镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-06 06:26:47 +00:00
Merge branch 'frontier'
这个提交包含在:
1
.gitignore
vendored
1
.gitignore
vendored
@@ -160,3 +160,4 @@ test.*
|
|||||||
temp.*
|
temp.*
|
||||||
objdump*
|
objdump*
|
||||||
*.min.*.js
|
*.min.*.js
|
||||||
|
TODO
|
||||||
@@ -1,7 +1,14 @@
|
|||||||
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
|
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
|
||||||
from crazy_functions.crazy_utils import input_clipping
|
from crazy_functions.crazy_utils import input_clipping
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from crazy_functions.rag_fns.llama_index_worker import LlamaIndexRagWorker
|
|
||||||
|
VECTOR_STORE_TYPE = "Milvus"
|
||||||
|
|
||||||
|
if VECTOR_STORE_TYPE == "Simple":
|
||||||
|
from crazy_functions.rag_fns.llama_index_worker import LlamaIndexRagWorker
|
||||||
|
if VECTOR_STORE_TYPE == "Milvus":
|
||||||
|
from crazy_functions.rag_fns.milvus_worker import MilvusRagWorker as LlamaIndexRagWorker
|
||||||
|
|
||||||
|
|
||||||
RAG_WORKER_REGISTER = {}
|
RAG_WORKER_REGISTER = {}
|
||||||
|
|
||||||
@@ -14,16 +21,25 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
|
|||||||
|
|
||||||
# 1. we retrieve rag worker from global context
|
# 1. we retrieve rag worker from global context
|
||||||
user_name = chatbot.get_user()
|
user_name = chatbot.get_user()
|
||||||
|
checkpoint_dir = get_log_folder(user_name, plugin_name='experimental_rag')
|
||||||
if user_name in RAG_WORKER_REGISTER:
|
if user_name in RAG_WORKER_REGISTER:
|
||||||
rag_worker = RAG_WORKER_REGISTER[user_name]
|
rag_worker = RAG_WORKER_REGISTER[user_name]
|
||||||
else:
|
else:
|
||||||
rag_worker = RAG_WORKER_REGISTER[user_name] = LlamaIndexRagWorker(
|
rag_worker = RAG_WORKER_REGISTER[user_name] = LlamaIndexRagWorker(
|
||||||
user_name,
|
user_name,
|
||||||
llm_kwargs,
|
llm_kwargs,
|
||||||
checkpoint_dir=get_log_folder(user_name, plugin_name='experimental_rag'),
|
checkpoint_dir=checkpoint_dir,
|
||||||
auto_load_checkpoint=True)
|
auto_load_checkpoint=True)
|
||||||
|
current_context = f"{VECTOR_STORE_TYPE} @ {checkpoint_dir}"
|
||||||
|
tip = "提示:输入“清空向量数据库”可以清空RAG向量数据库"
|
||||||
|
if txt == "清空向量数据库":
|
||||||
|
chatbot.append([txt, f'正在清空 ({current_context}) ...'])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
rag_worker.purge()
|
||||||
|
yield from update_ui_lastest_msg('已清空', chatbot, history, delay=0) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
chatbot.append([txt, '正在召回知识 ...'])
