镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-06 06:26:47 +00:00
implement doc_fns
这个提交包含在:
@@ -0,0 +1,6 @@
|
||||
import nltk
|
||||
nltk.data.path.append('~/nltk_data')
|
||||
nltk.download('averaged_perceptron_tagger', download_dir='~/nltk_data',
|
||||
)
|
||||
nltk.download('punkt', download_dir='~/nltk_data',
|
||||
)
|
||||
@@ -0,0 +1,286 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
from typing import Optional, List, Set, Dict, Union, Iterator, Tuple
|
||||
from dataclasses import dataclass, field
|
||||
import logging
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
import chardet
|
||||
from functools import lru_cache
|
||||
import os
|
||||
|
||||
|
||||
@dataclass
|
||||
class ExtractorConfig:
|
||||
"""提取器配置类"""
|
||||
encoding: str = 'auto'
|
||||
na_filter: bool = True
|
||||
skip_blank_lines: bool = True
|
||||
chunk_size: int = 10000
|
||||
max_workers: int = 4
|
||||
preserve_format: bool = True
|
||||
read_all_sheets: bool = True # 新增:是否读取所有工作表
|
||||
text_cleanup: Dict[str, bool] = field(default_factory=lambda: {
|
||||
'remove_extra_spaces': True,
|
||||
'normalize_whitespace': False,
|
||||
'remove_special_chars': False,
|
||||
'lowercase': False
|
||||
})
|
||||
|
||||
|
||||
class ExcelTextExtractor:
|
||||
"""增强的Excel格式文件文本内容提取器"""
|
||||
|
||||
SUPPORTED_EXTENSIONS: Set[str] = {
|
||||
'.xlsx', '.xls', '.csv', '.tsv', '.xlsm', '.xltx', '.xltm', '.ods'
|
||||
}
|
||||
|
||||
def __init__(self, config: Optional[ExtractorConfig] = None):
|
||||
self.config = config or ExtractorConfig()
|
||||
self._setup_logging()
|
||||
self._detect_encoding = lru_cache(maxsize=128)(self._detect_encoding)
|
||||
|
||||
def _setup_logging(self) -> None:
|
||||
"""配置日志记录器"""
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||
)
|
||||
self.logger = logging.getLogger(__name__)
|
||||
fh = logging.FileHandler('excel_extractor.log')
|
||||
fh.setLevel(logging.ERROR)
|
||||
self.logger.addHandler(fh)
|
||||
|
||||
def _detect_encoding(self, file_path: Path) -> str:
|
||||
if self.config.encoding != 'auto':
|
||||
return self.config.encoding
|
||||
|
||||
try:
|
||||
with open(file_path, 'rb') as f:
|
||||
raw_data = f.read(10000)
|
||||
result = chardet.detect(raw_data)
|
||||
return result['encoding'] or 'utf-8'
|
||||
except Exception as e:
|
||||
self.logger.warning(f"Encoding detection failed: {e}. Using utf-8")
|
||||
return 'utf-8'
|
||||
|
||||
def _validate_file(self, file_path: Union[str, Path]) -> Path:
|
||||
path = Path(file_path).resolve()
|
||||
|
||||
if not path.exists():
|
||||
raise ValueError(f"File not found: {path}")
|
||||
|
||||
if not path.is_file():
|
||||
raise ValueError(f"Not a file: {path}")
|
||||
|
||||
if not os.access(path, os.R_OK):
|
||||
raise PermissionError(f"No read permission: {path}")
|
||||
|
||||
if path.suffix.lower() not in self.SUPPORTED_EXTENSIONS:
|
||||
raise ValueError(
|
||||
f"Unsupported format: {path.suffix}. "
|
||||
f"Supported: {', '.join(sorted(self.SUPPORTED_EXTENSIONS))}"
|
||||
)
|
||||
|
||||
return path
|
||||
|
||||
def _format_value(self, value: Any) -> str:
|
||||
if pd.isna(value) or value is None:
|
||||
return ''
|
||||
if isinstance(value, (int, float)):
|
||||
return str(value)
|
||||
return str(value).strip()
|
||||
|
||||
def _process_chunk(self, chunk: pd.DataFrame, columns: Optional[List[str]] = None, sheet_name: str = '') -> str:
|
||||
"""处理数据块,新增sheet_name参数"""
|
||||
try:
|
||||
if columns:
|
||||
chunk = chunk[columns]
|
||||
|
||||
if self.config.preserve_format:
|
||||
formatted_chunk = chunk.applymap(self._format_value)
|
||||
rows = []
|
||||
|
||||
# 添加工作表名称作为标题
|
||||
if sheet_name:
|
||||
rows.append(f"[Sheet: {sheet_name}]")
|
||||
|
||||
# 添加表头
|
||||
headers = [str(col) for col in formatted_chunk.columns]
|
||||
rows.append('\t'.join(headers))
|
||||
|
||||
# 添加数据行
|
||||
for _, row in formatted_chunk.iterrows():
|
||||
rows.append('\t'.join(row.values))
|
||||
|
||||
return '\n'.join(rows)
|
||||
else:
|
||||
flat_values = (
|
||||
chunk.astype(str)
|
||||
.replace({'nan': '', 'None': '', 'NaN': ''})
|
||||
.values.flatten()
|
||||
)
|
||||
return ' '.join(v for v in flat_values if v)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error processing chunk: {e}")
|
||||
raise
|
||||
|
||||
def _read_file(self, file_path: Path) -> Union[pd.DataFrame, Iterator[pd.DataFrame], Dict[str, pd.DataFrame]]:
|
||||
"""读取文件,支持多工作表"""
|
||||
try:
|
||||
encoding = self._detect_encoding(file_path)
|
||||
|
||||
if file_path.suffix.lower() in {'.csv', '.tsv'}:
|
||||
sep = '\t' if file_path.suffix.lower() == '.tsv' else ','
|
||||
|
||||
# 对大文件使用分块读取
|
||||
if file_path.stat().st_size > self.config.chunk_size * 1024:
|
||||
return pd.read_csv(
|
||||
file_path,
|
||||
encoding=encoding,
|
||||
na_filter=self.config.na_filter,
|
||||
skip_blank_lines=self.config.skip_blank_lines,
|
||||
sep=sep,
|
||||
chunksize=self.config.chunk_size,
|
||||
on_bad_lines='warn'
|
||||
)
|
||||
else:
|
||||
return pd.read_csv(
|
||||
file_path,
|
||||
encoding=encoding,
|
||||
na_filter=self.config.na_filter,
|
||||
skip_blank_lines=self.config.skip_blank_lines,
|
||||
sep=sep
|
||||
)
|
||||
else:
|
||||
# Excel文件处理,支持多工作表
|
||||
if self.config.read_all_sheets:
|
||||
# 读取所有工作表
|
||||
return pd.read_excel(
|
||||
file_path,
|
||||
na_filter=self.config.na_filter,
|
||||
keep_default_na=self.config.na_filter,
|
||||
engine='openpyxl',
|
||||
sheet_name=None # None表示读取所有工作表
|
||||
)
|
||||
else:
|
||||
# 只读取第一个工作表
|
||||
return pd.read_excel(
|
||||
file_path,
|
||||
na_filter=self.config.na_filter,
|
||||
keep_default_na=self.config.na_filter,
