镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-08 23:46:48 +00:00
implement doc_fns
这个提交包含在:
@@ -0,0 +1,493 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Optional, Set, Dict, Union, List
|
||||
from dataclasses import dataclass, field
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
|
||||
from unstructured.partition.auto import partition
|
||||
from unstructured.documents.elements import (
|
||||
Text, Title, NarrativeText, ListItem, Table,
|
||||
Footer, Header, PageBreak, Image, Address
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class PaperMetadata:
|
||||
"""论文元数据类"""
|
||||
title: str = ""
|
||||
authors: List[str] = field(default_factory=list)
|
||||
affiliations: List[str] = field(default_factory=list)
|
||||
journal: str = ""
|
||||
volume: str = ""
|
||||
issue: str = ""
|
||||
year: str = ""
|
||||
doi: str = ""
|
||||
date: str = ""
|
||||
publisher: str = ""
|
||||
conference: str = ""
|
||||
abstract: str = ""
|
||||
keywords: List[str] = field(default_factory=list)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ExtractorConfig:
|
||||
"""元数据提取器配置类"""
|
||||
paragraph_separator: str = '\n\n'
|
||||
text_cleanup: Dict[str, bool] = field(default_factory=lambda: {
|
||||
'remove_extra_spaces': True,
|
||||
'normalize_whitespace': True,
|
||||
'remove_special_chars': False,
|
||||
'lowercase': False
|
||||
})
|
||||
|
||||
|
||||
class PaperMetadataExtractor:
|
||||
"""论文元数据提取器
|
||||
|
||||
使用unstructured库从多种文档格式中提取论文的标题、作者、摘要等元数据信息。
|
||||
"""
|
||||
|
||||
SUPPORTED_EXTENSIONS: Set[str] = {
|
||||
'.pdf', '.docx', '.doc', '.txt', '.ppt', '.pptx',
|
||||
'.xlsx', '.xls', '.md', '.org', '.odt', '.rst',
|
||||
'.rtf', '.epub', '.html', '.xml', '.json'
|
||||
}
|
||||
|
||||
# 定义论文各部分的关键词模式
|
||||
SECTION_PATTERNS = {
|
||||
'abstract': r'\b(摘要|abstract|summary|概要|résumé|zusammenfassung|аннотация)\b',
|
||||
'keywords': r'\b(关键词|keywords|key\s+words|关键字|mots[- ]clés|schlüsselwörter|ключевые слова)\b',
|
||||
}
|
||||
|
||||
def __init__(self, config: Optional[ExtractorConfig] = None):
|
||||
"""初始化提取器
|
||||
|
||||
Args:
|
||||
config: 提取器配置对象,如果为None则使用默认配置
|
||||
"""
|
||||
self.config = config or ExtractorConfig()
|
||||
self._setup_logging()
|
||||
|
||||
def _setup_logging(self) -> None:
|
||||
"""配置日志记录器"""
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||
)
|
||||
self.logger = logging.getLogger(__name__)
|
||||
|
||||
# 添加文件处理器
|
||||
fh = logging.FileHandler('paper_metadata_extractor.log')
|
||||
fh.setLevel(logging.ERROR)
|
||||
self.logger.addHandler(fh)
|
||||
|
||||
def _validate_file(self, file_path: Union[str, Path], max_size_mb: int = 100) -> Path:
|
||||
"""验证文件
|
||||
|
||||
Args:
|
||||
file_path: 文件路径
|
||||
max_size_mb: 允许的最大文件大小(MB)
|
||||
|
||||
Returns:
|
||||
Path: 验证后的Path对象
|
||||
|
||||
Raises:
|
||||
ValueError: 文件不存在、格式不支持或大小超限
|
||||
PermissionError: 没有读取权限
|
||||
"""
|
||||
path = Path(file_path).resolve()
|
||||
|
||||
if not path.exists():
|
||||
raise ValueError(f"文件不存在: {path}")
|
||||
|
||||
if not path.is_file():
|
||||
raise ValueError(f"不是文件: {path}")
