ship = []
|
||||||
self.comment = ""
|
self.comment = ""
|
||||||
self.comment_maxlen_show = 50
|
self.comment_maxlen_show = 50
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def add_linebreaks_at_spaces(string, interval=10):
|
def add_linebreaks_at_spaces(string, interval=10):
|
||||||
return '\n'.join(string[i:i+interval] for i in range(0, len(string), interval))
|
return '\n'.join(string[i:i+interval] for i in range(0, len(string), interval))
|
||||||
|
|||||||
@@ -8,7 +8,7 @@ import random
|
|||||||
|
|
||||||
class MiniGame_ASCII_Art(GptAcademicGameBaseState):
|
class MiniGame_ASCII_Art(GptAcademicGameBaseState):
|
||||||
def step(self, prompt, chatbot, history):
|
def step(self, prompt, chatbot, history):
|
||||||
if self.step_cnt == 0:
|
if self.step_cnt == 0:
|
||||||
chatbot.append(["我画你猜(动物)", "请稍等..."])
|
chatbot.append(["我画你猜(动物)", "请稍等..."])
|
||||||
else:
|
else:
|
||||||
if prompt.strip() == 'exit':
|
if prompt.strip() == 'exit':
|
||||||
|
|||||||
@@ -88,8 +88,8 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
|
|||||||
self.story = []
|
self.story = []
|
||||||
chatbot.append(["互动写故事", f"这次的故事开头是:{self.headstart}"])
|
chatbot.append(["互动写故事", f"这次的故事开头是:{self.headstart}"])
|
||||||
self.sys_prompt_ = '你是一个想象力丰富的杰出作家。正在与你的朋友互动,一起写故事,因此你每次写的故事段落应少于300字(结局除外)。'
|
self.sys_prompt_ = '你是一个想象力丰富的杰出作家。正在与你的朋友互动,一起写故事,因此你每次写的故事段落应少于300字(结局除外)。'
|
||||||
|
|
||||||
|
|
||||||
def generate_story_image(self, story_paragraph):
|
def generate_story_image(self, story_paragraph):
|
||||||
try:
|
try:
|
||||||
from crazy_functions.图片生成 import gen_image
|
from crazy_functions.图片生成 import gen_image
|
||||||
@@ -98,13 +98,13 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
|
|||||||
return f'<br/><div align="center"><img src="file={image_path}"></div>'
|
return f'<br/><div align="center"><img src="file={image_path}"></div>'
|
||||||
except:
|
except:
|
||||||
return ''
|
return ''
|
||||||
|
|
||||||
def step(self, prompt, chatbot, history):
|
def step(self, prompt, chatbot, history):
|
||||||
|
|
||||||
"""
|
"""
|
||||||
首先,处理游戏初始化等特殊情况
|
首先,处理游戏初始化等特殊情况
|
||||||
"""
|
"""
|
||||||
if self.step_cnt == 0:
|
if self.step_cnt == 0:
|
||||||
self.begin_game_step_0(prompt, chatbot, history)
|
self.begin_game_step_0(prompt, chatbot, history)
|
||||||
self.lock_plugin(chatbot)
|
self.lock_plugin(chatbot)
|
||||||
self.cur_task = 'head_start'
|
self.cur_task = 'head_start'
|
||||||
@@ -132,7 +132,7 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
|
|||||||
inputs_ = prompts_hs.format(headstart=self.headstart)
|
inputs_ = prompts_hs.format(headstart=self.headstart)
|
||||||
history_ = []
|
history_ = []
|
||||||
story_paragraph = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
story_paragraph = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs_, '故事开头', self.llm_kwargs,
|
inputs_, '故事开头', self.llm_kwargs,
|
||||||
chatbot, history_, self.sys_prompt_
|
chatbot, history_, self.sys_prompt_
|
||||||
)
|
)
|
||||||
self.story.append(story_paragraph)
|
self.story.append(story_paragraph)
|
||||||
@@ -147,7 +147,7 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
|
|||||||
inputs_ = prompts_interact.format(previously_on_story=previously_on_story)
|
inputs_ = prompts_interact.format(previously_on_story=previously_on_story)
|
||||||
history_ = []
|
history_ = []
|
||||||
self.next_choices = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
self.next_choices = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs_, '请在以下几种故事走向中,选择一种(当然,您也可以选择给出其他故事走向):', self.llm_kwargs,
|
inputs_, '请在以下几种故事走向中,选择一种(当然,您也可以选择给出其他故事走向):', self.llm_kwargs,
|
||||||
chatbot,
|
chatbot,
|
||||||
history_,
|
history_,
|
||||||
self.sys_prompt_
|
self.sys_prompt_
|
||||||
@@ -166,7 +166,7 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
|
|||||||
inputs_ = prompts_resume.format(previously_on_story=previously_on_story, choice=self.next_choices, user_choice=prompt)
|
inputs_ = prompts_resume.format(previously_on_story=previously_on_story, choice=self.next_choices, user_choice=prompt)
|
||||||
history_ = []
|
history_ = []
|
||||||
story_paragraph = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
story_paragraph = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs_, f'下一段故事(您的选择是:{prompt})。', self.llm_kwargs,
|
inputs_, f'下一段故事(您的选择是:{prompt})。', self.llm_kwargs,
|
||||||
chatbot, history_, self.sys_prompt_
|
chatbot, history_, self.sys_prompt_
|
||||||
)
|
)
|
||||||
self.story.append(story_paragraph)
|
self.story.append(story_paragraph)
|
||||||
@@ -181,10 +181,10 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
|
|||||||
inputs_ = prompts_interact.format(previously_on_story=previously_on_story)
|
inputs_ = prompts_interact.format(previously_on_story=previously_on_story)
|
||||||
history_ = []
|
history_ = []
|
||||||
self.next_choices = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
self.next_choices = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs_,
|
inputs_,
|
||||||
'请在以下几种故事走向中,选择一种。当然,您也可以给出您心中的其他故事走向。另外,如果您希望剧情立即收尾,请输入剧情走向,并以“剧情收尾”四个字提示程序。', self.llm_kwargs,
|
'请在以下几种故事走向中,选择一种。当然,您也可以给出您心中的其他故事走向。另外,如果您希望剧情立即收尾,请输入剧情走向,并以“剧情收尾”四个字提示程序。', self.llm_kwargs,
|
||||||
chatbot,
|
chatbot,
|
||||||
history_,
|
history_,
|
||||||
self.sys_prompt_
|
self.sys_prompt_
|
||||||
)
|
)
|
||||||
self.cur_task = 'user_choice'
|
self.cur_task = 'user_choice'
|
||||||
@@ -200,7 +200,7 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
|
|||||||
inputs_ = prompts_terminate.format(previously_on_story=previously_on_story, user_choice=prompt)
|
inputs_ = prompts_terminate.format(previously_on_story=previously_on_story, user_choice=prompt)
|
||||||
history_ = []
|
history_ = []
|
||||||
story_paragraph = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
story_paragraph = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs_, f'故事收尾(您的选择是:{prompt})。', self.llm_kwargs,
|
inputs_, f'故事收尾(您的选择是:{prompt})。', self.llm_kwargs,
|
||||||
chatbot, history_, self.sys_prompt_
|
chatbot, history_, self.sys_prompt_
|
||||||
)
|
)
|
||||||
# # 配图
|
# # 配图
|
||||||
|
|||||||
@@ -5,7 +5,7 @@ def get_code_block(reply):
|
|||||||
import re
|
import re
|
||||||
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
|
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
|
||||||
matches = re.findall(pattern, reply) # find all code blocks in text
|
matches = re.findall(pattern, reply) # find all code blocks in text
|
||||||
if len(matches) == 1:
|
if len(matches) == 1:
|
||||||
return "```" + matches[0] + "```" # code block
|
return "```" + matches[0] + "```" # code block
|
||||||
raise RuntimeError("GPT is not generating proper code.")
|
raise RuntimeError("GPT is not generating proper code.")
|
||||||
|
|
||||||
@@ -13,10 +13,10 @@ def is_same_thing(a, b, llm_kwargs):
|
|||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
class IsSameThing(BaseModel):
|
class IsSameThing(BaseModel):
|
||||||
is_same_thing: bool = Field(description="determine whether two objects are same thing.", default=False)
|
is_same_thing: bool = Field(description="determine whether two objects are same thing.", default=False)
|
||||||
|
|
||||||
def run_gpt_fn(inputs, sys_prompt, history=[]):
|
def run_gpt_fn(inputs, sys_prompt, history=[]):
|
||||||
return predict_no_ui_long_connection(
|
return predict_no_ui_long_connection(
|
||||||
inputs=inputs, llm_kwargs=llm_kwargs,
|
inputs=inputs, llm_kwargs=llm_kwargs,
|
||||||
history=history, sys_prompt=sys_prompt, observe_window=[]
|
history=history, sys_prompt=sys_prompt, observe_window=[]
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -24,7 +24,7 @@ def is_same_thing(a, b, llm_kwargs):
|
|||||||
inputs_01 = "Identity whether the user input and the target is the same thing: \n target object: {a} \n user input object: {b} \n\n\n".format(a=a, b=b)
|
inputs_01 = "Identity whether the user input and the target is the same thing: \n target object: {a} \n user input object: {b} \n\n\n".format(a=a, b=b)
|
||||||
inputs_01 += "\n\n\n Note that the user may describe the target object with a different language, e.g. cat and 猫 are the same thing."
|
inputs_01 += "\n\n\n Note that the user may describe the target object with a different language, e.g. cat and 猫 are the same thing."
|
||||||
analyze_res_cot_01 = run_gpt_fn(inputs_01, "", [])
|
analyze_res_cot_01 = run_gpt_fn(inputs_01, "", [])
|
||||||
|
|
||||||
inputs_02 = inputs_01 + gpt_json_io.format_instructions
|
inputs_02 = inputs_01 + gpt_json_io.format_instructions
|
||||||
analyze_res = run_gpt_fn(inputs_02, "", [inputs_01, analyze_res_cot_01])
|
analyze_res = run_gpt_fn(inputs_02, "", [inputs_01, analyze_res_cot_01])
|
||||||
|
|
||||||
|
|||||||
@@ -41,11 +41,11 @@ def is_function_successfully_generated(fn_path, class_name, return_dict):
|
|||||||
# Now you can create an instance of the class
|
# Now you can create an instance of the class
|
||||||
instance = some_class()
|
instance = some_class()
|
||||||
return_dict['success'] = True
|
return_dict['success'] = True
|
||||||
return
|
return
|
||||||
except:
|
except:
|
||||||
return_dict['traceback'] = trimmed_format_exc()
|
return_dict['traceback'] = trimmed_format_exc()
|
||||||
return
|
return
|
||||||
|
|
||||||
def subprocess_worker(code, file_path, return_dict):
|
def subprocess_worker(code, file_path, return_dict):
|
||||||
return_dict['result'] = None
|
return_dict['result'] = None
|
||||||
return_dict['success'] = False
|
return_dict['success'] = False
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
import platform
|
import platform
|
||||||
import pickle
|
import pickle
|
||||||
import multiprocessing
|
import multiprocessing
|
||||||
|
|
||||||
|
|||||||
@@ -89,7 +89,7 @@ class GptJsonIO():
|
|||||||
error + "\n\n" + \
|
error + "\n\n" + \
|
||||||
"Now, fix this json string. \n\n"
|
"Now, fix this json string. \n\n"
|
||||||
return prompt
|
return prompt
|
||||||
|
|
||||||
def generate_output_auto_repair(self, response, gpt_gen_fn):
|
def generate_output_auto_repair(self, response, gpt_gen_fn):
|
||||||
"""
|
"""
|
||||||
response: string containing canidate json
|
response: string containing canidate json
|
||||||
|
|||||||
@@ -90,16 +90,16 @@ class LatexPaperSplit():
|
|||||||
"版权归原文作者所有。翻译内容可靠性无保障,请仔细鉴别并以原文为准。" + \
|
"版权归原文作者所有。翻译内容可靠性无保障,请仔细鉴别并以原文为准。" + \
|
||||||
"项目Github地址 \\url{https://github.com/binary-husky/gpt_academic/}。"
|
"项目Github地址 \\url{https://github.com/binary-husky/gpt_academic/}。"
|
||||||
# 请您不要删除或修改这行警告,除非您是论文的原作者(如果您是论文原作者,欢迎加REAME中的QQ联系开发者)
|
# 请您不要删除或修改这行警告,除非您是论文的原作者(如果您是论文原作者,欢迎加REAME中的QQ联系开发者)
|
||||||
self.msg_declare = "为了防止大语言模型的意外谬误产生扩散影响,禁止移除或修改此警告。}}\\\\"
|
self.msg_declare = "为了防止大语言模型的意外谬误产生扩散影响,禁止移除或修改此警告。}}\\\\"
|
||||||
self.title = "unknown"
|
self.title = "unknown"
|
||||||
self.abstract = "unknown"
|
self.abstract = "unknown"
|
||||||
|
|
||||||
def read_title_and_abstract(self, txt):
|
def read_title_and_abstract(self, txt):
|
||||||
try:
|
try:
|
||||||
title, abstract = find_title_and_abs(txt)
|
title, abstract = find_title_and_abs(txt)
|
||||||
if title is not None:
|
if title is not None:
|
||||||
self.title = title.replace('\n', ' ').replace('\\\\', ' ').replace(' ', '').replace(' ', '')
|
self.title = title.replace('\n', ' ').replace('\\\\', ' ').replace(' ', '').replace(' ', '')
|
||||||
if abstract is not None:
|
if abstract is not None:
|
||||||
self.abstract = abstract.replace('\n', ' ').replace('\\\\', ' ').replace(' ', '').replace(' ', '')
|
self.abstract = abstract.replace('\n', ' ').replace('\\\\', ' ').replace(' ', '').replace(' ', '')
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
@@ -111,7 +111,7 @@ class LatexPaperSplit():
|
|||||||
result_string = ""
|
result_string = ""
|
||||||
node_cnt = 0
|
node_cnt = 0
|
||||||
line_cnt = 0
|
line_cnt = 0
|
||||||
|
|
||||||
for node in self.nodes:
|
for node in self.nodes:
|
||||||
if node.preserve:
|
if node.preserve:
|
||||||
line_cnt += node.string.count('\n')
|
line_cnt += node.string.count('\n')
|
||||||
@@ -144,7 +144,7 @@ class LatexPaperSplit():
|
|||||||
return result_string
|
return result_string
|
||||||
|
|
||||||
|
|
||||||
def split(self, txt, project_folder, opts):
|
def split(self, txt, project_folder, opts):
|
||||||
"""
|
"""
|
||||||
break down latex file to a linked list,
|
break down latex file to a linked list,
|
||||||
each node use a preserve flag to indicate whether it should
|
each node use a preserve flag to indicate whether it should
|
||||||
@@ -155,7 +155,7 @@ class LatexPaperSplit():
|
|||||||
manager = multiprocessing.Manager()
|
manager = multiprocessing.Manager()
|
||||||
return_dict = manager.dict()
|
return_dict = manager.dict()
|
||||||
p = multiprocessing.Process(
|
p = multiprocessing.Process(
|
||||||
target=split_subprocess,
|
target=split_subprocess,
|
||||||
args=(txt, project_folder, return_dict, opts))
|
args=(txt, project_folder, return_dict, opts))
|
||||||
p.start()
|
p.start()
|
||||||
p.join()
|
p.join()
|
||||||
@@ -217,13 +217,13 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
|
|||||||
from ..crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from ..crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
from .latex_actions import LatexPaperFileGroup, LatexPaperSplit
|
from .latex_actions import LatexPaperFileGroup, LatexPaperSplit
|
||||||
|
|
||||||
# <-------- 寻找主tex文件 ---------->
|
# <-------- 寻找主tex文件 ---------->
|
||||||
maintex = find_main_tex_file(file_manifest, mode)
|
maintex = find_main_tex_file(file_manifest, mode)
|
||||||
chatbot.append((f"定位主Latex文件", f'[Local Message] 分析结果:该项目的Latex主文件是{maintex}, 如果分析错误, 请立即终止程序, 删除或修改歧义文件, 然后重试。主程序即将开始, 请稍候。'))
|
chatbot.append((f"定位主Latex文件", f'[Local Message] 分析结果:该项目的Latex主文件是{maintex}, 如果分析错误, 请立即终止程序, 删除或修改歧义文件, 然后重试。主程序即将开始, 请稍候。'))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
time.sleep(3)
|
time.sleep(3)
|
||||||
|
|
||||||
# <-------- 读取Latex文件, 将多文件tex工程融合为一个巨型tex ---------->
|
# <-------- 读取Latex文件, 将多文件tex工程融合为一个巨型tex ---------->
|
||||||
main_tex_basename = os.path.basename(maintex)
|
main_tex_basename = os.path.basename(maintex)
|
||||||
assert main_tex_basename.endswith('.tex')
|
assert main_tex_basename.endswith('.tex')
|
||||||
main_tex_basename_bare = main_tex_basename[:-4]
|
main_tex_basename_bare = main_tex_basename[:-4]
|
||||||
@@ -240,13 +240,13 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
|
|||||||
with open(project_folder + '/merge.tex', 'w', encoding='utf-8', errors='replace') as f:
|
with open(project_folder + '/merge.tex', 'w', encoding='utf-8', errors='replace') as f:
|
||||||
f.write(merged_content)
|
f.write(merged_content)
|
||||||
|
|
||||||
# <-------- 精细切分latex文件 ---------->
|
# <-------- 精细切分latex文件 ---------->
|
||||||
chatbot.append((f"Latex文件融合完成", f'[Local Message] 正在精细切分latex文件,这需要一段时间计算,文档越长耗时越长,请耐心等待。'))
|
chatbot.append((f"Latex文件融合完成", f'[Local Message] 正在精细切分latex文件,这需要一段时间计算,文档越长耗时越长,请耐心等待。'))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
lps = LatexPaperSplit()
|
lps = LatexPaperSplit()
|
||||||
lps.read_title_and_abstract(merged_content)
|
lps.read_title_and_abstract(merged_content)
|
||||||
res = lps.split(merged_content, project_folder, opts) # 消耗时间的函数
|
res = lps.split(merged_content, project_folder, opts) # 消耗时间的函数
|
||||||
# <-------- 拆分过长的latex片段 ---------->
|
# <-------- 拆分过长的latex片段 ---------->
|
||||||
pfg = LatexPaperFileGroup()
|
pfg = LatexPaperFileGroup()
|
||||||
for index, r in enumerate(res):
|
for index, r in enumerate(res):
|
||||||
pfg.file_paths.append('segment-' + str(index))
|
pfg.file_paths.append('segment-' + str(index))
|
||||||
@@ -255,17 +255,17 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
|
|||||||
pfg.run_file_split(max_token_limit=1024)
|
pfg.run_file_split(max_token_limit=1024)
|
||||||
n_split = len(pfg.sp_file_contents)
|
n_split = len(pfg.sp_file_contents)
|
||||||
|
|
||||||
# <-------- 根据需要切换prompt ---------->
|
# <-------- 根据需要切换prompt ---------->
|
||||||
inputs_array, sys_prompt_array = switch_prompt(pfg, mode)
|
inputs_array, sys_prompt_array = switch_prompt(pfg, mode)
|
||||||
inputs_show_user_array = [f"{mode} {f}" for f in pfg.sp_file_tag]
|
inputs_show_user_array = [f"{mode} {f}" for f in pfg.sp_file_tag]
|
||||||
|
|
||||||
if os.path.exists(pj(project_folder,'temp.pkl')):
|
if os.path.exists(pj(project_folder,'temp.pkl')):
|
||||||
|
|
||||||
# <-------- 【仅调试】如果存在调试缓存文件,则跳过GPT请求环节 ---------->
|
# <-------- 【仅调试】如果存在调试缓存文件,则跳过GPT请求环节 ---------->
|
||||||
pfg = objload(file=pj(project_folder,'temp.pkl'))
|
pfg = objload(file=pj(project_folder,'temp.pkl'))
|
||||||
|
|
||||||
else:
|
else:
|
||||||
# <-------- gpt 多线程请求 ---------->
|
# <-------- gpt 多线程请求 ---------->
|
||||||
history_array = [[""] for _ in range(n_split)]
|
history_array = [[""] for _ in range(n_split)]
|
||||||
# LATEX_EXPERIMENTAL, = get_conf('LATEX_EXPERIMENTAL')
|
# LATEX_EXPERIMENTAL, = get_conf('LATEX_EXPERIMENTAL')
|
||||||
# if LATEX_EXPERIMENTAL:
|
# if LATEX_EXPERIMENTAL:
|
||||||
@@ -284,32 +284,32 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
|
|||||||
scroller_max_len = 40
|
scroller_max_len = 40
|
||||||
)
|
)
|
||||||
|
|
||||||
# <-------- 文本碎片重组为完整的tex片段 ---------->
|
# <-------- 文本碎片重组为完整的tex片段 ---------->
|
||||||
pfg.sp_file_result = []
|
pfg.sp_file_result = []
|
||||||
for i_say, gpt_say, orig_content in zip(gpt_response_collection[0::2], gpt_response_collection[1::2], pfg.sp_file_contents):
|
for i_say, gpt_say, orig_content in zip(gpt_response_collection[0::2], gpt_response_collection[1::2], pfg.sp_file_contents):
|
||||||
pfg.sp_file_result.append(gpt_say)
|
pfg.sp_file_result.append(gpt_say)
|
||||||
pfg.merge_result()
|
pfg.merge_result()
|
||||||
|
|
||||||
# <-------- 临时存储用于调试 ---------->
|
# <-------- 临时存储用于调试 ---------->
|
||||||
pfg.get_token_num = None
|
pfg.get_token_num = None
|
||||||
objdump(pfg, file=pj(project_folder,'temp.pkl'))
|
objdump(pfg, file=pj(project_folder,'temp.pkl'))
|
||||||
|
|
||||||
write_html(pfg.sp_file_contents, pfg.sp_file_result, chatbot=chatbot, project_folder=project_folder)
|
write_html(pfg.sp_file_contents, pfg.sp_file_result, chatbot=chatbot, project_folder=project_folder)
|
||||||
|
|
||||||
# <-------- 写出文件 ---------->
|
# <-------- 写出文件 ---------->
|
||||||
msg = f"当前大语言模型: {llm_kwargs['llm_model']},当前语言模型温度设定: {llm_kwargs['temperature']}。"
|
msg = f"当前大语言模型: {llm_kwargs['llm_model']},当前语言模型温度设定: {llm_kwargs['temperature']}。"
|
||||||
final_tex = lps.merge_result(pfg.file_result, mode, msg)
|
final_tex = lps.merge_result(pfg.file_result, mode, msg)
|
||||||
objdump((lps, pfg.file_result, mode, msg), file=pj(project_folder,'merge_result.pkl'))
|
objdump((lps, pfg.file_result, mode, msg), file=pj(project_folder,'merge_result.pkl'))
|
||||||
|
|
||||||
with open(project_folder + f'/merge_{mode}.tex', 'w', encoding='utf-8', errors='replace') as f:
|
with open(project_folder + f'/merge_{mode}.tex', 'w', encoding='utf-8', errors='replace') as f:
|
||||||
if mode != 'translate_zh' or "binary" in final_tex: f.write(final_tex)
|
if mode != 'translate_zh' or "binary" in final_tex: f.write(final_tex)
|
||||||
|
|
||||||
|
|
||||||
# <-------- 整理结果, 退出 ---------->
|
|
||||||
|
# <-------- 整理结果, 退出 ---------->
|
||||||
chatbot.append((f"完成了吗?", 'GPT结果已输出, 即将编译PDF'))
|
chatbot.append((f"完成了吗?", 'GPT结果已输出, 即将编译PDF'))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
# <-------- 返回 ---------->
|
# <-------- 返回 ---------->
|
||||||
return project_folder + f'/merge_{mode}.tex'
|
return project_folder + f'/merge_{mode}.tex'
|
||||||
|
|
||||||
|
|
||||||
@@ -362,7 +362,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
|||||||
|
|
||||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译转化后的PDF ...', chatbot, history) # 刷新Gradio前端界面
|
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译转化后的PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
|
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
|
||||||
|
|
||||||
if ok and os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf')):
|
if ok and os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf')):
|
||||||
# 只有第二步成功,才能继续下面的步骤
|
# 只有第二步成功,才能继续下面的步骤
|
||||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译BibTex ...', chatbot, history) # 刷新Gradio前端界面
|
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译BibTex ...', chatbot, history) # 刷新Gradio前端界面
|
||||||
@@ -393,9 +393,9 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
|||||||
original_pdf_success = os.path.exists(pj(work_folder_original, f'{main_file_original}.pdf'))
|
original_pdf_success = os.path.exists(pj(work_folder_original, f'{main_file_original}.pdf'))
|
||||||
modified_pdf_success = os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf'))
|
modified_pdf_success = os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf'))
|
||||||
diff_pdf_success = os.path.exists(pj(work_folder, f'merge_diff.pdf'))
|
diff_pdf_success = os.path.exists(pj(work_folder, f'merge_diff.pdf'))
|
||||||
results_ += f"原始PDF编译是否成功: {original_pdf_success};"
|
results_ += f"原始PDF编译是否成功: {original_pdf_success};"
|
||||||
results_ += f"转化PDF编译是否成功: {modified_pdf_success};"
|
results_ += f"转化PDF编译是否成功: {modified_pdf_success};"
|
||||||
results_ += f"对比PDF编译是否成功: {diff_pdf_success};"
|
results_ += f"对比PDF编译是否成功: {diff_pdf_success};"
|
||||||
yield from update_ui_lastest_msg(f'第{n_fix}编译结束:<br/>{results_}...', chatbot, history) # 刷新Gradio前端界面
|
yield from update_ui_lastest_msg(f'第{n_fix}编译结束:<br/>{results_}...', chatbot, history) # 刷新Gradio前端界面
|
||||||
|
|
||||||
if diff_pdf_success:
|
if diff_pdf_success:
|
||||||
@@ -409,7 +409,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
|||||||
shutil.copyfile(result_pdf, pj(work_folder, '..', 'translation', 'translate_zh.pdf'))
|
shutil.copyfile(result_pdf, pj(work_folder, '..', 'translation', 'translate_zh.pdf'))
|
||||||
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
|
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
|
||||||
# 将两个PDF拼接
|
# 将两个PDF拼接
|
||||||
if original_pdf_success:
|
if original_pdf_success:
|
||||||
try:
|
try:
|
||||||
from .latex_toolbox import merge_pdfs
|
from .latex_toolbox import merge_pdfs
|
||||||
concat_pdf = pj(work_folder_modified, f'comparison.pdf')
|
concat_pdf = pj(work_folder_modified, f'comparison.pdf')
|
||||||
@@ -425,7 +425,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
|||||||
if n_fix>=max_try: break
|
if n_fix>=max_try: break
|
||||||
n_fix += 1
|
n_fix += 1
|
||||||
can_retry, main_file_modified, buggy_lines = remove_buggy_lines(
|
can_retry, main_file_modified, buggy_lines = remove_buggy_lines(
|
||||||
file_path=pj(work_folder_modified, f'{main_file_modified}.tex'),
|
file_path=pj(work_folder_modified, f'{main_file_modified}.tex'),
|
||||||
log_path=pj(work_folder_modified, f'{main_file_modified}.log'),
|
log_path=pj(work_folder_modified, f'{main_file_modified}.log'),
|
||||||
tex_name=f'{main_file_modified}.tex',
|
tex_name=f'{main_file_modified}.tex',
|
||||||
tex_name_pure=f'{main_file_modified}',
|
tex_name_pure=f'{main_file_modified}',
|
||||||
@@ -445,14 +445,14 @@ def write_html(sp_file_contents, sp_file_result, chatbot, project_folder):
|
|||||||
import shutil
|
import shutil
|
||||||
from crazy_functions.pdf_fns.report_gen_html import construct_html
|
from crazy_functions.pdf_fns.report_gen_html import construct_html
|
||||||
from toolbox import gen_time_str
|
from toolbox import gen_time_str
|
||||||
ch = construct_html()
|
ch = construct_html()
|
||||||
orig = ""
|
orig = ""
|
||||||
trans = ""
|
trans = ""
|
||||||
final = []
|
final = []
|
||||||
for c,r in zip(sp_file_contents, sp_file_result):
|
for c,r in zip(sp_file_contents, sp_file_result):
|
||||||
final.append(c)
|
final.append(c)
|
||||||
final.append(r)
|
final.append(r)
|
||||||
for i, k in enumerate(final):
|
for i, k in enumerate(final):
|
||||||
if i%2==0:
|
if i%2==0:
|
||||||
orig = k
|
orig = k
|
||||||
if i%2==1:
|
if i%2==1:
|
||||||
|
|||||||
@@ -85,8 +85,8 @@ def write_numpy_to_wave(filename, rate, data, add_header=False):
|
|||||||
|
|
||||||
def is_speaker_speaking(vad, data, sample_rate):
|
def is_speaker_speaking(vad, data, sample_rate):
|
||||||
# Function to detect if the speaker is speaking
|
# Function to detect if the speaker is speaking
|
||||||
# The WebRTC VAD only accepts 16-bit mono PCM audio,
|
# The WebRTC VAD only accepts 16-bit mono PCM audio,
|
||||||
# sampled at 8000, 16000, 32000 or 48000 Hz.
|
# sampled at 8000, 16000, 32000 or 48000 Hz.
|
||||||
# A frame must be either 10, 20, or 30 ms in duration:
|
# A frame must be either 10, 20, or 30 ms in duration:
|
||||||
frame_duration = 30
|
frame_duration = 30
|
||||||
n_bit_each = int(sample_rate * frame_duration / 1000)*2 # x2 because audio is 16 bit (2 bytes)
|
n_bit_each = int(sample_rate * frame_duration / 1000)*2 # x2 because audio is 16 bit (2 bytes)
|
||||||
@@ -94,7 +94,7 @@ def is_speaker_speaking(vad, data, sample_rate):
|
|||||||
for t in range(len(data)):
|
for t in range(len(data)):
|
||||||
if t!=0 and t % n_bit_each == 0:
|
if t!=0 and t % n_bit_each == 0:
|
||||||
res_list.append(vad.is_speech(data[t-n_bit_each:t], sample_rate))
|
res_list.append(vad.is_speech(data[t-n_bit_each:t], sample_rate))
|
||||||
|
|
||||||
info = ''.join(['^' if r else '.' for r in res_list])
|
info = ''.join(['^' if r else '.' for r in res_list])
|
||||||
info = info[:10]
|
info = info[:10]
|
||||||
if any(res_list):
|
if any(res_list):
|
||||||
@@ -186,10 +186,10 @@ class AliyunASR():
|
|||||||
keep_alive_last_send_time = time.time()
|
keep_alive_last_send_time = time.time()
|
||||||
while not self.stop:
|
while not self.stop:
|
||||||
# time.sleep(self.capture_interval)
|
# time.sleep(self.capture_interval)
|
||||||
audio = rad.read(uuid.hex)
|
audio = rad.read(uuid.hex)
|
||||||
if audio is not None:
|
if audio is not None:
|
||||||
# convert to pcm file
|
# convert to pcm file
|
||||||
temp_file = f'{temp_folder}/{uuid.hex}.pcm' #
|
temp_file = f'{temp_folder}/{uuid.hex}.pcm' #
|
||||||
dsdata = change_sample_rate(audio, rad.rate, NEW_SAMPLERATE) # 48000 --> 16000
|
dsdata = change_sample_rate(audio, rad.rate, NEW_SAMPLERATE) # 48000 --> 16000
|
||||||
write_numpy_to_wave(temp_file, NEW_SAMPLERATE, dsdata)
|
write_numpy_to_wave(temp_file, NEW_SAMPLERATE, dsdata)
|
||||||
# read pcm binary
|
# read pcm binary
|
||||||
|
|||||||
@@ -3,12 +3,12 @@ from scipy import interpolate
|
|||||||
|
|
||||||
def Singleton(cls):
|
def Singleton(cls):
|
||||||
_instance = {}
|
_instance = {}
|
||||||
|
|
||||||
def _singleton(*args, **kargs):
|
def _singleton(*args, **kargs):
|
||||||
if cls not in _instance:
|
if cls not in _instance:
|
||||||
_instance[cls] = cls(*args, **kargs)
|
_instance[cls] = cls(*args, **kargs)
|
||||||
return _instance[cls]
|
return _instance[cls]
|
||||||
|
|
||||||
return _singleton
|
return _singleton
|
||||||
|
|
||||||
|
|
||||||
@@ -39,7 +39,7 @@ class RealtimeAudioDistribution():
|
|||||||
else:
|
else:
|
||||||
res = None
|
res = None
|
||||||
return res
|
return res
|
||||||
|
|
||||||
def change_sample_rate(audio, old_sr, new_sr):
|
def change_sample_rate(audio, old_sr, new_sr):
|
||||||
duration = audio.shape[0] / old_sr
|
duration = audio.shape[0] / old_sr
|
||||||
|
|
||||||
|
|||||||
@@ -40,7 +40,7 @@ class GptAcademicState():
|
|||||||
|
|
||||||
class GptAcademicGameBaseState():
|
class GptAcademicGameBaseState():
|
||||||
"""
|
"""
|
||||||
1. first init: __init__ ->
|
1. first init: __init__ ->
|
||||||
"""
|
"""
|
||||||
def init_game(self, chatbot, lock_plugin):
|
def init_game(self, chatbot, lock_plugin):
|
||||||
self.plugin_name = None
|
self.plugin_name = None
|
||||||
@@ -53,7 +53,7 @@ class GptAcademicGameBaseState():
|
|||||||
raise ValueError("callback_fn is None")
|
raise ValueError("callback_fn is None")
|
||||||
chatbot._cookies['lock_plugin'] = self.callback_fn
|
chatbot._cookies['lock_plugin'] = self.callback_fn
|
||||||
self.dump_state(chatbot)
|
self.dump_state(chatbot)
|
||||||
|
|
||||||
def get_plugin_name(self):
|
def get_plugin_name(self):
|
||||||
if self.plugin_name is None:
|
if self.plugin_name is None:
|
||||||
raise ValueError("plugin_name is None")
|
raise ValueError("plugin_name is None")
|
||||||
@@ -71,7 +71,7 @@ class GptAcademicGameBaseState():
|
|||||||
state = chatbot._cookies.get(f'plugin_state/{plugin_name}', None)
|
state = chatbot._cookies.get(f'plugin_state/{plugin_name}', None)
|
||||||
if state is not None:
|
if state is not None:
|
||||||
state = pickle.loads(state)
|
state = pickle.loads(state)
|
||||||
else:
|
else:
|
||||||
state = cls()
|
state = cls()
|
||||||
state.init_game(chatbot, lock_plugin)
|
state.init_game(chatbot, lock_plugin)
|
||||||
state.plugin_name = plugin_name
|
state.plugin_name = plugin_name
|
||||||
@@ -79,7 +79,7 @@ class GptAcademicGameBaseState():
|
|||||||
state.chatbot = chatbot
|
state.chatbot = chatbot
|
||||||
state.callback_fn = callback_fn
|
state.callback_fn = callback_fn
|
||||||
return state
|
return state
|
||||||
|
|
||||||
def continue_game(self, prompt, chatbot, history):
|
def continue_game(self, prompt, chatbot, history):
|
||||||
# 游戏主体
|
# 游戏主体
|
||||||
yield from self.step(prompt, chatbot, history)
|
yield from self.step(prompt, chatbot, history)
|
||||||
|
|||||||
@@ -35,7 +35,7 @@ def cut(limit, get_token_fn, txt_tocut, must_break_at_empty_line, break_anyway=F
|
|||||||
remain_txt_to_cut_storage = ""
|
remain_txt_to_cut_storage = ""
|
||||||
# 为了加速计算,我们采样一个特殊的手段。当 remain_txt_to_cut > `_max` 时, 我们把 _max 后的文字转存至 remain_txt_to_cut_storage
|
# 为了加速计算,我们采样一个特殊的手段。当 remain_txt_to_cut > `_max` 时, 我们把 _max 后的文字转存至 remain_txt_to_cut_storage
|
||||||
remain_txt_to_cut, remain_txt_to_cut_storage = maintain_storage(remain_txt_to_cut, remain_txt_to_cut_storage)
|
remain_txt_to_cut, remain_txt_to_cut_storage = maintain_storage(remain_txt_to_cut, remain_txt_to_cut_storage)
|
||||||
|
|
||||||
while True:
|
while True:
|
||||||
if get_token_fn(remain_txt_to_cut) <= limit:
|
if get_token_fn(remain_txt_to_cut) <= limit:
|
||||||
# 如果剩余文本的token数小于限制,那么就不用切了
|
# 如果剩余文本的token数小于限制,那么就不用切了
|
||||||
|
|||||||
@@ -64,8 +64,8 @@ def produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chat
|
|||||||
# 再做一个小修改:重新修改当前part的标题,默认用英文的
|
# 再做一个小修改:重新修改当前part的标题,默认用英文的
|
||||||
cur_value += value
|
cur_value += value
|
||||||
translated_res_array.append(cur_value)
|
translated_res_array.append(cur_value)
|
||||||
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + translated_res_array,
|
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + translated_res_array,
|
||||||
file_basename = f"{gen_time_str()}-translated_only.md",
|
file_basename = f"{gen_time_str()}-translated_only.md",
|
||||||
file_fullname = None,
|
file_fullname = None,
|
||||||
auto_caption = False)
|
auto_caption = False)
|
||||||
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(res_path)+'.md', chatbot=chatbot)
|
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(res_path)+'.md', chatbot=chatbot)
|
||||||
@@ -144,11 +144,11 @@ def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_fi
|
|||||||
produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files)
|
produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files)
|
||||||
|
|
||||||
# -=-=-=-=-=-=-=-= 写出HTML文件 -=-=-=-=-=-=-=-=
|
# -=-=-=-=-=-=-=-= 写出HTML文件 -=-=-=-=-=-=-=-=
|
||||||
ch = construct_html()
|
ch = construct_html()
|
||||||
orig = ""
|
orig = ""
|
||||||
trans = ""
|
trans = ""
|
||||||
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
|
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
|
||||||
for i,k in enumerate(gpt_response_collection_html):
|
for i,k in enumerate(gpt_response_collection_html):
|
||||||
if i%2==0:
|
if i%2==0:
|
||||||
gpt_response_collection_html[i] = inputs_show_user_array[i//2]
|
gpt_response_collection_html[i] = inputs_show_user_array[i//2]
|
||||||
else:
|
else:
|
||||||
@@ -159,7 +159,7 @@ def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_fi
|
|||||||
|
|
||||||
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""]
|
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""]
|
||||||
final.extend(gpt_response_collection_html)
|
final.extend(gpt_response_collection_html)
|
||||||
for i, k in enumerate(final):
|
for i, k in enumerate(final):
|
||||||
if i%2==0:
|
if i%2==0:
|
||||||
orig = k
|
orig = k
|
||||||
if i%2==1:
|
if i%2==1:
|
||||||
|
|||||||
@@ -22,10 +22,10 @@ def extract_text_from_files(txt, chatbot, history):
|
|||||||
file_manifest = []
|
file_manifest = []
|
||||||
excption = ""
|
excption = ""
|
||||||
|
|
||||||
if txt == "":
|
if txt == "":
|
||||||
final_result.append(txt)
|
final_result.append(txt)
|
||||||
return False, final_result, page_one, file_manifest, excption #如输入区内容不是文件则直接返回输入区内容
|
return False, final_result, page_one, file_manifest, excption #如输入区内容不是文件则直接返回输入区内容
|
||||||
|
|
||||||
#查找输入区内容中的文件
|
#查找输入区内容中的文件
|
||||||
file_pdf,pdf_manifest,folder_pdf = get_files_from_everything(txt, '.pdf')
|
file_pdf,pdf_manifest,folder_pdf = get_files_from_everything(txt, '.pdf')
|
||||||
file_md,md_manifest,folder_md = get_files_from_everything(txt, '.md')
|
file_md,md_manifest,folder_md = get_files_from_everything(txt, '.md')
|
||||||
@@ -35,12 +35,12 @@ def extract_text_from_files(txt, chatbot, history):
|
|||||||
if file_doc:
|
if file_doc:
|
||||||
excption = "word"
|
excption = "word"
|
||||||
return False, final_result, page_one, file_manifest, excption
|
return False, final_result, page_one, file_manifest, excption
|
||||||
|
|
||||||
file_num = len(pdf_manifest) + len(md_manifest) + len(word_manifest)
|
file_num = len(pdf_manifest) + len(md_manifest) + len(word_manifest)
|
||||||
if file_num == 0:
|
if file_num == 0:
|
||||||
final_result.append(txt)
|
final_result.append(txt)
|
||||||
return False, final_result, page_one, file_manifest, excption #如输入区内容不是文件则直接返回输入区内容
|
return False, final_result, page_one, file_manifest, excption #如输入区内容不是文件则直接返回输入区内容
|
||||||
|
|
||||||
if file_pdf:
|
if file_pdf:
|
||||||
try: # 尝试导入依赖,如果缺少依赖,则给出安装建议
|
try: # 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||||
import fitz
|
import fitz
|
||||||
@@ -61,7 +61,7 @@ def extract_text_from_files(txt, chatbot, history):
|
|||||||
file_content = f.read()
|
file_content = f.read()
|
||||||
file_content = file_content.encode('utf-8', 'ignore').decode()
|
file_content = file_content.encode('utf-8', 'ignore').decode()
|
||||||
headers = re.findall(r'^#\s(.*)$', file_content, re.MULTILINE) #接下来提取md中的一级/二级标题作为摘要
|
headers = re.findall(r'^#\s(.*)$', file_content, re.MULTILINE) #接下来提取md中的一级/二级标题作为摘要
|
||||||
if len(headers) > 0:
|
if len(headers) > 0:
|
||||||
page_one.append("\n".join(headers)) #合并所有的标题,以换行符分割
|
page_one.append("\n".join(headers)) #合并所有的标题,以换行符分割
|
||||||
else:
|
else:
|
||||||
page_one.append("")
|
page_one.append("")
|
||||||
@@ -81,5 +81,5 @@ def extract_text_from_files(txt, chatbot, history):
|
|||||||
page_one.append(file_content[:200])
|
page_one.append(file_content[:200])
|
||||||
final_result.append(file_content)
|
final_result.append(file_content)
|
||||||
file_manifest.append(os.path.relpath(fp, folder_word))
|
file_manifest.append(os.path.relpath(fp, folder_word))
|
||||||
|
|
||||||
return True, final_result, page_one, file_manifest, excption
|
return True, final_result, page_one, file_manifest, excption
|
||||||
@@ -28,7 +28,7 @@ EMBEDDING_DEVICE = "cpu"
|
|||||||
|
|
||||||
# 基于上下文的prompt模版,请务必保留"{question}"和"{context}"
|
# 基于上下文的prompt模版,请务必保留"{question}"和"{context}"
|
||||||
PROMPT_TEMPLATE = """已知信息:
|
PROMPT_TEMPLATE = """已知信息:
|
||||||
{context}
|
{context}
|
||||||
|
|
||||||
根据上述已知信息,简洁和专业的来回答用户的问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题” 或 “没有提供足够的相关信息”,不允许在答案中添加编造成分,答案请使用中文。 问题是:{question}"""
|
根据上述已知信息,简洁和专业的来回答用户的问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题” 或 “没有提供足够的相关信息”,不允许在答案中添加编造成分,答案请使用中文。 问题是:{question}"""
|
||||||
|
|
||||||
@@ -58,7 +58,7 @@ OPEN_CROSS_DOMAIN = False
|
|||||||
def similarity_search_with_score_by_vector(
|
def similarity_search_with_score_by_vector(
|
||||||
self, embedding: List[float], k: int = 4
|
self, embedding: List[float], k: int = 4
|
||||||
) -> List[Tuple[Document, float]]:
|
) -> List[Tuple[Document, float]]:
|
||||||
|
|
||||||
def seperate_list(ls: List[int]) -> List[List[int]]:
|
def seperate_list(ls: List[int]) -> List[List[int]]:
|
||||||
lists = []
|
lists = []
|
||||||
ls1 = [ls[0]]
|
ls1 = [ls[0]]
|
||||||
@@ -200,7 +200,7 @@ class LocalDocQA:
|
|||||||
return vs_path, loaded_files
|
return vs_path, loaded_files
|
||||||
else:
|
else:
|
||||||
raise RuntimeError("文件加载失败,请检查文件格式是否正确")
|
raise RuntimeError("文件加载失败,请检查文件格式是否正确")
|
||||||
|
|
||||||
def get_loaded_file(self, vs_path):
|
def get_loaded_file(self, vs_path):
|
||||||
ds = self.vector_store.docstore
|
ds = self.vector_store.docstore
|
||||||
return set([ds._dict[k].metadata['source'].split(vs_path)[-1] for k in ds._dict])
|
return set([ds._dict[k].metadata['source'].split(vs_path)[-1] for k in ds._dict])
|
||||||
@@ -290,10 +290,10 @@ class knowledge_archive_interface():
|
|||||||
self.threadLock.acquire()
|
self.threadLock.acquire()
|
||||||
# import uuid
|
# import uuid
|
||||||
self.current_id = id
|
self.current_id = id
|
||||||
self.qa_handle, self.kai_path = construct_vector_store(
|
self.qa_handle, self.kai_path = construct_vector_store(
|
||||||
vs_id=self.current_id,
|
vs_id=self.current_id,
|
||||||
vs_path=vs_path,
|
vs_path=vs_path,
|
||||||
files=file_manifest,
|
files=file_manifest,
|
||||||
sentence_size=100,
|
sentence_size=100,
|
||||||
history=[],
|
history=[],
|
||||||
one_conent="",
|
one_conent="",
|
||||||
@@ -304,7 +304,7 @@ class knowledge_archive_interface():
|
|||||||
|
|
||||||
def get_current_archive_id(self):
|
def get_current_archive_id(self):
|
||||||
return self.current_id
|
return self.current_id
|
||||||
|
|
||||||
def get_loaded_file(self, vs_path):
|
def get_loaded_file(self, vs_path):
|
||||||
return self.qa_handle.get_loaded_file(vs_path)
|
return self.qa_handle.get_loaded_file(vs_path)
|
||||||
|
|
||||||
@@ -312,10 +312,10 @@ class knowledge_archive_interface():
|
|||||||
self.threadLock.acquire()
|
self.threadLock.acquire()
|
||||||
if not self.current_id == id:
|
if not self.current_id == id:
|
||||||
self.current_id = id
|
self.current_id = id
|
||||||
self.qa_handle, self.kai_path = construct_vector_store(
|
self.qa_handle, self.kai_path = construct_vector_store(
|
||||||
vs_id=self.current_id,
|
vs_id=self.current_id,
|
||||||
vs_path=vs_path,
|
vs_path=vs_path,
|
||||||
files=[],
|
files=[],
|
||||||
sentence_size=100,
|
sentence_size=100,
|
||||||
history=[],
|
history=[],
|
||||||
one_conent="",
|
one_conent="",
|
||||||
@@ -329,7 +329,7 @@ class knowledge_archive_interface():
|
|||||||
query = txt,
|
query = txt,
|
||||||
vs_path = self.kai_path,
|
vs_path = self.kai_path,
|
||||||
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
|
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
|
||||||
vector_search_top_k=VECTOR_SEARCH_TOP_K,
|
vector_search_top_k=VECTOR_SEARCH_TOP_K,
|
||||||
chunk_conent=True,
|
chunk_conent=True,
|
||||||
chunk_size=CHUNK_SIZE,
|
chunk_size=CHUNK_SIZE,
|
||||||
text2vec = self.get_chinese_text2vec(),
|
text2vec = self.get_chinese_text2vec(),
|
||||||
|
|||||||
@@ -35,9 +35,9 @@ def get_recent_file_prompt_support(chatbot):
|
|||||||
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
|
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
|
||||||
path = most_recent_uploaded['path']
|
path = most_recent_uploaded['path']
|
||||||
prompt = "\nAdditional Information:\n"
|
prompt = "\nAdditional Information:\n"
|
||||||
prompt = "In case that this plugin requires a path or a file as argument,"
|
prompt = "In case that this plugin requires a path or a file as argument,"
|
||||||
prompt += f"it is important for you to know that the user has recently uploaded a file, located at: `{path}`"
|
prompt += f"it is important for you to know that the user has recently uploaded a file, located at: `{path}`"
|
||||||
prompt += f"Only use it when necessary, otherwise, you can ignore this file."