|
||||
engine='openpyxl',
|
||||
sheet_name=0 # 读取第一个工作表
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error reading file {file_path}: {e}")
|
||||
raise
|
||||
|
||||
def extract_text(
|
||||
self,
|
||||
file_path: Union[str, Path],
|
||||
columns: Optional[List[str]] = None,
|
||||
separator: str = '\n'
|
||||
) -> str:
|
||||
"""提取文本,支持多工作表"""
|
||||
try:
|
||||
path = self._validate_file(file_path)
|
||||
self.logger.info(f"Processing: {path}")
|
||||
|
||||
reader = self._read_file(path)
|
||||
texts = []
|
||||
|
||||
# 处理Excel多工作表
|
||||
if isinstance(reader, dict):
|
||||
for sheet_name, df in reader.items():
|
||||
sheet_text = self._process_chunk(df, columns, sheet_name)
|
||||
if sheet_text:
|
||||
texts.append(sheet_text)
|
||||
return separator.join(texts)
|
||||
|
||||
# 处理单个DataFrame
|
||||
elif isinstance(reader, pd.DataFrame):
|
||||
return self._process_chunk(reader, columns)
|
||||
|
||||
# 处理DataFrame迭代器
|
||||
else:
|
||||
with ThreadPoolExecutor(max_workers=self.config.max_workers) as executor:
|
||||
futures = {
|
||||
executor.submit(self._process_chunk, chunk, columns): i
|
||||
for i, chunk in enumerate(reader)
|
||||
}
|
||||
|
||||
chunk_texts = []
|
||||
for future in as_completed(futures):
|
||||
try:
|
||||
text = future.result()
|
||||
if text:
|
||||
chunk_texts.append((futures[future], text))
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error in chunk {futures[future]}: {e}")
|
||||
|
||||
# 按块的顺序排序
|
||||
chunk_texts.sort(key=lambda x: x[0])
|
||||
texts = [text for _, text in chunk_texts]
|
||||
|
||||
# 合并文本,保留格式
|
||||
if texts and self.config.preserve_format:
|
||||
result = texts[0] # 第一块包含表头
|
||||
if len(texts) > 1:
|
||||
# 跳过后续块的表头行
|
||||
for text in texts[1:]:
|
||||
result += '\n' + '\n'.join(text.split('\n')[1:])
|
||||
return result
|
||||
else:
|
||||
return separator.join(texts)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Extraction failed: {e}")
|
||||
raise
|
||||
|
||||
@staticmethod
|
||||
def get_supported_formats() -> List[str]:
|
||||
"""获取支持的文件格式列表"""
|
||||
return sorted(ExcelTextExtractor.SUPPORTED_EXTENSIONS)
|
||||
|
||||
|
||||
def main():
|
||||
"""主函数:演示用法"""
|
||||
config = ExtractorConfig(
|
||||
encoding='auto',
|
||||
preserve_format=True,
|
||||
read_all_sheets=True, # 启用多工作表读取
|
||||
text_cleanup={
|
||||
'remove_extra_spaces': True,
|
||||
'normalize_whitespace': False,
|
||||
'remove_special_chars': False,
|
||||
'lowercase': False
|
||||
}
|
||||
)
|
||||
|
||||
extractor = ExcelTextExtractor(config)
|
||||
|
||||
try:
|
||||
sample_file = 'example.xlsx'
|
||||
if Path(sample_file).exists():
|
||||
text = extractor.extract_text(
|
||||
sample_file,
|
||||
columns=['title', 'content']
|
||||
)
|
||||
print("提取的文本:")
|
||||
print(text)
|
||||
else:
|
||||
print(f"示例文件 {sample_file} 不存在")
|
||||
|
||||
print("\n支持的格式:", extractor.get_supported_formats())
|
||||
|
||||
except Exception as e:
|
||||
print(f"错误: {e}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -0,0 +1,359 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Optional, Set, Dict, Union, List
|
||||
from dataclasses import dataclass, field
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
import subprocess
|
||||
import tempfile
|
||||
import shutil
|
||||
|
||||
@dataclass
|
||||
class MarkdownConverterConfig:
|
||||
"""PDF 到 Markdown 转换器配置类
|
||||
|
||||
Attributes:
|
||||
extract_images: 是否提取图片
|
||||
extract_tables: 是否尝试保留表格结构
|
||||
extract_code_blocks: 是否识别代码块
|
||||
extract_math: 是否转换数学公式
|
||||
output_dir: 输出目录路径
|
||||
image_dir: 图片保存目录路径
|
||||
paragraph_separator: 段落之间的分隔符
|
||||
text_cleanup: 文本清理选项字典
|
||||
docintel_endpoint: Document Intelligence端点URL (可选)
|
||||
enable_plugins: 是否启用插件
|
||||
llm_client: LLM客户端对象 (例如OpenAI client)
|
||||
llm_model: 要使用的LLM模型名称
|
||||
"""
|
||||
extract_images: bool = True
|
||||
extract_tables: bool = True
|
||||
extract_code_blocks: bool = True
|
||||
extract_math: bool = True
|
||||
output_dir: str = ""
|
||||
image_dir: str = "images"
|
||||
paragraph_separator: str = '\n\n'
|
||||
text_cleanup: Dict[str, bool] = field(default_factory=lambda: {
|
||||
'remove_extra_spaces': True,
|
||||
'normalize_whitespace': True,
|
||||
'remove_special_chars': False,
|
||||
'lowercase': False
|
||||
})
|
||||
docintel_endpoint: str = ""
|
||||
enable_plugins: bool = False
|
||||
llm_client: Optional[object] = None
|
||||
llm_model: str = ""
|
||||
|
||||
|
||||
class MarkdownConverter:
|
||||
"""PDF 到 Markdown 转换器
|
||||
|
||||
使用 markitdown 库实现 PDF 到 Markdown 的转换,支持多种配置选项。
|
||||
"""
|
||||
|
||||
SUPPORTED_EXTENSIONS: Set[str] = {
|
||||
'.pdf',
|
||||
}
|
||||
|
||||
def __init__(self, config: Optional[MarkdownConverterConfig] = None):
|
||||
"""初始化转换器
|
||||
|
||||
Args:
|
||||
config: 转换器配置对象,如果为None则使用默认配置
|
||||
"""
|
||||
self.config = config or MarkdownConverterConfig()
|
||||
self._setup_logging()
|
||||
|
||||
# 检查是否安装了 markitdown
|
||||
self._check_markitdown_installation()
|
||||
|
||||
def _setup_logging(self) -> None:
|
||||
"""配置日志记录器"""
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||
)
|
||||
self.logger = logging.getLogger(__name__)
|
||||
|
||||
# 添加文件处理器
|
||||
fh = logging.FileHandler('markdown_converter.log')
|
||||
fh.setLevel(logging.ERROR)
|
||||
self.logger.addHandler(fh)
|
||||
|
||||
def _check_markitdown_installation(self) -> None:
|
||||
"""检查是否安装了 markitdown"""
|
||||
try:
|
||||
# 尝试导入 markitdown 库
|
||||
from markitdown import MarkItDown
|
||||
self.logger.info("markitdown 库已安装")
|
||||
except ImportError:
|
||||
self.logger.warning("markitdown 库未安装,尝试安装...")
