镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-07 06:56:48 +00:00
update
这个提交包含在:
@@ -11,7 +11,7 @@
|
||||
import tiktoken, copy
|
||||
from functools import lru_cache
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from toolbox import get_conf, trimmed_format_exc
|
||||
from toolbox import get_conf, trimmed_format_exc, apply_gpt_academic_string_mask
|
||||
|
||||
from .bridge_chatgpt import predict_no_ui_long_connection as chatgpt_noui
|
||||
from .bridge_chatgpt import predict as chatgpt_ui
|
||||
@@ -31,6 +31,9 @@ from .bridge_qianfan import predict as qianfan_ui
|
||||
from .bridge_google_gemini import predict as genai_ui
|
||||
from .bridge_google_gemini import predict_no_ui_long_connection as genai_noui
|
||||
|
||||
from .bridge_zhipu import predict_no_ui_long_connection as zhipu_noui
|
||||
from .bridge_zhipu import predict as zhipu_ui
|
||||
|
||||
colors = ['#FF00FF', '#00FFFF', '#FF0000', '#990099', '#009999', '#990044']
|
||||
|
||||
class LazyloadTiktoken(object):
|
||||
@@ -44,13 +47,13 @@ class LazyloadTiktoken(object):
|
||||
tmp = tiktoken.encoding_for_model(model)
|
||||
print('加载tokenizer完毕')
|
||||
return tmp
|
||||
|
||||
|
||||
def encode(self, *args, **kwargs):
|
||||
encoder = self.get_encoder(self.model)
|
||||
encoder = self.get_encoder(self.model)
|
||||
return encoder.encode(*args, **kwargs)
|
||||
|
||||
|
||||
def decode(self, *args, **kwargs):
|
||||
encoder = self.get_encoder(self.model)
|
||||
encoder = self.get_encoder(self.model)
|
||||
return encoder.decode(*args, **kwargs)
|
||||
|
||||
# Endpoint 重定向
|
||||
@@ -63,7 +66,7 @@ azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/compl
|
||||
# 兼容旧版的配置
|
||||
try:
|
||||
API_URL = get_conf("API_URL")
|
||||
if API_URL != "https://api.openai.com/v1/chat/completions":
|
||||
if API_URL != "https://api.openai.com/v1/chat/completions":
|
||||
openai_endpoint = API_URL
|
||||
print("警告!API_URL配置选项将被弃用,请更换为API_URL_REDIRECT配置")
|
||||
except:
|
||||
@@ -95,7 +98,7 @@ model_info = {
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
|
||||
"gpt-3.5-turbo-16k": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
@@ -150,6 +153,15 @@ model_info = {
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
},
|
||||
|
||||
"gpt-4-turbo-preview": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": 128000,
|
||||
"tokenizer": tokenizer_gpt4,
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
},
|
||||
|
||||
"gpt-4-1106-preview": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
@@ -159,6 +171,15 @@ model_info = {
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
},
|
||||
|
||||
"gpt-4-0125-preview": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": 128000,
|
||||
"tokenizer": tokenizer_gpt4,
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
},
|
||||
|
||||
"gpt-3.5-random": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
@@ -167,7 +188,7 @@ model_info = {
|
||||
"tokenizer": tokenizer_gpt4,
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
},
|
||||
|
||||
|
||||
"gpt-4-vision-preview": {
|
||||
"fn_with_ui": chatgpt_vision_ui,
|
||||
"fn_without_ui": chatgpt_vision_noui,
|
||||
@@ -197,16 +218,25 @@ model_info = {
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
},
|
||||
|
||||
# api_2d (此后不需要在此处添加api2d的接口了,因为下面的代码会自动添加)
|
||||
"api2d-gpt-3.5-turbo": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": api2d_endpoint,
|
||||
"max_token": 4096,
|
||||
# 智谱AI
|
