这个提交包含在:
lbykkkk
2024-11-17 17:36:01 +00:00
父节点 cbef9a908c
当前提交 f8b60870e9
共有 3 个文件被更改,包括 72 次插入40 次删除

查看文件

@@ -43,22 +43,42 @@ class ProcessingTask:
class ArxivRagWorker:
def __init__(self, user_name: str, llm_kwargs: Dict):
def __init__(self, user_name: str, llm_kwargs: Dict, arxiv_id: str = None):
self.user_name = user_name
self.llm_kwargs = llm_kwargs
self.max_concurrent_papers = MAX_CONCURRENT_PAPERS # 存储最大并发数
self.arxiv_id = self._normalize_arxiv_id(arxiv_id) if arxiv_id else None
# 初始化存储目录
self.checkpoint_dir = Path(get_log_folder(user_name, plugin_name='rag_cache'))
self.vector_store_dir = self.checkpoint_dir / "vector_store"
self.fragment_store_dir = self.checkpoint_dir / "fragments"
# 初始化基础存储目录
self.base_dir = Path(get_log_folder(user_name, plugin_name='rag_cache'))
if os.path.exists(self.base_dir):
self.loading = True
else:
self.loading = False
# 如果提供了 arxiv_id,创建针对该论文的子目录
if self.arxiv_id:
self.checkpoint_dir = self.base_dir / self.arxiv_id
self.vector_store_dir = self.checkpoint_dir / "vector_store"
self.fragment_store_dir = self.checkpoint_dir / "fragments"
else:
# 如果没有 arxiv_id,使用基础目录
self.checkpoint_dir = self.base_dir
self.vector_store_dir = self.base_dir / "vector_store"
self.fragment_store_dir = self.base_dir / "fragments"
# 创建必要的目录
self.checkpoint_dir.mkdir(parents=True, exist_ok=True)
self.vector_store_dir.mkdir(parents=True, exist_ok=True)
self.fragment_store_dir.mkdir(parents=True, exist_ok=True)
logger.info(f"Checkpoint directory: {self.checkpoint_dir}")
logger.info(f"Vector store directory: {self.vector_store_dir}")
logger.info(f"Fragment store directory: {self.fragment_store_dir}")
# 初始化处理队列和线程池
self.processing_queue = {}
self.thread_pool = ThreadPoolExecutor(max_workers=MAX_WORKERS)
# 初始化RAG worker
self.rag_worker = LlamaIndexRagWorker(
user_name=user_name,
@@ -68,15 +88,30 @@ class ArxivRagWorker:
)
# 初始化arxiv splitter
# 初始化 arxiv splitter
self.arxiv_splitter = ArxivSplitter(
char_range=(1000, 1200),
root_dir=str(self.checkpoint_dir / "arxiv_cache")
)
# 初始化处理队列和线程池
self._semaphore = None
self._loop = None
@property
def loop(self):
"""获取当前事件循环"""
if self._loop is None:
self._loop = asyncio.get_event_loop()
return self._loop
@property
def semaphore(self):
"""延迟创建 semaphore"""
if self._semaphore is None:
self._semaphore = asyncio.Semaphore(self.max_concurrent_papers)
return self._semaphore
# 初始化并行处理组件
self.processing_queue = {}
self.semaphore = asyncio.Semaphore(MAX_CONCURRENT_PAPERS)
self.thread_pool = ThreadPoolExecutor(max_workers=MAX_WORKERS)
async def _process_fragments(self, fragments: List[Fragment]) -> None:
"""并行处理论文片段"""
@@ -106,17 +141,11 @@ class ArxivRagWorker:
# 并行处理其余片段
tasks = []
for i, fragment in enumerate(fragments):
task = asyncio.get_event_loop().run_in_executor(
self.thread_pool,
self._process_single_fragment,
fragment,
i
)
tasks.append(task)
tasks.append(self._process_single_fragment(fragment, i))
await asyncio.gather(*tasks)
logger.info(f"Processed {len(fragments)} fragments successfully")
# 保存到本地文件用于调试
save_fragments_to_file(
fragments,
@@ -127,8 +156,26 @@ class ArxivRagWorker:
logger.error(f"Error processing fragments: {str(e)}")
raise
def _process_single_fragment(self, fragment: Fragment, index: int) -> None:
"""处理单个论文片段"""
async def _process_single_fragment(self, fragment: Fragment, index: int) -> None:
"""处理单个论文片段(改为异步方法)"""
try:
text = (
f"Paper Title: {fragment.title}\n"
f"ArXiv ID: {fragment.arxiv_id}\n"
f"Section: {fragment.section}\n"
f"Fragment Index: {index}\n"
f"Content: {fragment.content}\n"
f"Type: FRAGMENT"
)
logger.info(f"Processing fragment {index} for paper {fragment.arxiv_id}")
# 如果 add_text_to_vector_store 是异步的,使用 await
self.rag_worker.add_text_to_vector_store(text)
logger.info(f"Successfully added fragment {index} to vector store")
except Exception as e:
logger.error(f"Error processing fragment {index}: {str(e)}")
raise """处理单个论文片段"""
try:
text = (
f"Paper Title: {fragment.title}\n"
@@ -289,16 +336,16 @@ def Arxiv论文对话(txt: str, llm_kwargs: Dict, plugin_kwargs: Dict, chatbot:
web_port: Web端口
"""
# 初始化时,提示用户需要 arxiv ID/URL
if len(history) == 0 and not txt.lower().strip().startswith(('https://arxiv.org', 'arxiv.org', '1', '2')):
if len(history) == 0 and not txt.lower().strip().startswith(('https://arxiv.org', 'arxiv.org', '0','1', '2')):
chatbot.append((txt, "请先提供Arxiv论文链接或ID。"))
yield from update_ui(chatbot=chatbot, history=history)
return
user_name = chatbot.get_user()
worker = ArxivRagWorker(user_name, llm_kwargs)
worker = ArxivRagWorker(user_name, llm_kwargs, arxiv_id=txt)
# 处理新论文的情况
if txt.lower().strip().startswith(('https://arxiv.org', 'arxiv.org', '1', '2')):
if txt.lower().strip().startswith(('https://arxiv.org', 'arxiv.org', '0', '1', '2')) and not worker.loading:
chatbot.append((txt, "正在处理论文,请稍等..."))
yield from update_ui(chatbot=chatbot, history=history)
@@ -327,7 +374,8 @@ def Arxiv论文对话(txt: str, llm_kwargs: Dict, plugin_kwargs: Dict, chatbot:
# 处理用户询问的情况
# 获取用户询问指令
user_query = plugin_kwargs.get("advanced_arg", "")
user_query = plugin_kwargs.get("advanced_arg", "What is the main research question or problem addressed in this paper?")
# user_query = "What is the main research question or problem addressed in this paper about graph attention network?"
if not user_query:
chatbot.append((txt, "请提供您的问题。"))
yield from update_ui(chatbot=chatbot, history=history)

查看文件

@@ -14,6 +14,7 @@ class ArxivFragment:
section: str # 所属章节
is_appendix: bool # 是否是附录
importance: float = 1.0 # 重要性得分
arxiv_id: str = "" # 添加 arxiv_id 属性
@staticmethod
def merge_segments(seg1: 'ArxivFragment', seg2: 'ArxivFragment') -> 'ArxivFragment':