Master 4.0 (#2210)

* stage academic conversation

* stage document conversation

* fix buggy gradio version

* file dynamic load

* merge more academic plugins

* accelerate nltk

* feat: 为predict函数添加文件和URL读取功能
- 添加URL检测和网页内容提取功能,支持自动提取网页文本
- 添加文件路径识别和文件内容读取功能,支持private_upload路径格式
- 集成WebTextExtractor处理网页内容提取
- 集成TextContentLoader处理本地文件读取
- 支持文件路径与问题组合的智能处理

* back

* block unstable

---------

Co-authored-by: XiaoBoAI <liuboyin2019@ia.ac.cn>
这个提交包含在:
binary-husky
2025-08-23 15:59:22 +08:00
提交者 GitHub
父节点 65a4cf59c2
当前提交 8042750d41
共有 79 个文件被更改,包括 20850 次插入57 次删除

查看文件

查看文件

@@ -0,0 +1,386 @@
from abc import ABC, abstractmethod
from typing import List, Dict, Any
from ..query_analyzer import SearchCriteria
from ..sources.github_source import GitHubSource
import asyncio
import re
from datetime import datetime
class BaseHandler(ABC):
"""处理器基类"""
def __init__(self, github: GitHubSource, llm_kwargs: Dict = None):
self.github = github
self.llm_kwargs = llm_kwargs or {}
self.ranked_repos = [] # 存储排序后的仓库列表
def _get_search_params(self, plugin_kwargs: Dict) -> Dict:
"""获取搜索参数"""
return {
'max_repos': plugin_kwargs.get('max_repos', 150), # 最大仓库数量,从30改为150
'max_details': plugin_kwargs.get('max_details', 80), # 最多展示详情的仓库数量,新增参数
'search_multiplier': plugin_kwargs.get('search_multiplier', 3), # 检索倍数
'min_stars': plugin_kwargs.get('min_stars', 0), # 最少星标数
}
@abstractmethod
async def handle(
self,
criteria: SearchCriteria,
chatbot: List[List[str]],
history: List[List[str]],
system_prompt: str,
llm_kwargs: Dict[str, Any],
plugin_kwargs: Dict[str, Any],
) -> str:
"""处理查询"""
pass
async def _search_repositories(self, query: str, language: str = None, min_stars: int = 0,
sort: str = "stars", per_page: int = 30) -> List[Dict]:
"""搜索仓库"""
try:
# 构建查询字符串
if min_stars > 0 and "stars:>" not in query:
query += f" stars:>{min_stars}"
if language and "language:" not in query:
query += f" language:{language}"
# 执行搜索
result = await self.github.search_repositories(
query=query,
sort=sort,
per_page=per_page
)
if result and "items" in result:
return result["items"]
return []
except Exception as e:
print(f"仓库搜索出错: {str(e)}")
return []
async def _search_bilingual_repositories(self, english_query: str, chinese_query: str, language: str = None, min_stars: int = 0,
sort: str = "stars", per_page: int = 30) -> List[Dict]:
"""同时搜索中英文仓库并合并结果"""
try:
# 搜索英文仓库
english_results = await self._search_repositories(
query=english_query,
language=language,
min_stars=min_stars,
sort=sort,
per_page=per_page
)
# 搜索中文仓库
chinese_results = await self._search_repositories(
query=chinese_query,
language=language,
min_stars=min_stars,
sort=sort,
per_page=per_page
)
# 合并结果,去除重复项
merged_results = []
seen_repos = set()
# 优先添加英文结果
for repo in english_results:
repo_id = repo.get('id')
if repo_id and repo_id not in seen_repos:
seen_repos.add(repo_id)
merged_results.append(repo)
# 添加中文结果(排除重复)
for repo in chinese_results:
repo_id = repo.get('id')
if repo_id and repo_id not in seen_repos:
seen_repos.add(repo_id)
merged_results.append(repo)
# 按星标数重新排序
merged_results.sort(key=lambda x: x.get('stargazers_count', 0), reverse=True)
return merged_results[:per_page] # 返回合并后的前per_page个结果
except Exception as e:
print(f"双语仓库搜索出错: {str(e)}")
return []
async def _search_code(self, query: str, language: str = None, per_page: int = 30) -> List[Dict]:
"""搜索代码"""
try:
# 构建查询字符串
if language and "language:" not in query:
query += f" language:{language}"
# 执行搜索
result = await self.github.search_code(
query=query,
per_page=per_page
)
if result and "items" in result:
return result["items"]
return []
except Exception as e:
print(f"代码搜索出错: {str(e)}")
return []
async def _search_bilingual_code(self, english_query: str, chinese_query: str, language: str = None, per_page: int = 30) -> List[Dict]:
"""同时搜索中英文代码并合并结果"""
try:
# 搜索英文代码
english_results = await self._search_code(
query=english_query,
language=language,
per_page=per_page
)
# 搜索中文代码
chinese_results = await self._search_code(
query=chinese_query,
language=language,
per_page=per_page
)
# 合并结果,去除重复项
merged_results = []
seen_files = set()
# 优先添加英文结果
for item in english_results:
# 使用文件URL作为唯一标识
file_url = item.get('html_url', '')
if file_url and file_url not in seen_files:
seen_files.add(file_url)
merged_results.append(item)
# 添加中文结果(排除重复)
for item in chinese_results:
file_url = item.get('html_url', '')
if file_url and file_url not in seen_files:
seen_files.add(file_url)
merged_results.append(item)
# 对结果进行排序,优先显示匹配度高的结果
# 由于无法直接获取匹配度,这里使用仓库的星标数作为替代指标
merged_results.sort(key=lambda x: x.get('repository', {}).get('stargazers_count', 0), reverse=True)
return merged_results[:per_page] # 返回合并后的前per_page个结果
except Exception as e:
print(f"双语代码搜索出错: {str(e)}")
return []
async def _search_users(self, query: str, per_page: int = 30) -> List[Dict]:
"""搜索用户"""
try:
result = await self.github.search_users(
query=query,
per_page=per_page
)
if result and "items" in result:
return result["items"]
return []
except Exception as e:
print(f"用户搜索出错: {str(e)}")
return []
async def _search_bilingual_users(self, english_query: str, chinese_query: str, per_page: int = 30) -> List[Dict]:
"""同时搜索中英文用户并合并结果"""
try:
# 搜索英文用户
english_results = await self._search_users(
query=english_query,
per_page=per_page
)
# 搜索中文用户
chinese_results = await self._search_users(
query=chinese_query,
per_page=per_page
)
# 合并结果,去除重复项
merged_results = []
seen_users = set()
# 优先添加英文结果
for user in english_results:
user_id = user.get('id')
if user_id and user_id not in seen_users:
seen_users.add(user_id)
merged_results.append(user)
# 添加中文结果(排除重复)
for user in chinese_results:
user_id = user.get('id')
if user_id and user_id not in seen_users:
seen_users.add(user_id)
merged_results.append(user)
# 按关注者数量进行排序
merged_results.sort(key=lambda x: x.get('followers', 0), reverse=True)
return merged_results[:per_page] # 返回合并后的前per_page个结果
except Exception as e:
print(f"双语用户搜索出错: {str(e)}")
return []
async def _search_topics(self, query: str, per_page: int = 30) -> List[Dict]:
"""搜索主题"""
try:
result = await self.github.search_topics(
query=query,
per_page=per_page
)
if result and "items" in result:
return result["items"]
return []
except Exception as e:
print(f"主题搜索出错: {str(e)}")
return []
async def _search_bilingual_topics(self, english_query: str, chinese_query: str, per_page: int = 30) -> List[Dict]:
"""同时搜索中英文主题并合并结果"""
try:
# 搜索英文主题
english_results = await self._search_topics(
query=english_query,
per_page=per_page
)
# 搜索中文主题
chinese_results = await self._search_topics(
query=chinese_query,
per_page=per_page
)
# 合并结果,去除重复项
merged_results = []
seen_topics = set()
# 优先添加英文结果
for topic in english_results:
topic_name = topic.get('name')
if topic_name and topic_name not in seen_topics:
seen_topics.add(topic_name)
merged_results.append(topic)
# 添加中文结果(排除重复)
for topic in chinese_results:
topic_name = topic.get('name')
if topic_name and topic_name not in seen_topics:
seen_topics.add(topic_name)
merged_results.append(topic)
# 可以按流行度进行排序(如果有)
if merged_results and 'featured' in merged_results[0]:
merged_results.sort(key=lambda x: x.get('featured', False), reverse=True)
return merged_results[:per_page] # 返回合并后的前per_page个结果
except Exception as e:
print(f"双语主题搜索出错: {str(e)}")
return []
async def _get_repo_details(self, repos: List[Dict]) -> List[Dict]:
"""获取仓库详细信息"""
enhanced_repos = []
for repo in repos:
try:
# 获取README信息
owner = repo.get('owner', {}).get('login') if repo.get('owner') is not None else None
repo_name = repo.get('name')
if owner and repo_name:
readme = await self.github.get_repo_readme(owner, repo_name)
if readme and "decoded_content" in readme:
# 提取README的前1000个字符作为摘要
repo['readme_excerpt'] = readme["decoded_content"][:1000] + "..."
# 获取语言使用情况
languages = await self.github.get_repository_languages(owner, repo_name)
if languages:
repo['languages_detail'] = languages
# 获取最新发布版本
releases = await self.github.get_repo_releases(owner, repo_name, per_page=1)
if releases and len(releases) > 0:
repo['latest_release'] = releases[0]
# 获取主题标签
topics = await self.github.get_repo_topics(owner, repo_name)
if topics and "names" in topics:
repo['topics'] = topics["names"]
enhanced_repos.append(repo)
except Exception as e:
print(f"获取仓库 {repo.get('full_name')} 详情时出错: {str(e)}")
enhanced_repos.append(repo) # 添加原始仓库信息
return enhanced_repos
def _format_repos(self, repos: List[Dict]) -> str:
"""格式化仓库列表"""
formatted = []
for i, repo in enumerate(repos, 1):
# 构建仓库URL
repo_url = repo.get('html_url', '')
# 构建完整的引用
reference = (
f"{i}. **{repo.get('full_name', '')}**\n"
f" - 描述: {repo.get('description', 'N/A')}\n"
f" - 语言: {repo.get('language', 'N/A')}\n"
f" - 星标: {repo.get('stargazers_count', 0)}\n"
f" - Fork数: {repo.get('forks_count', 0)}\n"
f" - 更新时间: {repo.get('updated_at', 'N/A')[:10]}\n"
f" - 创建时间: {repo.get('created_at', 'N/A')[:10]}\n"
f" - URL: <a href='{repo_url}' target='_blank'>{repo_url}</a>\n"
)
# 添加主题标签(如果有)
if repo.get('topics'):
topics_str = ", ".join(repo.get('topics'))
reference += f" - 主题标签: {topics_str}\n"
# 添加最新发布版本(如果有)
if repo.get('latest_release'):
release = repo.get('latest_release')
reference += f" - 最新版本: {release.get('tag_name', 'N/A')} ({release.get('published_at', 'N/A')[:10]})\n"
# 添加README摘要(如果有)
if repo.get('readme_excerpt'):
# 截断README,只取前300个字符
readme_short = repo.get('readme_excerpt')[:300].replace('\n', ' ')
reference += f" - README摘要: {readme_short}...\n"
formatted.append(reference)
return "\n".join(formatted)
def _generate_apology_prompt(self, criteria: SearchCriteria) -> str:
"""生成道歉提示"""
return f"""很抱歉,我们未能找到与"{criteria.main_topic}"相关的GitHub项目。
可能的原因:
1. 搜索词过于具体或冷门
2. 星标数要求过高
3. 编程语言限制过于严格
建议解决方案:
1. 尝试使用更通用的关键词
2. 降低最低星标数要求
3. 移除或更改编程语言限制
请根据以上建议调整后重试。"""
def _get_current_time(self) -> str:
"""获取当前时间信息"""
now = datetime.now()
return now.strftime("%Y年%m月%d")

查看文件

@@ -0,0 +1,156 @@
from typing import List, Dict, Any
from .base_handler import BaseHandler
from ..query_analyzer import SearchCriteria
import asyncio
class CodeSearchHandler(BaseHandler):
"""代码搜索处理器"""
def __init__(self, github, llm_kwargs=None):
super().__init__(github, llm_kwargs)
async def handle(
self,
criteria: SearchCriteria,
chatbot: List[List[str]],
history: List[List[str]],
system_prompt: str,
llm_kwargs: Dict[str, Any],
plugin_kwargs: Dict[str, Any],
) -> str:
"""处理代码搜索请求,返回最终的prompt"""
search_params = self._get_search_params(plugin_kwargs)
# 搜索代码
code_results = await self._search_bilingual_code(
english_query=criteria.github_params["query"],
chinese_query=criteria.github_params["chinese_query"],
language=criteria.language,
per_page=search_params['max_repos']
)
if not code_results:
return self._generate_apology_prompt(criteria)
# 获取代码文件内容
enhanced_code_results = await self._get_code_details(code_results[:search_params['max_details']])
self.ranked_repos = [item["repository"] for item in enhanced_code_results if "repository" in item]
if not enhanced_code_results:
return self._generate_apology_prompt(criteria)
# 构建最终的prompt
current_time = self._get_current_time()
final_prompt = f"""当前时间: {current_time}
基于用户对{criteria.main_topic}的查询,我找到了以下代码示例。
代码搜索结果:
{self._format_code_results(enhanced_code_results)}
请提供:
1. 对于搜索的"{criteria.main_topic}"主题的综合解释:
- 概念和原理介绍
- 常见实现方法和技术
- 最佳实践和注意事项
2. 对每个代码示例:
- 解释代码的主要功能和实现方式
- 分析代码质量、可读性和效率
- 指出代码中的亮点和潜在改进空间
- 说明代码的适用场景
3. 代码实现比较:
- 不同实现方法的优缺点
- 性能和可维护性分析
- 适用不同场景的实现建议
4. 学习建议:
- 理解和使用这些代码需要的背景知识
- 如何扩展或改进所展示的代码
- 进一步学习相关技术的资源
重要提示:
- 深入解释代码的核心逻辑和实现思路
- 提供专业、技术性的分析
- 优先关注代码的实现质量和技术价值
- 当代码实现有问题时,指出并提供改进建议
- 对于复杂代码,分解解释其组成部分
- 根据用户查询的具体问题提供针对性答案
- 所有链接请使用<a href='链接地址' target='_blank'>链接文本</a>格式,确保链接在新窗口打开
使用markdown格式提供清晰的分节回复。
"""
return final_prompt
async def _get_code_details(self, code_results: List[Dict]) -> List[Dict]:
"""获取代码详情"""
enhanced_results = []
for item in code_results:
try:
repo = item.get('repository', {})
file_path = item.get('path', '')
repo_name = repo.get('full_name', '')
if repo_name and file_path:
owner, repo_name = repo_name.split('/')
# 获取文件内容
file_content = await self.github.get_file_content(owner, repo_name, file_path)
if file_content and "decoded_content" in file_content:
item['code_content'] = file_content["decoded_content"]
# 获取仓库基本信息
repo_details = await self.github.get_repo(owner, repo_name)
if repo_details:
item['repository'] = repo_details
enhanced_results.append(item)
except Exception as e:
print(f"获取代码详情时出错: {str(e)}")
enhanced_results.append(item) # 添加原始信息
return enhanced_results
def _format_code_results(self, code_results: List[Dict]) -> str:
"""格式化代码搜索结果"""
formatted = []
for i, item in enumerate(code_results, 1):
# 构建仓库信息
repo = item.get('repository', {})
repo_name = repo.get('full_name', 'N/A')
repo_url = repo.get('html_url', '')
stars = repo.get('stargazers_count', 0)
language = repo.get('language', 'N/A')
# 构建文件信息
file_path = item.get('path', 'N/A')
file_url = item.get('html_url', '')
# 构建代码内容
code_content = item.get('code_content', '')
if code_content:
# 只显示前30行代码
code_lines = code_content.split("\n")
if len(code_lines) > 30:
displayed_code = "\n".join(code_lines[:30]) + "\n... (代码太长已截断) ..."
else:
displayed_code = code_content
else:
displayed_code = "(代码内容获取失败)"
reference = (
f"### {i}. {file_path} (在 {repo_name} 中)\n\n"
f"- **仓库**: <a href='{repo_url}' target='_blank'>{repo_name}</a> (⭐ {stars}, 语言: {language})\n"
f"- **文件路径**: <a href='{file_url}' target='_blank'>{file_path}</a>\n\n"
f"```{language.lower()}\n{displayed_code}\n```\n\n"
)
formatted.append(reference)
return "\n".join(formatted)

查看文件

@@ -0,0 +1,192 @@
from typing import List, Dict, Any
from .base_handler import BaseHandler
from ..query_analyzer import SearchCriteria
import asyncio
class RepositoryHandler(BaseHandler):
"""仓库搜索处理器"""
def __init__(self, github, llm_kwargs=None):
super().__init__(github, llm_kwargs)
async def handle(
self,
criteria: SearchCriteria,
chatbot: List[List[str]],
history: List[List[str]],
system_prompt: str,
llm_kwargs: Dict[str, Any],
plugin_kwargs: Dict[str, Any],
) -> str:
"""处理仓库搜索请求,返回最终的prompt"""
search_params = self._get_search_params(plugin_kwargs)
# 如果是特定仓库查询
if criteria.repo_id:
try:
owner, repo = criteria.repo_id.split('/')
repo_details = await self.github.get_repo(owner, repo)
if repo_details:
# 获取推荐的相似仓库
similar_repos = await self.github.get_repo_recommendations(criteria.repo_id, limit=5)
# 添加详细信息
all_repos = [repo_details] + similar_repos
enhanced_repos = await self._get_repo_details(all_repos)
self.ranked_repos = enhanced_repos
# 构建最终的prompt
current_time = self._get_current_time()
final_prompt = self._build_repo_detail_prompt(enhanced_repos[0], enhanced_repos[1:], current_time)
return final_prompt
else:
return self._generate_apology_prompt(criteria)
except Exception as e:
print(f"处理特定仓库时出错: {str(e)}")
return self._generate_apology_prompt(criteria)
# 一般仓库搜索
repos = await self._search_bilingual_repositories(
english_query=criteria.github_params["query"],
chinese_query=criteria.github_params["chinese_query"],
language=criteria.language,
min_stars=criteria.min_stars,
per_page=search_params['max_repos']
)
if not repos:
return self._generate_apology_prompt(criteria)
# 获取仓库详情
enhanced_repos = await self._get_repo_details(repos[:search_params['max_details']]) # 使用max_details参数
self.ranked_repos = enhanced_repos
if not enhanced_repos:
return self._generate_apology_prompt(criteria)
# 构建最终的prompt
current_time = self._get_current_time()
final_prompt = f"""当前时间: {current_time}
基于用户对{criteria.main_topic}的兴趣,以下是相关的GitHub仓库。
可供推荐的GitHub仓库:
{self._format_repos(enhanced_repos)}
请提供:
1. 按功能、用途或成熟度对仓库进行分组
2. 对每个仓库:
- 简要描述其主要功能和用途
- 分析其技术特点和优势
- 说明其适用场景和使用难度
- 指出其与同类产品相比的独特优势
- 解释其星标数量和活跃度代表的意义
3. 使用建议:
- 新手最适合入门的仓库
- 生产环境中最稳定可靠的选择
- 最新技术栈或创新方案的代表
- 学习特定技术的最佳资源
4. 相关资源:
- 学习这些项目需要的前置知识
- 项目间的关联和技术栈兼容性
- 可能的使用组合方案
重要提示:
- 重点解释为什么每个仓库值得关注
- 突出项目间的关联性和差异性
- 考虑用户不同水平的需求(初学者vs专业人士)
- 在介绍项目时,使用<a href='链接' target='_blank'>文本</a>格式,确保链接在新窗口打开
- 根据仓库的活跃度、更新频率、维护状态提供使用建议
- 仅基于提供的信息,不要做无根据的猜测
- 在信息缺失或不明确时,坦诚说明
使用markdown格式提供清晰的分节回复。
"""
return final_prompt
def _build_repo_detail_prompt(self, main_repo: Dict, similar_repos: List[Dict], current_time: str) -> str:
"""构建仓库详情prompt"""
# 提取README摘要
readme_content = "未提供"
if main_repo.get('readme_excerpt'):
readme_content = main_repo.get('readme_excerpt')
# 构建语言分布
languages = main_repo.get('languages_detail', {})
lang_distribution = []
if languages:
total = sum(languages.values())
for lang, bytes_val in languages.items():
percentage = (bytes_val / total) * 100
lang_distribution.append(f"{lang}: {percentage:.1f}%")
lang_str = "未知"
if lang_distribution:
lang_str = ", ".join(lang_distribution)
# 构建最终prompt
prompt = f"""当前时间: {current_time}
## 主要仓库信息
### {main_repo.get('full_name')}
- **描述**: {main_repo.get('description', '未提供')}
- **星标数**: {main_repo.get('stargazers_count', 0)}
- **Fork数**: {main_repo.get('forks_count', 0)}
- **Watch数**: {main_repo.get('watchers_count', 0)}
- **Issues数**: {main_repo.get('open_issues_count', 0)}
- **语言分布**: {lang_str}
- **许可证**: {main_repo.get('license', {}).get('name', '未指定') if main_repo.get('license') is not None else '未指定'}
- **创建时间**: {main_repo.get('created_at', '')[:10]}
- **最近更新**: {main_repo.get('updated_at', '')[:10]}
- **主题标签**: {', '.join(main_repo.get('topics', ['']))}
- **GitHub链接**: <a href='{main_repo.get('html_url')}' target='_blank'>链接</a>
### README摘要:
{readme_content}
## 类似仓库:
{self._format_repos(similar_repos)}
请提供以下内容:
1. **项目概述**
- 详细解释{main_repo.get('name', '')}项目的主要功能和用途
- 分析其技术特点、架构和实现原理
- 讨论其在所属领域的地位和影响力
- 评估项目成熟度和稳定性
2. **优势与特点**
- 与同类项目相比的独特优势
- 显著的技术创新或设计模式
- 值得学习或借鉴的代码实践
3. **使用场景**
- 最适合的应用场景
- 潜在的使用限制和注意事项
- 入门门槛和学习曲线评估
- 产品级应用的可行性分析
4. **资源与生态**
- 相关学习资源推荐
- 配套工具和库的建议
- 社区支持和活跃度评估
5. **类似项目对比**
- 与列出的类似项目的详细对比
- 不同场景下的最佳选择建议
- 潜在的互补使用方案
提示:所有链接请使用<a href='链接地址' target='_blank'>链接文本</a>格式,确保链接在新窗口打开。
请以专业、客观的技术分析角度回答,使用markdown格式提供结构化信息。
"""
return prompt