|
prompt += f"Only use it when necessary, otherwise, you can ignore this file."
|
||||||
return prompt
|
return prompt
|
||||||
|
|
||||||
def get_inputs_show_user(inputs, plugin_arr_enum_prompt):
|
def get_inputs_show_user(inputs, plugin_arr_enum_prompt):
|
||||||
@@ -82,7 +82,7 @@ def execute_plugin(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
|
|||||||
msg += "\n但您可以尝试再试一次\n"
|
msg += "\n但您可以尝试再试一次\n"
|
||||||
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
|
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
|
||||||
return
|
return
|
||||||
|
|
||||||
# ⭐ ⭐ ⭐ 确认插件参数
|
# ⭐ ⭐ ⭐ 确认插件参数
|
||||||
if not have_any_recent_upload_files(chatbot):
|
if not have_any_recent_upload_files(chatbot):
|
||||||
appendix_info = ""
|
appendix_info = ""
|
||||||
@@ -99,7 +99,7 @@ def execute_plugin(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
|
|||||||
inputs = f"A plugin named {plugin_sel.plugin_selection} is selected, " + \
|
inputs = f"A plugin named {plugin_sel.plugin_selection} is selected, " + \
|
||||||
"you should extract plugin_arg from the user requirement, the user requirement is: \n\n" + \
|
"you should extract plugin_arg from the user requirement, the user requirement is: \n\n" + \
|
||||||
">> " + (txt + appendix_info).rstrip('\n').replace('\n','\n>> ') + '\n\n' + \
|
">> " + (txt + appendix_info).rstrip('\n').replace('\n','\n>> ') + '\n\n' + \
|
||||||
gpt_json_io.format_instructions
|
gpt_json_io.format_instructions
|
||||||
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(
|
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(
|
||||||
inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
|
inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
|
||||||
plugin_sel = gpt_json_io.generate_output_auto_repair(run_gpt_fn(inputs, ""), run_gpt_fn)
|
plugin_sel = gpt_json_io.generate_output_auto_repair(run_gpt_fn(inputs, ""), run_gpt_fn)
|
||||||
|
|||||||
@@ -10,7 +10,7 @@ def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
ALLOW_RESET_CONFIG = get_conf('ALLOW_RESET_CONFIG')
|
ALLOW_RESET_CONFIG = get_conf('ALLOW_RESET_CONFIG')
|
||||||
if not ALLOW_RESET_CONFIG:
|
if not ALLOW_RESET_CONFIG:
|
||||||
yield from update_ui_lastest_msg(
|
yield from update_ui_lastest_msg(
|
||||||
lastmsg=f"当前配置不允许被修改!如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
|
lastmsg=f"当前配置不允许被修改!如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
|
||||||
chatbot=chatbot, history=history, delay=2
|
chatbot=chatbot, history=history, delay=2
|
||||||
)
|
)
|
||||||
return
|
return
|
||||||
@@ -35,7 +35,7 @@ def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
inputs = "Analyze how to change configuration according to following user input, answer me with json: \n\n" + \
|
inputs = "Analyze how to change configuration according to following user input, answer me with json: \n\n" + \
|
||||||
">> " + txt.rstrip('\n').replace('\n','\n>> ') + '\n\n' + \
|
">> " + txt.rstrip('\n').replace('\n','\n>> ') + '\n\n' + \
|
||||||
gpt_json_io.format_instructions
|
gpt_json_io.format_instructions
|
||||||
|
|
||||||
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(
|
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(
|
||||||
inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
|
inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
|
||||||
user_intention = gpt_json_io.generate_output_auto_repair(run_gpt_fn(inputs, ""), run_gpt_fn)
|
user_intention = gpt_json_io.generate_output_auto_repair(run_gpt_fn(inputs, ""), run_gpt_fn)
|
||||||
@@ -45,11 +45,11 @@ def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
ok = (explicit_conf in txt)
|
ok = (explicit_conf in txt)
|
||||||
if ok:
|
if ok:
|
||||||
yield from update_ui_lastest_msg(
|
yield from update_ui_lastest_msg(
|
||||||
lastmsg=f"正在执行任务: {txt}\n\n新配置{explicit_conf}={user_intention.new_option_value}",
|
lastmsg=f"正在执行任务: {txt}\n\n新配置{explicit_conf}={user_intention.new_option_value}",
|
||||||
chatbot=chatbot, history=history, delay=1
|
chatbot=chatbot, history=history, delay=1
|
||||||
)
|
)
|
||||||
yield from update_ui_lastest_msg(
|
yield from update_ui_lastest_msg(
|
||||||
lastmsg=f"正在执行任务: {txt}\n\n新配置{explicit_conf}={user_intention.new_option_value}\n\n正在修改配置中",
|
lastmsg=f"正在执行任务: {txt}\n\n新配置{explicit_conf}={user_intention.new_option_value}\n\n正在修改配置中",
|
||||||
chatbot=chatbot, history=history, delay=2
|
chatbot=chatbot, history=history, delay=2
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -69,7 +69,7 @@ def modify_configuration_reboot(txt, llm_kwargs, plugin_kwargs, chatbot, history
|
|||||||
ALLOW_RESET_CONFIG = get_conf('ALLOW_RESET_CONFIG')
|
ALLOW_RESET_CONFIG = get_conf('ALLOW_RESET_CONFIG')
|
||||||
if not ALLOW_RESET_CONFIG:
|
if not ALLOW_RESET_CONFIG:
|
||||||
yield from update_ui_lastest_msg(
|
yield from update_ui_lastest_msg(
|
||||||
lastmsg=f"当前配置不允许被修改!如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
|
lastmsg=f"当前配置不允许被修改!如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
|
||||||
chatbot=chatbot, history=history, delay=2
|
chatbot=chatbot, history=history, delay=2
|
||||||
)
|
)
|
||||||
return
|
return
|
||||||
|
|||||||
@@ -6,7 +6,7 @@ class VoidTerminalState():
|
|||||||
|
|
||||||
def reset_state(self):
|
def reset_state(self):
|
||||||
self.has_provided_explaination = False
|
self.has_provided_explaination = False
|
||||||
|
|
||||||
def lock_plugin(self, chatbot):
|
def lock_plugin(self, chatbot):
|
||||||
chatbot._cookies['lock_plugin'] = 'crazy_functions.虚空终端->虚空终端'
|
chatbot._cookies['lock_plugin'] = 'crazy_functions.虚空终端->虚空终端'
|
||||||
chatbot._cookies['plugin_state'] = pickle.dumps(self)
|
chatbot._cookies['plugin_state'] = pickle.dumps(self)
|
||||||
|
|||||||
@@ -144,8 +144,8 @@ def 下载arxiv论文并翻译摘要(txt, llm_kwargs, plugin_kwargs, chatbot, hi
|
|||||||
try:
|
try:
|
||||||
import bs4
|
import bs4
|
||||||
except:
|
except:
|
||||||
report_exception(chatbot, history,
|
report_exception(chatbot, history,
|
||||||
a = f"解析项目: {txt}",
|
a = f"解析项目: {txt}",
|
||||||
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade beautifulsoup4```。")
|
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade beautifulsoup4```。")
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
return
|
return
|
||||||
@@ -157,12 +157,12 @@ def 下载arxiv论文并翻译摘要(txt, llm_kwargs, plugin_kwargs, chatbot, hi
|
|||||||
try:
|
try:
|
||||||
pdf_path, info = download_arxiv_(txt)
|
pdf_path, info = download_arxiv_(txt)
|
||||||
except:
|
except:
|
||||||
report_exception(chatbot, history,
|
report_exception(chatbot, history,
|
||||||
a = f"解析项目: {txt}",
|
a = f"解析项目: {txt}",
|
||||||
b = f"下载pdf文件未成功")
|
b = f"下载pdf文件未成功")
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
return
|
return
|
||||||
|
|
||||||
# 翻译摘要等
|
# 翻译摘要等
|
||||||
i_say = f"请你阅读以下学术论文相关的材料,提取摘要,翻译为中文。材料如下:{str(info)}"
|
i_say = f"请你阅读以下学术论文相关的材料,提取摘要,翻译为中文。材料如下:{str(info)}"
|
||||||
i_say_show_user = f'请你阅读以下学术论文相关的材料,提取摘要,翻译为中文。论文:{pdf_path}'
|
i_say_show_user = f'请你阅读以下学术论文相关的材料,提取摘要,翻译为中文。论文:{pdf_path}'
|
||||||
|
|||||||
@@ -12,9 +12,9 @@ def 随机小游戏(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
|||||||
# 选择游戏
|
# 选择游戏
|
||||||
cls = MiniGame_ResumeStory
|
cls = MiniGame_ResumeStory
|
||||||
# 如果之前已经初始化了游戏实例,则继续该实例;否则重新初始化
|
# 如果之前已经初始化了游戏实例,则继续该实例;否则重新初始化
|
||||||
state = cls.sync_state(chatbot,
|
state = cls.sync_state(chatbot,
|
||||||
llm_kwargs,
|
llm_kwargs,
|
||||||
cls,
|
cls,
|
||||||
plugin_name='MiniGame_ResumeStory',
|
plugin_name='MiniGame_ResumeStory',
|
||||||
callback_fn='crazy_functions.互动小游戏->随机小游戏',
|
callback_fn='crazy_functions.互动小游戏->随机小游戏',
|
||||||
lock_plugin=True
|
lock_plugin=True
|
||||||
@@ -30,9 +30,9 @@ def 随机小游戏1(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system
|
|||||||
# 选择游戏
|
# 选择游戏
|
||||||
cls = MiniGame_ASCII_Art
|
cls = MiniGame_ASCII_Art
|
||||||
# 如果之前已经初始化了游戏实例,则继续该实例;否则重新初始化
|
# 如果之前已经初始化了游戏实例,则继续该实例;否则重新初始化
|
||||||
state = cls.sync_state(chatbot,
|
state = cls.sync_state(chatbot,
|
||||||
llm_kwargs,
|
llm_kwargs,
|
||||||
cls,
|
cls,
|
||||||
plugin_name='MiniGame_ASCII_Art',
|
plugin_name='MiniGame_ASCII_Art',
|
||||||
callback_fn='crazy_functions.互动小游戏->随机小游戏1',
|
callback_fn='crazy_functions.互动小游戏->随机小游戏1',
|
||||||
lock_plugin=True
|
lock_plugin=True
|
||||||
|
|||||||
@@ -38,7 +38,7 @@ def 交互功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
inputs=inputs_show_user=f"Extract all image urls in this html page, pick the first 5 images and show them with markdown format: \n\n {page_return}"
|
inputs=inputs_show_user=f"Extract all image urls in this html page, pick the first 5 images and show them with markdown format: \n\n {page_return}"
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=inputs, inputs_show_user=inputs_show_user,
|
inputs=inputs, inputs_show_user=inputs_show_user,
|
||||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||||
sys_prompt="When you want to show an image, use markdown format. e.g. . If there are no image url provided, answer 'no image url provided'"
|
sys_prompt="When you want to show an image, use markdown format. e.g. . If there are no image url provided, answer 'no image url provided'"
|
||||||
)
|
)
|
||||||
chatbot[-1] = [chatbot[-1][0], gpt_say]
|
chatbot[-1] = [chatbot[-1][0], gpt_say]
|
||||||
|
|||||||
@@ -6,10 +6,10 @@
|
|||||||
- 将图像转为灰度图像
|
- 将图像转为灰度图像
|
||||||
- 将csv文件转excel表格
|
- 将csv文件转excel表格
|
||||||
|
|
||||||
Testing:
|
Testing:
|
||||||
- Crop the image, keeping the bottom half.
|
- Crop the image, keeping the bottom half.
|
||||||
- Swap the blue channel and red channel of the image.
|
- Swap the blue channel and red channel of the image.
|
||||||
- Convert the image to grayscale.
|
- Convert the image to grayscale.
|
||||||
- Convert the CSV file to an Excel spreadsheet.
|
- Convert the CSV file to an Excel spreadsheet.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@@ -29,12 +29,12 @@ import multiprocessing
|
|||||||
|
|
||||||
templete = """
|
templete = """
|
||||||
```python
|
```python
|
||||||
import ... # Put dependencies here, e.g. import numpy as np.
|
import ... # Put dependencies here, e.g. import numpy as np.
|
||||||
|
|
||||||
class TerminalFunction(object): # Do not change the name of the class, The name of the class must be `TerminalFunction`
|
class TerminalFunction(object): # Do not change the name of the class, The name of the class must be `TerminalFunction`
|
||||||
|
|
||||||
def run(self, path): # The name of the function must be `run`, it takes only a positional argument.
|
def run(self, path): # The name of the function must be `run`, it takes only a positional argument.
|
||||||
# rewrite the function you have just written here
|
# rewrite the function you have just written here
|
||||||
...
|
...
|
||||||
return generated_file_path
|
return generated_file_path
|
||||||
```
|
```
|
||||||
@@ -48,7 +48,7 @@ def get_code_block(reply):
|
|||||||
import re
|
import re
|
||||||
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
|
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
|
||||||
matches = re.findall(pattern, reply) # find all code blocks in text
|
matches = re.findall(pattern, reply) # find all code blocks in text
|
||||||
if len(matches) == 1:
|
if len(matches) == 1:
|
||||||
return matches[0].strip('python') # code block
|
return matches[0].strip('python') # code block
|
||||||
for match in matches:
|
for match in matches:
|
||||||
if 'class TerminalFunction' in match:
|
if 'class TerminalFunction' in match:
|
||||||
@@ -68,8 +68,8 @@ def gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history):
|
|||||||
|
|
||||||
# 第一步
|
# 第一步
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=i_say, inputs_show_user=i_say,
|
inputs=i_say, inputs_show_user=i_say,
|
||||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=demo,
|
llm_kwargs=llm_kwargs, chatbot=chatbot, history=demo,
|
||||||
sys_prompt= r"You are a world-class programmer."
|
sys_prompt= r"You are a world-class programmer."
|
||||||
)
|
)
|
||||||
history.extend([i_say, gpt_say])
|
history.extend([i_say, gpt_say])
|
||||||
@@ -82,33 +82,33 @@ def gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history):
|
|||||||
]
|
]
|
||||||
i_say = "".join(prompt_compose); inputs_show_user = "If previous stage is successful, rewrite the function you have just written to satisfy executable templete. "
|
i_say = "".join(prompt_compose); inputs_show_user = "If previous stage is successful, rewrite the function you have just written to satisfy executable templete. "
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=i_say, inputs_show_user=inputs_show_user,
|
inputs=i_say, inputs_show_user=inputs_show_user,
|
||||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||||
sys_prompt= r"You are a programmer. You need to replace `...` with valid packages, do not give `...` in your answer!"
|
sys_prompt= r"You are a programmer. You need to replace `...` with valid packages, do not give `...` in your answer!"
|
||||||
)
|
)
|
||||||
code_to_return = gpt_say
|
code_to_return = gpt_say
|
||||||
history.extend([i_say, gpt_say])
|
history.extend([i_say, gpt_say])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||||
|
|
||||||
# # 第三步
|
# # 第三步
|
||||||
# i_say = "Please list to packages to install to run the code above. Then show me how to use `try_install_deps` function to install them."
|
# i_say = "Please list to packages to install to run the code above. Then show me how to use `try_install_deps` function to install them."
|
||||||
# i_say += 'For instance. `try_install_deps(["opencv-python", "scipy", "numpy"])`'
|
# i_say += 'For instance. `try_install_deps(["opencv-python", "scipy", "numpy"])`'
|
||||||
# installation_advance = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
# installation_advance = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
# inputs=i_say, inputs_show_user=inputs_show_user,
|
# inputs=i_say, inputs_show_user=inputs_show_user,
|
||||||
# llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
# llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||||
# sys_prompt= r"You are a programmer."
|
# sys_prompt= r"You are a programmer."
|
||||||
# )
|
# )
|
||||||
|
|
||||||
# # # 第三步
|
# # # 第三步
|
||||||
# i_say = "Show me how to use `pip` to install packages to run the code above. "
|
# i_say = "Show me how to use `pip` to install packages to run the code above. "
|
||||||
# i_say += 'For instance. `pip install -r opencv-python scipy numpy`'
|
# i_say += 'For instance. `pip install -r opencv-python scipy numpy`'
|
||||||
# installation_advance = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
# installation_advance = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
# inputs=i_say, inputs_show_user=i_say,
|
# inputs=i_say, inputs_show_user=i_say,
|
||||||
# llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
# llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||||
# sys_prompt= r"You are a programmer."
|
# sys_prompt= r"You are a programmer."
|
||||||
# )
|
# )
|
||||||
installation_advance = ""
|
installation_advance = ""
|
||||||
|
|
||||||
return code_to_return, installation_advance, txt, file_type, llm_kwargs, chatbot, history
|
return code_to_return, installation_advance, txt, file_type, llm_kwargs, chatbot, history
|
||||||
|
|
||||||
|
|
||||||
@@ -117,7 +117,7 @@ def gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history):
|
|||||||
def for_immediate_show_off_when_possible(file_type, fp, chatbot):
|
def for_immediate_show_off_when_possible(file_type, fp, chatbot):
|
||||||
if file_type in ['png', 'jpg']:
|
if file_type in ['png', 'jpg']:
|
||||||
image_path = os.path.abspath(fp)
|
image_path = os.path.abspath(fp)
|
||||||
chatbot.append(['这是一张图片, 展示如下:',
|
chatbot.append(['这是一张图片, 展示如下:',
|
||||||
f'本地文件地址: <br/>`{image_path}`<br/>'+
|
f'本地文件地址: <br/>`{image_path}`<br/>'+
|
||||||
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
|
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
|
||||||
])
|
])
|
||||||
@@ -177,7 +177,7 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
|||||||
chatbot.append(["文件检索", "没有发现任何近期上传的文件。"])
|
chatbot.append(["文件检索", "没有发现任何近期上传的文件。"])
|
||||||
yield from update_ui_lastest_msg("没有发现任何近期上传的文件。", chatbot, history, 1)
|
yield from update_ui_lastest_msg("没有发现任何近期上传的文件。", chatbot, history, 1)
|
||||||
return # 2. 如果没有文件
|
return # 2. 如果没有文件
|
||||||
|
|
||||||
# 读取文件
|
# 读取文件
|
||||||
file_type = file_list[0].split('.')[-1]
|
file_type = file_list[0].split('.')[-1]
|
||||||
|
|
||||||
@@ -185,7 +185,7 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
|||||||
if is_the_upload_folder(txt):
|
if is_the_upload_folder(txt):
|
||||||
yield from update_ui_lastest_msg(f"请在输入框内填写需求, 然后再次点击该插件! 至于您的文件,不用担心, 文件路径 {txt} 已经被记忆. ", chatbot, history, 1)
|
yield from update_ui_lastest_msg(f"请在输入框内填写需求, 然后再次点击该插件! 至于您的文件,不用担心, 文件路径 {txt} 已经被记忆. ", chatbot, history, 1)
|
||||||
return
|
return
|
||||||
|
|
||||||
# 开始干正事
|
# 开始干正事
|
||||||
MAX_TRY = 3
|
MAX_TRY = 3
|
||||||
for j in range(MAX_TRY): # 最多重试5次
|
for j in range(MAX_TRY): # 最多重试5次
|
||||||
@@ -238,7 +238,7 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
|||||||
# chatbot.append(["如果是缺乏依赖,请参考以下建议", installation_advance])
|
# chatbot.append(["如果是缺乏依赖,请参考以下建议", installation_advance])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
return
|
return
|
||||||
|
|
||||||
# 顺利完成,收尾
|
# 顺利完成,收尾
|
||||||
res = str(res)
|
res = str(res)
|
||||||
if os.path.exists(res):
|
if os.path.exists(res):
|
||||||
@@ -248,5 +248,5 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
|||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||||
else:
|
else:
|
||||||
chatbot.append(["执行成功了,结果是一个字符串", "结果:" + res])
|
chatbot.append(["执行成功了,结果是一个字符串", "结果:" + res])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||||
|
|
||||||
|
|||||||
@@ -21,8 +21,8 @@ def 命令行助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
|||||||
i_say = "请写bash命令实现以下功能:" + txt
|
i_say = "请写bash命令实现以下功能:" + txt
|
||||||
# 开始
|
# 开始
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=i_say, inputs_show_user=txt,
|
inputs=i_say, inputs_show_user=txt,
|
||||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||||
sys_prompt="你是一个Linux大师级用户。注意,当我要求你写bash命令时,尽可能地仅用一行命令解决我的要求。"
|
sys_prompt="你是一个Linux大师级用户。注意,当我要求你写bash命令时,尽可能地仅用一行命令解决我的要求。"
|
||||||
)
|
)
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||||
|
|||||||
@@ -7,7 +7,7 @@ def gen_image(llm_kwargs, prompt, resolution="1024x1024", model="dall-e-2", qual
|
|||||||
from request_llms.bridge_all import model_info
|
from request_llms.bridge_all import model_info
|
||||||
|
|
||||||
proxies = get_conf('proxies')
|
proxies = get_conf('proxies')
|
||||||
# Set up OpenAI API key and model
|
# Set up OpenAI API key and model
|
||||||
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
||||||
chat_endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
chat_endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||||
# 'https://api.openai.com/v1/chat/completions'
|
# 'https://api.openai.com/v1/chat/completions'
|
||||||
@@ -113,7 +113,7 @@ def 图片生成_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
|||||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||||
resolution = plugin_kwargs.get("advanced_arg", '1024x1024')
|
resolution = plugin_kwargs.get("advanced_arg", '1024x1024')
|
||||||
image_url, image_path = gen_image(llm_kwargs, prompt, resolution)
|
image_url, image_path = gen_image(llm_kwargs, prompt, resolution)
|
||||||
chatbot.append([prompt,
|
chatbot.append([prompt,
|
||||||
f'图像中转网址: <br/>`{image_url}`<br/>'+
|
f'图像中转网址: <br/>`{image_url}`<br/>'+
|
||||||
f'中转网址预览: <br/><div align="center"><img src="{image_url}"></div>'
|
f'中转网址预览: <br/><div align="center"><img src="{image_url}"></div>'
|
||||||
f'本地文件地址: <br/>`{image_path}`<br/>'+
|
f'本地文件地址: <br/>`{image_path}`<br/>'+
|
||||||
@@ -144,7 +144,7 @@ def 图片生成_DALLE3(prompt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
|||||||
elif part in ['vivid', 'natural']:
|
elif part in ['vivid', 'natural']:
|
||||||
style = part
|
style = part
|
||||||
image_url, image_path = gen_image(llm_kwargs, prompt, resolution, model="dall-e-3", quality=quality, style=style)
|
image_url, image_path = gen_image(llm_kwargs, prompt, resolution, model="dall-e-3", quality=quality, style=style)
|
||||||
chatbot.append([prompt,
|
chatbot.append([prompt,
|
||||||
f'图像中转网址: <br/>`{image_url}`<br/>'+
|
f'图像中转网址: <br/>`{image_url}`<br/>'+
|
||||||
f'中转网址预览: <br/><div align="center"><img src="{image_url}"></div>'
|
f'中转网址预览: <br/><div align="center"><img src="{image_url}"></div>'
|
||||||
f'本地文件地址: <br/>`{image_path}`<br/>'+
|
f'本地文件地址: <br/>`{image_path}`<br/>'+
|
||||||
@@ -164,7 +164,7 @@ class ImageEditState(GptAcademicState):
|
|||||||
confirm = (len(file_manifest) >= 1 and file_manifest[0].endswith('.png') and os.path.exists(file_manifest[0]))
|
confirm = (len(file_manifest) >= 1 and file_manifest[0].endswith('.png') and os.path.exists(file_manifest[0]))
|
||||||
file = None if not confirm else file_manifest[0]
|
file = None if not confirm else file_manifest[0]
|
||||||
return confirm, file
|
return confirm, file
|
||||||
|
|
||||||
def lock_plugin(self, chatbot):
|
def lock_plugin(self, chatbot):
|
||||||
chatbot._cookies['lock_plugin'] = 'crazy_functions.图片生成->图片修改_DALLE2'
|
chatbot._cookies['lock_plugin'] = 'crazy_functions.图片生成->图片修改_DALLE2'
|
||||||
self.dump_state(chatbot)
|
self.dump_state(chatbot)
|
||||||
|
|||||||
@@ -57,11 +57,11 @@ def 多智能体终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
|||||||
if get_conf("AUTOGEN_USE_DOCKER"):
|
if get_conf("AUTOGEN_USE_DOCKER"):
|
||||||
import docker
|
import docker
|
||||||
except:
|
except:
|
||||||
chatbot.append([ f"处理任务: {txt}",
|
chatbot.append([ f"处理任务: {txt}",
|
||||||
f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pyautogen docker```。"])
|
f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pyautogen docker```。"])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
return
|
return
|
||||||
|
|
||||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||||
try:
|
try:
|
||||||
import autogen
|
import autogen
|
||||||
@@ -72,7 +72,7 @@ def 多智能体终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
|||||||
chatbot.append([f"处理任务: {txt}", f"缺少docker运行环境!"])
|
chatbot.append([f"处理任务: {txt}", f"缺少docker运行环境!"])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
return
|
return
|
||||||
|
|
||||||
# 解锁插件
|
# 解锁插件
|
||||||
chatbot.get_cookies()['lock_plugin'] = None
|
chatbot.get_cookies()['lock_plugin'] = None
|
||||||
persistent_class_multi_user_manager = GradioMultiuserManagerForPersistentClasses()
|
persistent_class_multi_user_manager = GradioMultiuserManagerForPersistentClasses()
|
||||||
|
|||||||
@@ -66,7 +66,7 @@ def read_file_to_chat(chatbot, history, file_name):
|
|||||||
i_say, gpt_say = h.split('<hr style="border-top: dotted 3px #ccc;">')
|
i_say, gpt_say = h.split('<hr style="border-top: dotted 3px #ccc;">')
|
||||||
chatbot.append([i_say, gpt_say])
|
chatbot.append([i_say, gpt_say])
|
||||||
chatbot.append([f"存档文件详情?", f"[Local Message] 载入对话{len(html)}条,上下文{len(history)}条。"])
|
chatbot.append([f"存档文件详情?", f"[Local Message] 载入对话{len(html)}条,上下文{len(history)}条。"])
|
||||||
return chatbot, history
|
return chatbot, history
|
||||||
|
|
||||||
@CatchException
|
@CatchException
|
||||||
def 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
def 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
@@ -80,7 +80,7 @@ def 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
|||||||
user_request 当前用户的请求信息(IP地址等)
|
user_request 当前用户的请求信息(IP地址等)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
chatbot.append(("保存当前对话",
|
chatbot.append(("保存当前对话",
|
||||||
f"[Local Message] {write_chat_to_file(chatbot, history)},您可以调用下拉菜单中的“载入对话历史存档”还原当下的对话。"))
|
f"[Local Message] {write_chat_to_file(chatbot, history)},您可以调用下拉菜单中的“载入对话历史存档”还原当下的对话。"))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||||
|
|
||||||
@@ -108,9 +108,9 @@ def 载入对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
if txt == "": txt = '空空如也的输入栏'
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
import glob
|
import glob
|
||||||
local_history = "<br/>".join([
|
local_history = "<br/>".join([
|
||||||
"`"+hide_cwd(f)+f" ({gen_file_preview(f)})"+"`"
|
"`"+hide_cwd(f)+f" ({gen_file_preview(f)})"+"`"
|
||||||
for f in glob.glob(
|
for f in glob.glob(
|
||||||
f'{get_log_folder(get_user(chatbot), plugin_name="chat_history")}/**/{f_prefix}*.html',
|
f'{get_log_folder(get_user(chatbot), plugin_name="chat_history")}/**/{f_prefix}*.html',
|
||||||
recursive=True
|
recursive=True
|
||||||
)])
|
)])
|
||||||
chatbot.append([f"正在查找对话历史文件(html格式): {txt}", f"找不到任何html文件: {txt}。但本地存储了以下历史文件,您可以将任意一个文件路径粘贴到输入区,然后重试:<br/>{local_history}"])
|
chatbot.append([f"正在查找对话历史文件(html格式): {txt}", f"找不到任何html文件: {txt}。但本地存储了以下历史文件,您可以将任意一个文件路径粘贴到输入区,然后重试:<br/>{local_history}"])
|
||||||
@@ -139,7 +139,7 @@ def 删除所有本地对话历史记录(txt, llm_kwargs, plugin_kwargs, chatbot
|
|||||||
|
|
||||||
import glob, os
|
import glob, os
|
||||||
local_history = "<br/>".join([
|
local_history = "<br/>".join([
|
||||||
"`"+hide_cwd(f)+"`"
|
"`"+hide_cwd(f)+"`"
|
||||||
for f in glob.glob(
|
for f in glob.glob(
|
||||||
f'{get_log_folder(get_user(chatbot), plugin_name="chat_history")}/**/{f_prefix}*.html', recursive=True
|
f'{get_log_folder(get_user(chatbot), plugin_name="chat_history")}/**/{f_prefix}*.html', recursive=True
|
||||||
)])
|
)])
|
||||||
|
|||||||
@@ -40,10 +40,10 @@ def 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot
|
|||||||
i_say = f'请对下面的文章片段用中文做概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{paper_frag}```'
|
i_say = f'请对下面的文章片段用中文做概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{paper_frag}```'
|
||||||
i_say_show_user = f'请对下面的文章片段做概述: {os.path.abspath(fp)}的第{i+1}/{len(paper_fragments)}个片段。'
|
i_say_show_user = f'请对下面的文章片段做概述: {os.path.abspath(fp)}的第{i+1}/{len(paper_fragments)}个片段。'
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=i_say,
|
inputs=i_say,
|
||||||
inputs_show_user=i_say_show_user,
|
inputs_show_user=i_say_show_user,
|
||||||
llm_kwargs=llm_kwargs,
|
llm_kwargs=llm_kwargs,
|
||||||
chatbot=chatbot,
|
chatbot=chatbot,
|
||||||
history=[],
|
history=[],
|
||||||
sys_prompt="总结文章。"
|
sys_prompt="总结文章。"
|
||||||
)
|
)
|
||||||
@@ -56,10 +56,10 @@ def 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot
|
|||||||
if len(paper_fragments) > 1:
|
if len(paper_fragments) > 1:
|
||||||
i_say = f"根据以上的对话,总结文章{os.path.abspath(fp)}的主要内容。"
|
i_say = f"根据以上的对话,总结文章{os.path.abspath(fp)}的主要内容。"
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=i_say,
|
inputs=i_say,
|
||||||
inputs_show_user=i_say,
|
inputs_show_user=i_say,
|
||||||
llm_kwargs=llm_kwargs,
|
llm_kwargs=llm_kwargs,
|
||||||
chatbot=chatbot,
|
chatbot=chatbot,
|
||||||
history=this_paper_history,
|
history=this_paper_history,
|
||||||
sys_prompt="总结文章。"
|
sys_prompt="总结文章。"
|
||||||
)
|
)
|
||||||
|
|||||||
@@ -53,7 +53,7 @@ class PaperFileGroup():
|
|||||||
def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
|
def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
|
||||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
|
|
||||||
# <-------- 读取Markdown文件,删除其中的所有注释 ---------->
|
# <-------- 读取Markdown文件,删除其中的所有注释 ---------->
|
||||||
pfg = PaperFileGroup()
|
pfg = PaperFileGroup()
|
||||||
|
|
||||||
for index, fp in enumerate(file_manifest):
|
for index, fp in enumerate(file_manifest):
|
||||||
@@ -63,23 +63,23 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
pfg.file_paths.append(fp)
|
pfg.file_paths.append(fp)
|
||||||
pfg.file_contents.append(file_content)
|
pfg.file_contents.append(file_content)
|
||||||
|
|
||||||
# <-------- 拆分过长的Markdown文件 ---------->
|
# <-------- 拆分过长的Markdown文件 ---------->
|
||||||
pfg.run_file_split(max_token_limit=1500)
|
pfg.run_file_split(max_token_limit=1500)
|
||||||
n_split = len(pfg.sp_file_contents)
|
n_split = len(pfg.sp_file_contents)
|
||||||
|
|
||||||
# <-------- 多线程翻译开始 ---------->
|
# <-------- 多线程翻译开始 ---------->
|
||||||
if language == 'en->zh':
|
if language == 'en->zh':
|
||||||
inputs_array = ["This is a Markdown file, translate it into Chinese, do not modify any existing Markdown commands:" +
|
inputs_array = ["This is a Markdown file, translate it into Chinese, do not modify any existing Markdown commands:" +
|
||||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||||
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
||||||
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
||||||
elif language == 'zh->en':
|
elif language == 'zh->en':
|
||||||
inputs_array = [f"This is a Markdown file, translate it into English, do not modify any existing Markdown commands:" +
|
inputs_array = [f"This is a Markdown file, translate it into English, do not modify any existing Markdown commands:" +
|
||||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||||
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
||||||
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
||||||
else:
|
else:
|
||||||
inputs_array = [f"This is a Markdown file, translate it into {language}, do not modify any existing Markdown commands, only answer me with translated results:" +
|
inputs_array = [f"This is a Markdown file, translate it into {language}, do not modify any existing Markdown commands, only answer me with translated results:" +
|
||||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||||
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
||||||
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
||||||
@@ -103,7 +103,7 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
except:
|
except:
|
||||||
logging.error(trimmed_format_exc())
|
logging.error(trimmed_format_exc())
|
||||||
|
|
||||||
# <-------- 整理结果,退出 ---------->
|
# <-------- 整理结果,退出 ---------->
|
||||||
create_report_file_name = gen_time_str() + f"-chatgpt.md"
|
create_report_file_name = gen_time_str() + f"-chatgpt.md"
|
||||||
res = write_history_to_file(gpt_response_collection, file_basename=create_report_file_name)
|
res = write_history_to_file(gpt_response_collection, file_basename=create_report_file_name)
|
||||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||||
@@ -255,7 +255,7 @@ def Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history,
|
|||||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}")
|
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}")
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
return
|
return
|
||||||
|
|
||||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||||
language = plugin_kwargs.get("advanced_arg", 'Chinese')
|
language = plugin_kwargs.get("advanced_arg", 'Chinese')
|
||||||
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language=language)
|
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language=language)
|
||||||
@@ -17,7 +17,7 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
file_content, page_one = read_and_clean_pdf_text(file_name) # (尝试)按照章节切割PDF
|
file_content, page_one = read_and_clean_pdf_text(file_name) # (尝试)按照章节切割PDF
|
||||||
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||||
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||||
|
|
||||||
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
||||||
|
|
||||||
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
||||||
@@ -25,7 +25,7 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=str(page_one), limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model'])
|
page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=str(page_one), limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model'])
|
||||||
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
||||||
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
||||||
|
|
||||||
############################## <第 1 步,从摘要中提取高价值信息,放到history中> ##################################
|
############################## <第 1 步,从摘要中提取高价值信息,放到history中> ##################################
|
||||||
final_results = []
|
final_results = []
|
||||||
final_results.append(paper_meta)
|
final_results.append(paper_meta)
|
||||||
@@ -44,10 +44,10 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} Chinese characters: {paper_fragments[i]}"
|
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} Chinese characters: {paper_fragments[i]}"
|
||||||
i_say_show_user = f"[{i+1}/{n_fragment}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} Chinese characters: {paper_fragments[i][:200]}"
|
i_say_show_user = f"[{i+1}/{n_fragment}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} Chinese characters: {paper_fragments[i][:200]}"
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
|
||||||
llm_kwargs, chatbot,
|
llm_kwargs, chatbot,
|
||||||
history=["The main idea of the previous section is?", last_iteration_result], # 迭代上一次的结果
|
history=["The main idea of the previous section is?", last_iteration_result], # 迭代上一次的结果
|
||||||
sys_prompt="Extract the main idea of this section with Chinese." # 提示
|
sys_prompt="Extract the main idea of this section with Chinese." # 提示
|
||||||
)
|
)
|
||||||
iteration_results.append(gpt_say)
|
iteration_results.append(gpt_say)
|
||||||
last_iteration_result = gpt_say
|
last_iteration_result = gpt_say
|
||||||
|
|
||||||
@@ -67,15 +67,15 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
- (2):What are the past methods? What are the problems with them? Is the approach well motivated?
|
- (2):What are the past methods? What are the problems with them? Is the approach well motivated?
|
||||||
- (3):What is the research methodology proposed in this paper?
|
- (3):What is the research methodology proposed in this paper?
|
||||||
- (4):On what task and what performance is achieved by the methods in this paper? Can the performance support their goals?
|
- (4):On what task and what performance is achieved by the methods in this paper? Can the performance support their goals?
|
||||||
Follow the format of the output that follows:
|
Follow the format of the output that follows:
|
||||||
1. Title: xxx\n\n
|
1. Title: xxx\n\n
|
||||||
2. Authors: xxx\n\n
|
2. Authors: xxx\n\n
|
||||||
3. Affiliation: xxx\n\n
|
3. Affiliation: xxx\n\n
|
||||||
4. Keywords: xxx\n\n
|
4. Keywords: xxx\n\n
|
||||||
5. Urls: xxx or xxx , xxx \n\n
|
5. Urls: xxx or xxx , xxx \n\n
|
||||||
6. Summary: \n\n
|
6. Summary: \n\n
|
||||||
- (1):xxx;\n
|
- (1):xxx;\n
|
||||||
- (2):xxx;\n
|
- (2):xxx;\n
|
||||||
- (3):xxx;\n
|
- (3):xxx;\n
|
||||||
- (4):xxx.\n\n
|
- (4):xxx.\n\n
|
||||||
Be sure to use Chinese answers (proper nouns need to be marked in English), statements as concise and academic as possible,
|
Be sure to use Chinese answers (proper nouns need to be marked in English), statements as concise and academic as possible,
|
||||||
@@ -85,8 +85,8 @@ do not have too much repetitive information, numerical values using the original
|
|||||||
file_write_buffer.extend(final_results)
|
file_write_buffer.extend(final_results)
|
||||||
i_say, final_results = input_clipping(i_say, final_results, max_token_limit=2000)
|
i_say, final_results = input_clipping(i_say, final_results, max_token_limit=2000)
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=i_say, inputs_show_user='开始最终总结',
|
inputs=i_say, inputs_show_user='开始最终总结',
|
||||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=final_results,
|
llm_kwargs=llm_kwargs, chatbot=chatbot, history=final_results,
|
||||||
sys_prompt= f"Extract the main idea of this paper with less than {NUM_OF_WORD} Chinese characters"
|
sys_prompt= f"Extract the main idea of this paper with less than {NUM_OF_WORD} Chinese characters"
|
||||||
)
|
)
|
||||||
final_results.append(gpt_say)
|
final_results.append(gpt_say)
|
||||||
@@ -114,8 +114,8 @@ def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
try:
|
try:
|
||||||
import fitz
|
import fitz
|
||||||
except:
|
except:
|
||||||
report_exception(chatbot, history,
|
report_exception(chatbot, history,
|
||||||
a = f"解析项目: {txt}",
|
a = f"解析项目: {txt}",
|
||||||
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
|
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
return
|
return
|
||||||
@@ -134,7 +134,7 @@ def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
|
|
||||||
# 搜索需要处理的文件清单
|
# 搜索需要处理的文件清单
|
||||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)]
|
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)]
|
||||||
|
|
||||||
# 如果没找到任何文件
|
# 如果没找到任何文件
|
||||||
if len(file_manifest) == 0:
|
if len(file_manifest) == 0:
|
||||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex或.pdf文件: {txt}")
|
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex或.pdf文件: {txt}")
|
||||||
|
|||||||
@@ -85,10 +85,10 @@ def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbo
|
|||||||
msg = '正常'
|
msg = '正常'
|
||||||
# ** gpt request **
|
# ** gpt request **
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=i_say,
|
inputs=i_say,
|
||||||
inputs_show_user=i_say_show_user,
|
inputs_show_user=i_say_show_user,
|
||||||
llm_kwargs=llm_kwargs,
|
llm_kwargs=llm_kwargs,
|
||||||
chatbot=chatbot,
|
chatbot=chatbot,
|
||||||
history=[],
|
history=[],
|
||||||
sys_prompt="总结文章。"
|
sys_prompt="总结文章。"
|
||||||
) # 带超时倒计时
|
) # 带超时倒计时
|
||||||
@@ -106,10 +106,10 @@ def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbo
|
|||||||
msg = '正常'
|
msg = '正常'
|
||||||
# ** gpt request **
|
# ** gpt request **
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=i_say,
|
inputs=i_say,
|
||||||
inputs_show_user=i_say,
|
inputs_show_user=i_say,
|
||||||
llm_kwargs=llm_kwargs,
|
llm_kwargs=llm_kwargs,
|
||||||
chatbot=chatbot,
|
chatbot=chatbot,
|
||||||
history=history,
|
history=history,
|
||||||
sys_prompt="总结文章。"
|
sys_prompt="总结文章。"
|
||||||
) # 带超时倒计时
|
) # 带超时倒计时
|
||||||
@@ -138,8 +138,8 @@ def 批量总结PDF文档pdfminer(txt, llm_kwargs, plugin_kwargs, chatbot, histo
|
|||||||
try:
|
try:
|
||||||
import pdfminer, bs4
|
import pdfminer, bs4
|
||||||
except:
|
except:
|
||||||
report_exception(chatbot, history,
|
report_exception(chatbot, history,
|
||||||
a = f"解析项目: {txt}",
|
a = f"解析项目: {txt}",
|
||||||
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pdfminer beautifulsoup4```。")
|
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pdfminer beautifulsoup4```。")
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
return
|
return
|
||||||
|
|||||||
@@ -76,8 +76,8 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
success_mmd, file_manifest_mmd, _ = get_files_from_everything(txt, type='.mmd')
|
success_mmd, file_manifest_mmd, _ = get_files_from_everything(txt, type='.mmd')
|
||||||
success = success or success_mmd
|
success = success or success_mmd
|
||||||
file_manifest += file_manifest_mmd
|
file_manifest += file_manifest_mmd
|
||||||
chatbot.append(["文件列表:", ", ".join([e.split('/')[-1] for e in file_manifest])]);
|
chatbot.append(["文件列表:", ", ".join([e.split('/')[-1] for e in file_manifest])]);
|
||||||
yield from update_ui( chatbot=chatbot, history=history)
|
yield from update_ui( chatbot=chatbot, history=history)
|
||||||
# 检测输入参数,如没有给定输入参数,直接退出
|
# 检测输入参数,如没有给定输入参数,直接退出
|
||||||
if not success:
|
if not success:
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
|
|||||||
@@ -68,7 +68,7 @@ def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwa
|
|||||||
with open(grobid_json_res, 'w+', encoding='utf8') as f:
|
with open(grobid_json_res, 'w+', encoding='utf8') as f:
|
||||||
f.write(json.dumps(article_dict, indent=4, ensure_ascii=False))
|
f.write(json.dumps(article_dict, indent=4, ensure_ascii=False))
|
||||||
promote_file_to_downloadzone(grobid_json_res, chatbot=chatbot)
|
promote_file_to_downloadzone(grobid_json_res, chatbot=chatbot)
|
||||||
|
|
||||||
if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
|
if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
|
||||||
yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG)
|
yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG)
|
||||||
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
||||||
@@ -97,7 +97,7 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
|
|
||||||
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
||||||
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
||||||
|
|
||||||
# 单线,获取文章meta信息
|
# 单线,获取文章meta信息
|
||||||
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}",
|
inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}",
|
||||||
@@ -121,7 +121,7 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
)
|
)
|
||||||
gpt_response_collection_md = copy.deepcopy(gpt_response_collection)
|
gpt_response_collection_md = copy.deepcopy(gpt_response_collection)
|
||||||
# 整理报告的格式
|
# 整理报告的格式
|
||||||
for i,k in enumerate(gpt_response_collection_md):
|
for i,k in enumerate(gpt_response_collection_md):
|
||||||
if i%2==0:
|
if i%2==0:
|
||||||
gpt_response_collection_md[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection_md)//2}]: \n\n {paper_fragments[i//2].replace('#', '')} \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection_md)//2}]:\n "
|
gpt_response_collection_md[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection_md)//2}]: \n\n {paper_fragments[i//2].replace('#', '')} \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection_md)//2}]:\n "
|
||||||
else:
|
else:
|
||||||
@@ -139,18 +139,18 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
|
|
||||||
# write html
|
# write html
|
||||||
try:
|
try:
|
||||||
ch = construct_html()
|
ch = construct_html()
|
||||||
orig = ""
|
orig = ""
|
||||||
trans = ""
|
trans = ""
|
||||||
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
|
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
|
||||||
for i,k in enumerate(gpt_response_collection_html):
|
for i,k in enumerate(gpt_response_collection_html):
|
||||||
if i%2==0:
|
if i%2==0:
|
||||||
gpt_response_collection_html[i] = paper_fragments[i//2].replace('#', '')
|
gpt_response_collection_html[i] = paper_fragments[i//2].replace('#', '')
|
||||||
else:
|
else:
|
||||||
gpt_response_collection_html[i] = gpt_response_collection_html[i]
|
gpt_response_collection_html[i] = gpt_response_collection_html[i]
|
||||||
final = ["论文概况", paper_meta_info.replace('# ', '### '), "二、论文翻译", ""]
|
final = ["论文概况", paper_meta_info.replace('# ', '### '), "二、论文翻译", ""]
|
||||||
final.extend(gpt_response_collection_html)
|
final.extend(gpt_response_collection_html)
|
||||||
for i, k in enumerate(final):
|
for i, k in enumerate(final):
|
||||||
if i%2==0:
|
if i%2==0:
|
||||||
orig = k
|
orig = k
|
||||||
if i%2==1:
|
if i%2==1:
|
||||||
|
|||||||
@@ -27,7 +27,7 @@ def eval_manim(code):
|
|||||||
|
|
||||||
class_name = get_class_name(code)
|
class_name = get_class_name(code)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
time_str = gen_time_str()
|
time_str = gen_time_str()
|
||||||
subprocess.check_output([sys.executable, '-c', f"from gpt_log.MyAnimation import {class_name}; {class_name}().render()"])
|
subprocess.check_output([sys.executable, '-c', f"from gpt_log.MyAnimation import {class_name}; {class_name}().render()"])
|
||||||
shutil.move(f'media/videos/1080p60/{class_name}.mp4', f'gpt_log/{class_name}-{time_str}.mp4')
|
shutil.move(f'media/videos/1080p60/{class_name}.mp4', f'gpt_log/{class_name}-{time_str}.mp4')
|
||||||
@@ -36,7 +36,7 @@ def eval_manim(code):
|
|||||||
output = e.output.decode()
|
output = e.output.decode()
|
||||||
print(f"Command returned non-zero exit status {e.returncode}: {output}.")
|
print(f"Command returned non-zero exit status {e.returncode}: {output}.")
|
||||||
return f"Evaluating python script failed: {e.output}."
|
return f"Evaluating python script failed: {e.output}."
|
||||||
except:
|
except:
|
||||||
print('generating mp4 failed')
|
print('generating mp4 failed')
|
||||||
return "Generating mp4 failed."
|
return "Generating mp4 failed."
|
||||||
|
|
||||||
@@ -45,7 +45,7 @@ def get_code_block(reply):
|
|||||||
import re
|
import re
|
||||||
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
|
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
|
||||||
matches = re.findall(pattern, reply) # find all code blocks in text
|
matches = re.findall(pattern, reply) # find all code blocks in text
|
||||||
if len(matches) != 1:
|
if len(matches) != 1:
|
||||||
raise RuntimeError("GPT is not generating proper code.")
|
raise RuntimeError("GPT is not generating proper code.")
|
||||||
return matches[0].strip('python') # code block
|
return matches[0].strip('python') # code block
|
||||||
|
|
||||||
@@ -61,7 +61,7 @@ def 动画生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
|
|||||||
user_request 当前用户的请求信息(IP地址等)
|
user_request 当前用户的请求信息(IP地址等)
|
||||||
"""
|
"""
|
||||||
# 清空历史,以免输入溢出
|
# 清空历史,以免输入溢出
|
||||||
history = []
|
history = []
|
||||||
|
|
||||||
# 基本信息:功能、贡献者
|
# 基本信息:功能、贡献者
|
||||||
chatbot.append([
|
chatbot.append([
|
||||||
@@ -73,24 +73,24 @@ def 动画生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
|
|||||||
# 尝试导入依赖, 如果缺少依赖, 则给出安装建议
|
# 尝试导入依赖, 如果缺少依赖, 则给出安装建议
|
||||||
dep_ok = yield from inspect_dependency(chatbot=chatbot, history=history) # 刷新界面
|
dep_ok = yield from inspect_dependency(chatbot=chatbot, history=history) # 刷新界面
|
||||||
if not dep_ok: return
|
if not dep_ok: return
|
||||||
|
|
||||||
# 输入
|
# 输入
|
||||||
i_say = f'Generate a animation to show: ' + txt
|
i_say = f'Generate a animation to show: ' + txt
|
||||||
demo = ["Here is some examples of manim", examples_of_manim()]
|
demo = ["Here is some examples of manim", examples_of_manim()]
|
||||||
_, demo = input_clipping(inputs="", history=demo, max_token_limit=2560)
|
_, demo = input_clipping(inputs="", history=demo, max_token_limit=2560)
|
||||||
# 开始
|
# 开始
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=i_say, inputs_show_user=i_say,
|
inputs=i_say, inputs_show_user=i_say,
|
||||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=demo,
|
llm_kwargs=llm_kwargs, chatbot=chatbot, history=demo,
|
||||||
sys_prompt=
|
sys_prompt=
|
||||||
r"Write a animation script with 3blue1brown's manim. "+
|
r"Write a animation script with 3blue1brown's manim. "+
|
||||||
r"Please begin with `from manim import *`. " +
|
r"Please begin with `from manim import *`. " +
|
||||||
r"Answer me with a code block wrapped by ```."
|
r"Answer me with a code block wrapped by ```."
|
||||||
)
|
)
|
||||||
chatbot.append(["开始生成动画", "..."])
|
chatbot.append(["开始生成动画", "..."])
|
||||||
history.extend([i_say, gpt_say])
|
history.extend([i_say, gpt_say])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||||
|
|
||||||
# 将代码转为动画
|
# 将代码转为动画
|
||||||
code = get_code_block(gpt_say)
|
code = get_code_block(gpt_say)
|
||||||
res = eval_manim(code)
|
res = eval_manim(code)
|
||||||
|
|||||||
@@ -15,7 +15,7 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
|||||||
file_content, page_one = read_and_clean_pdf_text(file_name) # (尝试)按照章节切割PDF
|
file_content, page_one = read_and_clean_pdf_text(file_name) # (尝试)按照章节切割PDF
|
||||||
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||||
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||||
|
|
||||||
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
||||||
|
|
||||||
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
||||||
@@ -23,7 +23,7 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
|||||||
page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=str(page_one), limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model'])
|
page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=str(page_one), limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model'])
|
||||||
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
||||||
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
||||||
|
|
||||||
############################## <第 1 步,从摘要中提取高价值信息,放到history中> ##################################
|
############################## <第 1 步,从摘要中提取高价值信息,放到history中> ##################################
|
||||||
final_results = []
|
final_results = []
|
||||||
final_results.append(paper_meta)
|
final_results.append(paper_meta)
|
||||||
@@ -42,10 +42,10 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
|||||||
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i]}"
|
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i]}"
|
||||||
i_say_show_user = f"[{i+1}/{n_fragment}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i][:200]} ...."
|
i_say_show_user = f"[{i+1}/{n_fragment}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i][:200]} ...."
