diff --git a/config.py b/config.py
index b6ca53af..e71a59b1 100644
--- a/config.py
+++ b/config.py
@@ -57,9 +57,9 @@ EMBEDDING_MODEL = "text-embedding-3-small"
# "yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview",
# ]
# --- --- --- ---
-# 此外,您还可以在接入one-api/vllm/ollama时,
-# 使用"one-api-*","vllm-*","ollama-*"前缀直接使用非标准方式接入的模型,例如
-# AVAIL_LLM_MODELS = ["one-api-claude-3-sonnet-20240229(max_token=100000)", "ollama-phi3(max_token=4096)"]
+# 此外,您还可以在接入one-api/vllm/ollama/Openroute时,
+# 使用"one-api-*","vllm-*","ollama-*","openrouter-*"前缀直接使用非标准方式接入的模型,例如
+# AVAIL_LLM_MODELS = ["one-api-claude-3-sonnet-20240229(max_token=100000)", "ollama-phi3(max_token=4096)","openrouter-openai/gpt-4o-mini","openrouter-openai/chatgpt-4o-latest"]
# --- --- --- ---
diff --git a/docs/WithFastapi.md b/docs/WithFastapi.md
index 27037507..d963ddd5 100644
--- a/docs/WithFastapi.md
+++ b/docs/WithFastapi.md
@@ -4,7 +4,7 @@ We currently support fastapi in order to solve sub-path deploy issue.
1. change CUSTOM_PATH setting in `config.py`
-``` sh
+```sh
nano config.py
```
@@ -35,9 +35,8 @@ if __name__ == "__main__":
main()
```
-
3. Go!
-``` sh
+```sh
python main.py
```
diff --git a/request_llms/bridge_all.py b/request_llms/bridge_all.py
index 674b4a89..97300ec9 100644
--- a/request_llms/bridge_all.py
+++ b/request_llms/bridge_all.py
@@ -1116,6 +1116,24 @@ if len(AZURE_CFG_ARRAY) > 0:
if azure_model_name not in AVAIL_LLM_MODELS:
AVAIL_LLM_MODELS += [azure_model_name]
+# -=-=-=-=-=-=- Openrouter模型对齐支持 -=-=-=-=-=-=-
+# 为了更灵活地接入Openrouter路由,设计了此接口
+for model in [m for m in AVAIL_LLM_MODELS if m.startswith("openrouter-")]:
+ from request_llms.bridge_openrouter import predict_no_ui_long_connection as openrouter_noui
+ from request_llms.bridge_openrouter import predict as openrouter_ui
+ model_info.update({
+ model: {
+ "fn_with_ui": openrouter_ui,
+ "fn_without_ui": openrouter_noui,
+ # 以下参数参考gpt-4o-mini的配置, 请根据实际情况修改
+ "endpoint": openai_endpoint,
+ "has_multimodal_capacity": True,
+ "max_token": 128000,
+ "tokenizer": tokenizer_gpt4,
+ "token_cnt": get_token_num_gpt4,
+ },
+ })
+
# -=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=-=-=
# -=-=-=-=-=-=-=-=-=- ☝️ 以上是模型路由 -=-=-=-=-=-=-=-=-=
@@ -1261,5 +1279,6 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot,
if additional_fn: # 根据基础功能区 ModelOverride 参数调整模型类型
llm_kwargs, additional_fn, method = execute_model_override(llm_kwargs, additional_fn, method)
+ # 更新一下llm_kwargs的参数,否则会出现参数不匹配的问题
yield from method(inputs, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, stream, additional_fn)
diff --git a/request_llms/bridge_openrouter.py b/request_llms/bridge_openrouter.py
new file mode 100644
index 00000000..10dfe57f
--- /dev/null
+++ b/request_llms/bridge_openrouter.py
@@ -0,0 +1,541 @@
+"""
+ 该文件中主要包含三个函数
+
+ 不具备多线程能力的函数:
+ 1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
+
+ 具备多线程调用能力的函数
+ 2. predict_no_ui_long_connection:支持多线程
+"""
+
+import json
+import os
+import re
+import time
+import traceback
+import requests
+import random
+from loguru import logger
+
+# config_private.py放自己的秘密如API和代理网址
+# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
+from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
+from toolbox import trimmed_format_exc, is_the_upload_folder, read_one_api_model_name, log_chat
+from toolbox import ChatBotWithCookies, have_any_recent_upload_image_files, encode_image
+proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
+ get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
+
+timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
+ '网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
+
+def get_full_error(chunk, stream_response):
+ """
+ 获取完整的从Openai返回的报错
+ """
+ while True:
+ try:
+ chunk += next(stream_response)
+ except:
+ break
+ return chunk
+
+def make_multimodal_input(inputs, image_paths):
+ image_base64_array = []
+ for image_path in image_paths:
+ path = os.path.abspath(image_path)
+ base64 = encode_image(path)
+ inputs = inputs + f'

'
+ image_base64_array.append(base64)