||||
"glm-4": {
|
||||
"fn_with_ui": zhipu_ui,
|
||||
"fn_without_ui": zhipu_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 10124 * 8,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"glm-3-turbo": {
|
||||
"fn_with_ui": zhipu_ui,
|
||||
"fn_without_ui": zhipu_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 10124 * 4,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
# api_2d (此后不需要在此处添加api2d的接口了,因为下面的代码会自动添加)
|
||||
"api2d-gpt-4": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
@@ -530,7 +560,7 @@ if "sparkv2" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
if "sparkv3" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
||||
if "sparkv3" in AVAIL_LLM_MODELS or "sparkv3.5" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
||||
try:
|
||||
from .bridge_spark import predict_no_ui_long_connection as spark_noui
|
||||
from .bridge_spark import predict as spark_ui
|
||||
@@ -542,6 +572,14 @@ if "sparkv3" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"sparkv3.5": {
|
||||
"fn_with_ui": spark_ui,
|
||||
"fn_without_ui": spark_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
}
|
||||
})
|
||||
except:
|
||||
@@ -562,19 +600,17 @@ if "llama2" in AVAIL_LLM_MODELS: # llama2
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai
|
||||
if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai 是glm-4的别名,向后兼容配置
|
||||
try:
|
||||
from .bridge_zhipu import predict_no_ui_long_connection as zhipu_noui
|
||||
from .bridge_zhipu import predict as zhipu_ui
|
||||
model_info.update({
|
||||
"zhipuai": {
|
||||
"fn_with_ui": zhipu_ui,
|
||||
"fn_without_ui": zhipu_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 4096,
|
||||
"max_token": 10124 * 8,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
}
|
||||
},
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
@@ -617,7 +653,7 @@ AZURE_CFG_ARRAY = get_conf("AZURE_CFG_ARRAY")
|
||||
if len(AZURE_CFG_ARRAY) > 0:
|
||||
for azure_model_name, azure_cfg_dict in AZURE_CFG_ARRAY.items():
|
||||
# 可能会覆盖之前的配置,但这是意料之中的
|
||||
if not azure_model_name.startswith('azure'):
|
||||
if not azure_model_name.startswith('azure'):
|
||||
raise ValueError("AZURE_CFG_ARRAY中配置的模型必须以azure开头")
|
||||
endpoint_ = azure_cfg_dict["AZURE_ENDPOINT"] + \
|
||||
f'openai/deployments/{azure_cfg_dict["AZURE_ENGINE"]}/chat/completions?api-version=2023-05-15'
|
||||
@@ -668,6 +704,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
||||
"""
|
||||
import threading, time, copy
|
||||
|
||||
inputs = apply_gpt_academic_string_mask(inputs, mode="show_llm")
|
||||
model = llm_kwargs['llm_model']
|
||||
n_model = 1
|
||||
if '&' not in model:
|
||||
@@ -682,7 +719,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
||||
executor = ThreadPoolExecutor(max_workers=4)
|
||||
models = model.split('&')
|
||||
n_model = len(models)
|
||||
|
||||
|
||||
window_len = len(observe_window)
|
||||
assert window_len==3
|
||||
window_mutex = [["", time.time(), ""] for _ in range(n_model)] + [True]
|
||||
@@ -701,7 +738,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
||||
time.sleep(0.25)
|
||||
if not window_mutex[-1]: break
|
||||
# 看门狗(watchdog)
|
||||
for i in range(n_model):
|
||||
for i in range(n_model):
|
||||
window_mutex[i][1] = observe_window[1]
|
||||
# 观察窗(window)
|
||||
chat_string = []
|
||||
@@ -741,6 +778,7 @@ def predict(inputs, llm_kwargs, *args, **kwargs):
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
|
||||