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
|
||||||
llm_kwargs, chatbot,
|
llm_kwargs, chatbot,
|
||||||
history=["The main idea of the previous section is?", last_iteration_result], # 迭代上一次的结果
|
history=["The main idea of the previous section is?", last_iteration_result], # 迭代上一次的结果
|
||||||
sys_prompt="Extract the main idea of this section, answer me with Chinese." # 提示
|
sys_prompt="Extract the main idea of this section, answer me with Chinese." # 提示
|
||||||
)
|
)
|
||||||
iteration_results.append(gpt_say)
|
iteration_results.append(gpt_say)
|
||||||
last_iteration_result = gpt_say
|
last_iteration_result = gpt_say
|
||||||
|
|
||||||
@@ -76,8 +76,8 @@ def 理解PDF文档内容标准文件输入(txt, llm_kwargs, plugin_kwargs, chat
|
|||||||
try:
|
try:
|
||||||
import fitz
|
import fitz
|
||||||
except:
|
except:
|
||||||
report_exception(chatbot, history,
|
report_exception(chatbot, history,
|
||||||
a = f"解析项目: {txt}",
|
a = f"解析项目: {txt}",
|
||||||
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
|
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
return
|
return
|
||||||
|
|||||||
@@ -16,7 +16,7 @@ def 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
|||||||
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
|
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
if not fast_debug:
|
if not fast_debug:
|
||||||
msg = '正常'
|
msg = '正常'
|
||||||
# ** gpt request **
|
# ** gpt request **
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
@@ -27,7 +27,7 @@ def 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
|||||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||||
if not fast_debug: time.sleep(2)
|
if not fast_debug: time.sleep(2)
|
||||||
|
|
||||||
if not fast_debug:
|
if not fast_debug:
|
||||||
res = write_history_to_file(history)
|
res = write_history_to_file(history)
|
||||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||||
chatbot.append(("完成了吗?", res))
|
chatbot.append(("完成了吗?", res))
|
||||||
|
|||||||
@@ -179,15 +179,15 @@ def 解析历史输入(history,llm_kwargs,file_manifest,chatbot,plugin_kwargs):
|
|||||||
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words in Chinese: {txt[i]}"
|
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words in Chinese: {txt[i]}"
|
||||||
i_say_show_user = f"[{i+1}/{n_txt}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {txt[i][:200]} ...."
|
i_say_show_user = f"[{i+1}/{n_txt}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {txt[i][:200]} ...."
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
|
||||||
llm_kwargs, chatbot,
|
llm_kwargs, chatbot,
|
||||||
history=["The main content of the previous section is?", last_iteration_result], # 迭代上一次的结果
|
history=["The main content of the previous section is?", last_iteration_result], # 迭代上一次的结果
|
||||||
sys_prompt="Extracts the main content from the text section where it is located for graphing purposes, answer me with Chinese." # 提示
|
sys_prompt="Extracts the main content from the text section where it is located for graphing purposes, answer me with Chinese." # 提示
|
||||||
)
|
)
|
||||||
results.append(gpt_say)
|
results.append(gpt_say)
|
||||||
last_iteration_result = gpt_say
|
last_iteration_result = gpt_say
|
||||||
############################## <第 2 步,根据整理的摘要选择图表类型> ##################################
|
############################## <第 2 步,根据整理的摘要选择图表类型> ##################################
|
||||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||||
gpt_say = plugin_kwargs.get("advanced_arg", "") #将图表类型参数赋值为插件参数
|
gpt_say = plugin_kwargs.get("advanced_arg", "") #将图表类型参数赋值为插件参数
|
||||||
results_txt = '\n'.join(results) #合并摘要
|
results_txt = '\n'.join(results) #合并摘要
|
||||||
if gpt_say not in ['1','2','3','4','5','6','7','8','9']: #如插件参数不正确则使用对话模型判断
|
if gpt_say not in ['1','2','3','4','5','6','7','8','9']: #如插件参数不正确则使用对话模型判断
|
||||||
i_say_show_user = f'接下来将判断适合的图表类型,如连续3次判断失败将会使用流程图进行绘制'; gpt_say = "[Local Message] 收到。" # 用户提示
|
i_say_show_user = f'接下来将判断适合的图表类型,如连续3次判断失败将会使用流程图进行绘制'; gpt_say = "[Local Message] 收到。" # 用户提示
|
||||||
@@ -198,7 +198,7 @@ def 解析历史输入(history,llm_kwargs,file_manifest,chatbot,plugin_kwargs):
|
|||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=i_say,
|
inputs=i_say,
|
||||||
inputs_show_user=i_say_show_user,
|
inputs_show_user=i_say_show_user,
|
||||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||||
sys_prompt=""
|
sys_prompt=""
|
||||||
)
|
)
|
||||||
if gpt_say in ['1','2','3','4','5','6','7','8','9']: #判断返回是否正确
|
if gpt_say in ['1','2','3','4','5','6','7','8','9']: #判断返回是否正确
|
||||||
@@ -228,12 +228,12 @@ def 解析历史输入(history,llm_kwargs,file_manifest,chatbot,plugin_kwargs):
|
|||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=i_say,
|
inputs=i_say,
|
||||||
inputs_show_user=i_say_show_user,
|
inputs_show_user=i_say_show_user,
|
||||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||||
sys_prompt=""
|
sys_prompt=""
|
||||||
)
|
)
|
||||||
history.append(gpt_say)
|
history.append(gpt_say)
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||||
|
|
||||||
@CatchException
|
@CatchException
|
||||||
def 生成多种Mermaid图表(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
def 生成多种Mermaid图表(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||||
"""
|
"""
|
||||||
@@ -249,11 +249,11 @@ def 生成多种Mermaid图表(txt, llm_kwargs, plugin_kwargs, chatbot, history,
|
|||||||
|
|
||||||
# 基本信息:功能、贡献者
|
# 基本信息:功能、贡献者
|
||||||
chatbot.append([
|
chatbot.append([
|
||||||
"函数插件功能?",
|
"函数插件功能?",
|
||||||
"根据当前聊天历史或指定的路径文件(文件内容优先)绘制多种mermaid图表,将会由对话模型首先判断适合的图表类型,随后绘制图表。\
|
"根据当前聊天历史或指定的路径文件(文件内容优先)绘制多种mermaid图表,将会由对话模型首先判断适合的图表类型,随后绘制图表。\
|
||||||
\n您也可以使用插件参数指定绘制的图表类型,函数插件贡献者: Menghuan1918"])
|
\n您也可以使用插件参数指定绘制的图表类型,函数插件贡献者: Menghuan1918"])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
if os.path.exists(txt): #如输入区无内容则直接解析历史记录
|
if os.path.exists(txt): #如输入区无内容则直接解析历史记录
|
||||||
from crazy_functions.pdf_fns.parse_word import extract_text_from_files
|
from crazy_functions.pdf_fns.parse_word import extract_text_from_files
|
||||||
file_exist, final_result, page_one, file_manifest, excption = extract_text_from_files(txt, chatbot, history)
|
file_exist, final_result, page_one, file_manifest, excption = extract_text_from_files(txt, chatbot, history)
|
||||||
@@ -264,15 +264,15 @@ def 生成多种Mermaid图表(txt, llm_kwargs, plugin_kwargs, chatbot, history,
|
|||||||
|
|
||||||
if excption != "":
|
if excption != "":
|
||||||
if excption == "word":
|
if excption == "word":
|
||||||
report_exception(chatbot, history,
|
report_exception(chatbot, history,
|
||||||
a = f"解析项目: {txt}",
|
a = f"解析项目: {txt}",
|
||||||
b = f"找到了.doc文件,但是该文件格式不被支持,请先转化为.docx格式。")
|
b = f"找到了.doc文件,但是该文件格式不被支持,请先转化为.docx格式。")
|
||||||
|
|
||||||
elif excption == "pdf":
|
elif excption == "pdf":
|
||||||
report_exception(chatbot, history,
|
report_exception(chatbot, history,
|
||||||
a = f"解析项目: {txt}",
|
a = f"解析项目: {txt}",
|
||||||
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
|
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
|
||||||
|
|
||||||
elif excption == "word_pip":
|
elif excption == "word_pip":
|
||||||
report_exception(chatbot, history,
|
report_exception(chatbot, history,
|
||||||
a=f"解析项目: {txt}",
|
a=f"解析项目: {txt}",
|
||||||
|
|||||||
@@ -9,7 +9,7 @@ install_msg ="""
|
|||||||
|
|
||||||
3. python -m pip install unstructured[all-docs] --upgrade
|
3. python -m pip install unstructured[all-docs] --upgrade
|
||||||
|
|
||||||
4. python -c 'import nltk; nltk.download("punkt")'
|
4. python -c 'import nltk; nltk.download("punkt")'
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@CatchException
|
@CatchException
|
||||||
@@ -56,7 +56,7 @@ def 知识库文件注入(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
chatbot.append(["没有找到任何可读取文件", "当前支持的格式包括: txt, md, docx, pptx, pdf, json等"])
|
chatbot.append(["没有找到任何可读取文件", "当前支持的格式包括: txt, md, docx, pptx, pdf, json等"])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
return
|
return
|
||||||
|
|
||||||
# < -------------------预热文本向量化模组--------------- >
|
# < -------------------预热文本向量化模组--------------- >
|
||||||
chatbot.append(['<br/>'.join(file_manifest), "正在预热文本向量化模组, 如果是第一次运行, 将消耗较长时间下载中文向量化模型..."])
|
chatbot.append(['<br/>'.join(file_manifest), "正在预热文本向量化模组, 如果是第一次运行, 将消耗较长时间下载中文向量化模型..."])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
@@ -109,8 +109,8 @@ def 读取知识库作答(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
chatbot.append((txt, f'[知识库 {kai_id}] ' + prompt))
|
chatbot.append((txt, f'[知识库 {kai_id}] ' + prompt))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=prompt, inputs_show_user=txt,
|
inputs=prompt, inputs_show_user=txt,
|
||||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||||
sys_prompt=system_prompt
|
sys_prompt=system_prompt
|
||||||
)
|
)
|
||||||
history.extend((prompt, gpt_say))
|
history.extend((prompt, gpt_say))
|
||||||
|
|||||||
@@ -40,10 +40,10 @@ def scrape_text(url, proxies) -> str:
|
|||||||
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36',
|
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36',
|
||||||
'Content-Type': 'text/plain',
|
'Content-Type': 'text/plain',
|
||||||
}
|
}
|
||||||
try:
|
try:
|
||||||
response = requests.get(url, headers=headers, proxies=proxies, timeout=8)
|
response = requests.get(url, headers=headers, proxies=proxies, timeout=8)
|
||||||
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding
|
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding
|
||||||
except:
|
except:
|
||||||
return "无法连接到该网页"
|
return "无法连接到该网页"
|
||||||
soup = BeautifulSoup(response.text, "html.parser")
|
soup = BeautifulSoup(response.text, "html.parser")
|
||||||
for script in soup(["script", "style"]):
|
for script in soup(["script", "style"]):
|
||||||
@@ -66,7 +66,7 @@ def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
user_request 当前用户的请求信息(IP地址等)
|
user_request 当前用户的请求信息(IP地址等)
|
||||||
"""
|
"""
|
||||||
history = [] # 清空历史,以免输入溢出
|
history = [] # 清空历史,以免输入溢出
|
||||||
chatbot.append((f"请结合互联网信息回答以下问题:{txt}",
|
chatbot.append((f"请结合互联网信息回答以下问题:{txt}",
|
||||||
"[Local Message] 请注意,您正在调用一个[函数插件]的模板,该模板可以实现ChatGPT联网信息综合。该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板。您若希望分享新的功能模组,请不吝PR!"))
|
"[Local Message] 请注意,您正在调用一个[函数插件]的模板,该模板可以实现ChatGPT联网信息综合。该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板。您若希望分享新的功能模组,请不吝PR!"))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||||
|
|
||||||
@@ -91,13 +91,13 @@ def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
# ------------- < 第3步:ChatGPT综合 > -------------
|
# ------------- < 第3步:ChatGPT综合 > -------------
|
||||||
i_say = f"从以上搜索结果中抽取信息,然后回答问题:{txt}"
|
i_say = f"从以上搜索结果中抽取信息,然后回答问题:{txt}"
|
||||||
i_say, history = input_clipping( # 裁剪输入,从最长的条目开始裁剪,防止爆token
|
i_say, history = input_clipping( # 裁剪输入,从最长的条目开始裁剪,防止爆token
|
||||||
inputs=i_say,
|
inputs=i_say,
|
||||||
history=history,
|
history=history,
|
||||||
max_token_limit=model_info[llm_kwargs['llm_model']]['max_token']*3//4
|
max_token_limit=model_info[llm_kwargs['llm_model']]['max_token']*3//4
|
||||||
)
|
)
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=i_say, inputs_show_user=i_say,
|
inputs=i_say, inputs_show_user=i_say,
|
||||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||||
sys_prompt="请从给定的若干条搜索结果中抽取信息,对最相关的两个搜索结果进行总结,然后回答问题。"
|
sys_prompt="请从给定的若干条搜索结果中抽取信息,对最相关的两个搜索结果进行总结,然后回答问题。"
|
||||||
)
|
)
|
||||||
chatbot[-1] = (i_say, gpt_say)
|
chatbot[-1] = (i_say, gpt_say)
|
||||||
|
|||||||
@@ -33,7 +33,7 @@ explain_msg = """
|
|||||||
- 「请调用插件,解析python源代码项目,代码我刚刚打包拖到上传区了」
|
- 「请调用插件,解析python源代码项目,代码我刚刚打包拖到上传区了」
|
||||||
- 「请问Transformer网络的结构是怎样的?」
|
- 「请问Transformer网络的结构是怎样的?」
|
||||||
|
|
||||||
2. 您可以打开插件下拉菜单以了解本项目的各种能力。
|
2. 您可以打开插件下拉菜单以了解本项目的各种能力。
|
||||||
|
|
||||||
3. 如果您使用「调用插件xxx」、「修改配置xxx」、「请问」等关键词,您的意图可以被识别的更准确。
|
3. 如果您使用「调用插件xxx」、「修改配置xxx」、「请问」等关键词,您的意图可以被识别的更准确。
|
||||||
|
|
||||||
@@ -67,7 +67,7 @@ class UserIntention(BaseModel):
|
|||||||
def chat(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention):
|
def chat(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention):
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=txt, inputs_show_user=txt,
|
inputs=txt, inputs_show_user=txt,
|
||||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||||
sys_prompt=system_prompt
|
sys_prompt=system_prompt
|
||||||
)
|
)
|
||||||
chatbot[-1] = [txt, gpt_say]
|
chatbot[-1] = [txt, gpt_say]
|
||||||
@@ -115,7 +115,7 @@ def 虚空终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
|
|||||||
if is_the_upload_folder(txt):
|
if is_the_upload_folder(txt):
|
||||||
state.set_state(chatbot=chatbot, key='has_provided_explaination', value=False)
|
state.set_state(chatbot=chatbot, key='has_provided_explaination', value=False)
|
||||||
appendix_msg = "\n\n**很好,您已经上传了文件**,现在请您描述您的需求。"
|
appendix_msg = "\n\n**很好,您已经上传了文件**,现在请您描述您的需求。"
|
||||||
|
|
||||||
if is_certain or (state.has_provided_explaination):
|
if is_certain or (state.has_provided_explaination):
|
||||||
# 如果意图明确,跳过提示环节
|
# 如果意图明确,跳过提示环节
|
||||||
state.set_state(chatbot=chatbot, key='has_provided_explaination', value=True)
|
state.set_state(chatbot=chatbot, key='has_provided_explaination', value=True)
|
||||||
@@ -152,7 +152,7 @@ def 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
analyze_res = run_gpt_fn(inputs, "")
|
analyze_res = run_gpt_fn(inputs, "")
|
||||||
try:
|
try:
|
||||||
user_intention = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
|
user_intention = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
|
||||||
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 意图={explain_intention_to_user[user_intention.intention_type]}",
|
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 意图={explain_intention_to_user[user_intention.intention_type]}",
|
||||||
except JsonStringError as e:
|
except JsonStringError as e:
|
||||||
yield from update_ui_lastest_msg(
|
yield from update_ui_lastest_msg(
|
||||||
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 失败 当前语言模型({llm_kwargs['llm_model']})不能理解您的意图", chatbot=chatbot, history=history, delay=0)
|
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 失败 当前语言模型({llm_kwargs['llm_model']})不能理解您的意图", chatbot=chatbot, history=history, delay=0)
|
||||||
@@ -161,7 +161,7 @@ def 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
yield from update_ui_lastest_msg(
|
yield from update_ui_lastest_msg(
|
||||||
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 意图={explain_intention_to_user[user_intention.intention_type]}",
|
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 意图={explain_intention_to_user[user_intention.intention_type]}",
|
||||||
chatbot=chatbot, history=history, delay=0)
|
chatbot=chatbot, history=history, delay=0)
|
||||||
|
|
||||||
# 用户意图: 修改本项目的配置
|
# 用户意图: 修改本项目的配置
|
||||||
|
|||||||
@@ -82,13 +82,13 @@ def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
|||||||
inputs=inputs, inputs_show_user=inputs_show_user, llm_kwargs=llm_kwargs, chatbot=chatbot,
|
inputs=inputs, inputs_show_user=inputs_show_user, llm_kwargs=llm_kwargs, chatbot=chatbot,
|
||||||
history=this_iteration_history_feed, # 迭代之前的分析
|
history=this_iteration_history_feed, # 迭代之前的分析
|
||||||
sys_prompt="你是一个程序架构分析师,正在分析一个项目的源代码。" + sys_prompt_additional)
|
sys_prompt="你是一个程序架构分析师,正在分析一个项目的源代码。" + sys_prompt_additional)
|
||||||
|
|
||||||
diagram_code = make_diagram(this_iteration_files, result, this_iteration_history_feed)
|
diagram_code = make_diagram(this_iteration_files, result, this_iteration_history_feed)
|
||||||
summary = "请用一句话概括这些文件的整体功能。\n\n" + diagram_code
|
summary = "请用一句话概括这些文件的整体功能。\n\n" + diagram_code
|
||||||
summary_result = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
summary_result = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=summary,
|
inputs=summary,
|
||||||
inputs_show_user=summary,
|
inputs_show_user=summary,
|
||||||
llm_kwargs=llm_kwargs,
|
llm_kwargs=llm_kwargs,
|
||||||
chatbot=chatbot,
|
chatbot=chatbot,
|
||||||
history=[i_say, result], # 迭代之前的分析
|
history=[i_say, result], # 迭代之前的分析
|
||||||
sys_prompt="你是一个程序架构分析师,正在分析一个项目的源代码。" + sys_prompt_additional)
|
sys_prompt="你是一个程序架构分析师,正在分析一个项目的源代码。" + sys_prompt_additional)
|
||||||
@@ -345,9 +345,12 @@ def 解析任意code项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
|||||||
pattern_except_suffix = [_.lstrip(" ^*.,").rstrip(" ,") for _ in txt_pattern.split(" ") if _ != "" and _.strip().startswith("^*.")]
|
pattern_except_suffix = [_.lstrip(" ^*.,").rstrip(" ,") for _ in txt_pattern.split(" ") if _ != "" and _.strip().startswith("^*.")]
|
||||||
pattern_except_suffix += ['zip', 'rar', '7z', 'tar', 'gz'] # 避免解析压缩文件
|
pattern_except_suffix += ['zip', 'rar', '7z', 'tar', 'gz'] # 避免解析压缩文件
|
||||||
# 将要忽略匹配的文件名(例如: ^README.md)
|
# 将要忽略匹配的文件名(例如: ^README.md)
|
||||||
pattern_except_name = [_.lstrip(" ^*,").rstrip(" ,").replace(".", "\.") for _ in txt_pattern.split(" ") if _ != "" and _.strip().startswith("^") and not _.strip().startswith("^*.")]
|
pattern_except_name = [_.lstrip(" ^*,").rstrip(" ,").replace(".", r"\.") # 移除左边通配符,移除右侧逗号,转义点号
|
||||||
|
for _ in txt_pattern.split(" ") # 以空格分割
|
||||||
|
if (_ != "" and _.strip().startswith("^") and not _.strip().startswith("^*.")) # ^开始,但不是^*.开始
|
||||||
|
]
|
||||||
# 生成正则表达式
|
# 生成正则表达式
|
||||||
pattern_except = '/[^/]+\.(' + "|".join(pattern_except_suffix) + ')$'
|
pattern_except = r'/[^/]+\.(' + "|".join(pattern_except_suffix) + ')$'
|
||||||
pattern_except += '|/(' + "|".join(pattern_except_name) + ')$' if pattern_except_name != [] else ''
|
pattern_except += '|/(' + "|".join(pattern_except_name) + ')$' if pattern_except_name != [] else ''
|
||||||
|
|
||||||
history.clear()
|
history.clear()
|
||||||
|
|||||||
@@ -20,8 +20,8 @@ def 同时问询(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
|
|||||||
# llm_kwargs['llm_model'] = 'chatglm&gpt-3.5-turbo&api2d-gpt-3.5-turbo' # 支持任意数量的llm接口,用&符号分隔
|
# llm_kwargs['llm_model'] = 'chatglm&gpt-3.5-turbo&api2d-gpt-3.5-turbo' # 支持任意数量的llm接口,用&符号分隔
|
||||||
llm_kwargs['llm_model'] = MULTI_QUERY_LLM_MODELS # 支持任意数量的llm接口,用&符号分隔
|
llm_kwargs['llm_model'] = MULTI_QUERY_LLM_MODELS # 支持任意数量的llm接口,用&符号分隔
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=txt, inputs_show_user=txt,
|
inputs=txt, inputs_show_user=txt,
|
||||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||||
sys_prompt=system_prompt,
|
sys_prompt=system_prompt,
|
||||||
retry_times_at_unknown_error=0
|
retry_times_at_unknown_error=0
|
||||||
)
|
)
|
||||||
@@ -52,8 +52,8 @@ def 同时问询_指定模型(txt, llm_kwargs, plugin_kwargs, chatbot, history,
|
|||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||||
|
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=txt, inputs_show_user=txt,
|
inputs=txt, inputs_show_user=txt,
|
||||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||||
sys_prompt=system_prompt,
|
sys_prompt=system_prompt,
|
||||||
retry_times_at_unknown_error=0
|
retry_times_at_unknown_error=0
|
||||||
)
|
)
|
||||||
|
|||||||
@@ -39,7 +39,7 @@ class AsyncGptTask():
|
|||||||
try:
|
try:
|
||||||
MAX_TOKEN_ALLO = 2560
|
MAX_TOKEN_ALLO = 2560
|
||||||
i_say, history = input_clipping(i_say, history, max_token_limit=MAX_TOKEN_ALLO)
|
i_say, history = input_clipping(i_say, history, max_token_limit=MAX_TOKEN_ALLO)
|
||||||
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, llm_kwargs=llm_kwargs, history=history, sys_prompt=sys_prompt,
|
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, llm_kwargs=llm_kwargs, history=history, sys_prompt=sys_prompt,
|
||||||
observe_window=observe_window[index], console_slience=True)
|
observe_window=observe_window[index], console_slience=True)
|
||||||
except ConnectionAbortedError as token_exceed_err:
|
except ConnectionAbortedError as token_exceed_err:
|
||||||
print('至少一个线程任务Token溢出而失败', e)
|
print('至少一个线程任务Token溢出而失败', e)
|
||||||
@@ -120,7 +120,7 @@ class InterviewAssistant(AliyunASR):
|
|||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
self.plugin_wd.feed()
|
self.plugin_wd.feed()
|
||||||
|
|
||||||
if self.event_on_result_chg.is_set():
|
if self.event_on_result_chg.is_set():
|
||||||
# called when some words have finished
|
# called when some words have finished
|
||||||
self.event_on_result_chg.clear()
|
self.event_on_result_chg.clear()
|
||||||
chatbot[-1] = list(chatbot[-1])
|
chatbot[-1] = list(chatbot[-1])
|
||||||
@@ -151,7 +151,7 @@ class InterviewAssistant(AliyunASR):
|
|||||||
# add gpt task 创建子线程请求gpt,避免线程阻塞
|
# add gpt task 创建子线程请求gpt,避免线程阻塞
|
||||||
history = chatbot2history(chatbot)
|
history = chatbot2history(chatbot)
|
||||||
self.agt.add_async_gpt_task(self.buffered_sentence, len(chatbot)-1, llm_kwargs, history, system_prompt)
|
self.agt.add_async_gpt_task(self.buffered_sentence, len(chatbot)-1, llm_kwargs, history, system_prompt)
|
||||||
|
|
||||||
self.buffered_sentence = ""
|
self.buffered_sentence = ""
|
||||||
chatbot.append(["[ 请讲话 ]", "[ 正在等您说完问题 ]"])
|
chatbot.append(["[ 请讲话 ]", "[ 正在等您说完问题 ]"])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|||||||
@@ -20,10 +20,10 @@ def get_meta_information(url, chatbot, history):
|
|||||||
proxies = get_conf('proxies')
|
proxies = get_conf('proxies')
|
||||||
headers = {
|
headers = {
|
||||||
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36',
|
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36',
|
||||||
'Accept-Encoding': 'gzip, deflate, br',
|
'Accept-Encoding': 'gzip, deflate, br',
|
||||||
'Accept-Language': 'en-US,en;q=0.9,zh-CN;q=0.8,zh;q=0.7',
|
'Accept-Language': 'en-US,en;q=0.9,zh-CN;q=0.8,zh;q=0.7',
|
||||||
'Cache-Control':'max-age=0',
|
'Cache-Control':'max-age=0',
|
||||||
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
|
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
|
||||||
'Connection': 'keep-alive'
|
'Connection': 'keep-alive'
|
||||||
}
|
}
|
||||||
try:
|
try:
|
||||||
@@ -95,7 +95,7 @@ def get_meta_information(url, chatbot, history):
|
|||||||
)
|
)
|
||||||
try: paper = next(search.results())
|
try: paper = next(search.results())
|
||||||
except: paper = None
|
except: paper = None
|
||||||
|
|
||||||
is_match = paper is not None and string_similar(title, paper.title) > 0.90
|
is_match = paper is not None and string_similar(title, paper.title) > 0.90
|
||||||
|
|
||||||
# 如果在Arxiv上匹配失败,检索文章的历史版本的题目
|
# 如果在Arxiv上匹配失败,检索文章的历史版本的题目
|
||||||
@@ -146,8 +146,8 @@ def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
import math
|
import math
|
||||||
from bs4 import BeautifulSoup
|
from bs4 import BeautifulSoup
|
||||||
except:
|
except:
|
||||||
report_exception(chatbot, history,
|
report_exception(chatbot, history,
|
||||||
a = f"解析项目: {txt}",
|
a = f"解析项目: {txt}",
|
||||||
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade beautifulsoup4 arxiv```。")
|
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade beautifulsoup4 arxiv```。")
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
return
|
return
|
||||||
@@ -163,7 +163,7 @@ def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
if len(meta_paper_info_list[:batchsize]) > 0:
|
if len(meta_paper_info_list[:batchsize]) > 0:
|
||||||
i_say = "下面是一些学术文献的数据,提取出以下内容:" + \
|
i_say = "下面是一些学术文献的数据,提取出以下内容:" + \
|
||||||
"1、英文题目;2、中文题目翻译;3、作者;4、arxiv公开(is_paper_in_arxiv);4、引用数量(cite);5、中文摘要翻译。" + \
|
"1、英文题目;2、中文题目翻译;3、作者;4、arxiv公开(is_paper_in_arxiv);4、引用数量(cite);5、中文摘要翻译。" + \
|
||||||
f"以下是信息源:{str(meta_paper_info_list[:batchsize])}"
|
f"以下是信息源:{str(meta_paper_info_list[:batchsize])}"
|
||||||
|
|
||||||
inputs_show_user = f"请分析此页面中出现的所有文章:{txt},这是第{batch+1}批"
|
inputs_show_user = f"请分析此页面中出现的所有文章:{txt},这是第{batch+1}批"
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
@@ -175,11 +175,11 @@ def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
history.extend([ f"第{batch+1}批", gpt_say ])
|
history.extend([ f"第{batch+1}批", gpt_say ])
|
||||||
meta_paper_info_list = meta_paper_info_list[batchsize:]
|
meta_paper_info_list = meta_paper_info_list[batchsize:]
|
||||||
|
|
||||||
chatbot.append(["状态?",
|
chatbot.append(["状态?",
|
||||||
"已经全部完成,您可以试试让AI写一个Related Works,例如您可以继续输入Write a \"Related Works\" section about \"你搜索的研究领域\" for me."])
|
"已经全部完成,您可以试试让AI写一个Related Works,例如您可以继续输入Write a \"Related Works\" section about \"你搜索的研究领域\" for me."])
|
||||||
msg = '正常'
|
msg = '正常'
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||||
path = write_history_to_file(history)
|
path = write_history_to_file(history)
|
||||||
promote_file_to_downloadzone(path, chatbot=chatbot)
|
promote_file_to_downloadzone(path, chatbot=chatbot)
|
||||||
chatbot.append(("完成了吗?", path));
|
chatbot.append(("完成了吗?", path));
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||||
|
|||||||
@@ -40,7 +40,7 @@ def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
"""
|
"""
|
||||||
history = [] # 清空历史,以免输入溢出
|
history = [] # 清空历史,以免输入溢出
|
||||||
chatbot.append((
|
chatbot.append((
|
||||||
"您正在调用插件:历史上的今天",
|
"您正在调用插件:历史上的今天",
|
||||||
"[Local Message] 请注意,您正在调用一个[函数插件]的模板,该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板(该函数只有20多行代码)。此外我们也提供可同步处理大量文件的多线程Demo供您参考。您若希望分享新的功能模组,请不吝PR!" + 高阶功能模板函数示意图))
|
"[Local Message] 请注意,您正在调用一个[函数插件]的模板,该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板(该函数只有20多行代码)。此外我们也提供可同步处理大量文件的多线程Demo供您参考。您若希望分享新的功能模组,请不吝PR!" + 高阶功能模板函数示意图))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||||
for i in range(5):
|
for i in range(5):
|
||||||
@@ -48,8 +48,8 @@ def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
currentDay = (datetime.date.today() + datetime.timedelta(days=i)).day
|
currentDay = (datetime.date.today() + datetime.timedelta(days=i)).day
|
||||||
i_say = f'历史中哪些事件发生在{currentMonth}月{currentDay}日?列举两条并发送相关图片。发送图片时,请使用Markdown,将Unsplash API中的PUT_YOUR_QUERY_HERE替换成描述该事件的一个最重要的单词。'
|
i_say = f'历史中哪些事件发生在{currentMonth}月{currentDay}日?列举两条并发送相关图片。发送图片时,请使用Markdown,将Unsplash API中的PUT_YOUR_QUERY_HERE替换成描述该事件的一个最重要的单词。'
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=i_say, inputs_show_user=i_say,
|
inputs=i_say, inputs_show_user=i_say,
|
||||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||||
sys_prompt="当你想发送一张照片时,请使用Markdown, 并且不要有反斜线, 不要用代码块。使用 Unsplash API (https://source.unsplash.com/1280x720/? < PUT_YOUR_QUERY_HERE >)。"
|
sys_prompt="当你想发送一张照片时,请使用Markdown, 并且不要有反斜线, 不要用代码块。使用 Unsplash API (https://source.unsplash.com/1280x720/? < PUT_YOUR_QUERY_HERE >)。"
|
||||||
)
|
)
|
||||||
chatbot[-1] = (i_say, gpt_say)
|
chatbot[-1] = (i_say, gpt_say)
|
||||||
@@ -84,15 +84,15 @@ def 测试图表渲染(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
|||||||
history = [] # 清空历史,以免输入溢出
|
history = [] # 清空历史,以免输入溢出
|
||||||
chatbot.append(("这是什么功能?", "一个测试mermaid绘制图表的功能,您可以在输入框中输入一些关键词,然后使用mermaid+llm绘制图表。"))
|
chatbot.append(("这是什么功能?", "一个测试mermaid绘制图表的功能,您可以在输入框中输入一些关键词,然后使用mermaid+llm绘制图表。"))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||||
|
|
||||||
if txt == "": txt = "空白的输入栏" # 调皮一下
|
if txt == "": txt = "空白的输入栏" # 调皮一下
|
||||||
|
|
||||||
i_say_show_user = f'请绘制有关“{txt}”的逻辑关系图。'
|
i_say_show_user = f'请绘制有关“{txt}”的逻辑关系图。'
|
||||||
i_say = PROMPT.format(subject=txt)
|
i_say = PROMPT.format(subject=txt)
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=i_say,
|
inputs=i_say,
|
||||||
inputs_show_user=i_say_show_user,
|
inputs_show_user=i_say_show_user,
|
||||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||||
sys_prompt=""
|
sys_prompt=""
|
||||||
)
|
)
|
||||||
history.append(i_say); history.append(gpt_say)
|
history.append(i_say); history.append(gpt_say)
|
||||||
|
|||||||
@@ -1,12 +1,12 @@
|
|||||||
## ===================================================
|
## ===================================================
|
||||||
# docker-compose.yml
|
# docker-compose.yml
|
||||||
## ===================================================
|
## ===================================================
|
||||||
# 1. 请在以下方案中选择任意一种,然后删除其他的方案
|
# 1. 请在以下方案中选择任意一种,然后删除其他的方案
|
||||||
# 2. 修改你选择的方案中的environment环境变量,详情请见github wiki或者config.py
|
# 2. 修改你选择的方案中的environment环境变量,详情请见github wiki或者config.py
|
||||||
# 3. 选择一种暴露服务端口的方法,并对相应的配置做出修改:
|
# 3. 选择一种暴露服务端口的方法,并对相应的配置做出修改:
|
||||||
# 【方法1: 适用于Linux,很方便,可惜windows不支持】与宿主的网络融合为一体,这个是默认配置
|
# 「方法1: 适用于Linux,很方便,可惜windows不支持」与宿主的网络融合为一体,这个是默认配置
|
||||||
# network_mode: "host"
|
# network_mode: "host"
|
||||||
# 【方法2: 适用于所有系统包括Windows和MacOS】端口映射,把容器的端口映射到宿主的端口(注意您需要先删除network_mode: "host",再追加以下内容)
|
# 「方法2: 适用于所有系统包括Windows和MacOS」端口映射,把容器的端口映射到宿主的端口(注意您需要先删除network_mode: "host",再追加以下内容)
|
||||||
# ports:
|
# ports:
|
||||||
# - "12345:12345" # 注意!12345必须与WEB_PORT环境变量相互对应
|
# - "12345:12345" # 注意!12345必须与WEB_PORT环境变量相互对应
|
||||||
# 4. 最后`docker-compose up`运行
|
# 4. 最后`docker-compose up`运行
|
||||||
@@ -25,7 +25,7 @@
|
|||||||
## ===================================================
|
## ===================================================
|
||||||
|
|
||||||
## ===================================================
|
## ===================================================
|
||||||
## 【方案零】 部署项目的全部能力(这个是包含cuda和latex的大型镜像。如果您网速慢、硬盘小或没有显卡,则不推荐使用这个)
|
## 「方案零」 部署项目的全部能力(这个是包含cuda和latex的大型镜像。如果您网速慢、硬盘小或没有显卡,则不推荐使用这个)
|
||||||
## ===================================================
|
## ===================================================
|
||||||
version: '3'
|
version: '3'
|
||||||
services:
|
services:
|
||||||
@@ -63,10 +63,10 @@ services:
|
|||||||
# count: 1
|
# count: 1
|
||||||
# capabilities: [gpu]
|
# capabilities: [gpu]
|
||||||
|
|
||||||
# 【WEB_PORT暴露方法1: 适用于Linux】与宿主的网络融合
|
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
||||||
network_mode: "host"
|
network_mode: "host"
|
||||||
|
|
||||||
# 【WEB_PORT暴露方法2: 适用于所有系统】端口映射
|
# 「WEB_PORT暴露方法2: 适用于所有系统」端口映射
|
||||||
# ports:
|
# ports:
|
||||||
# - "12345:12345" # 12345必须与WEB_PORT相互对应
|
# - "12345:12345" # 12345必须与WEB_PORT相互对应
|
||||||
|
|
||||||
@@ -75,10 +75,8 @@ services:
|
|||||||
bash -c "python3 -u main.py"
|
bash -c "python3 -u main.py"
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## ===================================================
|
## ===================================================
|
||||||
## 【方案一】 如果不需要运行本地模型(仅 chatgpt, azure, 星火, 千帆, claude 等在线大模型服务)
|
## 「方案一」 如果不需要运行本地模型(仅 chatgpt, azure, 星火, 千帆, claude 等在线大模型服务)
|
||||||
## ===================================================
|
## ===================================================
|
||||||
version: '3'
|
version: '3'
|
||||||
services:
|
services:
|
||||||
@@ -97,16 +95,16 @@ services:
|
|||||||
# DEFAULT_WORKER_NUM: ' 10 '
|
# DEFAULT_WORKER_NUM: ' 10 '
|
||||||
# AUTHENTICATION: ' [("username", "passwd"), ("username2", "passwd2")] '
|
# AUTHENTICATION: ' [("username", "passwd"), ("username2", "passwd2")] '
|
||||||
|
|
||||||
# 与宿主的网络融合
|
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
||||||
network_mode: "host"
|
network_mode: "host"
|
||||||
|
|
||||||
# 不使用代理网络拉取最新代码
|
# 启动命令
|
||||||
command: >
|
command: >
|
||||||
bash -c "python3 -u main.py"
|
bash -c "python3 -u main.py"
|
||||||
|
|
||||||
|
|
||||||
### ===================================================
|
### ===================================================
|
||||||
### 【方案二】 如果需要运行ChatGLM + Qwen + MOSS等本地模型
|
### 「方案二」 如果需要运行ChatGLM + Qwen + MOSS等本地模型
|
||||||
### ===================================================
|
### ===================================================
|
||||||
version: '3'
|
version: '3'
|
||||||
services:
|
services:
|
||||||
@@ -130,8 +128,10 @@ services:
|
|||||||
devices:
|
devices:
|
||||||
- /dev/nvidia0:/dev/nvidia0
|
- /dev/nvidia0:/dev/nvidia0
|
||||||
|
|
||||||
# 与宿主的网络融合
|
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
||||||
network_mode: "host"
|
network_mode: "host"
|
||||||
|
|
||||||
|
# 启动命令
|
||||||
command: >
|
command: >
|
||||||
bash -c "python3 -u main.py"
|
bash -c "python3 -u main.py"
|
||||||
|
|
||||||
@@ -139,8 +139,9 @@ services:
|
|||||||
# command: >
|
# command: >
|
||||||
# bash -c "pip install -r request_llms/requirements_qwen.txt && python3 -u main.py"
|
# bash -c "pip install -r request_llms/requirements_qwen.txt && python3 -u main.py"
|
||||||
|
|
||||||
|
|
||||||
### ===================================================
|
### ===================================================
|
||||||
### 【方案三】 如果需要运行ChatGPT + LLAMA + 盘古 + RWKV本地模型
|
### 「方案三」 如果需要运行ChatGPT + LLAMA + 盘古 + RWKV本地模型
|
||||||
### ===================================================
|
### ===================================================
|
||||||
version: '3'
|
version: '3'
|
||||||
services:
|
services:
|
||||||
@@ -164,16 +165,16 @@ services:
|
|||||||
devices:
|
devices:
|
||||||
- /dev/nvidia0:/dev/nvidia0
|
- /dev/nvidia0:/dev/nvidia0
|
||||||
|
|
||||||
# 与宿主的网络融合
|
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
||||||
network_mode: "host"
|
network_mode: "host"
|
||||||
|
|
||||||
# 不使用代理网络拉取最新代码
|
# 启动命令
|
||||||
command: >
|
command: >
|
||||||
python3 -u main.py
|
python3 -u main.py
|
||||||
|
|
||||||
|
|
||||||
## ===================================================
|
## ===================================================
|
||||||
## 【方案四】 ChatGPT + Latex
|
## 「方案四」 ChatGPT + Latex
|
||||||
## ===================================================
|
## ===================================================
|
||||||
version: '3'
|
version: '3'
|
||||||
services:
|
services:
|
||||||
@@ -190,16 +191,16 @@ services:
|
|||||||
DEFAULT_WORKER_NUM: ' 10 '
|
DEFAULT_WORKER_NUM: ' 10 '
|
||||||
WEB_PORT: ' 12303 '
|
WEB_PORT: ' 12303 '
|
||||||
|
|
||||||
# 与宿主的网络融合
|
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
||||||
network_mode: "host"
|
network_mode: "host"
|
||||||
|
|
||||||
# 不使用代理网络拉取最新代码
|
# 启动命令
|
||||||
command: >
|
command: >
|
||||||
bash -c "python3 -u main.py"
|
bash -c "python3 -u main.py"
|
||||||
|
|
||||||
|
|
||||||
## ===================================================
|
## ===================================================
|
||||||
## 【方案五】 ChatGPT + 语音助手 (请先阅读 docs/use_audio.md)
|
## 「方案五」 ChatGPT + 语音助手 (请先阅读 docs/use_audio.md)
|
||||||
## ===================================================
|
## ===================================================
|
||||||
version: '3'
|
version: '3'
|
||||||
services:
|
services:
|
||||||
@@ -223,9 +224,9 @@ services:
|
|||||||
# (无需填写) ALIYUN_ACCESSKEY: ' LTAI5q6BrFUzoRXVGUWnekh1 '
|
# (无需填写) ALIYUN_ACCESSKEY: ' LTAI5q6BrFUzoRXVGUWnekh1 '
|
||||||
# (无需填写) ALIYUN_SECRET: ' eHmI20AVWIaQZ0CiTD2bGQVsaP9i68 '
|
# (无需填写) ALIYUN_SECRET: ' eHmI20AVWIaQZ0CiTD2bGQVsaP9i68 '
|
||||||
|
|
||||||
# 与宿主的网络融合
|
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
||||||
network_mode: "host"
|
network_mode: "host"
|
||||||
|
|
||||||
# 不使用代理网络拉取最新代码
|
# 启动命令
|
||||||
command: >
|
command: >
|
||||||
bash -c "python3 -u main.py"
|
bash -c "python3 -u main.py"
|
||||||
|
|||||||
140
main.py
140
main.py
@@ -13,9 +13,20 @@ help_menu_description = \
|
|||||||
</br></br>如何语音对话: 请阅读Wiki
|
</br></br>如何语音对话: 请阅读Wiki
|
||||||
</br></br>如何临时更换API_KEY: 在输入区输入临时API_KEY后提交(网页刷新后失效)"""
|
</br></br>如何临时更换API_KEY: 在输入区输入临时API_KEY后提交(网页刷新后失效)"""
|
||||||
|
|
||||||
|
def enable_log(PATH_LOGGING):
|
||||||
|
import logging, uuid
|
||||||
|
admin_log_path = os.path.join(PATH_LOGGING, "admin")
|
||||||
|
os.makedirs(admin_log_path, exist_ok=True)
|
||||||
|
log_dir = os.path.join(admin_log_path, "chat_secrets.log")
|
||||||
|
try:logging.basicConfig(filename=log_dir, level=logging.INFO, encoding="utf-8", format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
||||||
|
except:logging.basicConfig(filename=log_dir, level=logging.INFO, format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
||||||
|
# Disable logging output from the 'httpx' logger
|
||||||
|
logging.getLogger("httpx").setLevel(logging.WARNING)
|
||||||
|
print(f"所有对话记录将自动保存在本地目录{log_dir}, 请注意自我隐私保护哦!")