查看文件

@@ -0,0 +1,217 @@
from typing import List, Dict, Any
from .base_handler import BaseHandler
from ..query_analyzer import SearchCriteria
import asyncio
class TopicHandler(BaseHandler):
"""主题搜索处理器"""
def __init__(self, github, llm_kwargs=None):
super().__init__(github, llm_kwargs)
async def handle(
self,
criteria: SearchCriteria,
chatbot: List[List[str]],
history: List[List[str]],
system_prompt: str,
llm_kwargs: Dict[str, Any],
plugin_kwargs: Dict[str, Any],
) -> str:
"""处理主题搜索请求,返回最终的prompt"""
search_params = self._get_search_params(plugin_kwargs)
# 搜索主题
topics = await self._search_bilingual_topics(
english_query=criteria.github_params["query"],
chinese_query=criteria.github_params["chinese_query"],
per_page=search_params['max_repos']
)
if not topics:
# 尝试用主题搜索仓库
search_query = criteria.github_params["query"]
chinese_search_query = criteria.github_params["chinese_query"]
if "topic:" not in search_query:
search_query += " topic:" + criteria.main_topic.replace(" ", "-")
if "topic:" not in chinese_search_query:
chinese_search_query += " topic:" + criteria.main_topic.replace(" ", "-")
repos = await self._search_bilingual_repositories(
english_query=search_query,
chinese_query=chinese_search_query,
language=criteria.language,
min_stars=criteria.min_stars,
per_page=search_params['max_repos']
)
if not repos:
return self._generate_apology_prompt(criteria)
# 获取仓库详情
enhanced_repos = await self._get_repo_details(repos[:10])
self.ranked_repos = enhanced_repos
if not enhanced_repos:
return self._generate_apology_prompt(criteria)
# 构建基于主题的仓库列表prompt
current_time = self._get_current_time()
final_prompt = f"""当前时间: {current_time}
基于用户对主题"{criteria.main_topic}"的查询,我找到了以下相关GitHub仓库。
主题相关仓库:
{self._format_repos(enhanced_repos)}
请提供:
1. 主题综述:
- "{criteria.main_topic}"主题的概述和重要性
- 该主题在技术领域中的应用和发展趋势
- 主题相关的主要技术栈和知识体系
2. 仓库分析:
- 按功能、技术栈或应用场景对仓库进行分类
- 每个仓库在该主题领域的定位和贡献
- 不同仓库间的技术路线对比
3. 学习路径建议:
- 初学者入门该主题的推荐仓库和学习顺序
- 进阶学习的关键仓库和技术要点
- 实际应用中的最佳实践选择
4. 技术生态分析:
- 该主题下的主流工具和库
- 社区活跃度和维护状况
- 与其他相关技术的集成方案
重要提示:
- 主题"{criteria.main_topic}"是用户查询的核心,请围绕此主题展开分析
- 注重仓库质量评估和使用建议
- 提供基于事实的客观技术分析
- 在介绍仓库时使用<a href='链接地址' target='_blank'>链接文本</a>格式,确保链接在新窗口打开
- 考虑不同技术水平用户的需求
使用markdown格式提供清晰的分节回复。
"""
return final_prompt
# 如果找到了主题,则获取主题下的热门仓库
topic_repos = []
for topic in topics[:5]: # 增加到5个主题
topic_name = topic.get('name', '')
if topic_name:
# 搜索该主题下的仓库
repos = await self._search_repositories(
query=f"topic:{topic_name}",
language=criteria.language,
min_stars=criteria.min_stars,
per_page=20 # 每个主题最多20个仓库
)
if repos:
for repo in repos:
repo['topic_source'] = topic_name
topic_repos.append(repo)
if not topic_repos:
return self._generate_apology_prompt(criteria)
# 获取前N个仓库的详情
enhanced_repos = await self._get_repo_details(topic_repos[:search_params['max_details']])
self.ranked_repos = enhanced_repos
if not enhanced_repos:
return self._generate_apology_prompt(criteria)
# 构建最终的prompt
current_time = self._get_current_time()
final_prompt = f"""当前时间: {current_time}
基于用户对"{criteria.main_topic}"主题的查询,我找到了以下相关GitHub主题和仓库。
主题相关仓库:
{self._format_topic_repos(enhanced_repos)}
请提供:
1. 主题概述:
- 对"{criteria.main_topic}"相关主题的介绍和技术背景
- 这些主题在软件开发中的重要性和应用范围
- 主题间的关联性和技术演进路径
2. 精选仓库分析:
- 每个主题下最具代表性的仓库详解
- 仓库的技术亮点和创新点
- 使用场景和技术成熟度评估
3. 技术趋势分析:
- 基于主题和仓库活跃度的技术发展趋势
- 新兴解决方案和传统方案的对比
- 未来可能的技术方向预测
4. 实践建议:
- 不同应用场景下的最佳仓库选择
- 学习路径和资源推荐
- 实际项目中的应用策略
重要提示:
- 将分析重点放在主题的技术内涵和价值上
- 突出主题间的关联性和技术演进脉络
- 提供基于数据(星标数、更新频率等)的客观分析
- 考虑不同技术背景用户的需求
- 所有链接请使用<a href='链接地址' target='_blank'>链接文本</a>格式,确保链接在新窗口打开
使用markdown格式提供清晰的分节回复。
"""
return final_prompt
def _format_topic_repos(self, repos: List[Dict]) -> str:
"""按主题格式化仓库列表"""
# 按主题分组
topics_dict = {}
for repo in repos:
topic = repo.get('topic_source', '其他')
if topic not in topics_dict:
topics_dict[topic] = []
topics_dict[topic].append(repo)
# 格式化输出
formatted = []
for topic, topic_repos in topics_dict.items():
formatted.append(f"## 主题: {topic}\n")
for i, repo in enumerate(topic_repos, 1):
# 构建仓库URL
repo_url = repo.get('html_url', '')
# 构建引用
reference = (
f"{i}. **{repo.get('full_name', '')}**\n"
f" - 描述: {repo.get('description', 'N/A')}\n"
f" - 语言: {repo.get('language', 'N/A')}\n"
f" - 星标: {repo.get('stargazers_count', 0)}\n"
f" - Fork数: {repo.get('forks_count', 0)}\n"
f" - 更新时间: {repo.get('updated_at', 'N/A')[:10]}\n"
f" - URL: <a href='{repo_url}' target='_blank'>{repo_url}</a>\n"
)
# 添加主题标签(如果有)
if repo.get('topics'):
topics_str = ", ".join(repo.get('topics'))
reference += f" - 主题标签: {topics_str}\n"
# 添加README摘要(如果有)
if repo.get('readme_excerpt'):
# 截断README,只取前200个字符
readme_short = repo.get('readme_excerpt')[:200].replace('\n', ' ')
reference += f" - README摘要: {readme_short}...\n"
formatted.append(reference)
formatted.append("\n") # 主题之间添加空行
return "\n".join(formatted)

查看文件

@@ -0,0 +1,164 @@
from typing import List, Dict, Any
from .base_handler import BaseHandler
from ..query_analyzer import SearchCriteria
import asyncio
class UserSearchHandler(BaseHandler):
"""用户搜索处理器"""
def __init__(self, github, llm_kwargs=None):
super().__init__(github, llm_kwargs)
async def handle(
self,
criteria: SearchCriteria,
chatbot: List[List[str]],
history: List[List[str]],
system_prompt: str,
llm_kwargs: Dict[str, Any],
plugin_kwargs: Dict[str, Any],
) -> str:
"""处理用户搜索请求,返回最终的prompt"""
search_params = self._get_search_params(plugin_kwargs)
# 搜索用户
users = await self._search_bilingual_users(
english_query=criteria.github_params["query"],
chinese_query=criteria.github_params["chinese_query"],
per_page=search_params['max_repos']
)
if not users:
return self._generate_apology_prompt(criteria)
# 获取用户详情和仓库
enhanced_users = await self._get_user_details(users[:search_params['max_details']])
self.ranked_repos = [] # 添加用户top仓库进行展示
for user in enhanced_users:
if user.get('top_repos'):
self.ranked_repos.extend(user.get('top_repos'))
if not enhanced_users:
return self._generate_apology_prompt(criteria)
# 构建最终的prompt
current_time = self._get_current_time()
final_prompt = f"""当前时间: {current_time}
基于用户对{criteria.main_topic}的查询,我找到了以下GitHub用户。
GitHub用户搜索结果:
{self._format_users(enhanced_users)}
请提供:
1. 用户综合分析:
- 各开发者的专业领域和技术专长
- 他们在GitHub开源社区的影响力
- 技术实力和项目质量评估
2. 对每位开发者:
- 其主要贡献领域和技术栈
- 代表性项目及其价值
- 编程风格和技术特点
- 在相关领域的影响力
3. 项目推荐:
- 针对用户查询的最有价值项目
- 值得学习和借鉴的代码实践
- 不同用户项目的相互补充关系
4. 如何学习和使用:
- 如何从这些开发者项目中学习
- 最适合入门学习的项目
- 进阶学习的路径建议
重要提示:
- 关注开发者的技术专长和核心贡献
- 分析其开源项目的技术价值
- 根据用户的原始查询提供相关建议
- 避免过度赞美或主观评价
- 基于事实数据(项目数、星标数等)进行客观分析
- 所有链接请使用<a href='链接地址' target='_blank'>链接文本</a>格式,确保链接在新窗口打开
使用markdown格式提供清晰的分节回复。
"""
return final_prompt
async def _get_user_details(self, users: List[Dict]) -> List[Dict]:
"""获取用户详情和仓库"""
enhanced_users = []
for user in users:
try:
username = user.get('login')
if username:
# 获取用户详情
user_details = await self.github.get_user(username)
if user_details:
user.update(user_details)
# 获取用户仓库
repos = await self.github.get_user_repos(
username,
sort="stars",
per_page=10 # 增加到10个仓库
)
if repos:
user['top_repos'] = repos
enhanced_users.append(user)
except Exception as e:
print(f"获取用户 {user.get('login')} 详情时出错: {str(e)}")
enhanced_users.append(user) # 添加原始信息
return enhanced_users
def _format_users(self, users: List[Dict]) -> str:
"""格式化用户列表"""
formatted = []
for i, user in enumerate(users, 1):
# 构建用户信息
username = user.get('login', 'N/A')
name = user.get('name', username)
profile_url = user.get('html_url', '')
bio = user.get('bio', '无简介')
followers = user.get('followers', 0)
public_repos = user.get('public_repos', 0)
company = user.get('company', '未指定')
location = user.get('location', '未指定')
blog = user.get('blog', '')
user_info = (
f"### {i}. {name} (@{username})\n\n"
f"- **简介**: {bio}\n"
f"- **关注者**: {followers} | **公开仓库**: {public_repos}\n"
f"- **公司**: {company} | **地点**: {location}\n"
f"- **个人网站**: {blog}\n"
f"- **GitHub**: <a href='{profile_url}' target='_blank'>{username}</a>\n\n"
)
# 添加用户的热门仓库
top_repos = user.get('top_repos', [])
if top_repos:
user_info += "**热门仓库**:\n\n"
for repo in top_repos:
repo_name = repo.get('name', '')
repo_url = repo.get('html_url', '')
repo_desc = repo.get('description', '无描述')
repo_stars = repo.get('stargazers_count', 0)
repo_language = repo.get('language', '未指定')
user_info += (
f"- <a href='{repo_url}' target='_blank'>{repo_name}</a> - ⭐ {repo_stars}, {repo_language}\n"
f" {repo_desc}\n\n"
)
formatted.append(user_info)
return "\n".join(formatted)

查看文件

@@ -0,0 +1,356 @@
from typing import Dict, List
from dataclasses import dataclass
import re
@dataclass
class SearchCriteria:
"""搜索条件"""
query_type: str # 查询类型: repo/code/user/topic
main_topic: str # 主题
sub_topics: List[str] # 子主题列表
language: str # 编程语言
min_stars: int # 最少星标数
github_params: Dict # GitHub搜索参数
original_query: str = "" # 原始查询字符串
repo_id: str = "" # 特定仓库ID或名称
class QueryAnalyzer:
"""查询分析器"""
# 响应索引常量
BASIC_QUERY_INDEX = 0
GITHUB_QUERY_INDEX = 1
def __init__(self):
self.valid_types = {
"repo": ["repository", "project", "library", "framework", "tool"],
"code": ["code", "snippet", "implementation", "function", "class", "algorithm"],
"user": ["user", "developer", "organization", "contributor", "maintainer"],
"topic": ["topic", "category", "tag", "field", "area", "domain"]
}
def analyze_query(self, query: str, chatbot: List, llm_kwargs: Dict):
"""分析查询意图"""
from crazy_functions.crazy_utils import \
request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency as request_gpt
# 1. 基本查询分析
type_prompt = f"""请分析这个与GitHub相关的查询,并严格按照以下XML格式回答
查询: {query}
说明:
1. 你的回答必须使用下面显示的XML标签,不要有任何标签外的文本
2. 从以下选项中选择查询类型: repo/code/user/topic
- repo: 用于查找仓库、项目、框架或库
- code: 用于查找代码片段、函数实现或算法
- user: 用于查找用户、开发者或组织
- topic: 用于查找主题、类别或领域相关项目
3. 识别主题和子主题
4. 识别首选编程语言(如果有)
5. 确定最低星标数(如果适用)
必需格式:
<query_type>此处回答</query_type>
<main_topic>此处回答</main_topic>
<sub_topics>子主题1, 子主题2, ...</sub_topics>
<language>此处回答</language>
<min_stars>此处回答</min_stars>
示例回答:
1. 仓库查询:
查询: "查找有至少1000颗星的Python web框架"
<query_type>repo</query_type>
<main_topic>web框架</main_topic>
<sub_topics>后端开发, HTTP服务器, ORM</sub_topics>
<language>Python</language>
<min_stars>1000</min_stars>
2. 代码查询:
查询: "如何用JavaScript实现防抖函数"
<query_type>code</query_type>
<main_topic>防抖函数</main_topic>
<sub_topics>事件处理, 性能优化, 函数节流</sub_topics>
<language>JavaScript</language>
<min_stars>0</min_stars>"""
# 2. 生成英文搜索条件
github_prompt = f"""Optimize the following GitHub search query:
Query: {query}
Task: Convert the natural language query into an optimized GitHub search query.
Please use English, regardless of the language of the input query.
Available search fields and filters:
1. Basic fields:
- in:name - Search in repository names
- in:description - Search in repository descriptions
- in:readme - Search in README files
- in:topic - Search in topics
- language:X - Filter by programming language
- user:X - Repositories from a specific user
- org:X - Repositories from a specific organization
2. Code search fields:
- extension:X - Filter by file extension
- path:X - Filter by path
- filename:X - Filter by filename
3. Metric filters:
- stars:>X - Has more than X stars
- forks:>X - Has more than X forks
- size:>X - Size greater than X KB
- created:>YYYY-MM-DD - Created after a specific date
- pushed:>YYYY-MM-DD - Updated after a specific date
4. Other filters:
- is:public/private - Public or private repositories
- archived:true/false - Archived or not archived
- license:X - Specific license
- topic:X - Contains specific topic tag
Examples:
1. Query: "Find Python machine learning libraries with at least 1000 stars"
<query>machine learning in:description language:python stars:>1000</query>
2. Query: "Recently updated React UI component libraries"
<query>UI components library in:readme in:description language:javascript topic:react pushed:>2023-01-01</query>
3. Query: "Open source projects developed by Facebook"
<query>org:facebook is:public</query>
4. Query: "Depth-first search implementation in JavaScript"
<query>depth first search in:file language:javascript</query>
Please analyze the query and answer using only the XML tag:
<query>Provide the optimized GitHub search query, using appropriate fields and operators</query>"""
# 3. 生成中文搜索条件
chinese_github_prompt = f"""优化以下GitHub搜索查询:
查询: {query}
任务: 将自然语言查询转换为优化的GitHub搜索查询语句。
为了搜索中文内容,请提取原始查询的关键词并使用中文形式,同时保留GitHub特定的搜索语法为英文。
可用的搜索字段和过滤器:
1. 基本字段:
- in:name - 在仓库名称中搜索
- in:description - 在仓库描述中搜索
- in:readme - 在README文件中搜索
- in:topic - 在主题中搜索
- language:X - 按编程语言筛选
- user:X - 特定用户的仓库
- org:X - 特定组织的仓库
2. 代码搜索字段:
- extension:X - 按文件扩展名筛选
- path:X - 按路径筛选
- filename:X - 按文件名筛选
3. 指标过滤器:
- stars:>X - 有超过X颗星
- forks:>X - 有超过X个分支
- size:>X - 大小超过X KB
- created:>YYYY-MM-DD - 在特定日期后创建
- pushed:>YYYY-MM-DD - 在特定日期后更新
4. 其他过滤器:
- is:public/private - 公开或私有仓库
- archived:true/false - 已归档或未归档
- license:X - 特定许可证
- topic:X - 含特定主题标签
示例:
1. 查询: "找有关机器学习的Python库,至少1000颗星"
<query>机器学习 in:description language:python stars:>1000</query>
2. 查询: "最近更新的React UI组件库"
<query>UI 组件库 in:readme in:description language:javascript topic:react pushed:>2023-01-01</query>
3. 查询: "微信小程序开发框架"
<query>微信小程序 开发框架 in:name in:description in:readme</query>
请分析查询并仅使用XML标签回答:
<query>提供优化的GitHub搜索查询,使用适当的字段和运算符,保留中文关键词</query>"""
try:
# 构建提示数组
prompts = [
type_prompt,
github_prompt,
chinese_github_prompt,
]
show_messages = [
"分析查询类型...",
"优化英文GitHub搜索参数...",
"优化中文GitHub搜索参数...",
]
sys_prompts = [
"你是一个精通GitHub生态系统的专家,擅长分析与GitHub相关的查询。",
"You are a GitHub search expert, specialized in converting natural language queries into optimized GitHub search queries in English.",
"你是一个GitHub搜索专家,擅长处理查询并保留中文关键词进行搜索。",
]
# 使用同步方式调用LLM
responses = yield from request_gpt(
inputs_array=prompts,
inputs_show_user_array=show_messages,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[[] for _ in prompts],
sys_prompt_array=sys_prompts,
max_workers=3
)
# 从收集的响应中提取我们需要的内容
extracted_responses = []
for i in range(len(prompts)):
if (i * 2 + 1) < len(responses):
response = responses[i * 2 + 1]
if response is None:
raise Exception(f"Response {i} is None")
if not isinstance(response, str):
try:
response = str(response)
except:
raise Exception(f"Cannot convert response {i} to string")
extracted_responses.append(response)
else:
raise Exception(f"未收到第 {i + 1} 个响应")
# 解析基本信息
query_type = self._extract_tag(extracted_responses[self.BASIC_QUERY_INDEX], "query_type")
if not query_type:
print(
f"Debug - Failed to extract query_type. Response was: {extracted_responses[self.BASIC_QUERY_INDEX]}")
raise Exception("无法提取query_type标签内容")
query_type = query_type.lower()
main_topic = self._extract_tag(extracted_responses[self.BASIC_QUERY_INDEX], "main_topic")
if not main_topic:
print(f"Debug - Failed to extract main_topic. Using query as fallback.")
main_topic = query
query_type = self._normalize_query_type(query_type, query)
# 提取子主题
sub_topics = []
sub_topics_text = self._extract_tag(extracted_responses[self.BASIC_QUERY_INDEX], "sub_topics")
if sub_topics_text:
sub_topics = [topic.strip() for topic in sub_topics_text.split(",")]
# 提取语言
language = self._extract_tag(extracted_responses[self.BASIC_QUERY_INDEX], "language")
# 提取最低星标数
min_stars = 0
min_stars_text = self._extract_tag(extracted_responses[self.BASIC_QUERY_INDEX], "min_stars")
if min_stars_text and min_stars_text.isdigit():
min_stars = int(min_stars_text)
# 解析GitHub搜索参数 - 英文
english_github_query = self._extract_tag(extracted_responses[self.GITHUB_QUERY_INDEX], "query")
# 解析GitHub搜索参数 - 中文
chinese_github_query = self._extract_tag(extracted_responses[2], "query")
# 构建GitHub参数
github_params = {
"query": english_github_query,
"chinese_query": chinese_github_query,
"sort": "stars", # 默认按星标排序
"order": "desc", # 默认降序
"per_page": 30, # 默认每页30条
"page": 1 # 默认第1页
}
# 检查是否为特定仓库查询
repo_id = ""
if "repo:" in english_github_query or "repository:" in english_github_query:
repo_match = re.search(r'(repo|repository):([a-zA-Z0-9_.-]+/[a-zA-Z0-9_.-]+)', english_github_query)
if repo_match:
repo_id = repo_match.group(2)
print(f"Debug - 提取的信息:")
print(f"查询类型: {query_type}")
print(f"主题: {main_topic}")
print(f"子主题: {sub_topics}")
print(f"语言: {language}")
print(f"最低星标数: {min_stars}")
print(f"英文GitHub参数: {english_github_query}")
print(f"中文GitHub参数: {chinese_github_query}")
print(f"特定仓库: {repo_id}")
# 更新返回的 SearchCriteria,包含中英文查询
return SearchCriteria(
query_type=query_type,
main_topic=main_topic,
sub_topics=sub_topics,
language=language,
min_stars=min_stars,
github_params=github_params,
original_query=query,
repo_id=repo_id
)
except Exception as e:
raise Exception(f"分析查询失败: {str(e)}")
def _normalize_query_type(self, query_type: str, query: str) -> str:
"""规范化查询类型"""
if query_type in ["repo", "code", "user", "topic"]:
return query_type
query_lower = query.lower()
for type_name, keywords in self.valid_types.items():
for keyword in keywords:
if keyword in query_lower:
return type_name
query_type_lower = query_type.lower()
for type_name, keywords in self.valid_types.items():
for keyword in keywords:
if keyword in query_type_lower:
return type_name
return "repo" # 默认返回repo类型
def _extract_tag(self, text: str, tag: str) -> str:
"""提取标记内容"""
if not text:
return ""
# 标准XML格式处理多行和特殊字符
pattern = f"<{tag}>(.*?)</{tag}>"
match = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
if match:
content = match.group(1).strip()
if content:
return content
# 备用模式
patterns = [
rf"<{tag}>\s*([\s\S]*?)\s*</{tag}>", # 标准XML格式
rf"<{tag}>([\s\S]*?)(?:</{tag}>|$)", # 未闭合的标签
rf"[{tag}]([\s\S]*?)[/{tag}]", # 方括号格式
rf"{tag}:\s*(.*?)(?=\n\w|$)", # 冒号格式
rf"<{tag}>\s*(.*?)(?=<|$)" # 部分闭合
]
# 尝试所有模式
for pattern in patterns:
match = re.search(pattern, text, re.IGNORECASE | re.DOTALL)
if match:
content = match.group(1).strip()
if content: # 确保提取的内容不为空
return content
# 如果所有模式都失败,返回空字符串
return ""