inputs = apply_gpt_academic_string_mask(inputs, mode="show_llm")
|
||||
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"] # 如果这里报错,检查config中的AVAIL_LLM_MODELS选项
|
||||
yield from method(inputs, llm_kwargs, *args, **kwargs)
|
||||
|
||||
|
||||
@@ -113,6 +113,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
error_msg = get_full_error(chunk, stream_response).decode()
|
||||
if "reduce the length" in error_msg:
|
||||
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
|
||||
elif """type":"upstream_error","param":"307""" in error_msg:
|
||||
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
|
||||
else:
|
||||
raise RuntimeError("OpenAI拒绝了请求:" + error_msg)
|
||||
if ('data: [DONE]' in chunk_decoded): break # api2d 正常完成
|
||||
|
||||
@@ -57,6 +57,10 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
|
||||
if "vision" in llm_kwargs["llm_model"]:
|
||||
have_recent_file, image_paths = have_any_recent_upload_image_files(chatbot)
|
||||
if not have_recent_file:
|
||||
chatbot.append((inputs, "没有检测到任何近期上传的图像文件,请上传jpg格式的图片,此外,请注意拓展名需要小写"))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待图片") # 刷新界面
|
||||
return
|
||||
def make_media_input(inputs, image_paths):
|
||||
for image_path in image_paths:
|
||||
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
||||
|
||||
@@ -146,21 +146,17 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
# 开始接收回复
|
||||
try:
|
||||
response = f"[Local Message] 等待{model_name}响应中 ..."
|
||||
for response in generate_from_baidu_qianfan(inputs, llm_kwargs, history, system_prompt):
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
history.extend([inputs, response])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
except ConnectionAbortedError as e:
|
||||
from .bridge_all import model_info
|
||||
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
||||
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
||||
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
||||
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="异常") # 刷新界面
|
||||
return
|
||||
|
||||
# 总结输出
|
||||
response = f"[Local Message] {model_name}响应异常 ..."
|
||||
if response == f"[Local Message] 等待{model_name}响应中 ...":
|
||||
response = f"[Local Message] {model_name}响应异常 ..."
|
||||
history.extend([inputs, response])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
@@ -51,6 +51,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
# 开始接收回复
|
||||
from .com_qwenapi import QwenRequestInstance
|
||||
sri = QwenRequestInstance()
|
||||
response = f"[Local Message] 等待{model_name}响应中 ..."
|
||||
for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
@@ -56,6 +56,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
# 开始接收回复
|
||||
from .com_skylark2api import YUNQUERequestInstance
|
||||
sri = YUNQUERequestInstance()
|
||||
response = f"[Local Message] 等待{model_name}响应中 ..."
|
||||
for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
@@ -9,7 +9,7 @@ model_name = '星火认知大模型'
|
||||
|
||||
def validate_key():
|
||||
XFYUN_APPID = get_conf('XFYUN_APPID')
|
||||
if XFYUN_APPID == '00000000' or XFYUN_APPID == '':
|
||||
if XFYUN_APPID == '00000000' or XFYUN_APPID == '':
|
||||
return False
|
||||
return True
|
||||
|
||||
@@ -49,9 +49,10 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
|
||||
# 开始接收回复
|
||||
# 开始接收回复
|
||||
from .com_sparkapi import SparkRequestInstance
|
||||
sri = SparkRequestInstance()
|
||||
response = f"[Local Message] 等待{model_name}响应中 ..."