|
||||
|
||||
if not os.access(path, os.R_OK):
|
||||
raise PermissionError(f"没有读取权限: {path}")
|
||||
|
||||
file_size_mb = path.stat().st_size / (1024 * 1024)
|
||||
if file_size_mb > max_size_mb:
|
||||
raise ValueError(
|
||||
f"文件大小 ({file_size_mb:.1f}MB) 超过限制 {max_size_mb}MB"
|
||||
)
|
||||
|
||||
if path.suffix.lower() not in self.SUPPORTED_EXTENSIONS:
|
||||
raise ValueError(
|
||||
f"不支持的文件格式: {path.suffix}. "
|
||||
f"支持的格式: {', '.join(sorted(self.SUPPORTED_EXTENSIONS))}"
|
||||
)
|
||||
|
||||
return path
|
||||
|
||||
def _cleanup_text(self, text: str) -> str:
|
||||
"""清理文本
|
||||
|
||||
Args:
|
||||
text: 原始文本
|
||||
|
||||
Returns:
|
||||
str: 清理后的文本
|
||||
"""
|
||||
if self.config.text_cleanup['remove_extra_spaces']:
|
||||
text = ' '.join(text.split())
|
||||
|
||||
if self.config.text_cleanup['normalize_whitespace']:
|
||||
text = text.replace('\t', ' ').replace('\r', '\n')
|
||||
|
||||
if self.config.text_cleanup['lowercase']:
|
||||
text = text.lower()
|
||||
|
||||
return text.strip()
|
||||
|
||||
@staticmethod
|
||||
def get_supported_formats() -> List[str]:
|
||||
"""获取支持的文件格式列表"""
|
||||
return sorted(PaperMetadataExtractor.SUPPORTED_EXTENSIONS)
|
||||
|
||||
def extract_metadata(self, file_path: Union[str, Path], strategy: str = "fast") -> PaperMetadata:
|
||||
"""提取论文元数据
|
||||
|
||||
Args:
|
||||
file_path: 文件路径
|
||||
strategy: 提取策略 ("fast" 或 "accurate")
|
||||
|
||||
Returns:
|
||||
PaperMetadata: 提取的论文元数据
|
||||
|
||||
Raises:
|
||||
Exception: 提取过程中的错误
|
||||
"""
|
||||
try:
|
||||
path = self._validate_file(file_path)
|
||||
self.logger.info(f"正在处理: {path}")
|
||||
|
||||
# 使用unstructured库分解文档
|
||||
elements = partition(
|
||||
str(path),
|
||||
strategy=strategy,
|
||||
include_metadata=True,
|
||||
nlp=False,
|
||||
)
|
||||
|
||||
# 提取元数据
|
||||
metadata = PaperMetadata()
|
||||
|
||||
# 提取标题和作者
|
||||
self._extract_title_and_authors(elements, metadata)
|
||||
|
||||
# 提取摘要和关键词
|
||||
self._extract_abstract_and_keywords(elements, metadata)
|
||||
|
||||
# 提取其他元数据
|
||||
self._extract_additional_metadata(elements, metadata)
|
||||
|
||||
return metadata
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"元数据提取失败: {e}")
|
||||
raise
|
||||
|
||||
def _extract_title_and_authors(self, elements, metadata: PaperMetadata) -> None:
|
||||
"""从文档中提取标题和作者信息 - 改进版"""
|
||||
# 收集所有潜在的标题候选
|
||||
title_candidates = []
|
||||
all_text = []
|
||||
raw_text = []
|
||||
|
||||
# 首先收集文档前30个元素的文本,用于辅助判断
|
||||
for i, element in enumerate(elements[:30]):
|
||||
if isinstance(element, (Text, Title, NarrativeText)):
|
||||
text = str(element).strip()
|
||||
if text:
|
||||
all_text.append(text)
|
||||
raw_text.append(text)
|
||||
|
||||
# 打印出原始文本,用于调试
|
||||
print("原始文本前10行:")
|
||||
for i, text in enumerate(raw_text[:10]):
|
||||
print(f"{i}: {text}")
|
||||
|
||||
# 1. 尝试查找连续的标题片段并合并它们
|
||||
i = 0
|
||||
while i < len(all_text) - 1:
|
||||
current = all_text[i]
|
||||
next_text = all_text[i + 1]
|
||||
|
||||
# 检查是否存在标题分割情况:一行以冒号结尾,下一行像是标题的延续
|
||||