查看文件

@@ -0,0 +1,701 @@
import aiohttp
import asyncio
import base64
import json
import random
from datetime import datetime
from typing import List, Dict, Optional, Union, Any
class GitHubSource:
"""GitHub API实现"""
# 默认API密钥列表 - 可以放置多个GitHub令牌
API_KEYS = [
"github_pat_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
"github_pat_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
# "your_github_token_1",
# "your_github_token_2",
# "your_github_token_3"
]
def __init__(self, api_key: Optional[Union[str, List[str]]] = None):
"""初始化GitHub API客户端
Args:
api_key: GitHub个人访问令牌或令牌列表
"""
if api_key is None:
self.api_keys = self.API_KEYS
elif isinstance(api_key, str):
self.api_keys = [api_key]
else:
self.api_keys = api_key
self._initialize()
def _initialize(self) -> None:
"""初始化客户端,设置默认参数"""
self.base_url = "https://api.github.com"
self.headers = {
"Accept": "application/vnd.github+json",
"X-GitHub-Api-Version": "2022-11-28",
"User-Agent": "GitHub-API-Python-Client"
}
# 如果有可用的API密钥,随机选择一个
if self.api_keys:
selected_key = random.choice(self.api_keys)
self.headers["Authorization"] = f"Bearer {selected_key}"
print(f"已随机选择API密钥进行认证")
else:
print("警告: 未提供API密钥,将受到GitHub API请求限制")
async def _request(self, method: str, endpoint: str, params: Dict = None, data: Dict = None) -> Any:
"""发送API请求
Args:
method: HTTP方法 (GET, POST, PUT, DELETE等)
endpoint: API端点
params: URL参数
data: 请求体数据
Returns:
解析后的响应JSON
"""
async with aiohttp.ClientSession(headers=self.headers) as session:
url = f"{self.base_url}{endpoint}"
# 为调试目的打印请求信息
print(f"请求: {method} {url}")
if params:
print(f"参数: {params}")
# 发送请求
request_kwargs = {}
if params:
request_kwargs["params"] = params
if data:
request_kwargs["json"] = data
async with session.request(method, url, **request_kwargs) as response:
response_text = await response.text()
# 检查HTTP状态码
if response.status >= 400:
print(f"API请求失败: HTTP {response.status}")
print(f"响应内容: {response_text}")
return None
# 解析JSON响应
try:
return json.loads(response_text)
except json.JSONDecodeError:
print(f"JSON解析错误: {response_text}")
return None
# ===== 用户相关方法 =====
async def get_user(self, username: Optional[str] = None) -> Dict:
"""获取用户信息
Args:
username: 指定用户名,不指定则获取当前授权用户
Returns:
用户信息字典
"""
endpoint = "/user" if username is None else f"/users/{username}"
return await self._request("GET", endpoint)
async def get_user_repos(self, username: Optional[str] = None, sort: str = "updated",
direction: str = "desc", per_page: int = 30, page: int = 1) -> List[Dict]:
"""获取用户的仓库列表
Args:
username: 指定用户名,不指定则获取当前授权用户
sort: 排序方式 (created, updated, pushed, full_name)
direction: 排序方向 (asc, desc)
per_page: 每页结果数量
page: 页码
Returns:
仓库列表
"""
endpoint = "/user/repos" if username is None else f"/users/{username}/repos"
params = {
"sort": sort,
"direction": direction,
"per_page": per_page,
"page": page
}
return await self._request("GET", endpoint, params=params)
async def get_user_starred(self, username: Optional[str] = None,
per_page: int = 30, page: int = 1) -> List[Dict]:
"""获取用户星标的仓库
Args:
username: 指定用户名,不指定则获取当前授权用户
per_page: 每页结果数量
page: 页码
Returns:
星标仓库列表
"""
endpoint = "/user/starred" if username is None else f"/users/{username}/starred"
params = {
"per_page": per_page,
"page": page
}
return await self._request("GET", endpoint, params=params)
# ===== 仓库相关方法 =====
async def get_repo(self, owner: str, repo: str) -> Dict:
"""获取仓库信息
Args:
owner: 仓库所有者
repo: 仓库名
Returns:
仓库信息
"""
endpoint = f"/repos/{owner}/{repo}"
return await self._request("GET", endpoint)
async def get_repo_branches(self, owner: str, repo: str, per_page: int = 30, page: int = 1) -> List[Dict]:
"""获取仓库的分支列表
Args:
owner: 仓库所有者
repo: 仓库名
per_page: 每页结果数量
page: 页码
Returns:
分支列表
"""
endpoint = f"/repos/{owner}/{repo}/branches"
params = {
"per_page": per_page,
"page": page
}
return await self._request("GET", endpoint, params=params)
async def get_repo_commits(self, owner: str, repo: str, sha: Optional[str] = None,
path: Optional[str] = None, per_page: int = 30, page: int = 1) -> List[Dict]:
"""获取仓库的提交历史
Args:
owner: 仓库所有者
repo: 仓库名
sha: 特定提交SHA或分支名
path: 文件路径筛选
per_page: 每页结果数量
page: 页码
Returns:
提交列表
"""
endpoint = f"/repos/{owner}/{repo}/commits"
params = {
"per_page": per_page,
"page": page
}
if sha:
params["sha"] = sha
if path:
params["path"] = path
return await self._request("GET", endpoint, params=params)
async def get_commit_details(self, owner: str, repo: str, commit_sha: str) -> Dict:
"""获取特定提交的详情
Args:
owner: 仓库所有者
repo: 仓库名
commit_sha: 提交SHA
Returns:
提交详情
"""
endpoint = f"/repos/{owner}/{repo}/commits/{commit_sha}"
return await self._request("GET", endpoint)
# ===== 内容相关方法 =====
async def get_file_content(self, owner: str, repo: str, path: str, ref: Optional[str] = None) -> Dict:
"""获取文件内容
Args:
owner: 仓库所有者
repo: 仓库名
path: 文件路径
ref: 分支名、标签名或提交SHA
Returns:
文件内容信息
"""
endpoint = f"/repos/{owner}/{repo}/contents/{path}"
params = {}
if ref:
params["ref"] = ref
response = await self._request("GET", endpoint, params=params)
if response and isinstance(response, dict) and "content" in response:
try:
# 解码Base64编码的文件内容
content = base64.b64decode(response["content"].encode()).decode()
response["decoded_content"] = content
except Exception as e:
print(f"解码文件内容时出错: {str(e)}")
return response
async def get_directory_content(self, owner: str, repo: str, path: str, ref: Optional[str] = None) -> List[Dict]:
"""获取目录内容
Args:
owner: 仓库所有者
repo: 仓库名
path: 目录路径
ref: 分支名、标签名或提交SHA
Returns:
目录内容列表
"""
# 注意此方法与get_file_content使用相同的端点,但对于目录会返回列表
endpoint = f"/repos/{owner}/{repo}/contents/{path}"
params = {}
if ref:
params["ref"] = ref
return await self._request("GET", endpoint, params=params)
# ===== Issues相关方法 =====
async def get_issues(self, owner: str, repo: str, state: str = "open",
sort: str = "created", direction: str = "desc",
per_page: int = 30, page: int = 1) -> List[Dict]:
"""获取仓库的Issues列表
Args:
owner: 仓库所有者
repo: 仓库名
state: Issue状态 (open, closed, all)
sort: 排序方式 (created, updated, comments)
direction: 排序方向 (asc, desc)
per_page: 每页结果数量
page: 页码
Returns:
Issues列表
"""
endpoint = f"/repos/{owner}/{repo}/issues"
params = {
"state": state,
"sort": sort,
"direction": direction,
"per_page": per_page,
"page": page
}
return await self._request("GET", endpoint, params=params)
async def get_issue(self, owner: str, repo: str, issue_number: int) -> Dict:
"""获取特定Issue的详情
Args:
owner: 仓库所有者
repo: 仓库名
issue_number: Issue编号
Returns:
Issue详情
"""
endpoint = f"/repos/{owner}/{repo}/issues/{issue_number}"
return await self._request("GET", endpoint)
async def get_issue_comments(self, owner: str, repo: str, issue_number: int) -> List[Dict]:
"""获取Issue的评论
Args:
owner: 仓库所有者
repo: 仓库名
issue_number: Issue编号
Returns:
评论列表
"""
endpoint = f"/repos/{owner}/{repo}/issues/{issue_number}/comments"
return await self._request("GET", endpoint)
# ===== Pull Requests相关方法 =====
async def get_pull_requests(self, owner: str, repo: str, state: str = "open",
sort: str = "created", direction: str = "desc",
per_page: int = 30, page: int = 1) -> List[Dict]:
"""获取仓库的Pull Request列表
Args:
owner: 仓库所有者
repo: 仓库名
state: PR状态 (open, closed, all)
sort: 排序方式 (created, updated, popularity, long-running)
direction: 排序方向 (asc, desc)
per_page: 每页结果数量
page: 页码
Returns:
Pull Request列表
"""
endpoint = f"/repos/{owner}/{repo}/pulls"
params = {
"state": state,
"sort": sort,
"direction": direction,
"per_page": per_page,
"page": page
}
return await self._request("GET", endpoint, params=params)
async def get_pull_request(self, owner: str, repo: str, pr_number: int) -> Dict:
"""获取特定Pull Request的详情
Args:
owner: 仓库所有者
repo: 仓库名
pr_number: Pull Request编号
Returns:
Pull Request详情
"""
endpoint = f"/repos/{owner}/{repo}/pulls/{pr_number}"
return await self._request("GET", endpoint)
async def get_pull_request_files(self, owner: str, repo: str, pr_number: int) -> List[Dict]:
"""获取Pull Request中修改的文件
Args:
owner: 仓库所有者
repo: 仓库名
pr_number: Pull Request编号
Returns:
修改文件列表
"""
endpoint = f"/repos/{owner}/{repo}/pulls/{pr_number}/files"
return await self._request("GET", endpoint)
# ===== 搜索相关方法 =====
async def search_repositories(self, query: str, sort: str = "stars",
order: str = "desc", per_page: int = 30, page: int = 1) -> Dict:
"""搜索仓库
Args:
query: 搜索关键词
sort: 排序方式 (stars, forks, updated)
order: 排序顺序 (asc, desc)
per_page: 每页结果数量
page: 页码
Returns:
搜索结果
"""
endpoint = "/search/repositories"
params = {
"q": query,
"sort": sort,
"order": order,
"per_page": per_page,
"page": page
}
return await self._request("GET", endpoint, params=params)
async def search_code(self, query: str, sort: str = "indexed",
order: str = "desc", per_page: int = 30, page: int = 1) -> Dict:
"""搜索代码
Args:
query: 搜索关键词
sort: 排序方式 (indexed)
order: 排序顺序 (asc, desc)
per_page: 每页结果数量
page: 页码
Returns:
搜索结果
"""
endpoint = "/search/code"
params = {
"q": query,
"sort": sort,
"order": order,
"per_page": per_page,
"page": page
}
return await self._request("GET", endpoint, params=params)
async def search_issues(self, query: str, sort: str = "created",
order: str = "desc", per_page: int = 30, page: int = 1) -> Dict:
"""搜索Issues和Pull Requests
Args:
query: 搜索关键词
sort: 排序方式 (created, updated, comments)
order: 排序顺序 (asc, desc)
per_page: 每页结果数量
page: 页码
Returns:
搜索结果
"""
endpoint = "/search/issues"
params = {
"q": query,
"sort": sort,
"order": order,
"per_page": per_page,
"page": page
}
return await self._request("GET", endpoint, params=params)
async def search_users(self, query: str, sort: str = "followers",
order: str = "desc", per_page: int = 30, page: int = 1) -> Dict:
"""搜索用户
Args:
query: 搜索关键词
sort: 排序方式 (followers, repositories, joined)
order: 排序顺序 (asc, desc)
per_page: 每页结果数量
page: 页码
Returns:
搜索结果
"""
endpoint = "/search/users"
params = {
"q": query,
"sort": sort,
"order": order,
"per_page": per_page,
"page": page
}
return await self._request("GET", endpoint, params=params)
# ===== 组织相关方法 =====
async def get_organization(self, org: str) -> Dict:
"""获取组织信息
Args:
org: 组织名称
Returns:
组织信息
"""
endpoint = f"/orgs/{org}"
return await self._request("GET", endpoint)
async def get_organization_repos(self, org: str, type: str = "all",
sort: str = "created", direction: str = "desc",
per_page: int = 30, page: int = 1) -> List[Dict]:
"""获取组织的仓库列表
Args:
org: 组织名称
type: 仓库类型 (all, public, private, forks, sources, member, internal)
sort: 排序方式 (created, updated, pushed, full_name)
direction: 排序方向 (asc, desc)
per_page: 每页结果数量
page: 页码
Returns:
仓库列表
"""
endpoint = f"/orgs/{org}/repos"
params = {
"type": type,
"sort": sort,
"direction": direction,
"per_page": per_page,
"page": page
}
return await self._request("GET", endpoint, params=params)
async def get_organization_members(self, org: str, per_page: int = 30, page: int = 1) -> List[Dict]:
"""获取组织成员列表
Args:
org: 组织名称
per_page: 每页结果数量
page: 页码
Returns:
成员列表
"""
endpoint = f"/orgs/{org}/members"
params = {
"per_page": per_page,
"page": page
}
return await self._request("GET", endpoint, params=params)
# ===== 更复杂的操作 =====
async def get_repository_languages(self, owner: str, repo: str) -> Dict:
"""获取仓库使用的编程语言及其比例
Args:
owner: 仓库所有者
repo: 仓库名
Returns:
语言使用情况
"""
endpoint = f"/repos/{owner}/{repo}/languages"
return await self._request("GET", endpoint)
async def get_repository_stats_contributors(self, owner: str, repo: str) -> List[Dict]:
"""获取仓库的贡献者统计
Args:
owner: 仓库所有者
repo: 仓库名
Returns:
贡献者统计信息
"""
endpoint = f"/repos/{owner}/{repo}/stats/contributors"
return await self._request("GET", endpoint)
async def get_repository_stats_commit_activity(self, owner: str, repo: str) -> List[Dict]:
"""获取仓库的提交活动
Args:
owner: 仓库所有者
repo: 仓库名
Returns:
提交活动统计
"""
endpoint = f"/repos/{owner}/{repo}/stats/commit_activity"
return await self._request("GET", endpoint)
async def example_usage():
"""GitHubSource使用示例"""
# 创建客户端实例可选传入API令牌
# github = GitHubSource(api_key="your_github_token")
github = GitHubSource()
try:
# 示例1搜索热门Python仓库
print("\n=== 示例1搜索热门Python仓库 ===")
repos = await github.search_repositories(
query="language:python stars:>1000",
sort="stars",
order="desc",
per_page=5
)
if repos and "items" in repos:
for i, repo in enumerate(repos["items"], 1):
print(f"\n--- 仓库 {i} ---")
print(f"名称: {repo['full_name']}")
print(f"描述: {repo['description']}")
print(f"星标数: {repo['stargazers_count']}")
print(f"Fork数: {repo['forks_count']}")
print(f"最近更新: {repo['updated_at']}")
print(f"URL: {repo['html_url']}")
# 示例2获取特定仓库的详情
print("\n=== 示例2获取特定仓库的详情 ===")
repo_details = await github.get_repo("microsoft", "vscode")
if repo_details:
print(f"名称: {repo_details['full_name']}")
print(f"描述: {repo_details['description']}")
print(f"星标数: {repo_details['stargazers_count']}")
print(f"Fork数: {repo_details['forks_count']}")
print(f"默认分支: {repo_details['default_branch']}")
print(f"开源许可: {repo_details.get('license', {}).get('name', '')}")
print(f"语言: {repo_details['language']}")
print(f"Open Issues数: {repo_details['open_issues_count']}")
# 示例3获取仓库的提交历史
print("\n=== 示例3获取仓库的最近提交 ===")
commits = await github.get_repo_commits("tensorflow", "tensorflow", per_page=5)
if commits:
for i, commit in enumerate(commits, 1):
print(f"\n--- 提交 {i} ---")
print(f"SHA: {commit['sha'][:7]}")
print(f"作者: {commit['commit']['author']['name']}")
print(f"日期: {commit['commit']['author']['date']}")
print(f"消息: {commit['commit']['message'].splitlines()[0]}")
# 示例4搜索代码
print("\n=== 示例4搜索代码 ===")
code_results = await github.search_code(
query="filename:README.md language:markdown pytorch in:file",
per_page=3
)
if code_results and "items" in code_results:
print(f"共找到: {code_results['total_count']} 个结果")
for i, item in enumerate(code_results["items"], 1):
print(f"\n--- 代码 {i} ---")
print(f"仓库: {item['repository']['full_name']}")
print(f"文件: {item['path']}")
print(f"URL: {item['html_url']}")
# 示例5获取文件内容
print("\n=== 示例5获取文件内容 ===")
file_content = await github.get_file_content("python", "cpython", "README.rst")
if file_content and "decoded_content" in file_content:
content = file_content["decoded_content"]
print(f"文件名: {file_content['name']}")
print(f"大小: {file_content['size']} 字节")
print(f"内容预览: {content[:200]}...")
# 示例6获取仓库使用的编程语言
print("\n=== 示例6获取仓库使用的编程语言 ===")
languages = await github.get_repository_languages("facebook", "react")
if languages:
print(f"React仓库使用的编程语言:")
for lang, bytes_of_code in languages.items():
print(f"- {lang}: {bytes_of_code} 字节")
# 示例7获取组织信息
print("\n=== 示例7获取组织信息 ===")
org_info = await github.get_organization("google")
if org_info:
print(f"名称: {org_info['name']}")
print(f"描述: {org_info.get('description', '')}")
print(f"位置: {org_info.get('location', '未指定')}")
print(f"公共仓库数: {org_info['public_repos']}")
print(f"成员数: {org_info.get('public_members', 0)}")
print(f"URL: {org_info['html_url']}")
# 示例8获取用户信息
print("\n=== 示例8获取用户信息 ===")
user_info = await github.get_user("torvalds")
if user_info:
print(f"名称: {user_info['name']}")
print(f"公司: {user_info.get('company', '')}")
print(f"博客: {user_info.get('blog', '')}")
print(f"位置: {user_info.get('location', '未指定')}")
print(f"公共仓库数: {user_info['public_repos']}")
print(f"关注者数: {user_info['followers']}")
print(f"URL: {user_info['html_url']}")
except Exception as e:
print(f"发生错误: {str(e)}")
import traceback
print(traceback.format_exc())
if __name__ == "__main__":
import asyncio
# 运行示例
asyncio.run(example_usage())