|
||||
for response in sri.generate(inputs, llm_kwargs, history, system_prompt, use_image_api=True):
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
@@ -1,15 +1,21 @@
|
||||
|
||||
import time
|
||||
import os
|
||||
from toolbox import update_ui, get_conf, update_ui_lastest_msg
|
||||
from toolbox import check_packages, report_exception
|
||||
from toolbox import check_packages, report_exception, have_any_recent_upload_image_files
|
||||
|
||||
model_name = '智谱AI大模型'
|
||||
zhipuai_default_model = 'glm-4'
|
||||
|
||||
def validate_key():
|
||||
ZHIPUAI_API_KEY = get_conf("ZHIPUAI_API_KEY")
|
||||
if ZHIPUAI_API_KEY == '': return False
|
||||
return True
|
||||
|
||||
def make_media_input(inputs, image_paths):
|
||||
for image_path in image_paths:
|
||||
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
||||
return inputs
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
"""
|
||||
⭐多线程方法
|
||||
@@ -18,34 +24,40 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
watch_dog_patience = 5
|
||||
response = ""
|
||||
|
||||
if llm_kwargs["llm_model"] == "zhipuai":
|
||||
llm_kwargs["llm_model"] = zhipuai_default_model
|
||||
|
||||
if validate_key() is False:
|
||||
raise RuntimeError('请配置ZHIPUAI_API_KEY')
|
||||
|
||||
from .com_zhipuapi import ZhipuRequestInstance
|
||||
sri = ZhipuRequestInstance()
|
||||
for response in sri.generate(inputs, llm_kwargs, history, sys_prompt):
|
||||
# 开始接收回复
|
||||
from .com_zhipuglm import ZhipuChatInit
|
||||
zhipu_bro_init = ZhipuChatInit()
|
||||
for chunk, response in zhipu_bro_init.generate_chat(inputs, llm_kwargs, history, sys_prompt):
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] = response
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。")
|
||||
if (time.time() - observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("程序终止。")
|
||||
return response
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
|
||||
"""
|
||||
⭐单线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, ""))
|
||||
chatbot.append([inputs, ""])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
check_packages(["zhipuai"])
|
||||
except:
|
||||
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install zhipuai==1.0.7```。",
|
||||
chatbot=chatbot, history=history, delay=0)
|
||||
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade zhipuai```。",
|
||||
chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
|
||||
|
||||
if validate_key() is False:
|
||||
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置ZHIPUAI_API_KEY", chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
@@ -53,16 +65,29 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
|
||||
# 开始接收回复
|
||||
from .com_zhipuapi import ZhipuRequestInstance
|
||||
sri = ZhipuRequestInstance()
|
||||
for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
|
||||
chatbot[-1] = (inputs, response)
|
||||
chatbot[-1] = [inputs, ""]
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 总结输出
|
||||
if response == f"[Local Message] 等待{model_name}响应中 ...":
|
||||
response = f"[Local Message] {model_name}响应异常 ..."
|
||||
if llm_kwargs["llm_model"] == "zhipuai":
|
||||
llm_kwargs["llm_model"] = zhipuai_default_model
|
||||
|
||||
if llm_kwargs["llm_model"] in ["glm-4v"]:
|
||||
have_recent_file, image_paths = have_any_recent_upload_image_files(chatbot)
|
||||
if not have_recent_file:
|
||||
chatbot.append((inputs, "没有检测到任何近期上传的图像文件,请上传jpg格式的图片,此外,请注意拓展名需要小写"))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待图片") # 刷新界面
|
||||
return
|
||||
if have_recent_file:
|
||||
inputs = make_media_input(inputs, image_paths)
|
||||
chatbot[-1] = [inputs, ""]
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
|
||||
# 开始接收回复
|
||||
from .com_zhipuglm import ZhipuChatInit
|
||||
zhipu_bro_init = ZhipuChatInit()
|
||||
for chunk, response in zhipu_bro_init.generate_chat(inputs, llm_kwargs, history, system_prompt):
|
||||
chatbot[-1] = [inputs, response]
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
history.extend([inputs, response])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
@@ -7,7 +7,7 @@ import os
|
||||
import re
|
||||
import requests
|
||||
from typing import List, Dict, Tuple
|
||||
from toolbox import get_conf, encode_image, get_pictures_list
|
||||
from toolbox import get_conf, encode_image, get_pictures_list, to_markdown_tabs
|
||||
|
||||
proxies, TIMEOUT_SECONDS = get_conf("proxies", "TIMEOUT_SECONDS")
|
||||
|
||||
@@ -112,34 +112,6 @@ def html_local_img(__file, layout="left", max_width=None, max_height=None, md=Tr
|
||||
return a
|
||||
|
||||
|
||||
def to_markdown_tabs(head: list, tabs: list, alignment=":---:", column=False):
|
||||
"""
|
||||
Args:
|
||||
head: 表头:[]
|
||||
tabs: 表值:[[列1], [列2], [列3], [列4]]
|
||||
alignment: :--- 左对齐, :---: 居中对齐, ---: 右对齐
|
||||
column: True to keep data in columns, False to keep data in rows (default).