|
chatbot.append([txt, f'正在召回知识 ({current_context}) ...'])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
# 2. clip history to reduce token consumption
|
# 2. clip history to reduce token consumption
|
||||||
@@ -68,8 +84,8 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
|
|||||||
)
|
)
|
||||||
|
|
||||||
# 5. remember what has been asked / answered
|
# 5. remember what has been asked / answered
|
||||||
yield from update_ui_lastest_msg(model_say + '</br></br>' + '对话记忆中, 请稍等 ...', chatbot, history, delay=0.5) # 刷新界面
|
yield from update_ui_lastest_msg(model_say + '</br></br>' + f'对话记忆中, 请稍等 ({current_context}) ...', chatbot, history, delay=0.5) # 刷新界面
|
||||||
rag_worker.remember_qa(i_say_to_remember, model_say)
|
rag_worker.remember_qa(i_say_to_remember, model_say)
|
||||||
history.extend([i_say, model_say])
|
history.extend([i_say, model_say])
|
||||||
|
|
||||||
yield from update_ui_lastest_msg(model_say, chatbot, history, delay=0) # 刷新界面
|
yield from update_ui_lastest_msg(model_say, chatbot, history, delay=0, msg=tip) # 刷新界面
|
||||||
|
|||||||
@@ -1,4 +1,7 @@
|
|||||||
import llama_index
|
import llama_index
|
||||||
|
import os
|
||||||
|
import atexit
|
||||||
|
from typing import List
|
||||||
from llama_index.core import Document
|
from llama_index.core import Document
|
||||||
from llama_index.core.schema import TextNode
|
from llama_index.core.schema import TextNode
|
||||||
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
|
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
|
||||||
@@ -38,6 +41,7 @@ class SaveLoad():
|
|||||||
return True
|
return True
|
||||||
|
|
||||||
def save_to_checkpoint(self, checkpoint_dir=None):
|
def save_to_checkpoint(self, checkpoint_dir=None):
|
||||||
|
print(f'saving vector store to: {checkpoint_dir}')
|
||||||
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
||||||
self.vs_index.storage_context.persist(persist_dir=checkpoint_dir)
|
self.vs_index.storage_context.persist(persist_dir=checkpoint_dir)
|
||||||
|
|
||||||
@@ -65,7 +69,8 @@ class LlamaIndexRagWorker(SaveLoad):
|
|||||||
if auto_load_checkpoint:
|
if auto_load_checkpoint:
|
||||||
self.vs_index = self.load_from_checkpoint(checkpoint_dir)
|
self.vs_index = self.load_from_checkpoint(checkpoint_dir)
|
||||||
else:
|
else:
|
||||||
self.vs_index = self.create_new_vs()
|
self.vs_index = self.create_new_vs(checkpoint_dir)
|
||||||
|
atexit.register(lambda: self.save_to_checkpoint(checkpoint_dir))
|
||||||
|
|
||||||
def assign_embedding_model(self):
|
def assign_embedding_model(self):
|
||||||
pass
|
pass
|
||||||
@@ -117,6 +122,3 @@ class LlamaIndexRagWorker(SaveLoad):
|
|||||||
buf = "\n".join(([f"(No.{i+1} | score {n.score:.3f}): {n.text}" for i, n in enumerate(nodes)]))
|
buf = "\n".join(([f"(No.{i+1} | score {n.score:.3f}): {n.text}" for i, n in enumerate(nodes)]))
|
||||||
if self.debug_mode: print(buf)
|
if self.debug_mode: print(buf)
|
||||||
return buf
|
return buf
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -0,0 +1,107 @@
|
|||||||
|
import llama_index
|
||||||
|
import os
|
||||||
|
import atexit
|
||||||
|
from typing import List
|
||||||
|
from llama_index.core import Document
|
||||||
|
from llama_index.core.schema import TextNode
|
||||||
|
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
|
||||||
|
from shared_utils.connect_void_terminal import get_chat_default_kwargs
|
||||||
|
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
|
||||||
|