|
||||
try:
|
||||
subprocess.check_call(["pip", "install", "markitdown"])
|
||||
self.logger.info("markitdown 库安装成功")
|
||||
from markitdown import MarkItDown
|
||||
except (subprocess.SubprocessError, ImportError):
|
||||
self.logger.error("无法安装 markitdown 库,请手动安装")
|
||||
self.markitdown_available = False
|
||||
return
|
||||
|
||||
self.markitdown_available = True
|
||||
|
||||
def _validate_file(self, file_path: Union[str, Path], max_size_mb: int = 100) -> Path:
|
||||
"""验证文件
|
||||
|
||||
Args:
|
||||
file_path: 文件路径
|
||||
max_size_mb: 允许的最大文件大小(MB)
|
||||
|
||||
Returns:
|
||||
Path: 验证后的Path对象
|
||||
|
||||
Raises:
|
||||
ValueError: 文件不存在、格式不支持或大小超限
|
||||
PermissionError: 没有读取权限
|
||||
"""
|
||||
path = Path(file_path).resolve()
|
||||
|
||||
if not path.exists():
|
||||
raise ValueError(f"文件不存在: {path}")
|
||||
|
||||
if not path.is_file():
|
||||
raise ValueError(f"不是一个文件: {path}")
|
||||
|
||||
if not os.access(path, os.R_OK):
|
||||
raise PermissionError(f"没有读取权限: {path}")
|
||||
|
||||
file_size_mb = path.stat().st_size / (1024 * 1024)
|
||||
if file_size_mb > max_size_mb:
|
||||
raise ValueError(
|
||||
f"文件大小 ({file_size_mb:.1f}MB) 超过限制 {max_size_mb}MB"
|
||||
)
|
||||
|
||||
if path.suffix.lower() not in self.SUPPORTED_EXTENSIONS:
|
||||
raise ValueError(
|
||||
f"不支持的格式: {path.suffix}. "
|
||||
f"支持的格式: {', '.join(sorted(self.SUPPORTED_EXTENSIONS))}"
|
||||
)
|
||||
|
||||
return path
|
||||
|
||||
def _cleanup_text(self, text: str) -> str:
|
||||
"""清理文本
|
||||
|
||||
Args:
|
||||
text: 原始文本
|
||||
|
||||
Returns:
|
||||
str: 清理后的文本
|
||||
"""
|
||||
if self.config.text_cleanup['remove_extra_spaces']:
|
||||
text = ' '.join(text.split())
|
||||
|
||||
if self.config.text_cleanup['normalize_whitespace']:
|
||||
text = text.replace('\t', ' ').replace('\r', '\n')
|
||||
|
||||
if self.config.text_cleanup['lowercase']:
|
||||
text = text.lower()
|
||||
|
||||
return text.strip()
|
||||
|
||||
@staticmethod
|
||||
def get_supported_formats() -> List[str]:
|
||||
"""获取支持的文件格式列表"""
|
||||
return sorted(MarkdownConverter.SUPPORTED_EXTENSIONS)
|
||||
|
||||
def convert_to_markdown(
|
||||
self,
|
||||
file_path: Union[str, Path],
|
||||
output_path: Optional[Union[str, Path]] = None
|
||||
) -> str:
|
||||
"""将 PDF 转换为 Markdown
|
||||
|
||||
Args:
|
||||
file_path: PDF 文件路径
|
||||
output_path: 输出 Markdown 文件路径,如果为 None 则返回内容而不保存
|
||||
|
||||
Returns:
|
||||
str: 转换后的 Markdown 内容
|
||||
|
||||
Raises:
|
||||
Exception: 转换过程中的错误
|
||||
"""
|
||||
try:
|
||||
path = self._validate_file(file_path)
|
||||
self.logger.info(f"处理: {path}")
|
||||
|
||||
if not self.markitdown_available:
|
||||
raise ImportError("markitdown 库未安装,无法进行转换")
|
||||
|
||||
# 导入 markitdown 库
|
||||
from markitdown import MarkItDown
|
||||
|
||||
# 准备输出目录
|
||||
if output_path:
|
||||
output_path = Path(output_path)
|
||||
output_dir = output_path.parent
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
else:
|
||||
# 创建临时目录作为输出目录
|
||||
temp_dir = tempfile.mkdtemp()
|
||||
output_dir = Path(temp_dir)
|
||||
output_path = output_dir / f"{path.stem}.md"
|
||||
|
||||
# 图片目录
|
||||
image_dir = output_dir / self.config.image_dir
|
||||
image_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# 创建 MarkItDown 实例并进行转换
|
||||
if self.config.docintel_endpoint:
|
||||
md = MarkItDown(docintel_endpoint=self.config.docintel_endpoint)
|
||||
elif self.config.llm_client and self.config.llm_model:
|
||||
md = MarkItDown(
|
||||
enable_plugins=self.config.enable_plugins,
|
||||
llm_client=self.config.llm_client,
|
||||
llm_model=self.config.llm_model
|
||||
)
|
||||
else:
|
||||
md = MarkItDown(enable_plugins=self.config.enable_plugins)
|
||||
|
||||
# 执行转换
|
||||
result = md.convert(str(path))
|
||||
markdown_content = result.text_content
|
||||
|
||||
# 清理文本
|
||||
markdown_content = self._cleanup_text(markdown_content)
|
||||
|
||||
# 如果需要保存到文件
|
||||
if output_path:
|
||||
with open(output_path, 'w', encoding='utf-8') as f:
|
||||
f.write(markdown_content)
|
||||
self.logger.info(f"转换成功,输出到: {output_path}")
|
||||
|
||||
return markdown_content
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"转换失败: {e}")
|
||||
raise
|
||||
finally:
|
||||
# 如果使用了临时目录且没有指定输出路径,则清理临时目录
|
||||
if 'temp_dir' in locals() and not output_path:
|
||||
shutil.rmtree(temp_dir, ignore_errors=True)
|
||||
|
||||
def convert_to_markdown_and_save(
|
||||
self,
|
||||
file_path: Union[str, Path],
|
||||
output_path: Union[str, Path]
|
||||
) -> Path:
|
||||
"""将 PDF 转换为 Markdown 并保存到指定路径
|
||||
|
||||
Args:
|
||||
file_path: PDF 文件路径
|
||||
output_path: 输出 Markdown 文件路径
|
||||
|
||||
Returns:
|
||||
Path: 输出文件的 Path 对象
|
||||
|
||||
Raises:
|
||||
Exception: 转换过程中的错误
|
||||
"""
|
||||
self.convert_to_markdown(file_path, output_path)
|
||||
return Path(output_path)
|
||||
|
||||
def batch_convert(
|
||||
self,
|
||||
file_paths: List[Union[str, Path]],
|
||||
output_dir: Union[str, Path]
|
||||
) -> List[Path]:
|
||||
"""批量转换多个 PDF 文件为 Markdown
|
||||
|
||||
Args:
|
||||
file_paths: PDF 文件路径列表
|
||||
output_dir: 输出目录路径
|
||||
|
||||
Returns:
|
||||
List[Path]: 输出文件路径列表
|
||||
|
||||
Raises:
|
||||
Exception: 转换过程中的错误
|
||||
"""
|
||||
output_dir = Path(output_dir)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
output_paths = []
|
||||
for file_path in file_paths:
|
||||
path = Path(file_path)
|
||||
output_path = output_dir / f"{path.stem}.md"
|
||||
|
||||
try:
|
||||
self.convert_to_markdown(file_path, output_path)
|
||||
output_paths.append(output_path)
|
||||
self.logger.info(f"成功转换: {path} -> {output_path}")
|
||||
except Exception as e:
|
||||
self.logger.error(f"转换失败 {path}: {e}")
|
||||
|
||||
return output_paths
|
||||
|
||||
|
||||
def main():
|
||||
"""主函数:演示用法"""
|
||||
# 配置
|
||||
config = MarkdownConverterConfig(
|
||||
extract_images=True,
|
||||
extract_tables=True,
|
||||
extract_code_blocks=True,
|
||||
extract_math=True,
|
||||
enable_plugins=False,
|
||||
text_cleanup={
|
||||
'remove_extra_spaces': True,
|
||||
'normalize_whitespace': True,
|
||||
'remove_special_chars': False,
|
||||
'lowercase': False
|
||||
}
|
||||
)
|
||||
|
||||
# 创建转换器
|
||||
converter = MarkdownConverter(config)
|
||||
|
||||
# 使用示例
|
||||
try:
|
||||
# 替换为实际的文件路径
|
||||
sample_file = './crazy_functions/doc_fns/read_fns/paper/2501.12599v1.pdf'
|
||||
if Path(sample_file).exists():
|
||||
# 转换为 Markdown 并打印内容
|
||||
markdown_content = converter.convert_to_markdown(sample_file)
|
||||
print("转换后的 Markdown 内容:")
|
||||
print(markdown_content[:500] + "...") # 只打印前500个字符
|
||||
|
||||
# 转换并保存到文件
|
||||
output_file = f"./output_{Path(sample_file).stem}.md"
|
||||
output_path = converter.convert_to_markdown_and_save(sample_file, output_file)
|
||||
print(f"\n已保存到: {output_path}")