+ return inputs, image_base64_array
+
+def reverse_base64_from_input(inputs):
+ # 定义一个正则表达式来匹配 Base64 字符串(假设格式为 base64="")
+ # pattern = re.compile(r'base64="([^"]+)">')
+ pattern = re.compile(r'
![]()
]+base64="([^"]+)">
')
+ # 使用 findall 方法查找所有匹配的 Base64 字符串
+ base64_strings = pattern.findall(inputs)
+ # 返回反转后的 Base64 字符串列表
+ return base64_strings
+
+def contain_base64(inputs):
+ base64_strings = reverse_base64_from_input(inputs)
+ return len(base64_strings) > 0
+
+def append_image_if_contain_base64(inputs):
+ if not contain_base64(inputs):
+ return inputs
+ else:
+ image_base64_array = reverse_base64_from_input(inputs)
+ pattern = re.compile(r'
![]()
<]+>
')
+ inputs = re.sub(pattern, '', inputs)
+ res = []
+ res.append({
+ "type": "text",
+ "text": inputs
+ })
+ for image_base64 in image_base64_array:
+ res.append({
+ "type": "image_url",
+ "image_url": {
+ "url": f"data:image/jpeg;base64,{image_base64}"
+ }
+ })
+ return res
+
+def remove_image_if_contain_base64(inputs):
+ if not contain_base64(inputs):
+ return inputs
+ else:
+ pattern = re.compile(r'
![]()
<]+>
')
+ inputs = re.sub(pattern, '', inputs)
+ return inputs
+
+def decode_chunk(chunk):
+ # 提前读取一些信息 (用于判断异常)
+ chunk_decoded = chunk.decode()
+ chunkjson = None
+ has_choices = False
+ choice_valid = False
+ has_content = False
+ has_role = False
+ try:
+ chunkjson = json.loads(chunk_decoded[6:])
+ has_choices = 'choices' in chunkjson
+ if has_choices: choice_valid = (len(chunkjson['choices']) > 0)
+ if has_choices and choice_valid: has_content = ("content" in chunkjson['choices'][0]["delta"])
+ if has_content: has_content = (chunkjson['choices'][0]["delta"]["content"] is not None)
+ if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"]
+ except:
+ pass
+ return chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role
+
+from functools import lru_cache
+@lru_cache(maxsize=32)
+def verify_endpoint(endpoint):
+ """
+ 检查endpoint是否可用
+ """
+ if "你亲手写的api名称" in endpoint:
+ raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
+ return endpoint
+
+def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
+ """
+ 发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
+ inputs:
+ 是本次问询的输入
+ sys_prompt:
+ 系统静默prompt
+ llm_kwargs:
+ chatGPT的内部调优参数
+ history:
+ 是之前的对话列表
+ observe_window = None:
+ 用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
+ """
+ from request_llms.bridge_all import model_info
+
+ watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
+
+ if model_info[llm_kwargs['llm_model']].get('openai_disable_stream', False): stream = False
+ else: stream = True
+
+ headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=stream)
+ retry = 0
+ while True:
+ try:
+ # make a POST request to the API endpoint, stream=False
+ endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
+ response = requests.post(endpoint, headers=headers, proxies=proxies,
+ json=payload, stream=stream, timeout=TIMEOUT_SECONDS); break
+ except requests.exceptions.ReadTimeout as e:
+ retry += 1
+ traceback.print_exc()
+ if retry > MAX_RETRY: raise TimeoutError
+ if MAX_RETRY!=0: logger.error(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
+
+ if not stream:
+ # 该分支仅适用于不支持stream的o1模型,其他情形一律不适用
+ chunkjson = json.loads(response.content.decode())
+ gpt_replying_buffer = chunkjson['choices'][0]["message"]["content"]
+ return gpt_replying_buffer
+
+ stream_response = response.iter_lines()
+ result = ''
+ json_data = None
+ while True:
+ try: chunk = next(stream_response)
+ except StopIteration:
+ break
+ except requests.exceptions.ConnectionError:
+ chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
+ chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
+ if len(chunk_decoded)==0: continue
+ if not chunk_decoded.startswith('data:'):
+ error_msg = get_full_error(chunk, stream_response).decode()
+ if "reduce the length" in error_msg:
+ raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
+ elif """type":"upstream_error","param":"307""" in error_msg:
+ raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