查看文件

@@ -0,0 +1,593 @@
from typing import List, Dict, Optional, Tuple, Union, Any
from dataclasses import dataclass, field
import os
import re
import logging
from crazy_functions.doc_fns.read_fns.unstructured_all.paper_structure_extractor import (
PaperStructureExtractor, PaperSection, StructuredPaper
)
from unstructured.partition.auto import partition
from unstructured.documents.elements import (
Text, Title, NarrativeText, ListItem, Table,
Footer, Header, PageBreak, Image, Address
)
@dataclass
class DocumentSection:
"""通用文档章节数据类"""
title: str # 章节标题,如果没有标题则为空字符串
content: str # 章节内容
level: int = 0 # 标题级别,0为主标题,1为一级标题,以此类推
section_type: str = "content" # 章节类型
is_heading_only: bool = False # 是否仅包含标题
subsections: List['DocumentSection'] = field(default_factory=list) # 子章节列表
@dataclass
class StructuredDocument:
"""结构化文档数据类"""
title: str = "" # 文档标题
metadata: Dict[str, Any] = field(default_factory=dict) # 元数据
sections: List[DocumentSection] = field(default_factory=list) # 章节列表
full_text: str = "" # 完整文本
is_paper: bool = False # 是否为学术论文
class GenericDocumentStructureExtractor:
"""通用文档结构提取器
可以从各种文档格式中提取结构信息,包括标题和内容。
支持论文、报告、文章和一般文本文档。
"""
# 支持的文件扩展名
SUPPORTED_EXTENSIONS = [
'.pdf', '.docx', '.doc', '.pptx', '.ppt',
'.txt', '.md', '.html', '.htm', '.xml',
'.rtf', '.odt', '.epub', '.msg', '.eml'
]
# 常见的标题前缀模式
HEADING_PATTERNS = [
# 数字标题 (1., 1.1., etc.)
r'^\s*(\d+\.)+\s+',
# 中文数字标题 (一、, 二、, etc.)
r'^\s*[一二三四五六七八九十]+[、::]\s+',
# 带括号的数字标题 ((1), (2), etc.)
r'^\s*\(\s*\d+\s*\)\s+',
# 特定标记的标题 (Chapter 1, Section 1, etc.)
r'^\s*(chapter|section|part|附录|章|节)\s+\d+[\.:]\s+',
]
# 常见的文档分段标记词
SECTION_MARKERS = {
'introduction': ['简介', '导言', '引言', 'introduction', '概述', 'overview'],
'background': ['背景', '现状', 'background', '理论基础', '相关工作'],
'main_content': ['主要内容', '正文', 'main content', '分析', '讨论'],
'conclusion': ['结论', '总结', 'conclusion', '结语', '小结', 'summary'],
'reference': ['参考', '参考文献', 'references', '文献', 'bibliography'],
'appendix': ['附录', 'appendix', '补充资料', 'supplementary']
}
def __init__(self):
"""初始化提取器"""
self.paper_extractor = PaperStructureExtractor() # 论文专用提取器
self._setup_logging()
def _setup_logging(self):
"""配置日志"""
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
self.logger = logging.getLogger(__name__)
def extract_document_structure(self, file_path: str, strategy: str = "fast") -> StructuredDocument:
"""提取文档结构
Args:
file_path: 文件路径
strategy: 提取策略 ("fast""accurate")
Returns:
StructuredDocument: 结构化文档对象
"""
try:
self.logger.info(f"正在处理文档结构: {file_path}")
# 1. 首先尝试使用论文提取器
try:
paper_result = self.paper_extractor.extract_paper_structure(file_path)
if paper_result and len(paper_result.sections) > 2: # 如果成功识别为论文结构
self.logger.info(f"成功识别为学术论文: {file_path}")
# 将论文结构转换为通用文档结构
return self._convert_paper_to_document(paper_result)
except Exception as e:
self.logger.debug(f"论文结构提取失败,将尝试通用提取: {str(e)}")
# 2. 使用通用方法提取文档结构
elements = partition(
str(file_path),
strategy=strategy,
include_metadata=True,
nlp=False
)
# 3. 使用通用提取器处理
doc = self._extract_generic_structure(elements)
return doc
except Exception as e:
self.logger.error(f"文档结构提取失败: {str(e)}")
# 返回一个空的结构化文档
return StructuredDocument(
title="未能提取文档标题",
sections=[DocumentSection(
title="",
content="",
level=0,
section_type="content"
)]
)
def _convert_paper_to_document(self, paper: StructuredPaper) -> StructuredDocument:
"""将论文结构转换为通用文档结构
Args:
paper: 结构化论文对象
Returns:
StructuredDocument: 转换后的通用文档结构
"""
doc = StructuredDocument(
title=paper.metadata.title,
is_paper=True,
full_text=paper.full_text
)
# 转换元数据
doc.metadata = {
'title': paper.metadata.title,
'authors': paper.metadata.authors,
'keywords': paper.keywords,
'abstract': paper.metadata.abstract if hasattr(paper.metadata, 'abstract') else "",
'is_paper': True
}
# 转换章节结构
doc.sections = self._convert_paper_sections(paper.sections)
return doc
def _convert_paper_sections(self, paper_sections: List[PaperSection], level: int = 0) -> List[DocumentSection]:
"""递归转换论文章节为通用文档章节
Args:
paper_sections: 论文章节列表
level: 当前章节级别
Returns:
List[DocumentSection]: 通用文档章节列表
"""
doc_sections = []
for section in paper_sections:
doc_section = DocumentSection(
title=section.title,
content=section.content,
level=section.level,
section_type=section.section_type,
is_heading_only=False if section.content else True
)
# 递归处理子章节
if section.subsections:
doc_section.subsections = self._convert_paper_sections(
section.subsections, level + 1
)
doc_sections.append(doc_section)
return doc_sections
def _extract_generic_structure(self, elements) -> StructuredDocument:
"""从元素列表中提取通用文档结构
Args:
elements: 文档元素列表
Returns:
StructuredDocument: 结构化文档对象
"""
# 创建结构化文档对象
doc = StructuredDocument(full_text="")
# 1. 提取文档标题
title_candidates = []
for i, element in enumerate(elements[:5]): # 只检查前5个元素
if isinstance(element, Title):
title_text = str(element).strip()
title_candidates.append((i, title_text))
if title_candidates:
# 使用第一个标题作为文档标题
doc.title = title_candidates[0][1]
# 2. 识别所有标题元素和内容
title_elements = []
# 2.1 首先识别所有标题
for i, element in enumerate(elements):
is_heading = False
title_text = ""
level = 0
# 检查元素类型
if isinstance(element, Title):
is_heading = True
title_text = str(element).strip()
# 进一步检查是否为真正的标题
if self._is_likely_heading(title_text, element, i, elements):
level = self._estimate_heading_level(title_text, element)
else:
is_heading = False
# 也检查格式像标题的普通文本
elif isinstance(element, (Text, NarrativeText)) and i > 0:
text = str(element).strip()
# 检查是否匹配标题模式
if any(re.match(pattern, text) for pattern in self.HEADING_PATTERNS):
# 检查长度和后续内容以确认是否为标题
if len(text) < 100 and self._has_sufficient_following_content(i, elements):
is_heading = True
title_text = text
level = self._estimate_heading_level(title_text, element)
if is_heading:
section_type = self._identify_section_type(title_text)
title_elements.append((i, title_text, level, section_type))
# 2.2 为每个标题提取内容
sections = []
for i, (index, title_text, level, section_type) in enumerate(title_elements):
# 确定内容范围
content_start = index + 1
content_end = elements[-1] # 默认到文档结束
# 如果有下一个标题,内容到下一个标题开始
if i < len(title_elements) - 1:
content_end = title_elements[i+1][0]
else:
content_end = len(elements)
# 提取内容
content = self._extract_content_between(elements, content_start, content_end)
# 创建章节
section = DocumentSection(
title=title_text,
content=content,
level=level,
section_type=section_type,
is_heading_only=False if content.strip() else True
)
sections.append(section)
# 3. 如果没有识别到任何章节,创建一个默认章节
if not sections:
all_content = self._extract_content_between(elements, 0, len(elements))
# 尝试从内容中提取标题
first_line = all_content.split('\n')[0] if all_content else ""
if first_line and len(first_line) < 100:
doc.title = first_line
all_content = '\n'.join(all_content.split('\n')[1:])
default_section = DocumentSection(
title="",
content=all_content,
level=0,
section_type="content"
)
sections.append(default_section)
# 4. 构建层次结构
doc.sections = self._build_section_hierarchy(sections)
# 5. 提取完整文本
doc.full_text = "\n\n".join([str(element) for element in elements if isinstance(element, (Text, NarrativeText, Title, ListItem))])
return doc
def _build_section_hierarchy(self, sections: List[DocumentSection]) -> List[DocumentSection]:
"""构建章节层次结构
Args:
sections: 章节列表
Returns:
List[DocumentSection]: 具有层次结构的章节列表
"""
if not sections:
return []
# 按层级排序
top_level_sections = []
current_parents = {0: None} # 每个层级的当前父节点
for section in sections:
# 找到当前节点的父节点
parent_level = None
for level in sorted([k for k in current_parents.keys() if k < section.level], reverse=True):
parent_level = level
break
if parent_level is None:
# 顶级章节
top_level_sections.append(section)
else:
# 子章节
parent = current_parents[parent_level]
if parent:
parent.subsections.append(section)
else:
top_level_sections.append(section)
# 更新当前层级的父节点
current_parents[section.level] = section
# 清除所有更深层级的父节点缓存
deeper_levels = [k for k in current_parents.keys() if k > section.level]
for level in deeper_levels:
current_parents.pop(level, None)
return top_level_sections
def _is_likely_heading(self, text: str, element, index: int, elements) -> bool:
"""判断文本是否可能是标题
Args:
text: 文本内容
element: 元素对象
index: 元素索引
elements: 所有元素列表
Returns:
bool: 是否可能是标题
"""
# 1. 检查文本长度 - 标题通常不会太长
if len(text) > 150: # 标题通常不超过150个字符
return False
# 2. 检查是否匹配标题的数字编号模式
if any(re.match(pattern, text) for pattern in self.HEADING_PATTERNS):
return True
# 3. 检查是否包含常见章节标记词
lower_text = text.lower()
for markers in self.SECTION_MARKERS.values():
if any(marker.lower() in lower_text for marker in markers):
return True
# 4. 检查后续内容数量 - 标题后通常有足够多的内容
if not self._has_sufficient_following_content(index, elements, min_chars=100):
# 但如果文本很短且以特定格式开头,仍可能是标题
if len(text) < 50 and (text.endswith(':') or text.endswith('')):
return True
return False
# 5. 检查格式特征
# 标题通常是元素的开头,不在段落中间
if len(text.split('\n')) > 1:
# 多行文本不太可能是标题
return False
# 如果有元数据,检查字体特征(字体大小等)
if hasattr(element, 'metadata') and element.metadata:
try:
font_size = getattr(element.metadata, 'font_size', None)
is_bold = getattr(element.metadata, 'is_bold', False)
# 字体较大或加粗的文本更可能是标题
if font_size and font_size > 12:
return True
if is_bold:
return True
except (AttributeError, TypeError):
pass
# 默认返回True,因为元素已被识别为Title类型
return True
def _estimate_heading_level(self, text: str, element) -> int:
"""估计标题的层级
Args:
text: 标题文本
element: 元素对象
Returns:
int: 标题层级 (0为主标题,1为一级标题, 等等)
"""
# 1. 通过编号模式判断层级
for pattern, level in [
(r'^\s*\d+\.\s+', 1), # 1. 开头 (一级标题)
(r'^\s*\d+\.\d+\.\s+', 2), # 1.1. 开头 (二级标题)
(r'^\s*\d+\.\d+\.\d+\.\s+', 3), # 1.1.1. 开头 (三级标题)
(r'^\s*\d+\.\d+\.\d+\.\d+\.\s+', 4), # 1.1.1.1. 开头 (四级标题)
]:
if re.match(pattern, text):
return level
# 2. 检查是否是常见的主要章节标题
lower_text = text.lower()
main_sections = [
'abstract', 'introduction', 'background', 'methodology',
'results', 'discussion', 'conclusion', 'references'
]
for section in main_sections:
if section in lower_text:
return 1 # 主要章节为一级标题
# 3. 根据文本特征判断
if text.isupper(): # 全大写文本可能是章标题
return 1
# 4. 通过元数据判断层级
if hasattr(element, 'metadata') and element.metadata:
try:
# 根据字体大小判断层级
font_size = getattr(element.metadata, 'font_size', None)
if font_size is not None:
if font_size > 18: # 假设主标题字体最大
return 0
elif font_size > 16:
return 1
elif font_size > 14:
return 2
else:
return 3
except (AttributeError, TypeError):
pass
# 默认为二级标题
return 2
def _identify_section_type(self, title_text: str) -> str:
"""识别章节类型,包括参考文献部分"""
lower_text = title_text.lower()
# 特别检查是否为参考文献部分
references_patterns = [
r'references', r'参考文献', r'bibliography', r'引用文献',
r'literature cited', r'^cited\s+literature', r'^文献$', r'^引用$'
]
for pattern in references_patterns:
if re.search(pattern, lower_text, re.IGNORECASE):
return "references"
# 检查是否匹配其他常见章节类型
for section_type, markers in self.SECTION_MARKERS.items():
if any(marker.lower() in lower_text for marker in markers):
return section_type
# 检查带编号的章节
if re.match(r'^\d+\.', lower_text):
return "content"
# 默认为内容章节
return "content"
def _has_sufficient_following_content(self, index: int, elements, min_chars: int = 150) -> bool:
"""检查元素后是否有足够的内容
Args:
index: 当前元素索引
elements: 所有元素列表
min_chars: 最小字符数要求
Returns:
bool: 是否有足够的内容
"""
total_chars = 0
for i in range(index + 1, min(index + 5, len(elements))):
if isinstance(elements[i], Title):
# 如果紧接着是标题,就停止检查
break
if isinstance(elements[i], (Text, NarrativeText, ListItem, Table)):
total_chars += len(str(elements[i]))
if total_chars >= min_chars:
return True
return total_chars >= min_chars
def _extract_content_between(self, elements, start_index: int, end_index: int) -> str:
"""提取指定范围内的内容文本
Args:
elements: 元素列表
start_index: 开始索引
end_index: 结束索引
Returns:
str: 提取的内容文本
"""
content_parts = []
for i in range(start_index, end_index):
if isinstance(elements[i], (Text, NarrativeText, ListItem, Table)):
content_parts.append(str(elements[i]).strip())
return "\n\n".join([part for part in content_parts if part])
def generate_markdown(self, doc: StructuredDocument) -> str:
"""将结构化文档转换为Markdown格式
Args:
doc: 结构化文档对象
Returns:
str: Markdown格式文本
"""
md_parts = []
# 添加标题
if doc.title:
md_parts.append(f"# {doc.title}\n")
# 添加元数据
if doc.is_paper:
# 作者信息
if 'authors' in doc.metadata and doc.metadata['authors']:
authors_str = ", ".join(doc.metadata['authors'])
md_parts.append(f"**作者:** {authors_str}\n")
# 关键词
if 'keywords' in doc.metadata and doc.metadata['keywords']:
keywords_str = ", ".join(doc.metadata['keywords'])
md_parts.append(f"**关键词:** {keywords_str}\n")
# 摘要
if 'abstract' in doc.metadata and doc.metadata['abstract']:
md_parts.append(f"## 摘要\n\n{doc.metadata['abstract']}\n")
# 添加章节内容
md_parts.append(self._format_sections_markdown(doc.sections))
return "\n".join(md_parts)
def _format_sections_markdown(self, sections: List[DocumentSection], base_level: int = 0) -> str:
"""递归格式化章节为Markdown
Args:
sections: 章节列表
base_level: 基础层级
Returns:
str: Markdown格式文本
"""
md_parts = []
for section in sections:
# 计算标题级别 (确保不超过6级)
header_level = min(section.level + base_level + 1, 6)
# 添加标题和内容
if section.title:
md_parts.append(f"{'#' * header_level} {section.title}\n")
if section.content:
md_parts.append(f"{section.content}\n")
# 递归处理子章节
if section.subsections:
md_parts.append(self._format_sections_markdown(
section.subsections, base_level
))
return "\n".join(md_parts)

查看文件

@@ -0,0 +1,4 @@
from .txt_doc import TxtFormatter
from .markdown_doc import MarkdownFormatter
from .html_doc import HtmlFormatter
from .word_doc import WordFormatter

查看文件

@@ -0,0 +1,300 @@
class HtmlFormatter:
"""HTML格式文档生成器 - 保留原始文档结构"""
def __init__(self, processing_type="文本处理"):
self.processing_type = processing_type
self.css_styles = """
:root {
--primary-color: #2563eb;
--primary-light: #eff6ff;
--secondary-color: #1e293b;
--background-color: #f8fafc;
--text-color: #334155;
--border-color: #e2e8f0;
--card-shadow: 0 4px 6px -1px rgb(0 0 0 / 0.1), 0 2px 4px -2px rgb(0 0 0 / 0.1);
}
body {
font-family: system-ui, -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
line-height: 1.8;
margin: 0;
padding: 2rem;
color: var(--text-color);
background-color: var(--background-color);
}
.container {
max-width: 1200px;
margin: 0 auto;
background: white;
padding: 2rem;
border-radius: 16px;
box-shadow: var(--card-shadow);
}
::selection {
background: var(--primary-light);
color: var(--primary-color);
}
@keyframes fadeIn {
from { opacity: 0; transform: translateY(20px); }
to { opacity: 1; transform: translateY(0); }
}
.container {
animation: fadeIn 0.6s ease-out;
}
.document-title {
color: var(--primary-color);
font-size: 2em;
text-align: center;
margin: 1rem 0 2rem;
padding-bottom: 1rem;
border-bottom: 2px solid var(--primary-color);
}
.document-body {
display: flex;
flex-direction: column;
gap: 1.5rem;
margin: 2rem 0;
}
.document-header {
display: flex;
flex-direction: column;
align-items: center;
margin-bottom: 2rem;
}
.processing-type {
color: var(--secondary-color);
font-size: 1.2em;
margin: 0.5rem 0;
}
.processing-date {
color: var(--text-color);
font-size: 0.9em;
opacity: 0.8;
}
.document-content {
background: white;
padding: 1.5rem;
border-radius: 8px;
border-left: 4px solid var(--primary-color);
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
}
/* 保留文档结构的样式 */
h1, h2, h3, h4, h5, h6 {
color: var(--secondary-color);
margin-top: 1.5em;
margin-bottom: 0.5em;
}
h1 { font-size: 1.8em; }
h2 { font-size: 1.5em; }
h3 { font-size: 1.3em; }
h4 { font-size: 1.1em; }
p {
margin: 0.8em 0;
}
ul, ol {
margin: 1em 0;
padding-left: 2em;
}
li {
margin: 0.5em 0;
}
blockquote {
margin: 1em 0;
padding: 0.5em 1em;
border-left: 4px solid var(--primary-light);
background: rgba(0,0,0,0.02);
}
code {
font-family: monospace;
background: rgba(0,0,0,0.05);
padding: 0.2em 0.4em;
border-radius: 3px;
}
pre {
background: rgba(0,0,0,0.05);
padding: 1em;
border-radius: 5px;
overflow-x: auto;
}
pre code {
background: transparent;
padding: 0;
}
@media (prefers-color-scheme: dark) {
:root {
--background-color: #0f172a;
--text-color: #e2e8f0;
--border-color: #1e293b;
}
.container, .document-content {
background: #1e293b;
}
blockquote {
background: rgba(255,255,255,0.05);
}
code, pre {
background: rgba(255,255,255,0.05);
}
}
"""
def _escape_html(self, text):
"""转义HTML特殊字符"""
import html
return html.escape(text)
def _markdown_to_html(self, text):
"""将Markdown格式转换为HTML格式,保留文档结构"""
try:
import markdown
# 使用Python-Markdown库将markdown转换为HTML,启用更多扩展以支持嵌套列表
return markdown.markdown(text, extensions=['tables', 'fenced_code', 'codehilite', 'nl2br', 'sane_lists', 'smarty', 'extra'])
except ImportError:
# 如果没有markdown库,使用更复杂的替换来处理嵌套列表
import re
# 替换标题
text = re.sub(r'^# (.+)$', r'<h1>\1</h1>', text, flags=re.MULTILINE)
text = re.sub(r'^## (.+)$', r'<h2>\1</h2>', text, flags=re.MULTILINE)
text = re.sub(r'^### (.+)$', r'<h3>\1</h3>', text, flags=re.MULTILINE)
# 预处理列表 - 在列表项之间添加空行以正确分隔
# 处理编号列表
text = re.sub(r'(\n\d+\.\s.+)(\n\d+\.\s)', r'\1\n\2', text)
# 处理项目符号列表
text = re.sub(r'(\n•\s.+)(\n•\s)', r'\1\n\2', text)
text = re.sub(r'(\n\*\s.+)(\n\*\s)', r'\1\n\2', text)
text = re.sub(r'(\n-\s.+)(\n-\s)', r'\1\n\2', text)
# 处理嵌套列表 - 确保正确的缩进和结构
lines = text.split('\n')
in_list = False
list_type = None # 'ol' 或 'ul'
list_html = []
normal_lines = []
i = 0
while i < len(lines):
line = lines[i]
# 匹配编号列表项
numbered_match = re.match(r'^(\d+)\.\s+(.+)$', line)
# 匹配项目符号列表项
bullet_match = re.match(r'^[•\*-]\s+(.+)$', line)
if numbered_match:
if not in_list or list_type != 'ol':
# 开始新的编号列表
if in_list:
# 关闭前一个列表
list_html.append(f'</{list_type}>')
list_html.append('<ol>')
in_list = True
list_type = 'ol'
num, content = numbered_match.groups()
list_html.append(f'<li>{content}</li>')
elif bullet_match:
if not in_list or list_type != 'ul':
# 开始新的项目符号列表
if in_list:
# 关闭前一个列表
list_html.append(f'</{list_type}>')
list_html.append('<ul>')
in_list = True
list_type = 'ul'
content = bullet_match.group(1)
list_html.append(f'<li>{content}</li>')
else:
if in_list:
# 结束当前列表
list_html.append(f'</{list_type}>')
in_list = False
# 将完成的列表添加到正常行中
normal_lines.append(''.join(list_html))
list_html = []
normal_lines.append(line)
i += 1
# 如果最后还在列表中,确保关闭列表
if in_list:
list_html.append(f'</{list_type}>')
normal_lines.append(''.join(list_html))
# 重建文本
text = '\n'.join(normal_lines)
# 替换段落,但避免处理已经是HTML标签的部分
paragraphs = text.split('\n\n')
for i, p in enumerate(paragraphs):
# 如果不是以HTML标签开始且不为空
if not (p.strip().startswith('<') and p.strip().endswith('>')) and p.strip() != '':
paragraphs[i] = f'<p>{p}</p>'
return '\n'.join(paragraphs)
def create_document(self, content: str) -> str:
"""生成完整的HTML文档,保留原始文档结构
Args:
content: 处理后的文档内容
Returns:
str: 完整的HTML文档字符串
"""
from datetime import datetime
# 将markdown内容转换为HTML
html_content = self._markdown_to_html(content)
return f"""
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>文档处理结果</title>
<style>{self.css_styles}</style>
</head>
<body>
<div class="container">
<h1 class="document-title">文档处理结果</h1>
<div class="document-header">
<div class="processing-type">处理方式: {self._escape_html(self.processing_type)}</div>
<div class="processing-date">处理时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}</div>
</div>
<div class="document-content">
{html_content}
</div>
</div>
</body>
</html>
"""

查看文件

@@ -0,0 +1,40 @@
class MarkdownFormatter:
"""Markdown格式文档生成器 - 保留原始文档结构"""
def __init__(self):
self.content = []
def _add_content(self, text: str):
"""添加正文内容"""
if text:
self.content.append(f"\n{text}\n")
def create_document(self, content: str, processing_type: str = "文本处理") -> str:
"""
创建完整的Markdown文档,保留原始文档结构
Args:
content: 处理后的文档内容
processing_type: 处理类型(润色、翻译等)
Returns:
str: 生成的Markdown文本
"""
self.content = []
# 添加标题和说明
self.content.append(f"# 文档处理结果\n")
self.content.append(f"## 处理方式: {processing_type}\n")
# 添加处理时间
from datetime import datetime
self.content.append(f"*处理时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}*\n")
# 添加分隔线
self.content.append("---\n")
# 添加原始内容,保留结构
self.content.append(content)
# 添加结尾分隔线
self.content.append("\n---\n")
return "\n".join(self.content)

查看文件

@@ -0,0 +1,69 @@
import re
def convert_markdown_to_txt(markdown_text):
"""Convert markdown text to plain text while preserving formatting"""
# Standardize line endings
markdown_text = markdown_text.replace('\r\n', '\n').replace('\r', '\n')
# 1. Handle headers but keep their formatting instead of removing them
markdown_text = re.sub(r'^#\s+(.+)$', r'# \1', markdown_text, flags=re.MULTILINE)
markdown_text = re.sub(r'^##\s+(.+)$', r'## \1', markdown_text, flags=re.MULTILINE)
markdown_text = re.sub(r'^###\s+(.+)$', r'### \1', markdown_text, flags=re.MULTILINE)
# 2. Handle bold and italic - simply remove markers
markdown_text = re.sub(r'\*\*(.+?)\*\*', r'\1', markdown_text)
markdown_text = re.sub(r'\*(.+?)\*', r'\1', markdown_text)
# 3. Handle lists but preserve formatting
markdown_text = re.sub(r'^\s*[-*+]\s+(.+?)(?=\n|$)', r'\1', markdown_text, flags=re.MULTILINE)
# 4. Handle links - keep only the text
markdown_text = re.sub(r'\[([^\]]+)\]\(([^)]+)\)', r'\1 (\2)', markdown_text)
# 5. Handle HTML links - convert to user-friendly format
markdown_text = re.sub(r'<a href=[\'"]([^\'"]+)[\'"](?:\s+target=[\'"][^\'"]+[\'"])?>([^<]+)</a>', r'\2 (\1)', markdown_text)
# 6. Preserve paragraph breaks
markdown_text = re.sub(r'\n{3,}', '\n\n', markdown_text) # normalize multiple newlines to double newlines
# 7. Clean up extra spaces but maintain indentation
markdown_text = re.sub(r' +', ' ', markdown_text)
return markdown_text.strip()
class TxtFormatter:
"""文本格式化器 - 保留原始文档结构"""
def __init__(self):
self.content = []
self._setup_document()
def _setup_document(self):
"""初始化文档标题"""
self.content.append("=" * 50)
self.content.append("处理后文档".center(48))
self.content.append("=" * 50)
def _format_header(self):
"""创建文档头部信息"""
from datetime import datetime
date_str = datetime.now().strftime('%Y年%m月%d')
return [
date_str.center(48),
"\n" # 添加空行
]
def create_document(self, content):
"""生成保留原始结构的文档"""
# 添加头部信息
self.content.extend(self._format_header())
# 处理内容,保留原始结构
processed_content = convert_markdown_to_txt(content)
# 添加处理后的内容
self.content.append(processed_content)
# 合并所有内容
return "\n".join(self.content)

查看文件

@@ -0,0 +1,125 @@
from docx2pdf import convert
import os
import platform
from typing import Union
from pathlib import Path
from datetime import datetime
class WordToPdfConverter:
"""Word文档转PDF转换器"""
@staticmethod
def convert_to_pdf(word_path: Union[str, Path], pdf_path: Union[str, Path] = None) -> str:
"""
将Word文档转换为PDF
参数:
word_path: Word文档的路径
pdf_path: 可选,PDF文件的输出路径。如果未指定,将使用与Word文档相同的名称和位置
返回:
生成的PDF文件路径
异常:
如果转换失败,将抛出相应异常
"""
try:
# 确保输入路径是Path对象
word_path = Path(word_path)
# 如果未指定pdf_path,则使用与word文档相同的名称
if pdf_path is None:
pdf_path = word_path.with_suffix('.pdf')
else:
pdf_path = Path(pdf_path)
# 检查操作系统
if platform.system() == 'Linux':
# Linux系统需要安装libreoffice
if not os.system('which libreoffice') == 0:
raise RuntimeError("请先安装LibreOffice: sudo apt-get install libreoffice")
# 使用libreoffice进行转换
os.system(f'libreoffice --headless --convert-to pdf "{word_path}" --outdir "{pdf_path.parent}"')
# 如果输出路径与默认生成的不同,则重命名
default_pdf = word_path.with_suffix('.pdf')
if default_pdf != pdf_path:
os.rename(default_pdf, pdf_path)
else:
# Windows和MacOS使用docx2pdf
convert(word_path, pdf_path)
return str(pdf_path)
except Exception as e:
raise Exception(f"转换PDF失败: {str(e)}")
@staticmethod
def batch_convert(word_dir: Union[str, Path], pdf_dir: Union[str, Path] = None) -> list:
"""
批量转换目录下的所有Word文档
参数:
word_dir: 包含Word文档的目录路径
pdf_dir: 可选,PDF文件的输出目录。如果未指定,将使用与Word文档相同的目录
返回:
生成的PDF文件路径列表
"""
word_dir = Path(word_dir)
if pdf_dir:
pdf_dir = Path(pdf_dir)
pdf_dir.mkdir(parents=True, exist_ok=True)
converted_files = []
for word_file in word_dir.glob("*.docx"):
try:
if pdf_dir:
pdf_path = pdf_dir / word_file.with_suffix('.pdf').name
else:
pdf_path = word_file.with_suffix('.pdf')
pdf_file = WordToPdfConverter.convert_to_pdf(word_file, pdf_path)
converted_files.append(pdf_file)
except Exception as e:
print(f"转换 {word_file} 失败: {str(e)}")
return converted_files
@staticmethod
def convert_doc_to_pdf(doc, output_dir: Union[str, Path] = None) -> str:
"""
将docx对象直接转换为PDF
参数:
doc: python-docx的Document对象
output_dir: 可选,输出目录。如果未指定,将使用当前目录
返回:
生成的PDF文件路径
"""
try:
# 设置临时文件路径和输出路径
output_dir = Path(output_dir) if output_dir else Path.cwd()
output_dir.mkdir(parents=True, exist_ok=True)
# 生成临时word文件
temp_docx = output_dir / f"temp_{datetime.now().strftime('%Y%m%d_%H%M%S')}.docx"
doc.save(temp_docx)
# 转换为PDF
pdf_path = temp_docx.with_suffix('.pdf')
WordToPdfConverter.convert_to_pdf(temp_docx, pdf_path)
# 删除临时word文件
temp_docx.unlink()
return str(pdf_path)
except Exception as e:
if temp_docx.exists():
temp_docx.unlink()
raise Exception(f"转换PDF失败: {str(e)}")