|
||||
|
||||
# 使用LLM增强的示例 (需要添加相应的导入和配置)
|
||||
# try:
|
||||
# from openai import OpenAI
|
||||
# client = OpenAI()
|
||||
# llm_config = MarkdownConverterConfig(
|
||||
# llm_client=client,
|
||||
# llm_model="gpt-4o"
|
||||
# )
|
||||
# llm_converter = MarkdownConverter(llm_config)
|
||||
# llm_result = llm_converter.convert_to_markdown("example.jpg")
|
||||
# print("LLM增强的结果:")
|
||||
# print(llm_result[:500] + "...")
|
||||
# except ImportError:
|
||||
# print("未安装OpenAI库,跳过LLM示例")
|
||||
else:
|
||||
print(f"示例文件 {sample_file} 不存在")
|
||||
|
||||
print("\n支持的格式:", converter.get_supported_formats())
|
||||
|
||||
except Exception as e:
|
||||
print(f"错误: {e}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -0,0 +1,493 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Optional, Set, Dict, Union, List
|
||||
from dataclasses import dataclass, field
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
|
||||
from unstructured.partition.auto import partition
|
||||
from unstructured.documents.elements import (
|
||||
Text, Title, NarrativeText, ListItem, Table,
|
||||
Footer, Header, PageBreak, Image, Address
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class PaperMetadata:
|
||||
"""论文元数据类"""
|
||||
title: str = ""
|
||||
authors: List[str] = field(default_factory=list)
|
||||
affiliations: List[str] = field(default_factory=list)
|
||||
journal: str = ""
|
||||
volume: str = ""
|
||||
issue: str = ""
|
||||
year: str = ""
|
||||
doi: str = ""
|
||||
date: str = ""
|
||||
publisher: str = ""
|
||||
conference: str = ""
|
||||
abstract: str = ""
|
||||
keywords: List[str] = field(default_factory=list)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ExtractorConfig:
|
||||
"""元数据提取器配置类"""
|
||||
paragraph_separator: str = '\n\n'
|
||||
text_cleanup: Dict[str, bool] = field(default_factory=lambda: {
|
||||
'remove_extra_spaces': True,
|
||||
'normalize_whitespace': True,
|
||||
'remove_special_chars': False,
|
||||
'lowercase': False
|
||||
})
|
||||
|
||||
|
||||
class PaperMetadataExtractor:
|
||||
"""论文元数据提取器
|
||||
|
||||
使用unstructured库从多种文档格式中提取论文的标题、作者、摘要等元数据信息。
|
||||
"""
|
||||
|
||||
SUPPORTED_EXTENSIONS: Set[str] = {
|
||||
'.pdf', '.docx', '.doc', '.txt', '.ppt', '.pptx',
|
||||
'.xlsx', '.xls', '.md', '.org', '.odt', '.rst',
|
||||
'.rtf', '.epub', '.html', '.xml', '.json'
|
||||
}
|
||||
|
||||
# 定义论文各部分的关键词模式
|
||||
SECTION_PATTERNS = {
|
||||
'abstract': r'\b(摘要|abstract|summary|概要|résumé|zusammenfassung|аннотация)\b',
|
||||
'keywords': r'\b(关键词|keywords|key\s+words|关键字|mots[- ]clés|schlüsselwörter|ключевые слова)\b',
|
||||
}
|
||||
|
||||
def __init__(self, config: Optional[ExtractorConfig] = None):
|
||||
"""初始化提取器
|
||||
|
||||
Args:
|
||||
config: 提取器配置对象,如果为None则使用默认配置
|
||||
"""
|
||||
self.config = config or ExtractorConfig()
|
||||
self._setup_logging()
|
||||
|
||||
def _setup_logging(self) -> None:
|
||||
"""配置日志记录器"""
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||
)
|
||||
self.logger = logging.getLogger(__name__)
|
||||
|
||||
# 添加文件处理器
|
||||
fh = logging.FileHandler('paper_metadata_extractor.log')
|
||||
fh.setLevel(logging.ERROR)
|
||||
self.logger.addHandler(fh)
|
||||
|
||||
def _validate_file(self, file_path: Union[str, Path], max_size_mb: int = 100) -> Path:
|
||||
"""验证文件
|
||||
|
||||
Args:
|
||||
file_path: 文件路径
|
||||
max_size_mb: 允许的最大文件大小(MB)
|
||||
|
||||
Returns:
|
||||
Path: 验证后的Path对象
|
||||
|
||||
Raises:
|
||||
ValueError: 文件不存在、格式不支持或大小超限
|
||||
PermissionError: 没有读取权限
|
||||
"""
|
||||
path = Path(file_path).resolve()
|
||||
|
||||
if not path.exists():
|
||||
raise ValueError(f"文件不存在: {path}")
|
||||
|
||||
if not path.is_file():
|
||||
raise ValueError(f"不是文件: {path}")
|
||||
|
||||
if not os.access(path, os.R_OK):
|
||||
raise PermissionError(f"没有读取权限: {path}")
|
||||
|
||||
file_size_mb = path.stat().st_size / (1024 * 1024)
|
||||
if file_size_mb > max_size_mb:
|
||||
raise ValueError(
|
||||
f"文件大小 ({file_size_mb:.1f}MB) 超过限制 {max_size_mb}MB"
|
||||
)
|
||||
|
||||
if path.suffix.lower() not in self.SUPPORTED_EXTENSIONS:
|
||||
raise ValueError(
|
||||
f"不支持的文件格式: {path.suffix}. "
|
||||
f"支持的格式: {', '.join(sorted(self.SUPPORTED_EXTENSIONS))}"
|
||||
)
|
||||
|
||||
return path
|
||||
|
||||
def _cleanup_text(self, text: str) -> str:
|
||||
"""清理文本
|
||||
|
||||
Args:
|
||||
text: 原始文本
|
||||
|
||||
Returns:
|
||||
str: 清理后的文本
|
||||
"""
|
||||
if self.config.text_cleanup['remove_extra_spaces']:
|
||||
text = ' '.join(text.split())
|
||||
|
||||
if self.config.text_cleanup['normalize_whitespace']:
|
||||
text = text.replace('\t', ' ').replace('\r', '\n')
|
||||
|
||||
if self.config.text_cleanup['lowercase']:
|
||||
text = text.lower()
|
||||
|
||||
return text.strip()
|
||||
|
||||
@staticmethod
|
||||
def get_supported_formats() -> List[str]:
|
||||
"""获取支持的文件格式列表"""
|
||||
return sorted(PaperMetadataExtractor.SUPPORTED_EXTENSIONS)
|
||||
|
||||
def extract_metadata(self, file_path: Union[str, Path], strategy: str = "fast") -> PaperMetadata:
|
||||
"""提取论文元数据
|
||||
|
||||
Args:
|
||||
file_path: 文件路径
|
||||
strategy: 提取策略 ("fast" 或 "accurate")
|
||||
|
||||
Returns:
|
||||
PaperMetadata: 提取的论文元数据
|
||||
|
||||
Raises:
|
||||
Exception: 提取过程中的错误
|
||||
"""
|
||||
try:
|
||||
path = self._validate_file(file_path)
|
||||
self.logger.info(f"正在处理: {path}")
|
||||
|
||||
# 使用unstructured库分解文档
|
||||
elements = partition(
|
||||
str(path),
|
||||
strategy=strategy,
|
||||
include_metadata=True,
|
||||
nlp=False,
|
||||
)
|
||||
|
||||
# 提取元数据
|
||||
metadata = PaperMetadata()
|
||||
|
||||
# 提取标题和作者
|
||||
self._extract_title_and_authors(elements, metadata)
|
||||
|
||||
# 提取摘要和关键词
|
||||
self._extract_abstract_and_keywords(elements, metadata)
|
||||
|
||||
# 提取其他元数据
|
||||
self._extract_additional_metadata(elements, metadata)
|
||||
|
||||
return metadata
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"元数据提取失败: {e}")
|
||||
raise
|
||||
|
||||
def _extract_title_and_authors(self, elements, metadata: PaperMetadata) -> None:
|
||||
"""从文档中提取标题和作者信息 - 改进版"""
|
||||
# 收集所有潜在的标题候选
|
||||
title_candidates = []
|
||||
all_text = []
|
||||
raw_text = []
|
||||
|
||||
# 首先收集文档前30个元素的文本,用于辅助判断
|
||||
for i, element in enumerate(elements[:30]):
|
||||
if isinstance(element, (Text, Title, NarrativeText)):
|
||||
text = str(element).strip()
|
||||
if text:
|
