Add batch document inquiry function

这个提交包含在:
lbykkkk
2024-11-03 17:17:16 +08:00
父节点 180550b8f0
当前提交 9172337695
共有 5 个文件被更改,包括 975 次插入30 次删除

查看文件

@@ -1,17 +1,13 @@
import llama_index
import os
import atexit
from loguru import logger
from typing import List
from llama_index.core import Document
from llama_index.core.schema import TextNode
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
from shared_utils.connect_void_terminal import get_chat_default_kwargs
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from crazy_functions.rag_fns.vector_store_index import GptacVectorStoreIndex
from llama_index.core.ingestion import run_transformations
from llama_index.core import PromptTemplate
from llama_index.core.response_synthesizers import TreeSummarize
from llama_index.core.schema import TextNode
from crazy_functions.rag_fns.vector_store_index import GptacVectorStoreIndex
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
DEFAULT_QUERY_GENERATION_PROMPT = """\
Now, you have context information as below:
@@ -63,7 +59,7 @@ class SaveLoad():
def purge(self):
import shutil
shutil.rmtree(self.checkpoint_dir, ignore_errors=True)
self.vs_index = self.create_new_vs()
self.vs_index = self.create_new_vs(self.checkpoint_dir)
class LlamaIndexRagWorker(SaveLoad):
@@ -75,7 +71,7 @@ class LlamaIndexRagWorker(SaveLoad):
if auto_load_checkpoint:
self.vs_index = self.load_from_checkpoint(checkpoint_dir)
else:
self.vs_index = self.create_new_vs(checkpoint_dir)
self.vs_index = self.create_new_vs()
atexit.register(lambda: self.save_to_checkpoint(checkpoint_dir))
def assign_embedding_model(self):
@@ -91,40 +87,52 @@ class LlamaIndexRagWorker(SaveLoad):
logger.info('oo --------inspect_vector_store end--------')
return vector_store_preview
def add_documents_to_vector_store(self, document_list):
documents = [Document(text=t) for t in document_list]
def add_documents_to_vector_store(self, document_list: List[Document]):
"""
Adds a list of Document objects to the vector store after processing.
"""
documents = document_list
documents_nodes = run_transformations(
documents, # type: ignore
self.vs_index._transformations,
show_progress=True
)
documents, # type: ignore
self.vs_index._transformations,
show_progress=True
)
self.vs_index.insert_nodes(documents_nodes)
if self.debug_mode: self.inspect_vector_store()
if self.debug_mode:
self.inspect_vector_store()
def add_text_to_vector_store(self, text):
def add_text_to_vector_store(self, text: str):
node = TextNode(text=text)
documents_nodes = run_transformations(
[node],
self.vs_index._transformations,
show_progress=True
)
[node],
self.vs_index._transformations,
show_progress=True
)
self.vs_index.insert_nodes(documents_nodes)
if self.debug_mode: self.inspect_vector_store()
if self.debug_mode:
self.inspect_vector_store()
def remember_qa(self, question, answer):
formatted_str = QUESTION_ANSWER_RECORD.format(question=question, answer=answer)
self.add_text_to_vector_store(formatted_str)
def retrieve_from_store_with_query(self, query):
if self.debug_mode: self.inspect_vector_store()
if self.debug_mode:
self.inspect_vector_store()
retriever = self.vs_index.as_retriever()
return retriever.retrieve(query)
def build_prompt(self, query, nodes):
context_str = self.generate_node_array_preview(nodes)
return DEFAULT_QUERY_GENERATION_PROMPT.format(context_str=context_str, query_str=query)
def generate_node_array_preview(self, nodes):
buf = "\n".join(([f"(No.{i+1} | score {n.score:.3f}): {n.text}" for i, n in enumerate(nodes)]))
if self.debug_mode: logger.info(buf)
return buf
def purge_vector_store(self):
"""
Purges the current vector store and creates a new one.
"""
self.purge()

查看文件

@@ -0,0 +1,45 @@
import os
from llama_index.core import SimpleDirectoryReader
supports_format = ['.csv', '.docx','.doc', '.epub', '.ipynb', '.mbox', '.md', '.pdf', '.txt', '.ppt',
'.pptm', '.pptx','.py', '.xls', '.xlsx', '.html', '.json', '.xml', '.yaml', '.yml' ,'.m']
def read_docx_doc(file_path):
if file_path.split(".")[-1] == "docx":
from docx import Document
doc = Document(file_path)
file_content = "\n".join([para.text for para in doc.paragraphs])
else:
try:
import win32com.client
word = win32com.client.Dispatch("Word.Application")
word.visible = False
# 打开文件
doc = word.Documents.Open(os.getcwd() + '/' + file_path)
# file_content = doc.Content.Text
doc = word.ActiveDocument
file_content = doc.Range().Text
doc.Close()
word.Quit()
except:
raise RuntimeError('请先将.doc文档转换为.docx文档。')
return file_content
# 修改后的 extract_text 函数,结合 SimpleDirectoryReader 和自定义解析逻辑
import os
def extract_text(file_path):
_, ext = os.path.splitext(file_path.lower())
# 使用 SimpleDirectoryReader 处理它支持的文件格式
if ext in ['.docx', '.doc']:
return read_docx_doc(file_path)
try:
reader = SimpleDirectoryReader(input_files=[file_path])
documents = reader.load_data()
if len(documents) > 0:
return documents[0].text
except Exception as e:
pass
return None