+ else:
+ raise RuntimeError("OpenAI拒绝了请求:" + error_msg)
+ if ('data: [DONE]' in chunk_decoded): break # api2d 正常完成
+ # 提前读取一些信息 (用于判断异常)
+ if (has_choices and not choice_valid) or ('OPENROUTER PROCESSING' in chunk_decoded):
+ # 一些垃圾第三方接口的出现这样的错误,openrouter的特殊处理
+ continue
+ json_data = chunkjson['choices'][0]
+ delta = json_data["delta"]
+ if len(delta) == 0: break
+ if (not has_content) and has_role: continue
+ if (not has_content) and (not has_role): continue # raise RuntimeError("发现不标准的第三方接口:"+delta)
+ if has_content: # has_role = True/False
+ result += delta["content"]
+ if not console_slience: print(delta["content"], end='')
+ if observe_window is not None:
+ # 观测窗,把已经获取的数据显示出去
+ if len(observe_window) >= 1:
+ observe_window[0] += delta["content"]
+ # 看门狗,如果超过期限没有喂狗,则终止
+ if len(observe_window) >= 2:
+ if (time.time()-observe_window[1]) > watch_dog_patience:
+ raise RuntimeError("用户取消了程序。")
+ else: raise RuntimeError("意外Json结构:"+delta)
+ if json_data and json_data['finish_reason'] == 'content_filter':
+ raise RuntimeError("由于提问含不合规内容被Azure过滤。")
+ if json_data and json_data['finish_reason'] == 'length':
+ raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
+ return result
+
+
+def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
+ history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
+ """
+ 发送至chatGPT,流式获取输出。
+ 用于基础的对话功能。
+ inputs 是本次问询的输入
+ top_p, temperature是chatGPT的内部调优参数
+ history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
+ chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
+ additional_fn代表点击的哪个按钮,按钮见functional.py
+ """
+ from request_llms.bridge_all import model_info
+ if is_any_api_key(inputs):
+ chatbot._cookies['api_key'] = inputs
+ chatbot.append(("输入已识别为openai的api_key", what_keys(inputs)))
+ yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") # 刷新界面
+ return
+ elif not is_any_api_key(chatbot._cookies['api_key']):
+ chatbot.append((inputs, "缺少api_key。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。"))
+ yield from update_ui(chatbot=chatbot, history=history, msg="缺少api_key") # 刷新界面
+ return
+
+ user_input = inputs
+ if additional_fn is not None:
+ from core_functional import handle_core_functionality
+ inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
+
+ # 多模态模型
+ has_multimodal_capacity = model_info[llm_kwargs['llm_model']].get('has_multimodal_capacity', False)
+ if has_multimodal_capacity:
+ has_recent_image_upload, image_paths = have_any_recent_upload_image_files(chatbot, pop=True)
+ else:
+ has_recent_image_upload, image_paths = False, []
+ if has_recent_image_upload:
+ _inputs, image_base64_array = make_multimodal_input(inputs, image_paths)
+ else:
+ _inputs, image_base64_array = inputs, []
+ chatbot.append((_inputs, ""))
+ yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
+
+ # 禁用stream的特殊模型处理
+ if model_info[llm_kwargs['llm_model']].get('openai_disable_stream', False): stream = False
+ else: stream = True
+
+ # check mis-behavior
+ if is_the_upload_folder(user_input):
+ chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。")
+ yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
+ time.sleep(2)
+
+ try:
+ headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, image_base64_array, has_multimodal_capacity, stream)
+ except RuntimeError as e:
+ chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
+ yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
+ return
+
+ # 检查endpoint是否合法
+ try:
+ endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
+ except:
+ tb_str = '```\n' + trimmed_format_exc() + '```'
+ chatbot[-1] = (inputs, tb_str)
+ yield from update_ui(chatbot=chatbot, history=history, msg="Endpoint不满足要求") # 刷新界面
+ return
+
+ # 加入历史
+ if has_recent_image_upload:
+ history.extend([_inputs, ""])
+ else:
+ history.extend([inputs, ""])
+
+ retry = 0
+ while True:
+ try:
+ # make a POST request to the API endpoint, stream=True
+ response = requests.post(endpoint, headers=headers, proxies=proxies,
+ json=payload, stream=stream, timeout=TIMEOUT_SECONDS);break