||||
all_text.append(text)
|
||||
raw_text.append(text)
|
||||
|
||||
# 打印出原始文本,用于调试
|
||||
print("原始文本前10行:")
|
||||
for i, text in enumerate(raw_text[:10]):
|
||||
print(f"{i}: {text}")
|
||||
|
||||
# 1. 尝试查找连续的标题片段并合并它们
|
||||
i = 0
|
||||
while i < len(all_text) - 1:
|
||||
current = all_text[i]
|
||||
next_text = all_text[i + 1]
|
||||
|
||||
# 检查是否存在标题分割情况:一行以冒号结尾,下一行像是标题的延续
|
||||
if current.endswith(':') and len(current) < 50 and len(next_text) > 5 and next_text[0].isupper():
|
||||
# 合并这两行文本
|
||||
combined_title = f"{current} {next_text}"
|
||||
# 查找合并前的文本并替换
|
||||
all_text[i] = combined_title
|
||||
all_text.pop(i + 1)
|
||||
# 给合并后的标题很高的分数
|
||||
title_candidates.append((combined_title, 15, i))
|
||||
else:
|
||||
i += 1
|
||||
|
||||
# 2. 首先尝试从标题元素中查找
|
||||
for i, element in enumerate(elements[:15]): # 只检查前15个元素
|
||||
if isinstance(element, Title):
|
||||
title_text = str(element).strip()
|
||||
# 排除常见的非标题内容
|
||||
if title_text.lower() not in ['abstract', '摘要', 'introduction', '引言']:
|
||||
# 计算标题分数(越高越可能是真正的标题)
|
||||
score = self._evaluate_title_candidate(title_text, i, element)
|
||||
title_candidates.append((title_text, score, i))
|
||||
|
||||
# 3. 特别处理常见的论文标题格式
|
||||
for i, text in enumerate(all_text[:15]):
|
||||
# 特别检查"KIMI K1.5:"类型的前缀标题
|
||||
if re.match(r'^[A-Z][A-Z0-9\s\.]+(\s+K\d+(\.\d+)?)?:', text):
|
||||
score = 12 # 给予很高的分数
|
||||
title_candidates.append((text, score, i))
|
||||
|
||||
# 如果下一行也是全大写,很可能是标题的延续
|
||||
if i+1 < len(all_text) and all_text[i+1].isupper() and len(all_text[i+1]) > 10:
|
||||
combined_title = f"{text} {all_text[i+1]}"
|
||||
title_candidates.append((combined_title, 15, i)) # 给合并标题更高分数
|
||||
|
||||
# 匹配全大写的标题行
|
||||
elif text.isupper() and len(text) > 10 and len(text) < 100:
|
||||
score = 10 - i * 0.5 # 越靠前越可能是标题
|
||||
title_candidates.append((text, score, i))
|
||||
|
||||
# 对标题候选按分数排序并选取最佳候选
|
||||
if title_candidates:
|
||||
title_candidates.sort(key=lambda x: x[1], reverse=True)
|
||||
metadata.title = title_candidates[0][0]
|
||||
title_position = title_candidates[0][2]
|
||||
print(f"所有标题候选: {title_candidates[:3]}")
|
||||
else:
|
||||
# 如果没有找到合适的标题,使用一个备选策略
|
||||
for text in all_text[:10]:
|
||||
if text.isupper() and len(text) > 10 and len(text) < 200: # 大写且适当长度的文本
|
||||
metadata.title = text
|
||||
break
|
||||
title_position = 0
|
||||
|
||||
# 提取作者信息 - 改进后的作者提取逻辑
|
||||
author_candidates = []
|
||||
|
||||
# 1. 特别处理"TECHNICAL REPORT OF"之后的行,通常是作者或团队
|
||||
for i, text in enumerate(all_text):
|
||||
if "TECHNICAL REPORT" in text.upper() and i+1 < len(all_text):
|
||||
team_text = all_text[i+1].strip()
|
||||
if re.search(r'\b(team|group|lab)\b', team_text, re.IGNORECASE):
|
||||
author_candidates.append((team_text, 15))
|
||||
|
||||
# 2. 查找包含Team的文本
|
||||
for text in all_text[:20]:
|
||||
if "Team" in text and len(text) < 30:
|
||||
# 这很可能是团队名
|
||||
author_candidates.append((text, 12))
|
||||
|
||||
# 添加作者到元数据
|
||||
if author_candidates:
|
||||
# 按分数排序
|
||||
author_candidates.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
# 去重
|
||||
seen_authors = set()
|
||||
for author, _ in author_candidates:
|
||||
if author.lower() not in seen_authors and not author.isdigit():
|
||||
seen_authors.add(author.lower())
|
||||
metadata.authors.append(author)
|
||||
|
||||
# 如果没有找到作者,尝试查找隶属机构信息中的团队名称
|
||||
if not metadata.authors:
|
||||
for text in all_text[:20]:
|
||||
if re.search(r'\b(team|group|lab|laboratory|研究组|团队)\b', text, re.IGNORECASE):
|
||||
if len(text) < 50: # 避免太长的文本
|
||||
metadata.authors.append(text.strip())
|
||||
break
|
||||
|
||||
# 提取隶属机构信息
|
||||
for i, element in enumerate(elements[:30]):
|
||||
element_text = str(element).strip()
|
||||
if re.search(r'(university|institute|department|school|laboratory|college|center|centre|\d{5,}|^[a-zA-Z]+@|学院|大学|研究所|研究院)', element_text, re.IGNORECASE):
|
||||
# 可能是隶属机构
|
||||
if element_text not in metadata.affiliations and len(element_text) > 10:
|
||||
metadata.affiliations.append(element_text)
|
||||
|
||||
def _evaluate_title_candidate(self, text, position, element):
|
||||
"""评估标题候选项的可能性分数"""
|
||||
score = 0
|
||||
|
||||
# 位置因素:越靠前越可能是标题
|
||||
score += max(0, 10 - position) * 0.5
|
||||
|
||||
# 长度因素:标题通常不会太短也不会太长
|
||||
if 10 <= len(text) <= 150:
|
||||
score += 3
|
||||
elif len(text) < 10:
|
||||
score -= 2
|
||||
elif len(text) > 150:
|
||||
score -= 3
|
||||
|
||||
# 格式因素
|
||||
if text.isupper(): # 全大写可能是标题
|
||||
score += 2
|
||||
if re.match(r'^[A-Z]', text): # 首字母大写
|
||||
score += 1
|
||||
if ':' in text: # 标题常包含冒号
|
||||
score += 1.5
|
||||
|
||||
# 内容因素
|
||||
if re.search(r'\b(scaling|learning|model|approach|method|system|framework|analysis)\b', text.lower()):
|
||||
score += 2 # 包含常见的学术论文关键词
|
||||
|
||||
# 避免误判
|
||||
if re.match(r'^\d+$', text): # 纯数字
|
||||
score -= 10
|
||||
if re.search(r'^(http|www|doi)', text.lower()): # URL或DOI
|
||||
score -= 5
|
||||
if len(text.split()) <= 2 and len(text) < 15: # 太短的短语
|
||||
score -= 3
|
||||
|
||||
# 元数据因素(如果有)
|
||||
if hasattr(element, 'metadata') and element.metadata:
|
||||
# 修复:正确处理ElementMetadata对象
|
||||
try:
|
||||
# 尝试通过getattr安全地获取属性
|
||||
font_size = getattr(element.metadata, 'font_size', None)
|
||||
if font_size is not None and font_size > 14: # 假设标准字体大小是12
|
||||
score += 3
|
||||
|
||||
font_weight = getattr(element.metadata, 'font_weight', None)
|
||||
if font_weight == 'bold':
|
||||
score += 2 # 粗体加分
|
||||
except (AttributeError, TypeError):
|
||||
# 如果metadata的访问方式不正确,尝试其他可能的访问方式
|
||||
try:
|
||||
metadata_dict = element.metadata.__dict__ if hasattr(element.metadata, '__dict__') else {}
|
||||
if 'font_size' in metadata_dict and metadata_dict['font_size'] > 14:
|
||||
score += 3
|
||||
if 'font_weight' in metadata_dict and metadata_dict['font_weight'] == 'bold':
|
||||
score += 2
|
||||
except Exception:
|
||||
# 如果所有尝试都失败,忽略元数据处理
|
||||
pass
|
||||
|
||||
return score
|
||||
|
||||
def _extract_abstract_and_keywords(self, elements, metadata: PaperMetadata) -> None:
|
||||
"""从文档中提取摘要和关键词"""
|
||||
abstract_found = False
|
||||
keywords_found = False
|
||||
abstract_text = []
|
||||
|
||||
for i, element in enumerate(elements):
|
||||
element_text = str(element).strip().lower()
|
||||
|
||||
# 寻找摘要部分
|
||||
if not abstract_found and (
|
||||
isinstance(element, Title) and
|
||||