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
if gr.__version__ not in ['3.32.8']:
|
if gr.__version__ not in ['3.32.9']:
|
||||||
raise ModuleNotFoundError("使用项目内置Gradio获取最优体验! 请运行 `pip install -r requirements.txt` 指令安装内置Gradio及其他依赖, 详情信息见requirements.txt.")
|
raise ModuleNotFoundError("使用项目内置Gradio获取最优体验! 请运行 `pip install -r requirements.txt` 指令安装内置Gradio及其他依赖, 详情信息见requirements.txt.")
|
||||||
from request_llms.bridge_all import predict
|
from request_llms.bridge_all import predict
|
||||||
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, load_chat_cookies, DummyWith
|
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, load_chat_cookies, DummyWith
|
||||||
@@ -23,25 +34,19 @@ def main():
|
|||||||
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION = get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION')
|
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION = get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION')
|
||||||
CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = get_conf('CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = get_conf('CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
||||||
ENABLE_AUDIO, AUTO_CLEAR_TXT, PATH_LOGGING, AVAIL_THEMES, THEME, ADD_WAIFU = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'PATH_LOGGING', 'AVAIL_THEMES', 'THEME', 'ADD_WAIFU')
|
ENABLE_AUDIO, AUTO_CLEAR_TXT, PATH_LOGGING, AVAIL_THEMES, THEME, ADD_WAIFU = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'PATH_LOGGING', 'AVAIL_THEMES', 'THEME', 'ADD_WAIFU')
|
||||||
DARK_MODE, NUM_CUSTOM_BASIC_BTN, SSL_KEYFILE, SSL_CERTFILE = get_conf('DARK_MODE', 'NUM_CUSTOM_BASIC_BTN', 'SSL_KEYFILE', 'SSL_CERTFILE')
|
NUM_CUSTOM_BASIC_BTN, SSL_KEYFILE, SSL_CERTFILE = get_conf('NUM_CUSTOM_BASIC_BTN', 'SSL_KEYFILE', 'SSL_CERTFILE')
|
||||||
INIT_SYS_PROMPT = get_conf('INIT_SYS_PROMPT')
|
DARK_MODE, INIT_SYS_PROMPT, ADD_WAIFU = get_conf('DARK_MODE', 'INIT_SYS_PROMPT', 'ADD_WAIFU')
|
||||||
|
|
||||||
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
||||||
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
||||||
from check_proxy import get_current_version
|
from check_proxy import get_current_version
|
||||||
from themes.theme import adjust_theme, advanced_css, theme_declaration, js_code_clear, js_code_reset, js_code_show_or_hide, js_code_show_or_hide_group2
|
from themes.theme import adjust_theme, advanced_css, theme_declaration, js_code_clear, js_code_reset, js_code_show_or_hide, js_code_show_or_hide_group2
|
||||||
from themes.theme import js_code_for_css_changing, js_code_for_toggle_darkmode, js_code_for_persistent_cookie_init
|
from themes.theme import js_code_for_css_changing, js_code_for_toggle_darkmode, js_code_for_persistent_cookie_init
|
||||||
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, init_cookie
|
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
|
||||||
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
|
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
|
||||||
|
|
||||||
# 问询记录, python 版本建议3.9+(越新越好)
|
# 对话、日志记录
|
||||||
import logging, uuid
|
enable_log(PATH_LOGGING)
|
||||||
os.makedirs(PATH_LOGGING, exist_ok=True)
|
|
||||||
try:logging.basicConfig(filename=f"{PATH_LOGGING}/chat_secrets.log", level=logging.INFO, encoding="utf-8", format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
|
||||||
except:logging.basicConfig(filename=f"{PATH_LOGGING}/chat_secrets.log", level=logging.INFO, format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
|
||||||
# Disable logging output from the 'httpx' logger
|
|
||||||
logging.getLogger("httpx").setLevel(logging.WARNING)
|
|
||||||
print(f"所有问询记录将自动保存在本地目录./{PATH_LOGGING}/chat_secrets.log, 请注意自我隐私保护哦!")
|
|
||||||
|
|
||||||
# 一些普通功能模块
|
# 一些普通功能模块
|
||||||
from core_functional import get_core_functions
|
from core_functional import get_core_functions
|
||||||
@@ -74,9 +79,9 @@ def main():
|
|||||||
cancel_handles = []
|
cancel_handles = []
|
||||||
customize_btns = {}
|
customize_btns = {}
|
||||||
predefined_btns = {}
|
predefined_btns = {}
|
||||||
with gr.Blocks(title="GPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
|
with gr.Blocks(title="GPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as app_block:
|
||||||
gr.HTML(title_html)
|
gr.HTML(title_html)
|
||||||
secret_css, dark_mode, py_pickle_cookie = gr.Textbox(visible=False), gr.Textbox(DARK_MODE, visible=False), gr.Textbox(visible=False)
|
secret_css, web_cookie_cache = gr.Textbox(visible=False), gr.Textbox(visible=False)
|
||||||
cookies = gr.State(load_chat_cookies())
|
cookies = gr.State(load_chat_cookies())
|
||||||
with gr_L1():
|
with gr_L1():
|
||||||
with gr_L2(scale=2, elem_id="gpt-chat"):
|
with gr_L2(scale=2, elem_id="gpt-chat"):
|
||||||
@@ -152,9 +157,13 @@ def main():
|
|||||||
with gr.Tab("更换模型", elem_id="interact-panel"):
|
with gr.Tab("更换模型", elem_id="interact-panel"):
|
||||||
md_dropdown = gr.Dropdown(AVAIL_LLM_MODELS, value=LLM_MODEL, label="更换LLM模型/请求源").style(container=False)
|
md_dropdown = gr.Dropdown(AVAIL_LLM_MODELS, value=LLM_MODEL, label="更换LLM模型/请求源").style(container=False)
|
||||||
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.01,interactive=True, label="Top-p (nucleus sampling)",)
|
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.01,interactive=True, label="Top-p (nucleus sampling)",)
|
||||||
temperature = gr.Slider(minimum=-0, maximum=2.0, value=1.0, step=0.01, interactive=True, label="Temperature",)
|
temperature = gr.Slider(minimum=-0, maximum=2.0, value=1.0, step=0.01, interactive=True, label="Temperature", elem_id="elem_temperature")
|
||||||
max_length_sl = gr.Slider(minimum=256, maximum=1024*32, value=4096, step=128, interactive=True, label="Local LLM MaxLength",)
|
max_length_sl = gr.Slider(minimum=256, maximum=1024*32, value=4096, step=128, interactive=True, label="Local LLM MaxLength",)
|
||||||
system_prompt = gr.Textbox(show_label=True, lines=2, placeholder=f"System Prompt", label="System prompt", value=INIT_SYS_PROMPT)
|
system_prompt = gr.Textbox(show_label=True, lines=2, placeholder=f"System Prompt", label="System prompt", value=INIT_SYS_PROMPT, elem_id="elem_prompt")
|
||||||
|
temperature.change(None, inputs=[temperature], outputs=None,
|
||||||
|
_js="""(temperature)=>gpt_academic_gradio_saveload("save", "elem_prompt", "js_temperature_cookie", temperature)""")
|
||||||
|
system_prompt.change(None, inputs=[system_prompt], outputs=None,
|
||||||
|
_js="""(system_prompt)=>gpt_academic_gradio_saveload("save", "elem_prompt", "js_system_prompt_cookie", system_prompt)""")
|
||||||
|
|
||||||
with gr.Tab("界面外观", elem_id="interact-panel"):
|
with gr.Tab("界面外观", elem_id="interact-panel"):
|
||||||
theme_dropdown = gr.Dropdown(AVAIL_THEMES, value=THEME, label="更换UI主题").style(container=False)
|
theme_dropdown = gr.Dropdown(AVAIL_THEMES, value=THEME, label="更换UI主题").style(container=False)
|
||||||
@@ -194,64 +203,19 @@ def main():
|
|||||||
with gr.Column(scale=1, min_width=70):
|
with gr.Column(scale=1, min_width=70):
|
||||||
basic_fn_confirm = gr.Button("确认并保存", variant="primary"); basic_fn_confirm.style(size="sm")
|
basic_fn_confirm = gr.Button("确认并保存", variant="primary"); basic_fn_confirm.style(size="sm")
|
||||||
basic_fn_clean = gr.Button("恢复默认", variant="primary"); basic_fn_clean.style(size="sm")
|
basic_fn_clean = gr.Button("恢复默认", variant="primary"); basic_fn_clean.style(size="sm")
|
||||||
def assign_btn(persistent_cookie_, cookies_, basic_btn_dropdown_, basic_fn_title, basic_fn_prefix, basic_fn_suffix, clean_up=False):
|
|
||||||
ret = {}
|
|
||||||
# 读取之前的自定义按钮
|
|
||||||
customize_fn_overwrite_ = cookies_['customize_fn_overwrite']
|
|
||||||
# 更新新的自定义按钮
|
|
||||||
customize_fn_overwrite_.update({
|
|
||||||
basic_btn_dropdown_:
|
|
||||||
{
|
|
||||||
"Title":basic_fn_title,
|
|
||||||
"Prefix":basic_fn_prefix,
|
|
||||||
"Suffix":basic_fn_suffix,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
)
|
|
||||||
if clean_up:
|
|
||||||
customize_fn_overwrite_ = {}
|
|
||||||
cookies_.update(customize_fn_overwrite_) # 更新cookie
|
|
||||||
visible = (not clean_up) and (basic_fn_title != "")
|
|
||||||
if basic_btn_dropdown_ in customize_btns:
|
|
||||||
# 是自定义按钮,不是预定义按钮
|
|
||||||
ret.update({customize_btns[basic_btn_dropdown_]: gr.update(visible=visible, value=basic_fn_title)})
|
|
||||||
else:
|
|
||||||
# 是预定义按钮
|
|
||||||
ret.update({predefined_btns[basic_btn_dropdown_]: gr.update(visible=visible, value=basic_fn_title)})
|
|
||||||
ret.update({cookies: cookies_})
|
|
||||||
try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
|
|
||||||
except: persistent_cookie_ = {}
|
|
||||||
persistent_cookie_["custom_bnt"] = customize_fn_overwrite_ # dict update new value
|
|
||||||
persistent_cookie_ = to_cookie_str(persistent_cookie_) # persistent cookie to dict
|
|
||||||
ret.update({py_pickle_cookie: persistent_cookie_}) # write persistent cookie
|
|
||||||
return ret
|
|
||||||
|
|
||||||
|
from shared_utils.cookie_manager import assign_btn__fn_builder
|
||||||
|
assign_btn = assign_btn__fn_builder(customize_btns, predefined_btns, cookies, web_cookie_cache)
|
||||||
# update btn
|
# update btn
|
||||||
h = basic_fn_confirm.click(assign_btn, [py_pickle_cookie, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix],
|
h = basic_fn_confirm.click(assign_btn, [web_cookie_cache, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix],
|
||||||
[py_pickle_cookie, cookies, *customize_btns.values(), *predefined_btns.values()])
|
[web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()])
|
||||||
h.then(None, [py_pickle_cookie], None, _js="""(py_pickle_cookie)=>{setCookie("py_pickle_cookie", py_pickle_cookie, 365);}""")
|
h.then(None, [web_cookie_cache], None, _js="""(web_cookie_cache)=>{setCookie("web_cookie_cache", web_cookie_cache, 365);}""")
|
||||||
# clean up btn
|
# clean up btn
|
||||||
h2 = basic_fn_clean.click(assign_btn, [py_pickle_cookie, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix, gr.State(True)],
|
h2 = basic_fn_clean.click(assign_btn, [web_cookie_cache, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix, gr.State(True)],
|
||||||
[py_pickle_cookie, cookies, *customize_btns.values(), *predefined_btns.values()])
|
[web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()])
|
||||||
h2.then(None, [py_pickle_cookie], None, _js="""(py_pickle_cookie)=>{setCookie("py_pickle_cookie", py_pickle_cookie, 365);}""")
|
h2.then(None, [web_cookie_cache], None, _js="""(web_cookie_cache)=>{setCookie("web_cookie_cache", web_cookie_cache, 365);}""")
|
||||||
|
|
||||||
def persistent_cookie_reload(persistent_cookie_, cookies_):
|
|
||||||
ret = {}
|
|
||||||
for k in customize_btns:
|
|
||||||
ret.update({customize_btns[k]: gr.update(visible=False, value="")})
|
|
||||||
|
|
||||||
try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
|
|
||||||
except: return ret
|
|
||||||
|
|
||||||
customize_fn_overwrite_ = persistent_cookie_.get("custom_bnt", {})
|
|
||||||
cookies_['customize_fn_overwrite'] = customize_fn_overwrite_
|
|
||||||
ret.update({cookies: cookies_})
|
|
||||||
|
|
||||||
for k,v in persistent_cookie_["custom_bnt"].items():
|
|
||||||
if v['Title'] == "": continue
|
|
||||||
if k in customize_btns: ret.update({customize_btns[k]: gr.update(visible=True, value=v['Title'])})
|
|
||||||
else: ret.update({predefined_btns[k]: gr.update(visible=True, value=v['Title'])})
|
|
||||||
return ret
|
|
||||||
|
|
||||||
# 功能区显示开关与功能区的互动
|
# 功能区显示开关与功能区的互动
|
||||||
def fn_area_visibility(a):
|
def fn_area_visibility(a):
|
||||||
@@ -371,11 +335,14 @@ def main():
|
|||||||
audio_mic.stream(deal_audio, inputs=[audio_mic, cookies])
|
audio_mic.stream(deal_audio, inputs=[audio_mic, cookies])
|
||||||
|
|
||||||
|
|
||||||
demo.load(init_cookie, inputs=[cookies], outputs=[cookies])
|
app_block.load(assign_user_uuid, inputs=[cookies], outputs=[cookies])
|
||||||
demo.load(persistent_cookie_reload, inputs = [py_pickle_cookie, cookies],
|
|
||||||
outputs = [py_pickle_cookie, cookies, *customize_btns.values(), *predefined_btns.values()], _js=js_code_for_persistent_cookie_init)
|
from shared_utils.cookie_manager import load_web_cookie_cache__fn_builder
|
||||||
demo.load(None, inputs=[dark_mode], outputs=None, _js="""(dark_mode)=>{apply_cookie_for_checkbox(dark_mode);}""") # 配置暗色主题或亮色主题
|
load_web_cookie_cache = load_web_cookie_cache__fn_builder(customize_btns, cookies, predefined_btns)
|
||||||
demo.load(None, inputs=[gr.Textbox(LAYOUT, visible=False)], outputs=None, _js='(LAYOUT)=>{GptAcademicJavaScriptInit(LAYOUT);}')
|
app_block.load(load_web_cookie_cache, inputs = [web_cookie_cache, cookies],
|
||||||
|
outputs = [web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()], _js=js_code_for_persistent_cookie_init)
|
||||||
|
|
||||||
|
app_block.load(None, inputs=[], outputs=None, _js=f"""()=>GptAcademicJavaScriptInit("{DARK_MODE}","{INIT_SYS_PROMPT}","{ADD_WAIFU}","{LAYOUT}")""") # 配置暗色主题或亮色主题
|
||||||
|
|
||||||
# gradio的inbrowser触发不太稳定,回滚代码到原始的浏览器打开函数
|
# gradio的inbrowser触发不太稳定,回滚代码到原始的浏览器打开函数
|
||||||
def run_delayed_tasks():
|
def run_delayed_tasks():
|
||||||
@@ -390,28 +357,15 @@ def main():
|
|||||||
|
|
||||||
threading.Thread(target=auto_updates, name="self-upgrade", daemon=True).start() # 查看自动更新
|
threading.Thread(target=auto_updates, name="self-upgrade", daemon=True).start() # 查看自动更新
|
||||||
threading.Thread(target=open_browser, name="open-browser", daemon=True).start() # 打开浏览器页面
|
threading.Thread(target=open_browser, name="open-browser", daemon=True).start() # 打开浏览器页面
|
||||||
threading.Thread(target=warm_up_mods, name="warm-up", daemon=True).start() # 预热tiktoken模块
|
threading.Thread(target=warm_up_mods, name="warm-up", daemon=True).start() # 预热tiktoken模块
|
||||||
|
|
||||||
|
# 运行一些异步任务:自动更新、打开浏览器页面、预热tiktoken模块
|
||||||
run_delayed_tasks()
|
run_delayed_tasks()
|
||||||
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(
|
|
||||||
quiet=True,
|
|
||||||
server_name="0.0.0.0",
|
|
||||||
ssl_keyfile=None if SSL_KEYFILE == "" else SSL_KEYFILE,
|
|
||||||
ssl_certfile=None if SSL_CERTFILE == "" else SSL_CERTFILE,
|
|
||||||
ssl_verify=False,
|
|
||||||
server_port=PORT,
|
|
||||||
favicon_path=os.path.join(os.path.dirname(__file__), "docs/logo.png"),
|
|
||||||
auth=AUTHENTICATION if len(AUTHENTICATION) != 0 else None,
|
|
||||||
blocked_paths=["config.py","config_private.py","docker-compose.yml","Dockerfile",f"{PATH_LOGGING}/admin"])
|
|
||||||
|
|
||||||
# 如果需要在二级路径下运行
|
# 最后,正式开始服务
|
||||||
# CUSTOM_PATH = get_conf('CUSTOM_PATH')
|
from shared_utils.fastapi_server import start_app
|
||||||
# if CUSTOM_PATH != "/":
|
start_app(app_block, CONCURRENT_COUNT, AUTHENTICATION, PORT, SSL_KEYFILE, SSL_CERTFILE)
|
||||||
# from toolbox import run_gradio_in_subpath
|
|
||||||
# run_gradio_in_subpath(demo, auth=AUTHENTICATION, port=PORT, custom_path=CUSTOM_PATH)
|
|
||||||
# else:
|
|
||||||
# demo.launch(server_name="0.0.0.0", server_port=PORT, auth=AUTHENTICATION, favicon_path="docs/logo.png",
|
|
||||||
# blocked_paths=["config.py","config_private.py","docker-compose.yml","Dockerfile",f"{PATH_LOGGING}/admin"])
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
|
|||||||
@@ -1,7 +1,7 @@
|
|||||||
"""
|
"""
|
||||||
Translate this project to other languages (experimental, please open an issue if there is any bug)
|
Translate this project to other languages (experimental, please open an issue if there is any bug)
|
||||||
|
|
||||||
|
|
||||||
Usage:
|
Usage:
|
||||||
1. modify config.py, set your LLM_MODEL and API_KEY(s) to provide access to OPENAI (or any other LLM model provider)
|
1. modify config.py, set your LLM_MODEL and API_KEY(s) to provide access to OPENAI (or any other LLM model provider)
|
||||||
|
|
||||||
@@ -11,20 +11,20 @@
|
|||||||
3. modify TransPrompt (below ↓)
|
3. modify TransPrompt (below ↓)
|
||||||
TransPrompt = f"Replace each json value `#` with translated results in English, e.g., \"原始文本\":\"TranslatedText\". Keep Json format. Do not answer #."
|
TransPrompt = f"Replace each json value `#` with translated results in English, e.g., \"原始文本\":\"TranslatedText\". Keep Json format. Do not answer #."
|
||||||
|
|
||||||
4. Run `python multi_language.py`.
|
4. Run `python multi_language.py`.
|
||||||
Note: You need to run it multiple times to increase translation coverage because GPT makes mistakes sometimes.
|
Note: You need to run it multiple times to increase translation coverage because GPT makes mistakes sometimes.
|
||||||
(You can also run `CACHE_ONLY=True python multi_language.py` to use cached translation mapping)
|
(You can also run `CACHE_ONLY=True python multi_language.py` to use cached translation mapping)
|
||||||
|
|
||||||
5. Find the translated program in `multi-language\English\*`
|
5. Find the translated program in `multi-language\English\*`
|
||||||
|
|
||||||
P.S.
|
P.S.
|
||||||
|
|
||||||
- The translation mapping will be stored in `docs/translation_xxxx.json`, you can revised mistaken translation there.
|
- The translation mapping will be stored in `docs/translation_xxxx.json`, you can revised mistaken translation there.
|
||||||
|
|
||||||
- If you would like to share your `docs/translation_xxxx.json`, (so that everyone can use the cached & revised translation mapping), please open a Pull Request
|
- If you would like to share your `docs/translation_xxxx.json`, (so that everyone can use the cached & revised translation mapping), please open a Pull Request
|
||||||
|
|
||||||
- If there is any translation error in `docs/translation_xxxx.json`, please open a Pull Request
|
- If there is any translation error in `docs/translation_xxxx.json`, please open a Pull Request
|
||||||
|
|
||||||
- Welcome any Pull Request, regardless of language
|
- Welcome any Pull Request, regardless of language
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@@ -58,7 +58,7 @@ if not os.path.exists(CACHE_FOLDER):
|
|||||||
|
|
||||||
def lru_file_cache(maxsize=128, ttl=None, filename=None):
|
def lru_file_cache(maxsize=128, ttl=None, filename=None):
|
||||||
"""
|
"""
|
||||||
Decorator that caches a function's return value after being called with given arguments.
|
Decorator that caches a function's return value after being called with given arguments.
|
||||||
It uses a Least Recently Used (LRU) cache strategy to limit the size of the cache.
|
It uses a Least Recently Used (LRU) cache strategy to limit the size of the cache.
|
||||||
maxsize: Maximum size of the cache. Defaults to 128.
|
maxsize: Maximum size of the cache. Defaults to 128.
|
||||||
ttl: Time-to-Live of the cache. If a value hasn't been accessed for `ttl` seconds, it will be evicted from the cache.
|
ttl: Time-to-Live of the cache. If a value hasn't been accessed for `ttl` seconds, it will be evicted from the cache.
|
||||||
@@ -151,7 +151,7 @@ def map_to_json(map, language):
|
|||||||
|
|
||||||
def read_map_from_json(language):
|
def read_map_from_json(language):
|
||||||
if os.path.exists(f'docs/translate_{language.lower()}.json'):
|
if os.path.exists(f'docs/translate_{language.lower()}.json'):
|
||||||
with open(f'docs/translate_{language.lower()}.json', 'r', encoding='utf8') as f:
|
with open(f'docs/translate_{language.lower()}.json', 'r', encoding='utf8') as f:
|
||||||
res = json.load(f)
|
res = json.load(f)
|
||||||
res = {k:v for k, v in res.items() if v is not None and contains_chinese(k)}
|
res = {k:v for k, v in res.items() if v is not None and contains_chinese(k)}
|
||||||
return res
|
return res
|
||||||
@@ -168,7 +168,7 @@ def advanced_split(splitted_string, spliter, include_spliter=False):
|
|||||||
splitted[i] += spliter
|
splitted[i] += spliter
|
||||||
splitted[i] = splitted[i].strip()
|
splitted[i] = splitted[i].strip()
|
||||||
for i in reversed(range(len(splitted))):
|
for i in reversed(range(len(splitted))):
|
||||||
if not contains_chinese(splitted[i]):
|
if not contains_chinese(splitted[i]):
|
||||||
splitted.pop(i)
|
splitted.pop(i)
|
||||||
splitted_string_tmp.extend(splitted)
|
splitted_string_tmp.extend(splitted)
|
||||||
else:
|
else:
|
||||||
@@ -183,12 +183,12 @@ def trans(word_to_translate, language, special=False):
|
|||||||
if len(word_to_translate) == 0: return {}
|
if len(word_to_translate) == 0: return {}
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
from toolbox import get_conf, ChatBotWithCookies, load_chat_cookies
|
from toolbox import get_conf, ChatBotWithCookies, load_chat_cookies
|
||||||
|
|
||||||
cookies = load_chat_cookies()
|
cookies = load_chat_cookies()
|
||||||
llm_kwargs = {
|
llm_kwargs = {
|
||||||
'api_key': cookies['api_key'],
|
'api_key': cookies['api_key'],
|
||||||
'llm_model': cookies['llm_model'],
|
'llm_model': cookies['llm_model'],
|
||||||
'top_p':1.0,
|
'top_p':1.0,
|
||||||
'max_length': None,
|
'max_length': None,
|
||||||
'temperature':0.4,
|
'temperature':0.4,
|
||||||
}
|
}
|
||||||
@@ -204,12 +204,12 @@ def trans(word_to_translate, language, special=False):
|
|||||||
sys_prompt_array = [f"Translate following sentences to {LANG}. E.g., You should translate sentences to the following format ['translation of sentence 1', 'translation of sentence 2']. Do NOT answer with Chinese!" for _ in inputs_array]
|
sys_prompt_array = [f"Translate following sentences to {LANG}. E.g., You should translate sentences to the following format ['translation of sentence 1', 'translation of sentence 2']. Do NOT answer with Chinese!" for _ in inputs_array]
|
||||||
chatbot = ChatBotWithCookies(llm_kwargs)
|
chatbot = ChatBotWithCookies(llm_kwargs)
|
||||||
gpt_say_generator = request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
gpt_say_generator = request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||||
inputs_array,
|
inputs_array,
|
||||||
inputs_show_user_array,
|
inputs_show_user_array,
|
||||||
llm_kwargs,
|
llm_kwargs,
|
||||||
chatbot,
|
chatbot,
|
||||||
history_array,
|
history_array,
|
||||||
sys_prompt_array,
|
sys_prompt_array,
|
||||||
)
|
)
|
||||||
while True:
|
while True:
|
||||||
try:
|
try:
|
||||||
@@ -224,7 +224,7 @@ def trans(word_to_translate, language, special=False):
|
|||||||
try:
|
try:
|
||||||
res_before_trans = eval(result[i-1])
|
res_before_trans = eval(result[i-1])
|
||||||
res_after_trans = eval(result[i])
|
res_after_trans = eval(result[i])
|
||||||
if len(res_before_trans) != len(res_after_trans):
|
if len(res_before_trans) != len(res_after_trans):
|
||||||
raise RuntimeError
|
raise RuntimeError
|
||||||
for a,b in zip(res_before_trans, res_after_trans):
|
for a,b in zip(res_before_trans, res_after_trans):
|
||||||
translated_result[a] = b
|
translated_result[a] = b
|
||||||
@@ -246,12 +246,12 @@ def trans_json(word_to_translate, language, special=False):
|
|||||||
if len(word_to_translate) == 0: return {}
|
if len(word_to_translate) == 0: return {}
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
from toolbox import get_conf, ChatBotWithCookies, load_chat_cookies
|
from toolbox import get_conf, ChatBotWithCookies, load_chat_cookies
|
||||||
|
|
||||||
cookies = load_chat_cookies()
|
cookies = load_chat_cookies()
|
||||||
llm_kwargs = {
|
llm_kwargs = {
|
||||||
'api_key': cookies['api_key'],
|
'api_key': cookies['api_key'],
|
||||||
'llm_model': cookies['llm_model'],
|
'llm_model': cookies['llm_model'],
|
||||||
'top_p':1.0,
|
'top_p':1.0,
|
||||||
'max_length': None,
|
'max_length': None,
|
||||||
'temperature':0.4,
|
'temperature':0.4,
|
||||||
}
|
}
|
||||||
@@ -261,18 +261,18 @@ def trans_json(word_to_translate, language, special=False):
|
|||||||
word_to_translate_split = split_list(word_to_translate, N_EACH_REQ)
|
word_to_translate_split = split_list(word_to_translate, N_EACH_REQ)
|
||||||
inputs_array = [{k:"#" for k in s} for s in word_to_translate_split]
|
inputs_array = [{k:"#" for k in s} for s in word_to_translate_split]
|
||||||
inputs_array = [ json.dumps(i, ensure_ascii=False) for i in inputs_array]
|
inputs_array = [ json.dumps(i, ensure_ascii=False) for i in inputs_array]
|
||||||
|
|
||||||
inputs_show_user_array = inputs_array
|
inputs_show_user_array = inputs_array
|
||||||
history_array = [[] for _ in inputs_array]
|
history_array = [[] for _ in inputs_array]
|
||||||
sys_prompt_array = [TransPrompt for _ in inputs_array]
|
sys_prompt_array = [TransPrompt for _ in inputs_array]
|
||||||
chatbot = ChatBotWithCookies(llm_kwargs)
|
chatbot = ChatBotWithCookies(llm_kwargs)
|
||||||
gpt_say_generator = request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
gpt_say_generator = request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||||
inputs_array,
|
inputs_array,
|
||||||
inputs_show_user_array,
|
inputs_show_user_array,
|
||||||
llm_kwargs,
|
llm_kwargs,
|
||||||
chatbot,
|
chatbot,
|
||||||
history_array,
|
history_array,
|
||||||
sys_prompt_array,
|
sys_prompt_array,
|
||||||
)
|
)
|
||||||
while True:
|
while True:
|
||||||
try:
|
try:
|
||||||
@@ -336,7 +336,7 @@ def step_1_core_key_translate():
|
|||||||
cached_translation = read_map_from_json(language=LANG_STD)
|
cached_translation = read_map_from_json(language=LANG_STD)
|
||||||
cached_translation_keys = list(cached_translation.keys())
|
cached_translation_keys = list(cached_translation.keys())
|
||||||
for d in chinese_core_keys_norepeat:
|
for d in chinese_core_keys_norepeat:
|
||||||
if d not in cached_translation_keys:
|
if d not in cached_translation_keys:
|
||||||
need_translate.append(d)
|
need_translate.append(d)
|
||||||
|
|
||||||
if CACHE_ONLY:
|
if CACHE_ONLY:
|
||||||
@@ -379,7 +379,7 @@ def step_1_core_key_translate():
|
|||||||
# read again
|
# read again
|
||||||
with open(file_path, 'r', encoding='utf-8') as f:
|
with open(file_path, 'r', encoding='utf-8') as f:
|
||||||
content = f.read()
|
content = f.read()
|
||||||
|
|
||||||
for k, v in chinese_core_keys_norepeat_mapping.items():
|
for k, v in chinese_core_keys_norepeat_mapping.items():
|
||||||
content = content.replace(k, v)
|
content = content.replace(k, v)
|
||||||
|
|
||||||
@@ -390,7 +390,7 @@ def step_1_core_key_translate():
|
|||||||
def step_2_core_key_translate():
|
def step_2_core_key_translate():
|
||||||
|
|
||||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||||
# step2
|
# step2
|
||||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||||
|
|
||||||
def load_string(strings, string_input):
|
def load_string(strings, string_input):
|
||||||
@@ -423,7 +423,7 @@ def step_2_core_key_translate():
|
|||||||
splitted_string = advanced_split(splitted_string, spliter=" ", include_spliter=False)
|
splitted_string = advanced_split(splitted_string, spliter=" ", include_spliter=False)
|
||||||
splitted_string = advanced_split(splitted_string, spliter="- ", include_spliter=False)
|
splitted_string = advanced_split(splitted_string, spliter="- ", include_spliter=False)
|
||||||
splitted_string = advanced_split(splitted_string, spliter="---", include_spliter=False)
|
splitted_string = advanced_split(splitted_string, spliter="---", include_spliter=False)
|
||||||
|
|
||||||
# --------------------------------------
|
# --------------------------------------
|
||||||
for j, s in enumerate(splitted_string): # .com
|
for j, s in enumerate(splitted_string): # .com
|
||||||
if '.com' in s: continue
|
if '.com' in s: continue
|
||||||
@@ -457,7 +457,7 @@ def step_2_core_key_translate():
|
|||||||
comments_arr = []
|
comments_arr = []
|
||||||
for code_sp in content.splitlines():
|
for code_sp in content.splitlines():
|
||||||
comments = re.findall(r'#.*$', code_sp)
|
comments = re.findall(r'#.*$', code_sp)
|
||||||
for comment in comments:
|
for comment in comments:
|
||||||
load_string(strings=comments_arr, string_input=comment)
|
load_string(strings=comments_arr, string_input=comment)
|
||||||
string_literals.extend(comments_arr)
|
string_literals.extend(comments_arr)
|
||||||
|
|
||||||
@@ -479,7 +479,7 @@ def step_2_core_key_translate():
|
|||||||
cached_translation = read_map_from_json(language=LANG)
|
cached_translation = read_map_from_json(language=LANG)
|
||||||
cached_translation_keys = list(cached_translation.keys())
|
cached_translation_keys = list(cached_translation.keys())
|
||||||
for d in chinese_literal_names_norepeat:
|
for d in chinese_literal_names_norepeat:
|
||||||
if d not in cached_translation_keys:
|
if d not in cached_translation_keys:
|
||||||
need_translate.append(d)
|
need_translate.append(d)
|
||||||
|
|
||||||
if CACHE_ONLY:
|
if CACHE_ONLY:
|
||||||
@@ -504,18 +504,18 @@ def step_2_core_key_translate():
|
|||||||
# read again
|
# read again
|
||||||
with open(file_path, 'r', encoding='utf-8') as f:
|
with open(file_path, 'r', encoding='utf-8') as f:
|
||||||
content = f.read()
|
content = f.read()
|
||||||
|
|
||||||
for k, v in cached_translation.items():
|
for k, v in cached_translation.items():
|
||||||
if v is None: continue
|
if v is None: continue
|
||||||
if '"' in v:
|
if '"' in v:
|
||||||
v = v.replace('"', "`")
|
v = v.replace('"', "`")
|
||||||
if '\'' in v:
|
if '\'' in v:
|
||||||
v = v.replace('\'', "`")
|
v = v.replace('\'', "`")
|
||||||
content = content.replace(k, v)
|
content = content.replace(k, v)
|
||||||
|
|
||||||
with open(file_path, 'w', encoding='utf-8') as f:
|
with open(file_path, 'w', encoding='utf-8') as f:
|
||||||
f.write(content)
|
f.write(content)
|
||||||
|
|
||||||
if file.strip('.py') in cached_translation:
|
if file.strip('.py') in cached_translation:
|
||||||
file_new = cached_translation[file.strip('.py')] + '.py'
|
file_new = cached_translation[file.strip('.py')] + '.py'
|
||||||
file_path_new = os.path.join(root, file_new)
|
file_path_new = os.path.join(root, file_new)
|
||||||
|
|||||||
@@ -8,10 +8,10 @@
|
|||||||
具备多线程调用能力的函数:在函数插件中被调用,灵活而简洁
|
具备多线程调用能力的函数:在函数插件中被调用,灵活而简洁
|
||||||
2. predict_no_ui_long_connection(...)
|
2. predict_no_ui_long_connection(...)
