镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-06 14:36:48 +00:00
rag beta release
这个提交包含在:
@@ -1,13 +1,18 @@
|
||||
from toolbox import CatchException, update_ui, get_conf, get_log_folder
|
||||
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
|
||||
from crazy_functions.crazy_utils import input_clipping
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from crazy_functions.rag_fns.llama_index_worker import LlamaIndexRagWorker
|
||||
|
||||
RAG_WORKER_REGISTER = {}
|
||||
|
||||
MAX_HISTORY_ROUND = 5
|
||||
MAX_CONTEXT_TOKEN_LIMIT = 4096
|
||||
REMEMBER_PREVIEW = 1000
|
||||
|
||||
@CatchException
|
||||
def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
|
||||
# first, we retrieve rag worker from global context
|
||||
# 1. we retrieve rag worker from global context
|
||||
user_name = chatbot.get_user()
|
||||
if user_name in RAG_WORKER_REGISTER:
|
||||
rag_worker = RAG_WORKER_REGISTER[user_name]
|
||||
@@ -18,22 +23,53 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
|
||||
checkpoint_dir=get_log_folder(user_name, plugin_name='experimental_rag'),
|
||||
auto_load_checkpoint=True)
|
||||
|
||||
# second, we search vector store and build prompts
|
||||
i_say = txt
|
||||
chatbot.append([txt, '正在召回知识 ...'])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 2. clip history to reduce token consumption
|
||||
# 2-1. reduce chat round
|
||||
txt_origin = txt
|
||||
|
||||
if len(history) > MAX_HISTORY_ROUND * 2:
|
||||
history = history[-(MAX_HISTORY_ROUND * 2):]
|
||||
txt_clip, history, flags = input_clipping(txt, history, max_token_limit=MAX_CONTEXT_TOKEN_LIMIT, return_clip_flags=True)
|
||||
input_is_clipped_flag = (flags["original_input_len"] != flags["clipped_input_len"])
|
||||
|
||||
# 2-2. if input is clipped, add input to vector store before retrieve
|
||||
if input_is_clipped_flag:
|
||||
yield from update_ui_lastest_msg('检测到长输入, 正在向量化 ...', chatbot, history, delay=0) # 刷新界面
|
||||
# save input to vector store
|
||||
rag_worker.add_text_to_vector_store(txt_origin)
|
||||
yield from update_ui_lastest_msg('向量化完成 ...', chatbot, history, delay=0) # 刷新界面
|
||||
if len(txt_origin) > REMEMBER_PREVIEW:
|
||||
HALF = REMEMBER_PREVIEW//2
|
||||
i_say_to_remember = txt[:HALF] + f" ...\n...(省略{len(txt_origin)-REMEMBER_PREVIEW}字)...\n... " + txt[-HALF:]
|
||||
if (flags["original_input_len"] - flags["clipped_input_len"]) > HALF:
|
||||
txt_clip = txt_clip + f" ...\n...(省略{len(txt_origin)-len(txt_clip)-HALF}字)...\n... " + txt[-HALF:]
|
||||
else:
|
||||
pass
|
||||
i_say = txt_clip
|
||||
else:
|
||||
i_say_to_remember = i_say = txt_clip
|
||||
else:
|
||||
i_say_to_remember = i_say = txt_clip
|
||||
|
||||
# 3. we search vector store and build prompts
|
||||
nodes = rag_worker.retrieve_from_store_with_query(i_say)
|
||||
prompt = rag_worker.build_prompt(query=i_say, nodes=nodes)
|
||||
|
||||
# third, it is time to query llms
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
# 4. it is time to query llms
|
||||
if len(chatbot) != 0: chatbot.pop(-1) # pop temp chat, because we are going to add them again inside `request_gpt_model_in_new_thread_with_ui_alive`
|
||||
model_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=prompt, inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
sys_prompt=system_prompt,
|
||||
retry_times_at_unknown_error=0
|
||||
)
|
||||
|
||||
# finally, remember what has been asked / answered
|
||||
rag_worker.remember_qa(i_say, gpt_say)
|
||||
history.extend([i_say, gpt_say])
|
||||
# 5. remember what has been asked / answered
|
||||
yield from update_ui_lastest_msg(model_say + '</br></br>' + '对话记忆中, 请稍等 ...', chatbot, history, delay=0.5) # 刷新界面
|
||||
rag_worker.remember_qa(i_say_to_remember, model_say)
|
||||
history.extend([i_say, model_say])
|
||||
|
||||
# yield, see you next time
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
yield from update_ui_lastest_msg(model_say, chatbot, history, delay=0) # 刷新界面
|
||||
|
||||
@@ -4,7 +4,7 @@ import threading
|
||||
import os
|
||||
import logging
|
||||
|
||||
def input_clipping(inputs, history, max_token_limit):
|
||||
def input_clipping(inputs, history, max_token_limit, return_clip_flags=False):
|
||||
"""
|
||||
当输入文本 + 历史文本超出最大限制时,采取措施丢弃一部分文本。
|
||||
输入:
|
||||
@@ -20,17 +20,20 @@ def input_clipping(inputs, history, max_token_limit):
|
||||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||
|
||||
|
||||
mode = 'input-and-history'
|
||||
# 当 输入部分的token占比 小于 全文的一半时,只裁剪历史
|
||||
input_token_num = get_token_num(inputs)
|
||||
original_input_len = len(inputs)
|
||||
if input_token_num < max_token_limit//2:
|
||||
mode = 'only-history'
|
||||
max_token_limit = max_token_limit - input_token_num
|
||||
|
||||
everything = [inputs] if mode == 'input-and-history' else ['']
|
||||
everything.extend(history)
|
||||
n_token = get_token_num('\n'.join(everything))
|
||||
full_token_num = n_token = get_token_num('\n'.join(everything))
|
||||
everything_token = [get_token_num(e) for e in everything]
|
||||
everything_token_num = sum(everything_token)
|
||||
delta = max(everything_token) // 16 # 截断时的颗粒度
|
||||
|
||||
while n_token > max_token_limit:
|
||||
@@ -43,10 +46,24 @@ def input_clipping(inputs, history, max_token_limit):
|
||||
|
||||
if mode == 'input-and-history':
|
||||
inputs = everything[0]
|
||||
full_token_num = everything_token_num
|
||||
else:
|
||||
pass
|
||||
full_token_num = everything_token_num + input_token_num
|
||||
|
||||
history = everything[1:]
|
||||
return inputs, history
|
||||
|
||||
flags = {
|
||||
"mode": mode,
|
||||
"original_input_token_num": input_token_num,
|
||||
"original_full_token_num": full_token_num,
|
||||
"original_input_len": original_input_len,
|
||||
"clipped_input_len": len(inputs),
|
||||
}
|
||||
|
||||
if not return_clip_flags:
|
||||
return inputs, history
|
||||
else:
|
||||
return inputs, history, flags
|
||||
|
||||
def request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs, inputs_show_user, llm_kwargs,
|
||||
|
||||
在新工单中引用
屏蔽一个用户