re.search(self.SECTION_PATTERNS['abstract'], element_text, re.IGNORECASE)
|
||||
):
|
||||
abstract_found = True
|
||||
continue
|
||||
|
||||
# 如果找到摘要部分,收集内容直到遇到关键词部分或新章节
|
||||
if abstract_found and not keywords_found:
|
||||
# 检查是否遇到关键词部分或新章节
|
||||
if (
|
||||
isinstance(element, Title) or
|
||||
re.search(self.SECTION_PATTERNS['keywords'], element_text, re.IGNORECASE) or
|
||||
re.match(r'\b(introduction|引言|method|方法)\b', element_text, re.IGNORECASE)
|
||||
):
|
||||
keywords_found = re.search(self.SECTION_PATTERNS['keywords'], element_text, re.IGNORECASE)
|
||||
abstract_found = False # 停止收集摘要
|
||||
else:
|
||||
# 收集摘要文本
|
||||
if isinstance(element, (Text, NarrativeText)) and element_text:
|
||||
abstract_text.append(element_text)
|
||||
|
||||
# 如果找到关键词部分,提取关键词
|
||||
if keywords_found and not abstract_found and not metadata.keywords:
|
||||
if isinstance(element, (Text, NarrativeText)):
|
||||
# 清除可能的"关键词:"/"Keywords:"前缀
|
||||
cleaned_text = re.sub(r'^\s*(关键词|keywords|key\s+words)\s*[::]\s*', '', element_text, flags=re.IGNORECASE)
|
||||
|
||||
# 尝试按不同分隔符分割
|
||||
for separator in [';', ';', ',', ',']:
|
||||
if separator in cleaned_text:
|
||||
metadata.keywords = [k.strip() for k in cleaned_text.split(separator) if k.strip()]
|
||||
break
|
||||
|
||||
# 如果未能分割,将整个文本作为一个关键词
|
||||
if not metadata.keywords and cleaned_text:
|
||||
metadata.keywords = [cleaned_text]
|
||||
|
||||
keywords_found = False # 已提取关键词,停止处理
|
||||
|
||||
# 设置摘要文本
|
||||
if abstract_text:
|
||||
metadata.abstract = self.config.paragraph_separator.join(abstract_text)
|
||||
|
||||
def _extract_additional_metadata(self, elements, metadata: PaperMetadata) -> None:
|
||||
"""提取其他元数据信息"""
|
||||
for element in elements[:30]: # 只检查文档前部分
|
||||
element_text = str(element).strip()
|
||||
|
||||
# 尝试匹配DOI
|
||||
doi_match = re.search(r'(doi|DOI):\s*(10\.\d{4,}\/[a-zA-Z0-9.-]+)', element_text)
|
||||
if doi_match and not metadata.doi:
|
||||
metadata.doi = doi_match.group(2)
|
||||
|
||||
# 尝试匹配日期
|
||||
date_match = re.search(r'(published|received|accepted|submitted):\s*(\d{1,2}\s+[a-zA-Z]+\s+\d{4}|\d{4}[-/]\d{1,2}[-/]\d{1,2})', element_text, re.IGNORECASE)
|
||||
if date_match and not metadata.date:
|
||||
metadata.date = date_match.group(2)
|
||||
|
||||
# 尝试匹配年份
|
||||
year_match = re.search(r'\b(19|20)\d{2}\b', element_text)
|
||||
if year_match and not metadata.year:
|
||||
metadata.year = year_match.group(0)
|
||||
|
||||
# 尝试匹配期刊/会议名称
|
||||
journal_match = re.search(r'(journal|conference):\s*([^,;.]+)', element_text, re.IGNORECASE)
|
||||
if journal_match:
|
||||
if "journal" in journal_match.group(1).lower() and not metadata.journal:
|
||||
metadata.journal = journal_match.group(2).strip()
|
||||
elif not metadata.conference:
|
||||
metadata.conference = journal_match.group(2).strip()
|
||||
|
||||
|
||||
def main():
|
||||
"""主函数:演示用法"""
|
||||
# 创建提取器
|
||||
extractor = PaperMetadataExtractor()
|
||||
|
||||
# 使用示例
|
||||
try:
|
||||
# 替换为实际的文件路径
|
||||
sample_file = '/Users/boyin.liu/Documents/示例文档/论文/3.pdf'
|
||||
if Path(sample_file).exists():
|
||||
metadata = extractor.extract_metadata(sample_file)
|
||||
print("提取的元数据:")
|
||||
print(f"标题: {metadata.title}")
|
||||
print(f"作者: {', '.join(metadata.authors)}")
|
||||
print(f"机构: {', '.join(metadata.affiliations)}")
|
||||
print(f"摘要: {metadata.abstract[:200]}...")
|
||||
print(f"关键词: {', '.join(metadata.keywords)}")
|
||||
print(f"DOI: {metadata.doi}")
|
||||
print(f"日期: {metadata.date}")
|
||||
print(f"年份: {metadata.year}")
|
||||
print(f"期刊: {metadata.journal}")
|
||||
print(f"会议: {metadata.conference}")
|
||||
else:
|
||||
print(f"示例文件 {sample_file} 不存在")
|
||||
|
||||
print("\n支持的格式:", extractor.get_supported_formats())
|
||||
|
||||
except Exception as e:
|
||||
print(f"错误: {e}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
文件差异内容过多而无法显示
加载差异
@@ -0,0 +1,86 @@
|
||||
from pathlib import Path
|
||||
from crazy_functions.doc_fns.read_fns.unstructured_all.paper_structure_extractor import PaperStructureExtractor
|
||||
|
||||
def extract_and_save_as_markdown(paper_path, output_path=None):
|
||||
"""
|
||||
提取论文结构并保存为Markdown格式
|
||||
|
||||
参数:
|
||||
paper_path: 论文文件路径
|
||||
output_path: 输出的Markdown文件路径,如果不指定,将使用与输入相同的文件名但扩展名为.md
|
||||
|
||||
返回:
|
||||
保存的Markdown文件路径
|
||||
"""
|
||||
# 创建提取器
|
||||
extractor = PaperStructureExtractor()
|
||||
|
||||
# 解析文件路径
|
||||
paper_path = Path(paper_path)
|
||||
|
||||
# 如果未指定输出路径,使用相同文件名但扩展名为.md
|
||||
if output_path is None:
|
||||
output_path = paper_path.with_suffix('.md')
|
||||
else:
|
||||
output_path = Path(output_path)
|
||||
|
||||
# 确保输出目录存在
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
print(f"正在处理论文: {paper_path}")
|
||||
|
||||
try:
|
||||
# 提取论文结构
|
||||
paper = extractor.extract_paper_structure(paper_path)
|
||||
|
||||
# 生成Markdown内容
|
||||
markdown_content = extractor.generate_markdown(paper)
|
||||
|
||||
# 保存到文件
|
||||
with open(output_path, 'w', encoding='utf-8') as f:
|
||||
f.write(markdown_content)
|
||||
|
||||
print(f"已成功保存Markdown文件: {output_path}")
|
||||
|
||||
# 打印摘要信息
|
||||
print("\n论文摘要信息:")
|
||||
print(f"标题: {paper.metadata.title}")
|
||||
print(f"作者: {', '.join(paper.metadata.authors)}")
|
||||
print(f"关键词: {', '.join(paper.keywords)}")
|
||||
print(f"章节数: {len(paper.sections)}")
|
||||
print(f"图表数: {len(paper.figures)}")
|
||||
print(f"表格数: {len(paper.tables)}")
|
||||
print(f"公式数: {len(paper.formulas)}")
|
||||
print(f"参考文献数: {len(paper.references)}")
|
||||
|
||||
return output_path
|
||||
|
||||
except Exception as e:
|
||||
print(f"处理论文时出错: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
return None
|
||||
|
||||
# 使用示例
|
||||
if __name__ == "__main__":
|
||||
# 替换为实际的论文文件路径
|
||||
sample_paper = "crazy_functions/doc_fns/read_fns/paper/2501.12599v1.pdf"
|
||||
|
||||
# 可以指定输出路径,也可以使用默认路径
|
||||
# output_file = "/path/to/output/paper_structure.md"
|
||||
# extract_and_save_as_markdown(sample_paper, output_file)
|
||||
|
||||
# 使用默认输出路径(与输入文件同名但扩展名为.md)
|
||||
extract_and_save_as_markdown(sample_paper)
|
||||
|
||||
# # 批量处理多个论文的示例
|
||||
# paper_dir = Path("/path/to/papers/folder")
|
||||
# output_dir = Path("/path/to/output/folder")
|
||||
#
|
||||
# # 确保输出目录存在
|
||||
# output_dir.mkdir(parents=True, exist_ok=True)
|
||||
#
|
||||
# # 处理目录中的所有PDF文件
|
||||
# for paper_file in paper_dir.glob("*.pdf"):
|
||||