if current.endswith(':') and len(current) < 50 and len(next_text) > 5 and next_text[0].isupper():
|
||||
# 合并这两行文本
|
||||
combined_title = f"{current} {next_text}"
|
||||
# 查找合并前的文本并替换
|
||||
all_text[i] = combined_title
|
||||
all_text.pop(i + 1)
|
||||
# 给合并后的标题很高的分数
|
||||
title_candidates.append((combined_title, 15, i))
|
||||
else:
|
||||
i += 1
|
||||
|
||||
# 2. 首先尝试从标题元素中查找
|
||||
for i, element in enumerate(elements[:15]): # 只检查前15个元素
|
||||
if isinstance(element, Title):
|
||||
title_text = str(element).strip()
|
||||
# 排除常见的非标题内容
|
||||
if title_text.lower() not in ['abstract', '摘要', 'introduction', '引言']:
|
||||
# 计算标题分数(越高越可能是真正的标题)
|
||||
score = self._evaluate_title_candidate(title_text, i, element)
|
||||
title_candidates.append((title_text, score, i))
|
||||
|
||||
# 3. 特别处理常见的论文标题格式
|
||||
for i, text in enumerate(all_text[:15]):
|
||||
# 特别检查"KIMI K1.5:"类型的前缀标题
|
||||
if re.match(r'^[A-Z][A-Z0-9\s\.]+(\s+K\d+(\.\d+)?)?:', text):
|
||||
score = 12 # 给予很高的分数
|
||||
title_candidates.append((text, score, i))
|
||||
|
||||
# 如果下一行也是全大写,很可能是标题的延续
|
||||
if i+1 < len(all_text) and all_text[i+1].isupper() and len(all_text[i+1]) > 10:
|
||||
combined_title = f"{text} {all_text[i+1]}"
|
||||
title_candidates.append((combined_title, 15, i)) # 给合并标题更高分数
|
||||
|
||||
# 匹配全大写的标题行
|
||||
elif text.isupper() and len(text) > 10 and len(text) < 100:
|
||||
score = 10 - i * 0.5 # 越靠前越可能是标题
|
||||
title_candidates.append((text, score, i))
|
||||
|
||||
# 对标题候选按分数排序并选取最佳候选
|
||||
if title_candidates:
|
||||
title_candidates.sort(key=lambda x: x[1], reverse=True)
|
||||
metadata.title = title_candidates[0][0]
|
||||
title_position = title_candidates[0][2]
|
||||
print(f"所有标题候选: {title_candidates[:3]}")
|
||||
else:
|
||||
# 如果没有找到合适的标题,使用一个备选策略
|
||||
for text in all_text[:10]:
|
||||
if text.isupper() and len(text) > 10 and len(text) < 200: # 大写且适当长度的文本
|
||||
metadata.title = text
|
||||
break
|
||||
title_position = 0
|
||||
|
||||
# 提取作者信息 - 改进后的作者提取逻辑
|
||||
author_candidates = []
|
||||
|
||||
# 1. 特别处理"TECHNICAL REPORT OF"之后的行,通常是作者或团队
|
||||
for i, text in enumerate(all_text):
|
||||
if "TECHNICAL REPORT" in text.upper() and i+1 < len(all_text):
|
||||
team_text = all_text[i+1].strip()
|
||||
if re.search(r'\b(team|group|lab)\b', team_text, re.IGNORECASE):
|
||||
author_candidates.append((team_text, 15))
|
||||
|
||||
# 2. 查找包含Team的文本
|
||||
for text in all_text[:20]:
|
||||
if "Team" in text and len(text) < 30:
|
||||
# 这很可能是团队名
|
||||
author_candidates.append((text, 12))
|
||||
|
||||
# 添加作者到元数据
|
||||
if author_candidates:
|
||||
# 按分数排序
|
||||
author_candidates.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
# 去重
|
||||
seen_authors = set()
|
||||
for author, _ in author_candidates:
|
||||
if author.lower() not in seen_authors and not author.isdigit():
|
||||
seen_authors.add(author.lower())
|
||||
metadata.authors.append(author)
|
||||
|
||||
# 如果没有找到作者,尝试查找隶属机构信息中的团队名称
|
||||
if not metadata.authors:
|
||||
for text in all_text[:20]:
|
||||
if re.search(r'\b(team|group|lab|laboratory|研究组|团队)\b', text, re.IGNORECASE):
|
||||
if len(text) < 50: # 避免太长的文本
|