查看文件

@@ -0,0 +1,236 @@
import re
from docx import Document
from docx.shared import Cm, Pt
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT, WD_LINE_SPACING
from docx.enum.style import WD_STYLE_TYPE
from docx.oxml.ns import qn
from datetime import datetime
def convert_markdown_to_word(markdown_text):
# 0. 首先标准化所有换行符为\n
markdown_text = markdown_text.replace('\r\n', '\n').replace('\r', '\n')
# 1. 处理标题 - 支持更多级别的标题,使用更精确的正则
# 保留标题标记,以便后续处理时还能识别出标题级别
markdown_text = re.sub(r'^(#{1,6})\s+(.+?)(?:\s+#+)?$', r'\1 \2', markdown_text, flags=re.MULTILINE)
# 2. 处理粗体、斜体和加粗斜体
markdown_text = re.sub(r'\*\*\*(.+?)\*\*\*', r'\1', markdown_text) # 加粗斜体
markdown_text = re.sub(r'\*\*(.+?)\*\*', r'\1', markdown_text) # 加粗
markdown_text = re.sub(r'\*(.+?)\*', r'\1', markdown_text) # 斜体
markdown_text = re.sub(r'_(.+?)_', r'\1', markdown_text) # 下划线斜体
markdown_text = re.sub(r'__(.+?)__', r'\1', markdown_text) # 下划线加粗
# 3. 处理代码块 - 不移除,而是简化格式
# 多行代码块
markdown_text = re.sub(r'```(?:\w+)?\n([\s\S]*?)```', r'[代码块]\n\1[/代码块]', markdown_text)
# 单行代码
markdown_text = re.sub(r'`([^`]+)`', r'[代码]\1[/代码]', markdown_text)
# 4. 处理列表 - 保留列表结构
# 匹配无序列表
markdown_text = re.sub(r'^(\s*)[-*+]\s+(.+?)$', r'\1• \2', markdown_text, flags=re.MULTILINE)
# 5. 处理Markdown链接
markdown_text = re.sub(r'\[([^\]]+)\]\(([^)]+?)\s*(?:"[^"]*")?\)', r'\1 (\2)', markdown_text)
# 6. 处理HTML链接
markdown_text = re.sub(r'<a href=[\'"]([^\'"]+)[\'"](?:\s+target=[\'"][^\'"]+[\'"])?>([^<]+)</a>', r'\2 (\1)', markdown_text)
# 7. 处理图片
markdown_text = re.sub(r'!\[([^\]]*)\]\([^)]+\)', r'[图片:\1]', markdown_text)
return markdown_text
class WordFormatter:
"""文档Word格式化器 - 保留原始文档结构"""
def __init__(self):
self.doc = Document()
self._setup_document()
self._create_styles()
def _setup_document(self):
"""设置文档基本格式,包括页面设置和页眉"""
sections = self.doc.sections
for section in sections:
# 设置页面大小为A4
section.page_width = Cm(21)
section.page_height = Cm(29.7)
# 设置页边距
section.top_margin = Cm(3.7) # 上边距37mm
section.bottom_margin = Cm(3.5) # 下边距35mm
section.left_margin = Cm(2.8) # 左边距28mm
section.right_margin = Cm(2.6) # 右边距26mm
# 设置页眉页脚距离
section.header_distance = Cm(2.0)
section.footer_distance = Cm(2.0)
# 添加页眉
header = section.header
header_para = header.paragraphs[0]
header_para.alignment = WD_PARAGRAPH_ALIGNMENT.RIGHT
header_run = header_para.add_run("文档处理结果")
header_run.font.name = '仿宋'
header_run._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
header_run.font.size = Pt(9)
def _create_styles(self):
"""创建文档样式"""
# 创建正文样式
style = self.doc.styles.add_style('Normal_Custom', WD_STYLE_TYPE.PARAGRAPH)
style.font.name = '仿宋'
style._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
style.font.size = Pt(12) # 调整为12磅
style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
style.paragraph_format.space_after = Pt(0)
# 创建标题样式
title_style = self.doc.styles.add_style('Title_Custom', WD_STYLE_TYPE.PARAGRAPH)
title_style.font.name = '黑体'
title_style._element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
title_style.font.size = Pt(22) # 调整为22磅
title_style.font.bold = True
title_style.paragraph_format.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER
title_style.paragraph_format.space_before = Pt(0)
title_style.paragraph_format.space_after = Pt(24)
title_style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
# 创建标题1样式
h1_style = self.doc.styles.add_style('Heading1_Custom', WD_STYLE_TYPE.PARAGRAPH)
h1_style.font.name = '黑体'
h1_style._element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
h1_style.font.size = Pt(18)
h1_style.font.bold = True
h1_style.paragraph_format.space_before = Pt(12)
h1_style.paragraph_format.space_after = Pt(6)
# 创建标题2样式
h2_style = self.doc.styles.add_style('Heading2_Custom', WD_STYLE_TYPE.PARAGRAPH)
h2_style.font.name = '黑体'
h2_style._element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
h2_style.font.size = Pt(16)
h2_style.font.bold = True
h2_style.paragraph_format.space_before = Pt(10)
h2_style.paragraph_format.space_after = Pt(6)
# 创建标题3样式
h3_style = self.doc.styles.add_style('Heading3_Custom', WD_STYLE_TYPE.PARAGRAPH)
h3_style.font.name = '黑体'
h3_style._element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
h3_style.font.size = Pt(14)
h3_style.font.bold = True
h3_style.paragraph_format.space_before = Pt(8)
h3_style.paragraph_format.space_after = Pt(4)
# 创建代码块样式
code_style = self.doc.styles.add_style('Code_Custom', WD_STYLE_TYPE.PARAGRAPH)
code_style.font.name = 'Courier New'
code_style.font.size = Pt(11)
code_style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.SINGLE
code_style.paragraph_format.space_before = Pt(6)
code_style.paragraph_format.space_after = Pt(6)
code_style.paragraph_format.left_indent = Pt(36)
code_style.paragraph_format.right_indent = Pt(36)
# 创建列表样式
list_style = self.doc.styles.add_style('List_Custom', WD_STYLE_TYPE.PARAGRAPH)
list_style.font.name = '仿宋'
list_style._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
list_style.font.size = Pt(12)
list_style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
list_style.paragraph_format.left_indent = Pt(21)
list_style.paragraph_format.first_line_indent = Pt(-21)
def create_document(self, content: str, processing_type: str = "文本处理"):
"""创建文档,保留原始结构"""
# 添加标题
title_para = self.doc.add_paragraph(style='Title_Custom')
title_run = title_para.add_run('文档处理结果')
# 添加处理类型
processing_para = self.doc.add_paragraph()
processing_para.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER
processing_run = processing_para.add_run(f"处理方式: {processing_type}")
processing_run.font.name = '仿宋'
processing_run._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
processing_run.font.size = Pt(14)
# 添加日期
date_para = self.doc.add_paragraph()
date_para.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER
date_run = date_para.add_run(f"处理时间: {datetime.now().strftime('%Y年%m月%d')}")
date_run.font.name = '仿宋'
date_run._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
date_run.font.size = Pt(14)
self.doc.add_paragraph() # 添加空行
# 预处理内容,将Markdown格式转换为适合Word的格式
processed_content = convert_markdown_to_word(content)
# 按行处理文本,保留结构
lines = processed_content.split('\n')
in_code_block = False
current_paragraph = None
for line in lines:
# 检查是否为标题
header_match = re.match(r'^(#{1,6})\s+(.+)$', line)
if header_match:
# 根据#的数量确定标题级别
level = len(header_match.group(1))
title_text = header_match.group(2)
if level == 1:
style = 'Heading1_Custom'
elif level == 2:
style = 'Heading2_Custom'
else:
style = 'Heading3_Custom'
self.doc.add_paragraph(title_text, style=style)
current_paragraph = None
# 检查代码块标记
elif '[代码块]' in line:
in_code_block = True
current_paragraph = self.doc.add_paragraph(style='Code_Custom')
code_line = line.replace('[代码块]', '').strip()
if code_line:
current_paragraph.add_run(code_line)
elif '[/代码块]' in line:
in_code_block = False
code_line = line.replace('[/代码块]', '').strip()
if code_line and current_paragraph:
current_paragraph.add_run(code_line)
current_paragraph = None
# 检查列表项
elif line.strip().startswith(''):
p = self.doc.add_paragraph(style='List_Custom')
p.add_run(line.strip())
current_paragraph = None
# 处理普通文本行
elif line.strip():
if in_code_block:
if current_paragraph:
current_paragraph.add_run('\n' + line)
else:
current_paragraph = self.doc.add_paragraph(line, style='Code_Custom')
else:
if current_paragraph is None or not current_paragraph.text:
current_paragraph = self.doc.add_paragraph(line, style='Normal_Custom')
else:
current_paragraph.add_run('\n' + line)
# 处理空行,创建新段落
elif not in_code_block:
current_paragraph = None
return self.doc

查看文件

@@ -0,0 +1,278 @@
from typing import List, Dict, Tuple
import asyncio
from dataclasses import dataclass
from toolbox import CatchException, update_ui, promote_file_to_downloadzone, get_log_folder, get_user
from toolbox import update_ui, CatchException, report_exception, write_history_to_file
from crazy_functions.paper_fns.auto_git.query_analyzer import QueryAnalyzer, SearchCriteria
from crazy_functions.paper_fns.auto_git.handlers.repo_handler import RepositoryHandler
from crazy_functions.paper_fns.auto_git.handlers.code_handler import CodeSearchHandler
from crazy_functions.paper_fns.auto_git.handlers.user_handler import UserSearchHandler
from crazy_functions.paper_fns.auto_git.handlers.topic_handler import TopicHandler
from crazy_functions.paper_fns.auto_git.sources.github_source import GitHubSource
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
import re
from datetime import datetime
import os
import json
from pathlib import Path
import time
# 导入格式化器
from crazy_functions.paper_fns.file2file_doc import (
TxtFormatter,
MarkdownFormatter,
HtmlFormatter,
WordFormatter
)
from crazy_functions.paper_fns.file2file_doc.word2pdf import WordToPdfConverter
@CatchException
def GitHub项目智能检索(txt: str, llm_kwargs: Dict, plugin_kwargs: Dict, chatbot: List,
history: List, system_prompt: str, user_request: str):
"""GitHub项目智能检索主函数"""
# 初始化GitHub API调用源
github_source = GitHubSource(api_key=plugin_kwargs.get("github_api_key"))
# 初始化处理器
handlers = {
"repo": RepositoryHandler(github_source, llm_kwargs),
"code": CodeSearchHandler(github_source, llm_kwargs),
"user": UserSearchHandler(github_source, llm_kwargs),
"topic": TopicHandler(github_source, llm_kwargs),
}
# 分析查询意图
chatbot.append(["分析查询意图", "正在分析您的查询需求..."])
yield from update_ui(chatbot=chatbot, history=history)
query_analyzer = QueryAnalyzer()
search_criteria = yield from query_analyzer.analyze_query(
txt, chatbot, llm_kwargs
)
# 根据查询类型选择处理器
handler = handlers.get(search_criteria.query_type)
if not handler:
handler = handlers["repo"] # 默认使用仓库处理器
# 处理查询
chatbot.append(["开始搜索", f"使用{handler.__class__.__name__}处理您的请求,正在搜索GitHub..."])
yield from update_ui(chatbot=chatbot, history=history)
final_prompt = asyncio.run(handler.handle(
criteria=search_criteria,
chatbot=chatbot,
history=history,
system_prompt=system_prompt,
llm_kwargs=llm_kwargs,
plugin_kwargs=plugin_kwargs
))
if final_prompt:
# 检查是否是道歉提示
if "很抱歉,我们未能找到" in final_prompt:
chatbot.append([txt, final_prompt])
yield from update_ui(chatbot=chatbot, history=history)
return
# 在 final_prompt 末尾添加用户原始查询要求
final_prompt += f"""
原始用户查询: "{txt}"
重要提示:
- 你的回答必须直接满足用户的原始查询要求
- 在遵循之前指南的同时,优先回答用户明确提出的问题
- 确保回答格式和内容与用户期望一致
- 对于GitHub仓库需要提供链接地址, 回复中请采用以下格式的HTML链接:
* 对于GitHub仓库: <a href='Github_URL' target='_blank'>仓库名</a>
- 不要生成参考列表,引用信息将另行处理
"""
# 使用最终的prompt生成回答
response = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=final_prompt,
inputs_show_user=txt,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=[],
sys_prompt=f"你是一个熟悉GitHub生态系统的专业助手,能帮助用户找到合适的项目、代码和开发者。除非用户指定,否则请使用中文回复。"
)
# 1. 获取项目列表
repos_list = handler.ranked_repos # 直接使用原始仓库数据
# 在新的对话中添加格式化的仓库参考列表
if repos_list:
references = ""
for idx, repo in enumerate(repos_list, 1):
# 构建仓库引用
stars_str = f"{repo.get('stargazers_count', 'N/A')}" if repo.get('stargazers_count') else ""
forks_str = f"🍴 {repo.get('forks_count', 'N/A')}" if repo.get('forks_count') else ""
stats = f"{stars_str} {forks_str}".strip()
stats = f" ({stats})" if stats else ""
language = f" [{repo.get('language', '')}]" if repo.get('language') else ""
reference = f"[{idx}] **{repo.get('name', '')}**{language}{stats} \n"
reference += f"👤 {repo.get('owner', {}).get('login', 'N/A') if repo.get('owner') is not None else 'N/A'} | "
reference += f"📅 {repo.get('updated_at', 'N/A')[:10]} | "
reference += f"<a href='{repo.get('html_url', '')}' target='_blank'>GitHub</a> \n"
if repo.get('description'):
reference += f"{repo.get('description')} \n"
reference += " \n"
references += reference
# 添加新的对话显示参考仓库
chatbot.append(["推荐项目如下:", references])
yield from update_ui(chatbot=chatbot, history=history)
# 2. 保存结果到文件
# 创建保存目录
save_dir = get_log_folder(get_user(chatbot), plugin_name='github_search')
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# 生成文件名
def get_safe_filename(txt, max_length=10):
# 获取文本前max_length个字符作为文件名
filename = txt[:max_length].strip()
# 移除不安全的文件名字符
filename = re.sub(r'[\\/:*?"<>|]', '', filename)
# 如果文件名为空,使用时间戳
if not filename:
filename = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
return filename
base_filename = get_safe_filename(txt)
# 准备保存的内容 - 优化文档结构
md_content = f"# GitHub搜索结果: {txt}\n\n"
md_content += f"搜索时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n"
# 添加模型回复
md_content += "## 搜索分析与总结\n\n"
md_content += response + "\n\n"
# 添加所有搜索到的仓库详细信息
md_content += "## 推荐项目详情\n\n"
if not repos_list:
md_content += "未找到匹配的项目\n\n"
else:
md_content += f"共找到 {len(repos_list)} 个相关项目\n\n"
# 添加项目简表
md_content += "### 项目一览表\n\n"
md_content += "| 序号 | 项目名称 | 作者 | 语言 | 星标数 | 更新时间 |\n"
md_content += "| ---- | -------- | ---- | ---- | ------ | -------- |\n"
for idx, repo in enumerate(repos_list, 1):
md_content += f"| {idx} | [{repo.get('name', '')}]({repo.get('html_url', '')}) | {repo.get('owner', {}).get('login', 'N/A') if repo.get('owner') is not None else 'N/A'} | {repo.get('language', 'N/A')} | {repo.get('stargazers_count', 'N/A')} | {repo.get('updated_at', 'N/A')[:10]} |\n"
md_content += "\n"
# 添加详细项目信息
md_content += "### 项目详细信息\n\n"
for idx, repo in enumerate(repos_list, 1):
md_content += f"#### {idx}. {repo.get('name', '')}\n\n"
md_content += f"- **仓库**: [{repo.get('full_name', '')}]({repo.get('html_url', '')})\n"
md_content += f"- **作者**: [{repo.get('owner', {}).get('login', '') if repo.get('owner') is not None else 'N/A'}]({repo.get('owner', {}).get('html_url', '') if repo.get('owner') is not None else '#'})\n"
md_content += f"- **描述**: {repo.get('description', 'N/A')}\n"
md_content += f"- **语言**: {repo.get('language', 'N/A')}\n"
md_content += f"- **星标**: {repo.get('stargazers_count', 'N/A')}\n"
md_content += f"- **Fork数**: {repo.get('forks_count', 'N/A')}\n"
md_content += f"- **最近更新**: {repo.get('updated_at', 'N/A')[:10]}\n"
md_content += f"- **创建时间**: {repo.get('created_at', 'N/A')[:10]}\n"
md_content += f"- **开源许可**: {repo.get('license', {}).get('name', 'N/A') if repo.get('license') is not None else 'N/A'}\n"
if repo.get('topics'):
md_content += f"- **主题标签**: {', '.join(repo.get('topics', []))}\n"
if repo.get('homepage'):
md_content += f"- **项目主页**: [{repo.get('homepage')}]({repo.get('homepage')})\n"
md_content += "\n"
# 添加查询信息和元数据
md_content += "## 查询元数据\n\n"
md_content += f"- **原始查询**: {txt}\n"
md_content += f"- **查询类型**: {search_criteria.query_type}\n"
md_content += f"- **关键词**: {', '.join(search_criteria.keywords) if hasattr(search_criteria, 'keywords') and search_criteria.keywords else 'N/A'}\n"
md_content += f"- **搜索日期**: {datetime.now().strftime('%Y-%m-%d')}\n\n"
# 保存为多种格式
saved_files = []
failed_files = []
# 1. 保存为TXT
try:
txt_formatter = TxtFormatter()
txt_content = txt_formatter.create_document(md_content)
txt_file = os.path.join(save_dir, f"github_results_{base_filename}.txt")
with open(txt_file, 'w', encoding='utf-8') as f:
f.write(txt_content)
promote_file_to_downloadzone(txt_file, chatbot=chatbot)
saved_files.append("TXT")
except Exception as e:
failed_files.append(f"TXT (错误: {str(e)})")
# 2. 保存为Markdown
try:
md_formatter = MarkdownFormatter()
formatted_md_content = md_formatter.create_document(md_content, "GitHub项目搜索")
md_file = os.path.join(save_dir, f"github_results_{base_filename}.md")
with open(md_file, 'w', encoding='utf-8') as f:
f.write(formatted_md_content)
promote_file_to_downloadzone(md_file, chatbot=chatbot)
saved_files.append("Markdown")
except Exception as e:
failed_files.append(f"Markdown (错误: {str(e)})")
# 3. 保存为HTML
try:
html_formatter = HtmlFormatter(processing_type="GitHub项目搜索")
html_content = html_formatter.create_document(md_content)
html_file = os.path.join(save_dir, f"github_results_{base_filename}.html")
with open(html_file, 'w', encoding='utf-8') as f:
f.write(html_content)
promote_file_to_downloadzone(html_file, chatbot=chatbot)
saved_files.append("HTML")
except Exception as e:
failed_files.append(f"HTML (错误: {str(e)})")
# 4. 保存为Word
word_file = None
try:
word_formatter = WordFormatter()
doc = word_formatter.create_document(md_content, "GitHub项目搜索")
word_file = os.path.join(save_dir, f"github_results_{base_filename}.docx")
doc.save(word_file)
promote_file_to_downloadzone(word_file, chatbot=chatbot)
saved_files.append("Word")
except Exception as e:
failed_files.append(f"Word (错误: {str(e)})")
word_file = None
# 5. 保存为PDF (仅当Word保存成功时)
if word_file and os.path.exists(word_file):
try:
pdf_file = WordToPdfConverter.convert_to_pdf(word_file)
promote_file_to_downloadzone(pdf_file, chatbot=chatbot)
saved_files.append("PDF")
except Exception as e:
failed_files.append(f"PDF (错误: {str(e)})")
# 报告保存结果
if saved_files:
success_message = f"成功保存以下格式: {', '.join(saved_files)}"
if failed_files:
failure_message = f"以下格式保存失败: {', '.join(failed_files)}"
chatbot.append(["部分格式保存成功", f"{success_message}{failure_message}"])
else:
chatbot.append(["所有格式保存成功", success_message])
else:
chatbot.append(["保存失败", f"所有格式均保存失败: {', '.join(failed_files)}"])
else:
report_exception(chatbot, history, a=f"处理失败", b=f"请尝试其他查询")
yield from update_ui(chatbot=chatbot, history=history)