|
||||
Returns:
|
||||
A string representation of the markdown table.
|
||||
"""
|
||||
if column:
|
||||
transposed_tabs = list(map(list, zip(*tabs)))
|
||||
else:
|
||||
transposed_tabs = tabs
|
||||
# Find the maximum length among the columns
|
||||
max_len = max(len(column) for column in transposed_tabs)
|
||||
|
||||
tab_format = "| %s "
|
||||
tabs_list = "".join([tab_format % i for i in head]) + "|\n"
|
||||
tabs_list += "".join([tab_format % alignment for i in head]) + "|\n"
|
||||
|
||||
for i in range(max_len):
|
||||
row_data = [tab[i] if i < len(tab) else "" for tab in transposed_tabs]
|
||||
row_data = file_manifest_filter_html(row_data, filter_=None)
|
||||
tabs_list += "".join([tab_format % i for i in row_data]) + "|\n"
|
||||
|
||||
return tabs_list
|
||||
|
||||
|
||||
class GoogleChatInit:
|
||||
def __init__(self):
|
||||
|
||||
@@ -65,6 +65,7 @@ class SparkRequestInstance():
|
||||
self.gpt_url = "ws://spark-api.xf-yun.com/v1.1/chat"
|
||||
self.gpt_url_v2 = "ws://spark-api.xf-yun.com/v2.1/chat"
|
||||
self.gpt_url_v3 = "ws://spark-api.xf-yun.com/v3.1/chat"
|
||||
self.gpt_url_v35 = "wss://spark-api.xf-yun.com/v3.5/chat"
|
||||
self.gpt_url_img = "wss://spark-api.cn-huabei-1.xf-yun.com/v2.1/image"
|
||||
|
||||
self.time_to_yield_event = threading.Event()
|
||||
@@ -91,6 +92,8 @@ class SparkRequestInstance():
|
||||
gpt_url = self.gpt_url_v2
|
||||
elif llm_kwargs['llm_model'] == 'sparkv3':
|
||||
gpt_url = self.gpt_url_v3
|
||||
elif llm_kwargs['llm_model'] == 'sparkv3.5':
|
||||
gpt_url = self.gpt_url_v35
|
||||
else:
|
||||
gpt_url = self.gpt_url
|
||||
file_manifest = []
|
||||
@@ -190,6 +193,7 @@ def gen_params(appid, inputs, llm_kwargs, history, system_prompt, file_manifest)
|
||||
"spark": "general",
|
||||
"sparkv2": "generalv2",
|
||||
"sparkv3": "generalv3",
|
||||
"sparkv3.5": "generalv3.5",
|
||||
}
|
||||
domains_select = domains[llm_kwargs['llm_model']]
|
||||
if file_manifest: domains_select = 'image'
|
||||
|
||||
84
request_llms/com_zhipuglm.py
普通文件
84
request_llms/com_zhipuglm.py
普通文件
@@ -0,0 +1,84 @@
|
||||
# encoding: utf-8
|
||||
# @Time : 2024/1/22
|
||||
# @Author : Kilig947 & binary husky
|
||||
# @Descr : 兼容最新的智谱Ai
|
||||
from toolbox import get_conf
|
||||
from zhipuai import ZhipuAI
|
||||
from toolbox import get_conf, encode_image, get_pictures_list
|
||||
import logging, os
|
||||
|
||||
|
||||
def input_encode_handler(inputs, llm_kwargs):
|
||||
if llm_kwargs["most_recent_uploaded"].get("path"):
|
||||
image_paths = get_pictures_list(llm_kwargs["most_recent_uploaded"]["path"])
|
||||
md_encode = []
|
||||
for md_path in image_paths:
|
||||
type_ = os.path.splitext(md_path)[1].replace(".", "")
|
||||
type_ = "jpeg" if type_ == "jpg" else type_
|
||||
md_encode.append({"data": encode_image(md_path), "type": type_})