||||
metadata.authors.append(text.strip())
|
||||
break
|
||||
|
||||
# 提取隶属机构信息
|
||||
for i, element in enumerate(elements[:30]):
|
||||
element_text = str(element).strip()
|
||||
if re.search(r'(university|institute|department|school|laboratory|college|center|centre|\d{5,}|^[a-zA-Z]+@|学院|大学|研究所|研究院)', element_text, re.IGNORECASE):
|
||||
# 可能是隶属机构
|
||||
if element_text not in metadata.affiliations and len(element_text) > 10:
|
||||
metadata.affiliations.append(element_text)
|
||||
|
||||
def _evaluate_title_candidate(self, text, position, element):
|
||||
"""评估标题候选项的可能性分数"""
|
||||
score = 0
|
||||
|
||||
# 位置因素:越靠前越可能是标题
|
||||
score += max(0, 10 - position) * 0.5
|
||||
|
||||
# 长度因素:标题通常不会太短也不会太长
|
||||
if 10 <= len(text) <= 150:
|
||||
score += 3
|
||||
elif len(text) < 10:
|
||||
score -= 2
|
||||
elif len(text) > 150:
|
||||
score -= 3
|
||||
|
||||
# 格式因素
|
||||
if text.isupper(): # 全大写可能是标题
|
||||
score += 2
|
||||
if re.match(r'^[A-Z]', text): # 首字母大写
|
||||
score += 1
|
||||
if ':' in text: # 标题常包含冒号
|
||||
score += 1.5
|
||||
|
||||
# 内容因素
|
||||
if re.search(r'\b(scaling|learning|model|approach|method|system|framework|analysis)\b', text.lower()):
|
||||
score += 2 # 包含常见的学术论文关键词
|
||||
|
||||
# 避免误判
|
||||
if re.match(r'^\d+$', text): # 纯数字
|
||||
score -= 10
|
||||
if re.search(r'^(http|www|doi)', text.lower()): # URL或DOI
|
||||
score -= 5
|
||||
if len(text.split()) <= 2 and len(text) < 15: # 太短的短语
|
||||
score -= 3
|
||||
|
||||
# 元数据因素(如果有)
|
||||
if hasattr(element, 'metadata') and element.metadata:
|
||||
# 修复:正确处理ElementMetadata对象
|
||||
try:
|
||||
# 尝试通过getattr安全地获取属性
|
||||
font_size = getattr(element.metadata, 'font_size', None)
|
||||
if font_size is not None and font_size > 14: # 假设标准字体大小是12
|
||||
score += 3
|
||||
|
||||
font_weight = getattr(element.metadata, 'font_weight', None)
|
||||
if font_weight == 'bold':
|
||||
score += 2 # 粗体加分
|
||||
except (AttributeError, TypeError):
|
||||
# 如果metadata的访问方式不正确,尝试其他可能的访问方式
|
||||
try:
|
||||
metadata_dict = element.metadata.__dict__ if hasattr(element.metadata, '__dict__') else {}
|
||||
if 'font_size' in metadata_dict and metadata_dict['font_size'] > 14:
|
||||
score += 3
|
||||
if 'font_weight' in metadata_dict and metadata_dict['font_weight'] == 'bold':
|
||||
score += 2
|
||||
except Exception:
|
||||
# 如果所有尝试都失败,忽略元数据处理
|
||||
pass
|
||||
|
||||
return score
|
||||
|
||||
def _extract_abstract_and_keywords(self, elements, metadata: PaperMetadata) -> None:
|
||||
"""从文档中提取摘要和关键词"""
|
||||
abstract_found = False
|
||||
keywords_found = False
|
||||
abstract_text = []
|
||||
|
||||
for i, element in enumerate(elements):
|
||||
element_text = str(element).strip().lower()
|
||||
|
||||
# 寻找摘要部分
|
||||
if not abstract_found and (
|
||||
isinstance(element, Title) and
|
||||
re.search(self.SECTION_PATTERNS['abstract'], element_text, re.IGNORECASE)
|
||||
):
|
||||
abstract_found = True
|
||||
continue
|
||||
|
||||
# 如果找到摘要部分,收集内容直到遇到关键词部分或新章节
|
||||
if abstract_found and not keywords_found:
|
||||
# 检查是否遇到关键词部分或新章节
|
||||
if (
|
||||
isinstance(element, Title) or