from crazy_functions.rag_fns.vector_store_index import GptacVectorStoreIndex
|
||||||
|
from llama_index.core.ingestion import run_transformations
|
||||||
|
from llama_index.core import PromptTemplate
|
||||||
|
from llama_index.core.response_synthesizers import TreeSummarize
|
||||||
|
from llama_index.core import StorageContext
|
||||||
|
from llama_index.vector_stores.milvus import MilvusVectorStore
|
||||||
|
from crazy_functions.rag_fns.llama_index_worker import LlamaIndexRagWorker
|
||||||
|
|
||||||
|
DEFAULT_QUERY_GENERATION_PROMPT = """\
|
||||||
|
Now, you have context information as below:
|
||||||
|
---------------------
|
||||||
|
{context_str}
|
||||||
|
---------------------
|
||||||
|
Answer the user request below (use the context information if necessary, otherwise you can ignore them):
|
||||||
|
---------------------
|
||||||
|
{query_str}
|
||||||
|
"""
|
||||||
|
|
||||||
|
QUESTION_ANSWER_RECORD = """\
|
||||||
|
{{
|
||||||
|
"type": "This is a previous conversation with the user",
|
||||||
|
"question": "{question}",
|
||||||
|
"answer": "{answer}",
|
||||||
|
}}
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
class MilvusSaveLoad():
|
||||||
|
|
||||||
|
def does_checkpoint_exist(self, checkpoint_dir=None):
|
||||||
|
import os, glob
|
||||||
|
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
||||||
|
if not os.path.exists(checkpoint_dir): return False
|
||||||
|
if len(glob.glob(os.path.join(checkpoint_dir, "*.json"))) == 0: return False
|
||||||
|
return True
|
||||||
|
|
||||||
|
def save_to_checkpoint(self, checkpoint_dir=None):
|
||||||
|
print(f'saving vector store to: {checkpoint_dir}')
|
||||||
|
# if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
||||||
|
# self.vs_index.storage_context.persist(persist_dir=checkpoint_dir)
|
||||||
|
|
||||||
|
def load_from_checkpoint(self, checkpoint_dir=None):
|
||||||
|
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
||||||
|
if self.does_checkpoint_exist(checkpoint_dir=checkpoint_dir):
|
||||||
|
print('loading checkpoint from disk')
|
||||||
|
from llama_index.core import StorageContext, load_index_from_storage
|
||||||
|
storage_context = StorageContext.from_defaults(persist_dir=checkpoint_dir)
|
||||||
|
try:
|
||||||
|
self.vs_index = load_index_from_storage(storage_context, embed_model=self.embed_model)
|
||||||
|
return self.vs_index
|
||||||
|
except:
|
||||||
|
return self.create_new_vs(checkpoint_dir)
|
||||||
|
else:
|
||||||
|
return self.create_new_vs(checkpoint_dir)
|
||||||
|
|
||||||
|
def create_new_vs(self, checkpoint_dir, overwrite=False):
|
||||||
|
vector_store = MilvusVectorStore(
|
||||||
|
uri=os.path.join(checkpoint_dir, "milvus_demo.db"),
|
||||||
|
dim=self.embed_model.embedding_dimension(),
|
||||||
|
overwrite=overwrite
|
||||||
|
)
|
||||||
|
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
||||||
|
index = GptacVectorStoreIndex.default_vector_store(storage_context=storage_context, embed_model=self.embed_model)
|
||||||
|
return index
|
||||||
|
|
||||||
|
def purge(self):
|
||||||
|
self.vs_index = self.create_new_vs(self.checkpoint_dir, overwrite=True)
|
||||||
|
|
||||||
|
class MilvusRagWorker(MilvusSaveLoad, LlamaIndexRagWorker):
|
||||||
|
|
||||||
|
def __init__(self, user_name, llm_kwargs, auto_load_checkpoint=True, checkpoint_dir=None) -> None:
|
||||||
|
self.debug_mode = True
|
||||||
|
self.embed_model = OpenAiEmbeddingModel(llm_kwargs)
|
||||||
|
self.user_name = user_name
|
||||||
|
