镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-06 14:36:48 +00:00
up
这个提交包含在:
@@ -355,8 +355,8 @@ class BatchDocumentSummarizer:
|
||||
if len(summaries) > 1: # 多片段文件需要生成整体总结
|
||||
sorted_summaries = sorted(summaries, key=lambda x: x['index'])
|
||||
if self.plugin_kwargs.get("advanced_arg"):
|
||||
i_say = (f"根据以下内容,按要求:{self.plugin_kwargs['advanced_arg']},"
|
||||
f"总结文件 {os.path.basename(rel_path)} 的主要内容。")
|
||||
|
||||
i_say = f'请按照用户要求对文件内容进行处理,用户要求为:{self.plugin_kwargs["advanced_arg"]}:'
|
||||
else:
|
||||
i_say = f"请总结文件 {os.path.basename(rel_path)} 的主要内容,不超过500字。"
|
||||
|
||||
@@ -364,11 +364,11 @@ class BatchDocumentSummarizer:
|
||||
summary_texts = [s['summary'] for s in sorted_summaries]
|
||||
response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
inputs_array=[i_say],
|
||||
inputs_show_user_array=[f"生成 {rel_path} 的总结"],
|
||||
inputs_show_user_array=[f"生成 {rel_path} 的处理结果"],
|
||||
llm_kwargs=self.llm_kwargs,
|
||||
chatbot=self.chatbot,
|
||||
history_array=[summary_texts],
|
||||
sys_prompt_array=["总结文件内容。"],
|
||||
sys_prompt_array=["你是一个优秀的助手,"],
|
||||
)
|
||||
self.file_summaries_map[rel_path] = response_collection[1]
|
||||
except Exception as e:
|
||||
|
||||
在新工单中引用
屏蔽一个用户