|
||||
re.search(self.SECTION_PATTERNS['keywords'], element_text, re.IGNORECASE) or
|
||||
re.match(r'\b(introduction|引言|method|方法)\b', element_text, re.IGNORECASE)
|
||||
):
|
||||
keywords_found = re.search(self.SECTION_PATTERNS['keywords'], element_text, re.IGNORECASE)
|
||||
abstract_found = False # 停止收集摘要
|
||||
else:
|
||||
# 收集摘要文本
|
||||
if isinstance(element, (Text, NarrativeText)) and element_text:
|
||||
abstract_text.append(element_text)
|
||||
|
||||
# 如果找到关键词部分,提取关键词
|
||||
if keywords_found and not abstract_found and not metadata.keywords:
|
||||
if isinstance(element, (Text, NarrativeText)):
|
||||
# 清除可能的"关键词:"/"Keywords:"前缀
|
||||
cleaned_text = re.sub(r'^\s*(关键词|keywords|key\s+words)\s*[::]\s*', '', element_text, flags=re.IGNORECASE)
|
||||
|
||||
# 尝试按不同分隔符分割
|
||||
for separator in [';', ';', ',', ',']:
|
||||
if separator in cleaned_text:
|
||||
metadata.keywords = [k.strip() for k in cleaned_text.split(separator) if k.strip()]
|
||||
break
|
||||
|
||||
# 如果未能分割,将整个文本作为一个关键词
|
||||
if not metadata.keywords and cleaned_text:
|
||||
metadata.keywords = [cleaned_text]
|
||||
|
||||
keywords_found = False # 已提取关键词,停止处理
|
||||
|
||||
# 设置摘要文本
|
||||
if abstract_text:
|
||||
metadata.abstract = self.config.paragraph_separator.join(abstract_text)
|
||||
|
||||
def _extract_additional_metadata(self, elements, metadata: PaperMetadata) -> None:
|
||||
"""提取其他元数据信息"""
|
||||
for element in elements[:30]: # 只检查文档前部分
|
||||
element_text = str(element).strip()
|
||||
|
||||
# 尝试匹配DOI
|
||||
doi_match = re.search(r'(doi|DOI):\s*(10\.\d{4,}\/[a-zA-Z0-9.-]+)', element_text)
|
||||
if doi_match and not metadata.doi:
|
||||
metadata.doi = doi_match.group(2)
|
||||
|
||||
# 尝试匹配日期
|
||||
date_match = re.search(r'(published|received|accepted|submitted):\s*(\d{1,2}\s+[a-zA-Z]+\s+\d{4}|\d{4}[-/]\d{1,2}[-/]\d{1,2})', element_text, re.IGNORECASE)
|
||||
if date_match and not metadata.date:
|
||||
metadata.date = date_match.group(2)
|
||||
|
||||
# 尝试匹配年份
|
||||
year_match = re.search(r'\b(19|20)\d{2}\b', element_text)
|
||||
if year_match and not metadata.year:
|
||||
metadata.year = year_match.group(0)
|
||||
|
||||
# 尝试匹配期刊/会议名称
|
||||
journal_match = re.search(r'(journal|conference):\s*([^,;.]+)', element_text, re.IGNORECASE)
|
||||
if journal_match:
|
||||
if "journal" in journal_match.group(1).lower() and not metadata.journal:
|
||||
metadata.journal = journal_match.group(2).strip()
|
||||
elif not metadata.conference:
|
||||
metadata.conference = journal_match.group(2).strip()
|
||||
|
||||
|
||||
def main():
|
||||
"""主函数:演示用法"""
|
||||
# 创建提取器
|
||||
extractor = PaperMetadataExtractor()
|
||||
|
||||
# 使用示例
|
||||
try:
|
||||
# 替换为实际的文件路径
|
||||
sample_file = '/Users/boyin.liu/Documents/示例文档/论文/3.pdf'
|
||||
if Path(sample_file).exists():
|
||||
metadata = extractor.extract_metadata(sample_file)
|
||||
print("提取的元数据:")
|
||||
print(f"标题: {metadata.title}")
|
||||
print(f"作者: {', '.join(metadata.authors)}")
|
||||
print(f"机构: {', '.join(metadata.affiliations)}")
|
||||
print(f"摘要: {metadata.abstract[:200]}...")