+ except:
+ retry += 1
+ chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
+ retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
+ yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
+ if retry > MAX_RETRY: raise TimeoutError
+
+
+ if not stream:
+ # 该分支仅适用于不支持stream的o1模型,其他情形一律不适用
+ yield from handle_o1_model_special(response, inputs, llm_kwargs, chatbot, history)
+ return
+
+ if stream:
+ gpt_replying_buffer = ""
+ is_head_of_the_stream = True
+ stream_response = response.iter_lines()
+ while True:
+ try:
+ chunk = next(stream_response)
+ except StopIteration:
+ # 非OpenAI官方接口的出现这样的报错,OpenAI和API2D不会走这里
+ chunk_decoded = chunk.decode()
+ error_msg = chunk_decoded
+ # 首先排除一个one-api没有done数据包的第三方Bug情形
+ if len(gpt_replying_buffer.strip()) > 0 and len(error_msg) == 0:
+ yield from update_ui(chatbot=chatbot, history=history, msg="检测到有缺陷的非OpenAI官方接口,建议选择更稳定的接口。")
+ break
+ # 其他情况,直接返回报错
+ chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
+ yield from update_ui(chatbot=chatbot, history=history, msg="非OpenAI官方接口返回了错误:" + chunk.decode()) # 刷新界面
+ return
+
+ # 提前读取一些信息 (用于判断异常)
+ chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
+
+ if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r"content" not in chunk_decoded):
+ # 数据流的第一帧不携带content
+ is_head_of_the_stream = False; continue
+
+ if chunk:
+ try:
+ if (has_choices and not choice_valid) or ('OPENROUTER PROCESSING' in chunk_decoded):
+ # 一些垃圾第三方接口的出现这样的错误, 或者OPENROUTER的特殊处理,因为OPENROUTER的数据流未连接到模型时会出现OPENROUTER PROCESSING
+ continue
+ if ('data: [DONE]' not in chunk_decoded) and len(chunk_decoded) > 0 and (chunkjson is None):
+ # 传递进来一些奇怪的东西
+ raise ValueError(f'无法读取以下数据,请检查配置。\n\n{chunk_decoded}')
+ # 前者是API2D的结束条件,后者是OPENAI的结束条件
+ if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0):
+ # 判定为数据流的结束,gpt_replying_buffer也写完了
+ log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
+ break
+ # 处理数据流的主体
+ status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
+ # 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
+ if has_content:
+ # 正常情况
+ gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
+ elif has_role:
+ # 一些第三方接口的出现这样的错误,兼容一下吧
+ continue
+ else:
+ # 至此已经超出了正常接口应该进入的范围,一些垃圾第三方接口会出现这样的错误
+ if chunkjson['choices'][0]["delta"]["content"] is None: continue # 一些垃圾第三方接口出现这样的错误,兼容一下吧
+ gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
+
+ history[-1] = gpt_replying_buffer
+ chatbot[-1] = (history[-2], history[-1])
+ yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
+ except Exception as e:
+ yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
+ chunk = get_full_error(chunk, stream_response)
+ chunk_decoded = chunk.decode()
+ error_msg = chunk_decoded
+ chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
+ yield from update_ui(chatbot=chatbot, history=history, msg="Json解析异常" + error_msg) # 刷新界面
+ logger.error(error_msg)
+ return
+ return # return from stream-branch
+
+def handle_o1_model_special(response, inputs, llm_kwargs, chatbot, history):
+ try:
+ chunkjson = json.loads(response.content.decode())
+ gpt_replying_buffer = chunkjson['choices'][0]["message"]["content"]
+ log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
+ history[-1] = gpt_replying_buffer
+ chatbot[-1] = (history[-2], history[-1])
+ yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
+ except Exception as e:
+ yield from update_ui(chatbot=chatbot, history=history, msg="Json解析异常" + response.text) # 刷新界面
+
+def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
+ from request_llms.bridge_all import model_info
+ openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
+ if "reduce the length" in error_msg:
+ if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
+ history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
+ max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
+ chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
+ elif "does not exist" in error_msg:
+ chatbot[-1] = (chatbot[-1][0], f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格.")
