diff --git a/config.py b/config.py
index c9ede12f..b8b84de8 100644
--- a/config.py
+++ b/config.py
@@ -36,7 +36,7 @@ AVAIL_LLM_MODELS = ["gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-p
"gpt-4o", "gpt-4o-mini", "gpt-4-turbo", "gpt-4-turbo-2024-04-09",
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-4v", "glm-3-turbo",
- "gemini-pro", "chatglm3"
+ "gemini-1.5-pro", "chatglm3"
]
# --- --- --- ---
# P.S. 其他可用的模型还包括
@@ -50,6 +50,7 @@ AVAIL_LLM_MODELS = ["gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-p
# "claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
# "moss", "llama2", "chatglm_onnx", "internlm", "jittorllms_pangualpha", "jittorllms_llama",
# "deepseek-chat" ,"deepseek-coder",
+# "gemini-1.5-flash",
# "yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview",
# ]
# --- --- --- ---
diff --git a/request_llms/bridge_all.py b/request_llms/bridge_all.py
index 036f64dd..f08aaf76 100644
--- a/request_llms/bridge_all.py
+++ b/request_llms/bridge_all.py
@@ -407,22 +407,46 @@ model_info = {
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
+ # Gemini
+ # Note: now gemini-pro is an alias of gemini-1.0-pro.
+ # Warning: gemini-pro-vision has been deprecated.
+ # Support for gemini-pro-vision has been removed.
"gemini-pro": {
"fn_with_ui": genai_ui,
"fn_without_ui": genai_noui,
"endpoint": gemini_endpoint,
+ "has_multimodal_capacity": False,
"max_token": 1024 * 32,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
- "gemini-pro-vision": {
+ "gemini-1.0-pro": {
"fn_with_ui": genai_ui,
"fn_without_ui": genai_noui,
"endpoint": gemini_endpoint,
+ "has_multimodal_capacity": False,
"max_token": 1024 * 32,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
+ "gemini-1.5-pro": {
+ "fn_with_ui": genai_ui,
+ "fn_without_ui": genai_noui,
+ "endpoint": gemini_endpoint,
+ "has_multimodal_capacity": True,
+ "max_token": 1024 * 204800,
+ "tokenizer": tokenizer_gpt35,
+ "token_cnt": get_token_num_gpt35,
+ },
+ "gemini-1.5-flash": {
+ "fn_with_ui": genai_ui,
+ "fn_without_ui": genai_noui,
+ "endpoint": gemini_endpoint,
+ "has_multimodal_capacity": True,
+ "max_token": 1024 * 204800,
+ "tokenizer": tokenizer_gpt35,
+ "token_cnt": get_token_num_gpt35,
+ },
# cohere
"cohere-command-r-plus": {
diff --git a/request_llms/bridge_google_gemini.py b/request_llms/bridge_google_gemini.py
index 9bf4e23a..3697b8fc 100644
--- a/request_llms/bridge_google_gemini.py
+++ b/request_llms/bridge_google_gemini.py
@@ -8,15 +8,15 @@ import os
import time
from request_llms.com_google import GoogleChatInit
from toolbox import ChatBotWithCookies
-from toolbox import get_conf, update_ui, update_ui_lastest_msg, have_any_recent_upload_image_files, trimmed_format_exc, log_chat
+from toolbox import get_conf, update_ui, update_ui_lastest_msg, have_any_recent_upload_image_files, trimmed_format_exc, log_chat, encode_image
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY')
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
-def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None,
- console_slience=False):
+def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=[],
+ console_slience:bool=False):
# 检查API_KEY
if get_conf("GEMINI_API_KEY") == "":
raise ValueError(f"请配置 GEMINI_API_KEY。")
@@ -44,9 +44,20 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
raise RuntimeError(f'{gpt_replying_buffer} 对话错误')
return gpt_replying_buffer
+def make_media_input(inputs, image_paths):
+ image_base64_array = []
+ for image_path in image_paths:
+ path = os.path.abspath(image_path)
+ inputs = inputs + f'

'
+ base64 = encode_image(path)
+ image_base64_array.append(base64)
+ return inputs, image_base64_array
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
+
+ from .bridge_all import model_info
+
# 检查API_KEY
if get_conf("GEMINI_API_KEY") == "":
yield from update_ui_lastest_msg(f"请配置 GEMINI_API_KEY。", chatbot=chatbot, history=history, delay=0)
@@ -57,18 +68,17 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
- if "vision" in llm_kwargs["llm_model"]:
- have_recent_file, image_paths = have_any_recent_upload_image_files(chatbot)
- if not have_recent_file:
- chatbot.append((inputs, "没有检测到任何近期上传的图像文件,请上传jpg格式的图片,此外,请注意拓展名需要小写"))
- yield from update_ui(chatbot=chatbot, history=history, msg="等待图片") # 刷新界面
- return
- def make_media_input(inputs, image_paths):
- for image_path in image_paths:
- inputs = inputs + f'
})
'
- return inputs
- if have_recent_file:
- inputs = make_media_input(inputs, image_paths)
+ # multimodal capacity
+ # inspired by codes in bridge_chatgpt
+ has_multimodal_capacity = model_info[llm_kwargs['llm_model']].get('has_multimodal_capacity', False)
+ if has_multimodal_capacity:
+ has_recent_image_upload, image_paths = have_any_recent_upload_image_files(chatbot, pop=True)
+ else:
+ has_recent_image_upload, image_paths = False, []
+ if has_recent_image_upload:
+ inputs, image_base64_array = make_media_input(inputs, image_paths)
+ else:
+ inputs, image_base64_array = inputs, []