|
||||
print(f"关键词: {', '.join(metadata.keywords)}")
|
||||
print(f"DOI: {metadata.doi}")
|
||||
print(f"日期: {metadata.date}")
|
||||
print(f"年份: {metadata.year}")
|
||||
print(f"期刊: {metadata.journal}")
|
||||
print(f"会议: {metadata.conference}")
|
||||
else:
|
||||
print(f"示例文件 {sample_file} 不存在")
|
||||
|
||||
print("\n支持的格式:", extractor.get_supported_formats())
|
||||
|
||||
except Exception as e:
|
||||
print(f"错误: {e}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
文件差异内容过多而无法显示
加载差异
@@ -0,0 +1,86 @@
|
||||
from pathlib import Path
|
||||
from crazy_functions.doc_fns.read_fns.unstructured_all.paper_structure_extractor import PaperStructureExtractor
|
||||
|
||||
def extract_and_save_as_markdown(paper_path, output_path=None):
|
||||
"""
|
||||
提取论文结构并保存为Markdown格式
|
||||
|
||||
参数:
|
||||
paper_path: 论文文件路径
|
||||
output_path: 输出的Markdown文件路径,如果不指定,将使用与输入相同的文件名但扩展名为.md
|
||||
|
||||
返回:
|
||||
保存的Markdown文件路径
|
||||
"""
|
||||
# 创建提取器
|
||||
extractor = PaperStructureExtractor()
|
||||
|
||||
# 解析文件路径
|
||||
paper_path = Path(paper_path)
|
||||
|
||||
# 如果未指定输出路径,使用相同文件名但扩展名为.md
|
||||
if output_path is None:
|
||||
output_path = paper_path.with_suffix('.md')
|
||||
else:
|
||||
output_path = Path(output_path)
|
||||
|
||||
# 确保输出目录存在
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
print(f"正在处理论文: {paper_path}")
|
||||
|
||||
try:
|
||||
# 提取论文结构
|
||||
paper = extractor.extract_paper_structure(paper_path)
|
||||
|
||||
# 生成Markdown内容
|
||||
markdown_content = extractor.generate_markdown(paper)
|
||||
|
||||
# 保存到文件
|
||||
with open(output_path, 'w', encoding='utf-8') as f:
|
||||
f.write(markdown_content)
|
||||
|
||||
print(f"已成功保存Markdown文件: {output_path}")
|
||||
|
||||
# 打印摘要信息
|
||||
print("\n论文摘要信息:")
|
||||
print(f"标题: {paper.metadata.title}")
|
||||
print(f"作者: {', '.join(paper.metadata.authors)}")
|
||||
print(f"关键词: {', '.join(paper.keywords)}")
|
||||
print(f"章节数: {len(paper.sections)}")
|
||||
print(f"图表数: {len(paper.figures)}")
|
||||
print(f"表格数: {len(paper.tables)}")
|
||||
print(f"公式数: {len(paper.formulas)}")
|
||||
print(f"参考文献数: {len(paper.references)}")
|
||||
|
||||
return output_path
|
||||
|
||||
except Exception as e:
|
||||
print(f"处理论文时出错: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
return None
|
||||
|
||||
# 使用示例
|
||||
if __name__ == "__main__":
|
||||
# 替换为实际的论文文件路径
|
||||
sample_paper = "crazy_functions/doc_fns/read_fns/paper/2501.12599v1.pdf"
|
||||
|
||||
# 可以指定输出路径,也可以使用默认路径
|
||||
# output_file = "/path/to/output/paper_structure.md"
|
||||
# extract_and_save_as_markdown(sample_paper, output_file)
|
||||
|
||||
# 使用默认输出路径(与输入文件同名但扩展名为.md)
|
||||
extract_and_save_as_markdown(sample_paper)
|
||||
|
||||
# # 批量处理多个论文的示例
|
||||
# paper_dir = Path("/path/to/papers/folder")
|
||||
# output_dir = Path("/path/to/output/folder")
|
||||
#
|
||||
# # 确保输出目录存在
|
||||
# output_dir.mkdir(parents=True, exist_ok=True)
|
||||
#
|
||||
# # 处理目录中的所有PDF文件
|
||||
# for paper_file in paper_dir.glob("*.pdf"):
|
||||
# output_file = output_dir / f"{paper_file.stem}.md"
|
||||
# extract_and_save_as_markdown(paper_file, output_file)
|
||||
@@ -0,0 +1,275 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Optional, Set, Dict, Union, List
|
||||
from dataclasses import dataclass, field
|
||||
import logging
|
||||
import os
|
||||
|
||||
from unstructured.partition.auto import partition
|
||||
from unstructured.documents.elements import (