|
||||||
"""
|
"""
|
||||||
import tiktoken, copy
|
import tiktoken, copy, re
|
||||||
from functools import lru_cache
|
from functools import lru_cache
|
||||||
from concurrent.futures import ThreadPoolExecutor
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
from toolbox import get_conf, trimmed_format_exc, apply_gpt_academic_string_mask
|
from toolbox import get_conf, trimmed_format_exc, apply_gpt_academic_string_mask, read_one_api_model_name
|
||||||
|
|
||||||
from .bridge_chatgpt import predict_no_ui_long_connection as chatgpt_noui
|
from .bridge_chatgpt import predict_no_ui_long_connection as chatgpt_noui
|
||||||
from .bridge_chatgpt import predict as chatgpt_ui
|
from .bridge_chatgpt import predict as chatgpt_ui
|
||||||
@@ -34,6 +34,9 @@ from .bridge_google_gemini import predict_no_ui_long_connection as genai_noui
|
|||||||
from .bridge_zhipu import predict_no_ui_long_connection as zhipu_noui
|
from .bridge_zhipu import predict_no_ui_long_connection as zhipu_noui
|
||||||
from .bridge_zhipu import predict as zhipu_ui
|
from .bridge_zhipu import predict as zhipu_ui
|
||||||
|
|
||||||
|
from .bridge_cohere import predict as cohere_ui
|
||||||
|
from .bridge_cohere import predict_no_ui_long_connection as cohere_noui
|
||||||
|
|
||||||
colors = ['#FF00FF', '#00FFFF', '#FF0000', '#990099', '#009999', '#990044']
|
colors = ['#FF00FF', '#00FFFF', '#FF0000', '#990099', '#009999', '#990044']
|
||||||
|
|
||||||
class LazyloadTiktoken(object):
|
class LazyloadTiktoken(object):
|
||||||
@@ -61,6 +64,11 @@ API_URL_REDIRECT, AZURE_ENDPOINT, AZURE_ENGINE = get_conf("API_URL_REDIRECT", "A
|
|||||||
openai_endpoint = "https://api.openai.com/v1/chat/completions"
|
openai_endpoint = "https://api.openai.com/v1/chat/completions"
|
||||||
api2d_endpoint = "https://openai.api2d.net/v1/chat/completions"
|
api2d_endpoint = "https://openai.api2d.net/v1/chat/completions"
|
||||||
newbing_endpoint = "wss://sydney.bing.com/sydney/ChatHub"
|
newbing_endpoint = "wss://sydney.bing.com/sydney/ChatHub"
|
||||||
|
gemini_endpoint = "https://generativelanguage.googleapis.com/v1beta/models"
|
||||||
|
claude_endpoint = "https://api.anthropic.com/v1/messages"
|
||||||
|
yimodel_endpoint = "https://api.lingyiwanwu.com/v1/chat/completions"
|
||||||
|
cohere_endpoint = 'https://api.cohere.ai/v1/chat'
|
||||||
|
|
||||||
if not AZURE_ENDPOINT.endswith('/'): AZURE_ENDPOINT += '/'
|
if not AZURE_ENDPOINT.endswith('/'): AZURE_ENDPOINT += '/'
|
||||||
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
|
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
|
||||||
# 兼容旧版的配置
|
# 兼容旧版的配置
|
||||||
@@ -75,7 +83,10 @@ except:
|
|||||||
if openai_endpoint in API_URL_REDIRECT: openai_endpoint = API_URL_REDIRECT[openai_endpoint]
|
if openai_endpoint in API_URL_REDIRECT: openai_endpoint = API_URL_REDIRECT[openai_endpoint]
|
||||||
if api2d_endpoint in API_URL_REDIRECT: api2d_endpoint = API_URL_REDIRECT[api2d_endpoint]
|
if api2d_endpoint in API_URL_REDIRECT: api2d_endpoint = API_URL_REDIRECT[api2d_endpoint]
|
||||||
if newbing_endpoint in API_URL_REDIRECT: newbing_endpoint = API_URL_REDIRECT[newbing_endpoint]
|
if newbing_endpoint in API_URL_REDIRECT: newbing_endpoint = API_URL_REDIRECT[newbing_endpoint]
|
||||||
|
if gemini_endpoint in API_URL_REDIRECT: gemini_endpoint = API_URL_REDIRECT[gemini_endpoint]
|
||||||
|
if claude_endpoint in API_URL_REDIRECT: claude_endpoint = API_URL_REDIRECT[claude_endpoint]
|
||||||
|
if yimodel_endpoint in API_URL_REDIRECT: yimodel_endpoint = API_URL_REDIRECT[yimodel_endpoint]
|
||||||
|
if cohere_endpoint in API_URL_REDIRECT: cohere_endpoint = API_URL_REDIRECT[cohere_endpoint]
|
||||||
|
|
||||||
# 获取tokenizer
|
# 获取tokenizer
|
||||||
tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo")
|
tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo")
|
||||||
@@ -94,7 +105,7 @@ model_info = {
|
|||||||
"fn_with_ui": chatgpt_ui,
|
"fn_with_ui": chatgpt_ui,
|
||||||
"fn_without_ui": chatgpt_noui,
|
"fn_without_ui": chatgpt_noui,
|
||||||
"endpoint": openai_endpoint,
|
"endpoint": openai_endpoint,
|
||||||
"max_token": 4096,
|
"max_token": 16385,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
},
|
},
|
||||||
@@ -126,7 +137,16 @@ model_info = {
|
|||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
},
|
},
|
||||||
|
|
||||||
"gpt-3.5-turbo-1106": {#16k
|
"gpt-3.5-turbo-1106": { #16k
|
||||||
|
"fn_with_ui": chatgpt_ui,
|
||||||
|
"fn_without_ui": chatgpt_noui,
|
||||||
|
"endpoint": openai_endpoint,
|
||||||
|
"max_token": 16385,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
|
||||||
|
"gpt-3.5-turbo-0125": { #16k
|
||||||
"fn_with_ui": chatgpt_ui,
|
"fn_with_ui": chatgpt_ui,
|
||||||
"fn_without_ui": chatgpt_noui,
|
"fn_without_ui": chatgpt_noui,
|
||||||
"endpoint": openai_endpoint,
|
"endpoint": openai_endpoint,
|
||||||
@@ -282,7 +302,7 @@ model_info = {
|
|||||||
"gemini-pro": {
|
"gemini-pro": {
|
||||||
"fn_with_ui": genai_ui,
|
"fn_with_ui": genai_ui,
|
||||||
"fn_without_ui": genai_noui,
|
"fn_without_ui": genai_noui,
|
||||||
"endpoint": None,
|
"endpoint": gemini_endpoint,
|
||||||
"max_token": 1024 * 32,
|
"max_token": 1024 * 32,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
@@ -290,13 +310,56 @@ model_info = {
|
|||||||
"gemini-pro-vision": {
|
"gemini-pro-vision": {
|
||||||
"fn_with_ui": genai_ui,
|
"fn_with_ui": genai_ui,
|
||||||
"fn_without_ui": genai_noui,
|
"fn_without_ui": genai_noui,
|
||||||
|
"endpoint": gemini_endpoint,
|
||||||
|
"max_token": 1024 * 32,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
|
||||||
|
# cohere
|
||||||
|
"cohere-command-r-plus": {
|
||||||
|
"fn_with_ui": cohere_ui,
|
||||||
|
"fn_without_ui": cohere_noui,
|
||||||
|
"can_multi_thread": True,
|
||||||
|
"endpoint": cohere_endpoint,
|
||||||
|
"max_token": 1024 * 4,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
|
||||||
|
}
|
||||||
|
# -=-=-=-=-=-=- 月之暗面 -=-=-=-=-=-=-
|
||||||
|
from request_llms.bridge_moonshot import predict as moonshot_ui
|
||||||
|
from request_llms.bridge_moonshot import predict_no_ui_long_connection as moonshot_no_ui
|
||||||
|
model_info.update({
|
||||||
|
"moonshot-v1-8k": {
|
||||||
|
"fn_with_ui": moonshot_ui,
|
||||||
|
"fn_without_ui": moonshot_no_ui,
|
||||||
|
"can_multi_thread": True,
|
||||||
|
"endpoint": None,
|
||||||
|
"max_token": 1024 * 8,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
"moonshot-v1-32k": {
|
||||||
|
"fn_with_ui": moonshot_ui,
|
||||||
|
"fn_without_ui": moonshot_no_ui,
|
||||||
|
"can_multi_thread": True,
|
||||||
"endpoint": None,
|
"endpoint": None,
|
||||||
"max_token": 1024 * 32,
|
"max_token": 1024 * 32,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
},
|
},
|
||||||
}
|
"moonshot-v1-128k": {
|
||||||
|
"fn_with_ui": moonshot_ui,
|
||||||
|
"fn_without_ui": moonshot_no_ui,
|
||||||
|
"can_multi_thread": True,
|
||||||
|
"endpoint": None,
|
||||||
|
"max_token": 1024 * 128,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
}
|
||||||
|
})
|
||||||
# -=-=-=-=-=-=- api2d 对齐支持 -=-=-=-=-=-=-
|
# -=-=-=-=-=-=- api2d 对齐支持 -=-=-=-=-=-=-
|
||||||
for model in AVAIL_LLM_MODELS:
|
for model in AVAIL_LLM_MODELS:
|
||||||
if model.startswith('api2d-') and (model.replace('api2d-','') in model_info.keys()):
|
if model.startswith('api2d-') and (model.replace('api2d-','') in model_info.keys()):
|
||||||
@@ -312,25 +375,67 @@ for model in AVAIL_LLM_MODELS:
|
|||||||
model_info.update({model: mi})
|
model_info.update({model: mi})
|
||||||
|
|
||||||
# -=-=-=-=-=-=- 以下部分是新加入的模型,可能附带额外依赖 -=-=-=-=-=-=-
|
# -=-=-=-=-=-=- 以下部分是新加入的模型,可能附带额外依赖 -=-=-=-=-=-=-
|
||||||
if "claude-1-100k" in AVAIL_LLM_MODELS or "claude-2" in AVAIL_LLM_MODELS:
|
# claude家族
|
||||||
|
claude_models = ["claude-instant-1.2","claude-2.0","claude-2.1","claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229"]
|
||||||
|
if any(item in claude_models for item in AVAIL_LLM_MODELS):
|
||||||
from .bridge_claude import predict_no_ui_long_connection as claude_noui
|
from .bridge_claude import predict_no_ui_long_connection as claude_noui
|
||||||
from .bridge_claude import predict as claude_ui
|
from .bridge_claude import predict as claude_ui
|
||||||
model_info.update({
|
model_info.update({
|
||||||
"claude-1-100k": {
|
"claude-instant-1.2": {
|
||||||
"fn_with_ui": claude_ui,
|
"fn_with_ui": claude_ui,
|
||||||
"fn_without_ui": claude_noui,
|
"fn_without_ui": claude_noui,
|
||||||
"endpoint": None,
|
"endpoint": claude_endpoint,
|
||||||
"max_token": 8196,
|
"max_token": 100000,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
},
|
},
|
||||||
})
|
})
|
||||||
model_info.update({
|
model_info.update({
|
||||||
"claude-2": {
|
"claude-2.0": {
|
||||||
"fn_with_ui": claude_ui,
|
"fn_with_ui": claude_ui,
|
||||||
"fn_without_ui": claude_noui,
|
"fn_without_ui": claude_noui,
|
||||||
"endpoint": None,
|
"endpoint": claude_endpoint,
|
||||||
"max_token": 8196,
|
"max_token": 100000,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
})
|
||||||
|
model_info.update({
|
||||||
|
"claude-2.1": {
|
||||||
|
"fn_with_ui": claude_ui,
|
||||||
|
"fn_without_ui": claude_noui,
|
||||||
|
"endpoint": claude_endpoint,
|
||||||
|
"max_token": 200000,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
})
|
||||||
|
model_info.update({
|
||||||
|
"claude-3-haiku-20240307": {
|
||||||
|
"fn_with_ui": claude_ui,
|
||||||
|
"fn_without_ui": claude_noui,
|
||||||
|
"endpoint": claude_endpoint,
|
||||||
|
"max_token": 200000,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
})
|
||||||
|
model_info.update({
|
||||||
|
"claude-3-sonnet-20240229": {
|
||||||
|
"fn_with_ui": claude_ui,
|
||||||
|
"fn_without_ui": claude_noui,
|
||||||
|
"endpoint": claude_endpoint,
|
||||||
|
"max_token": 200000,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
})
|
||||||
|
model_info.update({
|
||||||
|
"claude-3-opus-20240229": {
|
||||||
|
"fn_with_ui": claude_ui,
|
||||||
|
"fn_without_ui": claude_noui,
|
||||||
|
"endpoint": claude_endpoint,
|
||||||
|
"max_token": 200000,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
},
|
},
|
||||||
@@ -400,22 +505,6 @@ if "stack-claude" in AVAIL_LLM_MODELS:
|
|||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
}
|
}
|
||||||
})
|
})
|
||||||
if "newbing-free" in AVAIL_LLM_MODELS:
|
|
||||||
try:
|
|
||||||
from .bridge_newbingfree import predict_no_ui_long_connection as newbingfree_noui
|
|
||||||
from .bridge_newbingfree import predict as newbingfree_ui
|
|
||||||
model_info.update({
|
|
||||||
"newbing-free": {
|
|
||||||
"fn_with_ui": newbingfree_ui,
|
|
||||||
"fn_without_ui": newbingfree_noui,
|
|
||||||
"endpoint": newbing_endpoint,
|
|
||||||
"max_token": 4096,
|
|
||||||
"tokenizer": tokenizer_gpt35,
|
|
||||||
"token_cnt": get_token_num_gpt35,
|
|
||||||
}
|
|
||||||
})
|
|
||||||
except:
|
|
||||||
print(trimmed_format_exc())
|
|
||||||
if "newbing" in AVAIL_LLM_MODELS: # same with newbing-free
|
if "newbing" in AVAIL_LLM_MODELS: # same with newbing-free
|
||||||
try:
|
try:
|
||||||
from .bridge_newbingfree import predict_no_ui_long_connection as newbingfree_noui
|
from .bridge_newbingfree import predict_no_ui_long_connection as newbingfree_noui
|
||||||
@@ -448,6 +537,7 @@ if "chatglmft" in AVAIL_LLM_MODELS: # same with newbing-free
|
|||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
|
# -=-=-=-=-=-=- 上海AI-LAB书生大模型 -=-=-=-=-=-=-
|
||||||
if "internlm" in AVAIL_LLM_MODELS:
|
if "internlm" in AVAIL_LLM_MODELS:
|
||||||
try:
|
try:
|
||||||
from .bridge_internlm import predict_no_ui_long_connection as internlm_noui
|
from .bridge_internlm import predict_no_ui_long_connection as internlm_noui
|
||||||
@@ -480,6 +570,7 @@ if "chatglm_onnx" in AVAIL_LLM_MODELS:
|
|||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
|
# -=-=-=-=-=-=- 通义-本地模型 -=-=-=-=-=-=-
|
||||||
if "qwen-local" in AVAIL_LLM_MODELS:
|
if "qwen-local" in AVAIL_LLM_MODELS:
|
||||||
try:
|
try:
|
||||||
from .bridge_qwen_local import predict_no_ui_long_connection as qwen_local_noui
|
from .bridge_qwen_local import predict_no_ui_long_connection as qwen_local_noui
|
||||||
@@ -488,6 +579,7 @@ if "qwen-local" in AVAIL_LLM_MODELS:
|
|||||||
"qwen-local": {
|
"qwen-local": {
|
||||||
"fn_with_ui": qwen_local_ui,
|
"fn_with_ui": qwen_local_ui,
|
||||||
"fn_without_ui": qwen_local_noui,
|
"fn_without_ui": qwen_local_noui,
|
||||||
|
"can_multi_thread": False,
|
||||||
"endpoint": None,
|
"endpoint": None,
|
||||||
"max_token": 4096,
|
"max_token": 4096,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
@@ -496,6 +588,7 @@ if "qwen-local" in AVAIL_LLM_MODELS:
|
|||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
|
# -=-=-=-=-=-=- 通义-在线模型 -=-=-=-=-=-=-
|
||||||
if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-max" in AVAIL_LLM_MODELS: # zhipuai
|
if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-max" in AVAIL_LLM_MODELS: # zhipuai
|
||||||
try:
|
try:
|
||||||
from .bridge_qwen import predict_no_ui_long_connection as qwen_noui
|
from .bridge_qwen import predict_no_ui_long_connection as qwen_noui
|
||||||
@@ -504,6 +597,7 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
|||||||
"qwen-turbo": {
|
"qwen-turbo": {
|
||||||
"fn_with_ui": qwen_ui,
|
"fn_with_ui": qwen_ui,
|
||||||
"fn_without_ui": qwen_noui,
|
"fn_without_ui": qwen_noui,
|
||||||
|
"can_multi_thread": True,
|
||||||
"endpoint": None,
|
"endpoint": None,
|
||||||
"max_token": 6144,
|
"max_token": 6144,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
@@ -512,6 +606,7 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
|||||||
"qwen-plus": {
|
"qwen-plus": {
|
||||||
"fn_with_ui": qwen_ui,
|
"fn_with_ui": qwen_ui,
|
||||||
"fn_without_ui": qwen_noui,
|
"fn_without_ui": qwen_noui,
|
||||||
|
"can_multi_thread": True,
|
||||||
"endpoint": None,
|
"endpoint": None,
|
||||||
"max_token": 30720,
|
"max_token": 30720,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
@@ -520,6 +615,7 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
|||||||
"qwen-max": {
|
"qwen-max": {
|
||||||
"fn_with_ui": qwen_ui,
|
"fn_with_ui": qwen_ui,
|
||||||
"fn_without_ui": qwen_noui,
|
"fn_without_ui": qwen_noui,
|
||||||
|
"can_multi_thread": True,
|
||||||
"endpoint": None,
|
"endpoint": None,
|
||||||
"max_token": 28672,
|
"max_token": 28672,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
@@ -528,7 +624,35 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
|||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
if "spark" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
# -=-=-=-=-=-=- 零一万物模型 -=-=-=-=-=-=-
|
||||||
|
if "yi-34b-chat-0205" in AVAIL_LLM_MODELS or "yi-34b-chat-200k" in AVAIL_LLM_MODELS: # zhipuai
|
||||||
|
try:
|
||||||
|
from .bridge_yimodel import predict_no_ui_long_connection as yimodel_noui
|
||||||
|
from .bridge_yimodel import predict as yimodel_ui
|
||||||
|
model_info.update({
|
||||||
|
"yi-34b-chat-0205": {
|
||||||
|
"fn_with_ui": yimodel_ui,
|
||||||
|
"fn_without_ui": yimodel_noui,
|
||||||
|
"can_multi_thread": False, # 目前来说,默认情况下并发量极低,因此禁用
|
||||||
|
"endpoint": yimodel_endpoint,
|
||||||
|
"max_token": 4000,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
"yi-34b-chat-200k": {
|
||||||
|
"fn_with_ui": yimodel_ui,
|
||||||
|
"fn_without_ui": yimodel_noui,
|
||||||
|
"can_multi_thread": False, # 目前来说,默认情况下并发量极低,因此禁用
|
||||||
|
"endpoint": yimodel_endpoint,
|
||||||
|
"max_token": 200000,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
})
|
||||||
|
except:
|
||||||
|
print(trimmed_format_exc())
|
||||||
|
# -=-=-=-=-=-=- 讯飞星火认知大模型 -=-=-=-=-=-=-
|
||||||
|
if "spark" in AVAIL_LLM_MODELS:
|
||||||
try:
|
try:
|
||||||
from .bridge_spark import predict_no_ui_long_connection as spark_noui
|
from .bridge_spark import predict_no_ui_long_connection as spark_noui
|
||||||
from .bridge_spark import predict as spark_ui
|
from .bridge_spark import predict as spark_ui
|
||||||
@@ -536,6 +660,7 @@ if "spark" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
|||||||
"spark": {
|
"spark": {
|
||||||
"fn_with_ui": spark_ui,
|
"fn_with_ui": spark_ui,
|
||||||
"fn_without_ui": spark_noui,
|
"fn_without_ui": spark_noui,
|
||||||
|
"can_multi_thread": True,
|
||||||
"endpoint": None,
|
"endpoint": None,
|
||||||
"max_token": 4096,
|
"max_token": 4096,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
@@ -552,6 +677,7 @@ if "sparkv2" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
|||||||
"sparkv2": {
|
"sparkv2": {
|
||||||
"fn_with_ui": spark_ui,
|
"fn_with_ui": spark_ui,
|
||||||
"fn_without_ui": spark_noui,
|
"fn_without_ui": spark_noui,
|
||||||
|
"can_multi_thread": True,
|
||||||
"endpoint": None,
|
"endpoint": None,
|
||||||
"max_token": 4096,
|
"max_token": 4096,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
@@ -568,6 +694,7 @@ if "sparkv3" in AVAIL_LLM_MODELS or "sparkv3.5" in AVAIL_LLM_MODELS: # 讯飞
|
|||||||
"sparkv3": {
|
"sparkv3": {
|
||||||
"fn_with_ui": spark_ui,
|
"fn_with_ui": spark_ui,
|
||||||
"fn_without_ui": spark_noui,
|
"fn_without_ui": spark_noui,
|
||||||
|
"can_multi_thread": True,
|
||||||
"endpoint": None,
|
"endpoint": None,
|
||||||
"max_token": 4096,
|
"max_token": 4096,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
@@ -576,6 +703,7 @@ if "sparkv3" in AVAIL_LLM_MODELS or "sparkv3.5" in AVAIL_LLM_MODELS: # 讯飞
|
|||||||
"sparkv3.5": {
|
"sparkv3.5": {
|
||||||
"fn_with_ui": spark_ui,
|
"fn_with_ui": spark_ui,
|
||||||
"fn_without_ui": spark_noui,
|
"fn_without_ui": spark_noui,
|
||||||
|
"can_multi_thread": True,
|
||||||
"endpoint": None,
|
"endpoint": None,
|
||||||
"max_token": 4096,
|
"max_token": 4096,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
@@ -600,6 +728,7 @@ if "llama2" in AVAIL_LLM_MODELS: # llama2
|
|||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
|
# -=-=-=-=-=-=- 智谱 -=-=-=-=-=-=-
|
||||||
if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai 是glm-4的别名,向后兼容配置
|
if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai 是glm-4的别名,向后兼容配置
|
||||||
try:
|
try:
|
||||||
model_info.update({
|
model_info.update({
|
||||||
@@ -614,6 +743,7 @@ if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai 是glm-4的别名,向后兼容
|
|||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
|
# -=-=-=-=-=-=- 幻方-深度求索大模型 -=-=-=-=-=-=-
|
||||||
if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
|
if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
|
||||||
try:
|
try:
|
||||||
from .bridge_deepseekcoder import predict_no_ui_long_connection as deepseekcoder_noui
|
from .bridge_deepseekcoder import predict_no_ui_long_connection as deepseekcoder_noui
|
||||||
@@ -630,26 +760,34 @@ if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
|
|||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
# if "skylark" in AVAIL_LLM_MODELS:
|
|
||||||
# try:
|
|
||||||
# from .bridge_skylark2 import predict_no_ui_long_connection as skylark_noui
|
|
||||||
# from .bridge_skylark2 import predict as skylark_ui
|
|
||||||
# model_info.update({
|
|
||||||
# "skylark": {
|
|
||||||
# "fn_with_ui": skylark_ui,
|
|
||||||
# "fn_without_ui": skylark_noui,
|
|
||||||
# "endpoint": None,
|
|
||||||
# "max_token": 4096,
|
|
||||||
# "tokenizer": tokenizer_gpt35,
|
|
||||||
# "token_cnt": get_token_num_gpt35,
|
|
||||||
# }
|
|
||||||
# })
|
|
||||||
# except:
|
|
||||||
# print(trimmed_format_exc())
|
|
||||||
|
|
||||||
|
|
||||||
# <-- 用于定义和切换多个azure模型 -->
|
# -=-=-=-=-=-=- one-api 对齐支持 -=-=-=-=-=-=-
|
||||||
AZURE_CFG_ARRAY = get_conf("AZURE_CFG_ARRAY")
|
for model in [m for m in AVAIL_LLM_MODELS if m.startswith("one-api-")]:
|
||||||
|
# 为了更灵活地接入one-api多模型管理界面,设计了此接口,例子:AVAIL_LLM_MODELS = ["one-api-mixtral-8x7b(max_token=6666)"]
|
||||||
|
# 其中
|
||||||
|
# "one-api-" 是前缀(必要)
|
||||||
|
# "mixtral-8x7b" 是模型名(必要)
|
||||||
|
# "(max_token=6666)" 是配置(非必要)
|
||||||
|
try:
|
||||||
|
_, max_token_tmp = read_one_api_model_name(model)
|
||||||
|
except:
|
||||||
|
print(f"one-api模型 {model} 的 max_token 配置不是整数,请检查配置文件。")
|
||||||
|
continue
|
||||||
|
model_info.update({
|
||||||
|
model: {
|
||||||
|
"fn_with_ui": chatgpt_ui,
|
||||||
|
"fn_without_ui": chatgpt_noui,
|
||||||
|
"endpoint": openai_endpoint,
|
||||||
|
"max_token": max_token_tmp,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
})
|
||||||
|
|
||||||
|
|
||||||
|
# -=-=-=-=-=-=- azure模型对齐支持 -=-=-=-=-=-=-
|
||||||
|
AZURE_CFG_ARRAY = get_conf("AZURE_CFG_ARRAY") # <-- 用于定义和切换多个azure模型 -->
|
||||||
if len(AZURE_CFG_ARRAY) > 0:
|
if len(AZURE_CFG_ARRAY) > 0:
|
||||||
for azure_model_name, azure_cfg_dict in AZURE_CFG_ARRAY.items():
|
for azure_model_name, azure_cfg_dict in AZURE_CFG_ARRAY.items():
|
||||||
# 可能会覆盖之前的配置,但这是意料之中的
|
# 可能会覆盖之前的配置,但这是意料之中的
|
||||||
@@ -678,7 +816,7 @@ def LLM_CATCH_EXCEPTION(f):
|
|||||||
"""
|
"""
|
||||||
装饰器函数,将错误显示出来
|
装饰器函数,将错误显示出来
|
||||||
"""
|
"""
|
||||||
def decorated(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience):
|
def decorated(inputs:str, llm_kwargs:dict, history:list, sys_prompt:str, observe_window:list, console_slience:bool):
|
||||||
try:
|
try:
|
||||||
return f(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
|
return f(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
@@ -688,9 +826,9 @@ def LLM_CATCH_EXCEPTION(f):
|
|||||||
return decorated
|
return decorated
|
||||||
|
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list, sys_prompt:str, observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
发送至LLM,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
发送至LLM,等待回复,一次性完成,不显示中间过程。但内部(尽可能地)用stream的方法避免中途网线被掐。
|
||||||
inputs:
|
inputs:
|
||||||
是本次问询的输入
|
是本次问询的输入
|
||||||
sys_prompt:
|
sys_prompt:
|
||||||
@@ -708,7 +846,6 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
|||||||
model = llm_kwargs['llm_model']
|
model = llm_kwargs['llm_model']
|
||||||
n_model = 1
|
n_model = 1
|
||||||
if '&' not in model:
|
if '&' not in model:
|
||||||
assert not model.startswith("tgui"), "TGUI不支持函数插件的实现"
|
|
||||||
|
|
||||||
# 如果只询问1个大语言模型:
|
# 如果只询问1个大语言模型:
|
||||||
method = model_info[model]["fn_without_ui"]
|
method = model_info[model]["fn_without_ui"]
|
||||||
@@ -743,7 +880,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
|||||||
# 观察窗(window)
|
# 观察窗(window)
|
||||||
chat_string = []
|
chat_string = []
|
||||||
for i in range(n_model):
|
for i in range(n_model):
|
||||||
chat_string.append( f"【{str(models[i])} 说】: <font color=\"{colors[i]}\"> {window_mutex[i][0]} </font>" )
|
color = colors[i%len(colors)]
|
||||||
|
chat_string.append( f"【{str(models[i])} 说】: <font color=\"{color}\"> {window_mutex[i][0]} </font>" )
|
||||||
res = '<br/><br/>\n\n---\n\n'.join(chat_string)
|
res = '<br/><br/>\n\n---\n\n'.join(chat_string)
|
||||||
# # # # # # # # # # #
|
# # # # # # # # # # #
|
||||||
observe_window[0] = res
|
observe_window[0] = res
|
||||||
@@ -760,22 +898,30 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
|||||||
time.sleep(1)
|
time.sleep(1)
|
||||||
|
|
||||||
for i, future in enumerate(futures): # wait and get
|
for i, future in enumerate(futures): # wait and get
|
||||||
return_string_collect.append( f"【{str(models[i])} 说】: <font color=\"{colors[i]}\"> {future.result()} </font>" )
|
color = colors[i%len(colors)]
|
||||||
|
return_string_collect.append( f"【{str(models[i])} 说】: <font color=\"{color}\"> {future.result()} </font>" )
|
||||||
|
|
||||||
window_mutex[-1] = False # stop mutex thread
|
window_mutex[-1] = False # stop mutex thread
|
||||||
res = '<br/><br/>\n\n---\n\n'.join(return_string_collect)
|
res = '<br/><br/>\n\n---\n\n'.join(return_string_collect)
|
||||||
return res
|
return res
|
||||||
|
|
||||||
|
|
||||||
def predict(inputs, llm_kwargs, *args, **kwargs):
|
def predict(inputs:str, llm_kwargs:dict, *args, **kwargs):
|
||||||
"""
|
"""
|
||||||
发送至LLM,流式获取输出。
|
发送至LLM,流式获取输出。
|
||||||
用于基础的对话功能。
|
用于基础的对话功能。
|
||||||
inputs 是本次问询的输入
|
|
||||||
top_p, temperature是LLM的内部调优参数
|
完整参数列表:
|
||||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
predict(
|
||||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
inputs:str, # 是本次问询的输入
|
||||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
llm_kwargs:dict, # 是LLM的内部调优参数
|
||||||
|
plugin_kwargs:dict, # 是插件的内部参数
|
||||||
|
chatbot:ChatBotWithCookies, # 原样传递,负责向用户前端展示对话,兼顾前端状态的功能
|
||||||
|
history:list=[], # 是之前的对话列表
|
||||||
|
system_prompt:str='', # 系统静默prompt
|
||||||
|
stream:bool=True, # 是否流式输出(已弃用)
|
||||||
|
additional_fn:str=None # 基础功能区按钮的附加功能
|
||||||
|
):
|
||||||
"""
|
"""
|
||||||
|
|
||||||
inputs = apply_gpt_academic_string_mask(inputs, mode="show_llm")
|
inputs = apply_gpt_academic_string_mask(inputs, mode="show_llm")
|
||||||
|
|||||||
@@ -56,15 +56,15 @@ class GetGLM2Handle(LocalLLMHandle):
|
|||||||
|
|
||||||
query, max_length, top_p, temperature, history = adaptor(kwargs)
|
query, max_length, top_p, temperature, history = adaptor(kwargs)
|
||||||
|
|
||||||
for response, history in self._model.stream_chat(self._tokenizer,
|
for response, history in self._model.stream_chat(self._tokenizer,
|
||||||
query,
|
query,
|
||||||
history,
|
history,
|
||||||
max_length=max_length,
|
max_length=max_length,
|
||||||
top_p=top_p,
|
top_p=top_p,
|
||||||
temperature=temperature,
|
temperature=temperature,
|
||||||
):
|
):
|
||||||
yield response
|
yield response
|
||||||
|
|
||||||
def try_to_import_special_deps(self, **kwargs):
|
def try_to_import_special_deps(self, **kwargs):
|
||||||
# import something that will raise error if the user does not install requirement_*.txt
|
# import something that will raise error if the user does not install requirement_*.txt
|
||||||
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
||||||
|
|||||||
@@ -55,15 +55,15 @@ class GetGLM3Handle(LocalLLMHandle):
|
|||||||
|
|
||||||
query, max_length, top_p, temperature, history = adaptor(kwargs)
|
query, max_length, top_p, temperature, history = adaptor(kwargs)
|
||||||
|
|
||||||
for response, history in self._model.stream_chat(self._tokenizer,
|
for response, history in self._model.stream_chat(self._tokenizer,
|
||||||
query,
|
query,
|
||||||
history,
|
history,
|
||||||
max_length=max_length,
|
max_length=max_length,
|
||||||
top_p=top_p,
|
top_p=top_p,
|
||||||
temperature=temperature,
|
temperature=temperature,
|
||||||
):
|
):
|
||||||
yield response
|
yield response
|
||||||
|
|
||||||
def try_to_import_special_deps(self, **kwargs):
|
def try_to_import_special_deps(self, **kwargs):
|
||||||
# import something that will raise error if the user does not install requirement_*.txt
|
# import something that will raise error if the user does not install requirement_*.txt
|
||||||
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
||||||
|
|||||||
@@ -37,7 +37,7 @@ class GetGLMFTHandle(Process):
|
|||||||
self.check_dependency()
|
self.check_dependency()
|
||||||
self.start()
|
self.start()
|
||||||
self.threadLock = threading.Lock()
|
self.threadLock = threading.Lock()
|
||||||
|
|
||||||
def check_dependency(self):
|
def check_dependency(self):
|
||||||
try:
|
try:
|
||||||
import sentencepiece
|
import sentencepiece
|
||||||
@@ -101,7 +101,7 @@ class GetGLMFTHandle(Process):
|
|||||||
break
|
break
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
retry += 1
|
retry += 1
|
||||||
if retry > 3:
|
if retry > 3:
|
||||||
self.child.send('[Local Message] Call ChatGLMFT fail 不能正常加载ChatGLMFT的参数。')
|
self.child.send('[Local Message] Call ChatGLMFT fail 不能正常加载ChatGLMFT的参数。')
|
||||||
raise RuntimeError("不能正常加载ChatGLMFT的参数!")
|
raise RuntimeError("不能正常加载ChatGLMFT的参数!")
|
||||||
|
|
||||||
@@ -113,7 +113,7 @@ class GetGLMFTHandle(Process):
|
|||||||
for response, history in self.chatglmft_model.stream_chat(self.chatglmft_tokenizer, **kwargs):
|
for response, history in self.chatglmft_model.stream_chat(self.chatglmft_tokenizer, **kwargs):
|
||||||
self.child.send(response)
|
self.child.send(response)
|
||||||
# # 中途接收可能的终止指令(如果有的话)
|
# # 中途接收可能的终止指令(如果有的话)
|
||||||
# if self.child.poll():
|
# if self.child.poll():
|
||||||
# command = self.child.recv()
|
# command = self.child.recv()
|
||||||
# if command == '[Terminate]': break
|
# if command == '[Terminate]': break
|
||||||
except:
|
except:
|
||||||
@@ -133,11 +133,12 @@ class GetGLMFTHandle(Process):
|
|||||||
else:
|
else:
|
||||||
break
|
break
|
||||||
self.threadLock.release()
|
self.threadLock.release()
|
||||||
|
|
||||||
global glmft_handle
|
global glmft_handle
|
||||||
glmft_handle = None
|
glmft_handle = None
|
||||||
#################################################################################
|
#################################################################################
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
多线程方法
|
多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
@@ -146,7 +147,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
if glmft_handle is None:
|
if glmft_handle is None:
|
||||||
glmft_handle = GetGLMFTHandle()
|
glmft_handle = GetGLMFTHandle()
|
||||||
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + glmft_handle.info
|
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + glmft_handle.info
|
||||||
if not glmft_handle.success:
|
if not glmft_handle.success:
|
||||||
error = glmft_handle.info
|
error = glmft_handle.info
|
||||||
glmft_handle = None
|
glmft_handle = None
|
||||||
raise RuntimeError(error)
|
raise RuntimeError(error)
|
||||||
@@ -161,7 +162,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
response = ""
|
response = ""
|
||||||
for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||||
if len(observe_window) >= 1: observe_window[0] = response
|
if len(observe_window) >= 1: observe_window[0] = response
|
||||||
if len(observe_window) >= 2:
|
if len(observe_window) >= 2:
|
||||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||||
raise RuntimeError("程序终止。")
|
raise RuntimeError("程序终止。")
|
||||||
return response
|
return response
|
||||||
@@ -180,7 +181,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
glmft_handle = GetGLMFTHandle()
|
glmft_handle = GetGLMFTHandle()
|
||||||
chatbot[-1] = (inputs, load_message + "\n\n" + glmft_handle.info)
|
chatbot[-1] = (inputs, load_message + "\n\n" + glmft_handle.info)
|
||||||
yield from update_ui(chatbot=chatbot, history=[])
|
yield from update_ui(chatbot=chatbot, history=[])
|
||||||
if not glmft_handle.success:
|
if not glmft_handle.success:
|
||||||
glmft_handle = None
|
glmft_handle = None
|
||||||
return
|
return
|
||||||
|
|
||||||
|
|||||||
@@ -59,7 +59,7 @@ class GetONNXGLMHandle(LocalLLMHandle):
|
|||||||
temperature=temperature,
|
temperature=temperature,
|
||||||
):
|
):
|
||||||
yield answer
|
yield answer
|
||||||
|
|
||||||
def try_to_import_special_deps(self, **kwargs):
|
def try_to_import_special_deps(self, **kwargs):
|
||||||
# import something that will raise error if the user does not install requirement_*.txt
|
# import something that will raise error if the user does not install requirement_*.txt
|
||||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||||
|
|||||||
@@ -21,7 +21,9 @@ import random
|
|||||||
|
|
||||||
# config_private.py放自己的秘密如API和代理网址
|
# config_private.py放自己的秘密如API和代理网址
|
||||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||||
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, is_the_upload_folder
|
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
|
||||||
|
from toolbox import trimmed_format_exc, is_the_upload_folder, read_one_api_model_name, log_chat
|
||||||
|
from toolbox import ChatBotWithCookies
|
||||||
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
||||||
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
|
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
|
||||||
|
|
||||||
@@ -47,14 +49,14 @@ def decode_chunk(chunk):
|
|||||||
choice_valid = False
|
choice_valid = False
|
||||||
has_content = False
|
has_content = False
|
||||||
has_role = False
|
has_role = False
|
||||||
try:
|
try:
|
||||||
chunkjson = json.loads(chunk_decoded[6:])
|
chunkjson = json.loads(chunk_decoded[6:])
|
||||||
has_choices = 'choices' in chunkjson
|
has_choices = 'choices' in chunkjson
|
||||||
if has_choices: choice_valid = (len(chunkjson['choices']) > 0)
|
if has_choices: choice_valid = (len(chunkjson['choices']) > 0)
|
||||||
if has_choices and choice_valid: has_content = ("content" in chunkjson['choices'][0]["delta"])
|
if has_choices and choice_valid: has_content = ("content" in chunkjson['choices'][0]["delta"])
|
||||||
if has_content: has_content = (chunkjson['choices'][0]["delta"]["content"] is not None)
|
if has_content: has_content = (chunkjson['choices'][0]["delta"]["content"] is not None)
|
||||||
if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"]
|
if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"]
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
return chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role
|
return chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role
|
||||||
|
|
||||||
@@ -68,7 +70,7 @@ def verify_endpoint(endpoint):
|
|||||||
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
|
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
|
||||||
return endpoint
|
return endpoint
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||||
inputs:
|
inputs:
|
||||||
@@ -103,13 +105,13 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
json_data = None
|
json_data = None
|
||||||
while True:
|
while True:
|
||||||
try: chunk = next(stream_response)
|
try: chunk = next(stream_response)
|
||||||
except StopIteration:
|
except StopIteration:
|
||||||
break
|
break
|
||||||
except requests.exceptions.ConnectionError:
|
except requests.exceptions.ConnectionError:
|
||||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||||
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
||||||
if len(chunk_decoded)==0: continue
|
if len(chunk_decoded)==0: continue
|
||||||
if not chunk_decoded.startswith('data:'):
|
if not chunk_decoded.startswith('data:'):
|
||||||
error_msg = get_full_error(chunk, stream_response).decode()
|
error_msg = get_full_error(chunk, stream_response).decode()
|
||||||
if "reduce the length" in error_msg:
|
if "reduce the length" in error_msg:
|
||||||
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
|
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
|
||||||
@@ -125,11 +127,12 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
json_data = chunkjson['choices'][0]
|
json_data = chunkjson['choices'][0]
|
||||||
delta = json_data["delta"]
|
delta = json_data["delta"]
|
||||||
if len(delta) == 0: break
|
if len(delta) == 0: break
|
||||||
if "role" in delta: continue
|
if (not has_content) and has_role: continue
|
||||||
if "content" in delta:
|
if (not has_content) and (not has_role): continue # raise RuntimeError("发现不标准的第三方接口:"+delta)
|
||||||
|
if has_content: # has_role = True/False
|
||||||
result += delta["content"]
|
result += delta["content"]
|
||||||
if not console_slience: print(delta["content"], end='')
|
if not console_slience: print(delta["content"], end='')
|
||||||
if observe_window is not None:
|
if observe_window is not None:
|
||||||
# 观测窗,把已经获取的数据显示出去
|
# 观测窗,把已经获取的数据显示出去
|
||||||
if len(observe_window) >= 1:
|
if len(observe_window) >= 1:
|
||||||
observe_window[0] += delta["content"]
|
observe_window[0] += delta["content"]
|
||||||
@@ -145,7 +148,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
||||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||||
|
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||||
"""
|
"""
|
||||||
发送至chatGPT,流式获取输出。
|
发送至chatGPT,流式获取输出。
|
||||||
用于基础的对话功能。
|
用于基础的对话功能。
|
||||||
@@ -171,7 +175,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||||
|
|
||||||
raw_input = inputs
|
raw_input = inputs
|
||||||
logging.info(f'[raw_input] {raw_input}')
|
# logging.info(f'[raw_input] {raw_input}')
|
||||||
chatbot.append((inputs, ""))
|
chatbot.append((inputs, ""))
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||||
|
|
||||||
@@ -187,7 +191,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
||||||
return
|
return
|
||||||
|
|
||||||
# 检查endpoint是否合法
|
# 检查endpoint是否合法
|
||||||
try:
|
try:
|
||||||
from .bridge_all import model_info
|
from .bridge_all import model_info
|
||||||
@@ -197,7 +201,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
chatbot[-1] = (inputs, tb_str)
|
chatbot[-1] = (inputs, tb_str)
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="Endpoint不满足要求") # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="Endpoint不满足要求") # 刷新界面
|
||||||
return
|
return
|
||||||
|
|
||||||
history.append(inputs); history.append("")
|
history.append(inputs); history.append("")
|
||||||
|
|
||||||
retry = 0
|
retry = 0
|
||||||
@@ -214,7 +218,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
if retry > MAX_RETRY: raise TimeoutError
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
|
||||||
gpt_replying_buffer = ""
|
gpt_replying_buffer = ""
|
||||||
|
|
||||||
is_head_of_the_stream = True
|
is_head_of_the_stream = True
|
||||||
if stream:
|
if stream:
|
||||||
stream_response = response.iter_lines()
|
stream_response = response.iter_lines()
|
||||||
@@ -226,21 +230,21 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
chunk_decoded = chunk.decode()
|
chunk_decoded = chunk.decode()
|
||||||
error_msg = chunk_decoded
|
error_msg = chunk_decoded
|
||||||
# 首先排除一个one-api没有done数据包的第三方Bug情形
|
# 首先排除一个one-api没有done数据包的第三方Bug情形
|
||||||
if len(gpt_replying_buffer.strip()) > 0 and len(error_msg) == 0:
|
if len(gpt_replying_buffer.strip()) > 0 and len(error_msg) == 0:
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="检测到有缺陷的非OpenAI官方接口,建议选择更稳定的接口。")
|
yield from update_ui(chatbot=chatbot, history=history, msg="检测到有缺陷的非OpenAI官方接口,建议选择更稳定的接口。")
|
||||||
break
|
break
|
||||||
# 其他情况,直接返回报错
|
# 其他情况,直接返回报错
|
||||||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="非OpenAI官方接口返回了错误:" + chunk.decode()) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="非OpenAI官方接口返回了错误:" + chunk.decode()) # 刷新界面
|
||||||
return
|
return
|
||||||
|
|
||||||
# 提前读取一些信息 (用于判断异常)
|
# 提前读取一些信息 (用于判断异常)
|
||||||
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
||||||
|
|
||||||
if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r"content" not in chunk_decoded):
|
if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r"content" not in chunk_decoded):
|
||||||
# 数据流的第一帧不携带content
|
# 数据流的第一帧不携带content
|
||||||
is_head_of_the_stream = False; continue
|
is_head_of_the_stream = False; continue
|
||||||
|
|
||||||
if chunk:
|
if chunk:
|
||||||
try:
|
try:
|
||||||
if has_choices and not choice_valid:
|
if has_choices and not choice_valid:
|
||||||
@@ -252,7 +256,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
# 前者是API2D的结束条件,后者是OPENAI的结束条件
|
# 前者是API2D的结束条件,后者是OPENAI的结束条件
|
||||||
if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0):
|
if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0):
|
||||||
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||||
logging.info(f'[response] {gpt_replying_buffer}')
|
# logging.info(f'[response] {gpt_replying_buffer}')
|
||||||
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||||
break
|
break
|
||||||
# 处理数据流的主体
|
# 处理数据流的主体
|
||||||
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
|
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
|
||||||
@@ -264,7 +269,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
# 一些第三方接口的出现这样的错误,兼容一下吧
|
# 一些第三方接口的出现这样的错误,兼容一下吧
|
||||||
continue
|
continue
|
||||||
else:
|
else:
|
||||||
# 一些垃圾第三方接口的出现这样的错误
|
# 至此已经超出了正常接口应该进入的范围,一些垃圾第三方接口会出现这样的错误
|
||||||
|
if chunkjson['choices'][0]["delta"]["content"] is None: continue # 一些垃圾第三方接口出现这样的错误,兼容一下吧
|
||||||
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
|
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
|
||||||
|
|
||||||
history[-1] = gpt_replying_buffer
|
history[-1] = gpt_replying_buffer
|
||||||
@@ -285,7 +291,7 @@ def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
|||||||
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
|
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
|
||||||
if "reduce the length" in error_msg:
|
if "reduce the length" in error_msg:
|
||||||
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
||||||
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
||||||
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
|
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
|
||||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
||||||
elif "does not exist" in error_msg:
|
elif "does not exist" in error_msg:
|
||||||
@@ -324,7 +330,7 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
|||||||
"Authorization": f"Bearer {api_key}"
|
"Authorization": f"Bearer {api_key}"
|
||||||
}
|
}
|
||||||
if API_ORG.startswith('org-'): headers.update({"OpenAI-Organization": API_ORG})
|
if API_ORG.startswith('org-'): headers.update({"OpenAI-Organization": API_ORG})
|
||||||
if llm_kwargs['llm_model'].startswith('azure-'):
|
if llm_kwargs['llm_model'].startswith('azure-'):
|
||||||
headers.update({"api-key": api_key})
|
headers.update({"api-key": api_key})
|
||||||
if llm_kwargs['llm_model'] in AZURE_CFG_ARRAY.keys():
|
if llm_kwargs['llm_model'] in AZURE_CFG_ARRAY.keys():
|
||||||
azure_api_key_unshared = AZURE_CFG_ARRAY[llm_kwargs['llm_model']]["AZURE_API_KEY"]
|
azure_api_key_unshared = AZURE_CFG_ARRAY[llm_kwargs['llm_model']]["AZURE_API_KEY"]
|
||||||
@@ -356,10 +362,13 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
|||||||
model = llm_kwargs['llm_model']
|
model = llm_kwargs['llm_model']
|
||||||
if llm_kwargs['llm_model'].startswith('api2d-'):
|
if llm_kwargs['llm_model'].startswith('api2d-'):
|
||||||
model = llm_kwargs['llm_model'][len('api2d-'):]
|
model = llm_kwargs['llm_model'][len('api2d-'):]
|
||||||
|
if llm_kwargs['llm_model'].startswith('one-api-'):
|
||||||
|
model = llm_kwargs['llm_model'][len('one-api-'):]
|
||||||
|
model, _ = read_one_api_model_name(model)
|
||||||
|
|
||||||
if model == "gpt-3.5-random": # 随机选择, 绕过openai访问频率限制
|
if model == "gpt-3.5-random": # 随机选择, 绕过openai访问频率限制
|
||||||
model = random.choice([
|
model = random.choice([
|
||||||
"gpt-3.5-turbo",
|
"gpt-3.5-turbo",
|
||||||
"gpt-3.5-turbo-16k",
|
"gpt-3.5-turbo-16k",
|
||||||
"gpt-3.5-turbo-1106",
|
"gpt-3.5-turbo-1106",
|
||||||
"gpt-3.5-turbo-0613",
|
"gpt-3.5-turbo-0613",
|
||||||
@@ -370,7 +379,7 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
|||||||
|
|
||||||
payload = {
|
payload = {
|
||||||
"model": model,
|
"model": model,
|
||||||
"messages": messages,
|
"messages": messages,
|
||||||
"temperature": llm_kwargs['temperature'], # 1.0,
|
"temperature": llm_kwargs['temperature'], # 1.0,
|
||||||
"top_p": llm_kwargs['top_p'], # 1.0,
|
"top_p": llm_kwargs['top_p'], # 1.0,
|
||||||
"n": 1,
|
"n": 1,
|
||||||
|
|||||||
@@ -27,7 +27,7 @@ timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check
|
|||||||
|
|
||||||
|
|
||||||
def report_invalid_key(key):
|
def report_invalid_key(key):
|
||||||
if get_conf("BLOCK_INVALID_APIKEY"):
|
if get_conf("BLOCK_INVALID_APIKEY"):
|
||||||
# 实验性功能,自动检测并屏蔽失效的KEY,请勿使用
|
# 实验性功能,自动检测并屏蔽失效的KEY,请勿使用
|
||||||
from request_llms.key_manager import ApiKeyManager
|
from request_llms.key_manager import ApiKeyManager
|
||||||
api_key = ApiKeyManager().add_key_to_blacklist(key)
|
api_key = ApiKeyManager().add_key_to_blacklist(key)
|
||||||
@@ -51,13 +51,13 @@ def decode_chunk(chunk):
|
|||||||
choice_valid = False
|
choice_valid = False
|
||||||
has_content = False
|
has_content = False
|
||||||
has_role = False
|
has_role = False
|
||||||
try:
|
try:
|
||||||
chunkjson = json.loads(chunk_decoded[6:])
|
chunkjson = json.loads(chunk_decoded[6:])
|
||||||
has_choices = 'choices' in chunkjson
|
has_choices = 'choices' in chunkjson
|
||||||
if has_choices: choice_valid = (len(chunkjson['choices']) > 0)
|
if has_choices: choice_valid = (len(chunkjson['choices']) > 0)
|
||||||
if has_choices and choice_valid: has_content = "content" in chunkjson['choices'][0]["delta"]
|
if has_choices and choice_valid: has_content = "content" in chunkjson['choices'][0]["delta"]
|
||||||
if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"]
|
if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"]
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
return chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role
|
return chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role
|
||||||
|
|
||||||
@@ -103,7 +103,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
|
|
||||||
raw_input = inputs
|
raw_input = inputs
|
||||||
logging.info(f'[raw_input] {raw_input}')
|
logging.info(f'[raw_input] {raw_input}')
|
||||||
def make_media_input(inputs, image_paths):
|
def make_media_input(inputs, image_paths):
|
||||||
for image_path in image_paths:
|
for image_path in image_paths:
|
||||||
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
||||||
return inputs
|
return inputs
|
||||||
@@ -122,7 +122,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
||||||
return
|
return
|
||||||
|
|
||||||
# 检查endpoint是否合法
|
# 检查endpoint是否合法
|
||||||
try:
|
try:
|
||||||
from .bridge_all import model_info
|
from .bridge_all import model_info
|
||||||
@@ -150,7 +150,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
if retry > MAX_RETRY: raise TimeoutError
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
|
||||||
gpt_replying_buffer = ""
|
gpt_replying_buffer = ""
|
||||||
|
|
||||||
is_head_of_the_stream = True
|
is_head_of_the_stream = True
|
||||||
if stream:
|
if stream:
|
||||||
stream_response = response.iter_lines()
|
stream_response = response.iter_lines()
|
||||||
@@ -162,21 +162,21 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
chunk_decoded = chunk.decode()
|
chunk_decoded = chunk.decode()
|
||||||
error_msg = chunk_decoded
|
error_msg = chunk_decoded
|
||||||
# 首先排除一个one-api没有done数据包的第三方Bug情形
|
# 首先排除一个one-api没有done数据包的第三方Bug情形
|
||||||
if len(gpt_replying_buffer.strip()) > 0 and len(error_msg) == 0:
|
if len(gpt_replying_buffer.strip()) > 0 and len(error_msg) == 0:
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="检测到有缺陷的非OpenAI官方接口,建议选择更稳定的接口。")
|
yield from update_ui(chatbot=chatbot, history=history, msg="检测到有缺陷的非OpenAI官方接口,建议选择更稳定的接口。")
|
||||||
break
|
break
|
||||||
# 其他情况,直接返回报错
|
# 其他情况,直接返回报错
|
||||||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg, api_key)
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg, api_key)
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="非OpenAI官方接口返回了错误:" + chunk.decode()) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="非OpenAI官方接口返回了错误:" + chunk.decode()) # 刷新界面
|
||||||
return
|
return
|
||||||
|
|
||||||
# 提前读取一些信息 (用于判断异常)
|
# 提前读取一些信息 (用于判断异常)
|
||||||
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
||||||
|
|
||||||
if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r"content" not in chunk_decoded):
|
if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r"content" not in chunk_decoded):
|
||||||
# 数据流的第一帧不携带content
|
# 数据流的第一帧不携带content
|
||||||
is_head_of_the_stream = False; continue
|
is_head_of_the_stream = False; continue
|
||||||
|
|
||||||
if chunk:
|
if chunk:
|
||||||
try:
|
try:
|
||||||
if has_choices and not choice_valid:
|
if has_choices and not choice_valid:
|
||||||
@@ -220,7 +220,7 @@ def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg,
|
|||||||
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
|
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
|
||||||
if "reduce the length" in error_msg:
|
if "reduce the length" in error_msg:
|
||||||
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
||||||
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
||||||
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
|
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
|
||||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
||||||
elif "does not exist" in error_msg:
|
elif "does not exist" in error_msg:
|
||||||
@@ -260,7 +260,7 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths):
|
|||||||
"Authorization": f"Bearer {api_key}"
|
"Authorization": f"Bearer {api_key}"
|
||||||
}
|
}
|
||||||
if API_ORG.startswith('org-'): headers.update({"OpenAI-Organization": API_ORG})
|
if API_ORG.startswith('org-'): headers.update({"OpenAI-Organization": API_ORG})
|
||||||
if llm_kwargs['llm_model'].startswith('azure-'):
|
if llm_kwargs['llm_model'].startswith('azure-'):
|
||||||
headers.update({"api-key": api_key})
|
headers.update({"api-key": api_key})
|
||||||
if llm_kwargs['llm_model'] in AZURE_CFG_ARRAY.keys():
|
if llm_kwargs['llm_model'] in AZURE_CFG_ARRAY.keys():
|
||||||
azure_api_key_unshared = AZURE_CFG_ARRAY[llm_kwargs['llm_model']]["AZURE_API_KEY"]
|
azure_api_key_unshared = AZURE_CFG_ARRAY[llm_kwargs['llm_model']]["AZURE_API_KEY"]
|
||||||
@@ -294,7 +294,7 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths):
|
|||||||
|
|
||||||
payload = {
|
payload = {
|
||||||
"model": model,
|
"model": model,
|
||||||
"messages": messages,
|
"messages": messages,
|
||||||
"temperature": llm_kwargs['temperature'], # 1.0,
|
"temperature": llm_kwargs['temperature'], # 1.0,
|
||||||
"top_p": llm_kwargs['top_p'], # 1.0,
|
"top_p": llm_kwargs['top_p'], # 1.0,
|
||||||
"n": 1,
|
"n": 1,
|
||||||
|
|||||||
@@ -73,12 +73,12 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
result = ''
|
result = ''
|
||||||
while True:
|
while True:
|
||||||
try: chunk = next(stream_response).decode()
|
try: chunk = next(stream_response).decode()
|
||||||
except StopIteration:
|
except StopIteration:
|
||||||
break
|
break
|
||||||
except requests.exceptions.ConnectionError:
|
except requests.exceptions.ConnectionError:
|
||||||
chunk = next(stream_response).decode() # 失败了,重试一次?再失败就没办法了。
|
chunk = next(stream_response).decode() # 失败了,重试一次?再失败就没办法了。
|
||||||
if len(chunk)==0: continue
|
if len(chunk)==0: continue
|
||||||
if not chunk.startswith('data:'):
|
if not chunk.startswith('data:'):
|
||||||
error_msg = get_full_error(chunk.encode('utf8'), stream_response).decode()
|
error_msg = get_full_error(chunk.encode('utf8'), stream_response).decode()
|
||||||
if "reduce the length" in error_msg:
|
if "reduce the length" in error_msg:
|
||||||
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
|
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
|
||||||
@@ -89,14 +89,14 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
delta = json_data["delta"]
|
delta = json_data["delta"]
|
||||||
if len(delta) == 0: break
|
if len(delta) == 0: break
|
||||||
if "role" in delta: continue
|
if "role" in delta: continue
|
||||||
if "content" in delta:
|
if "content" in delta:
|
||||||
result += delta["content"]
|
result += delta["content"]
|
||||||
if not console_slience: print(delta["content"], end='')
|
if not console_slience: print(delta["content"], end='')
|
||||||
if observe_window is not None:
|
if observe_window is not None:
|
||||||
# 观测窗,把已经获取的数据显示出去
|
# 观测窗,把已经获取的数据显示出去
|
||||||
if len(observe_window) >= 1: observe_window[0] += delta["content"]
|
if len(observe_window) >= 1: observe_window[0] += delta["content"]
|
||||||
# 看门狗,如果超过期限没有喂狗,则终止
|
# 看门狗,如果超过期限没有喂狗,则终止
|
||||||
if len(observe_window) >= 2:
|
if len(observe_window) >= 2:
|
||||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||||
raise RuntimeError("用户取消了程序。")
|
raise RuntimeError("用户取消了程序。")
|
||||||
else: raise RuntimeError("意外Json结构:"+delta)
|
else: raise RuntimeError("意外Json结构:"+delta)
|
||||||
@@ -132,7 +132,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
||||||
return
|
return
|
||||||
|
|
||||||
history.append(inputs); history.append("")
|
history.append(inputs); history.append("")
|
||||||
|
|
||||||
retry = 0
|
retry = 0
|
||||||
@@ -151,7 +151,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
if retry > MAX_RETRY: raise TimeoutError
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
|
||||||
gpt_replying_buffer = ""
|
gpt_replying_buffer = ""
|
||||||
|
|
||||||
is_head_of_the_stream = True
|
is_head_of_the_stream = True
|
||||||
if stream:
|
if stream:
|
||||||
stream_response = response.iter_lines()
|
stream_response = response.iter_lines()
|
||||||
@@ -165,12 +165,12 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="非Openai官方接口返回了错误:" + chunk.decode()) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="非Openai官方接口返回了错误:" + chunk.decode()) # 刷新界面
|
||||||
return
|
return
|
||||||
|
|
||||||
# print(chunk.decode()[6:])
|
# print(chunk.decode()[6:])
|
||||||
if is_head_of_the_stream and (r'"object":"error"' not in chunk.decode()):
|
if is_head_of_the_stream and (r'"object":"error"' not in chunk.decode()):
|
||||||
# 数据流的第一帧不携带content
|
# 数据流的第一帧不携带content
|
||||||
is_head_of_the_stream = False; continue
|
is_head_of_the_stream = False; continue
|
||||||
|
|
||||||
if chunk:
|
if chunk:
|
||||||
try:
|
try:
|
||||||
chunk_decoded = chunk.decode()
|
chunk_decoded = chunk.decode()
|
||||||
@@ -203,7 +203,7 @@ def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
|||||||
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
|
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
|
||||||
if "reduce the length" in error_msg:
|
if "reduce the length" in error_msg:
|
||||||
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
||||||
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
||||||
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
|
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
|
||||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
||||||
# history = [] # 清除历史
|
# history = [] # 清除历史
|
||||||
@@ -264,7 +264,7 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
|||||||
|
|
||||||
payload = {
|
payload = {
|
||||||
"model": llm_kwargs['llm_model'].strip('api2d-'),
|
"model": llm_kwargs['llm_model'].strip('api2d-'),
|
||||||
"messages": messages,
|
"messages": messages,
|
||||||
"temperature": llm_kwargs['temperature'], # 1.0,
|
"temperature": llm_kwargs['temperature'], # 1.0,
|
||||||
"top_p": llm_kwargs['top_p'], # 1.0,
|
"top_p": llm_kwargs['top_p'], # 1.0,
|
||||||
"n": 1,
|
"n": 1,
|
||||||
|
|||||||
@@ -9,15 +9,15 @@
|
|||||||
具备多线程调用能力的函数
|
具备多线程调用能力的函数
|
||||||
2. predict_no_ui_long_connection:支持多线程
|
2. predict_no_ui_long_connection:支持多线程
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import os
|
|
||||||
import json
|
|
||||||
import time
|
|
||||||
import gradio as gr
|
|
||||||
import logging
|
import logging
|
||||||
|
import os
|
||||||
|
import time
|
||||||
import traceback
|
import traceback
|
||||||
|
import json
|
||||||
import requests
|
import requests
|
||||||
import importlib
|
from toolbox import get_conf, update_ui, trimmed_format_exc, encode_image, every_image_file_in_path, log_chat
|
||||||
|
picture_system_prompt = "\n当回复图像时,必须说明正在回复哪张图像。所有图像仅在最后一个问题中提供,即使它们在历史记录中被提及。请使用'这是第X张图像:'的格式来指明您正在描述的是哪张图像。"
|
||||||
|
Claude_3_Models = ["claude-3-haiku-20240307", "claude-3-sonnet-20240229", "claude-3-opus-20240229"]
|
||||||
|
|
||||||
# config_private.py放自己的秘密如API和代理网址
|
# config_private.py放自己的秘密如API和代理网址
|
||||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||||
@@ -39,6 +39,34 @@ def get_full_error(chunk, stream_response):
|
|||||||
break
|
break
|
||||||
return chunk
|
return chunk
|
||||||
|
|
||||||
|
def decode_chunk(chunk):
|
||||||
|
# 提前读取一些信息(用于判断异常)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
chunkjson = None
|
||||||
|
is_last_chunk = False
|
||||||
|
need_to_pass = False
|
||||||
|
if chunk_decoded.startswith('data:'):
|
||||||
|
try:
|
||||||
|
chunkjson = json.loads(chunk_decoded[6:])
|
||||||
|
except:
|
||||||
|
need_to_pass = True
|
||||||
|
pass
|
||||||
|
elif chunk_decoded.startswith('event:'):
|
||||||
|
try:
|
||||||
|
event_type = chunk_decoded.split(':')[1].strip()
|
||||||
|
if event_type == 'content_block_stop' or event_type == 'message_stop':
|
||||||
|
is_last_chunk = True
|
||||||
|
elif event_type == 'content_block_start' or event_type == 'message_start':
|
||||||
|
need_to_pass = True
|
||||||
|
pass
|
||||||
|
except:
|
||||||
|
need_to_pass = True
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
need_to_pass = True
|
||||||
|
pass
|
||||||
|
return need_to_pass, chunkjson, is_last_chunk
|
||||||
|
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||||
"""
|
"""
|
||||||
@@ -54,50 +82,67 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
observe_window = None:
|
observe_window = None:
|
||||||
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||||
"""
|
"""
|
||||||
from anthropic import Anthropic
|
|
||||||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||||
prompt = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
|
|
||||||
retry = 0
|
|
||||||
if len(ANTHROPIC_API_KEY) == 0:
|
if len(ANTHROPIC_API_KEY) == 0:
|
||||||
raise RuntimeError("没有设置ANTHROPIC_API_KEY选项")
|
raise RuntimeError("没有设置ANTHROPIC_API_KEY选项")
|
||||||
|
if inputs == "": inputs = "空空如也的输入栏"
|
||||||
|
headers, message = generate_payload(inputs, llm_kwargs, history, sys_prompt, image_paths=None)
|
||||||
|
retry = 0
|
||||||
|
|
||||||
|
|
||||||
while True:
|
while True:
|
||||||
try:
|
try:
|
||||||
# make a POST request to the API endpoint, stream=False
|
# make a POST request to the API endpoint, stream=False
|
||||||
from .bridge_all import model_info
|
from .bridge_all import model_info
|
||||||
anthropic = Anthropic(api_key=ANTHROPIC_API_KEY)
|
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||||
# endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
response = requests.post(endpoint, headers=headers, json=message,
|
||||||
# with ProxyNetworkActivate()
|
proxies=proxies, stream=True, timeout=TIMEOUT_SECONDS);break
|
||||||
stream = anthropic.completions.create(
|
except requests.exceptions.ReadTimeout as e:
|
||||||
prompt=prompt,
|
|
||||||
max_tokens_to_sample=4096, # The maximum number of tokens to generate before stopping.
