Merge Latest Frontier (#1991)

* logging sys to loguru: stage 1 complete

* import loguru: stage 2

* logging -> loguru: stage 3

* support o1-preview and o1-mini

* logging -> loguru stage 4

* update social helper

* logging -> loguru: final stage

* fix: console output

* update translation matrix

* fix: loguru argument error with proxy enabled (#1977)

* relax llama index version

* remove comment

* Added some modules to support openrouter (#1975)

* Added some modules for supporting openrouter model

Added some modules for supporting openrouter model

* Update config.py

* Update .gitignore

* Update bridge_openrouter.py

* Not changed actually

* Refactor logging in bridge_openrouter.py

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* remove logging extra

---------

Co-authored-by: Steven Moder <java20131114@gmail.com>
Co-authored-by: Ren Lifei <2602264455@qq.com>
这个提交包含在:
binary-husky
2024-10-05 17:09:18 +08:00
提交者 GitHub
父节点 597c320808
当前提交 a01ca93362
共有 91 个文件被更改,包括 2558 次插入742 次删除

查看文件

@@ -1,6 +1,7 @@
import llama_index
import os
import atexit
from loguru import logger
from typing import List
from llama_index.core import Document
from llama_index.core.schema import TextNode
@@ -41,14 +42,14 @@ class SaveLoad():
return True
def save_to_checkpoint(self, checkpoint_dir=None):
print(f'saving vector store to: {checkpoint_dir}')
logger.info(f'saving vector store to: {checkpoint_dir}')
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
self.vs_index.storage_context.persist(persist_dir=checkpoint_dir)
def load_from_checkpoint(self, checkpoint_dir=None):
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
if self.does_checkpoint_exist(checkpoint_dir=checkpoint_dir):
print('loading checkpoint from disk')
logger.info('loading checkpoint from disk')
from llama_index.core import StorageContext, load_index_from_storage
storage_context = StorageContext.from_defaults(persist_dir=checkpoint_dir)
self.vs_index = load_index_from_storage(storage_context, embed_model=self.embed_model)
@@ -85,9 +86,9 @@ class LlamaIndexRagWorker(SaveLoad):
self.vs_index.storage_context.index_store.to_dict()
docstore = self.vs_index.storage_context.docstore.docs
vector_store_preview = "\n".join([ f"{_id} | {tn.text}" for _id, tn in docstore.items() ])
print('\n++ --------inspect_vector_store begin--------')
print(vector_store_preview)
print('oo --------inspect_vector_store end--------')
logger.info('\n++ --------inspect_vector_store begin--------')
logger.info(vector_store_preview)
logger.info('oo --------inspect_vector_store end--------')
return vector_store_preview
def add_documents_to_vector_store(self, document_list):
@@ -125,5 +126,5 @@ class LlamaIndexRagWorker(SaveLoad):
def generate_node_array_preview(self, nodes):
buf = "\n".join(([f"(No.{i+1} | score {n.score:.3f}): {n.text}" for i, n in enumerate(nodes)]))
if self.debug_mode: print(buf)
if self.debug_mode: logger.info(buf)
return buf

查看文件

@@ -2,6 +2,7 @@ import llama_index
import os
import atexit
from typing import List
from loguru import logger
from llama_index.core import Document
from llama_index.core.schema import TextNode
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
@@ -44,14 +45,14 @@ class MilvusSaveLoad():
return True
def save_to_checkpoint(self, checkpoint_dir=None):
print(f'saving vector store to: {checkpoint_dir}')
logger.info(f'saving vector store to: {checkpoint_dir}')
# if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
# self.vs_index.storage_context.persist(persist_dir=checkpoint_dir)
def load_from_checkpoint(self, checkpoint_dir=None):
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
if self.does_checkpoint_exist(checkpoint_dir=checkpoint_dir):
print('loading checkpoint from disk')
logger.info('loading checkpoint from disk')
from llama_index.core import StorageContext, load_index_from_storage
storage_context = StorageContext.from_defaults(persist_dir=checkpoint_dir)
try:
@@ -101,7 +102,7 @@ class MilvusRagWorker(MilvusSaveLoad, LlamaIndexRagWorker):
vector_store_preview = "\n".join(
[f"{node.id_} | {node.text}" for node in dummy_retrieve_res]
)
print('\n++ --------inspect_vector_store begin--------')
print(vector_store_preview)
print('oo --------inspect_vector_store end--------')
logger.info('\n++ --------inspect_vector_store begin--------')
logger.info(vector_store_preview)
logger.info('oo --------inspect_vector_store end--------')
return vector_store_preview