查看文件

@@ -0,0 +1,635 @@
import os
import time
import glob
from typing import Dict, List, Generator, Tuple
from dataclasses import dataclass
from crazy_functions.pdf_fns.text_content_loader import TextContentLoader
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from toolbox import update_ui, promote_file_to_downloadzone, write_history_to_file, CatchException, report_exception
from shared_utils.fastapi_server import validate_path_safety
# 导入论文下载相关函数
from crazy_functions.论文下载 import extract_paper_id, extract_paper_ids, get_arxiv_paper, format_arxiv_id, SciHub
from pathlib import Path
from datetime import datetime, timedelta
import calendar
@dataclass
class RecommendationQuestion:
"""期刊会议推荐分析问题类"""
id: str # 问题ID
question: str # 问题内容
importance: int # 重要性 (1-5,5最高)
description: str # 问题描述
class JournalConferenceRecommender:
"""论文期刊会议推荐器"""
def __init__(self, llm_kwargs: Dict, plugin_kwargs: Dict, chatbot: List, history: List, system_prompt: str):
"""初始化推荐器"""
self.llm_kwargs = llm_kwargs
self.plugin_kwargs = plugin_kwargs
self.chatbot = chatbot
self.history = history
self.system_prompt = system_prompt
self.paper_content = ""
self.analysis_results = {}
# 定义论文分析问题库(针对期刊会议推荐)
self.questions = [
RecommendationQuestion(
id="research_field_and_topic",
question="请分析这篇论文的研究领域、主题和关键词。具体包括1)论文属于哪个主要学科领域如自然科学、工程技术、医学、社会科学、人文学科等;2)具体的研究子领域或方向;3)论文的核心主题和关键概念;4)重要的学术关键词和专业术语;5)研究的跨学科特征如果有;6)研究的地域性特征(国际性研究还是特定地区研究)。",
importance=5,
description="研究领域与主题分析"
),
RecommendationQuestion(
id="methodology_and_approach",
question="请分析论文的研究方法和技术路线。包括1)采用的主要研究方法定量研究、定性研究、理论分析、实验研究、田野调查、文献综述、案例研究等;2)使用的技术手段、工具或分析方法;3)研究设计的严谨性和创新性;4)数据收集和分析方法的适当性;5)研究方法在该学科中的先进性或传统性;6)方法学上的贡献或局限性。",
importance=4,
description="研究方法与技术路线"
),
RecommendationQuestion(
id="novelty_and_contribution",
question="请评估论文的创新性和学术贡献。包括1)研究的新颖性程度理论创新、方法创新、应用创新等;2)对现有知识体系的贡献或突破;3)解决问题的重要性和学术价值;4)研究成果的理论意义和实践价值;5)在该学科领域的地位和影响潜力;6)与国际前沿研究的关系;7)对后续研究的启发意义。",
importance=4,
description="创新性与学术贡献"
),
RecommendationQuestion(
id="target_audience_and_scope",
question="请分析论文的目标受众和应用范围。包括1)主要面向的学术群体研究者、从业者、政策制定者等;2)研究成果的潜在应用领域和受益群体;3)对学术界和实践界的价值;4)研究的国际化程度和跨文化适用性;5)是否适合国际期刊还是区域性期刊;6)语言发表偏好英文、中文或其他语言;7)开放获取的必要性和可行性。",
importance=3,
description="目标受众与应用范围"
),
]
# 按重要性排序
self.questions.sort(key=lambda q: q.importance, reverse=True)
def _load_paper(self, paper_path: str) -> Generator:
"""加载论文内容"""
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 使用TextContentLoader读取文件
loader = TextContentLoader(self.chatbot, self.history)
yield from loader.execute_single_file(paper_path)
# 获取加载的内容
if len(self.history) >= 2 and self.history[-2]:
self.paper_content = self.history[-2]
yield from update_ui(chatbot=self.chatbot, history=self.history)
return True
else:
self.chatbot.append(["错误", "无法读取论文内容,请检查文件是否有效"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return False
def _analyze_question(self, question: RecommendationQuestion) -> Generator:
"""分析单个问题"""
try:
# 创建分析提示
prompt = f"请基于以下论文内容回答问题:\n\n{self.paper_content}\n\n问题:{question.question}"
# 使用单线程版本的请求函数
response = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=prompt,
inputs_show_user=question.question, # 显示问题本身
llm_kwargs=self.llm_kwargs,
chatbot=self.chatbot,
history=[], # 空历史,确保每个问题独立分析
sys_prompt="你是一个专业的学术期刊会议推荐专家,需要仔细分析论文内容并提供准确的分析。请保持客观、专业,并基于论文内容提供深入分析。"
)
if response:
self.analysis_results[question.id] = response
return True
return False
except Exception as e:
self.chatbot.append(["错误", f"分析问题时出错: {str(e)}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return False
def _generate_journal_recommendations(self) -> Generator:
"""生成期刊推荐"""
self.chatbot.append(["生成期刊推荐", "正在基于论文分析结果生成期刊推荐..."])
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 构建期刊推荐提示
journal_prompt = """请基于以下论文分析结果,为这篇论文推荐合适的学术期刊。
推荐要求:
1. 根据论文的创新性和工作质量,分别推荐不同级别的期刊:
- 顶级期刊(影响因子>8或该领域顶级期刊2-3个
- 高质量期刊影响因子4-8或该领域知名期刊3-4个
- 中等期刊影响因子1.5-4或该领域认可期刊3-4个
- 入门期刊(影响因子<1.5但声誉良好的期刊2-3个
注意:不同学科的影响因子标准差异很大,请根据论文所属学科的实际情况调整标准。
特别是医学领域,需要考虑:
- 临床医学期刊通常影响因子较高顶级期刊IF>20,高质量期刊IF>10
- 基础医学期刊影响因子相对较低但学术价值很高
- 专科医学期刊在各自领域内具有权威性
- 医学期刊的临床实用性和循证医学价值
2. 对每个期刊提供详细信息:
- 期刊全名和缩写
- 最新影响因子(如果知道)
- 期刊级别分类Q1/Q2/Q3/Q4或该学科的分类标准
- 主要研究领域和范围
- 与论文内容的匹配度评分1-10分
- 发表难度评估(容易/中等/困难/极难)
- 平均审稿周期
- 开放获取政策
- 期刊的学科分类如SCI、SSCI、A&HCI等
- 医学期刊特殊信息(如适用):
* PubMed收录情况
* 是否为核心临床期刊
* 专科领域权威性
* 循证医学等级要求
* 临床试验注册要求
* 伦理委员会批准要求
3. 按推荐优先级排序,并说明推荐理由
4. 提供针对性的投稿建议,考虑该学科的特点
论文分析结果:"""
for q in self.questions:
if q.id in self.analysis_results:
journal_prompt += f"\n\n{q.description}:\n{self.analysis_results[q.id]}"
journal_prompt += "\n\n请提供详细的期刊推荐报告,重点关注期刊的层次性和适配性。请根据论文的具体学科领域,采用该领域通用的期刊评价标准和分类体系。"
try:
response = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=journal_prompt,
inputs_show_user="生成期刊推荐报告",
llm_kwargs=self.llm_kwargs,
chatbot=self.chatbot,
history=[],
sys_prompt="你是一个资深的跨学科学术期刊推荐专家,熟悉各个学科领域不同层次的期刊。请根据论文的具体学科和创新性,推荐从顶级到入门级的各层次期刊。不同学科有不同的期刊评价标准理工科重视影响因子和SCI收录,社会科学重视SSCI和学科声誉,人文学科重视A&HCI和同行评议,医学领域重视PubMed收录、临床实用性、循证医学价值和伦理规范。请根据论文所属学科采用相应的评价标准。"
)
if response:
return response
return "期刊推荐生成失败"
except Exception as e:
self.chatbot.append(["错误", f"生成期刊推荐时出错: {str(e)}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return "期刊推荐生成失败: " + str(e)
def _generate_conference_recommendations(self) -> Generator:
"""生成会议推荐"""
self.chatbot.append(["生成会议推荐", "正在基于论文分析结果生成会议推荐..."])
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 获取当前时间信息
current_time = datetime.now()
current_date_str = current_time.strftime("%Y年%m月%d")
current_year = current_time.year
current_month = current_time.month
# 构建会议推荐提示
conference_prompt = f"""请基于以下论文分析结果,为这篇论文推荐合适的学术会议。
**重要提示:当前时间是{current_date_str}{current_year}{current_month}月),请基于这个时间点推断会议的举办时间和投稿截止时间。**
推荐要求:
1. 根据论文的创新性和工作质量,分别推荐不同级别的会议:
- 顶级会议该领域最权威的国际会议2-3个
- 高质量会议该领域知名的国际或区域会议3-4个
- 中等会议该领域认可的专业会议3-4个
- 专业会议该领域细分方向的专门会议2-3个
注意:不同学科的会议评价标准不同:
- 计算机科学可参考CCF分类A/B/C类
- 工程学可参考EI收录和影响力
- 医学:可参考会议的临床影响和同行认可度
- 社会科学:可参考会议的学术声誉和参与度
- 人文学科:可参考会议的历史和学术传统
- 自然科学:可参考会议的国际影响力和发表质量
特别是医学会议,需要考虑:
- 临床医学会议重视实用性和临床指导价值
- 基础医学会议重视科学创新和机制研究
- 专科医学会议在各自领域内具有权威性
- 国际医学会议的CME学分认证情况
2. 对每个会议提供详细信息:
- 会议全名和缩写
- 会议级别分类(根据该学科的评价标准)
- 主要研究领域和主题
- 与论文内容的匹配度评分1-10分
- 录用难度评估(容易/中等/困难/极难)
- 会议举办周期(年会/双年会/不定期等)
- **基于当前时间{current_date_str},推断{current_year}年和{current_year+1}年的举办时间和地点**(请根据往年的举办时间规律进行推断)
- **基于推断的会议时间,估算论文提交截止时间**通常在会议前3-6个月
- 会议的国际化程度和影响范围
- 医学会议特殊信息(如适用):
* 是否提供CME学分
* 临床实践指导价值
* 专科认证机构认可情况
* 会议论文集的PubMed收录情况
* 伦理和临床试验相关要求
3. 按推荐优先级排序,并说明推荐理由
4. **基于当前时间{current_date_str},提供会议投稿的时间规划建议**
- 哪些会议可以赶上{current_year}年的投稿截止时间
- 哪些会议需要准备{current_year+1}年的投稿
- 具体的时间安排建议
论文分析结果:"""
for q in self.questions:
if q.id in self.analysis_results:
conference_prompt += f"\n\n{q.description}:\n{self.analysis_results[q.id]}"
conference_prompt += f"\n\n请提供详细的会议推荐报告,重点关注会议的层次性和时效性。请根据论文的具体学科领域,采用该领域通用的会议评价标准。\n\n**特别注意:请根据当前时间{current_date_str}和各会议的历史举办时间规律,准确推断{current_year}年和{current_year+1}年的会议时间安排,不要使用虚构的时间。**"
try:
response = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=conference_prompt,
inputs_show_user="生成会议推荐报告",
llm_kwargs=self.llm_kwargs,
chatbot=self.chatbot,
history=[],
sys_prompt="你是一个资深的跨学科学术会议推荐专家,熟悉各个学科领域不同层次的学术会议。请根据论文的具体学科和创新性,推荐从顶级到专业级的各层次会议。不同学科有不同的会议评价标准和文化理工科重视技术创新和国际影响力,社会科学重视理论贡献和社会意义,人文学科重视学术深度和文化价值,医学领域重视临床实用性、CME学分认证、专科权威性和伦理规范。请根据论文所属学科采用相应的评价标准和推荐策略。"
)
if response:
return response
return "会议推荐生成失败"
except Exception as e:
self.chatbot.append(["错误", f"生成会议推荐时出错: {str(e)}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return "会议推荐生成失败: " + str(e)
def _generate_priority_summary(self, journal_recommendations: str, conference_recommendations: str) -> Generator:
"""生成优先级总结"""
self.chatbot.append(["生成优先级总结", "正在生成投稿优先级总结..."])
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 获取当前时间信息
current_time = datetime.now()
current_date_str = current_time.strftime("%Y年%m月%d")
current_month = current_time.strftime("%Y年%m月")
# 计算未来时间点
def add_months(date, months):
"""安全地添加月份"""
month = date.month - 1 + months
year = date.year + month // 12
month = month % 12 + 1
day = min(date.day, calendar.monthrange(year, month)[1])
return date.replace(year=year, month=month, day=day)
future_6_months = add_months(current_time, 6).strftime('%Y年%m月')
future_12_months = add_months(current_time, 12).strftime('%Y年%m月')
future_year = (current_time.year + 1)
priority_prompt = f"""请基于以下期刊和会议推荐结果,生成一个综合的投稿优先级总结。
**重要提示:当前时间是{current_date_str}{current_month}),请基于这个时间点制定投稿计划。**
期刊推荐结果:
{journal_recommendations}
会议推荐结果:
{conference_recommendations}
请提供:
1. 综合投稿策略建议(考虑该学科的发表文化和惯例)
- 期刊优先还是会议优先(不同学科有不同偏好)
- 国际期刊/会议 vs 国内期刊/会议的选择策略
- 英文发表 vs 中文发表的考虑
2. 按时间线排列的投稿计划(**基于当前时间{current_date_str},考虑截止时间和审稿周期**
- 短期目标({current_month}起3-6个月内,即到{future_6_months}
- 中期目标6-12个月内,即到{future_12_months}
- 长期目标1年以上,即{future_year}年以后)
3. 风险分散策略
- 同时投稿多个不同级别的目标
- 考虑该学科的一稿多投政策
- 备选方案和应急策略
4. 针对论文可能需要的改进建议
- 根据目标期刊/会议的要求调整内容
- 语言和格式的优化建议
- 补充实验或分析的建议
5. 预期的发表时间线和成功概率评估(基于当前时间{current_date_str}
6. 该学科特有的发表注意事项
- 伦理审查要求(如医学、心理学等)
- 数据开放要求(如某些自然科学领域)
- 利益冲突声明(如医学、工程等)
- 医学领域特殊要求:
* 临床试验注册要求ClinicalTrials.gov、中国临床试验注册中心等
* 患者知情同意和隐私保护
* 医学伦理委员会批准证明
* CONSORT、STROBE、PRISMA等报告规范遵循
* 药物/器械安全性数据要求
* CME学分认证相关要求
* 临床指南和循证医学等级要求
- 其他学科特殊要求
请以表格形式总结前10个最推荐的投稿目标期刊+会议),包括优先级排序、预期时间线和成功概率。
**注意:所有时间规划都应基于当前时间{current_date_str}进行计算,不要使用虚构的时间。**"""
try:
response = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=priority_prompt,
inputs_show_user="生成投稿优先级总结",
llm_kwargs=self.llm_kwargs,
chatbot=self.chatbot,
history=[],
sys_prompt="你是一个资深的跨学科学术发表策略专家,熟悉各个学科的发表文化、惯例和要求。请综合考虑不同学科的特点:理工科通常重视期刊发表和影响因子,社会科学平衡期刊和专著,人文学科重视同行评议和学术声誉,医学重视临床意义和伦理规范。请为作者制定最适合其学科背景的投稿策略和时间规划。"
)
if response:
return response
return "优先级总结生成失败"
except Exception as e:
self.chatbot.append(["错误", f"生成优先级总结时出错: {str(e)}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return "优先级总结生成失败: " + str(e)
def save_recommendations(self, journal_recommendations: str, conference_recommendations: str, priority_summary: str) -> Generator:
"""保存推荐报告"""
timestamp = time.strftime("%Y%m%d_%H%M%S")
# 保存为Markdown文件
try:
md_content = f"""# 论文期刊会议推荐报告
## 投稿优先级总结
{priority_summary}
## 期刊推荐
{journal_recommendations}
## 会议推荐
{conference_recommendations}
---
# 详细分析结果
"""
# 添加详细分析结果
for q in self.questions:
if q.id in self.analysis_results:
md_content += f"\n\n## {q.description}\n\n{self.analysis_results[q.id]}"
result_file = write_history_to_file(
history=[md_content],
file_basename=f"期刊会议推荐_{timestamp}.md"
)
if result_file and os.path.exists(result_file):
promote_file_to_downloadzone(result_file, chatbot=self.chatbot)
self.chatbot.append(["保存成功", f"推荐报告已保存至: {os.path.basename(result_file)}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
else:
self.chatbot.append(["警告", "保存报告成功但找不到文件"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
except Exception as e:
self.chatbot.append(["警告", f"保存报告失败: {str(e)}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
def recommend_venues(self, paper_path: str) -> Generator:
"""推荐期刊会议主流程"""
# 加载论文
success = yield from self._load_paper(paper_path)
if not success:
return
# 分析关键问题
for question in self.questions:
yield from self._analyze_question(question)
# 分别生成期刊和会议推荐
journal_recommendations = yield from self._generate_journal_recommendations()
conference_recommendations = yield from self._generate_conference_recommendations()
# 生成优先级总结
priority_summary = yield from self._generate_priority_summary(journal_recommendations, conference_recommendations)
# 显示结果
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 保存报告
yield from self.save_recommendations(journal_recommendations, conference_recommendations, priority_summary)
# 将完整的分析结果和推荐内容添加到历史记录中,方便用户继续提问
self._add_to_history(journal_recommendations, conference_recommendations, priority_summary)
def _add_to_history(self, journal_recommendations: str, conference_recommendations: str, priority_summary: str):
"""将分析结果和推荐内容添加到历史记录中"""
try:
# 构建完整的内容摘要
history_content = f"""# 论文期刊会议推荐分析完成
## 📊 投稿优先级总结
{priority_summary}
## 📚 期刊推荐
{journal_recommendations}
## 🏛️ 会议推荐
{conference_recommendations}
## 📋 详细分析结果
"""
# 添加详细分析结果
for q in self.questions:
if q.id in self.analysis_results:
history_content += f"\n### {q.description}\n{self.analysis_results[q.id]}\n"
history_content += "\n---\n💡 您现在可以基于以上分析结果继续提问,比如询问特定期刊的详细信息、投稿策略建议、或者对推荐结果的进一步解释。"
# 添加到历史记录中
self.history.append("论文期刊会议推荐分析")
self.history.append(history_content)
self.chatbot.append(["✅ 分析完成", "所有分析结果和推荐内容已添加到对话历史中,您可以继续基于这些内容提问。"])
except Exception as e:
self.chatbot.append(["警告", f"添加到历史记录时出错: {str(e)},但推荐报告已正常生成"])
# 即使添加历史失败,也不影响主要功能
def _find_paper_file(path: str) -> str:
"""查找路径中的论文文件(简化版)"""
if os.path.isfile(path):
return path
# 支持的文件扩展名(按优先级排序)
extensions = ["pdf", "docx", "doc", "txt", "md", "tex"]
# 简单地遍历目录
if os.path.isdir(path):
try:
for ext in extensions:
# 手动检查每个可能的文件,而不使用glob
potential_file = os.path.join(path, f"paper.{ext}")
if os.path.exists(potential_file) and os.path.isfile(potential_file):
return potential_file
# 如果没找到特定命名的文件,检查目录中的所有文件
for file in os.listdir(path):
file_path = os.path.join(path, file)
if os.path.isfile(file_path):
file_ext = file.split('.')[-1].lower() if '.' in file else ""
if file_ext in extensions:
return file_path
except Exception:
pass # 忽略任何错误
return None
def download_paper_by_id(paper_info, chatbot, history) -> str:
"""下载论文并返回保存路径
Args:
paper_info: 元组,包含论文ID类型arxiv或doi和ID值
chatbot: 聊天机器人对象
history: 历史记录
Returns:
str: 下载的论文路径或None
"""
id_type, paper_id = paper_info
# 创建保存目录 - 使用时间戳创建唯一文件夹
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
user_name = chatbot.get_user() if hasattr(chatbot, 'get_user') else "default"
from toolbox import get_log_folder, get_user
base_save_dir = get_log_folder(get_user(chatbot), plugin_name='paper_download')
save_dir = os.path.join(base_save_dir, f"papers_{timestamp}")
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_path = Path(save_dir)
chatbot.append([f"下载论文", f"正在下载{'arXiv' if id_type == 'arxiv' else 'DOI'} {paper_id} 的论文..."])
update_ui(chatbot=chatbot, history=history)
pdf_path = None
try:
if id_type == 'arxiv':
# 使用改进的arxiv查询方法
formatted_id = format_arxiv_id(paper_id)
paper_result = get_arxiv_paper(formatted_id)
if not paper_result:
chatbot.append([f"下载失败", f"未找到arXiv论文: {paper_id}"])
update_ui(chatbot=chatbot, history=history)
return None
# 下载PDF
filename = f"arxiv_{paper_id.replace('/', '_')}.pdf"
pdf_path = str(save_path / filename)
paper_result.download_pdf(filename=pdf_path)
else: # doi
# 下载DOI
sci_hub = SciHub(
doi=paper_id,
path=save_path
)
pdf_path = sci_hub.fetch()
# 检查下载结果
if pdf_path and os.path.exists(pdf_path):
promote_file_to_downloadzone(pdf_path, chatbot=chatbot)
chatbot.append([f"下载成功", f"已成功下载论文: {os.path.basename(pdf_path)}"])
update_ui(chatbot=chatbot, history=history)
return pdf_path
else:
chatbot.append([f"下载失败", f"论文下载失败: {paper_id}"])
update_ui(chatbot=chatbot, history=history)
return None
except Exception as e:
chatbot.append([f"下载错误", f"下载论文时出错: {str(e)}"])
update_ui(chatbot=chatbot, history=history)
return None
@CatchException
def 论文期刊会议推荐(txt: str, llm_kwargs: Dict, plugin_kwargs: Dict, chatbot: List,
history: List, system_prompt: str, user_request: str):
"""主函数 - 论文期刊会议推荐"""
# 初始化推荐器
chatbot.append(["函数插件功能及使用方式", "论文期刊会议推荐:基于论文内容分析,为您推荐合适的学术期刊和会议投稿目标。适用于各个学科专业(自然科学、工程技术、医学、社会科学、人文学科等),根据不同学科的评价标准和发表文化,提供分层次的期刊会议推荐、影响因子分析、发表难度评估、投稿策略建议等。<br><br>📋 使用方式:<br>1、直接上传PDF文件<br>2、输入DOI号或arXiv ID<br>3、点击插件开始分析"])
yield from update_ui(chatbot=chatbot, history=history)
paper_file = None
# 检查输入是否为论文IDarxiv或DOI
paper_info = extract_paper_id(txt)
if paper_info:
# 如果是论文ID,下载论文
chatbot.append(["检测到论文ID", f"检测到{'arXiv' if paper_info[0] == 'arxiv' else 'DOI'} ID: {paper_info[1]},准备下载论文..."])
yield from update_ui(chatbot=chatbot, history=history)
# 下载论文
paper_file = download_paper_by_id(paper_info, chatbot, history)
if not paper_file:
report_exception(chatbot, history, a=f"下载论文失败", b=f"无法下载{'arXiv' if paper_info[0] == 'arxiv' else 'DOI'}论文: {paper_info[1]}")
yield from update_ui(chatbot=chatbot, history=history)
return
else:
# 检查输入路径
if not os.path.exists(txt):
report_exception(chatbot, history, a=f"解析论文: {txt}", b=f"找不到文件或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history)
return
# 验证路径安全性
user_name = chatbot.get_user()
validate_path_safety(txt, user_name)
# 查找论文文件
paper_file = _find_paper_file(txt)
if not paper_file:
report_exception(chatbot, history, a=f"解析论文", b=f"在路径 {txt} 中未找到支持的论文文件")
yield from update_ui(chatbot=chatbot, history=history)
return
yield from update_ui(chatbot=chatbot, history=history)
# 确保paper_file是字符串
if paper_file is not None and not isinstance(paper_file, str):
# 尝试转换为字符串
try:
paper_file = str(paper_file)
except:
report_exception(chatbot, history, a=f"类型错误", b=f"论文路径不是有效的字符串: {type(paper_file)}")
yield from update_ui(chatbot=chatbot, history=history)
return
# 开始推荐
chatbot.append(["开始分析", f"正在分析论文并生成期刊会议推荐: {os.path.basename(paper_file)}"])
yield from update_ui(chatbot=chatbot, history=history)
recommender = JournalConferenceRecommender(llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
yield from recommender.recommend_venues(paper_file)

