镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-06 14:36:48 +00:00
ChatGLM改成多进程运行
这个提交包含在:
@@ -3,35 +3,69 @@ from transformers import AutoModel, AutoTokenizer
|
||||
import time
|
||||
import importlib
|
||||
from toolbox import update_ui, get_conf
|
||||
from multiprocessing import Process, Pipe
|
||||
|
||||
#################################################################################
|
||||
class GetGLMHandle(Process):
|
||||
def __init__(self):
|
||||
super().__init__(daemon=True)
|
||||
self.parent, self.child = Pipe()
|
||||
self.chatglm_model = None
|
||||
self.chatglm_tokenizer = None
|
||||
self.start()
|
||||
print('初始化')
|
||||
|
||||
def ready(self):
|
||||
return self.chatglm_model is not None
|
||||
|
||||
global chatglm_model, chatglm_tokenizer
|
||||
|
||||
chatglm_model = None
|
||||
chatglm_tokenizer = None
|
||||
|
||||
def model_loader():
|
||||
global chatglm_model, chatglm_tokenizer
|
||||
if chatglm_tokenizer is None:
|
||||
chatglm_tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||||
if chatglm_model is None: # 尚未加载
|
||||
device, = get_conf('LOCAL_MODEL_DEVICE')
|
||||
if device=='cpu':
|
||||
chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
|
||||
else:
|
||||
chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
||||
chatglm_model = chatglm_model.eval()
|
||||
chatglm_model = chatglm_model.eval()
|
||||
def run(self):
|
||||
while True:
|
||||
try:
|
||||
if self.chatglm_model is None:
|
||||
self.chatglm_tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||||
device, = get_conf('LOCAL_MODEL_DEVICE')
|
||||
if device=='cpu':
|
||||
self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
|
||||
else:
|
||||
self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
||||
self.chatglm_model = self.chatglm_model.eval()
|
||||
break
|
||||
else:
|
||||
break
|
||||
except:
|
||||
pass
|
||||
while True:
|
||||
kwargs = self.child.recv()
|
||||
try:
|
||||
for response, history in self.chatglm_model.stream_chat(self.chatglm_tokenizer, **kwargs):
|
||||
self.child.send(response)
|
||||
except:
|
||||
self.child.send('[Local Message] Call ChatGLM fail.')
|
||||
self.child.send('[Finish]')
|
||||
|
||||
def stream_chat(self, **kwargs):
|
||||
self.parent.send(kwargs)
|
||||
while True:
|
||||
res = self.parent.recv()
|
||||
if res != '[Finish]':
|
||||
yield res
|
||||
else:
|
||||
break
|
||||
return
|
||||
|
||||
global glm_handle
|
||||
glm_handle = None
|
||||
#################################################################################
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
"""
|
||||
global chatglm_model, chatglm_tokenizer
|
||||
if chatglm_model is None:
|
||||
observe_window[0] = "ChatGLM尚未加载,加载需要一段时间 ……"
|
||||
global glm_handle
|
||||
if glm_handle is None:
|
||||
glm_handle = GetGLMHandle()
|
||||
observe_window[0] = "ChatGLM尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLM消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||
|
||||
model_loader()
|
||||
# chatglm 没有 sys_prompt 接口,因此把prompt加入 history
|
||||
history_feedin = []
|
||||
for i in range(len(history)//2):
|
||||
@@ -40,29 +74,27 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
|
||||
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
||||
response = ""
|
||||
for response, history in chatglm_model.stream_chat(chatglm_tokenizer, inputs, history=history_feedin, max_length=llm_kwargs['max_length'],
|
||||
top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
# 观测窗,把已经获取的数据显示出去
|
||||
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
observe_window[0] = response
|
||||
# 看门狗 (watchdog),如果超过期限没有喂狗,则终止
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("程序终止。")
|
||||
# if not console_slience:
|
||||
# print(response)
|
||||
return response
|
||||
|
||||
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
单线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
"""
|
||||
global chatglm_model, chatglm_tokenizer
|
||||
chatbot.append((inputs, ""))
|
||||
if chatglm_model is None:
|
||||
chatbot[-1] = (inputs, "ChatGLM尚未加载,加载需要一段时间 ……")
|
||||
|
||||
global glm_handle
|
||||
if glm_handle is None:
|
||||
glm_handle = GetGLMHandle()
|
||||
chatbot[-1] = (inputs, "ChatGLM尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLM消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……")
|
||||
yield from update_ui(chatbot=chatbot, history=[])
|
||||
model_loader()
|
||||
|
||||
if additional_fn is not None:
|
||||
import core_functional
|
||||
@@ -71,13 +103,11 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
|
||||
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
|
||||
|
||||
|
||||
history_feedin = []
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append(["What can I do?", system_prompt] )
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
|
||||
for response, history in chatglm_model.stream_chat(chatglm_tokenizer, inputs, history=history_feedin, max_length=llm_kwargs['max_length'],
|
||||
top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
在新工单中引用
屏蔽一个用户