|
|
||||||
model=llm_kwargs['llm_model'],
|
|
||||||
stream=True,
|
|
||||||
temperature = llm_kwargs['temperature']
|
|
||||||
)
|
|
||||||
break
|
|
||||||
except Exception as e:
|
|
||||||
retry += 1
|
retry += 1
|
||||||
traceback.print_exc()
|
traceback.print_exc()
|
||||||
if retry > MAX_RETRY: raise TimeoutError
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||||
|
stream_response = response.iter_lines()
|
||||||
result = ''
|
result = ''
|
||||||
try:
|
while True:
|
||||||
for completion in stream:
|
try: chunk = next(stream_response)
|
||||||
result += completion.completion
|
except StopIteration:
|
||||||
if not console_slience: print(completion.completion, end='')
|
break
|
||||||
if observe_window is not None:
|
except requests.exceptions.ConnectionError:
|
||||||
# 观测窗,把已经获取的数据显示出去
|
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||||
if len(observe_window) >= 1: observe_window[0] += completion.completion
|
need_to_pass, chunkjson, is_last_chunk = decode_chunk(chunk)
|
||||||
# 看门狗,如果超过期限没有喂狗,则终止
|
if chunk:
|
||||||
if len(observe_window) >= 2:
|
try:
|
||||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
if need_to_pass:
|
||||||
raise RuntimeError("用户取消了程序。")
|
pass
|
||||||
except Exception as e:
|
elif is_last_chunk:
|
||||||
traceback.print_exc()
|
# logging.info(f'[response] {result}')
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
if chunkjson and chunkjson['type'] == 'content_block_delta':
|
||||||
|
result += chunkjson['delta']['text']
|
||||||
|
print(chunkjson['delta']['text'], end='')
|
||||||
|
if observe_window is not None:
|
||||||
|
# 观测窗,把已经获取的数据显示出去
|
||||||
|
if len(observe_window) >= 1:
|
||||||
|
observe_window[0] += chunkjson['delta']['text']
|
||||||
|
# 看门狗,如果超过期限没有喂狗,则终止
|
||||||
|
if len(observe_window) >= 2:
|
||||||
|
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||||
|
raise RuntimeError("用户取消了程序。")
|
||||||
|
except Exception as e:
|
||||||
|
chunk = get_full_error(chunk, stream_response)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
error_msg = chunk_decoded
|
||||||
|
print(error_msg)
|
||||||
|
raise RuntimeError("Json解析不合常规")
|
||||||
|
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
def make_media_input(history,inputs,image_paths):
|
||||||
|
for image_path in image_paths:
|
||||||
|
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
||||||
|
return inputs
|
||||||
|
|
||||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||||
"""
|
"""
|
||||||
@@ -109,23 +154,33 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||||
"""
|
"""
|
||||||
from anthropic import Anthropic
|
if inputs == "": inputs = "空空如也的输入栏"
|
||||||
if len(ANTHROPIC_API_KEY) == 0:
|
if len(ANTHROPIC_API_KEY) == 0:
|
||||||
chatbot.append((inputs, "没有设置ANTHROPIC_API_KEY"))
|
chatbot.append((inputs, "没有设置ANTHROPIC_API_KEY"))
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||||
return
|
return
|
||||||
|
|
||||||
if additional_fn is not None:
|
if additional_fn is not None:
|
||||||
from core_functional import handle_core_functionality
|
from core_functional import handle_core_functionality
|
||||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||||
|
|
||||||
raw_input = inputs
|
have_recent_file, image_paths = every_image_file_in_path(chatbot)
|
||||||
logging.info(f'[raw_input] {raw_input}')
|
if len(image_paths) > 20:
|
||||||
chatbot.append((inputs, ""))
|
chatbot.append((inputs, "图片数量超过api上限(20张)"))
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应")
|
||||||
|
return
|
||||||
|
|
||||||
|
if any([llm_kwargs['llm_model'] == model for model in Claude_3_Models]) and have_recent_file:
|
||||||
|
if inputs == "" or inputs == "空空如也的输入栏": inputs = "请描述给出的图片"
|
||||||
|
system_prompt += picture_system_prompt # 由于没有单独的参数保存包含图片的历史,所以只能通过提示词对第几张图片进行定位
|
||||||
|
chatbot.append((make_media_input(history,inputs, image_paths), ""))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||||
|
else:
|
||||||
|
chatbot.append((inputs, ""))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||||
|
|
||||||
try:
|
try:
|
||||||
prompt = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
headers, message = generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths)
|
||||||
except RuntimeError as e:
|
except RuntimeError as e:
|
||||||
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
||||||
@@ -138,91 +193,117 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
try:
|
try:
|
||||||
# make a POST request to the API endpoint, stream=True
|
# make a POST request to the API endpoint, stream=True
|
||||||
from .bridge_all import model_info
|
from .bridge_all import model_info
|
||||||
anthropic = Anthropic(api_key=ANTHROPIC_API_KEY)
|
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||||
# endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
response = requests.post(endpoint, headers=headers, json=message,
|
||||||
# with ProxyNetworkActivate()
|
proxies=proxies, stream=True, timeout=TIMEOUT_SECONDS);break
|
||||||
stream = anthropic.completions.create(
|
except requests.exceptions.ReadTimeout as e:
|
||||||
prompt=prompt,
|
|
||||||
max_tokens_to_sample=4096, # The maximum number of tokens to generate before stopping.
|
|
||||||
model=llm_kwargs['llm_model'],
|
|
||||||
stream=True,
|
|
||||||
temperature = llm_kwargs['temperature']
|
|
||||||
)
|
|
||||||
|
|
||||||
break
|
|
||||||
except:
|
|
||||||
retry += 1
|
retry += 1
|
||||||
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
|
traceback.print_exc()
|
||||||
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
|
||||||
if retry > MAX_RETRY: raise TimeoutError
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||||
|
stream_response = response.iter_lines()
|
||||||
gpt_replying_buffer = ""
|
gpt_replying_buffer = ""
|
||||||
|
|
||||||
for completion in stream:
|
|
||||||
try:
|
|
||||||
gpt_replying_buffer = gpt_replying_buffer + completion.completion
|
|
||||||
history[-1] = gpt_replying_buffer
|
|
||||||
chatbot[-1] = (history[-2], history[-1])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg='正常') # 刷新界面
|
|
||||||
|
|
||||||
except Exception as e:
|
while True:
|
||||||
from toolbox import regular_txt_to_markdown
|
try: chunk = next(stream_response)
|
||||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
except StopIteration:
|
||||||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str}")
|
break
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + tb_str) # 刷新界面
|
except requests.exceptions.ConnectionError:
|
||||||
return
|
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||||
|
need_to_pass, chunkjson, is_last_chunk = decode_chunk(chunk)
|
||||||
|
if chunk:
|
||||||
|
try:
|
||||||
|
if need_to_pass:
|
||||||
|
pass
|
||||||
|
elif is_last_chunk:
|
||||||
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||||
|
# logging.info(f'[response] {gpt_replying_buffer}')
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
if chunkjson and chunkjson['type'] == 'content_block_delta':
|
||||||
|
gpt_replying_buffer += chunkjson['delta']['text']
|
||||||
|
history[-1] = gpt_replying_buffer
|
||||||
|
chatbot[-1] = (history[-2], history[-1])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg='正常') # 刷新界面
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
chunk = get_full_error(chunk, stream_response)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
error_msg = chunk_decoded
|
||||||
|
print(error_msg)
|
||||||
|
raise RuntimeError("Json解析不合常规")
|
||||||
|
|
||||||
|
def multiple_picture_types(image_paths):
|
||||||
|
"""
|
||||||
|
根据图片类型返回image/jpeg, image/png, image/gif, image/webp,无法判断则返回image/jpeg
|
||||||
|
"""
|
||||||
|
for image_path in image_paths:
|
||||||
|
if image_path.endswith('.jpeg') or image_path.endswith('.jpg'):
|
||||||
|
return 'image/jpeg'
|
||||||
|
elif image_path.endswith('.png'):
|
||||||
|
return 'image/png'
|
||||||
|
elif image_path.endswith('.gif'):
|
||||||
|
return 'image/gif'
|
||||||
|
elif image_path.endswith('.webp'):
|
||||||
|
return 'image/webp'
|
||||||
|
return 'image/jpeg'
|
||||||
|
|
||||||
# https://github.com/jtsang4/claude-to-chatgpt/blob/main/claude_to_chatgpt/adapter.py
|
def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths):
|
||||||
def convert_messages_to_prompt(messages):
|
|
||||||
prompt = ""
|
|
||||||
role_map = {
|
|
||||||
"system": "Human",
|
|
||||||
"user": "Human",
|
|
||||||
"assistant": "Assistant",
|
|
||||||
}
|
|
||||||
for message in messages:
|
|
||||||
role = message["role"]
|
|
||||||
content = message["content"]
|
|
||||||
transformed_role = role_map[role]
|
|
||||||
prompt += f"\n\n{transformed_role.capitalize()}: {content}"
|
|
||||||
prompt += "\n\nAssistant: "
|
|
||||||
return prompt
|
|
||||||
|
|
||||||
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
|
||||||
"""
|
"""
|
||||||
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||||||
"""
|
"""
|
||||||
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
|
|
||||||
|
|
||||||
conversation_cnt = len(history) // 2
|
conversation_cnt = len(history) // 2
|
||||||
|
|
||||||
messages = [{"role": "system", "content": system_prompt}]
|
messages = []
|
||||||
|
|
||||||
if conversation_cnt:
|
if conversation_cnt:
|
||||||
for index in range(0, 2*conversation_cnt, 2):
|
for index in range(0, 2*conversation_cnt, 2):
|
||||||
what_i_have_asked = {}
|
what_i_have_asked = {}
|
||||||
what_i_have_asked["role"] = "user"
|
what_i_have_asked["role"] = "user"
|
||||||
what_i_have_asked["content"] = history[index]
|
what_i_have_asked["content"] = [{"type": "text", "text": history[index]}]
|
||||||
what_gpt_answer = {}
|
what_gpt_answer = {}
|
||||||
what_gpt_answer["role"] = "assistant"
|
what_gpt_answer["role"] = "assistant"
|
||||||
what_gpt_answer["content"] = history[index+1]
|
what_gpt_answer["content"] = [{"type": "text", "text": history[index+1]}]
|
||||||
if what_i_have_asked["content"] != "":
|
if what_i_have_asked["content"][0]["text"] != "":
|
||||||
if what_gpt_answer["content"] == "": continue
|
if what_i_have_asked["content"][0]["text"] == "": continue
|
||||||
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
if what_i_have_asked["content"][0]["text"] == timeout_bot_msg: continue
|
||||||
messages.append(what_i_have_asked)
|
messages.append(what_i_have_asked)
|
||||||
messages.append(what_gpt_answer)
|
messages.append(what_gpt_answer)
|
||||||
else:
|
else:
|
||||||
messages[-1]['content'] = what_gpt_answer['content']
|
messages[-1]['content'][0]['text'] = what_gpt_answer['content'][0]['text']
|
||||||
|
|
||||||
what_i_ask_now = {}
|
if any([llm_kwargs['llm_model'] == model for model in Claude_3_Models]) and image_paths:
|
||||||
what_i_ask_now["role"] = "user"
|
what_i_ask_now = {}
|
||||||
what_i_ask_now["content"] = inputs
|
what_i_ask_now["role"] = "user"
|
||||||
|
what_i_ask_now["content"] = []
|
||||||
|
for image_path in image_paths:
|
||||||
|
what_i_ask_now["content"].append({
|
||||||
|
"type": "image",
|
||||||
|
"source": {
|
||||||
|
"type": "base64",
|
||||||
|
"media_type": multiple_picture_types(image_paths),
|
||||||
|
"data": encode_image(image_path),
|
||||||
|
}
|
||||||
|
})
|
||||||
|
what_i_ask_now["content"].append({"type": "text", "text": inputs})
|
||||||
|
else:
|
||||||
|
what_i_ask_now = {}
|
||||||
|
what_i_ask_now["role"] = "user"
|
||||||
|
what_i_ask_now["content"] = [{"type": "text", "text": inputs}]
|
||||||
messages.append(what_i_ask_now)
|
messages.append(what_i_ask_now)
|
||||||
prompt = convert_messages_to_prompt(messages)
|
# 开始整理headers与message
|
||||||
|
headers = {
|
||||||
return prompt
|
'x-api-key': ANTHROPIC_API_KEY,
|
||||||
|
'anthropic-version': '2023-06-01',
|
||||||
|
'content-type': 'application/json'
|
||||||
|
}
|
||||||
|
payload = {
|
||||||
|
'model': llm_kwargs['llm_model'],
|
||||||
|
'max_tokens': 4096,
|
||||||
|
'messages': messages,
|
||||||
|
'temperature': llm_kwargs['temperature'],
|
||||||
|
'stream': True,
|
||||||
|
'system': system_prompt
|
||||||
|
}
|
||||||
|
return headers, payload
|
||||||
|
|||||||
328
request_llms/bridge_cohere.py
普通文件
328
request_llms/bridge_cohere.py
普通文件
@@ -0,0 +1,328 @@
|
|||||||
|
# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目
|
||||||
|
|
||||||
|
"""
|
||||||
|
该文件中主要包含三个函数
|
||||||
|
|
||||||
|
不具备多线程能力的函数:
|
||||||
|
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
|
||||||
|
|
||||||
|
具备多线程调用能力的函数
|
||||||
|
2. predict_no_ui_long_connection:支持多线程
|
||||||
|
"""
|
||||||
|
|
||||||
|
import json
|
||||||
|
import time
|
||||||
|
import gradio as gr
|
||||||
|
import logging
|
||||||
|
import traceback
|
||||||
|
import requests
|
||||||
|
import importlib
|
||||||
|
import random
|
||||||
|
|
||||||
|
# config_private.py放自己的秘密如API和代理网址
|
||||||
|
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||||
|
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
|
||||||
|
from toolbox import trimmed_format_exc, is_the_upload_folder, read_one_api_model_name, log_chat
|
||||||
|
from toolbox import ChatBotWithCookies
|
||||||
|
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
||||||
|
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
|
||||||
|
|
||||||
|
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||||
|
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||||||
|
|
||||||
|
def get_full_error(chunk, stream_response):
|
||||||
|
"""
|
||||||
|
获取完整的从Cohere返回的报错
|
||||||
|
"""
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
chunk += next(stream_response)
|
||||||
|
except:
|
||||||
|
break
|
||||||
|
return chunk
|
||||||
|
|
||||||
|
def decode_chunk(chunk):
|
||||||
|
# 提前读取一些信息 (用于判断异常)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
chunkjson = None
|
||||||
|
has_choices = False
|
||||||
|
choice_valid = False
|
||||||
|
has_content = False
|
||||||
|
has_role = False
|
||||||
|
try:
|
||||||
|
chunkjson = json.loads(chunk_decoded)
|
||||||
|
has_choices = 'choices' in chunkjson
|
||||||
|
if has_choices: choice_valid = (len(chunkjson['choices']) > 0)
|
||||||
|
if has_choices and choice_valid: has_content = ("content" in chunkjson['choices'][0]["delta"])
|
||||||
|
if has_content: has_content = (chunkjson['choices'][0]["delta"]["content"] is not None)
|
||||||
|
if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"]
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
return chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role
|
||||||
|
|
||||||
|
from functools import lru_cache
|
||||||
|
@lru_cache(maxsize=32)
|
||||||
|
def verify_endpoint(endpoint):
|
||||||
|
"""
|
||||||
|
检查endpoint是否可用
|
||||||
|
"""
|
||||||
|
if "你亲手写的api名称" in endpoint:
|
||||||
|
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
|
||||||
|
return endpoint
|
||||||
|
|
||||||
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
|
||||||
|
"""
|
||||||
|
发送,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||||
|
inputs:
|
||||||
|
是本次问询的输入
|
||||||
|
sys_prompt:
|
||||||
|
系统静默prompt
|
||||||
|
llm_kwargs:
|
||||||
|
内部调优参数
|
||||||
|
history:
|
||||||
|
是之前的对话列表
|
||||||
|
observe_window = None:
|
||||||
|
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||||
|
"""
|
||||||
|
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||||
|
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
|
||||||
|
retry = 0
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
# make a POST request to the API endpoint, stream=False
|
||||||
|
from .bridge_all import model_info
|
||||||
|
endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
|
||||||
|
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||||
|
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
|
||||||
|
except requests.exceptions.ReadTimeout as e:
|
||||||
|
retry += 1
|
||||||
|
traceback.print_exc()
|
||||||
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||||
|
|
||||||
|
stream_response = response.iter_lines()
|
||||||
|
result = ''
|
||||||
|
json_data = None
|
||||||
|
while True:
|
||||||
|
try: chunk = next(stream_response)
|
||||||
|
except StopIteration:
|
||||||
|
break
|
||||||
|
except requests.exceptions.ConnectionError:
|
||||||
|
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||||
|
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
||||||
|
if chunkjson['event_type'] == 'stream-start': continue
|
||||||
|
if chunkjson['event_type'] == 'text-generation':
|
||||||
|
result += chunkjson["text"]
|
||||||
|
if not console_slience: print(chunkjson["text"], end='')
|
||||||
|
if observe_window is not None:
|
||||||
|
# 观测窗,把已经获取的数据显示出去
|
||||||
|
if len(observe_window) >= 1:
|
||||||
|
observe_window[0] += chunkjson["text"]
|
||||||
|
# 看门狗,如果超过期限没有喂狗,则终止
|
||||||
|
if len(observe_window) >= 2:
|
||||||
|
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||||
|
raise RuntimeError("用户取消了程序。")
|
||||||
|
if chunkjson['event_type'] == 'stream-end': break
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||||
|
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||||
|
"""
|
||||||
|
发送至chatGPT,流式获取输出。
|
||||||
|
用于基础的对话功能。
|
||||||
|
inputs 是本次问询的输入
|
||||||
|
top_p, temperature是chatGPT的内部调优参数
|
||||||
|
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||||
|
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||||
|
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||||
|
"""
|
||||||
|
# if is_any_api_key(inputs):
|
||||||
|
# chatbot._cookies['api_key'] = inputs
|
||||||
|
# chatbot.append(("输入已识别为Cohere的api_key", what_keys(inputs)))
|
||||||
|
# yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") # 刷新界面
|
||||||
|
# return
|
||||||
|
# elif not is_any_api_key(chatbot._cookies['api_key']):
|
||||||
|
# chatbot.append((inputs, "缺少api_key。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。"))
|
||||||
|
# yield from update_ui(chatbot=chatbot, history=history, msg="缺少api_key") # 刷新界面
|
||||||
|
# return
|
||||||
|
|
||||||
|
user_input = inputs
|
||||||
|
if additional_fn is not None:
|
||||||
|
from core_functional import handle_core_functionality
|
||||||
|
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||||
|
|
||||||
|
raw_input = inputs
|
||||||
|
# logging.info(f'[raw_input] {raw_input}')
|
||||||
|
chatbot.append((inputs, ""))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||||
|
|
||||||
|
# check mis-behavior
|
||||||
|
if is_the_upload_folder(user_input):
|
||||||
|
chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
|
||||||
|
time.sleep(2)
|
||||||
|
|
||||||
|
try:
|
||||||
|
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||||||
|
except RuntimeError as e:
|
||||||
|
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# 检查endpoint是否合法
|
||||||
|
try:
|
||||||
|
from .bridge_all import model_info
|
||||||
|
endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
|
||||||
|
except:
|
||||||
|
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||||
|
chatbot[-1] = (inputs, tb_str)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Endpoint不满足要求") # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
history.append(inputs); history.append("")
|
||||||
|
|
||||||
|
retry = 0
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
# make a POST request to the API endpoint, stream=True
|
||||||
|
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||||
|
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
|
||||||
|
except:
|
||||||
|
retry += 1
|
||||||
|
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
|
||||||
|
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
||||||
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
|
||||||
|
gpt_replying_buffer = ""
|
||||||
|
|
||||||
|
is_head_of_the_stream = True
|
||||||
|
if stream:
|
||||||
|
stream_response = response.iter_lines()
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
chunk = next(stream_response)
|
||||||
|
except StopIteration:
|
||||||
|
# 非Cohere官方接口的出现这样的报错,Cohere和API2D不会走这里
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
error_msg = chunk_decoded
|
||||||
|
# 其他情况,直接返回报错
|
||||||
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="非Cohere官方接口返回了错误:" + chunk.decode()) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# 提前读取一些信息 (用于判断异常)
|
||||||
|
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
||||||
|
|
||||||
|
if chunkjson:
|
||||||
|
try:
|
||||||
|
if chunkjson['event_type'] == 'stream-start':
|
||||||
|
continue
|
||||||
|
if chunkjson['event_type'] == 'text-generation':
|
||||||
|
gpt_replying_buffer = gpt_replying_buffer + chunkjson["text"]
|
||||||
|
history[-1] = gpt_replying_buffer
|
||||||
|
chatbot[-1] = (history[-2], history[-1])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
|
||||||
|
if chunkjson['event_type'] == 'stream-end':
|
||||||
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||||
|
history[-1] = gpt_replying_buffer
|
||||||
|
chatbot[-1] = (history[-2], history[-1])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
|
||||||
|
break
|
||||||
|
except Exception as e:
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
|
||||||
|
chunk = get_full_error(chunk, stream_response)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
error_msg = chunk_decoded
|
||||||
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
||||||
|
print(error_msg)
|
||||||
|
return
|
||||||
|
|
||||||
|
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
|
||||||
|
from .bridge_all import model_info
|
||||||
|
Cohere_website = ' 请登录Cohere查看详情 https://platform.Cohere.com/signup'
|
||||||
|
if "reduce the length" in error_msg:
|
||||||
|
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
||||||
|
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
||||||
|
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
||||||
|
elif "does not exist" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格.")
|
||||||
|
elif "Incorrect API key" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. Cohere以提供了不正确的API_KEY为由, 拒绝服务. " + Cohere_website)
|
||||||
|
elif "exceeded your current quota" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. Cohere以账户额度不足为由, 拒绝服务." + Cohere_website)
|
||||||
|
elif "account is not active" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Your account is not active. Cohere以账户失效为由, 拒绝服务." + Cohere_website)
|
||||||
|
elif "associated with a deactivated account" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] You are associated with a deactivated account. Cohere以账户失效为由, 拒绝服务." + Cohere_website)
|
||||||
|
elif "API key has been deactivated" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] API key has been deactivated. Cohere以账户失效为由, 拒绝服务." + Cohere_website)
|
||||||
|
elif "bad forward key" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.")
|
||||||
|
elif "Not enough point" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Not enough point. API2D账户点数不足.")
|
||||||
|
else:
|
||||||
|
from toolbox import regular_txt_to_markdown
|
||||||
|
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||||
|
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
|
||||||
|
return chatbot, history
|
||||||
|
|
||||||
|
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||||
|
"""
|
||||||
|
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||||||
|
"""
|
||||||
|
# if not is_any_api_key(llm_kwargs['api_key']):
|
||||||
|
# raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。")
|
||||||
|
|
||||||
|
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
||||||
|
|
||||||
|
headers = {
|
||||||
|
"Content-Type": "application/json",
|
||||||
|
"Authorization": f"Bearer {api_key}"
|
||||||
|
}
|
||||||
|
if API_ORG.startswith('org-'): headers.update({"Cohere-Organization": API_ORG})
|
||||||
|
if llm_kwargs['llm_model'].startswith('azure-'):
|
||||||
|
headers.update({"api-key": api_key})
|
||||||
|
if llm_kwargs['llm_model'] in AZURE_CFG_ARRAY.keys():
|
||||||
|
azure_api_key_unshared = AZURE_CFG_ARRAY[llm_kwargs['llm_model']]["AZURE_API_KEY"]
|
||||||
|
headers.update({"api-key": azure_api_key_unshared})
|
||||||
|
|
||||||
|
conversation_cnt = len(history) // 2
|
||||||
|
|
||||||
|
messages = [{"role": "SYSTEM", "message": system_prompt}]
|
||||||
|
if conversation_cnt:
|
||||||
|
for index in range(0, 2*conversation_cnt, 2):
|
||||||
|
what_i_have_asked = {}
|
||||||
|
what_i_have_asked["role"] = "USER"
|
||||||
|
what_i_have_asked["message"] = history[index]
|
||||||
|
what_gpt_answer = {}
|
||||||
|
what_gpt_answer["role"] = "CHATBOT"
|
||||||
|
what_gpt_answer["message"] = history[index+1]
|
||||||
|
if what_i_have_asked["message"] != "":
|
||||||
|
if what_gpt_answer["message"] == "": continue
|
||||||
|
if what_gpt_answer["message"] == timeout_bot_msg: continue
|
||||||
|
messages.append(what_i_have_asked)
|
||||||
|
messages.append(what_gpt_answer)
|
||||||
|
else:
|
||||||
|
messages[-1]['message'] = what_gpt_answer['message']
|
||||||
|
|
||||||
|
model = llm_kwargs['llm_model']
|
||||||
|
if model.startswith('cohere-'): model = model[len('cohere-'):]
|
||||||
|
payload = {
|
||||||
|
"model": model,
|
||||||
|
"message": inputs,
|
||||||
|
"chat_history": messages,
|
||||||
|
"temperature": llm_kwargs['temperature'], # 1.0,
|
||||||
|
"top_p": llm_kwargs['top_p'], # 1.0,
|
||||||
|
"n": 1,
|
||||||
|
"stream": stream,
|
||||||
|
"presence_penalty": 0,
|
||||||
|
"frequency_penalty": 0,
|
||||||
|
}
|
||||||
|
|
||||||
|
return headers,payload
|
||||||
|
|
||||||
|
|
||||||
@@ -88,7 +88,7 @@ class GetCoderLMHandle(LocalLLMHandle):
|
|||||||
temperature = kwargs['temperature']
|
temperature = kwargs['temperature']
|
||||||
history = kwargs['history']
|
history = kwargs['history']
|
||||||
return query, max_length, top_p, temperature, history
|
return query, max_length, top_p, temperature, history
|
||||||
|
|
||||||
query, max_length, top_p, temperature, history = adaptor(kwargs)
|
query, max_length, top_p, temperature, history = adaptor(kwargs)
|
||||||
history.append({ 'role': 'user', 'content': query})
|
history.append({ 'role': 'user', 'content': query})
|
||||||
messages = history
|
messages = history
|
||||||
@@ -97,14 +97,14 @@ class GetCoderLMHandle(LocalLLMHandle):
|
|||||||
inputs = inputs[:, -max_length:]
|
inputs = inputs[:, -max_length:]
|
||||||
inputs = inputs.to(self._model.device)
|
inputs = inputs.to(self._model.device)
|
||||||
generation_kwargs = dict(
|
generation_kwargs = dict(
|
||||||
inputs=inputs,
|
inputs=inputs,
|
||||||
max_new_tokens=max_length,
|
max_new_tokens=max_length,
|
||||||
do_sample=False,
|
do_sample=False,
|
||||||
top_p=top_p,
|
top_p=top_p,
|
||||||
streamer = self._streamer,
|
streamer = self._streamer,
|
||||||
top_k=50,
|
top_k=50,
|
||||||
temperature=temperature,
|
temperature=temperature,
|
||||||
num_return_sequences=1,
|
num_return_sequences=1,
|
||||||
eos_token_id=32021,
|
eos_token_id=32021,
|
||||||
)
|
)
|
||||||
thread = Thread(target=self._model.generate, kwargs=generation_kwargs, daemon=True)
|
thread = Thread(target=self._model.generate, kwargs=generation_kwargs, daemon=True)
|
||||||
|
|||||||
@@ -7,6 +7,7 @@ import re
|
|||||||
import os
|
import os
|
||||||
import time
|
import time
|
||||||
from request_llms.com_google import GoogleChatInit
|
from request_llms.com_google import GoogleChatInit
|
||||||
|
from toolbox import ChatBotWithCookies
|
||||||
from toolbox import get_conf, update_ui, update_ui_lastest_msg, have_any_recent_upload_image_files, trimmed_format_exc
|
from toolbox import get_conf, update_ui, update_ui_lastest_msg, have_any_recent_upload_image_files, trimmed_format_exc
|
||||||
|
|
||||||
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY')
|
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY')
|
||||||
@@ -20,7 +21,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
if get_conf("GEMINI_API_KEY") == "":
|
if get_conf("GEMINI_API_KEY") == "":
|
||||||
raise ValueError(f"请配置 GEMINI_API_KEY。")
|
raise ValueError(f"请配置 GEMINI_API_KEY。")
|
||||||
|
|
||||||
genai = GoogleChatInit()
|
genai = GoogleChatInit(llm_kwargs)
|
||||||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||||
gpt_replying_buffer = ''
|
gpt_replying_buffer = ''
|
||||||
stream_response = genai.generate_chat(inputs, llm_kwargs, history, sys_prompt)
|
stream_response = genai.generate_chat(inputs, llm_kwargs, history, sys_prompt)
|
||||||
@@ -44,7 +45,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
return gpt_replying_buffer
|
return gpt_replying_buffer
|
||||||
|
|
||||||
|
|
||||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
|
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||||
|
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||||
# 检查API_KEY
|
# 检查API_KEY
|
||||||
if get_conf("GEMINI_API_KEY") == "":
|
if get_conf("GEMINI_API_KEY") == "":
|
||||||
yield from update_ui_lastest_msg(f"请配置 GEMINI_API_KEY。", chatbot=chatbot, history=history, delay=0)
|
yield from update_ui_lastest_msg(f"请配置 GEMINI_API_KEY。", chatbot=chatbot, history=history, delay=0)
|
||||||
@@ -61,7 +63,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
chatbot.append((inputs, "没有检测到任何近期上传的图像文件,请上传jpg格式的图片,此外,请注意拓展名需要小写"))
|
chatbot.append((inputs, "没有检测到任何近期上传的图像文件,请上传jpg格式的图片,此外,请注意拓展名需要小写"))
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待图片") # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待图片") # 刷新界面
|
||||||
return
|
return
|
||||||
def make_media_input(inputs, image_paths):
|
def make_media_input(inputs, image_paths):
|
||||||
for image_path in image_paths:
|
for image_path in image_paths:
|
||||||
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
||||||
return inputs
|
return inputs
|
||||||
@@ -70,7 +72,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
|
|
||||||
chatbot.append((inputs, ""))
|
chatbot.append((inputs, ""))
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
genai = GoogleChatInit()
|
genai = GoogleChatInit(llm_kwargs)
|
||||||
retry = 0
|
retry = 0
|
||||||
while True:
|
while True:
|
||||||
try:
|
try:
|
||||||
|
|||||||
@@ -82,7 +82,7 @@ class GetInternlmHandle(LocalLLMHandle):
|
|||||||
history = kwargs['history']
|
history = kwargs['history']
|
||||||
real_prompt = combine_history(prompt, history)
|
real_prompt = combine_history(prompt, history)
|
||||||
return model, tokenizer, real_prompt, max_length, top_p, temperature
|
return model, tokenizer, real_prompt, max_length, top_p, temperature
|
||||||
|
|
||||||
model, tokenizer, prompt, max_length, top_p, temperature = adaptor()
|
model, tokenizer, prompt, max_length, top_p, temperature = adaptor()
|
||||||
prefix_allowed_tokens_fn = None
|
prefix_allowed_tokens_fn = None
|
||||||
logits_processor = None
|
logits_processor = None
|
||||||
@@ -183,7 +183,7 @@ class GetInternlmHandle(LocalLLMHandle):
|
|||||||
outputs, model_kwargs, is_encoder_decoder=False
|
outputs, model_kwargs, is_encoder_decoder=False
|
||||||
)
|
)
|
||||||
unfinished_sequences = unfinished_sequences.mul((min(next_tokens != i for i in eos_token_id)).long())
|
unfinished_sequences = unfinished_sequences.mul((min(next_tokens != i for i in eos_token_id)).long())
|
||||||
|
|
||||||
output_token_ids = input_ids[0].cpu().tolist()
|
output_token_ids = input_ids[0].cpu().tolist()
|
||||||
output_token_ids = output_token_ids[input_length:]
|
output_token_ids = output_token_ids[input_length:]
|
||||||
for each_eos_token_id in eos_token_id:
|
for each_eos_token_id in eos_token_id:
|
||||||
@@ -196,7 +196,7 @@ class GetInternlmHandle(LocalLLMHandle):
|
|||||||
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
||||||
return
|
return
|
||||||
|
|
||||||
|
|
||||||
# ------------------------------------------------------------------------------------------------------------------------
|
# ------------------------------------------------------------------------------------------------------------------------
|
||||||
# 🔌💻 GPT-Academic Interface
|
# 🔌💻 GPT-Academic Interface
|
||||||
# ------------------------------------------------------------------------------------------------------------------------
|
# ------------------------------------------------------------------------------------------------------------------------
|
||||||
|
|||||||
@@ -1,10 +1,10 @@
|
|||||||
|
|
||||||
from transformers import AutoModel, AutoTokenizer
|
|
||||||
import time
|
import time
|
||||||
import threading
|
import threading
|
||||||
import importlib
|
import importlib
|
||||||
from toolbox import update_ui, get_conf
|
from toolbox import update_ui, get_conf
|
||||||
from multiprocessing import Process, Pipe
|
from multiprocessing import Process, Pipe
|
||||||
|
from transformers import AutoModel, AutoTokenizer
|
||||||
|
|
||||||
load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||||
|
|
||||||
@@ -20,7 +20,7 @@ class GetGLMHandle(Process):
|
|||||||
self.check_dependency()
|
self.check_dependency()
|
||||||
self.start()
|
self.start()
|
||||||
self.threadLock = threading.Lock()
|
self.threadLock = threading.Lock()
|
||||||
|
|
||||||
def check_dependency(self):
|
def check_dependency(self):
|
||||||
try:
|
try:
|
||||||
import pandas
|
import pandas
|
||||||
@@ -102,11 +102,12 @@ class GetGLMHandle(Process):
|
|||||||
else:
|
else:
|
||||||
break
|
break
|
||||||
self.threadLock.release()
|
self.threadLock.release()
|
||||||
|
|
||||||
global llama_glm_handle
|
global llama_glm_handle
|
||||||
llama_glm_handle = None
|
llama_glm_handle = None
|
||||||
#################################################################################
|
#################################################################################
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
多线程方法
|
多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
@@ -115,7 +116,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
if llama_glm_handle is None:
|
if llama_glm_handle is None:
|
||||||
llama_glm_handle = GetGLMHandle()
|
llama_glm_handle = GetGLMHandle()
|
||||||
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + llama_glm_handle.info
|
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + llama_glm_handle.info
|
||||||
if not llama_glm_handle.success:
|
if not llama_glm_handle.success:
|
||||||
error = llama_glm_handle.info
|
error = llama_glm_handle.info
|
||||||
llama_glm_handle = None
|
llama_glm_handle = None
|
||||||
raise RuntimeError(error)
|
raise RuntimeError(error)
|
||||||
@@ -130,7 +131,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
for response in llama_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
for response in llama_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||||
print(response)
|
print(response)
|
||||||
if len(observe_window) >= 1: observe_window[0] = response
|
if len(observe_window) >= 1: observe_window[0] = response
|
||||||
if len(observe_window) >= 2:
|
if len(observe_window) >= 2:
|
||||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||||
raise RuntimeError("程序终止。")
|
raise RuntimeError("程序终止。")
|
||||||
return response
|
return response
|
||||||
@@ -149,7 +150,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
llama_glm_handle = GetGLMHandle()
|
llama_glm_handle = GetGLMHandle()
|
||||||
chatbot[-1] = (inputs, load_message + "\n\n" + llama_glm_handle.info)
|
chatbot[-1] = (inputs, load_message + "\n\n" + llama_glm_handle.info)
|
||||||
yield from update_ui(chatbot=chatbot, history=[])
|
yield from update_ui(chatbot=chatbot, history=[])
|
||||||
if not llama_glm_handle.success:
|
if not llama_glm_handle.success:
|
||||||
llama_glm_handle = None
|
llama_glm_handle = None
|
||||||
return
|
return
|
||||||
|
|
||||||
|
|||||||
@@ -1,10 +1,10 @@
|
|||||||
|
|
||||||
from transformers import AutoModel, AutoTokenizer
|
|
||||||
import time
|
import time
|
||||||
import threading
|
import threading
|
||||||
import importlib
|
import importlib
|
||||||
from toolbox import update_ui, get_conf
|
from toolbox import update_ui, get_conf
|
||||||
from multiprocessing import Process, Pipe
|
from multiprocessing import Process, Pipe
|
||||||
|
from transformers import AutoModel, AutoTokenizer
|
||||||
|
|
||||||
load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||||
|
|
||||||
@@ -20,7 +20,7 @@ class GetGLMHandle(Process):
|
|||||||
self.check_dependency()
|
self.check_dependency()
|
||||||
self.start()
|
self.start()
|
||||||
self.threadLock = threading.Lock()
|
self.threadLock = threading.Lock()
|
||||||
|
|
||||||
def check_dependency(self):
|
def check_dependency(self):
|
||||||
try:
|
try:
|
||||||
import pandas
|
import pandas
|
||||||
@@ -102,11 +102,12 @@ class GetGLMHandle(Process):
|
|||||||
else:
|
else:
|
||||||
break
|
break
|
||||||
self.threadLock.release()
|
self.threadLock.release()
|
||||||
|
|
||||||
global pangu_glm_handle
|
global pangu_glm_handle
|
||||||
pangu_glm_handle = None
|
pangu_glm_handle = None
|
||||||
#################################################################################
|
#################################################################################
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
多线程方法
|
多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
@@ -115,7 +116,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
if pangu_glm_handle is None:
|
if pangu_glm_handle is None:
|
||||||
pangu_glm_handle = GetGLMHandle()
|
pangu_glm_handle = GetGLMHandle()
|
||||||
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + pangu_glm_handle.info
|
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + pangu_glm_handle.info
|
||||||
if not pangu_glm_handle.success:
|
if not pangu_glm_handle.success:
|
||||||
error = pangu_glm_handle.info
|
error = pangu_glm_handle.info
|
||||||
pangu_glm_handle = None
|
pangu_glm_handle = None
|
||||||
raise RuntimeError(error)
|
raise RuntimeError(error)
|
||||||
@@ -130,7 +131,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
for response in pangu_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
for response in pangu_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||||
print(response)
|
print(response)
|
||||||
if len(observe_window) >= 1: observe_window[0] = response
|
if len(observe_window) >= 1: observe_window[0] = response
|
||||||
if len(observe_window) >= 2:
|
if len(observe_window) >= 2:
|
||||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||||
raise RuntimeError("程序终止。")
|
raise RuntimeError("程序终止。")
|
||||||
return response
|
return response
|
||||||
@@ -149,7 +150,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
pangu_glm_handle = GetGLMHandle()
|
pangu_glm_handle = GetGLMHandle()
|
||||||
chatbot[-1] = (inputs, load_message + "\n\n" + pangu_glm_handle.info)
|
chatbot[-1] = (inputs, load_message + "\n\n" + pangu_glm_handle.info)
|
||||||
yield from update_ui(chatbot=chatbot, history=[])
|
yield from update_ui(chatbot=chatbot, history=[])
|
||||||
if not pangu_glm_handle.success:
|
if not pangu_glm_handle.success:
|
||||||
pangu_glm_handle = None
|
pangu_glm_handle = None
|
||||||
return
|
return
|
||||||
|
|
||||||
|
|||||||
@@ -20,7 +20,7 @@ class GetGLMHandle(Process):
|
|||||||
self.check_dependency()
|
self.check_dependency()
|
||||||
self.start()
|
self.start()
|
||||||
self.threadLock = threading.Lock()
|
self.threadLock = threading.Lock()
|
||||||
|
|
||||||
def check_dependency(self):
|
def check_dependency(self):
|
||||||
try:
|
try:
|
||||||
import pandas
|
import pandas
|
||||||
@@ -102,11 +102,12 @@ class GetGLMHandle(Process):
|
|||||||
else:
|
else:
|
||||||
break
|
break
|
||||||
self.threadLock.release()
|
self.threadLock.release()
|
||||||
|
|
||||||
global rwkv_glm_handle
|
global rwkv_glm_handle
|
||||||
rwkv_glm_handle = None
|
rwkv_glm_handle = None
|
||||||
#################################################################################
|
#################################################################################
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
多线程方法
|
多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
@@ -115,7 +116,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
if rwkv_glm_handle is None:
|
if rwkv_glm_handle is None:
|
||||||
rwkv_glm_handle = GetGLMHandle()
|
rwkv_glm_handle = GetGLMHandle()
|
||||||
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + rwkv_glm_handle.info
|
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + rwkv_glm_handle.info
|
||||||
if not rwkv_glm_handle.success:
|
if not rwkv_glm_handle.success:
|
||||||
error = rwkv_glm_handle.info
|
error = rwkv_glm_handle.info
|
||||||
rwkv_glm_handle = None
|
rwkv_glm_handle = None
|
||||||
raise RuntimeError(error)
|
raise RuntimeError(error)
|
||||||
@@ -130,7 +131,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
for response in rwkv_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
for response in rwkv_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||||
print(response)
|
print(response)
|
||||||
if len(observe_window) >= 1: observe_window[0] = response
|
if len(observe_window) >= 1: observe_window[0] = response
|
||||||
if len(observe_window) >= 2:
|
if len(observe_window) >= 2:
|
||||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||||
raise RuntimeError("程序终止。")
|
raise RuntimeError("程序终止。")
|
||||||
return response
|
return response
|
||||||
@@ -149,7 +150,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
rwkv_glm_handle = GetGLMHandle()
|
rwkv_glm_handle = GetGLMHandle()
|
||||||
chatbot[-1] = (inputs, load_message + "\n\n" + rwkv_glm_handle.info)
|
chatbot[-1] = (inputs, load_message + "\n\n" + rwkv_glm_handle.info)
|
||||||
yield from update_ui(chatbot=chatbot, history=[])
|
yield from update_ui(chatbot=chatbot, history=[])
|
||||||
if not rwkv_glm_handle.success:
|
if not rwkv_glm_handle.success:
|
||||||
rwkv_glm_handle = None
|
rwkv_glm_handle = None
|
||||||
return
|
return
|
||||||
|
|
||||||
|
|||||||
@@ -48,7 +48,7 @@ class GetLlamaHandle(LocalLLMHandle):
|
|||||||
history = kwargs['history']
|
history = kwargs['history']
|
||||||
console_slience = kwargs.get('console_slience', True)
|
console_slience = kwargs.get('console_slience', True)
|
||||||
return query, max_length, top_p, temperature, history, console_slience
|
return query, max_length, top_p, temperature, history, console_slience
|
||||||
|
|
||||||
def convert_messages_to_prompt(query, history):
|
def convert_messages_to_prompt(query, history):
|
||||||
prompt = ""
|
prompt = ""
|
||||||
for a, b in history:
|
for a, b in history:
|
||||||
@@ -56,7 +56,7 @@ class GetLlamaHandle(LocalLLMHandle):
|
|||||||
prompt += "\n{b}" + b
|
prompt += "\n{b}" + b
|
||||||
prompt += f"\n[INST]{query}[/INST]"
|
prompt += f"\n[INST]{query}[/INST]"
|
||||||
return prompt
|
return prompt
|
||||||
|
|
||||||
query, max_length, top_p, temperature, history, console_slience = adaptor(kwargs)
|
query, max_length, top_p, temperature, history, console_slience = adaptor(kwargs)
|
||||||
prompt = convert_messages_to_prompt(query, history)
|
prompt = convert_messages_to_prompt(query, history)
|
||||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-
|
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-
|
||||||
@@ -70,13 +70,13 @@ class GetLlamaHandle(LocalLLMHandle):
|
|||||||
thread = Thread(target=self._model.generate, kwargs=generation_kwargs)
|
thread = Thread(target=self._model.generate, kwargs=generation_kwargs)
|
||||||
thread.start()
|
thread.start()
|
||||||
generated_text = ""
|
generated_text = ""
|
||||||
for new_text in streamer:
|
for new_text in streamer:
|
||||||
generated_text += new_text
|
generated_text += new_text
|
||||||
if not console_slience: print(new_text, end='')
|
if not console_slience: print(new_text, end='')
|
||||||
yield generated_text.lstrip(prompt_tk_back).rstrip("</s>")
|
yield generated_text.lstrip(prompt_tk_back).rstrip("</s>")
|
||||||
if not console_slience: print()
|
if not console_slience: print()
|
||||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-
|
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-
|
||||||
|
|
||||||
def try_to_import_special_deps(self, **kwargs):
|
def try_to_import_special_deps(self, **kwargs):
|
||||||
# import something that will raise error if the user does not install requirement_*.txt
|
# import something that will raise error if the user does not install requirement_*.txt
|
||||||
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
||||||
|
|||||||
197
request_llms/bridge_moonshot.py
普通文件
197
request_llms/bridge_moonshot.py
普通文件
@@ -0,0 +1,197 @@
|
|||||||
|
# encoding: utf-8
|
||||||
|
# @Time : 2024/3/3
|
||||||
|
# @Author : Spike
|
||||||
|
# @Descr :
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
import logging
|
||||||
|
|
||||||
|
from toolbox import get_conf, update_ui, log_chat
|
||||||
|
from toolbox import ChatBotWithCookies
|
||||||
|
|
||||||
|
import requests
|
||||||
|
|
||||||
|
|
||||||
|
class MoonShotInit:
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.llm_model = None
|
||||||
|
self.url = 'https://api.moonshot.cn/v1/chat/completions'
|
||||||
|
self.api_key = get_conf('MOONSHOT_API_KEY')
|
||||||
|
|
||||||
|
def __converter_file(self, user_input: str):
|
||||||
|
what_ask = []
|
||||||
|
for f in user_input.splitlines():
|
||||||
|
if os.path.exists(f):
|
||||||
|
files = []
|
||||||
|
if os.path.isdir(f):
|
||||||
|
file_list = os.listdir(f)
|
||||||
|
files.extend([os.path.join(f, file) for file in file_list])
|
||||||
|
else:
|
||||||
|
files.append(f)
|
||||||
|
for file in files:
|
||||||
|
if file.split('.')[-1] in ['pdf']:
|
||||||
|
with open(file, 'r') as fp:
|
||||||
|
from crazy_functions.crazy_utils import read_and_clean_pdf_text
|
||||||
|
file_content, _ = read_and_clean_pdf_text(fp)
|
||||||
|
what_ask.append({"role": "system", "content": file_content})
|
||||||
|
return what_ask
|
||||||
|
|
||||||
|
def __converter_user(self, user_input: str):
|
||||||
|
what_i_ask_now = {"role": "user", "content": user_input}
|
||||||
|
return what_i_ask_now
|
||||||
|
|
||||||
|
def __conversation_history(self, history):
|
||||||
|
conversation_cnt = len(history) // 2
|
||||||
|
messages = []
|
||||||
|
if conversation_cnt:
|
||||||
|
for index in range(0, 2 * conversation_cnt, 2):
|
||||||
|
what_i_have_asked = {
|
||||||
|
"role": "user",
|
||||||
|
"content": str(history[index])
|
||||||
|
}
|
||||||
|
what_gpt_answer = {
|
||||||
|
"role": "assistant",
|
||||||
|
"content": str(history[index + 1])
|
||||||
|
}
|
||||||
|
if what_i_have_asked["content"] != "":
|
||||||
|
if what_gpt_answer["content"] == "": continue
|
||||||
|
messages.append(what_i_have_asked)
|
||||||
|
messages.append(what_gpt_answer)
|
||||||
|
else:
|
||||||
|
messages[-1]['content'] = what_gpt_answer['content']
|
||||||
|
return messages
|
||||||
|
|
||||||
|
def _analysis_content(self, chuck):
|
||||||
|
chunk_decoded = chuck.decode("utf-8")
|
||||||
|
chunk_json = {}
|
||||||
|
content = ""
|
||||||
|
try:
|
||||||
|
chunk_json = json.loads(chunk_decoded[6:])
|
||||||
|
content = chunk_json['choices'][0]["delta"].get("content", "")
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
return chunk_decoded, chunk_json, content
|
||||||
|
|
||||||
|
def generate_payload(self, inputs, llm_kwargs, history, system_prompt, stream):
|
||||||
|
self.llm_model = llm_kwargs['llm_model']
|
||||||
|
llm_kwargs.update({'use-key': self.api_key})
|
||||||
|
messages = []
|
||||||
|
if system_prompt:
|
||||||
|
messages.append({"role": "system", "content": system_prompt})
|
||||||
|
messages.extend(self.__converter_file(inputs))
|
||||||
|
for i in history[0::2]: # 历史文件继续上传
|
||||||
|
messages.extend(self.__converter_file(i))
|
||||||
|
messages.extend(self.__conversation_history(history))
|
||||||
|
messages.append(self.__converter_user(inputs))
|
||||||
|
header = {
|
||||||
|
"Content-Type": "application/json",
|
||||||
|
"Authorization": f"Bearer {self.api_key}",
|
||||||
|
}
|
||||||
|
payload = {
|
||||||
|
"model": self.llm_model,
|
||||||
|
"messages": messages,
|
||||||
|
"temperature": llm_kwargs.get('temperature', 0.3), # 1.0,
|
||||||
|
"top_p": llm_kwargs.get('top_p', 1.0), # 1.0,
|
||||||
|
"n": llm_kwargs.get('n_choices', 1),
|
||||||
|
"stream": stream
|
||||||
|
}
|
||||||
|
return payload, header
|
||||||
|
|
||||||
|
def generate_messages(self, inputs, llm_kwargs, history, system_prompt, stream):
|
||||||
|
payload, headers = self.generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||||||
|
response = requests.post(self.url, headers=headers, json=payload, stream=stream)
|
||||||
|
|
||||||
|
chunk_content = ""
|
||||||
|
gpt_bro_result = ""
|
||||||
|
for chuck in response.iter_lines():
|
||||||
|
chunk_decoded, check_json, content = self._analysis_content(chuck)
|
||||||
|
chunk_content += chunk_decoded
|
||||||
|
if content:
|
||||||
|
gpt_bro_result += content
|
||||||
|
yield content, gpt_bro_result, ''
|
||||||
|
else:
|
||||||
|
error_msg = msg_handle_error(llm_kwargs, chunk_decoded)
|
||||||
|
if error_msg:
|
||||||
|
yield error_msg, gpt_bro_result, error_msg
|
||||||
|
break
|
||||||
|
|
||||||
|
|
||||||
|
def msg_handle_error(llm_kwargs, chunk_decoded):
|
||||||
|
use_ket = llm_kwargs.get('use-key', '')
|
||||||
|
api_key_encryption = use_ket[:8] + '****' + use_ket[-5:]
|
||||||
|
openai_website = f' 请登录OpenAI查看详情 https://platform.openai.com/signup api-key: `{api_key_encryption}`'
|
||||||
|
error_msg = ''
|
||||||
|
if "does not exist" in chunk_decoded:
|
||||||
|
error_msg = f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格."