|
||||
Text, Title, NarrativeText, ListItem, Table,
|
||||
Footer, Header, PageBreak, Image, Address
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class TextExtractorConfig:
|
||||
"""通用文档提取器配置类
|
||||
|
||||
Attributes:
|
||||
extract_headers_footers: 是否提取页眉页脚
|
||||
extract_tables: 是否提取表格内容
|
||||
extract_lists: 是否提取列表内容
|
||||
extract_titles: 是否提取标题
|
||||
paragraph_separator: 段落之间的分隔符
|
||||
text_cleanup: 文本清理选项字典
|
||||
"""
|
||||
extract_headers_footers: bool = False
|
||||
extract_tables: bool = True
|
||||
extract_lists: bool = True
|
||||
extract_titles: bool = True
|
||||
paragraph_separator: str = '\n\n'
|
||||
text_cleanup: Dict[str, bool] = field(default_factory=lambda: {
|
||||
'remove_extra_spaces': True,
|
||||
'normalize_whitespace': True,
|
||||
'remove_special_chars': False,
|
||||
'lowercase': False
|
||||
})
|
||||
|
||||
|
||||
class UnstructuredTextExtractor:
|
||||
"""通用文档文本内容提取器
|
||||
|
||||
使用 unstructured 库支持多种文档格式的文本提取,提供统一的接口和配置选项。
|
||||
"""
|
||||
|
||||
SUPPORTED_EXTENSIONS: Set[str] = {
|
||||
# 文档格式
|
||||
'.pdf', '.docx', '.doc', '.txt',
|
||||
# 演示文稿
|
||||
'.ppt', '.pptx',
|
||||
# 电子表格
|
||||
'.xlsx', '.xls', '.csv',
|
||||
# 图片
|
||||
'.png', '.jpg', '.jpeg', '.tiff',
|
||||
# 邮件
|
||||
'.eml', '.msg', '.p7s',
|
||||
# Markdown
|
||||
".md",
|
||||
# Org Mode
|
||||
".org",
|
||||
# Open Office
|
||||
".odt",
|
||||
# reStructured Text
|
||||
".rst",
|
||||
# Rich Text
|
||||
".rtf",
|
||||
# TSV
|
||||
".tsv",
|
||||
# EPUB
|
||||
'.epub',
|
||||
# 其他格式
|
||||
'.html', '.xml', '.json',
|
||||
}
|
||||
|
||||
def __init__(self, config: Optional[TextExtractorConfig] = None):
|
||||
"""初始化提取器
|
||||
|
||||
Args:
|
||||
config: 提取器配置对象,如果为None则使用默认配置
|
||||
"""
|
||||
self.config = config or TextExtractorConfig()
|
||||
self._setup_logging()
|
||||
|
||||
def _setup_logging(self) -> None:
|
||||
"""配置日志记录器"""
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||
)
|
||||
self.logger = logging.getLogger(__name__)
|
||||
|
||||
# 添加文件处理器
|
||||
fh = logging.FileHandler('text_extractor.log')
|
||||
fh.setLevel(logging.ERROR)
|
||||
self.logger.addHandler(fh)
|
||||
|
||||
def _validate_file(self, file_path: Union[str, Path], max_size_mb: int = 100) -> Path:
|
||||
"""验证文件
|
||||
|
||||
Args:
|
||||
file_path: 文件路径
|
||||
max_size_mb: 允许的最大文件大小(MB)
|
||||
|
||||
Returns:
|
||||
Path: 验证后的Path对象
|
||||
|
||||
Raises:
|
||||
ValueError: 文件不存在、格式不支持或大小超限
|
||||
PermissionError: 没有读取权限
|
||||
"""
|
||||
path = Path(file_path).resolve()
|
||||
|
||||
if not path.exists():
|
||||
raise ValueError(f"File not found: {path}")
|
||||
|
||||
if not path.is_file():
|
||||
raise ValueError(f"Not a file: {path}")
|
||||
|
||||
if not os.access(path, os.R_OK):
|
||||
raise PermissionError(f"No read permission: {path}")
|
||||
|
||||
file_size_mb = path.stat().st_size / (1024 * 1024)
|
||||
if file_size_mb > max_size_mb:
|
||||
raise ValueError(
|
||||
f"File size ({file_size_mb:.1f}MB) exceeds limit of {max_size_mb}MB"
|
||||
)
|
||||
|
||||
if path.suffix.lower() not in self.SUPPORTED_EXTENSIONS:
|
||||
raise ValueError(
|
||||
f"Unsupported format: {path.suffix}. "
|
||||
f"Supported: {', '.join(sorted(self.SUPPORTED_EXTENSIONS))}"
|
||||
)
|
||||
|
||||
return path
|
||||
|
||||
def _cleanup_text(self, text: str) -> str:
|
||||
"""清理文本
|
||||
|
||||
Args:
|
||||
text: 原始文本
|
||||
|
||||
Returns:
|
||||
