镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-06 06:26:47 +00:00
first_version
这个提交包含在:
@@ -1,7 +1,12 @@
|
||||
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
|
||||
from crazy_functions.crazy_utils import input_clipping
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
from llama_index.core import Document
|
||||
from shared_utils.fastapi_server import validate_path_safety
|
||||
from crazy_functions.crazy_utils import input_clipping, request_gpt_model_in_new_thread_with_ui_alive
|
||||
from toolbox import CatchException, update_ui, get_log_folder, update_ui_lastest_msg
|
||||
from toolbox import report_exception
|
||||
from crazy_functions.rag_fns.rag_file_support import extract_text
|
||||
VECTOR_STORE_TYPE = "Milvus"
|
||||
|
||||
if VECTOR_STORE_TYPE == "Milvus":
|
||||
@@ -21,33 +26,109 @@ MAX_CONTEXT_TOKEN_LIMIT = 4096
|
||||
REMEMBER_PREVIEW = 1000
|
||||
|
||||
@CatchException
|
||||
def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
def handle_document_upload(files: List[str], llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
Handles document uploads by extracting text and adding it to the vector store.
|
||||
|
||||
# 1. we retrieve rag worker from global context
|
||||
Args:
|
||||
files (List[str]): List of file paths to process.
|
||||
llm_kwargs: Language model keyword arguments.
|
||||
plugin_kwargs: Plugin keyword arguments.
|
||||
chatbot: Chatbot instance.
|
||||
history: Chat history.
|
||||
system_prompt: System prompt.
|
||||
user_request: User request.
|
||||
"""
|
||||
user_name = chatbot.get_user()
|
||||
checkpoint_dir = get_log_folder(user_name, plugin_name='experimental_rag')
|
||||
|
||||
if user_name in RAG_WORKER_REGISTER:
|
||||
rag_worker = RAG_WORKER_REGISTER[user_name]
|
||||
else:
|
||||
rag_worker = RAG_WORKER_REGISTER[user_name] = LlamaIndexRagWorker(
|
||||
user_name,
|
||||
llm_kwargs,
|
||||
checkpoint_dir=checkpoint_dir,
|
||||
auto_load_checkpoint=True)
|
||||
user_name,
|
||||
llm_kwargs,
|
||||
checkpoint_dir=checkpoint_dir,
|
||||
auto_load_checkpoint=True
|
||||
)
|
||||
|
||||
for file_path in files:
|
||||
try:
|
||||
validate_path_safety(file_path, user_name)
|
||||
text = extract_text(file_path)
|
||||
document = Document(text=text, metadata={"source": file_path})
|
||||
rag_worker.add_documents_to_vector_store([document])
|
||||
chatbot.append([f"上传文件: {os.path.basename(file_path)}", "文件已成功添加到知识库。"])
|
||||
except Exception as e:
|
||||
report_exception(chatbot, history, a=f"处理文件: {file_path}", b=str(e))
|
||||
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
@CatchException
|
||||
def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
Handles RAG-based Q&A, including special commands and document uploads.
|
||||
|
||||
Args:
|
||||
txt (str): User input text.
|
||||
llm_kwargs: Language model keyword arguments.
|
||||
plugin_kwargs: Plugin keyword arguments.
|
||||
chatbot: Chatbot instance.
|
||||
history: Chat history.
|
||||
system_prompt: System prompt.
|
||||
user_request: User request.
|
||||
"""
|
||||
# Define commands
|
||||
CLEAR_VECTOR_DB_CMD = "清空向量数据库"
|
||||
UPLOAD_DOCUMENT_CMD = "上传文档"
|
||||
|
||||
# 1. Retrieve RAG worker from global context
|
||||
user_name = chatbot.get_user()
|
||||
checkpoint_dir = get_log_folder(user_name, plugin_name='experimental_rag')
|
||||
|
||||
if user_name in RAG_WORKER_REGISTER:
|
||||
rag_worker = RAG_WORKER_REGISTER[user_name]
|
||||
else:
|
||||
rag_worker = RAG_WORKER_REGISTER[user_name] = LlamaIndexRagWorker(
|
||||
user_name,
|
||||
llm_kwargs,
|
||||
checkpoint_dir=checkpoint_dir,
|
||||
auto_load_checkpoint=True
|
||||
)
|
||||
|
||||
current_context = f"{VECTOR_STORE_TYPE} @ {checkpoint_dir}"
|
||||
tip = "提示:输入“清空向量数据库”可以清空RAG向量数据库"
|
||||
if txt == "清空向量数据库":
|
||||
chatbot.append([txt, f'正在清空 ({current_context}) ...'])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
rag_worker.purge()
|
||||
yield from update_ui_lastest_msg('已清空', chatbot, history, delay=0) # 刷新界面
|
||||
|
||||
# 2. Handle special commands
|
||||
if txt.startswith(UPLOAD_DOCUMENT_CMD):
|
||||
# Extract file paths from the user input
|
||||
# Assuming the user inputs file paths separated by commas after the command
|
||||
file_paths = txt[len(UPLOAD_DOCUMENT_CMD):].strip().split(',')
|
||||
file_paths = [path.strip() for path in file_paths if path.strip()]
|
||||
|
||||
if not file_paths:
|
||||
report_exception(chatbot, history, a="上传文档", b="未提供任何文件路径。")