+ elif "Incorrect API key" in error_msg:
+ chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由, 拒绝服务. " + openai_website)
+ elif "exceeded your current quota" in error_msg:
+ chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由, 拒绝服务." + openai_website)
+ elif "account is not active" in error_msg:
+ chatbot[-1] = (chatbot[-1][0], "[Local Message] Your account is not active. OpenAI以账户失效为由, 拒绝服务." + openai_website)
+ elif "associated with a deactivated account" in error_msg:
+ chatbot[-1] = (chatbot[-1][0], "[Local Message] You are associated with a deactivated account. OpenAI以账户失效为由, 拒绝服务." + openai_website)
+ elif "API key has been deactivated" in error_msg:
+ chatbot[-1] = (chatbot[-1][0], "[Local Message] API key has been deactivated. OpenAI以账户失效为由, 拒绝服务." + openai_website)
+ elif "bad forward key" in error_msg:
+ chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.")
+ elif "Not enough point" in error_msg:
+ chatbot[-1] = (chatbot[-1][0], "[Local Message] Not enough point. API2D账户点数不足.")
+ else:
+ from toolbox import regular_txt_to_markdown
+ tb_str = '```\n' + trimmed_format_exc() + '```'
+ chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
+ return chatbot, history
+
+def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:str, image_base64_array:list=[], has_multimodal_capacity:bool=False, stream:bool=True):
+ """
+ 整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
+ """
+ from request_llms.bridge_all import model_info
+
+ if not is_any_api_key(llm_kwargs['api_key']):
+ raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。")
+
+ if llm_kwargs['llm_model'].startswith('vllm-'):
+ api_key = 'no-api-key'
+ else:
+ api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
+
+ headers = {
+ "Content-Type": "application/json",
+ "Authorization": f"Bearer {api_key}"
+ }
+ if API_ORG.startswith('org-'): headers.update({"OpenAI-Organization": API_ORG})
+ if llm_kwargs['llm_model'].startswith('azure-'):
+ headers.update({"api-key": api_key})
+ if llm_kwargs['llm_model'] in AZURE_CFG_ARRAY.keys():
+ azure_api_key_unshared = AZURE_CFG_ARRAY[llm_kwargs['llm_model']]["AZURE_API_KEY"]
+ headers.update({"api-key": azure_api_key_unshared})
+
+ if has_multimodal_capacity:
+ # 当以下条件满足时,启用多模态能力:
+ # 1. 模型本身是多模态模型(has_multimodal_capacity)
+ # 2. 输入包含图像(len(image_base64_array) > 0)
+ # 3. 历史输入包含图像( any([contain_base64(h) for h in history]) )
+ enable_multimodal_capacity = (len(image_base64_array) > 0) or any([contain_base64(h) for h in history])
+ else:
+ enable_multimodal_capacity = False
+
+ conversation_cnt = len(history) // 2
+ openai_disable_system_prompt = model_info[llm_kwargs['llm_model']].get('openai_disable_system_prompt', False)
+
+ if openai_disable_system_prompt:
+ messages = [{"role": "user", "content": system_prompt}]
+ else:
+ messages = [{"role": "system", "content": system_prompt}]
+
+ if not enable_multimodal_capacity:
+ # 不使用多模态能力
+ if conversation_cnt:
+ for index in range(0, 2*conversation_cnt, 2):
+ what_i_have_asked = {}
+ what_i_have_asked["role"] = "user"
+ what_i_have_asked["content"] = remove_image_if_contain_base64(history[index])
+ what_gpt_answer = {}
+ what_gpt_answer["role"] = "assistant"
+ what_gpt_answer["content"] = remove_image_if_contain_base64(history[index+1])
+ if what_i_have_asked["content"] != "":
+ if what_gpt_answer["content"] == "": continue