|
||||||
|
elif "Incorrect API key" in chunk_decoded:
|
||||||
|
error_msg = f"[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由, 拒绝服务." + openai_website
|
||||||
|
elif "exceeded your current quota" in chunk_decoded:
|
||||||
|
error_msg = "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由, 拒绝服务." + openai_website
|
||||||
|
elif "account is not active" in chunk_decoded:
|
||||||
|
error_msg = "[Local Message] Your account is not active. OpenAI以账户失效为由, 拒绝服务." + openai_website
|
||||||
|
elif "associated with a deactivated account" in chunk_decoded:
|
||||||
|
error_msg = "[Local Message] You are associated with a deactivated account. OpenAI以账户失效为由, 拒绝服务." + openai_website
|
||||||
|
elif "API key has been deactivated" in chunk_decoded:
|
||||||
|
error_msg = "[Local Message] API key has been deactivated. OpenAI以账户失效为由, 拒绝服务." + openai_website
|
||||||
|
elif "bad forward key" in chunk_decoded:
|
||||||
|
error_msg = "[Local Message] Bad forward key. API2D账户额度不足."
|
||||||
|
elif "Not enough point" in chunk_decoded:
|
||||||
|
error_msg = "[Local Message] Not enough point. API2D账户点数不足."
|
||||||
|
elif 'error' in str(chunk_decoded).lower():
|
||||||
|
try:
|
||||||
|
error_msg = json.dumps(json.loads(chunk_decoded[:6]), indent=4, ensure_ascii=False)
|
||||||
|
except:
|
||||||
|
error_msg = chunk_decoded
|
||||||
|
return error_msg
|
||||||
|
|
||||||
|
|
||||||
|
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||||
|
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||||
|
chatbot.append([inputs, ""])
|
||||||
|
|
||||||
|
if additional_fn is not None:
|
||||||
|
from core_functional import handle_core_functionality
|
||||||
|
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||||
|
gpt_bro_init = MoonShotInit()
|
||||||
|
history.extend([inputs, ''])
|
||||||
|
stream_response = gpt_bro_init.generate_messages(inputs, llm_kwargs, history, system_prompt, stream)
|
||||||
|
for content, gpt_bro_result, error_bro_meg in stream_response:
|
||||||
|
chatbot[-1] = [inputs, gpt_bro_result]
|
||||||
|
history[-1] = gpt_bro_result
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
if error_bro_meg:
|
||||||
|
chatbot[-1] = [inputs, error_bro_meg]
|
||||||
|
history = history[:-2]
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
break
|
||||||
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_bro_result)
|
||||||
|
|
||||||
|
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None,
|
||||||
|
console_slience=False):
|
||||||
|
gpt_bro_init = MoonShotInit()
|
||||||
|
watch_dog_patience = 60 # 看门狗的耐心, 设置10秒即可
|
||||||
|
stream_response = gpt_bro_init.generate_messages(inputs, llm_kwargs, history, sys_prompt, True)
|
||||||
|
moonshot_bro_result = ''
|
||||||
|
for content, moonshot_bro_result, error_bro_meg in stream_response:
|
||||||
|
moonshot_bro_result = moonshot_bro_result
|
||||||
|
if error_bro_meg:
|
||||||
|
if len(observe_window) >= 3:
|
||||||
|
observe_window[2] = error_bro_meg
|
||||||
|
return f'{moonshot_bro_result} 对话错误'
|
||||||
|
# 观测窗
|
||||||
|
if len(observe_window) >= 1:
|
||||||
|
observe_window[0] = moonshot_bro_result
|
||||||
|
if len(observe_window) >= 2:
|
||||||
|
if (time.time() - observe_window[1]) > watch_dog_patience:
|
||||||
|
observe_window[2] = "请求超时,程序终止。"
|
||||||
|
raise RuntimeError(f"{moonshot_bro_result} 程序终止。")
|
||||||
|
return moonshot_bro_result
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
moon_ai = MoonShotInit()
|
||||||
|
for g in moon_ai.generate_messages('hello', {'llm_model': 'moonshot-v1-8k'},
|
||||||
|
[], '', True):
|
||||||
|
print(g)
|
||||||
@@ -18,7 +18,7 @@ class GetGLMHandle(Process):
|
|||||||
if self.check_dependency():
|
if self.check_dependency():
|
||||||
self.start()
|
self.start()
|
||||||
self.threadLock = threading.Lock()
|
self.threadLock = threading.Lock()
|
||||||
|
|
||||||
def check_dependency(self): # 主进程执行
|
def check_dependency(self): # 主进程执行
|
||||||
try:
|
try:
|
||||||
import datasets, os
|
import datasets, os
|
||||||
@@ -54,9 +54,9 @@ class GetGLMHandle(Process):
|
|||||||
from models.tokenization_moss import MossTokenizer
|
from models.tokenization_moss import MossTokenizer
|
||||||
|
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument("--model_name", default="fnlp/moss-moon-003-sft-int4",
|
parser.add_argument("--model_name", default="fnlp/moss-moon-003-sft-int4",
|
||||||
choices=["fnlp/moss-moon-003-sft",
|
choices=["fnlp/moss-moon-003-sft",
|
||||||
"fnlp/moss-moon-003-sft-int8",
|
"fnlp/moss-moon-003-sft-int8",
|
||||||
"fnlp/moss-moon-003-sft-int4"], type=str)
|
"fnlp/moss-moon-003-sft-int4"], type=str)
|
||||||
parser.add_argument("--gpu", default="0", type=str)
|
parser.add_argument("--gpu", default="0", type=str)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
@@ -76,7 +76,7 @@ class GetGLMHandle(Process):
|
|||||||
|
|
||||||
config = MossConfig.from_pretrained(model_path)
|
config = MossConfig.from_pretrained(model_path)
|
||||||
self.tokenizer = MossTokenizer.from_pretrained(model_path)
|
self.tokenizer = MossTokenizer.from_pretrained(model_path)
|
||||||
if num_gpus > 1:
|
if num_gpus > 1:
|
||||||
print("Waiting for all devices to be ready, it may take a few minutes...")
|
print("Waiting for all devices to be ready, it may take a few minutes...")
|
||||||
with init_empty_weights():
|
with init_empty_weights():
|
||||||
raw_model = MossForCausalLM._from_config(config, torch_dtype=torch.float16)
|
raw_model = MossForCausalLM._from_config(config, torch_dtype=torch.float16)
|
||||||
@@ -135,15 +135,15 @@ class GetGLMHandle(Process):
|
|||||||
inputs = self.tokenizer(self.prompt, return_tensors="pt")
|
inputs = self.tokenizer(self.prompt, return_tensors="pt")
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
outputs = self.model.generate(
|
outputs = self.model.generate(
|
||||||
inputs.input_ids.cuda(),
|
inputs.input_ids.cuda(),
|
||||||
attention_mask=inputs.attention_mask.cuda(),
|
attention_mask=inputs.attention_mask.cuda(),
|
||||||
max_length=2048,
|
max_length=2048,
|
||||||
do_sample=True,
|
do_sample=True,
|
||||||
top_k=40,
|
top_k=40,
|
||||||
top_p=0.8,
|
top_p=0.8,
|
||||||
temperature=0.7,
|
temperature=0.7,
|
||||||
repetition_penalty=1.02,
|
repetition_penalty=1.02,
|
||||||
num_return_sequences=1,
|
num_return_sequences=1,
|
||||||
eos_token_id=106068,
|
eos_token_id=106068,
|
||||||
pad_token_id=self.tokenizer.pad_token_id)
|
pad_token_id=self.tokenizer.pad_token_id)
|
||||||
response = self.tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
response = self.tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
||||||
@@ -167,11 +167,12 @@ class GetGLMHandle(Process):
|
|||||||
else:
|
else:
|
||||||
break
|
break
|
||||||
self.threadLock.release()
|
self.threadLock.release()
|
||||||
|
|
||||||
global moss_handle
|
global moss_handle
|
||||||
moss_handle = None
|
moss_handle = None
|
||||||
#################################################################################
|
#################################################################################
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
多线程方法
|
多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
@@ -180,7 +181,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
if moss_handle is None:
|
if moss_handle is None:
|
||||||
moss_handle = GetGLMHandle()
|
moss_handle = GetGLMHandle()
|
||||||
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + moss_handle.info
|
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + moss_handle.info
|
||||||
if not moss_handle.success:
|
if not moss_handle.success:
|
||||||
error = moss_handle.info
|
error = moss_handle.info
|
||||||
moss_handle = None
|
moss_handle = None
|
||||||
raise RuntimeError(error)
|
raise RuntimeError(error)
|
||||||
@@ -194,7 +195,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
response = ""
|
response = ""
|
||||||
for response in moss_handle.stream_chat(query=inputs, history=history_feedin, sys_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
for response in moss_handle.stream_chat(query=inputs, history=history_feedin, sys_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||||
if len(observe_window) >= 1: observe_window[0] = response
|
if len(observe_window) >= 1: observe_window[0] = response
|
||||||
if len(observe_window) >= 2:
|
if len(observe_window) >= 2:
|
||||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||||
raise RuntimeError("程序终止。")
|
raise RuntimeError("程序终止。")
|
||||||
return response
|
return response
|
||||||
@@ -213,7 +214,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
moss_handle = GetGLMHandle()
|
moss_handle = GetGLMHandle()
|
||||||
chatbot[-1] = (inputs, load_message + "\n\n" + moss_handle.info)
|
chatbot[-1] = (inputs, load_message + "\n\n" + moss_handle.info)
|
||||||
yield from update_ui(chatbot=chatbot, history=[])
|
yield from update_ui(chatbot=chatbot, history=[])
|
||||||
if not moss_handle.success:
|
if not moss_handle.success:
|
||||||
moss_handle = None
|
moss_handle = None
|
||||||
return
|
return
|
||||||
else:
|
else:
|
||||||
|
|||||||
@@ -117,7 +117,8 @@ def generate_from_baidu_qianfan(inputs, llm_kwargs, history, system_prompt):
|
|||||||
raise RuntimeError(dec['error_msg'])
|
raise RuntimeError(dec['error_msg'])
|
||||||
|
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
⭐多线程方法
|
⭐多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
@@ -160,3 +161,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="异常") # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="异常") # 刷新界面
|
||||||
return
|
return
|
||||||
|
except RuntimeError as e:
|
||||||
|
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||||
|
chatbot[-1] = (chatbot[-1][0], tb_str)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="异常") # 刷新界面
|
||||||
|
return
|
||||||
@@ -5,7 +5,8 @@ from toolbox import check_packages, report_exception
|
|||||||
|
|
||||||
model_name = 'Qwen'
|
model_name = 'Qwen'
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
⭐多线程方法
|
⭐多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
@@ -47,6 +48,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
if additional_fn is not None:
|
if additional_fn is not None:
|
||||||
from core_functional import handle_core_functionality
|
from core_functional import handle_core_functionality
|
||||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||||
|
chatbot[-1] = (inputs, "")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
|
||||||
# 开始接收回复
|
# 开始接收回复
|
||||||
from .com_qwenapi import QwenRequestInstance
|
from .com_qwenapi import QwenRequestInstance
|
||||||
|
|||||||
@@ -45,7 +45,7 @@ class GetQwenLMHandle(LocalLLMHandle):
|
|||||||
|
|
||||||
for response in self._model.chat_stream(self._tokenizer, query, history=history):
|
for response in self._model.chat_stream(self._tokenizer, query, history=history):
|
||||||
yield response
|
yield response
|
||||||
|
|
||||||
def try_to_import_special_deps(self, **kwargs):
|
def try_to_import_special_deps(self, **kwargs):
|
||||||
# import something that will raise error if the user does not install requirement_*.txt
|
# import something that will raise error if the user does not install requirement_*.txt
|
||||||
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
||||||
|
|||||||
@@ -9,7 +9,8 @@ def validate_key():
|
|||||||
if YUNQUE_SECRET_KEY == '': return False
|
if YUNQUE_SECRET_KEY == '': return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
⭐ 多线程方法
|
⭐ 多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
|
|||||||
@@ -13,7 +13,8 @@ def validate_key():
|
|||||||
return False
|
return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
⭐多线程方法
|
⭐多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
|
|||||||
@@ -76,7 +76,7 @@ async def run(context, max_token, temperature, top_p, addr, port):
|
|||||||
pass
|
pass
|
||||||
elif content["msg"] in ["process_generating", "process_completed"]:
|
elif content["msg"] in ["process_generating", "process_completed"]:
|
||||||
yield content["output"]["data"][0]
|
yield content["output"]["data"][0]
|
||||||
# You can search for your desired end indicator and
|
# You can search for your desired end indicator and
|
||||||
# stop generation by closing the websocket here
|
# stop generation by closing the websocket here
|
||||||
if (content["msg"] == "process_completed"):
|
if (content["msg"] == "process_completed"):
|
||||||
break
|
break
|
||||||
@@ -117,12 +117,12 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
async def get_result(mutable):
|
async def get_result(mutable):
|
||||||
# "tgui:galactica-1.3b@localhost:7860"
|
# "tgui:galactica-1.3b@localhost:7860"
|
||||||
|
|
||||||
async for response in run(context=prompt, max_token=llm_kwargs['max_length'],
|
async for response in run(context=prompt, max_token=llm_kwargs['max_length'],
|
||||||
temperature=llm_kwargs['temperature'],
|
temperature=llm_kwargs['temperature'],
|
||||||
top_p=llm_kwargs['top_p'], addr=addr, port=port):
|
top_p=llm_kwargs['top_p'], addr=addr, port=port):
|
||||||
print(response[len(mutable[0]):])
|
print(response[len(mutable[0]):])
|
||||||
mutable[0] = response
|
mutable[0] = response
|
||||||
if (time.time() - mutable[1]) > 3:
|
if (time.time() - mutable[1]) > 3:
|
||||||
print('exit when no listener')
|
print('exit when no listener')
|
||||||
break
|
break
|
||||||
asyncio.run(get_result(mutable))
|
asyncio.run(get_result(mutable))
|
||||||
@@ -154,12 +154,12 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
|||||||
|
|
||||||
def run_coorotine(observe_window):
|
def run_coorotine(observe_window):
|
||||||
async def get_result(observe_window):
|
async def get_result(observe_window):
|
||||||
async for response in run(context=prompt, max_token=llm_kwargs['max_length'],
|
async for response in run(context=prompt, max_token=llm_kwargs['max_length'],
|
||||||
temperature=llm_kwargs['temperature'],
|
temperature=llm_kwargs['temperature'],
|
||||||
top_p=llm_kwargs['top_p'], addr=addr, port=port):
|
top_p=llm_kwargs['top_p'], addr=addr, port=port):
|
||||||
print(response[len(observe_window[0]):])
|
print(response[len(observe_window[0]):])
|
||||||
observe_window[0] = response
|
observe_window[0] = response
|
||||||
if (time.time() - observe_window[1]) > 5:
|
if (time.time() - observe_window[1]) > 5:
|
||||||
print('exit when no listener')
|
print('exit when no listener')
|
||||||
break
|
break
|
||||||
asyncio.run(get_result(observe_window))
|
asyncio.run(get_result(observe_window))
|
||||||
|
|||||||
283
request_llms/bridge_yimodel.py
普通文件
283
request_llms/bridge_yimodel.py
普通文件
@@ -0,0 +1,283 @@
|
|||||||
|
# 借鉴自同目录下的bridge_chatgpt.py
|
||||||
|
|
||||||
|
"""
|
||||||
|
该文件中主要包含三个函数
|
||||||
|
|
||||||
|
不具备多线程能力的函数:
|
||||||
|
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
|
||||||
|
|
||||||
|
具备多线程调用能力的函数
|
||||||
|
2. predict_no_ui_long_connection:支持多线程
|
||||||
|
"""
|
||||||
|
|
||||||
|
import json
|
||||||
|
import time
|
||||||
|
import gradio as gr
|
||||||
|
import logging
|
||||||
|
import traceback
|
||||||
|
import requests
|
||||||
|
import importlib
|
||||||
|
import random
|
||||||
|
|
||||||
|
# config_private.py放自己的秘密如API和代理网址
|
||||||
|
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||||
|
from toolbox import get_conf, update_ui, trimmed_format_exc, is_the_upload_folder, read_one_api_model_name
|
||||||
|
proxies, TIMEOUT_SECONDS, MAX_RETRY, YIMODEL_API_KEY = \
|
||||||
|
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'YIMODEL_API_KEY')
|
||||||
|
|
||||||
|
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||||
|
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||||||
|
|
||||||
|
def get_full_error(chunk, stream_response):
|
||||||
|
"""
|
||||||
|
获取完整的从Openai返回的报错
|
||||||
|
"""
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
chunk += next(stream_response)
|
||||||
|
except:
|
||||||
|
break
|
||||||
|
return chunk
|
||||||
|
|
||||||
|
def decode_chunk(chunk):
|
||||||
|
# 提前读取一些信息(用于判断异常)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
chunkjson = None
|
||||||
|
is_last_chunk = False
|
||||||
|
try:
|
||||||
|
chunkjson = json.loads(chunk_decoded[6:])
|
||||||
|
is_last_chunk = chunkjson.get("lastOne", False)
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
return chunk_decoded, chunkjson, is_last_chunk
|
||||||
|
|
||||||
|
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||||
|
"""
|
||||||
|
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||||
|
inputs:
|
||||||
|
是本次问询的输入
|
||||||
|
sys_prompt:
|
||||||
|
系统静默prompt
|
||||||
|
llm_kwargs:
|
||||||
|
chatGPT的内部调优参数
|
||||||
|
history:
|
||||||
|
是之前的对话列表
|
||||||
|
observe_window = None:
|
||||||
|
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||||
|
"""
|
||||||
|
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||||
|
if inputs == "": inputs = "空空如也的输入栏"
|
||||||
|
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
|
||||||
|
retry = 0
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
# make a POST request to the API endpoint, stream=False
|
||||||
|
from .bridge_all import model_info
|
||||||
|
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||||
|
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||||
|
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
|
||||||
|
except requests.exceptions.ReadTimeout as e:
|
||||||
|
retry += 1
|
||||||
|
traceback.print_exc()
|
||||||
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||||
|
|
||||||
|
stream_response = response.iter_lines()
|
||||||
|
result = ''
|
||||||
|
is_head_of_the_stream = True
|
||||||
|
while True:
|
||||||
|
try: chunk = next(stream_response)
|
||||||
|
except StopIteration:
|
||||||
|
break
|
||||||
|
except requests.exceptions.ConnectionError:
|
||||||
|
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||||
|
chunk_decoded, chunkjson, is_last_chunk = decode_chunk(chunk)
|
||||||
|
if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r'"role":"assistant"' in chunk_decoded):
|
||||||
|
# 数据流的第一帧不携带content
|
||||||
|
is_head_of_the_stream = False; continue
|
||||||
|
if chunk:
|
||||||
|
try:
|
||||||
|
if is_last_chunk:
|
||||||
|
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||||
|
logging.info(f'[response] {result}')
|
||||||
|
break
|
||||||
|
result += chunkjson['choices'][0]["delta"]["content"]
|
||||||
|
if not console_slience: print(chunkjson['choices'][0]["delta"]["content"], end='')
|
||||||
|
if observe_window is not None:
|
||||||
|
# 观测窗,把已经获取的数据显示出去
|
||||||
|
if len(observe_window) >= 1:
|
||||||
|
observe_window[0] += chunkjson['choices'][0]["delta"]["content"]
|
||||||
|
# 看门狗,如果超过期限没有喂狗,则终止
|
||||||
|
if len(observe_window) >= 2:
|
||||||
|
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||||
|
raise RuntimeError("用户取消了程序。")
|
||||||
|
except Exception as e:
|
||||||
|
chunk = get_full_error(chunk, stream_response)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
error_msg = chunk_decoded
|
||||||
|
print(error_msg)
|
||||||
|
raise RuntimeError("Json解析不合常规")
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||||
|
"""
|
||||||
|
发送至chatGPT,流式获取输出。
|
||||||
|
用于基础的对话功能。
|
||||||
|
inputs 是本次问询的输入
|
||||||
|
top_p, temperature是chatGPT的内部调优参数
|
||||||
|
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||||
|
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||||
|
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||||
|
"""
|
||||||
|
if len(YIMODEL_API_KEY) == 0:
|
||||||
|
raise RuntimeError("没有设置YIMODEL_API_KEY选项")
|
||||||
|
if inputs == "": inputs = "空空如也的输入栏"
|
||||||
|
user_input = inputs
|
||||||
|
if additional_fn is not None:
|
||||||
|
from core_functional import handle_core_functionality
|
||||||
|
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||||
|
|
||||||
|
raw_input = inputs
|
||||||
|
logging.info(f'[raw_input] {raw_input}')
|
||||||
|
chatbot.append((inputs, ""))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||||
|
|
||||||
|
# check mis-behavior
|
||||||
|
if is_the_upload_folder(user_input):
|
||||||
|
chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
|
||||||
|
time.sleep(2)
|
||||||
|
|
||||||
|
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||||||
|
|
||||||
|
from .bridge_all import model_info
|
||||||
|
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||||
|
|
||||||
|
history.append(inputs); history.append("")
|
||||||
|
|
||||||
|
retry = 0
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
# make a POST request to the API endpoint, stream=True
|
||||||
|
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||||
|
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
|
||||||
|
except:
|
||||||
|
retry += 1
|
||||||
|
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
|
||||||
|
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
||||||
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
|
||||||
|
gpt_replying_buffer = ""
|
||||||
|
|
||||||
|
is_head_of_the_stream = True
|
||||||
|
if stream:
|
||||||
|
stream_response = response.iter_lines()
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
chunk = next(stream_response)
|
||||||
|
except StopIteration:
|
||||||
|
break
|
||||||
|
except requests.exceptions.ConnectionError:
|
||||||
|
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||||
|
|
||||||
|
# 提前读取一些信息 (用于判断异常)
|
||||||
|
chunk_decoded, chunkjson, is_last_chunk = decode_chunk(chunk)
|
||||||
|
|
||||||
|
if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r'"role":"assistant"' in chunk_decoded):
|
||||||
|
# 数据流的第一帧不携带content
|
||||||
|
is_head_of_the_stream = False; continue
|
||||||
|
|
||||||
|
if chunk:
|
||||||
|
try:
|
||||||
|
if is_last_chunk:
|
||||||
|
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||||
|
logging.info(f'[response] {gpt_replying_buffer}')
|
||||||
|
break
|
||||||
|
# 处理数据流的主体
|
||||||
|
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
|
||||||
|
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
|
||||||
|
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
|
||||||
|
history[-1] = gpt_replying_buffer
|
||||||
|
chatbot[-1] = (history[-2], history[-1])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
|
||||||
|
except Exception as e:
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
|
||||||
|
chunk = get_full_error(chunk, stream_response)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
error_msg = chunk_decoded
|
||||||
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
||||||
|
print(error_msg)
|
||||||
|
return
|
||||||
|
|
||||||
|
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
|
||||||
|
from .bridge_all import model_info
|
||||||
|
if "bad_request" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] 已经超过了模型的最大上下文或是模型格式错误,请尝试削减单次输入的文本量。")
|
||||||
|
elif "authentication_error" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. 请确保API key有效。")
|
||||||
|
elif "not_found" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], f"[Local Message] {llm_kwargs['llm_model']} 无效,请确保使用小写的模型名称。")
|
||||||
|
elif "rate_limit" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] 遇到了控制请求速率限制,请一分钟后重试。")
|
||||||
|
elif "system_busy" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] 系统繁忙,请一分钟后重试。")
|
||||||
|
else:
|
||||||
|
from toolbox import regular_txt_to_markdown
|
||||||
|
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||||
|
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
|
||||||
|
return chatbot, history
|
||||||
|
|
||||||
|
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||||
|
"""
|
||||||
|
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||||||
|
"""
|
||||||
|
api_key = f"Bearer {YIMODEL_API_KEY}"
|
||||||
|
|
||||||
|
headers = {
|
||||||
|
"Content-Type": "application/json",
|
||||||
|
"Authorization": api_key
|
||||||
|
}
|
||||||
|
|
||||||
|
conversation_cnt = len(history) // 2
|
||||||
|
|
||||||
|
messages = [{"role": "system", "content": system_prompt}]
|
||||||
|
if conversation_cnt:
|
||||||
|
for index in range(0, 2*conversation_cnt, 2):
|
||||||
|
what_i_have_asked = {}
|
||||||
|
what_i_have_asked["role"] = "user"
|
||||||
|
what_i_have_asked["content"] = history[index]
|
||||||
|
what_gpt_answer = {}
|
||||||
|
what_gpt_answer["role"] = "assistant"
|
||||||
|
what_gpt_answer["content"] = history[index+1]
|
||||||
|
if what_i_have_asked["content"] != "":
|
||||||
|
if what_gpt_answer["content"] == "": continue
|
||||||
|
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
||||||
|
messages.append(what_i_have_asked)
|
||||||
|
messages.append(what_gpt_answer)
|
||||||
|
else:
|
||||||
|
messages[-1]['content'] = what_gpt_answer['content']
|
||||||
|
|
||||||
|
what_i_ask_now = {}
|
||||||
|
what_i_ask_now["role"] = "user"
|
||||||
|
what_i_ask_now["content"] = inputs
|
||||||
|
messages.append(what_i_ask_now)
|
||||||
|
model = llm_kwargs['llm_model']
|
||||||
|
if llm_kwargs['llm_model'].startswith('one-api-'):
|
||||||
|
model = llm_kwargs['llm_model'][len('one-api-'):]
|
||||||
|
model, _ = read_one_api_model_name(model)
|
||||||
|
tokens = 600 if llm_kwargs['llm_model'] == 'yi-34b-chat-0205' else 4096 #yi-34b-chat-0205只有4k上下文...
|
||||||
|
payload = {
|
||||||
|
"model": model,
|
||||||
|
"messages": messages,
|
||||||
|
"temperature": llm_kwargs['temperature'], # 1.0,
|
||||||
|
"stream": stream,
|
||||||
|
"max_tokens": tokens
|
||||||
|
}
|
||||||
|
try:
|
||||||
|
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
|
||||||
|
except:
|
||||||
|
print('输入中可能存在乱码。')
|
||||||
|
return headers,payload
|
||||||
@@ -1,7 +1,8 @@
|
|||||||
import time
|
import time
|
||||||
import os
|
import os
|
||||||
from toolbox import update_ui, get_conf, update_ui_lastest_msg
|
from toolbox import update_ui, get_conf, update_ui_lastest_msg, log_chat
|
||||||
from toolbox import check_packages, report_exception, have_any_recent_upload_image_files
|
from toolbox import check_packages, report_exception, have_any_recent_upload_image_files
|
||||||
|
from toolbox import ChatBotWithCookies
|
||||||
|
|
||||||
model_name = '智谱AI大模型'
|
model_name = '智谱AI大模型'
|
||||||
zhipuai_default_model = 'glm-4'
|
zhipuai_default_model = 'glm-4'
|
||||||
@@ -16,7 +17,8 @@ def make_media_input(inputs, image_paths):
|
|||||||
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
||||||
return inputs
|
return inputs
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
⭐多线程方法
|
⭐多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
@@ -42,7 +44,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
return response
|
return response
|
||||||
|
|
||||||
|
|
||||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
|
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||||
|
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||||
"""
|
"""
|
||||||
⭐单线程方法
|
⭐单线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
@@ -90,4 +93,5 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
chatbot[-1] = [inputs, response]
|
chatbot[-1] = [inputs, response]
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
history.extend([inputs, response])
|
history.extend([inputs, response])
|
||||||
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=response)
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
@@ -119,7 +119,7 @@ class ChatGLMModel():
|
|||||||
past_key_values = { k: v for k, v in zip(past_names, past_key_values) }
|
past_key_values = { k: v for k, v in zip(past_names, past_key_values) }
|
||||||
|
|
||||||
next_token = self.sample_next_token(logits[0, -1], top_k=top_k, top_p=top_p, temperature=temperature)
|
next_token = self.sample_next_token(logits[0, -1], top_k=top_k, top_p=top_p, temperature=temperature)
|
||||||
|
|
||||||
output_tokens += [next_token]
|
output_tokens += [next_token]
|
||||||
|
|
||||||
if next_token == self.eop_token_id or len(output_tokens) > max_generated_tokens:
|
if next_token == self.eop_token_id or len(output_tokens) > max_generated_tokens:
|
||||||
|
|||||||
@@ -114,8 +114,10 @@ def html_local_img(__file, layout="left", max_width=None, max_height=None, md=Tr
|
|||||||
|
|
||||||
|
|
||||||
class GoogleChatInit:
|
class GoogleChatInit:
|
||||||
def __init__(self):
|
def __init__(self, llm_kwargs):
|
||||||
self.url_gemini = "https://generativelanguage.googleapis.com/v1beta/models/%m:streamGenerateContent?key=%k"
|
from .bridge_all import model_info
|
||||||
|
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||||
|
self.url_gemini = endpoint + "/%m:streamGenerateContent?key=%k"
|
||||||
|
|
||||||
def generate_chat(self, inputs, llm_kwargs, history, system_prompt):
|
def generate_chat(self, inputs, llm_kwargs, history, system_prompt):
|
||||||
headers, payload = self.generate_message_payload(
|
headers, payload = self.generate_message_payload(
|
||||||
|
|||||||
@@ -48,6 +48,10 @@ class QwenRequestInstance():
|
|||||||
for response in responses:
|
for response in responses:
|
||||||
if response.status_code == HTTPStatus.OK:
|
if response.status_code == HTTPStatus.OK:
|
||||||
if response.output.choices[0].finish_reason == 'stop':
|
if response.output.choices[0].finish_reason == 'stop':
|
||||||
|
try:
|
||||||
|
self.result_buf += response.output.choices[0].message.content
|
||||||
|
except:
|
||||||
|
pass
|
||||||
yield self.result_buf
|
yield self.result_buf
|
||||||
break
|
break
|
||||||
elif response.output.choices[0].finish_reason == 'length':
|
elif response.output.choices[0].finish_reason == 'length':
|
||||||
|
|||||||
@@ -8,7 +8,7 @@ from toolbox import get_conf, encode_image, get_pictures_list
|
|||||||
import logging, os
|
import logging, os
|
||||||
|
|
||||||
|
|
||||||
def input_encode_handler(inputs, llm_kwargs):
|
def input_encode_handler(inputs:str, llm_kwargs:dict):
|
||||||
if llm_kwargs["most_recent_uploaded"].get("path"):
|
if llm_kwargs["most_recent_uploaded"].get("path"):
|
||||||
image_paths = get_pictures_list(llm_kwargs["most_recent_uploaded"]["path"])
|
image_paths = get_pictures_list(llm_kwargs["most_recent_uploaded"]["path"])
|
||||||
md_encode = []
|
md_encode = []
|
||||||
@@ -28,7 +28,7 @@ class ZhipuChatInit:
|
|||||||
self.zhipu_bro = ZhipuAI(api_key=ZHIPUAI_API_KEY)
|
self.zhipu_bro = ZhipuAI(api_key=ZHIPUAI_API_KEY)
|
||||||
self.model = ''
|
self.model = ''
|
||||||
|
|
||||||
def __conversation_user(self, user_input: str, llm_kwargs):
|
def __conversation_user(self, user_input: str, llm_kwargs:dict):
|
||||||
if self.model not in ["glm-4v"]:
|
if self.model not in ["glm-4v"]:
|
||||||
return {"role": "user", "content": user_input}
|
return {"role": "user", "content": user_input}
|
||||||
else:
|
else:
|
||||||
@@ -41,7 +41,7 @@ class ZhipuChatInit:
|
|||||||
what_i_have_asked['content'].append(img_d)
|
what_i_have_asked['content'].append(img_d)
|
||||||
return what_i_have_asked
|
return what_i_have_asked
|
||||||
|
|
||||||
def __conversation_history(self, history, llm_kwargs):
|
def __conversation_history(self, history:list, llm_kwargs:dict):
|
||||||
messages = []
|
messages = []
|
||||||
conversation_cnt = len(history) // 2
|
conversation_cnt = len(history) // 2
|
||||||
if conversation_cnt:
|
if conversation_cnt:
|
||||||
@@ -55,22 +55,67 @@ class ZhipuChatInit:
|
|||||||
messages.append(what_gpt_answer)
|
messages.append(what_gpt_answer)
|
||||||
return messages
|
return messages
|
||||||
|
|
||||||
def __conversation_message_payload(self, inputs, llm_kwargs, history, system_prompt):
|
@staticmethod
|
||||||
|
def preprocess_param(param, default=0.95, min_val=0.01, max_val=0.99):
|
||||||
|
"""预处理参数,保证其在允许范围内,并处理精度问题"""
|
||||||
|
try:
|
||||||
|
param = float(param)
|
||||||
|
except ValueError:
|
||||||
|
return default
|
||||||
|
|
||||||
|
if param <= min_val:
|
||||||
|
return min_val
|
||||||
|
elif param >= max_val:
|
||||||
|
return max_val
|
||||||
|
else:
|
||||||
|
return round(param, 2) # 可挑选精度,目前是两位小数
|
||||||
|
|
||||||
|
def __conversation_message_payload(self, inputs:str, llm_kwargs:dict, history:list, system_prompt:str):
|
||||||
messages = []
|
messages = []
|
||||||
if system_prompt:
|
if system_prompt:
|
||||||
messages.append({"role": "system", "content": system_prompt})
|
messages.append({"role": "system", "content": system_prompt})
|
||||||
self.model = llm_kwargs['llm_model']
|
self.model = llm_kwargs['llm_model']
|
||||||
messages.extend(self.__conversation_history(history, llm_kwargs)) # 处理 history
|
messages.extend(self.__conversation_history(history, llm_kwargs)) # 处理 history
|
||||||
|
if inputs.strip() == "": # 处理空输入导致报错的问题 https://github.com/binary-husky/gpt_academic/issues/1640 提示 {"error":{"code":"1214","message":"messages[1]:content和tool_calls 字段不能同时为空"}
|
||||||
|
inputs = "." # 空格、换行、空字符串都会报错,所以用最没有意义的一个点代替
|
||||||
messages.append(self.__conversation_user(inputs, llm_kwargs)) # 处理用户对话
|
messages.append(self.__conversation_user(inputs, llm_kwargs)) # 处理用户对话
|
||||||
|
"""
|
||||||
|
采样温度,控制输出的随机性,必须为正数
|
||||||
|
取值范围是:(0.0, 1.0),不能等于 0,默认值为 0.95,
|
||||||
|
值越大,会使输出更随机,更具创造性;
|
||||||
|
值越小,输出会更加稳定或确定
|
||||||
|
建议您根据应用场景调整 top_p 或 temperature 参数,但不要同时调整两个参数
|
||||||
|
"""
|
||||||
|
temperature = self.preprocess_param(
|
||||||
|
param=llm_kwargs.get('temperature', 0.95),
|
||||||
|
default=0.95,
|
||||||
|
min_val=0.01,
|
||||||
|
max_val=0.99
|
||||||
|
)
|
||||||
|
"""
|
||||||
|
用温度取样的另一种方法,称为核取样
|
||||||
|
取值范围是:(0.0, 1.0) 开区间,
|
||||||
|
不能等于 0 或 1,默认值为 0.7
|
||||||
|
模型考虑具有 top_p 概率质量 tokens 的结果
|
||||||
|
例如:0.1 意味着模型解码器只考虑从前 10% 的概率的候选集中取 tokens
|
||||||
|
建议您根据应用场景调整 top_p 或 temperature 参数,
|
||||||
|
但不要同时调整两个参数
|
||||||
|
"""
|
||||||
|
top_p = self.preprocess_param(
|
||||||
|
param=llm_kwargs.get('top_p', 0.70),
|
||||||
|
default=0.70,
|
||||||
|
min_val=0.01,
|
||||||
|
max_val=0.99
|
||||||
|
)
|
||||||
response = self.zhipu_bro.chat.completions.create(
|
response = self.zhipu_bro.chat.completions.create(
|
||||||
model=self.model, messages=messages, stream=True,
|
model=self.model, messages=messages, stream=True,
|
||||||
temperature=llm_kwargs.get('temperature', 0.95) * 0.95, # 只能传默认的 temperature 和 top_p
|
temperature=temperature,
|
||||||
top_p=llm_kwargs.get('top_p', 0.7) * 0.7,
|
top_p=top_p,
|
||||||
max_tokens=llm_kwargs.get('max_tokens', 1024 * 4), # 最大输出模型的一半
|
max_tokens=llm_kwargs.get('max_tokens', 1024 * 4),
|
||||||
)
|
)
|
||||||
return response
|
return response
|
||||||
|
|
||||||
def generate_chat(self, inputs, llm_kwargs, history, system_prompt):
|
def generate_chat(self, inputs:str, llm_kwargs:dict, history:list, system_prompt:str):
|
||||||
self.model = llm_kwargs['llm_model']
|
self.model = llm_kwargs['llm_model']
|
||||||
response = self.__conversation_message_payload(inputs, llm_kwargs, history, system_prompt)
|
response = self.__conversation_message_payload(inputs, llm_kwargs, history, system_prompt)
|
||||||
bro_results = ''
|
bro_results = ''
|
||||||
|
|||||||
@@ -2,12 +2,12 @@ import random
|
|||||||
|
|
||||||
def Singleton(cls):
|
def Singleton(cls):
|
||||||
_instance = {}
|
_instance = {}
|
||||||
|
|
||||||
def _singleton(*args, **kargs):
|
def _singleton(*args, **kargs):
|
||||||
if cls not in _instance:
|
if cls not in _instance:
|
||||||
_instance[cls] = cls(*args, **kargs)
|
_instance[cls] = cls(*args, **kargs)
|
||||||
return _instance[cls]
|
return _instance[cls]
|
||||||
|
|
||||||
return _singleton
|
return _singleton
|
||||||
|
|
||||||
|
|
||||||
@@ -16,7 +16,7 @@ class OpenAI_ApiKeyManager():
|
|||||||
def __init__(self, mode='blacklist') -> None:
|
def __init__(self, mode='blacklist') -> None:
|
||||||
# self.key_avail_list = []
|
# self.key_avail_list = []
|
||||||
self.key_black_list = []
|
self.key_black_list = []
|
||||||
|
|
||||||
def add_key_to_blacklist(self, key):
|
def add_key_to_blacklist(self, key):
|
||||||
self.key_black_list.append(key)
|
self.key_black_list.append(key)
|
||||||
|
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
import time
|
import time
|
||||||
import threading
|
import threading
|
||||||
from toolbox import update_ui, Singleton
|
from toolbox import update_ui, Singleton
|
||||||
|
from toolbox import ChatBotWithCookies
|
||||||
from multiprocessing import Process, Pipe
|
from multiprocessing import Process, Pipe
|
||||||
from contextlib import redirect_stdout
|
from contextlib import redirect_stdout
|
||||||
from request_llms.queued_pipe import create_queue_pipe
|
from request_llms.queued_pipe import create_queue_pipe
|
||||||
@@ -90,7 +91,7 @@ class LocalLLMHandle(Process):
|
|||||||
return self.state
|
return self.state
|
||||||
|
|
||||||
def set_state(self, new_state):
|
def set_state(self, new_state):
|
||||||
# ⭐run in main process or 🏃♂️🏃♂️🏃♂️ run in child process
|
# ⭐run in main process or 🏃♂️🏃♂️🏃♂️ run in child process
|
||||||
if self.is_main_process:
|
if self.is_main_process:
|
||||||
self.state = new_state
|
self.state = new_state
|
||||||
else:
|
else:
|
||||||
@@ -178,8 +179,8 @@ class LocalLLMHandle(Process):
|
|||||||
r = self.parent.recv()
|
r = self.parent.recv()
|
||||||
continue
|
continue
|
||||||
break
|
break
|
||||||
return
|
return
|
||||||
|
|
||||||
def stream_chat(self, **kwargs):
|
def stream_chat(self, **kwargs):
|
||||||
# ⭐run in main process
|
# ⭐run in main process
|
||||||
if self.get_state() == "`准备就绪`":
|
if self.get_state() == "`准备就绪`":
|
||||||
@@ -214,7 +215,7 @@ class LocalLLMHandle(Process):
|
|||||||
def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='classic'):
|
def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='classic'):
|
||||||
load_message = f"{model_name}尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,{model_name}消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
load_message = f"{model_name}尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,{model_name}消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
refer to request_llms/bridge_all.py
|
refer to request_llms/bridge_all.py
|
||||||
"""
|
"""
|
||||||
@@ -260,7 +261,8 @@ def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='cla
|
|||||||
raise RuntimeError("程序终止。")
|
raise RuntimeError("程序终止。")
|
||||||
return response
|
return response
|
||||||
|
|
||||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
|
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||||
|
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||||
"""
|
"""
|
||||||
refer to request_llms/bridge_all.py
|
refer to request_llms/bridge_all.py
|
||||||
"""
|
"""
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
https://public.agent-matrix.com/publish/gradio-3.32.8-py3-none-any.whl
|
https://public.agent-matrix.com/publish/gradio-3.32.9-py3-none-any.whl
|
||||||
gradio-client==0.8
|
gradio-client==0.8
|
||||||
pypdf2==2.12.1
|
pypdf2==2.12.1
|
||||||
zhipuai>=2
|
zhipuai>=2
|
||||||
@@ -8,6 +8,7 @@ pydantic==2.5.2
|
|||||||
protobuf==3.18
|
protobuf==3.18
|
||||||
transformers>=4.27.1
|
transformers>=4.27.1
|
||||||
scipdf_parser>=0.52
|
scipdf_parser>=0.52
|
||||||
|
anthropic>=0.18.1
|
||||||
python-markdown-math
|
python-markdown-math
|
||||||
pymdown-extensions
|
pymdown-extensions
|
||||||
websocket-client
|
websocket-client
|
||||||
@@ -16,7 +17,7 @@ prompt_toolkit
|
|||||||
latex2mathml
|
latex2mathml
|
||||||
python-docx
|
python-docx
|
||||||
mdtex2html
|
mdtex2html
|
||||||
anthropic
|
dashscope
|
||||||
pyautogen
|
pyautogen
|
||||||
colorama
|
colorama
|
||||||
Markdown
|
Markdown
|
||||||
@@ -25,4 +26,4 @@ pymupdf
|
|||||||
openai
|
openai
|
||||||
arxiv
|
arxiv
|
||||||
numpy
|
numpy
|
||||||
rich
|
rich
|
||||||
61
shared_utils/cookie_manager.py
普通文件
61
shared_utils/cookie_manager.py
普通文件
@@ -0,0 +1,61 @@
|
|||||||
|
from typing import Callable
|
||||||
|
def load_web_cookie_cache__fn_builder(customize_btns, cookies, predefined_btns)->Callable:
|
||||||
|
def load_web_cookie_cache(persistent_cookie_, cookies_):
|
||||||
|
import gradio as gr
|
||||||
|
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
|
||||||
|
|
||||||
|
ret = {}
|
||||||
|
for k in customize_btns:
|
||||||
|
ret.update({customize_btns[k]: gr.update(visible=False, value="")})
|
||||||
|
|
||||||
|
try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
|
||||||
|
except: return ret
|
||||||
|
|
||||||
|
customize_fn_overwrite_ = persistent_cookie_.get("custom_bnt", {})
|
||||||
|
cookies_['customize_fn_overwrite'] = customize_fn_overwrite_
|
||||||
|
ret.update({cookies: cookies_})
|
||||||
|
|
||||||
|
for k,v in persistent_cookie_["custom_bnt"].items():
|
||||||
|
if v['Title'] == "": continue
|
||||||
|
if k in customize_btns: ret.update({customize_btns[k]: gr.update(visible=True, value=v['Title'])})
|
||||||
|
else: ret.update({predefined_btns[k]: gr.update(visible=True, value=v['Title'])})
|
||||||
|
return ret
|
||||||
|
return load_web_cookie_cache
|
||||||
|
|
||||||
|
|
||||||
|
def assign_btn__fn_builder(customize_btns, predefined_btns, cookies, web_cookie_cache)->Callable:
|
||||||
|
def assign_btn(persistent_cookie_, cookies_, basic_btn_dropdown_, basic_fn_title, basic_fn_prefix, basic_fn_suffix, clean_up=False):
|
||||||
|
import gradio as gr
|
||||||
|
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
|
||||||
|
ret = {}
|
||||||
|
# 读取之前的自定义按钮
|
||||||
|
customize_fn_overwrite_ = cookies_['customize_fn_overwrite']
|
||||||
|
# 更新新的自定义按钮
|
||||||
|
customize_fn_overwrite_.update({
|
||||||
|
basic_btn_dropdown_:
|
||||||
|
{
|
||||||
|
"Title":basic_fn_title,
|
||||||
|
"Prefix":basic_fn_prefix,
|
||||||
|
"Suffix":basic_fn_suffix,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
if clean_up:
|
||||||
|
customize_fn_overwrite_ = {}
|
||||||
|
cookies_.update(customize_fn_overwrite_) # 更新cookie
|
||||||
|
visible = (not clean_up) and (basic_fn_title != "")
|
||||||
|
if basic_btn_dropdown_ in customize_btns:
|
||||||
|
# 是自定义按钮,不是预定义按钮
|
||||||
|
ret.update({customize_btns[basic_btn_dropdown_]: gr.update(visible=visible, value=basic_fn_title)})
|
||||||
|
else:
|
||||||
|
# 是预定义按钮
|
||||||
|
ret.update({predefined_btns[basic_btn_dropdown_]: gr.update(visible=visible, value=basic_fn_title)})
|
||||||
|
ret.update({cookies: cookies_})
|
||||||
|
try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
|
||||||
|
except: persistent_cookie_ = {}
|
||||||
|
persistent_cookie_["custom_bnt"] = customize_fn_overwrite_ # dict update new value
|
||||||
|
persistent_cookie_ = to_cookie_str(persistent_cookie_) # persistent cookie to dict
|
||||||
|
ret.update({web_cookie_cache: persistent_cookie_}) # write persistent cookie
|
||||||
|
return ret
|
||||||
|
return assign_btn
|
||||||
|
|
||||||
211
shared_utils/fastapi_server.py
普通文件
211
shared_utils/fastapi_server.py
普通文件
@@ -0,0 +1,211 @@
|
|||||||
|
"""
|
||||||
|
Tests:
|
||||||
|
|
||||||
|
- custom_path false / no user auth:
|
||||||
|
-- upload file(yes)
|
||||||
|
-- download file(yes)
|
||||||
|
-- websocket(yes)
|
||||||
|
-- block __pycache__ access(yes)
|
||||||
|
-- rel (yes)
|
||||||
|
-- abs (yes)
|
||||||
|
-- block user access(fail) http://localhost:45013/file=gpt_log/admin/chat_secrets.log
|
||||||
|
-- fix(commit f6bf05048c08f5cd84593f7fdc01e64dec1f584a)-> block successful
|
||||||
|
|
||||||
|
- custom_path yes("/cc/gptac") / no user auth:
|
||||||
|
-- upload file(yes)
|
||||||
|
-- download file(yes)
|
||||||
|
-- websocket(yes)
|
||||||
|
-- block __pycache__ access(yes)
|
||||||
|
-- block user access(yes)
|
||||||
|
|
||||||
|
- custom_path yes("/cc/gptac/") / no user auth:
|
||||||
|
-- upload file(yes)
|
||||||
|
-- download file(yes)
|
||||||
|
-- websocket(yes)
|
||||||
|
-- block user access(yes)
|
||||||
|
|
||||||
|
- custom_path yes("/cc/gptac/") / + user auth:
|
||||||
|
-- upload file(yes)
|
||||||
|
-- download file(yes)
|
||||||
|
-- websocket(yes)
|
||||||
|
-- block user access(yes)
|
||||||
|
-- block user-wise access (yes)
|
||||||
|
|
||||||
|
- custom_path no + user auth:
|
||||||
|
-- upload file(yes)
|
||||||
|
-- download file(yes)
|
||||||
|
-- websocket(yes)
|
||||||
|
-- block user access(yes)
|
||||||
|
-- block user-wise access (yes)
|
||||||
|
|
||||||
|
queue cocurrent effectiveness
|
||||||
|
-- upload file(yes)
|
||||||
|
-- download file(yes)
|
||||||
|
-- websocket(yes)
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os, requests, threading, time
|
||||||
|
import uvicorn
|
||||||
|
|
||||||
|
def _authorize_user(path_or_url, request, gradio_app):
|
||||||
|
from toolbox import get_conf, default_user_name
|
||||||
|
PATH_PRIVATE_UPLOAD, PATH_LOGGING = get_conf('PATH_PRIVATE_UPLOAD', 'PATH_LOGGING')
|
||||||
|
sensitive_path = None
|
||||||
|
path_or_url = os.path.relpath(path_or_url)
|
||||||
|
if path_or_url.startswith(PATH_LOGGING):
|
||||||
|
sensitive_path = PATH_LOGGING
|
||||||
|
if path_or_url.startswith(PATH_PRIVATE_UPLOAD):
|
||||||
|
sensitive_path = PATH_PRIVATE_UPLOAD
|
||||||
|
if sensitive_path:
|
||||||
|
token = request.cookies.get("access-token") or request.cookies.get("access-token-unsecure")
|
||||||
|
user = gradio_app.tokens.get(token) # get user
|
||||||
|
allowed_users = [user, 'autogen', default_user_name] # three user path that can be accessed
|
||||||
|
for user_allowed in allowed_users:
|
||||||
|
# exact match
|
||||||
|
if f"{os.sep}".join(path_or_url.split(os.sep)[:2]) == os.path.join(sensitive_path, user_allowed):
|
||||||
|
return True
|
||||||
|
return False # "越权访问!"