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
return
|
||||
|
||||
chatbot.append([txt, f'正在处理上传的文档 ({current_context}) ...'])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
yield from handle_document_upload(file_paths, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||
return
|
||||
|
||||
chatbot.append([txt, f'正在召回知识 ({current_context}) ...'])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
elif txt == CLEAR_VECTOR_DB_CMD:
|
||||
chatbot.append([txt, f'正在清空 ({current_context}) ...'])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
rag_worker.purge_vector_store()
|
||||
yield from update_ui_lastest_msg('已清空', chatbot, history, delay=0) # 刷新界面
|
||||
return
|
||||
|
||||
# 2. clip history to reduce token consumption
|
||||
# 2-1. reduce chat round
|
||||
# 3. Normal Q&A processing
|
||||
chatbot.append([txt, f'正在召回知识 ({current_context}) ...'])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 4. Clip history to reduce token consumption
|
||||
txt_origin = txt
|
||||
|
||||
if len(history) > MAX_HISTORY_ROUND * 2:
|
||||
@@ -55,41 +136,48 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
|
||||
txt_clip, history, flags = input_clipping(txt, history, max_token_limit=MAX_CONTEXT_TOKEN_LIMIT, return_clip_flags=True)
|
||||
input_is_clipped_flag = (flags["original_input_len"] != flags["clipped_input_len"])
|
||||
|
||||
# 2-2. if input is clipped, add input to vector store before retrieve
|
||||
# 5. If input is clipped, add input to vector store before retrieve
|
||||
if input_is_clipped_flag:
|
||||
yield from update_ui_lastest_msg('检测到长输入, 正在向量化 ...', chatbot, history, delay=0) # 刷新界面
|
||||
# save input to vector store
|
||||
yield from update_ui_lastest_msg('检测到长输入, 正在向量化 ...', chatbot, history, delay=0) # 刷新界面
|
||||
# Save input to vector store
|
||||
rag_worker.add_text_to_vector_store(txt_origin)
|
||||
yield from update_ui_lastest_msg('向量化完成 ...', chatbot, history, delay=0) # 刷新界面
|
||||
yield from update_ui_lastest_msg('向量化完成 ...', chatbot, history, delay=0) # 刷新界面
|
||||
|
||||
if len(txt_origin) > REMEMBER_PREVIEW:
|
||||
HALF = REMEMBER_PREVIEW//2
|
||||
HALF = REMEMBER_PREVIEW // 2
|
||||
i_say_to_remember = txt[:HALF] + f" ...\n...(省略{len(txt_origin)-REMEMBER_PREVIEW}字)...\n... " + txt[-HALF:]
|
||||
if (flags["original_input_len"] - flags["clipped_input_len"]) > HALF:
|
||||
txt_clip = txt_clip + f" ...\n...(省略{len(txt_origin)-len(txt_clip)-HALF}字)...\n... " + txt[-HALF:]
|
||||
else:
|
||||
pass
|
||||
i_say = txt_clip
|
||||
txt_clip = txt_clip + f" ...\n...(省略{len(txt_origin)-len(txt_clip)-HALF}字)...\n... " + txt[-HALF:]
|
||||
else:
|
||||
i_say_to_remember = i_say = txt_clip
|
||||
else:
|
||||
i_say_to_remember = i_say = txt_clip
|
||||
|
||||
# 3. we search vector store and build prompts
|
||||
# 6. Search vector store and build prompts
|
||||
nodes = rag_worker.retrieve_from_store_with_query(i_say)
|
||||
prompt = rag_worker.build_prompt(query=i_say, nodes=nodes)
|
||||
|
||||
# 4. it is time to query llms
|
||||
if len(chatbot) != 0: chatbot.pop(-1) # pop temp chat, because we are going to add them again inside `request_gpt_model_in_new_thread_with_ui_alive`
|
||||
# 7. Query language model
|
||||
if len(chatbot) != 0:
|
||||
chatbot.pop(-1) # Pop temp chat, because we are going to add them again inside `request_gpt_model_in_new_thread_with_ui_alive`
|
||||
|
||||
model_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=prompt, inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
inputs=prompt,
|
||||
inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history=history,
|
||||
sys_prompt=system_prompt,
|
||||
retry_times_at_unknown_error=0
|
||||
)
|
||||
|
||||
# 5. remember what has been asked / answered
|
||||
yield from update_ui_lastest_msg(model_say + '</br></br>' + f'对话记忆中, 请稍等 ({current_context}) ...', chatbot, history, delay=0.5) # 刷新界面
|
||||
# 8. Remember Q&A
|
||||
yield from update_ui_lastest_msg(
|
||||
model_say + '</br></br>' + f'对话记忆中, 请稍等 ({current_context}) ...',
|
||||
chatbot, history, delay=0.5
|
||||
)
|
||||
rag_worker.remember_qa(i_say_to_remember, model_say)
|
||||
history.extend([i_say, model_say])
|
||||
|
||||
yield from update_ui_lastest_msg(model_say, chatbot, history, delay=0, msg=tip) # 刷新界面
|
||||
# 9. Final UI Update
|
||||
yield from update_ui_lastest_msg(model_say, chatbot, history, delay=0, msg=tip)
|
||||
在新工单中引用
屏蔽一个用户