# output_file = output_dir / f"{paper_file.stem}.md"
|
||||
# extract_and_save_as_markdown(paper_file, output_file)
|
||||
@@ -0,0 +1,275 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Optional, Set, Dict, Union, List
|
||||
from dataclasses import dataclass, field
|
||||
import logging
|
||||
import os
|
||||
|
||||
from unstructured.partition.auto import partition
|
||||
from unstructured.documents.elements import (
|
||||
Text, Title, NarrativeText, ListItem, Table,
|
||||
Footer, Header, PageBreak, Image, Address
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class TextExtractorConfig:
|
||||
"""通用文档提取器配置类
|
||||
|
||||
Attributes:
|
||||
extract_headers_footers: 是否提取页眉页脚
|
||||
extract_tables: 是否提取表格内容
|
||||
extract_lists: 是否提取列表内容
|
||||
extract_titles: 是否提取标题
|
||||
paragraph_separator: 段落之间的分隔符
|
||||
text_cleanup: 文本清理选项字典
|
||||
"""
|
||||
extract_headers_footers: bool = False
|
||||
extract_tables: bool = True
|
||||
extract_lists: bool = True
|
||||
extract_titles: bool = True
|
||||
paragraph_separator: str = '\n\n'
|
||||
text_cleanup: Dict[str, bool] = field(default_factory=lambda: {
|
||||
'remove_extra_spaces': True,
|
||||
'normalize_whitespace': True,
|
||||
'remove_special_chars': False,
|
||||
'lowercase': False
|
||||
})
|
||||
|
||||
|
||||
class UnstructuredTextExtractor:
|
||||
"""通用文档文本内容提取器
|
||||
|
||||
使用 unstructured 库支持多种文档格式的文本提取,提供统一的接口和配置选项。
|
||||
"""
|
||||
|
||||
SUPPORTED_EXTENSIONS: Set[str] = {
|
||||
# 文档格式
|
||||
'.pdf', '.docx', '.doc', '.txt',
|
||||
# 演示文稿
|
||||
'.ppt', '.pptx',
|
||||
# 电子表格
|
||||
'.xlsx', '.xls', '.csv',
|
||||
# 图片
|
||||
'.png', '.jpg', '.jpeg', '.tiff',
|
||||
# 邮件
|
||||
'.eml', '.msg', '.p7s',
|
||||
# Markdown
|
||||
".md",
|
||||
# Org Mode
|
||||
".org",
|
||||
# Open Office
|
||||
".odt",
|
||||
# reStructured Text
|
||||
".rst",
|
||||
# Rich Text
|
||||
".rtf",
|
||||
# TSV
|
||||
".tsv",
|
||||
# EPUB
|
||||
'.epub',
|
||||
# 其他格式
|
||||
'.html', '.xml', '.json',
|
||||
}
|
||||
|
||||
def __init__(self, config: Optional[TextExtractorConfig] = None):
|
||||
"""初始化提取器
|
||||
|
||||
Args:
|
||||
config: 提取器配置对象,如果为None则使用默认配置
|
||||
"""
|
||||
self.config = config or TextExtractorConfig()
|
||||
self._setup_logging()
|
||||
|
||||
def _setup_logging(self) -> None:
|
||||
"""配置日志记录器"""
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||
)
|
||||
self.logger = logging.getLogger(__name__)
|
||||
|
||||
# 添加文件处理器
|
||||
fh = logging.FileHandler('text_extractor.log')
|
||||
fh.setLevel(logging.ERROR)
|
||||
self.logger.addHandler(fh)
|
||||
|
||||
def _validate_file(self, file_path: Union[str, Path], max_size_mb: int = 100) -> Path:
|
||||
"""验证文件
|
||||
|
||||
Args:
|
||||
file_path: 文件路径
|
||||
max_size_mb: 允许的最大文件大小(MB)
|
||||
|
||||
Returns:
|
||||
Path: 验证后的Path对象
|
||||
|
||||
Raises:
|
||||
ValueError: 文件不存在、格式不支持或大小超限
|
||||
PermissionError: 没有读取权限
|
||||
"""
|
||||
path = Path(file_path).resolve()
|
||||
|
||||
if not path.exists():
|
||||
raise ValueError(f"File not found: {path}")
|
||||
|
||||
if not path.is_file():
|
||||
raise ValueError(f"Not a file: {path}")
|
||||
|
||||
if not os.access(path, os.R_OK):
|
||||
raise PermissionError(f"No read permission: {path}")
|
||||
|
||||
file_size_mb = path.stat().st_size / (1024 * 1024)
|
||||
if file_size_mb > max_size_mb:
|
||||
raise ValueError(
|
||||
f"File size ({file_size_mb:.1f}MB) exceeds limit of {max_size_mb}MB"
|
||||
)
|
||||
|
||||
if path.suffix.lower() not in self.SUPPORTED_EXTENSIONS:
|
||||
raise ValueError(
|
||||
f"Unsupported format: {path.suffix}. "
|
||||
f"Supported: {', '.join(sorted(self.SUPPORTED_EXTENSIONS))}"
|
||||
)
|
||||
|
||||
return path
|
||||
|
||||
def _cleanup_text(self, text: str) -> str:
|
||||
"""清理文本
|
||||
|
||||
Args:
|
||||
text: 原始文本
|
||||
|
||||
Returns:
|
||||
str: 清理后的文本
|
||||
"""
|
||||
if self.config.text_cleanup['remove_extra_spaces']:
|
||||
text = ' '.join(text.split())
|
||||
|
||||
if self.config.text_cleanup['normalize_whitespace']:
|
||||
text = text.replace('\t', ' ').replace('\r', '\n')
|
||||
|
||||
if self.config.text_cleanup['lowercase']:
|
||||
text = text.lower()
|
||||
|
||||
return text.strip()
|
||||
|
||||
def _should_extract_element(self, element) -> bool:
|
||||
"""判断是否应该提取某个元素
|
||||
|
||||
Args:
|
||||
element: 文档元素
|
||||
|
||||
Returns:
|
||||
bool: 是否应该提取
|
||||
"""
|
||||
if isinstance(element, (Text, NarrativeText)):
|
||||
return True
|
||||
|
||||
if isinstance(element, Title) and self.config.extract_titles:
|
||||
return True
|
||||
|
||||
if isinstance(element, ListItem) and self.config.extract_lists:
|
||||
return True
|
||||
|
||||
if isinstance(element, Table) and self.config.extract_tables:
|
||||
return True
|
||||
|
||||
if isinstance(element, (Header, Footer)) and self.config.extract_headers_footers:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def get_supported_formats() -> List[str]:
|
||||
"""获取支持的文件格式列表"""
|
||||
return sorted(UnstructuredTextExtractor.SUPPORTED_EXTENSIONS)
|
||||
|
||||
def extract_text(
|
||||
self,
|
||||
file_path: Union[str, Path],
|
||||
strategy: str = "fast"
|
||||
) -> str:
|
||||
"""提取文本
|
||||
|
||||
Args:
|
||||
file_path: 文件路径
|
||||
strategy: 提取策略 ("fast" 或 "accurate")
|
||||
|
||||
Returns:
|
||||
str: 提取的文本内容
|
||||
|
||||
Raises:
|
||||
Exception: 提取过程中的错误
|
||||
"""
|
||||
try:
|
||||
path = self._validate_file(file_path)
|
||||
self.logger.info(f"Processing: {path}")
|
||||
|
||||
# 修改这里:添加 nlp=False 参数来禁用 NLTK
|
||||
elements = partition(
|
||||
str(path),
|
||||
strategy=strategy,
|
||||
include_metadata=True,
|
||||
nlp=True,
|
||||
)
|
||||
|
||||
# 其余代码保持不变
|
||||
text_parts = []
|
||||
for element in elements:
|
||||
if self._should_extract_element(element):
|
||||
text = str(element)
|
||||
cleaned_text = self._cleanup_text(text)
|
||||
if cleaned_text:
|
||||
if isinstance(element, (Header, Footer)):
|
||||
prefix = "[Header] " if isinstance(element, Header) else "[Footer] "
|
||||
text_parts.append(f"{prefix}{cleaned_text}")
|
||||
else:
|
||||
text_parts.append(cleaned_text)
|
||||
|
||||
return self.config.paragraph_separator.join(text_parts)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Extraction failed: {e}")
|
||||
raise
|
||||
|
||||
|
||||
|
||||
def main():
|
||||
"""主函数:演示用法"""
|
||||
# 配置
|
||||
config = TextExtractorConfig(
|
||||
