镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-06 06:26:47 +00:00
接入deepseek-coder
这个提交包含在:
@@ -0,0 +1,88 @@
|
||||
model_name = "deepseek-coder-6.7b-instruct"
|
||||
cmd_to_install = "未知" # "`pip install -r request_llms/requirements_qwen.txt`"
|
||||
|
||||
import os
|
||||
from toolbox import ProxyNetworkActivate
|
||||
from toolbox import get_conf
|
||||
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
|
||||
from threading import Thread
|
||||
|
||||
def download_huggingface_model(model_name, max_retry, local_dir):
|
||||
from huggingface_hub import snapshot_download
|
||||
for i in range(1, max_retry):
|
||||
try:
|
||||
snapshot_download(repo_id=model_name, local_dir=local_dir, resume_download=True)
|
||||
break
|
||||
except Exception as e:
|
||||
print(f'\n\n下载失败,重试第{i}次中...\n\n')
|
||||
return local_dir
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
# 🔌💻 Local Model
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
class GetONNXGLMHandle(LocalLLMHandle):
|
||||
|
||||
def load_model_info(self):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
self.model_name = model_name
|
||||
self.cmd_to_install = cmd_to_install
|
||||
|
||||
def load_model_and_tokenizer(self):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
with ProxyNetworkActivate('Download_LLM'):
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
||||
model_name = "deepseek-ai/deepseek-coder-6.7b-instruct"
|
||||
# local_dir = f"~/.cache/{model_name}"
|
||||
# if not os.path.exists(local_dir):
|
||||
# tokenizer = download_huggingface_model(model_name, max_retry=128, local_dir=local_dir)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
||||
self._streamer = TextIteratorStreamer(tokenizer)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
||||
if get_conf('LOCAL_MODEL_DEVICE') != 'cpu':
|
||||
model = model.cuda()
|
||||
return model, tokenizer
|
||||
|
||||
def llm_stream_generator(self, **kwargs):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
def adaptor(kwargs):
|
||||
query = kwargs['query']
|
||||
max_length = kwargs['max_length']
|
||||
top_p = kwargs['top_p']
|
||||
temperature = kwargs['temperature']
|
||||
history = kwargs['history']
|
||||
return query, max_length, top_p, temperature, history
|
||||
|
||||
query, max_length, top_p, temperature, history = adaptor(kwargs)
|
||||
history.append({ 'role': 'user', 'content': query})
|
||||
messages = history
|
||||
inputs = self._tokenizer.apply_chat_template(messages, return_tensors="pt").to(self._model.device)
|
||||
generation_kwargs = dict(
|
||||
inputs=inputs,
|
||||
max_new_tokens=max_length,
|
||||
do_sample=False,
|
||||
top_p=top_p,
|
||||
streamer = self._streamer,
|
||||
top_k=50,
|
||||
temperature=temperature,
|
||||
num_return_sequences=1,
|
||||
eos_token_id=32021,
|
||||
)
|
||||
thread = Thread(target=self._model.generate, kwargs=generation_kwargs, daemon=True)
|
||||
thread.start()
|
||||
generated_text = ""
|
||||
for new_text in self._streamer:
|
||||
generated_text += new_text
|
||||
# print(generated_text)
|
||||
yield generated_text
|
||||
|
||||
|
||||
def try_to_import_special_deps(self, **kwargs): pass
|
||||
# import something that will raise error if the user does not install requirement_*.txt
|
||||
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
||||
# import importlib
|
||||
# importlib.import_module('modelscope')
|
||||
|
||||
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
# 🔌💻 GPT-Academic Interface
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetONNXGLMHandle, model_name, history_format='chatglm3')
|
||||
在新工单中引用
屏蔽一个用户