+ if what_gpt_answer["content"] == timeout_bot_msg: continue
+ messages.append(what_i_have_asked)
+ messages.append(what_gpt_answer)
+ else:
+ messages[-1]['content'] = what_gpt_answer['content']
+ what_i_ask_now = {}
+ what_i_ask_now["role"] = "user"
+ what_i_ask_now["content"] = inputs
+ messages.append(what_i_ask_now)
+ else:
+ # 多模态能力
+ if conversation_cnt:
+ for index in range(0, 2*conversation_cnt, 2):
+ what_i_have_asked = {}
+ what_i_have_asked["role"] = "user"
+ what_i_have_asked["content"] = append_image_if_contain_base64(history[index])
+ what_gpt_answer = {}
+ what_gpt_answer["role"] = "assistant"
+ what_gpt_answer["content"] = append_image_if_contain_base64(history[index+1])
+ if what_i_have_asked["content"] != "":
+ if what_gpt_answer["content"] == "": continue
+ if what_gpt_answer["content"] == timeout_bot_msg: continue
+ messages.append(what_i_have_asked)
+ messages.append(what_gpt_answer)
+ else:
+ messages[-1]['content'] = what_gpt_answer['content']
+ what_i_ask_now = {}
+ what_i_ask_now["role"] = "user"
+ what_i_ask_now["content"] = []
+ what_i_ask_now["content"].append({
+ "type": "text",
+ "text": inputs
+ })
+ for image_base64 in image_base64_array:
+ what_i_ask_now["content"].append({
+ "type": "image_url",
+ "image_url": {
+ "url": f"data:image/jpeg;base64,{image_base64}"
+ }
+ })
+ messages.append(what_i_ask_now)
+
+
+ model = llm_kwargs['llm_model']
+ if llm_kwargs['llm_model'].startswith('api2d-'):
+ model = llm_kwargs['llm_model'][len('api2d-'):]
+ if llm_kwargs['llm_model'].startswith('one-api-'):
+ model = llm_kwargs['llm_model'][len('one-api-'):]
+ model, _ = read_one_api_model_name(model)
+ if llm_kwargs['llm_model'].startswith('vllm-'):
+ model = llm_kwargs['llm_model'][len('vllm-'):]
+ model, _ = read_one_api_model_name(model)
+ if llm_kwargs['llm_model'].startswith('openrouter-'):
+ model = llm_kwargs['llm_model'][len('openrouter-'):]
+ model= read_one_api_model_name(model)
+ if model == "gpt-3.5-random": # 随机选择, 绕过openai访问频率限制
+ model = random.choice([
+ "gpt-3.5-turbo",
+ "gpt-3.5-turbo-16k",
+ "gpt-3.5-turbo-1106",
+ "gpt-3.5-turbo-0613",
+ "gpt-3.5-turbo-16k-0613",
+ "gpt-3.5-turbo-0301",
+ ])
+
+ payload = {
+ "model": model,
+ "messages": messages,
+ "temperature": llm_kwargs['temperature'], # 1.0,
+ "top_p": llm_kwargs['top_p'], # 1.0,
+ "n": 1,
+ "stream": stream,
+ }
+
+ return headers,payload
+
+
diff --git a/shared_utils/key_pattern_manager.py b/shared_utils/key_pattern_manager.py
index 6eb41f5b..c17bfe5e 100644
--- a/shared_utils/key_pattern_manager.py
+++ b/shared_utils/key_pattern_manager.py
@@ -34,6 +34,9 @@ def is_api2d_key(key):
API_MATCH_API2D = re.match(r"fk[a-zA-Z0-9]{6}-[a-zA-Z0-9]{32}$", key)
return bool(API_MATCH_API2D)
+def is_openroute_api_key(key):
+ API_MATCH_OPENROUTE = re.match(r"sk-or-v1-[a-zA-Z0-9]{64}$", key)
+ return bool(API_MATCH_OPENROUTE)
def is_cohere_api_key(key):
API_MATCH_AZURE = re.match(r"[a-zA-Z0-9]{40}$", key)
@@ -89,6 +92,10 @@ def select_api_key(keys, llm_model):
if llm_model.startswith('cohere-'):
for k in key_list:
if is_cohere_api_key(k): avail_key_list.append(k)
+
+ if llm_model.startswith('openrouter-'):
+ for k in key_list:
+ if is_openroute_api_key(k): avail_key_list.append(k)
if len(avail_key_list) == 0:
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源(左上角更换模型菜单中可切换openai,azure,claude,cohere等请求源)。")