self.checkpoint_dir = checkpoint_dir
|
||||||
|
if auto_load_checkpoint:
|
||||||
|
self.vs_index = self.load_from_checkpoint(checkpoint_dir)
|
||||||
|
else:
|
||||||
|
self.vs_index = self.create_new_vs(checkpoint_dir)
|
||||||
|
atexit.register(lambda: self.save_to_checkpoint(checkpoint_dir))
|
||||||
|
|
||||||
|
def inspect_vector_store(self):
|
||||||
|
# This function is for debugging
|
||||||
|
try:
|
||||||
|
self.vs_index.storage_context.index_store.to_dict()
|
||||||
|
docstore = self.vs_index.storage_context.docstore.docs
|
||||||
|
if not docstore.items():
|
||||||
|
raise ValueError("cannot inspect")
|
||||||
|
vector_store_preview = "\n".join([ f"{_id} | {tn.text}" for _id, tn in docstore.items() ])
|
||||||
|
except:
|
||||||
|
dummy_retrieve_res: List["NodeWithScore"] = self.vs_index.as_retriever().retrieve(' ')
|
||||||
|
vector_store_preview = "\n".join(
|
||||||
|
[f"{node.id_} | {node.text}" for node in dummy_retrieve_res]
|
||||||
|
)
|
||||||
|
print('\n++ --------inspect_vector_store begin--------')
|
||||||
|
print(vector_store_preview)
|
||||||
|
print('oo --------inspect_vector_store end--------')
|
||||||
|
return vector_store_preview
|
||||||
@@ -71,7 +71,13 @@ class OpenAiEmbeddingModel(EmbeddingModel):
|
|||||||
embedding = res.data[0].embedding
|
embedding = res.data[0].embedding
|
||||||
return embedding
|
return embedding
|
||||||
|
|
||||||
def embedding_dimension(self, llm_kwargs):
|
def embedding_dimension(self, llm_kwargs=None):
|
||||||
|
# load kwargs
|
||||||
|
if llm_kwargs is None:
|
||||||
|
llm_kwargs = self.llm_kwargs
|
||||||
|
if llm_kwargs is None:
|
||||||
|
raise RuntimeError("llm_kwargs is not provided!")
|
||||||
|
|
||||||
from .bridge_all_embed import embed_model_info
|
from .bridge_all_embed import embed_model_info
|
||||||
return embed_model_info[llm_kwargs['embed_model']]['embed_dimension']
|
return embed_model_info[llm_kwargs['embed_model']]['embed_dimension']
|
||||||
|
|
||||||
|
|||||||
@@ -7,7 +7,9 @@ tiktoken>=0.3.3
|
|||||||
requests[socks]
|
requests[socks]
|
||||||
pydantic==2.5.2
|
pydantic==2.5.2
|
||||||
llama-index==0.10.47
|
llama-index==0.10.47
|
||||||
protobuf==3.18
|
llama-index-vector-stores-milvus==0.1.16
|
||||||
|
pymilvus==2.4.2
|
||||||
|
protobuf==3.20
|
||||||
transformers>=4.27.1,<4.42
|
transformers>=4.27.1,<4.42
|
||||||
scipdf_parser>=0.52
|
scipdf_parser>=0.52
|
||||||
anthropic>=0.18.1
|
anthropic>=0.18.1
|
||||||
|
|||||||
@@ -178,7 +178,7 @@ def update_ui(chatbot:ChatBotWithCookies, history, msg="正常", **kwargs): #
|
|||||||
yield cookies, chatbot_gr, history, msg
|
yield cookies, chatbot_gr, history, msg
|
||||||
|
|
||||||
|
|
||||||
def update_ui_lastest_msg(lastmsg:str, chatbot:ChatBotWithCookies, history:list, delay=1): # 刷新界面
|
def update_ui_lastest_msg(lastmsg:str, chatbot:ChatBotWithCookies, history:list, delay=1, msg="正常"): # 刷新界面
|
||||||
"""
|
"""
|
||||||
刷新用户界面
|
刷新用户界面
|
||||||
"""
|
"""
|
||||||
@@ -186,7 +186,7 @@ def update_ui_lastest_msg(lastmsg:str, chatbot:ChatBotWithCookies, history:list,
|
|||||||
chatbot.append(["update_ui_last_msg", lastmsg])
|
chatbot.append(["update_ui_last_msg", lastmsg])
|
||||||
chatbot[-1] = list(chatbot[-1])
|
chatbot[-1] = list(chatbot[-1])
|
||||||
chatbot[-1][-1] = lastmsg
|
chatbot[-1][-1] = lastmsg
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history, msg=msg)
|
||||||
time.sleep(delay)
|
time.sleep(delay)
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
在新工单中引用
屏蔽一个用户