|
||||
return inputs, md_encode
|
||||
|
||||
|
||||
class ZhipuChatInit:
|
||||
|
||||
def __init__(self):
|
||||
ZHIPUAI_API_KEY, ZHIPUAI_MODEL = get_conf("ZHIPUAI_API_KEY", "ZHIPUAI_MODEL")
|
||||
if len(ZHIPUAI_MODEL) > 0:
|
||||
logging.error('ZHIPUAI_MODEL 配置项选项已经弃用,请在LLM_MODEL中配置')
|
||||
self.zhipu_bro = ZhipuAI(api_key=ZHIPUAI_API_KEY)
|
||||
self.model = ''
|
||||
|
||||
def __conversation_user(self, user_input: str, llm_kwargs):
|
||||
if self.model not in ["glm-4v"]:
|
||||
return {"role": "user", "content": user_input}
|
||||
else:
|
||||
input_, encode_img = input_encode_handler(user_input, llm_kwargs=llm_kwargs)
|
||||
what_i_have_asked = {"role": "user", "content": []}
|
||||
what_i_have_asked['content'].append({"type": 'text', "text": user_input})
|
||||
if encode_img:
|
||||
img_d = {"type": "image_url",
|
||||
"image_url": {'url': encode_img}}
|
||||
what_i_have_asked['content'].append(img_d)
|
||||
return what_i_have_asked
|
||||
|
||||
def __conversation_history(self, history, llm_kwargs):
|
||||
messages = []
|
||||
conversation_cnt = len(history) // 2
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2 * conversation_cnt, 2):
|
||||
what_i_have_asked = self.__conversation_user(history[index], llm_kwargs)
|
||||
what_gpt_answer = {
|
||||
"role": "assistant",
|
||||
"content": history[index + 1]
|
||||
}
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
return messages
|
||||
|
||||
def __conversation_message_payload(self, inputs, llm_kwargs, history, system_prompt):
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
self.model = llm_kwargs['llm_model']
|
||||
messages.extend(self.__conversation_history(history, llm_kwargs)) # 处理 history
|
||||
messages.append(self.__conversation_user(inputs, llm_kwargs)) # 处理用户对话
|
||||
response = self.zhipu_bro.chat.completions.create(
|
||||
model=self.model, messages=messages, stream=True,
|
||||
temperature=llm_kwargs.get('temperature', 0.95) * 0.95, # 只能传默认的 temperature 和 top_p
|
||||
top_p=llm_kwargs.get('top_p', 0.7) * 0.7,
|
||||
max_tokens=llm_kwargs.get('max_tokens', 1024 * 4), # 最大输出模型的一半
|
||||
)
|
||||
return response
|
||||
|
||||
def generate_chat(self, inputs, llm_kwargs, history, system_prompt):
|
||||
self.model = llm_kwargs['llm_model']
|
||||
response = self.__conversation_message_payload(inputs, llm_kwargs, history, system_prompt)
|
||||
bro_results = ''
|
||||
for chunk in response:
|
||||
bro_results += chunk.choices[0].delta.content
|
||||
yield chunk.choices[0].delta.content, bro_results
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
zhipu = ZhipuChatInit()
|
||||
zhipu.generate_chat('你好', {'llm_model': 'glm-4'}, [], '你是WPSAi')
|
||||
1
request_llms/moss
子模块
1
request_llms/moss
子模块
子模块 request_llms/moss 已添加到 4d905bcead
在新工单中引用
屏蔽一个用户