chatbot.append((inputs, ""))
yield from update_ui(chatbot=chatbot, history=history)
@@ -76,7 +86,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
retry = 0
while True:
try:
- stream_response = genai.generate_chat(inputs, llm_kwargs, history, system_prompt)
+ stream_response = genai.generate_chat(inputs, llm_kwargs, history, system_prompt, image_base64_array, has_multimodal_capacity)
break
except Exception as e:
retry += 1
@@ -112,7 +122,6 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
yield from update_ui(chatbot=chatbot, history=history)
-
if __name__ == '__main__':
import sys
llm_kwargs = {'llm_model': 'gemini-pro'}
diff --git a/request_llms/com_google.py b/request_llms/com_google.py
index 75f6b53b..9df3a997 100644
--- a/request_llms/com_google.py
+++ b/request_llms/com_google.py
@@ -7,7 +7,7 @@ import os
import re
import requests
from typing import List, Dict, Tuple
-from toolbox import get_conf, encode_image, get_pictures_list, to_markdown_tabs
+from toolbox import get_conf, update_ui, encode_image, get_pictures_list, to_markdown_tabs
proxies, TIMEOUT_SECONDS = get_conf("proxies", "TIMEOUT_SECONDS")
@@ -112,6 +112,14 @@ def html_local_img(__file, layout="left", max_width=None, max_height=None, md=Tr
return a
+def reverse_base64_from_input(inputs):
+ pattern = re.compile(r'
![]()
]+base64="([^"]+)">
')
+ base64_strings = pattern.findall(inputs)
+ return base64_strings
+
+def contain_base64(inputs):
+ base64_strings = reverse_base64_from_input(inputs)
+ return len(base64_strings) > 0
class GoogleChatInit:
def __init__(self, llm_kwargs):
@@ -119,9 +127,9 @@ class GoogleChatInit:
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
self.url_gemini = endpoint + "/%m:streamGenerateContent?key=%k"
- def generate_chat(self, inputs, llm_kwargs, history, system_prompt):
+ def generate_chat(self, inputs, llm_kwargs, history, system_prompt, image_base64_array:list=[], has_multimodal_capacity:bool=False):
headers, payload = self.generate_message_payload(
- inputs, llm_kwargs, history, system_prompt
+ inputs, llm_kwargs, history, system_prompt, image_base64_array, has_multimodal_capacity
)
response = requests.post(
url=self.url_gemini,
@@ -133,13 +141,16 @@ class GoogleChatInit:
)
return response.iter_lines()
- def __conversation_user(self, user_input, llm_kwargs):
+ def __conversation_user(self, user_input, llm_kwargs, enable_multimodal_capacity):
what_i_have_asked = {"role": "user", "parts": []}
- if "vision" not in self.url_gemini:
+ from .bridge_all import model_info
+
+ if enable_multimodal_capacity:
+ input_, encode_img = input_encode_handler(user_input, llm_kwargs=llm_kwargs)
+ else:
input_ = user_input
encode_img = []
- else:
- input_, encode_img = input_encode_handler(user_input, llm_kwargs=llm_kwargs)
+
what_i_have_asked["parts"].append({"text": input_})
if encode_img:
for data in encode_img:
@@ -153,12 +164,12 @@ class GoogleChatInit:
)
return what_i_have_asked
- def __conversation_history(self, history, llm_kwargs):
+ def __conversation_history(self, history, llm_kwargs, enable_multimodal_capacity):
messages = []
conversation_cnt = len(history) // 2
if conversation_cnt:
for index in range(0, 2 * conversation_cnt, 2):
- what_i_have_asked = self.__conversation_user(history[index], llm_kwargs)
+ what_i_have_asked = self.__conversation_user(history[index], llm_kwargs, enable_multimodal_capacity)
what_gpt_answer = {
"role": "model",
"parts": [{"text": history[index + 1]}],
@@ -168,7 +179,7 @@ class GoogleChatInit:
return messages
def generate_message_payload(
- self, inputs, llm_kwargs, history, system_prompt
+ self, inputs, llm_kwargs, history, system_prompt, image_base64_array:list=[], has_multimodal_capacity:bool=False
) -> Tuple[Dict, Dict]:
messages = [
# {"role": "system", "parts": [{"text": system_prompt}]}, # gemini 不允许对话轮次为偶数,所以这个没有用,看后续支持吧。。。
@@ -179,21 +190,29 @@ class GoogleChatInit:
"%m", llm_kwargs["llm_model"]
).replace("%k", get_conf("GEMINI_API_KEY"))
header = {"Content-Type": "application/json"}
- if "vision" not in self.url_gemini: # 不是vision 才处理history
+
+ if has_multimodal_capacity:
+ enable_multimodal_capacity = (len(image_base64_array) > 0) or any([contain_base64(h) for h in history])
+ else:
+ enable_multimodal_capacity = False
+
+ if not enable_multimodal_capacity:
messages.extend(
- self.__conversation_history(history, llm_kwargs)
+ self.__conversation_history(history, llm_kwargs, enable_multimodal_capacity)
) # 处理 history
- messages.append(self.__conversation_user(inputs, llm_kwargs)) # 处理用户对话
+
+ messages.append(self.__conversation_user(inputs, llm_kwargs, enable_multimodal_capacity)) # 处理用户对话
payload = {
"contents": messages,
"generationConfig": {
- # "maxOutputTokens": 800,
+ # "maxOutputTokens": llm_kwargs.get("max_token", 1024),
"stopSequences": str(llm_kwargs.get("stop", "")).split(" "),
"temperature": llm_kwargs.get("temperature", 1),
"topP": llm_kwargs.get("top_p", 0.8),
"topK": 10,
},
}
+
return header, payload