查看文件

@@ -0,0 +1,295 @@
import re
import os
import zipfile
from toolbox import CatchException, update_ui, promote_file_to_downloadzone, get_log_folder, get_user
from pathlib import Path
from datetime import datetime
def extract_paper_id(txt):
"""从输入文本中提取论文ID"""
# 尝试匹配DOI将DOI匹配提前,因为其格式更加明确
doi_patterns = [
r'doi.org/([\w\./-]+)', # doi.org/10.1234/xxx
r'doi:\s*([\w\./-]+)', # doi: 10.1234/xxx
r'(10\.\d{4,}/[\w\.-]+)', # 直接输入DOI: 10.1234/xxx
]
for pattern in doi_patterns:
match = re.search(pattern, txt, re.IGNORECASE)
if match:
return ('doi', match.group(1))
# 尝试匹配arXiv ID
arxiv_patterns = [
r'arxiv.org/abs/(\d+\.\d+)', # arxiv.org/abs/2103.14030
r'arxiv.org/pdf/(\d+\.\d+)', # arxiv.org/pdf/2103.14030
r'arxiv/(\d+\.\d+)', # arxiv/2103.14030
r'^(\d{4}\.\d{4,5})$', # 直接输入ID: 2103.14030
# 添加对早期arXiv ID的支持
r'arxiv.org/abs/([\w-]+/\d{7})', # arxiv.org/abs/math/0211159
r'arxiv.org/pdf/([\w-]+/\d{7})', # arxiv.org/pdf/hep-th/9901001
r'^([\w-]+/\d{7})$', # 直接输入: math/0211159
]
for pattern in arxiv_patterns:
match = re.search(pattern, txt, re.IGNORECASE)
if match:
paper_id = match.group(1)
# 如果是新格式YYMM.NNNNN或旧格式category/NNNNNNN,都直接返回
if re.match(r'^\d{4}\.\d{4,5}$', paper_id) or re.match(r'^[\w-]+/\d{7}$', paper_id):
return ('arxiv', paper_id)
return None
def extract_paper_ids(txt):
"""从输入文本中提取多个论文ID"""
paper_ids = []
# 首先按换行符分割
for line in txt.strip().split('\n'):
line = line.strip()
if not line: # 跳过空行
continue
# 对每一行再按空格分割
for item in line.split():
item = item.strip()
if not item: # 跳过空项
continue
paper_info = extract_paper_id(item)
if paper_info:
paper_ids.append(paper_info)
# 去除重复项,保持顺序
unique_paper_ids = []
seen = set()
for paper_info in paper_ids:
if paper_info not in seen:
seen.add(paper_info)
unique_paper_ids.append(paper_info)
return unique_paper_ids
def format_arxiv_id(paper_id):
"""格式化arXiv ID,处理新旧两种格式"""
# 如果是旧格式 (e.g. astro-ph/0404140),需要去掉arxiv:前缀
if '/' in paper_id:
return paper_id.replace('arxiv:', '') # 确保移除可能存在的arxiv:前缀
return paper_id
def get_arxiv_paper(paper_id):
"""获取arXiv论文,处理新旧两种格式"""
import arxiv
# 尝试不同的查询方式
query_formats = [
paper_id, # 原始ID
paper_id.replace('/', ''), # 移除斜杠
f"id:{paper_id}", # 添加id:前缀
]
for query in query_formats:
try:
# 使用Search查询
search = arxiv.Search(
query=query,
max_results=1
)
result = next(arxiv.Client().results(search))
if result:
return result
except:
continue
try:
# 使用id_list查询
search = arxiv.Search(id_list=[query])
result = next(arxiv.Client().results(search))
if result:
return result
except:
continue
return None
def create_zip_archive(files, save_path):
"""将多个PDF文件打包成zip"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
zip_filename = f"papers_{timestamp}.zip"
zip_path = str(save_path / zip_filename)
with zipfile.ZipFile(zip_path, 'w') as zipf:
for file in files:
if os.path.exists(file):
# 只添加文件名,不包含路径
zipf.write(file, os.path.basename(file))
return zip_path
@CatchException
def 论文下载(txt: str, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
txt: 用户输入,可以是DOI、arxiv ID或相关链接,支持多行输入进行批量下载
"""
from crazy_functions.doc_fns.text_content_loader import TextContentLoader
from crazy_functions.review_fns.data_sources.arxiv_source import ArxivSource
from crazy_functions.review_fns.data_sources.scihub_source import SciHub
# 解析输入
paper_infos = extract_paper_ids(txt)
if not paper_infos:
chatbot.append(["输入解析", "未能识别任何论文ID或DOI,请检查输入格式。支持以下格式\n- arXiv ID (例如2103.14030)\n- arXiv链接\n- DOI (例如10.1234/xxx)\n- DOI链接\n\n多个论文ID请用换行分隔。"])
yield from update_ui(chatbot=chatbot, history=history)
return
# 创建保存目录 - 使用时间戳创建唯一文件夹
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
base_save_dir = get_log_folder(get_user(chatbot), plugin_name='paper_download')
save_dir = os.path.join(base_save_dir, f"papers_{timestamp}")
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_path = Path(save_dir)
# 记录下载结果
success_count = 0
failed_papers = []
downloaded_files = [] # 记录成功下载的文件路径
chatbot.append([f"开始下载", f"支持多行输入下载多篇论文,共检测到 {len(paper_infos)} 篇论文,开始下载..."])
yield from update_ui(chatbot=chatbot, history=history)
for id_type, paper_id in paper_infos:
try:
if id_type == 'arxiv':
chatbot.append([f"正在下载", f"从arXiv下载论文 {paper_id}..."])
yield from update_ui(chatbot=chatbot, history=history)
# 使用改进的arxiv查询方法
formatted_id = format_arxiv_id(paper_id)
paper_result = get_arxiv_paper(formatted_id)
if not paper_result:
failed_papers.append((paper_id, "未找到论文"))
continue
# 下载PDF
try:
filename = f"arxiv_{paper_id.replace('/', '_')}.pdf"
pdf_path = str(save_path / filename)
paper_result.download_pdf(filename=pdf_path)
if os.path.exists(pdf_path):
downloaded_files.append(pdf_path)
except Exception as e:
failed_papers.append((paper_id, f"PDF下载失败: {str(e)}"))
continue
else: # doi
chatbot.append([f"正在下载", f"从Sci-Hub下载论文 {paper_id}..."])
yield from update_ui(chatbot=chatbot, history=history)
sci_hub = SciHub(
doi=paper_id,
path=save_path
)
pdf_path = sci_hub.fetch()
if pdf_path and os.path.exists(pdf_path):
downloaded_files.append(pdf_path)
# 检查下载结果
if pdf_path and os.path.exists(pdf_path):
promote_file_to_downloadzone(pdf_path, chatbot=chatbot)
success_count += 1
else:
failed_papers.append((paper_id, "下载失败"))
except Exception as e:
failed_papers.append((paper_id, str(e)))
yield from update_ui(chatbot=chatbot, history=history)
# 创建ZIP压缩包
if downloaded_files:
try:
zip_path = create_zip_archive(downloaded_files, Path(base_save_dir))
promote_file_to_downloadzone(zip_path, chatbot=chatbot)
chatbot.append([
f"创建压缩包",
f"已将所有下载的论文打包为: {os.path.basename(zip_path)}"
])
yield from update_ui(chatbot=chatbot, history=history)
except Exception as e:
chatbot.append([
f"创建压缩包失败",
f"打包文件时出现错误: {str(e)}"
])
yield from update_ui(chatbot=chatbot, history=history)
# 生成最终报告
summary = f"下载完成!成功下载 {success_count} 篇论文。\n"
if failed_papers:
summary += "\n以下论文下载失败:\n"
for paper_id, reason in failed_papers:
summary += f"- {paper_id}: {reason}\n"
if downloaded_files:
summary += f"\n所有论文已存放在文件夹 '{save_dir}' 中,并打包到压缩文件中。您可以在下载区找到单个PDF文件和压缩包。"
chatbot.append([
f"下载完成",
summary
])
yield from update_ui(chatbot=chatbot, history=history)
# 如果下载成功且用户想要直接阅读内容
if downloaded_files:
chatbot.append([
"提示",
"正在读取论文内容进行分析,请稍候..."
])
yield from update_ui(chatbot=chatbot, history=history)
# 使用TextContentLoader加载整个文件夹的PDF文件内容
loader = TextContentLoader(chatbot, history)
# 删除提示信息
chatbot.pop()
# 加载PDF内容 - 传入文件夹路径而不是单个文件路径
yield from loader.execute(save_dir)
# 添加提示信息
chatbot.append([
"提示",
"论文内容已加载完毕,您可以直接向AI提问有关该论文的问题。"
])
yield from update_ui(chatbot=chatbot, history=history)
if __name__ == "__main__":
# 测试代码
import asyncio
async def test():
# 测试批量输入
batch_inputs = [
# 换行分隔的测试
"""https://arxiv.org/abs/2103.14030
math/0211159
10.1038/s41586-021-03819-2""",
# 空格分隔的测试
"https://arxiv.org/abs/2103.14030 math/0211159 10.1038/s41586-021-03819-2",
# 混合分隔的测试
"""https://arxiv.org/abs/2103.14030 math/0211159
10.1038/s41586-021-03819-2 https://doi.org/10.1038/s41586-021-03819-2
2103.14030""",
]
for i, test_input in enumerate(batch_inputs, 1):
print(f"\n测试用例 {i}:")
print(f"输入: {test_input}")
results = extract_paper_ids(test_input)
print(f"解析结果:")
for result in results:
print(f" {result}")
asyncio.run(test())

查看文件

@@ -0,0 +1,867 @@
import os
import time
import glob
import re
import threading
from typing import Dict, List, Generator, Tuple
from dataclasses import dataclass
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
from crazy_functions.rag_fns.rag_file_support import extract_text, convert_to_markdown
from request_llms.bridge_all import model_info
from toolbox import update_ui, CatchException, report_exception, promote_file_to_downloadzone, write_history_to_file
from shared_utils.fastapi_server import validate_path_safety
# 新增:导入结构化论文提取器
from crazy_functions.doc_fns.read_fns.unstructured_all.paper_structure_extractor import PaperStructureExtractor, ExtractorConfig, StructuredPaper
# 导入格式化器
from crazy_functions.paper_fns.file2file_doc import (
TxtFormatter,
MarkdownFormatter,
HtmlFormatter,
WordFormatter
)
@dataclass
class TextFragment:
"""文本片段数据类,用于组织处理单元"""
content: str
fragment_index: int
total_fragments: int
class DocumentProcessor:
"""文档处理器 - 处理单个文档并输出结果"""
def __init__(self, llm_kwargs: Dict, plugin_kwargs: Dict, chatbot: List, history: List, system_prompt: str):
"""初始化处理器"""
self.llm_kwargs = llm_kwargs.copy() # 创建原始llm_kwargs的副本
# 固定使用deepseek-reasoner模型
self.llm_kwargs['llm_model'] = "deepseek-reasoner"
self.plugin_kwargs = plugin_kwargs
self.chatbot = chatbot
self.history = history
self.system_prompt = system_prompt
self.processed_results = []
self.failed_fragments = []
# 新增:初始化论文结构提取器
self.paper_extractor = PaperStructureExtractor()
# 修改设置降重次数,默认为1次原为3次
self.reduction_times = int(self.plugin_kwargs.get("reduction_times", 1))
def _get_token_limit(self) -> int:
"""获取模型token限制,返回更小的值以确保更细粒度的分割"""
max_token = model_info[self.llm_kwargs['llm_model']]['max_token']
# 降低token限制,使每个片段更小
return max_token // 4 # 从3/4降低到1/4
def _create_batch_inputs(self, fragments: List[TextFragment], current_iteration: int = 1) -> Tuple[List, List, List]:
"""创建批处理输入"""
inputs_array = []
inputs_show_user_array = []
history_array = []
# 基础指令 - 增强单次调用的效果
user_instruction = self.plugin_kwargs.get("advanced_arg", """你是一个人类科研工作者,请对以下学术文本进行深度改写,以彻底消除AI生成特征。具体要求如下
1. 保持学术写作的严谨性和专业性,但加入一些人类写作的不完美元素
2. 维持原文的核心论述和逻辑框架,但打破过于完美的结构
3. 彻底改变句式结构:
- 灵活运用主动句与被动句,偏好使用主动语态
- 适当使用不同长度的句子,包括一些较长的复杂句
- 引入变化多样的句式,打破规律性
- 完全避免AI常用的模板化句式和套路表达
- 增加一些学术写作中常见的转折和连接方式
4. 全面改善用词:
- 使用更多学术语境下的专业词汇和同义词替换
- 避免过于机械和规律性的连接词,使用更自然的过渡
- 重构专业术语的表达方式,但保持准确性
- 增加词汇多样性,减少重复用词
- 偶尔使用一些不太常见但恰当的词汇
5. 模拟真实学者的写作风格:
- 注重论证的严密性,但允许存在一些微小的不对称性
- 保持表达的客观性,同时适度体现个人学术见解
- 在适当位置表达观点时更加自信和坚定
- 避免过于完美和机械均衡的论述结构
- 允许段落长度有所变化,不要过于均匀
6. 引入人类学者常见的写作特点:
- 段落之间的过渡更加自然流畅
- 适当使用一些学术界常见的修辞手法,但不过度使用
- 偶尔使用一些强调和限定性表达
- 适当使用一些学术界认可的个人化表达
7. 彻底消除AI痕迹
- 避免过于规整和均衡的段落结构
- 避免机械性的句式变化和词汇替换模式
- 避免过于完美的逻辑推导,适当增加一些转折
- 减少公式化的表达方式""")
# 对于单次调用的场景,不需要迭代前缀,直接使用更强力的改写指令
for frag in fragments:
# 在单次调用时使用更强力的指令
if self.reduction_times == 1:
i_say = (f'请对以下学术文本进行彻底改写,完全消除AI特征,使其像真实人类学者撰写的内容。\n\n{user_instruction}\n\n'
f'请记住以下几点:\n'
f'1. 避免过于规整和均衡的结构\n'
f'2. 引入一些人类写作的微小不完美之处\n'
f'3. 使用多样化的句式和词汇\n'
f'4. 打破可能的AI规律性表达模式\n'
f'5. 适当使用一些专业领域内的表达习惯\n\n'
f'请将对文本的处理结果放在<decision>和</decision>标签之间。\n\n'
f'文本内容:\n```\n{frag.content}\n```')
else:
# 原有的迭代前缀逻辑
iteration_prefix = ""
if current_iteration > 1:
iteration_prefix = f"这是第{current_iteration}次改写,请在保持学术性的基础上,采用更加人性化、不同的表达方式。"
if current_iteration == 2:
iteration_prefix += "在保持专业性的同时,进一步优化句式结构和用词,显著降低AI痕迹。"
elif current_iteration >= 3:
iteration_prefix += "请在确保不损失任何学术内容的前提下,彻底重构表达方式,并适当引入少量人类学者常用的表达技巧,避免过度使用比喻和类比。"
i_say = (f'请按照以下要求处理文本内容:{iteration_prefix}{user_instruction}\n\n'
f'请将对文本的处理结果放在<decision>和</decision>标签之间。\n\n'
f'文本内容:\n```\n{frag.content}\n```')
i_say_show_user = f'正在处理文本片段 {frag.fragment_index + 1}/{frag.total_fragments}'
inputs_array.append(i_say)
inputs_show_user_array.append(i_say_show_user)
history_array.append([])
return inputs_array, inputs_show_user_array, history_array
def _extract_decision(self, text: str) -> str:
"""从LLM响应中提取<decision>标签内的内容"""
import re
pattern = r'<decision>(.*?)</decision>'
matches = re.findall(pattern, text, re.DOTALL)
if matches:
return matches[0].strip()
else:
# 如果没有找到标签,返回原始文本
return text.strip()
def process_file(self, file_path: str) -> Generator:
"""处理单个文件"""
self.chatbot.append(["开始处理文件", f"文件路径: {file_path}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
try:
# 首先尝试转换为Markdown
file_path = convert_to_markdown(file_path)
# 1. 检查文件是否为支持的论文格式
is_paper_format = any(file_path.lower().endswith(ext) for ext in self.paper_extractor.SUPPORTED_EXTENSIONS)
if is_paper_format:
# 使用结构化提取器处理论文
return (yield from self._process_structured_paper(file_path))
else:
# 使用原有方式处理普通文档
return (yield from self._process_regular_file(file_path))
except Exception as e:
self.chatbot.append(["处理错误", f"文件处理失败: {str(e)}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return None
def _process_structured_paper(self, file_path: str) -> Generator:
"""处理结构化论文文件"""
# 1. 提取论文结构
self.chatbot[-1] = ["正在分析论文结构", f"文件路径: {file_path}"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
try:
paper = self.paper_extractor.extract_paper_structure(file_path)
if not paper or not paper.sections:
self.chatbot.append(["无法提取论文结构", "将使用全文内容进行处理"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 使用全文内容进行段落切分
if paper and paper.full_text:
# 使用增强的分割函数进行更细致的分割
fragments = self._breakdown_section_content(paper.full_text)
# 创建文本片段对象
text_fragments = []
for i, frag in enumerate(fragments):
if frag.strip():
text_fragments.append(TextFragment(
content=frag,
fragment_index=i,
total_fragments=len(fragments)
))
# 多次降重处理
if text_fragments:
current_fragments = text_fragments
# 进行多轮降重处理
for iteration in range(1, self.reduction_times + 1):
# 处理当前片段
processed_content = yield from self._process_text_fragments(current_fragments, iteration)
# 如果这是最后一次迭代,保存结果
if iteration == self.reduction_times:
final_content = processed_content
break
# 否则,准备下一轮迭代的片段
# 从处理结果中提取处理后的内容
next_fragments = []
for idx, item in enumerate(self.processed_results):
next_fragments.append(TextFragment(
content=item['content'],
fragment_index=idx,
total_fragments=len(self.processed_results)
))
current_fragments = next_fragments
# 更新UI显示最终结果
self.chatbot[-1] = ["处理完成", f"共完成 {self.reduction_times} 轮降重"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
return final_content
else:
self.chatbot.append(["处理失败", "未能提取到有效的文本内容"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return None
else:
self.chatbot.append(["处理失败", "未能提取到论文内容"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return None
# 2. 准备处理章节内容(不处理标题)
self.chatbot[-1] = ["已提取论文结构", f"{len(paper.sections)} 个主要章节"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 3. 收集所有需要处理的章节内容并分割为合适大小
sections_to_process = []
section_map = {} # 用于映射处理前后的内容
def collect_section_contents(sections, parent_path=""):
"""递归收集章节内容,跳过参考文献部分"""
for i, section in enumerate(sections):
current_path = f"{parent_path}/{i}" if parent_path else f"{i}"
# 检查是否为参考文献部分,如果是则跳过
if section.section_type == 'references' or section.title.lower() in ['references', '参考文献', 'bibliography', '文献']:
continue # 跳过参考文献部分
# 只处理内容非空的章节
if section.content and section.content.strip():
# 使用增强的分割函数进行更细致的分割
fragments = self._breakdown_section_content(section.content)
for fragment_idx, fragment_content in enumerate(fragments):
if fragment_content.strip():
fragment_index = len(sections_to_process)
sections_to_process.append(TextFragment(
content=fragment_content,
fragment_index=fragment_index,
total_fragments=0 # 临时值,稍后更新
))
# 保存映射关系,用于稍后更新章节内容
# 为每个片段存储原始章节和片段索引信息
section_map[fragment_index] = (current_path, section, fragment_idx, len(fragments))
# 递归处理子章节
if section.subsections:
collect_section_contents(section.subsections, current_path)
# 收集所有章节内容
collect_section_contents(paper.sections)
# 更新总片段数
total_fragments = len(sections_to_process)
for frag in sections_to_process:
frag.total_fragments = total_fragments
# 4. 如果没有内容需要处理,直接返回
if not sections_to_process:
self.chatbot.append(["处理完成", "未找到需要处理的内容"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return None
# 5. 批量处理章节内容
self.chatbot[-1] = ["开始处理论文内容", f"{len(sections_to_process)} 个内容片段"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 一次性准备所有输入
inputs_array, inputs_show_user_array, history_array = self._create_batch_inputs(sections_to_process)
# 使用系统提示
instruction = self.plugin_kwargs.get("advanced_arg", """请对以下学术文本进行彻底改写,以显著降低AI生成特征。具体要求如下
1. 保持学术写作的严谨性和专业性
2. 维持原文的核心论述和逻辑框架
3. 优化句式结构:
- 灵活运用主动句与被动句
- 适当拆分复杂句式,提高可读性
- 注意句式的多样性,避免重复模式
- 打破AI常用的句式模板
4. 改善用词:
- 使用更多学术语境下的同义词替换
- 避免过于机械和规律性的连接词
- 适当调整专业术语的表达方式
- 增加词汇多样性,减少重复用词
5. 增强文本的学术特征:
- 注重论证的严密性
- 保持表达的客观性
- 适度体现作者的学术见解
- 避免过于完美和均衡的论述结构
6. 确保语言风格的一致性
7. 减少AI生成文本常见的套路和模式""")
sys_prompt_array = [f"""作为一位专业的学术写作顾问,请按照以下要求改写文本:
1. 严格保持学术写作规范
2. 维持原文的核心论述和逻辑框架
3. 通过优化句式结构和用词降低AI生成特征
4. 确保语言风格的一致性和专业性
5. 保持内容的客观性和准确性
6. 避免AI常见的套路化表达和过于完美的结构"""] * len(sections_to_process)
# 调用LLM一次性处理所有片段
response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=self.llm_kwargs,
chatbot=self.chatbot,
history_array=history_array,
sys_prompt_array=sys_prompt_array,
)
# 处理响应,重组章节内容
section_contents = {} # 用于重组各章节的处理后内容
for j, frag in enumerate(sections_to_process):
try:
llm_response = response_collection[j * 2 + 1]
processed_text = self._extract_decision(llm_response)
if processed_text and processed_text.strip():
# 保存处理结果
self.processed_results.append({
'index': frag.fragment_index,
'content': processed_text
})
# 存储处理后的文本片段,用于后续重组
fragment_index = frag.fragment_index
if fragment_index in section_map:
path, section, fragment_idx, total_fragments = section_map[fragment_index]
# 初始化此章节的内容容器(如果尚未创建)
if path not in section_contents:
section_contents[path] = [""] * total_fragments
# 将处理后的片段放入正确位置
section_contents[path][fragment_idx] = processed_text
else:
self.failed_fragments.append(frag)
except Exception as e:
self.failed_fragments.append(frag)
# 重组每个章节的内容
for path, fragments in section_contents.items():
section = None
for idx in section_map:
if section_map[idx][0] == path:
section = section_map[idx][1]
break
if section:
# 合并该章节的所有处理后片段
section.content = "\n".join(fragments)
# 6. 更新UI
success_count = total_fragments - len(self.failed_fragments)
self.chatbot[-1] = ["处理完成", f"成功处理 {success_count}/{total_fragments} 个内容片段"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 收集参考文献部分(不进行处理)
references_sections = []
def collect_references(sections, parent_path=""):
"""递归收集参考文献部分"""
for i, section in enumerate(sections):
current_path = f"{parent_path}/{i}" if parent_path else f"{i}"
# 检查是否为参考文献部分
if section.section_type == 'references' or section.title.lower() in ['references', '参考文献', 'bibliography', '文献']:
references_sections.append((current_path, section))
# 递归检查子章节
if section.subsections:
collect_references(section.subsections, current_path)
# 收集参考文献
collect_references(paper.sections)
# 7. 将处理后的结构化论文转换为Markdown
markdown_content = self.paper_extractor.generate_markdown(paper)
# 8. 返回处理后的内容
self.chatbot[-1] = ["处理完成", f"成功处理 {success_count}/{total_fragments} 个内容片段,参考文献部分未处理"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
return markdown_content
except Exception as e:
self.chatbot.append(["结构化处理失败", f"错误: {str(e)},将尝试作为普通文件处理"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return (yield from self._process_regular_file(file_path))
def _process_regular_file(self, file_path: str) -> Generator:
"""使用原有方式处理普通文件"""
# 原有的文件处理逻辑
self.chatbot[-1] = ["正在读取文件", f"文件路径: {file_path}"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
content = extract_text(file_path)
if not content or not content.strip():
self.chatbot.append(["处理失败", "文件内容为空或无法提取内容"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return None
# 2. 分割文本
self.chatbot[-1] = ["正在分析文件", "将文件内容分割为适当大小的片段"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 使用增强的分割函数
fragments = self._breakdown_section_content(content)
# 3. 创建文本片段对象
text_fragments = []
for i, frag in enumerate(fragments):
if frag.strip():
text_fragments.append(TextFragment(
content=frag,
fragment_index=i,
total_fragments=len(fragments)
))
# 4. 多轮降重处理
if not text_fragments:
self.chatbot.append(["处理失败", "未能提取到有效的文本内容"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return None
# 批处理大小
batch_size = 8 # 每批处理的片段数
# 第一次迭代
current_batches = []
for i in range(0, len(text_fragments), batch_size):
current_batches.append(text_fragments[i:i + batch_size])
all_processed_fragments = []
# 进行多轮降重处理
for iteration in range(1, self.reduction_times + 1):
self.chatbot[-1] = ["开始处理文本", f"{iteration}/{self.reduction_times} 次降重"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
next_batches = []
all_processed_fragments = []
# 分批处理当前迭代的片段
for batch in current_batches:
# 处理当前批次
_ = yield from self._process_text_fragments(batch, iteration)
# 收集处理结果
processed_batch = []
for item in self.processed_results:
processed_batch.append(TextFragment(
content=item['content'],
fragment_index=len(all_processed_fragments) + len(processed_batch),
total_fragments=0 # 临时值,稍后更新
))
all_processed_fragments.extend(processed_batch)
# 如果不是最后一轮迭代,准备下一批次
if iteration < self.reduction_times:
for i in range(0, len(processed_batch), batch_size):
next_batches.append(processed_batch[i:i + batch_size])
# 更新总片段数
for frag in all_processed_fragments:
frag.total_fragments = len(all_processed_fragments)
# 为下一轮迭代准备批次
current_batches = next_batches
# 合并最终结果
final_content = "\n\n".join([frag.content for frag in all_processed_fragments])
# 5. 更新UI显示最终结果
self.chatbot[-1] = ["处理完成", f"共完成 {self.reduction_times} 轮降重"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
return final_content
def save_results(self, content: str, original_file_path: str) -> List[str]:
"""保存处理结果为TXT格式"""
if not content:
return []
timestamp = time.strftime("%Y%m%d_%H%M%S")
original_filename = os.path.basename(original_file_path)
filename_without_ext = os.path.splitext(original_filename)[0]
base_filename = f"{filename_without_ext}_processed_{timestamp}"
result_files = []
# 只保存为TXT
try:
txt_formatter = TxtFormatter()
txt_content = txt_formatter.create_document(content)
txt_file = write_history_to_file(
history=[txt_content],
file_basename=f"{base_filename}.txt"
)
result_files.append(txt_file)
except Exception as e:
self.chatbot.append(["警告", f"TXT格式保存失败: {str(e)}"])
# 添加到下载区
for file in result_files:
promote_file_to_downloadzone(file, chatbot=self.chatbot)
return result_files
def _breakdown_section_content(self, content: str) -> List[str]:
"""对文本内容进行分割与合并
主要按段落进行组织,只合并较小的段落以减少片段数量
保留原始段落结构,不对长段落进行强制分割
针对中英文设置不同的阈值,因为字符密度不同
"""
# 先按段落分割文本
paragraphs = content.split('\n\n')
# 检测语言类型
chinese_char_count = sum(1 for char in content if '\u4e00' <= char <= '\u9fff')
is_chinese_text = chinese_char_count / max(1, len(content)) > 0.3
# 根据语言类型设置不同的阈值(只用于合并小段落)
if is_chinese_text:
# 中文文本:一个汉字就是一个字符,信息密度高
min_chunk_size = 300 # 段落合并的最小阈值
target_size = 800 # 理想的段落大小
else:
# 英文文本:一个单词由多个字符组成,信息密度低
min_chunk_size = 600 # 段落合并的最小阈值
target_size = 1600 # 理想的段落大小
# 1. 只合并小段落,不对长段落进行分割
result_fragments = []
current_chunk = []
current_length = 0
for para in paragraphs:
# 如果段落太小且不会超过目标大小,则合并
if len(para) < min_chunk_size and current_length + len(para) <= target_size:
current_chunk.append(para)
current_length += len(para)
# 否则,创建新段落
else:
# 如果当前块非空且与当前段落无关,先保存它
if current_chunk and current_length > 0:
result_fragments.append('\n\n'.join(current_chunk))
# 当前段落作为新块
current_chunk = [para]
current_length = len(para)
# 如果当前块大小已接近目标大小,保存并开始新块
if current_length >= target_size:
result_fragments.append('\n\n'.join(current_chunk))
current_chunk = []
current_length = 0
# 保存最后一个块
if current_chunk:
result_fragments.append('\n\n'.join(current_chunk))
# 2. 处理可能过大的片段确保不超过token限制
final_fragments = []
max_token = self._get_token_limit()
for fragment in result_fragments:
# 检查fragment是否可能超出token限制
# 根据语言类型调整token估算
if is_chinese_text:
estimated_tokens = len(fragment) / 1.5 # 中文每个token约1-2个字符
else:
estimated_tokens = len(fragment) / 4 # 英文每个token约4个字符
if estimated_tokens > max_token:
# 即使可能超出限制,也尽量保持段落的完整性
# 使用breakdown_text但设置更大的限制来减少分割
larger_limit = max_token * 0.95 # 使用95%的限制
sub_fragments = breakdown_text_to_satisfy_token_limit(
txt=fragment,
limit=larger_limit,
llm_model=self.llm_kwargs['llm_model']
)
final_fragments.extend(sub_fragments)
else:
final_fragments.append(fragment)
return final_fragments
def _process_text_fragments(self, text_fragments: List[TextFragment], current_iteration: int = 1) -> str:
"""处理文本片段,支持多次降重
Args:
text_fragments: 要处理的文本片段列表
current_iteration: 当前是第几次降重迭代
Returns:
处理后的文本内容
"""
self.chatbot[-1] = ["开始处理文本", f"{current_iteration}/{self.reduction_times} 次降重,共 {len(text_fragments)} 个片段"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 重置处理结果,为当前迭代做准备
self.processed_results = []
self.failed_fragments = []
# 一次性准备所有输入
inputs_array, inputs_show_user_array, history_array = self._create_batch_inputs(text_fragments, current_iteration)
# 对于单次调用的特殊处理 - 使用更强力的系统提示词
if self.reduction_times == 1:
sys_prompt = f"""你是一个伪装成人类科研学者的AI,能够将各种AI生成内容改写成人类学者常用的表达方式,让人类学者无法分辨。
你的任务是对学术文本进行深度改写,以彻底消除AI特征,使其具有真实人类学者的写作特点
1. 打破AI常见的规整句式结构和词汇选择模式
2. 引入学术写作中的自然变化和不规则性
3. 使用多样化的句式和段落结构,避免明显的平衡性和规律性
4. 加入人类写作中常见的微小不完美之处,如段落长度变化、论述强调点不均等
5. 在维持核心论点的同时,完全重构表达方式
6. 适当使用学科领域内专家常用的表达习惯和术语
7. 确保文本读起来自然流畅,避免机械感
8. 打破AI生成内容常见的逻辑结构和表达套路
9. 根据文本内容,在保持专业性的基础上增加写作的特色和个性
对于每个文本片段,尽可能彻底地重构,使其无法被识别为AI生成。"""
sys_prompt_array = [sys_prompt] * len(text_fragments)
else:
# 原有的多次迭代处理逻辑
# 根据迭代次数调整系统提示词强度
base_instruction = self.plugin_kwargs.get("advanced_arg", """你是一个人类科研工作者,请对以下学术文本进行彻底改写,以显著降低AI生成特征。具体要求如下
1. 保持学术写作的严谨性和专业性
2. 维持原文的核心论述和逻辑框架
3. 优化句式结构:
- 灵活运用主动句与被动句
- 适当拆分复杂句式,提高可读性
- 注意句式的多样性,避免重复模式
- 打破AI常用的句式模板
4. 改善用词:
- 使用更多学术语境下的同义词替换
- 避免过于机械和规律性的连接词
- 适当调整专业术语的表达方式
- 增加词汇多样性,减少重复用词
5. 增强文本的学术特征:
- 注重论证的严密性
- 保持表达的客观性
- 适度体现作者的学术见解
- 避免过于完美和均衡的论述结构
6. 确保语言风格的一致性
7. 减少AI生成文本常见的套路和模式""")
# 根据迭代次数增强强度
if current_iteration == 1:
# 第一次迭代使用基础强度
instruction = base_instruction
sys_prompt = f"""你是一个伪装成人类科研学者的AI,能够将各种AI生成内容改写成人类学者常用的表达方式,让人类学者无法分辨。请进行第{current_iteration}轮深度改写:
1. 严格保持学术写作规范
2. 维持原文的核心论述和逻辑框架
3. 通过优化句式结构和用词降低AI生成特征
4. 确保语言风格的一致性和专业性
5. 保持内容的客观性和准确性
6. 避免AI常见的套路化表达和过于完美的结构"""
elif current_iteration == 2:
# 第二次迭代使用中等强度
instruction = base_instruction + """这是第二次改写,请进一步优化:
1. 更深入地调整句式结构,增加表达多样性
2. 在保持准确性的前提下,替换更多专业术语的表达方式
3. 优化段落结构,增强逻辑连贯性
4. 适当调整学术论证的表达方式
5. 打破AI生成内容的常见模式,如过于均衡的结构和规律性的表达方式"""
sys_prompt = f"""你是一个伪装成人类科研学者的AI,能够将各种AI生成内容改写成人类学者常用的表达方式,让人类学者无法分辨。请进行第二轮改写
1. 在保持严谨性的基础上,优化表达方式
2. 改善文本结构,提升学术论述的清晰度
3. 增强专业术语使用的灵活性
4. 确保论证过程的完整性和逻辑性
5. 进一步减少AI生成内容的特征和模式
6. 使文本表现出更自然、更人性化的写作风格"""
else:
# 第三次或更多次迭代使用高强度
instruction = base_instruction + f"""这是第{current_iteration}次改写,需要在保持学术性的前提下彻底重构文本:
1. 全面重构句式,采用不同的表达策略
2. 系统性替换学术用语,保持专业准确性
3. 重组段落结构,优化论证层次
4. 深化学术观点的表达方式
5. 增强文本的逻辑严密性
6. 提升论述的专业深度
7. 确保不遗漏任何学术观点和论证要素
8. 适当使用学术表达技巧(如精准举例、恰当转折等),但不过分依赖比喻和类比
9. 彻底消除AI生成内容的特征,使文本具有真实学者的写作风格"""
sys_prompt = f"""你是一个伪装成人类科研学者的AI,能够将各种AI生成内容改写成人类学者常用的表达方式,让人类学者无法分辨。请进行第{current_iteration}轮深度改写:
1. 在保持专业水准的前提下,彻底重构表达方式,引入长难句
2. 确保学术论证的严密性和完整性
3. 优化专业术语的运用
4. 提升文本的学术价值
5. 保持论述的逻辑性和连贯性
6. 适当使用少量学术表达技巧,提高文本说服力,但避免过度使用比喻和类比
7. 消除所有明显的AI生成痕迹,使文本更接近真实学者的写作风格"""
sys_prompt_array = [sys_prompt] * len(text_fragments)
# 调用LLM一次性处理所有片段
response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=self.llm_kwargs,
chatbot=self.chatbot,
history_array=history_array,
sys_prompt_array=sys_prompt_array,
)
# 处理响应
for j, frag in enumerate(text_fragments):
try:
llm_response = response_collection[j * 2 + 1]
processed_text = self._extract_decision(llm_response)
if processed_text and processed_text.strip():
self.processed_results.append({
'index': frag.fragment_index,
'content': processed_text
})
else:
self.failed_fragments.append(frag)
self.processed_results.append({
'index': frag.fragment_index,
'content': frag.content
})
except Exception as e:
self.failed_fragments.append(frag)
self.processed_results.append({
'index': frag.fragment_index,
'content': frag.content
})
# 按原始顺序合并结果
self.processed_results.sort(key=lambda x: x['index'])
final_content = "\n".join([item['content'] for item in self.processed_results])
# 更新UI
success_count = len(text_fragments) - len(self.failed_fragments)
self.chatbot[-1] = ["当前阶段处理完成", f"{current_iteration}/{self.reduction_times} 次降重,成功处理 {success_count}/{len(text_fragments)} 个片段"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
return final_content
@CatchException
def 学术降重(txt: str, llm_kwargs: Dict, plugin_kwargs: Dict, chatbot: List,
history: List, system_prompt: str, user_request: str):
"""主函数 - 文件到文件处理"""
# 初始化
# 从高级参数中提取降重次数
if "advanced_arg" in plugin_kwargs and plugin_kwargs["advanced_arg"]:
# 检查是否包含降重次数的设置
match = re.search(r'reduction_times\s*=\s*(\d+)', plugin_kwargs["advanced_arg"])
if match:
reduction_times = int(match.group(1))
# 替换掉高级参数中的reduction_times设置,但保留其他内容
plugin_kwargs["advanced_arg"] = re.sub(r'reduction_times\s*=\s*\d+', '', plugin_kwargs["advanced_arg"]).strip()
# 添加到plugin_kwargs中作为单独的参数
plugin_kwargs["reduction_times"] = reduction_times
processor = DocumentProcessor(llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
chatbot.append(["函数插件功能", f"文件内容处理:将文档内容进行{processor.reduction_times}次降重处理"])
# 更新用户提示,提供关于降重策略的详细说明
if processor.reduction_times == 1:
chatbot.append(["降重策略", "将使用单次深度降重,这种方式能更有效地降低AI特征,减少查重率。我们采用特殊优化的提示词,通过一次性强力改写来实现降重效果。"])
elif processor.reduction_times > 1:
chatbot.append(["降重策略", f"将进行{processor.reduction_times}轮迭代降重,每轮降重都会基于上一轮的结果,并逐渐增加降重强度。请注意,多轮迭代可能会引入新的AI特征,单次强力降重通常效果更好。"])
yield from update_ui(chatbot=chatbot, history=history)
# 验证输入路径
if not os.path.exists(txt):
report_exception(chatbot, history, a=f"解析路径: {txt}", b=f"找不到路径或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history)
return
# 验证路径安全性
user_name = chatbot.get_user()
validate_path_safety(txt, user_name)
# 获取文件列表
if os.path.isfile(txt):
# 单个文件处理
file_paths = [txt]
else:
# 目录处理 - 类似批量文件询问插件
project_folder = txt
extract_folder = next((d for d in glob.glob(f'{project_folder}/*')
if os.path.isdir(d) and d.endswith('.extract')), project_folder)
# 排除压缩文件
exclude_patterns = r'/[^/]+\.(zip|rar|7z|tar|gz)$'
file_paths = [f for f in glob.glob(f'{extract_folder}/**', recursive=True)
if os.path.isfile(f) and not re.search(exclude_patterns, f)]
# 过滤支持的文件格式
file_paths = [f for f in file_paths if any(f.lower().endswith(ext) for ext in
list(processor.paper_extractor.SUPPORTED_EXTENSIONS) + ['.json', '.csv', '.xlsx', '.xls'])]
if not file_paths:
report_exception(chatbot, history, a=f"解析路径: {txt}", b="未找到支持的文件类型")
yield from update_ui(chatbot=chatbot, history=history)
return
# 处理文件
if len(file_paths) > 1:
chatbot.append(["发现多个文件", f"共找到 {len(file_paths)} 个文件,将处理第一个文件"])
yield from update_ui(chatbot=chatbot, history=history)
# 只处理第一个文件
file_to_process = file_paths[0]
processed_content = yield from processor.process_file(file_to_process)
if processed_content:
# 保存结果
result_files = processor.save_results(processed_content, file_to_process)
if result_files:
chatbot.append(["处理完成", f"已生成 {len(result_files)} 个结果文件"])
else:
chatbot.append(["处理完成", "但未能保存任何结果文件"])
else:
chatbot.append(["处理失败", "未能生成有效的处理结果"])
yield from update_ui(chatbot=chatbot, history=history)