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
class Server(uvicorn.Server):
|
||||||
|
# A server that runs in a separate thread
|
||||||
|
def install_signal_handlers(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def run_in_thread(self):
|
||||||
|
self.thread = threading.Thread(target=self.run, daemon=True)
|
||||||
|
self.thread.start()
|
||||||
|
while not self.started:
|
||||||
|
time.sleep(1e-3)
|
||||||
|
|
||||||
|
def close(self):
|
||||||
|
self.should_exit = True
|
||||||
|
self.thread.join()
|
||||||
|
|
||||||
|
|
||||||
|
def start_app(app_block, CONCURRENT_COUNT, AUTHENTICATION, PORT, SSL_KEYFILE, SSL_CERTFILE):
|
||||||
|
import uvicorn
|
||||||
|
import fastapi
|
||||||
|
import gradio as gr
|
||||||
|
from fastapi import FastAPI
|
||||||
|
from gradio.routes import App
|
||||||
|
from toolbox import get_conf
|
||||||
|
CUSTOM_PATH, PATH_LOGGING = get_conf('CUSTOM_PATH', 'PATH_LOGGING')
|
||||||
|
|
||||||
|
# --- --- configurate gradio app block --- ---
|
||||||
|
app_block:gr.Blocks
|
||||||
|
app_block.ssl_verify = False
|
||||||
|
app_block.auth_message = '请登录'
|
||||||
|
app_block.favicon_path = os.path.join(os.path.dirname(os.path.dirname(__file__)), "docs/logo.png")
|
||||||
|
app_block.auth = AUTHENTICATION if len(AUTHENTICATION) != 0 else None
|
||||||
|
app_block.blocked_paths = ["config.py", "__pycache__", "config_private.py", "docker-compose.yml", "Dockerfile", f"{PATH_LOGGING}/admin"]
|
||||||
|
app_block.dev_mode = False
|
||||||
|
app_block.config = app_block.get_config_file()
|
||||||
|
app_block.enable_queue = True
|
||||||
|
app_block.queue(concurrency_count=CONCURRENT_COUNT)
|
||||||
|
app_block.validate_queue_settings()
|
||||||
|
app_block.show_api = False
|
||||||
|
app_block.config = app_block.get_config_file()
|
||||||
|
max_threads = 40
|
||||||
|
app_block.max_threads = max(
|
||||||
|
app_block._queue.max_thread_count if app_block.enable_queue else 0, max_threads
|
||||||
|
)
|
||||||
|
app_block.is_colab = False
|
||||||
|
app_block.is_kaggle = False
|
||||||
|
app_block.is_sagemaker = False
|
||||||
|
|
||||||
|
gradio_app = App.create_app(app_block)
|
||||||
|
|
||||||
|
# --- --- replace gradio endpoint to forbid access to sensitive files --- ---
|
||||||
|
if len(AUTHENTICATION) > 0:
|
||||||
|
dependencies = []
|
||||||
|
endpoint = None
|
||||||
|
for route in list(gradio_app.router.routes):
|
||||||
|
if route.path == "/file/{path:path}":
|
||||||
|
gradio_app.router.routes.remove(route)
|
||||||
|
if route.path == "/file={path_or_url:path}":
|
||||||
|
dependencies = route.dependencies
|
||||||
|
endpoint = route.endpoint
|
||||||
|
gradio_app.router.routes.remove(route)
|
||||||
|
@gradio_app.get("/file/{path:path}", dependencies=dependencies)
|
||||||
|
@gradio_app.head("/file={path_or_url:path}", dependencies=dependencies)
|
||||||
|
@gradio_app.get("/file={path_or_url:path}", dependencies=dependencies)
|
||||||
|
async def file(path_or_url: str, request: fastapi.Request):
|
||||||
|
if len(AUTHENTICATION) > 0:
|
||||||
|
if not _authorize_user(path_or_url, request, gradio_app):
|
||||||
|
return "越权访问!"
|
||||||
|
return await endpoint(path_or_url, request)
|
||||||
|
|
||||||
|
# --- --- app_lifespan --- ---
|
||||||
|
from contextlib import asynccontextmanager
|
||||||
|
@asynccontextmanager
|
||||||
|
async def app_lifespan(app):
|
||||||
|
async def startup_gradio_app():
|
||||||
|
if gradio_app.get_blocks().enable_queue:
|
||||||
|
gradio_app.get_blocks().startup_events()
|
||||||
|
async def shutdown_gradio_app():
|
||||||
|
pass
|
||||||
|
await startup_gradio_app() # startup logic here
|
||||||
|
yield # The application will serve requests after this point
|
||||||
|
await shutdown_gradio_app() # cleanup/shutdown logic here
|
||||||
|
|
||||||
|
# --- --- FastAPI --- ---
|
||||||
|
fastapi_app = FastAPI(lifespan=app_lifespan)
|
||||||
|
fastapi_app.mount(CUSTOM_PATH, gradio_app)
|
||||||
|
|
||||||
|
# --- --- favicon --- ---
|
||||||
|
if CUSTOM_PATH != '/':
|
||||||
|
from fastapi.responses import FileResponse
|
||||||
|
@fastapi_app.get("/favicon.ico")
|
||||||
|
async def favicon():
|
||||||
|
return FileResponse(app_block.favicon_path)
|
||||||
|
|
||||||
|
# --- --- uvicorn.Config --- ---
|
||||||
|
ssl_keyfile = None if SSL_KEYFILE == "" else SSL_KEYFILE
|
||||||
|
ssl_certfile = None if SSL_CERTFILE == "" else SSL_CERTFILE
|
||||||
|
server_name = "0.0.0.0"
|
||||||
|
config = uvicorn.Config(
|
||||||
|
fastapi_app,
|
||||||
|
host=server_name,
|
||||||
|
port=PORT,
|
||||||
|
reload=False,
|
||||||
|
log_level="warning",
|
||||||
|
ssl_keyfile=ssl_keyfile,
|
||||||
|
ssl_certfile=ssl_certfile,
|
||||||
|
)
|
||||||
|
server = Server(config)
|
||||||
|
url_host_name = "localhost" if server_name == "0.0.0.0" else server_name
|
||||||
|
if ssl_keyfile is not None:
|
||||||
|
if ssl_certfile is None:
|
||||||
|
raise ValueError(
|
||||||
|
"ssl_certfile must be provided if ssl_keyfile is provided."
|
||||||
|
)
|
||||||
|
path_to_local_server = f"https://{url_host_name}:{PORT}/"
|
||||||
|
else:
|
||||||
|
path_to_local_server = f"http://{url_host_name}:{PORT}/"
|
||||||
|
if CUSTOM_PATH != '/':
|
||||||
|
path_to_local_server += CUSTOM_PATH.lstrip('/').rstrip('/') + '/'
|
||||||
|
# --- --- begin --- ---
|
||||||
|
server.run_in_thread()
|
||||||
|
|
||||||
|
# --- --- after server launch --- ---
|
||||||
|
app_block.server = server
|
||||||
|
app_block.server_name = server_name
|
||||||
|
app_block.local_url = path_to_local_server
|
||||||
|
app_block.protocol = (
|
||||||
|
"https"
|
||||||
|
if app_block.local_url.startswith("https") or app_block.is_colab
|
||||||
|
else "http"
|
||||||
|
)
|
||||||
|
|
||||||
|
if app_block.enable_queue:
|
||||||
|
app_block._queue.set_url(path_to_local_server)
|
||||||
|
|
||||||
|
forbid_proxies = {
|
||||||
|
"http": "",
|
||||||
|
"https": "",
|
||||||
|
}
|
||||||
|
requests.get(f"{app_block.local_url}startup-events", verify=app_block.ssl_verify, proxies=forbid_proxies)
|
||||||
|
app_block.is_running = True
|
||||||
|
app_block.block_thread()
|
||||||
@@ -28,6 +28,11 @@ def is_api2d_key(key):
|
|||||||
return bool(API_MATCH_API2D)
|
return bool(API_MATCH_API2D)
|
||||||
|
|
||||||
|
|
||||||
|
def is_cohere_api_key(key):
|
||||||
|
API_MATCH_AZURE = re.match(r"[a-zA-Z0-9]{40}$", key)
|
||||||
|
return bool(API_MATCH_AZURE)
|
||||||
|
|
||||||
|
|
||||||
def is_any_api_key(key):
|
def is_any_api_key(key):
|
||||||
if ',' in key:
|
if ',' in key:
|
||||||
keys = key.split(',')
|
keys = key.split(',')
|
||||||
@@ -35,7 +40,7 @@ def is_any_api_key(key):
|
|||||||
if is_any_api_key(k): return True
|
if is_any_api_key(k): return True
|
||||||
return False
|
return False
|
||||||
else:
|
else:
|
||||||
return is_openai_api_key(key) or is_api2d_key(key) or is_azure_api_key(key)
|
return is_openai_api_key(key) or is_api2d_key(key) or is_azure_api_key(key) or is_cohere_api_key(key)
|
||||||
|
|
||||||
|
|
||||||
def what_keys(keys):
|
def what_keys(keys):
|
||||||
@@ -62,7 +67,7 @@ def select_api_key(keys, llm_model):
|
|||||||
avail_key_list = []
|
avail_key_list = []
|
||||||
key_list = keys.split(',')
|
key_list = keys.split(',')
|
||||||
|
|
||||||
if llm_model.startswith('gpt-'):
|
if llm_model.startswith('gpt-') or llm_model.startswith('one-api-'):
|
||||||
for k in key_list:
|
for k in key_list:
|
||||||
if is_openai_api_key(k): avail_key_list.append(k)
|
if is_openai_api_key(k): avail_key_list.append(k)
|
||||||
|
|
||||||
@@ -74,8 +79,12 @@ def select_api_key(keys, llm_model):
|
|||||||
for k in key_list:
|
for k in key_list:
|
||||||
if is_azure_api_key(k): avail_key_list.append(k)
|
if is_azure_api_key(k): avail_key_list.append(k)
|
||||||
|
|
||||||
|
if llm_model.startswith('cohere-'):
|
||||||
|
for k in key_list:
|
||||||
|
if is_cohere_api_key(k): avail_key_list.append(k)
|
||||||
|
|
||||||
if len(avail_key_list) == 0:
|
if len(avail_key_list) == 0:
|
||||||
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源(右下角更换模型菜单中可切换openai,azure,claude,api2d等请求源)。")
|
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源(左上角更换模型菜单中可切换openai,azure,claude,cohere等请求源)。")
|
||||||
|
|
||||||
api_key = random.choice(avail_key_list) # 随机负载均衡
|
api_key = random.choice(avail_key_list) # 随机负载均衡
|
||||||
return api_key
|
return api_key
|
||||||
|
|||||||
34
shared_utils/map_names.py
普通文件
34
shared_utils/map_names.py
普通文件
@@ -0,0 +1,34 @@
|
|||||||
|
import re
|
||||||
|
mapping_dic = {
|
||||||
|
# "qianfan": "qianfan(文心一言大模型)",
|
||||||
|
# "zhipuai": "zhipuai(智谱GLM4超级模型🔥)",
|
||||||
|
# "gpt-4-1106-preview": "gpt-4-1106-preview(新调优版本GPT-4🔥)",
|
||||||
|
# "gpt-4-vision-preview": "gpt-4-vision-preview(识图模型GPT-4V)",
|
||||||
|
}
|
||||||
|
|
||||||
|
rev_mapping_dic = {}
|
||||||
|
for k, v in mapping_dic.items():
|
||||||
|
rev_mapping_dic[v] = k
|
||||||
|
|
||||||
|
def map_model_to_friendly_names(m):
|
||||||
|
if m in mapping_dic:
|
||||||
|
return mapping_dic[m]
|
||||||
|
return m
|
||||||
|
|
||||||
|
def map_friendly_names_to_model(m):
|
||||||
|
if m in rev_mapping_dic:
|
||||||
|
return rev_mapping_dic[m]
|
||||||
|
return m
|
||||||
|
|
||||||
|
def read_one_api_model_name(model: str):
|
||||||
|
"""return real model name and max_token.
|
||||||
|
"""
|
||||||
|
max_token_pattern = r"\(max_token=(\d+)\)"
|
||||||
|
match = re.search(max_token_pattern, model)
|
||||||
|
if match:
|
||||||
|
max_token_tmp = match.group(1) # 获取 max_token 的值
|
||||||
|
max_token_tmp = int(max_token_tmp)
|
||||||
|
model = re.sub(max_token_pattern, "", model) # 从原字符串中删除 "(max_token=...)"
|
||||||
|
else:
|
||||||
|
max_token_tmp = 4096
|
||||||
|
return model, max_token_tmp
|
||||||
@@ -59,7 +59,7 @@ def apply_gpt_academic_string_mask_langbased(string, lang_reference):
|
|||||||
lang_reference = "hello world"
|
lang_reference = "hello world"
|
||||||
输出1
|
输出1
|
||||||
"注意,lang_reference这段文字是:英语"
|
"注意,lang_reference这段文字是:英语"
|
||||||
|
|
||||||
输入2
|
输入2
|
||||||
string = "注意,lang_reference这段文字是中文" # 注意这里没有掩码tag,所以不会被处理
|
string = "注意,lang_reference这段文字是中文" # 注意这里没有掩码tag,所以不会被处理
|
||||||
lang_reference = "hello world"
|
lang_reference = "hello world"
|
||||||
|
|||||||
@@ -11,28 +11,45 @@ def validate_path():
|
|||||||
|
|
||||||
|
|
||||||
validate_path() # validate path so you can run from base directory
|
validate_path() # validate path so you can run from base directory
|
||||||
if __name__ == "__main__":
|
|
||||||
# from request_llms.bridge_newbingfree import predict_no_ui_long_connection
|
|
||||||
# from request_llms.bridge_moss import predict_no_ui_long_connection
|
|
||||||
# from request_llms.bridge_jittorllms_pangualpha import predict_no_ui_long_connection
|
|
||||||
# from request_llms.bridge_jittorllms_llama import predict_no_ui_long_connection
|
|
||||||
# from request_llms.bridge_claude import predict_no_ui_long_connection
|
|
||||||
# from request_llms.bridge_internlm import predict_no_ui_long_connection
|
|
||||||
# from request_llms.bridge_deepseekcoder import predict_no_ui_long_connection
|
|
||||||
# from request_llms.bridge_qwen_7B import predict_no_ui_long_connection
|
|
||||||
from request_llms.bridge_qwen_local import predict_no_ui_long_connection
|
|
||||||
|
|
||||||
# from request_llms.bridge_spark import predict_no_ui_long_connection
|
if "在线模型":
|
||||||
# from request_llms.bridge_zhipu import predict_no_ui_long_connection
|
if __name__ == "__main__":
|
||||||
# from request_llms.bridge_chatglm3 import predict_no_ui_long_connection
|
from request_llms.bridge_cohere import predict_no_ui_long_connection
|
||||||
|
# from request_llms.bridge_spark import predict_no_ui_long_connection
|
||||||
|
# from request_llms.bridge_zhipu import predict_no_ui_long_connection
|
||||||
|
# from request_llms.bridge_chatglm3 import predict_no_ui_long_connection
|
||||||
|
llm_kwargs = {
|
||||||
|
"llm_model": "command-r-plus",
|
||||||
|
"max_length": 4096,
|
||||||
|
"top_p": 1,
|
||||||
|
"temperature": 1,
|
||||||
|
}
|
||||||
|
|
||||||
llm_kwargs = {
|
result = predict_no_ui_long_connection(
|
||||||
"max_length": 4096,
|
inputs="请问什么是质子?", llm_kwargs=llm_kwargs, history=["你好", "我好!"], sys_prompt="系统"
|
||||||
"top_p": 1,
|
)
|
||||||
"temperature": 1,
|
print("final result:", result)
|
||||||
}
|
print("final result:", result)
|
||||||
|
|
||||||
|
|
||||||
|
if "本地模型":
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# from request_llms.bridge_newbingfree import predict_no_ui_long_connection
|
||||||
|
# from request_llms.bridge_moss import predict_no_ui_long_connection
|
||||||
|
# from request_llms.bridge_jittorllms_pangualpha import predict_no_ui_long_connection
|
||||||
|
# from request_llms.bridge_jittorllms_llama import predict_no_ui_long_connection
|
||||||
|
# from request_llms.bridge_claude import predict_no_ui_long_connection
|
||||||
|
# from request_llms.bridge_internlm import predict_no_ui_long_connection
|
||||||
|
# from request_llms.bridge_deepseekcoder import predict_no_ui_long_connection
|
||||||
|
# from request_llms.bridge_qwen_7B import predict_no_ui_long_connection
|
||||||
|
# from request_llms.bridge_qwen_local import predict_no_ui_long_connection
|
||||||
|
llm_kwargs = {
|
||||||
|
"max_length": 4096,
|
||||||
|
"top_p": 1,
|
||||||
|
"temperature": 1,
|
||||||
|
}
|
||||||
|
result = predict_no_ui_long_connection(
|
||||||
|
inputs="请问什么是质子?", llm_kwargs=llm_kwargs, history=["你好", "我好!"], sys_prompt=""
|
||||||
|
)
|
||||||
|
print("final result:", result)
|
||||||
|
|
||||||
result = predict_no_ui_long_connection(
|
|
||||||
inputs="请问什么是质子?", llm_kwargs=llm_kwargs, history=["你好", "我好!"], sys_prompt=""
|
|
||||||
)
|
|
||||||
print("final result:", result)
|
|
||||||
|
|||||||
250
themes/common.js
250
themes/common.js
@@ -2,6 +2,76 @@
|
|||||||
// 第 1 部分: 工具函数
|
// 第 1 部分: 工具函数
|
||||||
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||||
|
|
||||||
|
function push_data_to_gradio_component(DAT, ELEM_ID, TYPE) {
|
||||||
|
// type, // type==="str" / type==="float"
|
||||||
|
if (TYPE == "str") {
|
||||||
|
// convert dat to string: do nothing
|
||||||
|
}
|
||||||
|
else if (TYPE == "no_conversion") {
|
||||||
|
// no nothing
|
||||||
|
}
|
||||||
|
else if (TYPE == "float") {
|
||||||
|
// convert dat to float
|
||||||
|
DAT = parseFloat(DAT);
|
||||||
|
}
|
||||||
|
const myEvent = new CustomEvent('gpt_academic_update_gradio_component', {
|
||||||
|
detail: {
|
||||||
|
data: DAT,
|
||||||
|
elem_id: ELEM_ID,
|
||||||
|
}
|
||||||
|
});
|
||||||
|
window.dispatchEvent(myEvent);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
async function get_gradio_component(ELEM_ID) {
|
||||||
|
function waitFor(ELEM_ID) {
|
||||||
|
return new Promise((resolve) => {
|
||||||
|
const myEvent = new CustomEvent('gpt_academic_get_gradio_component_value', {
|
||||||
|
detail: {
|
||||||
|
elem_id: ELEM_ID,
|
||||||
|
resolve,
|
||||||
|
}
|
||||||
|
});
|
||||||
|
window.dispatchEvent(myEvent);
|
||||||
|
});
|
||||||
|
}
|
||||||
|
result = await waitFor(ELEM_ID);
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
async function get_data_from_gradio_component(ELEM_ID) {
|
||||||
|
let comp = await get_gradio_component(ELEM_ID);
|
||||||
|
return comp.props.value;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
function update_array(arr, item, mode) {
|
||||||
|
// // Remove "输入清除键"
|
||||||
|
// p = updateArray(p, "输入清除键", "remove");
|
||||||
|
// console.log(p); // Should log: ["基础功能区", "函数插件区"]
|
||||||
|
|
||||||
|
// // Add "输入清除键"
|
||||||
|
// p = updateArray(p, "输入清除键", "add");
|
||||||
|
// console.log(p); // Should log: ["基础功能区", "函数插件区", "输入清除键"]
|
||||||
|
|
||||||
|
const index = arr.indexOf(item);
|
||||||
|
if (mode === "remove") {
|
||||||
|
if (index !== -1) {
|
||||||
|
// Item found, remove it
|
||||||
|
arr.splice(index, 1);
|
||||||
|
}
|
||||||
|
} else if (mode === "add") {
|
||||||
|
if (index === -1) {
|
||||||
|
// Item not found, add it
|
||||||
|
arr.push(item);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return arr;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
function gradioApp() {
|
function gradioApp() {
|
||||||
// https://github.com/GaiZhenbiao/ChuanhuChatGPT/tree/main/web_assets/javascript
|
// https://github.com/GaiZhenbiao/ChuanhuChatGPT/tree/main/web_assets/javascript
|
||||||
const elems = document.getElementsByTagName('gradio-app');
|
const elems = document.getElementsByTagName('gradio-app');
|
||||||
@@ -14,6 +84,7 @@ function gradioApp() {
|
|||||||
return elem.shadowRoot ? elem.shadowRoot : elem;
|
return elem.shadowRoot ? elem.shadowRoot : elem;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function setCookie(name, value, days) {
|
function setCookie(name, value, days) {
|
||||||
var expires = "";
|
var expires = "";
|
||||||
|
|
||||||
@@ -26,6 +97,7 @@ function setCookie(name, value, days) {
|
|||||||
document.cookie = name + "=" + value + expires + "; path=/";
|
document.cookie = name + "=" + value + expires + "; path=/";
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function getCookie(name) {
|
function getCookie(name) {
|
||||||
var decodedCookie = decodeURIComponent(document.cookie);
|
var decodedCookie = decodeURIComponent(document.cookie);
|
||||||
var cookies = decodedCookie.split(';');
|
var cookies = decodedCookie.split(';');
|
||||||
@@ -41,6 +113,7 @@ function getCookie(name) {
|
|||||||
return null;
|
return null;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
let toastCount = 0;
|
let toastCount = 0;
|
||||||
function toast_push(msg, duration) {
|
function toast_push(msg, duration) {
|
||||||
duration = isNaN(duration) ? 3000 : duration;
|
duration = isNaN(duration) ? 3000 : duration;
|
||||||
@@ -63,6 +136,7 @@ function toast_push(msg, duration) {
|
|||||||
toastCount++;
|
toastCount++;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function toast_up(msg) {
|
function toast_up(msg) {
|
||||||
var m = document.getElementById('toast_up');
|
var m = document.getElementById('toast_up');
|
||||||
if (m) {
|
if (m) {
|
||||||
@@ -75,6 +149,7 @@ function toast_up(msg) {
|
|||||||
document.body.appendChild(m);
|
document.body.appendChild(m);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function toast_down() {
|
function toast_down() {
|
||||||
var m = document.getElementById('toast_up');
|
var m = document.getElementById('toast_up');
|
||||||
if (m) {
|
if (m) {
|
||||||
@@ -82,6 +157,7 @@ function toast_down() {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function begin_loading_status() {
|
function begin_loading_status() {
|
||||||
// Create the loader div and add styling
|
// Create the loader div and add styling
|
||||||
var loader = document.createElement('div');
|
var loader = document.createElement('div');
|
||||||
@@ -256,6 +332,7 @@ function do_something_but_not_too_frequently(min_interval, func) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function chatbotContentChanged(attempt = 1, force = false) {
|
function chatbotContentChanged(attempt = 1, force = false) {
|
||||||
// https://github.com/GaiZhenbiao/ChuanhuChatGPT/tree/main/web_assets/javascript
|
// https://github.com/GaiZhenbiao/ChuanhuChatGPT/tree/main/web_assets/javascript
|
||||||
for (var i = 0; i < attempt; i++) {
|
for (var i = 0; i < attempt; i++) {
|
||||||
@@ -272,7 +349,6 @@ function chatbotContentChanged(attempt = 1, force = false) {
|
|||||||
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||||
// 第 3 部分: chatbot动态高度调整
|
// 第 3 部分: chatbot动态高度调整
|
||||||
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||||
|
|
||||||
function chatbotAutoHeight() {
|
function chatbotAutoHeight() {
|
||||||
// 自动调整高度:立即
|
// 自动调整高度:立即
|
||||||
function update_height() {
|
function update_height() {
|
||||||
@@ -304,6 +380,7 @@ function chatbotAutoHeight() {
|
|||||||
setInterval(function () { update_height_slow() }, 50); // 每50毫秒执行一次
|
setInterval(function () { update_height_slow() }, 50); // 每50毫秒执行一次
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
swapped = false;
|
swapped = false;
|
||||||
function swap_input_area() {
|
function swap_input_area() {
|
||||||
// Get the elements to be swapped
|
// Get the elements to be swapped
|
||||||
@@ -323,6 +400,7 @@ function swap_input_area() {
|
|||||||
else { swapped = true; }
|
else { swapped = true; }
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function get_elements(consider_state_panel = false) {
|
function get_elements(consider_state_panel = false) {
|
||||||
var chatbot = document.querySelector('#gpt-chatbot > div.wrap.svelte-18telvq');
|
var chatbot = document.querySelector('#gpt-chatbot > div.wrap.svelte-18telvq');
|
||||||
if (!chatbot) {
|
if (!chatbot) {
|
||||||
@@ -420,6 +498,7 @@ async function upload_files(files) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function register_func_paste(input) {
|
function register_func_paste(input) {
|
||||||
let paste_files = [];
|
let paste_files = [];
|
||||||
if (input) {
|
if (input) {
|
||||||
@@ -446,6 +525,7 @@ function register_func_paste(input) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function register_func_drag(elem) {
|
function register_func_drag(elem) {
|
||||||
if (elem) {
|
if (elem) {
|
||||||
const dragEvents = ["dragover"];
|
const dragEvents = ["dragover"];
|
||||||
@@ -482,6 +562,7 @@ function register_func_drag(elem) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function elem_upload_component_pop_message(elem) {
|
function elem_upload_component_pop_message(elem) {
|
||||||
if (elem) {
|
if (elem) {
|
||||||
const dragEvents = ["dragover"];
|
const dragEvents = ["dragover"];
|
||||||
@@ -511,6 +592,7 @@ function elem_upload_component_pop_message(elem) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function register_upload_event() {
|
function register_upload_event() {
|
||||||
locate_upload_elems();
|
locate_upload_elems();
|
||||||
if (elem_upload_float) {
|
if (elem_upload_float) {
|
||||||
@@ -533,6 +615,7 @@ function register_upload_event() {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function monitoring_input_box() {
|
function monitoring_input_box() {
|
||||||
register_upload_event();
|
register_upload_event();
|
||||||
|
|
||||||
@@ -566,7 +649,6 @@ window.addEventListener("DOMContentLoaded", function () {
|
|||||||
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||||
// 第 5 部分: 音频按钮样式变化
|
// 第 5 部分: 音频按钮样式变化
|
||||||
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||||
|
|
||||||
function audio_fn_init() {
|
function audio_fn_init() {
|
||||||
let audio_component = document.getElementById('elem_audio');
|
let audio_component = document.getElementById('elem_audio');
|
||||||
if (audio_component) {
|
if (audio_component) {
|
||||||
@@ -603,6 +685,7 @@ function audio_fn_init() {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function minor_ui_adjustment() {
|
function minor_ui_adjustment() {
|
||||||
let cbsc_area = document.getElementById('cbsc');
|
let cbsc_area = document.getElementById('cbsc');
|
||||||
cbsc_area.style.paddingTop = '15px';
|
cbsc_area.style.paddingTop = '15px';
|
||||||
@@ -695,21 +778,6 @@ function limit_scroll_position() {
|
|||||||
// 第 7 部分: JS初始化函数
|
// 第 7 部分: JS初始化函数
|
||||||
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||||
|
|
||||||
function GptAcademicJavaScriptInit(LAYOUT = "LEFT-RIGHT") {
|
|
||||||
audio_fn_init();
|
|
||||||
minor_ui_adjustment();
|
|
||||||
chatbotIndicator = gradioApp().querySelector('#gpt-chatbot > div.wrap');
|
|
||||||
var chatbotObserver = new MutationObserver(() => {
|
|
||||||
chatbotContentChanged(1);
|
|
||||||
});
|
|
||||||
chatbotObserver.observe(chatbotIndicator, { attributes: true, childList: true, subtree: true });
|
|
||||||
if (LAYOUT === "LEFT-RIGHT") { chatbotAutoHeight(); }
|
|
||||||
if (LAYOUT === "LEFT-RIGHT") { limit_scroll_position(); }
|
|
||||||
// setInterval(function () { uml("mermaid") }, 5000); // 每50毫秒执行一次
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
function loadLive2D() {
|
function loadLive2D() {
|
||||||
try {
|
try {
|
||||||
$("<link>").attr({ href: "file=themes/waifu_plugin/waifu.css", rel: "stylesheet", type: "text/css" }).appendTo('head');
|
$("<link>").attr({ href: "file=themes/waifu_plugin/waifu.css", rel: "stylesheet", type: "text/css" }).appendTo('head');
|
||||||
@@ -731,12 +799,12 @@ function loadLive2D() {
|
|||||||
live2d_settings['canTakeScreenshot'] = false;
|
live2d_settings['canTakeScreenshot'] = false;
|
||||||
live2d_settings['canTurnToHomePage'] = false;
|
live2d_settings['canTurnToHomePage'] = false;
|
||||||
live2d_settings['canTurnToAboutPage'] = false;
|
live2d_settings['canTurnToAboutPage'] = false;
|
||||||
live2d_settings['showHitokoto'] = false; // 显示一言
|
live2d_settings['showHitokoto'] = false; // 显示一言
|
||||||
live2d_settings['showF12Status'] = false; // 显示加载状态
|
live2d_settings['showF12Status'] = false; // 显示加载状态
|
||||||
live2d_settings['showF12Message'] = false; // 显示看板娘消息
|
live2d_settings['showF12Message'] = false; // 显示看板娘消息
|
||||||
live2d_settings['showF12OpenMsg'] = false; // 显示控制台打开提示
|
live2d_settings['showF12OpenMsg'] = false; // 显示控制台打开提示
|
||||||
live2d_settings['showCopyMessage'] = false; // 显示 复制内容 提示
|
live2d_settings['showCopyMessage'] = false; // 显示 复制内容 提示
|
||||||
live2d_settings['showWelcomeMessage'] = true; // 显示进入面页欢迎词
|
live2d_settings['showWelcomeMessage'] = true; // 显示进入面页欢迎词
|
||||||
/* 在 initModel 前添加 */
|
/* 在 initModel 前添加 */
|
||||||
initModel("file=themes/waifu_plugin/waifu-tips.json");
|
initModel("file=themes/waifu_plugin/waifu-tips.json");
|
||||||
}
|
}
|
||||||
@@ -746,7 +814,8 @@ function loadLive2D() {
|
|||||||
} catch (err) { console.log("[Error] JQuery is not defined.") }
|
} catch (err) { console.log("[Error] JQuery is not defined.") }
|
||||||
}
|
}
|
||||||
|
|
||||||
function get_checkbox_selected_items(elem_id){
|
|
||||||
|
function get_checkbox_selected_items(elem_id) {
|
||||||
display_panel_arr = [];
|
display_panel_arr = [];
|
||||||
document.getElementById(elem_id).querySelector('[data-testid="checkbox-group"]').querySelectorAll('label').forEach(label => {
|
document.getElementById(elem_id).querySelector('[data-testid="checkbox-group"]').querySelectorAll('label').forEach(label => {
|
||||||
// Get the span text
|
// Get the span text
|
||||||
@@ -760,51 +829,52 @@ function get_checkbox_selected_items(elem_id){
|
|||||||
return display_panel_arr;
|
return display_panel_arr;
|
||||||
}
|
}
|
||||||
|
|
||||||
function set_checkbox(key, bool, set_twice=false) {
|
|
||||||
set_success = false;
|
|
||||||
elem_ids = ["cbsc", "cbs"]
|
|
||||||
elem_ids.forEach(id => {
|
|
||||||
document.getElementById(id).querySelector('[data-testid="checkbox-group"]').querySelectorAll('label').forEach(label => {
|
|
||||||
// Get the span text
|
|
||||||
const spanText = label.querySelector('span').textContent;
|
|
||||||
if (spanText === key) {
|
|
||||||
if (bool){
|
|
||||||
label.classList.add('selected');
|
|
||||||
} else {
|
|
||||||
if (label.classList.contains('selected')) {
|
|
||||||
label.classList.remove('selected');
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (set_twice){
|
|
||||||
setTimeout(() => {
|
|
||||||
if (bool){
|
|
||||||
label.classList.add('selected');
|
|
||||||
} else {
|
|
||||||
if (label.classList.contains('selected')) {
|
|
||||||
label.classList.remove('selected');
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}, 5000);
|
|
||||||
}
|
|
||||||
|
|
||||||
label.querySelector('input').checked = bool;
|
function gpt_academic_gradio_saveload(
|
||||||
set_success = true;
|
save_or_load, // save_or_load==="save" / save_or_load==="load"
|
||||||
return
|
elem_id, // element id
|
||||||
|
cookie_key, // cookie key
|
||||||
|
save_value = "", // save value
|
||||||
|
load_type = "str", // type==="str" / type==="float"
|
||||||
|
load_default = false, // load default value
|
||||||
|
load_default_value = ""
|
||||||
|
) {
|
||||||
|
if (save_or_load === "load") {
|
||||||
|
let value = getCookie(cookie_key);
|
||||||
|
if (value) {
|
||||||
|
console.log('加载cookie', elem_id, value)
|
||||||
|
push_data_to_gradio_component(value, elem_id, load_type);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
if (load_default) {
|
||||||
|
console.log('加载cookie的默认值', elem_id, load_default_value)
|
||||||
|
push_data_to_gradio_component(load_default_value, elem_id, load_type);
|
||||||
}
|
}
|
||||||
});
|
}
|
||||||
});
|
}
|
||||||
|
if (save_or_load === "save") {
|
||||||
if (!set_success){
|
setCookie(cookie_key, save_value, 365);
|
||||||
console.log("设置checkbox失败,没有找到对应的key")
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
function apply_cookie_for_checkbox(dark) {
|
|
||||||
// console.log("apply_cookie_for_checkboxes")
|
|
||||||
let searchString = "输入清除键";
|
|
||||||
let bool_value = "False";
|
|
||||||
|
|
||||||
////////////////// darkmode ///////////////////
|
async function GptAcademicJavaScriptInit(dark, prompt, live2d, layout) {
|
||||||
|
// 第一部分,布局初始化
|
||||||
|
audio_fn_init();
|
||||||
|
minor_ui_adjustment();
|
||||||
|
chatbotIndicator = gradioApp().querySelector('#gpt-chatbot > div.wrap');
|
||||||
|
var chatbotObserver = new MutationObserver(() => {
|
||||||
|
chatbotContentChanged(1);
|
||||||
|
});
|
||||||
|
chatbotObserver.observe(chatbotIndicator, { attributes: true, childList: true, subtree: true });
|
||||||
|
if (layout === "LEFT-RIGHT") { chatbotAutoHeight(); }
|
||||||
|
if (layout === "LEFT-RIGHT") { limit_scroll_position(); }
|
||||||
|
|
||||||
|
// 第二部分,读取Cookie,初始话界面
|
||||||
|
let searchString = "";
|
||||||
|
let bool_value = "";
|
||||||
|
|
||||||
|
// darkmode 深色模式
|
||||||
if (getCookie("js_darkmode_cookie")) {
|
if (getCookie("js_darkmode_cookie")) {
|
||||||
dark = getCookie("js_darkmode_cookie")
|
dark = getCookie("js_darkmode_cookie")
|
||||||
}
|
}
|
||||||
@@ -819,29 +889,41 @@ function apply_cookie_for_checkbox(dark) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
////////////////////// clearButton ///////////////////////////
|
// SysPrompt 系统静默提示词
|
||||||
|
gpt_academic_gradio_saveload("load", "elem_prompt", "js_system_prompt_cookie", null, "str");
|
||||||
|
|
||||||
|
// Temperature 大模型温度参数
|
||||||
|
gpt_academic_gradio_saveload("load", "elem_temperature", "js_temperature_cookie", null, "float");
|
||||||
|
|
||||||
|
// clearButton 自动清除按钮
|
||||||
if (getCookie("js_clearbtn_show_cookie")) {
|
if (getCookie("js_clearbtn_show_cookie")) {
|
||||||
// have cookie
|
// have cookie
|
||||||
bool_value = getCookie("js_clearbtn_show_cookie")
|
bool_value = getCookie("js_clearbtn_show_cookie")
|
||||||
bool_value = bool_value == "True";
|
bool_value = bool_value == "True";
|
||||||
searchString = "输入清除键";
|
searchString = "输入清除键";
|
||||||
|
|
||||||
if (bool_value) {
|
if (bool_value) {
|
||||||
let clearButton = document.getElementById("elem_clear");
|
// make btns appear
|
||||||
let clearButton2 = document.getElementById("elem_clear2");
|
let clearButton = document.getElementById("elem_clear"); clearButton.style.display = "block";
|
||||||
clearButton.style.display = "block";
|
let clearButton2 = document.getElementById("elem_clear2"); clearButton2.style.display = "block";
|
||||||
clearButton2.style.display = "block";
|
// deal with checkboxes
|
||||||
set_checkbox(searchString, true);
|
let arr_with_clear_btn = update_array(
|
||||||
|
await get_data_from_gradio_component('cbs'), "输入清除键", "add"
|
||||||
|
)
|
||||||
|
push_data_to_gradio_component(arr_with_clear_btn, "cbs", "no_conversion");
|
||||||
} else {
|
} else {
|
||||||
let clearButton = document.getElementById("elem_clear");
|
// make btns disappear
|
||||||
let clearButton2 = document.getElementById("elem_clear2");
|
let clearButton = document.getElementById("elem_clear"); clearButton.style.display = "none";
|
||||||
clearButton.style.display = "none";
|
let clearButton2 = document.getElementById("elem_clear2"); clearButton2.style.display = "none";
|
||||||
clearButton2.style.display = "none";
|
// deal with checkboxes
|
||||||
set_checkbox(searchString, false);
|
let arr_without_clear_btn = update_array(
|
||||||
|
await get_data_from_gradio_component('cbs'), "输入清除键", "remove"
|
||||||
|
)
|
||||||
|
push_data_to_gradio_component(arr_without_clear_btn, "cbs", "no_conversion");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
////////////////////// live2d ///////////////////////////
|
// live2d 显示
|
||||||
|
|
||||||
if (getCookie("js_live2d_show_cookie")) {
|
if (getCookie("js_live2d_show_cookie")) {
|
||||||
// have cookie
|
// have cookie
|
||||||
searchString = "添加Live2D形象";
|
searchString = "添加Live2D形象";
|
||||||
@@ -849,17 +931,23 @@ function apply_cookie_for_checkbox(dark) {
|
|||||||
bool_value = bool_value == "True";
|
bool_value = bool_value == "True";
|
||||||
if (bool_value) {
|
if (bool_value) {
|
||||||
loadLive2D();
|
loadLive2D();
|
||||||
set_checkbox(searchString, true);
|
let arr_with_live2d = update_array(
|
||||||
|
await get_data_from_gradio_component('cbsc'), "添加Live2D形象", "add"
|
||||||
|
)
|
||||||
|
push_data_to_gradio_component(arr_with_live2d, "cbsc", "no_conversion");
|
||||||
} else {
|
} else {
|
||||||
$('.waifu').hide();
|
try {
|
||||||
set_checkbox(searchString, false);
|
$('.waifu').hide();
|
||||||
|
let arr_without_live2d = update_array(
|
||||||
|
await get_data_from_gradio_component('cbsc'), "添加Live2D形象", "remove"
|
||||||
|
)
|
||||||
|
push_data_to_gradio_component(arr_without_live2d, "cbsc", "no_conversion");
|
||||||
|
} catch (error) {
|
||||||
|
}
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
// do not have cookie
|
// do not have cookie
|
||||||
// get conf
|
if (live2d) {
|
||||||
display_panel_arr = get_checkbox_selected_items("cbsc");
|
|
||||||
searchString = "添加Live2D形象";
|
|
||||||
if (display_panel_arr.includes(searchString)) {
|
|
||||||
loadLive2D();
|
loadLive2D();
|
||||||
} else {
|
} else {
|
||||||
}
|
}
|
||||||
|
|||||||
某些文件未显示,因为此 diff 中更改的文件太多 显示更多
在新工单中引用
屏蔽一个用户