extract_headers_footers=True,
|
||||
extract_tables=True,
|
||||
extract_lists=True,
|
||||
extract_titles=True,
|
||||
text_cleanup={
|
||||
'remove_extra_spaces': True,
|
||||
'normalize_whitespace': True,
|
||||
'remove_special_chars': False,
|
||||
'lowercase': False
|
||||
}
|
||||
)
|
||||
|
||||
# 创建提取器
|
||||
extractor = UnstructuredTextExtractor(config)
|
||||
|
||||
# 使用示例
|
||||
try:
|
||||
# 替换为实际的文件路径
|
||||
sample_file = './crazy_functions/doc_fns/read_fns/paper/2501.12599v1.pdf'
|
||||
if Path(sample_file).exists() or True:
|
||||
text = extractor.extract_text(sample_file)
|
||||
print("提取的文本:")
|
||||
print(text)
|
||||
else:
|
||||
print(f"示例文件 {sample_file} 不存在")
|
||||
|
||||
print("\n支持的格式:", extractor.get_supported_formats())
|
||||
|
||||
except Exception as e:
|
||||
print(f"错误: {e}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -0,0 +1,219 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Dict, Optional, Union
|
||||
from urllib.parse import urlparse
|
||||
import logging
|
||||
import trafilatura
|
||||
import requests
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
@dataclass
|
||||
class WebExtractorConfig:
|
||||
"""网页内容提取器配置类
|
||||
|
||||
Attributes:
|
||||
extract_comments: 是否提取评论
|
||||
extract_tables: 是否提取表格
|
||||
extract_links: 是否保留链接信息
|
||||
paragraph_separator: 段落分隔符
|
||||
timeout: 网络请求超时时间(秒)
|
||||
max_retries: 最大重试次数
|
||||
user_agent: 自定义User-Agent
|
||||
text_cleanup: 文本清理选项
|
||||
"""
|
||||
extract_comments: bool = False
|
||||
extract_tables: bool = True
|
||||
extract_links: bool = False
|
||||
paragraph_separator: str = '\n\n'
|
||||
timeout: int = 10
|
||||
max_retries: int = 3
|
||||
user_agent: str = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
|
||||
text_cleanup: Dict[str, bool] = field(default_factory=lambda: {
|
||||
'remove_extra_spaces': True,
|
||||
'normalize_whitespace': True,
|
||||
'remove_special_chars': False,
|
||||
'lowercase': False
|
||||
})
|
||||
|
||||
|
||||
class WebTextExtractor:
|
||||
"""网页文本内容提取器
|
||||
|
||||
使用trafilatura库提取网页中的主要文本内容,去除广告、导航等无关内容。
|
||||
"""
|
||||
|
||||
def __init__(self, config: Optional[WebExtractorConfig] = None):
|
||||
"""初始化提取器
|
||||
|
||||
Args:
|
||||
config: 提取器配置对象,如果为None则使用默认配置
|
||||
"""
|
||||
self.config = config or WebExtractorConfig()
|
||||
self._setup_logging()
|
||||
|
||||
def _setup_logging(self) -> None:
|
||||
"""配置日志记录器"""
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||
)
|
||||
self.logger = logging.getLogger(__name__)
|
||||
|
||||
# 添加文件处理器
|
||||
fh = logging.FileHandler('web_extractor.log')
|
||||
fh.setLevel(logging.ERROR)
|
||||
self.logger.addHandler(fh)
|
||||
|
||||
def _validate_url(self, url: str) -> bool:
|
||||
"""验证URL格式是否有效
|
||||
|
||||
Args:
|
||||
url: 网页URL
|
||||
|
||||
Returns:
|
||||
bool: URL是否有效
|
||||
"""
|
||||
try:
|
||||
result = urlparse(url)
|
||||
return all([result.scheme, result.netloc])
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
def _download_webpage(self, url: str) -> Optional[str]:
|
||||
"""下载网页内容
|
||||
|
||||
Args:
|
||||
url: 网页URL
|
||||
|
||||
Returns:
|
||||
Optional[str]: 网页HTML内容,失败返回None
|
||||
|
||||
Raises:
|
||||
Exception: 下载失败时抛出异常
|
||||
"""
|
||||
headers = {'User-Agent': self.config.user_agent}
|
||||
|
||||
for attempt in range(self.config.max_retries):
|
||||
try:
|
||||
response = requests.get(
|
||||
url,
|
||||
headers=headers,
|
||||
timeout=self.config.timeout
|
||||
)
|
||||
response.raise_for_status()
|
||||
return response.text
|
||||
except requests.RequestException as e:
|
||||
self.logger.warning(f"Attempt {attempt + 1} failed: {e}")
|
||||
if attempt == self.config.max_retries - 1:
|
||||
raise Exception(f"Failed to download webpage after {self.config.max_retries} attempts: {e}")
|
||||
return None
|
||||
|
||||
def _cleanup_text(self, text: str) -> str:
|
||||
"""清理文本
|
||||
|
||||
Args:
|
||||
text: 原始文本
|
||||
|
||||
Returns:
|
||||
str: 清理后的文本
|
||||
"""
|
||||
if not text:
|
||||
return ""
|
||||
|
||||
if self.config.text_cleanup['remove_extra_spaces']:
|
||||
text = ' '.join(text.split())
|
||||
|
||||
if self.config.text_cleanup['normalize_whitespace']:
|
||||
text = text.replace('\t', ' ').replace('\r', '\n')
|
||||
|
||||
if self.config.text_cleanup['lowercase']:
|
||||
text = text.lower()
|
||||
|
||||
return text.strip()
|
||||
|
||||
def extract_text(self, url: str) -> str:
|
||||
"""提取网页文本内容
|
||||
|
||||
Args:
|
||||
url: 网页URL
|
||||
|
||||
Returns:
|
||||
str: 提取的文本内容
|
||||
|
||||
Raises:
|
||||
ValueError: URL无效时抛出
|
||||
Exception: 提取失败时抛出
|
||||
"""
|
||||
try:
|
||||
if not self._validate_url(url):
|
||||
raise ValueError(f"Invalid URL: {url}")
|
||||
|
||||
self.logger.info(f"Processing URL: {url}")
|
||||
|
||||
# 下载网页
|
||||
html_content = self._download_webpage(url)
|
||||
if not html_content:
|
||||
raise Exception("Failed to download webpage")
|
||||
|
||||
# 配置trafilatura提取选项
|
||||
extract_config = {
|
||||
'include_comments': self.config.extract_comments,
|
||||
'include_tables': self.config.extract_tables,
|
||||
'include_links': self.config.extract_links,
|
||||
'no_fallback': False, # 允许使用后备提取器
|
||||
}
|
||||
|
||||
# 提取文本
|
||||
extracted_text = trafilatura.extract(
|
||||
html_content,
|
||||
**extract_config
|
||||
)
|
||||
|
||||
if not extracted_text:
|
||||
raise Exception("No content could be extracted")
|
||||
|
||||
# 清理文本
|
||||
cleaned_text = self._cleanup_text(extracted_text)
|
||||
|
||||
return cleaned_text
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Extraction failed: {e}")
|
||||
raise
|
||||
|
||||
|
||||
def main():
|
||||
"""主函数:演示用法"""
|
||||
# 配置
|
||||
config = WebExtractorConfig(
|
||||
extract_comments=False,
|
||||
extract_tables=True,
|
||||
extract_links=False,
|
||||
timeout=10,
|
||||
text_cleanup={
|
||||
'remove_extra_spaces': True,
|
||||
'normalize_whitespace': True,
|
||||
'remove_special_chars': False,
|
||||
'lowercase': False
|
||||
}
|
||||
)
|
||||
|
||||
# 创建提取器
|
||||
extractor = WebTextExtractor(config)
|
||||
|
||||
# 使用示例
|
||||
try:
|
||||
# 替换为实际的URL
|
||||
sample_url = 'https://arxiv.org/abs/2412.00036'
|
||||
text = extractor.extract_text(sample_url)
|
||||
print("提取的文本:")
|
||||
print(text)
|
||||
|
||||
except Exception as e:
|
||||
print(f"错误: {e}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
在新工单中引用
屏蔽一个用户