查看文件

@@ -0,0 +1,387 @@
import aiohttp
import asyncio
from typing import List, Dict, Optional
import re
import random
import time
class WikipediaAPI:
"""维基百科API调用实现"""
def __init__(self, language: str = "zh", user_agent: str = None,
max_concurrent: int = 5, request_delay: float = 0.5):
"""
初始化维基百科API客户端
Args:
language: 语言代码 (zh: 中文, en: 英文, ja: 日文等)
user_agent: 用户代理信息,如果为None将使用默认值
max_concurrent: 最大并发请求数
request_delay: 请求间隔时间(秒)
"""
self.language = language
self.base_url = f"https://{language}.wikipedia.org/w/api.php"
self.user_agent = user_agent or "WikipediaAPIClient/1.0 (chatscholar@163.com)"
self.headers = {
"User-Agent": self.user_agent,
"Accept": "application/json"
}
# 添加并发控制
self.semaphore = asyncio.Semaphore(max_concurrent)
self.request_delay = request_delay
self.last_request_time = 0
async def _make_request(self, url, params=None):
"""
发起API请求,包含并发控制和请求延迟
Args:
url: 请求URL
params: 请求参数
Returns:
API响应数据
"""
# 使用信号量控制并发
async with self.semaphore:
# 添加请求间隔
current_time = time.time()
time_since_last_request = current_time - self.last_request_time
if time_since_last_request < self.request_delay:
await asyncio.sleep(self.request_delay - time_since_last_request)
# 设置随机延迟,避免规律性请求
jitter = random.uniform(0, 0.2)
await asyncio.sleep(jitter)
# 记录本次请求时间
self.last_request_time = time.time()
# 发起请求
try:
async with aiohttp.ClientSession(headers=self.headers) as session:
async with session.get(url, params=params) as response:
if response.status == 429: # Too Many Requests
retry_after = int(response.headers.get('Retry-After', 5))
print(f"达到请求限制,等待 {retry_after} 秒后重试...")
await asyncio.sleep(retry_after)
return await self._make_request(url, params)
if response.status != 200:
print(f"API请求失败: HTTP {response.status}")
print(f"响应内容: {await response.text()}")
return None
return await response.json()
except aiohttp.ClientError as e:
print(f"请求错误: {str(e)}")
return None
async def search(self, query: str, limit: int = 10, namespace: int = 0) -> List[Dict]:
"""
搜索维基百科文章
Args:
query: 搜索关键词
limit: 返回结果数量
namespace: 命名空间 (0表示文章, 14表示分类等)
Returns:
搜索结果列表
"""
params = {
"action": "query",
"list": "search",
"srsearch": query,
"format": "json",
"srlimit": limit,
"srnamespace": namespace,
"srprop": "snippet|titlesnippet|sectiontitle|categorysnippet|size|wordcount|timestamp|redirecttitle"
}
data = await self._make_request(self.base_url, params)
if not data:
return []
search_results = data.get("query", {}).get("search", [])
return search_results
async def get_page_content(self, title: str, section: Optional[int] = None) -> Dict:
"""
获取维基百科页面内容
Args:
title: 页面标题
section: 特定章节编号(可选)
Returns:
页面内容字典
"""
async with aiohttp.ClientSession(headers=self.headers) as session:
params = {
"action": "parse",
"page": title,
"format": "json",
"prop": "text|langlinks|categories|links|templates|images|externallinks|sections|revid|displaytitle|iwlinks|properties"
}
# 如果指定了章节,只获取该章节内容
if section is not None:
params["section"] = section
async with session.get(self.base_url, params=params) as response:
if response.status != 200:
print(f"API请求失败: HTTP {response.status}")
return {}
data = await response.json()
if "error" in data:
print(f"API错误: {data['error'].get('info', '未知错误')}")
return {}
return data.get("parse", {})
async def get_summary(self, title: str, sentences: int = 3) -> str:
"""
获取页面摘要
Args:
title: 页面标题
sentences: 返回的句子数量
Returns:
页面摘要文本
"""
async with aiohttp.ClientSession(headers=self.headers) as session:
params = {
"action": "query",
"prop": "extracts",
"exintro": "1",
"exsentences": sentences,
"explaintext": "1",
"titles": title,
"format": "json"
}
async with session.get(self.base_url, params=params) as response:
if response.status != 200:
print(f"API请求失败: HTTP {response.status}")
return ""
data = await response.json()
pages = data.get("query", {}).get("pages", {})
# 获取第一个页面ID的内容
for page_id in pages:
return pages[page_id].get("extract", "")
return ""
async def get_random_articles(self, count: int = 1, namespace: int = 0) -> List[Dict]:
"""
获取随机文章
Args:
count: 需要的随机文章数量
namespace: 命名空间
Returns:
随机文章列表
"""
async with aiohttp.ClientSession(headers=self.headers) as session:
params = {
"action": "query",
"list": "random",
"rnlimit": count,
"rnnamespace": namespace,
"format": "json"
}
async with session.get(self.base_url, params=params) as response:
if response.status != 200:
print(f"API请求失败: HTTP {response.status}")
return []
data = await response.json()
return data.get("query", {}).get("random", [])
async def login(self, username: str, password: str) -> bool:
"""
使用维基百科账户登录
Args:
username: 维基百科用户名
password: 维基百科密码
Returns:
登录是否成功
"""
async with aiohttp.ClientSession(headers=self.headers) as session:
# 获取登录令牌
params = {
"action": "query",
"meta": "tokens",
"type": "login",
"format": "json"
}
async with session.get(self.base_url, params=params) as response:
if response.status != 200:
print(f"获取登录令牌失败: HTTP {response.status}")
return False
data = await response.json()
login_token = data.get("query", {}).get("tokens", {}).get("logintoken")
if not login_token:
print("获取登录令牌失败")
return False
# 使用令牌登录
login_params = {
"action": "login",
"lgname": username,
"lgpassword": password,
"lgtoken": login_token,
"format": "json"
}
async with session.post(self.base_url, data=login_params) as login_response:
login_data = await login_response.json()
if login_data.get("login", {}).get("result") == "Success":
print(f"登录成功: {username}")
return True
else:
print(f"登录失败: {login_data.get('login', {}).get('reason', '未知原因')}")
return False
async def setup_oauth(self, consumer_token: str, consumer_secret: str,
access_token: str = None, access_secret: str = None) -> bool:
"""
设置OAuth认证
Args:
consumer_token: 消费者令牌
consumer_secret: 消费者密钥
access_token: 访问令牌(可选)
access_secret: 访问密钥(可选)
Returns:
设置是否成功
"""
try:
# 需要安装 mwoauth 库: pip install mwoauth
import mwoauth
import requests_oauthlib
# 设置OAuth
self.consumer_token = consumer_token
self.consumer_secret = consumer_secret
if access_token and access_secret:
# 如果已有访问令牌
self.auth = requests_oauthlib.OAuth1(
consumer_token,
consumer_secret,
access_token,
access_secret
)
print("OAuth设置成功")
return True
else:
# 需要获取访问令牌(这通常需要用户在网页上授权)
print("请在开发环境中完成以下OAuth授权流程:")
# 创建消费者
consumer = mwoauth.Consumer(
consumer_token, consumer_secret
)
# 初始化握手
redirect, request_token = mwoauth.initiate(
f"https://{self.language}.wikipedia.org/w/index.php",
consumer
)
print(f"请访问此URL授权应用: {redirect}")
# 这里通常会提示用户访问URL并输入授权码
# 实际应用中需要实现适当的授权流程
return False
except ImportError:
print("请安装 mwoauth 库: pip install mwoauth")
return False
except Exception as e:
print(f"设置OAuth时发生错误: {str(e)}")
return False
async def example_usage():
"""演示WikipediaAPI的使用方法"""
# 创建默认中文维基百科API客户端
wiki_zh = WikipediaAPI(language="zh")
try:
# 示例1: 基本搜索
print("\n=== 示例1: 搜索维基百科 ===")
results = await wiki_zh.search("人工智能", limit=3)
for i, result in enumerate(results, 1):
print(f"\n--- 结果 {i} ---")
print(f"标题: {result.get('title')}")
snippet = result.get('snippet', '')
# 清理HTML标签
snippet = re.sub(r'<.*?>', '', snippet)
print(f"摘要: {snippet}")
print(f"字数: {result.get('wordcount')}")
print(f"大小: {result.get('size')} 字节")
# 示例2: 获取页面摘要
print("\n=== 示例2: 获取页面摘要 ===")
summary = await wiki_zh.get_summary("深度学习", sentences=2)
print(f"深度学习摘要: {summary}")
# 示例3: 获取页面内容
print("\n=== 示例3: 获取页面内容 ===")
content = await wiki_zh.get_page_content("机器学习")
if content and "text" in content:
text = content["text"].get("*", "")
# 移除HTML标签以便控制台显示
clean_text = re.sub(r'<.*?>', '', text)
print(f"机器学习页面内容片段: {clean_text[:200]}...")
# 显示页面包含的分类数量
categories = content.get("categories", [])
print(f"分类数量: {len(categories)}")
# 显示页面包含的链接数量
links = content.get("links", [])
print(f"链接数量: {len(links)}")
# 示例4: 获取特定章节内容
print("\n=== 示例4: 获取特定章节内容 ===")
# 获取引言部分(通常是0号章节)
intro_content = await wiki_zh.get_page_content("人工智能", section=0)
if intro_content and "text" in intro_content:
intro_text = intro_content["text"].get("*", "")
clean_intro = re.sub(r'<.*?>', '', intro_text)
print(f"人工智能引言内容片段: {clean_intro[:200]}...")
# 示例5: 获取随机文章
print("\n=== 示例5: 获取随机文章 ===")
random_articles = await wiki_zh.get_random_articles(count=2)
print("随机文章:")
for i, article in enumerate(random_articles, 1):
print(f"{i}. {article.get('title')}")
# 显示随机文章的简短摘要
article_summary = await wiki_zh.get_summary(article.get('title'), sentences=1)
print(f" 摘要: {article_summary[:100]}...")
except Exception as e:
print(f"发生错误: {str(e)}")
import traceback
print(traceback.format_exc())
if __name__ == "__main__":
import asyncio
# 运行示例
asyncio.run(example_usage())