str: 清理后的文本
|
||||
"""
|
||||
if self.config.text_cleanup['remove_extra_spaces']:
|
||||
text = ' '.join(text.split())
|
||||
|
||||
if self.config.text_cleanup['normalize_whitespace']:
|
||||
text = text.replace('\t', ' ').replace('\r', '\n')
|
||||
|
||||
if self.config.text_cleanup['lowercase']:
|
||||
text = text.lower()
|
||||
|
||||
return text.strip()
|
||||
|
||||
def _should_extract_element(self, element) -> bool:
|
||||
"""判断是否应该提取某个元素
|
||||
|
||||
Args:
|
||||
element: 文档元素
|
||||
|
||||
Returns:
|
||||
bool: 是否应该提取
|
||||
"""
|
||||
if isinstance(element, (Text, NarrativeText)):
|
||||
return True
|
||||
|
||||
if isinstance(element, Title) and self.config.extract_titles:
|
||||
return True
|
||||
|
||||
if isinstance(element, ListItem) and self.config.extract_lists:
|
||||
return True
|
||||
|
||||
if isinstance(element, Table) and self.config.extract_tables:
|
||||
return True
|
||||
|
||||
if isinstance(element, (Header, Footer)) and self.config.extract_headers_footers:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def get_supported_formats() -> List[str]:
|
||||
"""获取支持的文件格式列表"""
|
||||
return sorted(UnstructuredTextExtractor.SUPPORTED_EXTENSIONS)
|
||||
|
||||
def extract_text(
|
||||
self,
|
||||
file_path: Union[str, Path],
|
||||
strategy: str = "fast"
|
||||
) -> str:
|
||||
"""提取文本
|
||||
|
||||
Args:
|
||||
file_path: 文件路径
|
||||
strategy: 提取策略 ("fast" 或 "accurate")
|
||||
|
||||
Returns:
|
||||
str: 提取的文本内容
|
||||
|
||||
Raises:
|
||||
Exception: 提取过程中的错误
|
||||
"""
|
||||
try:
|
||||
path = self._validate_file(file_path)
|
||||
self.logger.info(f"Processing: {path}")
|
||||
|
||||
# 修改这里:添加 nlp=False 参数来禁用 NLTK
|
||||
elements = partition(
|
||||
str(path),
|
||||
strategy=strategy,
|
||||
include_metadata=True,
|
||||
nlp=True,
|
||||
)
|
||||
|
||||
# 其余代码保持不变
|
||||
text_parts = []
|
||||
for element in elements:
|
||||
if self._should_extract_element(element):
|
||||
text = str(element)
|
||||
cleaned_text = self._cleanup_text(text)
|
||||
if cleaned_text:
|
||||
if isinstance(element, (Header, Footer)):
|
||||
prefix = "[Header] " if isinstance(element, Header) else "[Footer] "
|
||||
text_parts.append(f"{prefix}{cleaned_text}")
|
||||
else:
|
||||
text_parts.append(cleaned_text)
|
||||
|
||||
return self.config.paragraph_separator.join(text_parts)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Extraction failed: {e}")
|
||||
raise
|
||||
|
||||
|
||||
|
||||
def main():
|
||||
"""主函数:演示用法"""
|
||||
# 配置
|
||||
config = TextExtractorConfig(
|
||||
extract_headers_footers=True,
|
||||
extract_tables=True,
|
||||
extract_lists=True,
|
||||
extract_titles=True,
|
||||
text_cleanup={
|
||||
'remove_extra_spaces': True,
|
||||
'normalize_whitespace': True,
|
||||
'remove_special_chars': False,
|
||||
'lowercase': False
|
||||
}
|
||||
)
|
||||
|
||||
# 创建提取器
|
||||
extractor = UnstructuredTextExtractor(config)
|
||||
|
||||
# 使用示例
|
||||
try:
|
||||
# 替换为实际的文件路径
|
||||
sample_file = './crazy_functions/doc_fns/read_fns/paper/2501.12599v1.pdf'
|
||||
if Path(sample_file).exists() or True:
|
||||
text = extractor.extract_text(sample_file)
|
||||
print("提取的文本:")
|
||||
print(text)
|
||||
else:
|
||||
print(f"示例文件 {sample_file} 不存在")
|
||||
|
||||
print("\n支持的格式:", extractor.get_supported_formats())
|
||||
|
||||
except Exception as e:
|
||||
print(f"错误: {e}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
在新工单中引用
屏蔽一个用户